WO2016047192A1 - 画像読取装置及び印刷装置 - Google Patents

画像読取装置及び印刷装置 Download PDF

Info

Publication number
WO2016047192A1
WO2016047192A1 PCT/JP2015/063458 JP2015063458W WO2016047192A1 WO 2016047192 A1 WO2016047192 A1 WO 2016047192A1 JP 2015063458 W JP2015063458 W JP 2015063458W WO 2016047192 A1 WO2016047192 A1 WO 2016047192A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
suction holes
row
image reading
printing
Prior art date
Application number
PCT/JP2015/063458
Other languages
English (en)
French (fr)
Inventor
哲之 岡山
井上 貴博
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016549975A priority Critical patent/JP6082170B2/ja
Publication of WO2016047192A1 publication Critical patent/WO2016047192A1/ja
Priority to US15/445,370 priority patent/US9883069B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/06Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface
    • H04N1/08Mechanisms for mounting or holding the sheet around the drum
    • H04N1/083Holding means
    • H04N1/0856Suction or vacuum means
    • H04N1/086Suction or vacuum means using grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0085Using suction for maintaining printing material flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J13/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
    • B41J13/10Sheet holders, retainers, movable guides, or stationary guides
    • B41J13/22Clamps or grippers
    • B41J13/223Clamps or grippers on rotatable drums
    • B41J13/226Clamps or grippers on rotatable drums using suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/08Feeding articles separated from piles; Feeding articles to machines by grippers, e.g. suction grippers
    • B65H5/12Revolving grippers, e.g. mounted on arms, frames or cylinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/06Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface
    • H04N1/0664Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface with sub-scanning by translational movement of the picture-bearing surface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/06Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface
    • H04N1/08Mechanisms for mounting or holding the sheet around the drum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/06Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using cylindrical picture-bearing surfaces, i.e. scanning a main-scanning line substantially perpendicular to the axis and lying in a curved cylindrical surface
    • H04N1/08Mechanisms for mounting or holding the sheet around the drum
    • H04N1/0804Holding methods
    • H04N1/0821Holding substantially the whole of the sheet, e.g. with a retaining sheet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0081Image reader

Definitions

  • the present invention relates to an image reading apparatus and a printing apparatus including a conveying unit that conveys a medium using negative pressure.
  • Belt transport and drum transport are known as media transport methods in image reading apparatuses.
  • the medium In the belt conveyance, the medium is attracted to the circumferential surface of an endless belt that circulates, and the medium is conveyed in the sub-scanning direction (for example, Patent Document 1).
  • the medium In drum conveyance, the medium is attracted to the peripheral surface of the rotating drum, and the medium is conveyed in the sub-scanning direction (for example, Patent Document 2).
  • negative pressure is used for media adsorption.
  • a large number of suction holes are formed on the peripheral surface of the belt, and the medium is sucked on the peripheral surface of the belt by suction from the inside of the belt.
  • a large number of suction holes are formed on the peripheral surface of the drum, and the medium is sucked on the peripheral surface of the drum by suction from the inside of the drum.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an image reading apparatus and a printing apparatus that can reduce the influence of the shadow of the suction hole.
  • Conveying means capable of adsorbing and conveying a sheet-like medium to a media holding surface on which suction holes are regularly arranged, and image reading means capable of reading an image from the medium conveyed by the conveying means.
  • image reading apparatus a groove that crosses the holding area of the medium in a direction perpendicular to the transport direction is regularly arranged along the transport direction on the media holding surface, and the suction is disposed on the media holding surface.
  • An image reading device in which a hole is disposed inside a groove.
  • the media holding surface is provided with a groove.
  • the grooves are formed so as to cross the holding area of the medium in the direction orthogonal to the transport direction, that is, in the main scanning direction, and are regularly arranged along the transport direction which is the sub-scanning direction.
  • regularly arranged means repeatedly arranged with regularity. All the suction holes provided in the media holding surface are arranged inside the groove. Thereby, even when density unevenness is inspected based on the read image, the influence of the shadow of the suction hole can be reduced, and erroneous detection of density unevenness can be prevented.
  • the shadow even when a shadow appears on the surface of the medium, the shadow appears in the shape of a groove, and therefore appears uniformly in the main scanning direction. For this reason, when viewed in the main scanning direction, even if there is a suction hole on the main scanning line of interest, the apparent density of the portion with and without the suction hole is substantially the same. This can prevent erroneous detection of density unevenness due to the influence of the shadow of the suction hole. Even when image unevenness is determined based on the luminance value integrated in the sub-scanning direction, the integrated luminance value is uniform in the main scanning direction. It is possible to prevent detection.
  • the integrated value of the output luminance in the conveying direction is:
  • the output luminance is integrated in the conveying direction.
  • the groove is formed under the condition that the value is constant over the entire region in the direction perpendicular to the transport direction and parallel to the media holding surface. That is, the depth and width of the groove are determined so that the integrated value of the output luminance in the transport direction is constant over the entire region in the direction orthogonal to the transport direction and parallel to the media holding surface.
  • the suction holes are arranged at a first interval in the direction orthogonal to the transport direction and at a second interval in the transport direction, and the grooves are at the same intervals as the suction hole arrangement intervals in the transport direction.
  • the suction holes are arranged at the first interval in the direction orthogonal to the conveyance direction, and are arranged at the second interval in the conveyance direction. Since the suction holes are arranged inside the groove, the grooves are arranged at the same interval as the suction hole arrangement interval in the transport direction. That is, they are regularly arranged at the second interval.
  • Conveying means capable of adsorbing and conveying a sheet-like medium to a medium holding surface on which suction holes are regularly arranged, and image reading means capable of reading an image from the medium conveyed by the conveying means.
  • An image reading apparatus provided with an array of suction holes in a direction orthogonal to the transport direction as a row, and an array of suction holes in the transport direction as a column, the suction holes arranged in each row are disposed in the previous row.
  • the suction holes are as follows: Is placed. That is, the suction holes arranged in each row are arranged in a column next to the suction holes arranged in the previous row. Further, the same number of suction holes are arranged in each row. Further, when the suction holes arranged in each row are projected on a straight line orthogonal to the transport direction and parallel to the media holding surface, adjacent suction holes are arranged adjacent to each other.
  • the integrated luminance value becomes substantially uniform in the main scanning direction, and erroneously detected as density unevenness due to the influence of the shadow of the suction hole. Can be prevented.
  • the integrated value of the output luminance in the conveying direction is:
  • the output luminance is integrated in the conveying direction.
  • the suction holes are arranged under the condition that the value is constant over the entire region in the direction orthogonal to the transport direction and parallel to the media holding surface. That is, the suction hole diameter and the arrangement interval are determined so that the integrated value of the output luminance in the transport direction is constant over the entire region in the direction orthogonal to the transport direction and parallel to the media holding surface. . Thereby, the arrangement of the suction holes can be optimized.
  • protrusions are regularly arranged on the media holding surface.
  • the protrusions arranged in each row are , Arranged in the next column of the protrusions arranged in the previous row, the same number of protrusions are arranged in each column, and the protrusions arranged in each column are orthogonal to the transport direction and hold the media.
  • the protrusion is disposed on the media holding surface.
  • the protrusions are arranged as follows, assuming that the row of protrusions in the main scanning direction, which is a direction orthogonal to the transport direction, is a row, and the line of protrusions in the sub-scanning direction, which is the transport direction, is a column. That is, the protrusion arranged in each row is arranged in the next column after the protrusion arranged in the previous row. Further, the same number of protrusions are arranged in each row. Further, the protrusions arranged in each row are arranged adjacent to each other when projected onto a straight line orthogonal to the transport direction and parallel to the media holding surface.
  • the integrated value of the output luminance in the conveying direction is:
  • the output luminance is integrated in the conveying direction.
  • the protrusions are arranged under the condition that the value is constant over the entire region in the direction orthogonal to the transport direction and parallel to the media holding surface. That is, the projection diameter, the arrangement interval, and the overlap amount so that the integrated value of the output luminance in the conveyance direction is constant over the entire region in the direction orthogonal to the conveyance direction and parallel to the media holding surface. Is determined. Thereby, the arrangement of the protrusions can be optimized.
  • the conveying means is constituted by the rotating drum.
  • the medium is conveyed while being sucked and held on the peripheral surface of the drum that functions as a medium holding surface.
  • the conveying means is constituted by an endless belt that circulates.
  • the medium is conveyed while being sucked and held on the peripheral surface of the belt that functions as a medium holding surface.
  • a printing apparatus comprising printing means and the image reading apparatus according to any one of (1) to (9) above.
  • the printing apparatus is configured by including the printing unit and any one of the image reading apparatuses (1) to (9).
  • printing is performed on the media conveyed by the conveying means. That is, printing and reading are performed using the same transport unit.
  • the printing means prints an image by the inkjet method.
  • the printing apparatus according to any one of (10) to (12), further including a density unevenness detection unit that detects the presence or absence of density unevenness based on image data read by the image reading apparatus.
  • the presence or absence of density unevenness is detected based on the image data read by the image reading device. Since the image data that is read can reduce the influence of the shadow of the suction hole that is seen through the medium, density unevenness can be detected with high accuracy.
  • FIG. 11 is an enlarged perspective view of a part of the area ZA in FIG. An enlarged view of a part of the area of FIG. 14-14 sectional view of FIG. 15-15 sectional view of FIG.
  • FIG. 1 is an overall configuration diagram showing an embodiment of a printing apparatus.
  • the printing apparatus 1 is a sheet type ink jet printing apparatus that prints an image on a sheet of paper (hereinafter referred to as paper) by an ink jet method, and uses water-based ink for general-purpose printing paper.
  • This is a sheet-fed color inkjet printing apparatus that performs color printing.
  • General-purpose printing paper is not so-called inkjet paper but cellulose such as coated paper (art paper, coated paper, lightweight coated paper, cast paper, fine coated paper, etc.) used in offset printing, etc.
  • cellulose such as coated paper (art paper, coated paper, lightweight coated paper, cast paper, fine coated paper, etc.) used in offset printing, etc.
  • the water-based ink refers to an ink in which a coloring material such as a dye or a pigment is dissolved or dispersed in water and a water-soluble solvent.
  • the printing apparatus 1 mainly includes a paper feeding unit 10 that feeds paper P, and a processing liquid application unit 20 that applies a predetermined processing liquid to the paper P fed from the paper feeding unit 10. And a processing liquid drying unit 30 for drying the paper P coated with the processing liquid, a printing unit 40 for printing on the dried paper P by an ink jet method, and an ink for drying the paper P on which an image is printed.
  • a drying unit 50 and a stacking unit 60 that stacks the dried paper P are configured.
  • the paper feeding unit 10 feeds the paper P one by one. As shown in FIG. 1, the paper feeding unit 10 mainly includes a paper feeding device 12, a feeder board 14, and a paper feeding drum 16.
  • the paper feeding device 12 takes out the paper P set at a predetermined position in a bundled state one by one in order from the top, and feeds the paper P one by one to the feeder board 14.
  • the feeder board 14 receives the paper P fed one by one from the paper feeding device 12, transports the received paper P along a predetermined transport path, and transfers it to the paper feed drum 16.
  • the paper feed drum 16 receives the paper P fed from the feeder board 14, transports the received paper P along a predetermined transport path, and transports it to the processing liquid coating unit 20.
  • the paper supply drum 16 has a cylindrical shape, and grips and rotates the front end of the paper P in the transport direction by a gripper 17 provided on the peripheral surface, so that the paper P is wound around the peripheral surface and transported.
  • the processing liquid application unit 20 applies a predetermined processing liquid on the printing surface of the paper P.
  • the treatment liquid applied by the treatment liquid application unit 20 is a liquid having a function of aggregating, insolubilizing or increasing the viscosity of the color material component in the ink. By applying such a treatment liquid to a sheet, it is possible to print a high-quality image even when printing on a general-purpose printing sheet by an inkjet method.
  • the treatment liquid application unit 20 mainly includes a treatment liquid application drum 22 that conveys the paper P, and a treatment liquid that applies the treatment liquid to the printing surface of the paper P that is conveyed by the treatment liquid application drum 22. And a coating device 24.
  • the treatment liquid application drum 22 receives the paper P from the paper supply drum 16 of the paper supply unit 10, conveys the received paper P along a predetermined conveyance path, and transfers it to the treatment liquid drying unit 30.
  • the treatment liquid coating drum 22 has a cylindrical shape, and grips and rotates the front end of the paper P in the transport direction by a gripper 23 provided on the peripheral surface, whereby the paper P is wound around the peripheral surface and transported. .
  • the paper P is wound around the peripheral surface of the treatment liquid coating drum 22 and conveyed with the printing surface directed outward.
  • the processing liquid coating device 24 applies the processing liquid to the surface of the paper P conveyed by the processing liquid coating drum 22.
  • the processing liquid is applied by a roller. That is, the processing liquid is applied by pressing the roller having the processing liquid applied to the peripheral surface against the printing surface of the paper P conveyed by the processing liquid application drum 22.
  • the coating method of the treatment liquid is not limited to this, and other methods such as a coating method using an inkjet head and a coating method using a spray can also be adopted.
  • the treatment liquid application unit 20 is configured as described above.
  • the processing liquid is applied to the printing surface of the paper P by the processing liquid application device 24 in the process of being conveyed by the processing liquid application drum 22.
  • the processing liquid drying unit 30 performs a drying process on the paper P coated with the processing liquid.
  • the processing liquid drying unit 30 mainly includes a processing liquid drying drum 32 that transports the paper P, and a processing liquid drying device 34 that blows warm air on the paper P transported by the processing liquid drying drum 32 to dry the paper P. And comprising.
  • the processing liquid drying drum 32 receives the paper P from the processing liquid coating drum 22 of the processing liquid coating unit 20, transports the received paper P along a predetermined transport path, and transports it to the printing unit 40.
  • the treatment liquid drying drum 32 is configured by a cylindrical frame, and conveys the sheet P by gripping and rotating the front end of the sheet P in the conveyance direction by a gripper 33 provided on the peripheral surface. .
  • the treatment liquid drying device 34 is installed inside the treatment liquid drying drum 32 and blows warm air toward the paper P conveyed by the treatment liquid drying drum 32.
  • the treatment liquid drying unit 30 is configured as described above. In the process of being conveyed by the treatment liquid drying drum 32, the paper P is dried by blowing hot air blown from the treatment liquid drying device 34 onto the treatment liquid application surface.
  • the printing unit 40 prints a color image on the printing surface of the paper P using four colors of ink of cyan (C), magenta (M), yellow (Y), and black (K).
  • FIG. 2 is a schematic configuration diagram of the printing unit.
  • the printing unit 40 mainly presses the printing drum 100 that conveys the paper P, and the paper P that is conveyed by the printing drum 100 against the peripheral surface of the printing drum 100, so that the paper P is printed on the printing drum.
  • Printed on the paper P a pressure roller 42 that is in close contact with the peripheral surface of the paper 100; a head unit 44 that ejects ink droplets of each color of C, M, Y, and K toward the paper P conveyed by the printing drum 100;
  • a scanner 48 for reading an image.
  • the printing drum 100 is an example of a conveying unit.
  • the printing drum 100 receives the paper P from the processing liquid drying drum 32 of the processing liquid drying unit 30, transports the received paper P along a predetermined transport path, and transfers it to the ink drying unit 50.
  • the printing drum 100 has a cylindrical shape, and grips and rotates the front end of the paper P with a gripper 102 provided on the peripheral surface, whereby the paper P is wound around the peripheral surface which is a media holding surface and conveyed.
  • the printing drum 100 is provided with a suction mechanism for bringing the paper P into close contact with the peripheral surface of the drum. In other words, the printing drum 100 is configured to be able to convey the paper P by attracting the paper P to the peripheral surface 104 that is a media holding surface.
  • printing drum 100 of the present embodiment paper P is adsorbed using negative pressure.
  • the printing drum 100 has a large number of suction holes on the peripheral surface, which is a medium holding surface, and sucks the paper P onto the peripheral surface by suction from the inside of the drum through the suction holes.
  • the configuration of the printing drum 100 will be described in detail later.
  • the pressing roller 42 sandwiches the paper P between the printing drum 100 and brings the paper P into close contact with the peripheral surface of the printing drum 100.
  • the pressure roller 42 is disposed at a position immediately after the position where the printing drum 100 receives the paper P from the treatment liquid drying drum 32. Accordingly, the paper P is wound around the peripheral surface of the printing drum 100 while being pressed by the pressing roller 42.
  • the head unit 44 is a printing means in a broad sense, and is an inkjet head 46C that ejects cyan ink droplets, an inkjet head 46M that ejects magenta ink droplets, an inkjet head 46Y that ejects yellow ink droplets, and a black And an inkjet head 46K that ejects ink droplets.
  • Each of the inkjet heads 46C, 46M, 46Y and 46K is disposed on a conveyance path of the paper P by the printing drum 100.
  • the inkjet heads 46C, 46M, 46Y and 46K are printing means in a narrow sense. Each inkjet head 46C, 46M, 46Y and 46K is configured by a line head so that an image can be printed in a single pass on the paper P conveyed by the printing drum 100. Each of the inkjet heads 46C, 46M, 46Y and 46K has a nozzle surface at the tip, and ejects ink droplets from the nozzles arranged on the nozzle surface toward the paper P conveyed by the printing drum 100.
  • FIG. 3 is a plan view of the nozzle surface.
  • the nozzles Nz are arranged at a constant pitch along the direction x orthogonal to the transport direction y of the paper P on the nozzle surface NF of each of the inkjet heads 46C, 46M, 46Y and 46K.
  • the scanner 48 as an image reading unit is installed on the downstream side of the head unit 44 with respect to the conveyance direction of the paper P by the printing drum 100.
  • the scanner 48 is configured to be able to read from the paper P conveyed by the printing drum 100.
  • the scanner 48 mainly includes an imaging device 48A as an imaging unit, an optical system 48B, and an illumination lamp 48C as an illumination unit.
  • the image sensor 48A is configured by a linear image sensor that can image the entire area of the paper P in the width direction.
  • the image sensor 48A reads an image of the entire area in the main scanning direction in a line shape, with the direction orthogonal to the transport direction of the paper P as the main scanning direction.
  • the optical system 48B forms an optical image of the surface of the paper P conveyed by the printing drum 100 on the light receiving surface of the image sensor 48A.
  • the illumination lamp 48C irradiates illumination light toward the paper P conveyed by the printing drum 100.
  • the illumination lamp 48C is configured by, for example, line illumination, and irradiates illumination light to a reading portion by the image sensor 48A.
  • the image reading apparatus is configured by the printing drum 100 serving as the conveying unit and the scanner 48 serving as the image reading unit.
  • the printing unit 40 is configured as described above.
  • the paper P is ejected onto the printing surface by ink droplets of the respective colors C, M, Y, and K from the inkjet heads 46C, 46M, 46Y, and 46K constituting the head unit 44.
  • a color image is printed on the printing surface.
  • the image printed on the paper P is read by the scanner 48 as necessary.
  • the ink drying unit 50 performs a drying process on the paper P immediately after printing by the printing unit 40. As shown in FIG. 1, the ink drying unit 50 is mainly transported by a chain gripper 52 that transports the paper P, a paper guide 54 that guides the travel of the paper P transported by the chain gripper 52, and the chain gripper 52. And a heating / drying device 56 that heats and dries the printing surface of the paper P to be printed.
  • the chain gripper 52 receives the paper P from the printing drum 100 of the printing unit 40, transports the received paper P along a predetermined transport path, and transfers it to the stacking unit 60.
  • the chain gripper 52 includes an endless chain 52A that travels along a certain travel route.
  • the chain gripper 52 grips the leading end of the paper P by the gripper 52B provided in the chain 52A and transports the paper P.
  • the paper P is transported to the chain gripper 52, passes through the heating area and the non-heating area set in the ink drying unit 50, and is transferred to the stacking unit 60.
  • the heating area is set to an area where the paper P transferred from the printing unit 40 is first transported horizontally, and the non-heating area is set to an area where the paper P is transported in an inclined manner.
  • the paper guide 54 is disposed along the transport path of the paper P by the chain gripper 52 and guides the travel of the paper P transported by the chain gripper 52.
  • the paper guide 54 includes a first guide board 54A and a second guide board 54B.
  • the first guide board 54A is a guide board arranged in the heating region, and has a hollow flat plate shape.
  • the first guide board 54A has an upper surface portion as a guide surface of the paper P, and the paper P is conveyed while sliding on the guide surface.
  • a large number of suction holes are provided on the guide surface of the first guide board 54A.
  • the first guide board 54A guides the travel of the paper P while sucking the paper P against the guide surface by sucking negative pressure from the inside through the suction holes.
  • the first guide board 54A is provided with a cooling mechanism for cooling the guide surface.
  • the cooling mechanism is constituted by, for example, a water-cooling type cooling mechanism, and cools the guide surface by flowing a cooling liquid through a flow path disposed inside.
  • the first guide board 54A uses the cooling mechanism to control the temperature of the guide surface to a constant temperature.
  • the second guide board 54B is a guide board disposed in the non-heated area.
  • the configuration of the second guide board 54B is the same as the configuration of the first guide board 54A. That is, it has a hollow flat plate shape and guides the travel of the paper P while sucking the paper P against the guide surface.
  • a cooling mechanism is provided, and the temperature of the guide surface is controlled to a constant temperature.
  • the heating and drying device 56 is installed in the heating area, and dries the printing surface of the paper P conveyed through the heating area with radiant heat from a heat source.
  • the heating / drying device 56 includes a plurality of infrared lamps 56 ⁇ / b> A as heat sources, and is disposed inside the chain gripper 52.
  • the infrared lamps 56A are arranged at regular intervals along the conveyance path of the paper P in the heating area.
  • the ink drying unit 50 is configured as described above. In the course of being conveyed by the chain gripper 52, the printing surface of the paper P is heated by the heating and drying device 56 and dried.
  • the stacking unit 60 stacks the sequentially discharged sheets P at one place.
  • the stacking unit 60 mainly includes a stacking device 62 that receives and stacks the paper P conveyed from the ink drying unit 50 by the chain gripper 52.
  • the chain gripper 52 releases the paper P at a predetermined stacking position.
  • the stacking device 62 collects the released sheets P and stacks them in a bundle.
  • FIG. 4 is a block diagram illustrating a system configuration of a control system of the printing apparatus.
  • the printing apparatus 1 includes a computer 200 as a control unit. All operations of the printing apparatus 1 are controlled by the computer 200. That is, paper feeding from the paper feeding unit 10, conveyance of the fed paper P, processing liquid coating by the processing liquid coating unit 20, drying by the processing liquid drying unit 30, printing by the printing unit 40, and printing All processes such as reading of the image, drying in the ink drying unit 50, and stacking in the stacking unit 60 are performed under the control of the computer 200.
  • the computer 200 functions as a control unit that controls each unit of the printing apparatus 1 by executing a predetermined control program.
  • the computer 200 includes a communication unit 202 for communicating with an external device, an operation unit 204 for operating the printing apparatus 1, a display unit 206 for displaying various information, a storage unit 208 for storing various data, and the like. Is connected.
  • the operation unit 204 can be configured with, for example, operation buttons, a keyboard, a mouse, a touch panel, and the like.
  • the display unit 206 can be configured by a display device such as a liquid crystal display, for example.
  • the storage unit 208 can be configured by a storage device such as a hard disk drive, for example. A control program executed by the computer 200 and various data necessary for control are stored in the storage unit 208.
  • the computer 200 acquires image data to be printed from an external device via the communication unit 202.
  • the computer 200 performs necessary signal processing on the acquired image data to generate dot data.
  • the dot data is generally generated by performing color conversion processing and halftone processing on image data.
  • the color conversion process is a process of converting image data expressed in sRGB (standard RGB) or the like (for example, RGB 8-bit image data) into ink amount data of each color of ink used in the printing apparatus 1 (in this example, , C, M, Y, and K ink amount data for each color).
  • the halftone process is a process of converting the ink amount data of each color generated by the color conversion process into dot data of each color by a process such as error diffusion.
  • the computer 200 performs color conversion processing and halftone processing on the image data to generate dot data for each color. Then, the image represented by the image data is recorded on the paper P by controlling the driving of the corresponding inkjet head according to the generated dot data of each color.
  • the computer 200 functions as the density unevenness detection unit 210 by executing a predetermined program.
  • FIG. 5 is a block diagram showing a system configuration of the density unevenness detection unit.
  • the density unevenness detection unit 210 prints the density detection test chart on the inkjet heads 46C, 46M, 46Y, and 46K, and causes the scanner 48 to read the print result. Then, the image data of the density detection test chart read by the scanner 48 is acquired as inspection image data, and the presence or absence of density unevenness is detected based on the acquired inspection image data.
  • the density detection test chart is stored in the storage unit 208, and the density unevenness detection unit 210 acquires data of the density detection test chart from the storage unit 208 and prints the data on the inkjet heads 46C, 46M, 46Y, and 46K.
  • the density unevenness detection unit 210 converts the resolution of the inspection image data acquired from the scanner 48, and acquires a density detection value for each nozzle based on the inspection image data subjected to the resolution conversion.
  • Resolution conversion is a process of matching the reading resolution of the image sensor 48A with the recording resolution of the inkjet heads 46C, 46M, 46Y, and 46K. For example, if the reading resolution of the image sensor 48A is 500 dpi and the recording resolutions of the inkjet heads 46C, 46M, 46Y, and 46K are 1200 dpi, the inspection image data of 500 dpi is converted into inspection image data of 1200 dpi.
  • dpi is an abbreviation for dots per inch, and is a unit of dot density. This indicates how many dots can be expressed within the width of 1 inch.
  • the density detection value for each nozzle is acquired as the brightness value of the printed density detection test chart.
  • FIG. 6 is a diagram showing an example of a concentration detection test chart.
  • the density detection test chart TC is configured by arranging strip-shaped density patches DP1 to DP8 having a constant density at regular intervals along the transport direction y.
  • the density patches DP1 to DP8 have different densities and are set to increase stepwise from the front side to the rear side in the transport direction y.
  • the density is detected for each density patch.
  • the density of each density patch is acquired as an average value of the density in the transport direction y.
  • the density detection value is detected as a luminance value. Then, the density detection value for each nozzle of each density patch is acquired as an average value of luminance. Since it is detected as a luminance value, the lower the numerical value, the higher the density.
  • FIG. 7 is a graph showing the density detection result of the density patch.
  • FIG. 9A shows the density detection result when there is no density unevenness in the printed density patch DPx
  • FIG. 10B shows the density detection when the printed density patch DPx has density unevenness. Results are shown.
  • the detected density value (luminance value) of each nozzle is constant.
  • the density detection value (luminance value) of the portion corresponding to the nozzle where density unevenness occurs changes.
  • the presence or absence of density unevenness can be detected from the presence or absence of changes in the density detection value. If there is density unevenness, the position can be specified.
  • the computer 200 When density unevenness is detected, the computer 200 performs density unevenness correction as necessary. Alternatively, maintenance is performed.
  • the printing process is performed in the order of (a) paper feeding, (b) application of processing liquid, (c) drying, (d) printing, (e) drying, and (f) accumulation.
  • paper feeding is started from the paper feeding unit 10.
  • the paper P fed from the paper feeding unit 10 is first transported to the processing liquid coating unit 20. Then, the processing liquid is applied to the printing surface in the course of being conveyed by the processing liquid application drum 22 of the processing liquid application unit 20.
  • the sheet P coated with the processing liquid is then conveyed to the processing liquid drying unit 30.
  • the treatment liquid drying drum 32 of the treatment liquid drying unit 30 warm air is blown onto the printing surface to perform a drying process.
  • the dried paper P is then conveyed to the printing unit 40. Then, in the process of being conveyed by the printing drum 100 of the printing unit 40, ink droplets of cyan, magenta, yellow and black are ejected, and a color image is printed on the printing surface.
  • the paper P on which the image is printed is then conveyed to the ink drying unit 50. Then, in the process of being transported by the chain gripper 52 of the ink drying unit 50, heat is applied to the printing surface from the infrared lamp 56A to perform a drying process.
  • the dried paper P is conveyed as it is to the stacking unit 60 by the chain gripper 52 and is collected by the stacking device 62 of the stacking unit 60.
  • the printing apparatus 1 includes the image reading apparatus and can detect density unevenness in-line.
  • the density unevenness is detected by printing the density detection test chart TC with the inkjet heads 46C, 46M, 46Y and 46K, and reading the image of the printed density detection test chart TC with the scanner 48.
  • the scanner 48 is provided in the printing unit 40 and reads the density detection test chart TC on the printing drum 100.
  • the printing drum 100 is provided with a suction hole 112 for sucking the paper P on the peripheral surface which is a media holding surface.
  • the printing drum 100 has the suction hole 112, when the thin paper P is sucked, the shadow of the suction hole 112 is seen through, which has an adverse effect when the density is detected.
  • FIG. 8 is an explanatory diagram for explaining the difference in the read image depending on the presence or absence of the suction holes.
  • FIG. 5A shows a case where an image G0 having a uniform density is read at a position where there is no suction hole.
  • FIG. 5B shows a case where an image G0 having a uniform density is read at a position where there is a suction hole.
  • FIG. 9 is an explanatory view for explaining the influence of the suction holes on density unevenness detection.
  • FIG. 9A shows an arrangement example of the suction holes.
  • FIG. 9B shows an image of the density patch read by the scanner when the suction holes are arranged in FIG. 9A.
  • FIG. 9C shows the detection result of the concentration.
  • the suction holes are arranged at a constant vertical and horizontal pitch
  • an image of a density patch of uniform density printed on a thin sheet is read by a scanner
  • the image SG to be read includes the shadow SG of the suction hole corresponding to the position of the suction hole.
  • the density detection value changes at the suction hole portion, and erroneous detection occurs.
  • FIG. 10 is a perspective view showing the configuration of the printing drum.
  • the printing drum 100 has a cylindrical shape, and conveys the paper P by winding the paper P around the peripheral surface 104 that is a media holding surface and rotating the paper P.
  • the printing drum 100 is installed in the printing unit 40 with a shaft portion supported by a bearing (not shown).
  • the printing drum 100 installed in the printing unit 40 is connected to a motor 108 as a driving unit.
  • the printing drum 100 obtains rotational power from the motor 108 and rotates about its axis.
  • the printing drum 100 includes grippers 102 at two locations on the outer peripheral surface. The leading edge of the paper P is gripped by the gripper 102.
  • the suction holes 112 and the grooves 114 are regularly arranged on the peripheral surface 104 of the printing drum 100 that is a media holding surface.
  • the printing drum 100 sucks the paper P onto the peripheral surface 104 by sucking from the inside through the suction holes 112.
  • the arrangement of the suction holes 112 and the grooves 114 will be described later.
  • a vacuum channel (not shown) communicating with the suction hole 112 is provided inside the printing drum 100.
  • the vacuum channel is connected to the vacuum pump 110 installed outside the printing drum 100 via the shaft portion of the printing drum 100.
  • the printing drum 100 is sucked from each suction hole 112 by driving the vacuum pump 110.
  • the suction range is limited to a certain range. This suction range is set between the installation position of the pressing roller 42 and the delivery position of the paper P to the chain gripper 52. Each suction hole 112 receives suction between the position where the pressing roller 42 is installed and the position where the paper P is delivered to the chain gripper 52.
  • FIG. 11 is a development view showing the configuration of the peripheral surface of the printing drum.
  • FIG. 12 is an enlarged perspective view of a part of the area ZA in FIG.
  • FIG. 13 is an enlarged view of a part of the area ZA in FIG. 14 is a cross-sectional view taken along line 14-14 of FIG. 15 is a cross-sectional view taken along the line 15-15 in FIG.
  • the suction surface 112 and the groove 114 are provided on the peripheral surface 104 of the printing drum 100.
  • the suction hole 112 has a circular shape.
  • the suction holes 112 are arranged at the first interval pt1 in the transport direction y of the paper P and at the second interval pt2 in the direction x orthogonal to the transport direction of the paper P.
  • the grooves 114 are arranged along a direction x orthogonal to the conveyance direction y of the paper P.
  • the paper P is arranged in the transport direction y at the same interval as the suction holes 112. That is, they are arranged at the first interval pt1.
  • the groove 114 is arranged with a length equal to or greater than the lateral width of the paper P. For this reason, the groove 114 is disposed so as to cross the holding area HA of the paper P in a direction x orthogonal to the transport direction y.
  • the holding area HA of the paper P is an area indicated by a broken line in FIG. 11, and is an area for holding the paper P on the peripheral surface 104 of the printing drum 100. In other words, the area where the paper P is in close contact during conveyance is the holding area of the paper P on the peripheral surface 104.
  • the groove 114 is disposed across the holding region in a direction x orthogonal to the transport direction.
  • the grooves 114 are arranged at the same intervals as the arrangement intervals of the suction holes 112 in the transport direction y. That is, they are arranged at the first interval pt1. Therefore, the suction hole 112 and the groove 114 are disposed at the same position in the transport direction y.
  • the groove 114 has the same width w as the diameter d of the suction hole 112, and the suction hole 112 is disposed inside the groove 114. That is, all the suction holes 112 arranged in the direction x orthogonal to the transport direction are accommodated and arranged inside one groove 114.
  • the groove 114 has a role of connecting the suction holes 112 aligned in the direction x orthogonal to the transport direction in a straight line.
  • FIG. 16 is an explanatory diagram of the operation of the printing drum of the present embodiment.
  • FIG. 16A shows a part of the peripheral surface of the printing drum of the present embodiment.
  • FIG. 16B shows a read image of the density patch read by the scanner when the printing drum of this embodiment is used.
  • FIG. 16C shows the concentration detection result.
  • the groove 114 is uniformly formed in the holding region of the paper P in the direction x orthogonal to the transport direction of the paper P, the entire area in the width direction of the paper P is at the position where the groove 114 is disposed. A uniform concentration.
  • the width direction of the paper P is a direction orthogonal to the transport direction of the paper P and parallel to the media holding surface. This direction is the main scanning direction of reading by the scanner 48.
  • the density detection value (luminance value) of the density patch printed at a uniform density is uniform throughout the width direction of the paper P. That is, since the density of the density patch is acquired as the average value of the density in the transport direction y, even if the shadow SG appears, if the shadow SG appears uniformly throughout the width direction of the paper P, the average value is obtained. The density acquired as is uniform throughout the width direction of the paper P.
  • FIG. 17 is an explanatory diagram for explaining a density detection result when a density patch having density unevenness is read.
  • FIG. 17A shows an image of a density patch with density unevenness.
  • FIG. 17B shows a read image when a density patch with uneven density is read by a scanner.
  • FIG. 17C shows the concentration detection result.
  • the printing drum 100 of the present embodiment even when the paper P is sucked using air pressure, the influence of the suction holes 112 can be eliminated and the density unevenness can be accurately detected.
  • the groove 114 is formed for the purpose of making the density value acquired as the average value of the luminance in the transport direction constant throughout the entire width direction of the paper P. Therefore, the depth 114 and the width w of the groove 114 are determined from the viewpoint of realizing this purpose.
  • the depth h and width w of the groove 114 are set in consideration of the influence on the shadow, such as the brightness of the illumination lamp, the resolution and sensitivity of the image sensor.
  • a reference sheet that is, a sheet having a certain translucency and having a certain reflectance over the entire width direction of the sheet is conveyed, and the image is read by the scanner 48 and read.
  • the groove is formed under the condition that the integrated value in the conveyance direction of the luminance obtained from the above is constant over the entire width direction of the paper P.
  • Grooves are formed by selecting the width w and the depth h under the condition that the integrated value in the conveyance direction of the luminance is constant over the entire width direction of the paper P.
  • channel 114 formed in the surrounding surface of the printing drum 100 can be optimized.
  • the paper width direction is a direction orthogonal to the paper transport direction.
  • the standard paper it is preferable to select paper that is actually printed by the printing apparatus.
  • the groove 114 is too shallow, a difference in luminance occurs between the groove 114 and the suction hole 112. On the other hand, if the groove 114 is too deep, the paper P may be deformed such as wrinkles. Therefore, it is preferable to form the groove 114 as shallow as possible within a range in which a luminance difference does not occur with the suction hole 112.
  • the width of the groove 114 is formed to be equal to the diameter of the suction hole 112, and the depth of the groove 114 can be 50 ⁇ m or more and 300 ⁇ m or less.
  • the diameter of the suction hole 112 can be set to 0.8 mm, for example.
  • FIG. 18 is a diagram illustrating a modification (1) of the arrangement of the suction holes and the grooves.
  • the suction holes 112 are arranged at the first interval pt1 in the conveyance direction y of the paper P and at the second interval pt2 in the direction x orthogonal to the conveyance direction of the paper P.
  • the arrangement of the suction holes 112 is not limited to this.
  • the positions of the suction holes 112 arranged along the conveyance direction y of the paper P can be alternately shifted.
  • the positions of the suction holes 112 arranged along the transport direction y of the paper P are shifted by a half pitch.
  • staggered arrangement Such an arrangement is called a so-called staggered arrangement.
  • all the suction holes 112 arranged in the direction orthogonal to the transport direction are connected by one groove 114.
  • FIG. 19 is a diagram showing a modification (2) of the arrangement of the suction holes and grooves.
  • the suction holes 112 arranged in the direction x orthogonal to the transport direction are connected by the single groove 114, but the groove 114 without the suction holes 112 is arranged on the peripheral surface 104 of the printing drum 100.
  • the groove 114 needs to be arranged so as to cross the holding area HA of the paper P in the direction x orthogonal to the transport direction.
  • FIG. 20 is a diagram illustrating a print example of a test chart when density unevenness detection is performed during printing.
  • the image IG to be printed and the test chart TC for density detection are printed on one sheet of paper P.
  • the density detection test chart TC is composed of a single density patch.
  • a blank area MA is provided at the front end portion in the conveyance direction y of the paper P, and the density detection test chart TC is printed in the blank area MA.
  • the density detection test chart TC is printed only on a part of the paper P
  • the area corresponding to the area (margin area MA) where the density detection test chart TC is printed is formed on the printing drum 100. Only the groove 114 can be arranged. That is, the groove 114 can be disposed only on a part of the peripheral surface.
  • FIG. 21 is a development view of the peripheral surface of the printing drum in the case where grooves are arranged only in part.
  • the groove 114 is arranged only in the region corresponding to the region where the density detection test chart TC is printed, and the suction holes 112 arranged in the direction orthogonal to the transport direction are connected by the groove 114.
  • the area corresponding to the area where the density detection test chart TC is printed is an area where the area where the density detection test chart TC is printed adheres when the paper P is sucked and held. In FIG. 21, this area is indicated by diagonal lines. Since the area on which the density detection test chart TC is printed is the margin area MA of the paper P, the groove 114 is arranged corresponding to the margin area MA of the paper P.
  • FIG. 22 is a development view showing the configuration of the peripheral surface of the second embodiment of the printing drum.
  • FIG. 23 is an enlarged view of a part of the region ZB of FIG.
  • the influence of the shadow of the suction hole 112 on density unevenness detection is reduced by optimizing the arrangement of the suction holes 112.
  • the suction holes 112 are: It is arranged as follows. (1) The suction holes 112 arranged in each row are arranged in the next column of the suction holes 112 arranged in the previous row. (2) The same number of suction holes 112 are arranged in each row.
  • each suction hole 112 is displayed as (M, N) using the row and column numbers.
  • the suction holes 112 in the first row and the first column are displayed as (1, 1)
  • the suction holes 112 in the second row and the second column are displayed as (2, 2).
  • the suction holes 112 arranged in each row are arranged in the next column of the suction holes arranged in the previous row.
  • the suction holes (2, n) arranged in the second row are arranged in a column next to the suction holes (1, n) arranged in the first row. Therefore, when the suction holes are arranged in the first row and the first column, the suction holes are arranged in the second column in the second row.
  • the suction holes are arranged in the third column in the third row.
  • the suction holes 112 arranged in each row are arranged in the next column of the suction holes arranged in the previous row.
  • the suction hole arrangement pattern in which five rows form a set is repeatedly arranged five times. Therefore, the arrangement pattern of the suction holes 112 arranged in the sixth row is the same as the arrangement pattern of the suction holes 112 arranged in the first row, and the arrangement of the suction holes 112 arranged in the seventh row. The pattern is the same as the arrangement pattern of the suction holes 112 arranged in the second row.
  • suction holes 112 are arranged in each row. As shown in FIG. 22, when attention is paid to one media holding surface, in the printing drum 100 of the present embodiment, five suction holes are arranged in one row.
  • the adjacent suction holes 112 are adjacent to each other. To be arranged.
  • a straight line perpendicular to the transport direction and parallel to the media holding surface means a straight line parallel to the media holding surface among straight lines orthogonal to the transport direction y. In other words, it refers to a straight line perpendicular to the transport direction y in a plane parallel to the media holding surface.
  • the suction holes 112 arranged in each row are arranged adjacent to each other when projected onto this straight line.
  • adjacently arranged means that when the suction holes 112 are projected on a straight line, the adjacent suction holes are arranged so as to be in contact with each other at least. Therefore, it is a concept including the case where they are arranged in an overlapping manner.
  • FIG. 24 is an explanatory diagram for explaining the arrangement interval of the suction holes in the row direction.
  • FIG. 2A shows the actual arrangement of the suction holes.
  • FIG. 5B shows the arrangement of the suction holes when projected onto a straight line that is orthogonal to the transport direction and parallel to the media holding surface.
  • the suction holes 112 arranged in each row are adjacent to each other when projected onto a straight line Lx that is orthogonal to the transport direction and parallel to the media holding surface. 112 are arranged adjacent to each other.
  • the suction holes 112 arranged in each row partially overlap the suction holes 112 arranged in the next row.
  • the suction holes (m, 2) arranged in the second row are the suction holes (m, 1) arranged in the first row and the suction holes (m, 3) arranged in the third row.
  • the suction holes (2, 2) arranged in the second row and the second column are the suction holes (1, 1) arranged in the first row and the first column, and the third row and the third column. It arrange
  • FIG. 25 is an explanatory diagram of the operation of the printing drum according to the second embodiment.
  • FIG. 25A shows a part of the read image of the density patch read by the scanner when the printing drum of this embodiment is used.
  • FIG. 25B shows a state in which the shadow image of the suction hole is projected on a straight line that is orthogonal to the transport direction and parallel to the media holding surface.
  • FIG. 25C shows the concentration detection result.
  • the printing drum 100 of the present embodiment has suction holes 112 on the peripheral surface, so even if the image of the density patch printed with a uniform density is read with a scanner, A shadow S of the suction hole 112 appears in the read image.
  • the shadow S appears in a pattern that matches the arrangement pattern of the suction holes 112.
  • the suction holes 112 arranged in each row are arranged in the next column of the suction holes 112 arranged in the previous row, and (2) each The same number of suction holes 112 are arranged in each row, and (3) the suction holes 112 arranged in each row are partially overlapped with the suction holes 112 arranged in adjacent rows. Is done.
  • the width direction of the paper P is a direction perpendicular to the transport direction of the paper P and parallel to the media holding surface as described above, and is a main scanning direction of reading by the scanner 48.
  • the detected value of the density is a substantially uniform value over the entire width direction of the paper P. It becomes.
  • FIG. 26 is an explanatory diagram for explaining a density detection result when a density patch without density unevenness is read.
  • FIG. 26A shows an image of a density patch without density unevenness.
  • FIG. 26B shows a read image when a density patch without density unevenness is read by a scanner.
  • FIG. 26C shows the concentration detection result.
  • FIG. 27 is an explanatory diagram for explaining a density detection result when a density patch having density unevenness is read.
  • FIG. 27A shows an image of a density patch with density unevenness.
  • FIG. 27B shows a read image when a density patch with uneven density is read by a scanner.
  • FIG. 27C shows the concentration detection result.
  • the printing drum 100 of the present embodiment even when the paper P is sucked using air pressure, the influence of the suction holes 112 can be eliminated and the density unevenness can be accurately detected.
  • the suction holes 112 are arranged so that the density is substantially constant over the entire area in the width direction of the paper P when the density is obtained as an average value in the conveyance direction of luminance.
  • the arrangement interval is set in consideration of the influence on the shadow, such as the brightness of the illumination lamp, the resolution and sensitivity of the image sensor.
  • a reference sheet i.e., a sheet having a certain translucency across the entire width direction of the sheet and having a certain reflectance
  • the image is read.
  • the suction holes 112 are arranged under the condition that the integrated value in the conveyance direction of the luminance obtained from the obtained image is constant over the entire width direction of the paper P. That is, the diameter of the suction holes and the interval between the rows and columns are determined so that the integrated value of the output luminance in the transport direction is constant over the entire width direction of the paper P.
  • the arrangement of the suction holes 112 can be optimized.
  • the paper width direction is a direction orthogonal to the paper transport direction.
  • the standard paper it is preferable to select the paper that is actually printed by the printing apparatus.
  • the density value (average value of luminance) is preferably constant over the entire area in the width direction of the paper P, but may be constant as long as it can be distinguished from density unevenness. This is because the influence of the shadow varies depending on the brightness of the illumination lamp used, the resolution of the image sensor used, the sensitivity, and the like. Therefore, the arrangement conditions of the suction holes 112 may be determined so that the density value falls within a certain allowable range.
  • the row spacing may be set so that the density value is constant over the entire region in the direction orthogonal to the transport direction within a certain allowable range.
  • the allowable range may be a range where the adjacent color difference ⁇ E ⁇ 1. In this case, the arrangement interval of the suction holes is adjusted so that the adjacent color difference ⁇ E becomes ⁇ E ⁇ 1.
  • the interval at which the suction holes 112 are shifted that is, the row interval is 0.3 mm or less.
  • the suction hole 112 has a circular shape, and its diameter can be, for example, 0.8 mm.
  • the area where the suction holes are arranged under the above conditions can also be limited to a part of the area.
  • the above condition is applied only to the area corresponding to the area where the density detection test chart TC is printed.
  • the suction holes can be arranged with.
  • other areas are arranged under other arrangement conditions.
  • the other regions can be arranged at a constant vertical and horizontal pitch.
  • FIG. 28 is a developed view of the peripheral surface of the printing drum in which the suction holes are arranged only in a part of the area under specific conditions.
  • the suction holes 112 are arranged only in the area corresponding to the area on which the density detection test chart TC is printed, and the suction holes 112 are arranged at a constant vertical and horizontal pitch in the other areas. ing.
  • the area corresponding to the area where the density detection test chart TC is printed is an area where the area where the density detection test chart TC is printed adheres when the paper P is sucked and held. In FIG. 28, this area is indicated by oblique lines.
  • the area where the density detection test chart is printed is the margin area MA of the paper P. Therefore, the suction holes 112 are arranged under the above conditions for the area corresponding to the blank area MA of the paper P. In other regions, the suction holes 112 are arranged at a constant vertical and horizontal pitch. That is, they are arranged at regular intervals in the transport direction y and at regular intervals in a direction orthogonal to the transport direction.
  • FIG. 29 is an explanatory diagram illustrating a modification of the suction hole.
  • FIG. 4A shows the shape and arrangement of the suction holes.
  • FIG. 5B shows the arrangement of the suction holes when projected onto a straight line that is orthogonal to the transport direction and parallel to the media holding surface.
  • the suction hole 112 has a circular shape, but the shape of the suction hole 112 is not limited to this. As shown in FIG. 29, the shape of the suction hole 112 may be a square shape. Also in this case, the suction holes 112 are arranged under the arrangement conditions described above.
  • FIG. 30 is a development view of the peripheral surface of the printing drum having protrusions on the peripheral surface.
  • the protrusions 116 in the direction x perpendicular to the transport direction of the paper P are rows, and the rows of protrusions 116 in the transport direction y are columns, the protrusions 116 are arranged as follows. That is, the protrusion 116 arranged in each row is arranged in the next column of the protrusion 116 arranged in the previous row. Further, the same number of protrusions 116 are arranged in each row. Further, the protrusions 116 arranged in each row are arranged such that adjacent protrusions 116 are adjacent to each other when arranged on a straight line orthogonal to the transport direction.
  • the specific arrangement interval and diameter of the protrusions 116 are set in consideration of matters that affect the shadow of the luminance of the illumination lamp.
  • a reference sheet i.e., a sheet having a certain translucency across the entire width direction of the sheet and having a certain reflectance
  • the image is read.
  • the protrusions 116 are arranged under the condition that the integrated value of the luminance obtained from the image in the conveyance direction is constant over the entire width direction of the paper P. That is, the diameter of the protrusion and the interval between the rows and the columns are determined so that the integrated value of the output luminance in the conveyance direction is constant over the entire width direction of the paper P.
  • the paper width direction is a direction orthogonal to the paper transport direction.
  • the protrusion 116 can be formed in, for example, a cylindrical shape or a hemispherical shape.
  • the diameter can be set to 1.0 mm, for example.
  • the protrusions 116 can be disposed between the suction holes 112 in the transport direction y. In particular, it can be arranged at an intermediate position.
  • region which prints a test chart is limited to a part of paper
  • positions a protrusion on the said conditions can also be limited to a part area
  • FIG. 30 shows an example in which protrusions are arranged on a printing drum in which suction holes are arranged under specific conditions, like the printing drum of the second embodiment.
  • the protrusions can be arranged on the printing drum having grooves.
  • FIG. 31 is a perspective view showing another example of the conveying means.
  • the conveying means is constituted by a rotating drum (printing drum 100).
  • the conveying means is constituted by an endless belt 300 that runs around a fixed path.
  • the peripheral surface 302 of the belt 300 forms a media holding surface. Therefore, suction holes and grooves are arranged on the peripheral surface 302 of the belt 300.
  • the suction holes are arranged on the peripheral surface 302 of the belt 300 under the conditions described in the second embodiment.
  • the form shown in FIG. 31 has shown the form which has arrange
  • the position where the scanner is installed is not limited to this.
  • the conveying means constituting the image reading apparatus is also used as the conveying means of the printing unit, but a dedicated conveying means can be prepared.
  • the image reading apparatus can be configured as a single unit.
  • a drum or an endless belt as a conveying unit and a scanner as a reading unit are provided.
  • a density unevenness detection device by combining an image reading device and a computer.
  • the computer functions as a density unevenness detection unit that detects density from an image read by the image reading apparatus by executing a predetermined program.

Abstract

吸着穴の影の影響を低減できる画像読取装置及び印刷装置を提供する。用紙Pを搬送するドラム100の周面104には、用紙Pを吸着するための吸着穴112が配置される。吸着穴112は、搬送方向と直交する方向に沿って形成された溝114の内側に配置される。これにより、読み取った画像に基づいて濃度ムラを検査する場合であっても、吸着穴の影の影響を低減でき、濃度ムラの誤検出を防止できる。

Description

画像読取装置及び印刷装置
 本発明は、負圧を利用してメディアを搬送する搬送手段を備えた画像読取装置及び印刷装置に関する。
 画像読取装置におけるメディアの搬送方式として、ベルト搬送及びドラム搬送が知られている。ベルト搬送は、周回する無端状のベルトの周面にメディアを吸着させて、メディアを副走査方向に搬送する(たとえば、特許文献1等)。ドラム搬送は、回転するドラムの周面にメディアを吸着させて、メディアを副走査方向に搬送する(たとえば、特許文献2等)。
 いずれの場合もメディアの吸着には負圧が利用される。ベルト搬送の場合は、ベルトの周面に多数の吸着穴を形成し、ベルトの内側から吸引することにより、メディアをベルトの周面に吸着させる。ドラム搬送の場合は、ドラムの周面に多数の吸着穴を形成し、ドラムの内側から吸引することにより、メディアをドラムの周面に吸着させる。
特開2003-209663号公報 特開2005-126215号公報
 しかしながら、ベルト及びドラムの周面に吸着穴が形成されていると、薄いメディアの場合、吸着穴の影がメディアの表面に透けて現れ、画像を読み取ったときに濃度ムラと誤認識してしまうという欠点がある。
 本発明は、このような事情に鑑みてなされたものであり、吸着穴の影の影響を低減できる画像読取装置及び印刷装置を提供することを目的とする。
 上記課題を解決するための手段は、次のとおりである。
 (1)吸着穴が規則的に配置されたメディア保持面にシート状のメディアを吸着させて搬送可能な搬送手段と、搬送手段によって搬送されるメディアから画像を読み取り可能な画像読取手段と、を備えた画像読取装置であって、メディア保持面には、メディアの保持領域を搬送方向と直交する方向に横切る溝が、搬送方向に沿って規則的に配置され、メディア保持面に配置される吸着穴が溝の内側に配置される、画像読取装置。
 本態様によれば、メディア保持面に溝が備えられる。溝はメディアの保持領域を搬送方向と直交する方向、すなわち、主走査方向に横切る形により形成され、かつ、副走査方向である搬送方向に沿って規則的に配置される。ここで、「規則的に配置される」とは、規則性をもって繰り返し配置されることを意味する。メディア保持面に備えられる吸着穴は、すべてこの溝の内側に配置される。これにより、読み取った画像に基づいて濃度ムラを検査する場合であっても、吸着穴の影の影響を低減でき、濃度ムラの誤検出を防止できる。すなわち、本態様では、メディアの表面に影が現れる場合であっても、その影は溝の形の影となるため、主走査方向に均一に現れる。このため、主走査方向でみると、着目する主走査線上に吸着穴がある場合であっても、吸着穴がある部分とない部分の見かけ上の濃度は実質的に同一になる。これにより、吸着穴の影の影響で濃度ムラと誤検出するのを防止できる。また、副走査方向に積算した輝度値に基づいて画像ムラを判断する場合も、積算した輝度値は、主走査方向において均一になるため、この場合も吸着穴の影の影響で濃度ムラと誤検出するのを防止できる。
 (2)一定の透光性を有し、かつ、一定の反射率を有するメディアを搬送手段によって搬送して、画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となる条件で溝が形成される、上記(1)の画像読取装置。
 本態様によれば、一定の透光性を有し、かつ、一定の反射率を有するメディアを搬送手段によって搬送して、画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となる条件で溝が形成される。すなわち、出力される輝度の搬送方向の積算値が搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となるように、溝の深さ、幅が決定される。これにより、メディア保持面に形成する溝を最適化できる。
 (3)吸着穴は、搬送方向と直交する方向に第1の間隔で配置され、かつ、搬送方向に第2の間隔で配置され、溝は、搬送方向における吸着穴の配置間隔と同じ間隔で配置される、上記(1)又は(2)の画像読取装置。
 本態様によれば、吸着穴が搬送方向と直交する方向に第1の間隔で配置され、かつ、搬送方向に第2の間隔で配置される。吸着穴は、溝の内側に配置されるので、溝は、搬送方向における吸着穴の配置間隔と同じ間隔で配置される。すなわち、第2の間隔で規則的に配置される。
 (4)吸着穴が規則的に配置されたメディア保持面にシート状のメディアを吸着させて搬送可能な搬送手段と、搬送手段によって搬送されるメディアから画像を読み取り可能な画像読取手段と、を備えた画像読取装置であって、搬送方向と直交する方向の吸着穴の並びを行とし、搬送方向の吸着穴の並びを列とすると、各行に配置される吸着穴は、前の行に配置される吸着穴の次の列に配置され、各列には同じ数の吸着穴が配置され、かつ、各列に配置される吸着穴は、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影された場合に、隣り合う吸着穴が互いに隣接して配置される、画像読取装置。
 本態様によれば、搬送方向と直交する方向である主走査方向の吸着穴の並びを行とし、搬送方向である副走査方向の吸着穴の並びを列とすると、次のように、吸着穴が配置される。すなわち、各行に配置される吸着穴は、前の行に配置される吸着穴の次の列に配置される。また、各列には同じ数の吸着穴が配置される。さらに、各列に配置される吸着穴は、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影された場合に、隣り合う吸着穴が互いに隣接して配置される。これにより、副走査方向に積算した輝度値に基づいて画像ムラを判断する際、積算した輝度値が主走査方向でほぼ均一になり、吸着穴の影の影響で濃度ムラと誤検出するのを防止できる。
 (5)一定の透光性を有し、かつ、一定の反射率を有するメディアを搬送手段によって搬送して、画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となる条件で吸着穴が配置される、上記(4)の画像読取装置。
 本態様によれば、一定の透光性を有し、かつ、一定の反射率を有するメディアを搬送手段によって搬送して、画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となる条件で吸着穴が配置される。すなわち、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となるように、吸着穴の径、配置間隔が決定される。これにより、吸着穴の配置を最適化できる。
 (6)メディア保持面には、更に突起が規則的に配置され、搬送方向と直交する方向の突起の並びを行とし、搬送方向の突起の並びを列とすると、各行に配置される突起は、前の行に配置される突起の次の列に配置され、各列には同じ数の突起が配置され、かつ、各列に配置される突起は、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影された場合に、隣り合う突起が互いに隣接して配置される、上記(1)から(5)のいずれかの画像読取装置。
 本態様によれば、メディア保持面に突起が配置される。突起は、搬送方向と直交する方向である主走査方向の突起の並びを行とし、搬送方向である副走査方向の突起の並びを列とすると、次のように配置される。すなわち、各行に配置される突起は、前の行に配置される突起の次の列に配置される。また、各列には同じ数の突起が配置される。さらに、各列に配置される突起は、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影された場合に、隣り合う突起が互いに隣接して配置される。すなわち、吸着穴と同様の配置規則に従って配置される。これにより、突起によって生じる影の影響を低減でき、副走査方向に積算した輝度値に基づいて画像ムラを判断する際に濃度ムラと誤検出するのを防止できる。
 (7)一定の透光性を有し、かつ、一定の反射率を有するメディアを搬送手段によって搬送して、画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となる条件で突起が配置される、上記(8)の画像読取装置。
 本態様によれば、一定の透光性を有し、かつ、一定の反射率を有するメディアを搬送手段によって搬送して、画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となる条件で突起が配置される。すなわち、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、メディア保持面と平行になる方向の全域にわたって一定となるように、突起の径、配置間隔およびオーバーラップさせる量が決定される。これにより、突起の配置を最適化できる。
 (8)搬送手段が、回転するドラムであり、ドラムの周面がメディア保持面を構成する、上記(1)から(7)のいずれかの画像読取装置。
 本態様によれば、搬送手段が回転するドラムによって構成される。メディアは、メディア保持面として機能するドラムの周面に吸着保持されて搬送される。
 (9)搬送手段が、周回する無端状のベルトであり、ベルトの周面がメディア保持面を構成する、上記(1)から(7)のいずれかの画像読取装置。
 本態様によれば、搬送手段が周回する無端状のベルトによって構成される。メディアは、メディア保持面として機能するベルトの周面に吸着保持されて搬送される。
 (10)印刷手段と、上記(1)から(9)のいずれかの画像読取装置と、を備えた印刷装置。
 本態様によれば、印刷手段と、上記(1)から(9)のいずれかの画像読取装置と、を備えて印刷装置が構成される。
 (11)印刷手段は、搬送手段によって搬送されるメディアに印刷する、上記(10)の印刷装置。
 本態様によれば、搬送手段によって搬送されるメディアに対して印刷が行われる。すなわち、同じ搬送手段を用いて、印刷及び読み取りが行われる。
 (12)印刷手段は、インクジェット方式によって画像を印刷する、上記(11)の印刷装置。
 本態様によれば、印刷手段がインクジェット方式によって画像を印刷する。
 (13)画像読取装置によって読み取った画像データに基づいて、濃度ムラの有無を検出する濃度ムラ検出部を更に備えた、上記(10)から(12)のいずれかの印刷装置。
 本態様によれば、画像読取装置によって読み取った画像データに基づいて、濃度ムラの有無が検出される。画像読み取られる画像データは、メディアに透けて写り込む吸着穴の影の影響を低減できるので、精度よく濃度ムラを検出できる。
 本発明によれば、メディアに透けて写り込む吸着穴の影の影響を低減できる。
印刷装置の一実施の形態を示す全体構成図 印刷部の概略構成図 ノズル面の平面図 印刷装置の制御系のシステム構成を示すブロック図 濃度ムラ検出部のシステム構成を示すブロック図 濃度検出用テストチャートの一例を示す図 濃度パッチの濃度の検出結果を示すグラフ 吸着穴の有無による読み取り画像の相違を説明する説明図 吸着穴が濃度ムラ検出に及ぼす影響を説明する説明図 印刷ドラムの構成を示す斜視図 印刷ドラムの周面の構成を示す展開図 図11の一部の領域ZAを拡大した斜視図 図11の一部の領域を拡大した拡大図 図13の14-14断面図 図13の15-15断面図 本実施の形態の印刷ドラムの作用の説明図 濃度ムラのある濃度パッチを読み取ったときの濃度の検出結果を説明する説明図 吸着穴及び溝の配置の変形例(1)を示す図 吸着穴及び溝の配置の変形例(2)を示す図 印刷中に濃度ムラ検出を実施する場合のテストチャートの印刷例を示す図 一部にのみ溝を配置する場合の印刷ドラムの周面の展開図 印刷ドラムの第2の実施の形態の周面の構成を示す展開図 図22の一部の領域ZBを拡大した拡大図 吸着穴の行方向の配置間隔を説明する説明図 第2の実施の形態の印刷ドラムの作用の説明図 濃度ムラのない濃度パッチを読み取ったときの濃度の検出結果を説明する説明図 濃度ムラのある濃度パッチを読み取ったときの濃度の検出結果を説明する説明図 一部の領域だけ吸着穴を特定の条件で配置した印刷ドラムの周面の展開図 吸着穴の変形例を説明する説明図 周面に突起を備えた印刷ドラムの周面の展開図 搬送手段の他の一例を示す斜視図
 以下、添付図面に従って本発明を実施するための形態について詳説する。
 《印刷装置の全体構成》
 図1は、印刷装置の一実施の形態を示す全体構成図である。この印刷装置1は、シート状のメディアである枚葉紙(以下、用紙という)にインクジェット方式によって画像を印刷する枚葉式のインクジェット印刷装置であり、特に汎用の印刷用紙に水性インクを使用してカラー印刷する枚葉式のカラーインクジェット印刷装置である。
 なお、汎用の印刷用紙とは、いわゆるインクジェット専用紙ではなく、オフセット印刷などで使用されている塗工紙(アート紙、コート紙、軽量コート紙、キャスト紙、微塗工紙など)などのセルロースを主体とした用紙をいう。また、水性インクとは、水及び水に可溶な溶媒に染料、顔料などの色材を溶解又は分散させたインクをいう。
 図1に示すように、印刷装置1は、主として、用紙Pを給紙する給紙部10と、給紙部10から給紙される用紙Pに所定の処理液を塗布する処理液塗布部20と、処理液が塗布された用紙Pを乾燥処理する処理液乾燥部30と、乾燥処理された用紙Pにインクジェット方式によって印刷する印刷部40と、画像が印刷された用紙Pを乾燥処理するインク乾燥部50と、乾燥処理された用紙Pを集積する集積部60と、を備えて構成される。
 〈給紙部〉
 給紙部10は、用紙Pを1枚ずつ給紙する。図1に示すように、給紙部10は、主として、給紙装置12と、フィーダボード14と、給紙ドラム16と、を備えて構成される。
 給紙装置12は、用紙束の状態で所定位置にセットされる用紙Pを上から順に1枚ずつ取り出して、フィーダボード14に1枚ずつ給紙する。
 フィーダボード14は、給紙装置12から1枚ずつ給紙される用紙Pを受け取り、受け取った用紙Pを所定の搬送経路に沿って搬送し、給紙ドラム16へと移送する。
 給紙ドラム16は、フィーダボード14から給紙される用紙Pを受け取り、受け取った用紙Pを所定の搬送経路に沿って搬送し、処理液塗布部20へと移送する。給紙ドラム16は、円筒形状を有し、周面に備えられたグリッパ17によって用紙Pの搬送方向前側の端部を把持して回転することにより、用紙Pを周面に巻き付けて搬送する。
 〈処理液塗布部〉
 処理液塗布部20は、用紙Pに印刷面に所定の処理液を塗布する。この処理液塗布部20により塗布する処理液は、インク中の色材成分を凝集、不溶化ないし増粘させる機能を備えた液体である。このような処理液を用紙に塗布することにより、汎用の印刷用紙にインクジェット方式で印刷する場合であっても、高品位な画像を印刷することが可能になる。
 図1に示すように、処理液塗布部20は、主として、用紙Pを搬送する処理液塗布ドラム22と、処理液塗布ドラム22によって搬送される用紙Pの印刷面に処理液を塗布する処理液塗布装置24と、を備えて構成される。
 処理液塗布ドラム22は、給紙部10の給紙ドラム16から用紙Pを受け取り、受け取った用紙Pを所定の搬送経路に沿って搬送し、処理液乾燥部30へと移送する。処理液塗布ドラム22は、円筒形状を有し、周面に備えられたグリッパ23によって用紙Pの搬送方向前側の端部を把持して回転することにより、用紙Pを周面に巻き付けて搬送する。用紙Pは、印刷面が外側に向けられた状態で処理液塗布ドラム22の周面に巻き付けられて搬送される。
 処理液塗布装置24は、処理液塗布ドラム22によって搬送される用紙Pの面に処理液を塗布する。本実施の形態では、処理液をローラ塗布する。すなわち、周面に処理液が付与されたローラを処理液塗布ドラム22によって搬送される用紙Pの印刷面に押し当てて、処理液を塗布する。処理液の塗布方式は、これに限定されるものではなく、この他、インクジェットヘッドを用いて塗布する方式や、スプレーを用いて塗布する方式なども採用できる。
 処理液塗布部20は、以上のように構成される。用紙Pは、処理液塗布ドラム22によって搬送される過程で処理液塗布装置24によって印刷面に処理液が塗布される。
 〈処理液乾燥部〉
 処理液乾燥部30は、処理液が塗布された用紙Pを乾燥処理する。処理液乾燥部30は、主として、用紙Pを搬送する処理液乾燥ドラム32と、処理液乾燥ドラム32によって搬送される用紙Pに温風を吹き当てて、用紙Pを乾燥させる処理液乾燥装置34と、を備えて構成される。
 処理液乾燥ドラム32は、処理液塗布部20の処理液塗布ドラム22から用紙Pを受け取り、受け取った用紙Pを所定の搬送経路に沿って搬送し、印刷部40へと移送する。処理液乾燥ドラム32は、円筒状に組んだ枠体によって構成され、周面に備えられたグリッパ33によって用紙Pの搬送方向前側の端部を把持して回転することにより、用紙Pを搬送する。
 処理液乾燥装置34は、処理液乾燥ドラム32の内側に設置され、処理液乾燥ドラム32によって搬送される用紙Pに向けて温風を送風する。
 処理液乾燥部30は、以上のように構成される。用紙Pは、処理液乾燥ドラム32によって搬送される過程で、処理液乾燥装置34から送風される温風が処理液塗布面に吹き当てられて、乾燥処理される。
 〈印刷部〉
 印刷部40は、シアン(C)、マゼンタ(M)、イエロ(Y)およびブラック(K)の4色のインクを用いて用紙Pの印刷面にカラー画像を印刷する。
 図2は、印刷部の概略構成図である。図2に示すように、印刷部40は、主として、用紙Pを搬送する印刷ドラム100と、印刷ドラム100によって搬送される用紙Pを印刷ドラム100の周面に押圧して、用紙Pを印刷ドラム100の周面に密着させる押圧ローラ42と、印刷ドラム100によって搬送される用紙Pに向けてC、M、YおよびKの各色のインク滴を吐出するヘッドユニット44と、用紙Pに印刷された画像を読み取るスキャナ48と、を備えて構成される。
 印刷ドラム100は、搬送手段の一例である。印刷ドラム100は、処理液乾燥部30の処理液乾燥ドラム32から用紙Pを受け取り、受け取った用紙Pを所定の搬送経路に沿って搬送し、インク乾燥部50へと移送する。印刷ドラム100は、円筒形状を有し、周面に備えられたグリッパ102によって用紙Pの先端を把持して回転することにより、メディア保持面である周面に用紙Pを巻き付けて搬送する。印刷ドラム100には、用紙Pをドラムの周面に密着させるため、吸着機構が備えられる。すなわち、印刷ドラム100は、用紙Pをメディア保持面である周面104に吸着させて搬送可能に構成される。本実施の形態の印刷ドラム100では、負圧を利用して用紙Pが吸着される。印刷ドラム100は、メディア保持面である周面に多数の吸着穴を有し、この吸着穴を介してドラム内部から吸引することにより、用紙Pを周面に吸着させる。印刷ドラム100の構成については、後に更に詳述する。
 押圧ローラ42は、印刷ドラム100との間で用紙Pを挟んで、用紙Pを印刷ドラム100の周面に密着させる。押圧ローラ42は、印刷ドラム100が、処理液乾燥ドラム32から用紙Pを受け取る位置の直後の位置に配置される。これにより、押圧ローラ42によって押圧されながら、用紙Pが印刷ドラム100の周面に巻き付けられる。
 ヘッドユニット44は、広義の印刷手段であり、シアンのインク滴を吐出するインクジェットヘッド46Cと、マゼンタのインク滴を吐出するインクジェットヘッド46Mと、イエロのインク滴を吐出するインクジェットヘッド46Yと、ブラックのインク滴を吐出するインクジェットヘッド46Kと、を備えて構成される。各インクジェットヘッド46C、46M、46Yおよび46Kは、印刷ドラム100による用紙Pの搬送経路上に配置される。
 各インクジェットヘッド46C、46M、46Yおよび46Kは、狭義の印刷手段である。各インクジェットヘッド46C、46M、46Yおよび46Kは、印刷ドラム100によって搬送される用紙Pに対してシングルパスで画像を印刷できるように、ラインヘッドにより構成される。各インクジェットヘッド46C、46M、46Yおよび46Kは、先端にノズル面を備え、このノズル面に配置されたノズルから印刷ドラム100によって搬送される用紙Pに向けてインク滴を吐出する。
 図3は、ノズル面の平面図である。
 同図に示すように、各インクジェットヘッド46C、46M、46Yおよび46Kのノズル面NFには、用紙Pの搬送方向yと直交する方向xに沿ってノズルNzが一定ピッチで配置される。
 画像読取手段であるスキャナ48は、図2に示すように、印刷ドラム100による用紙Pの搬送方向に対して、ヘッドユニット44の下流側に設置される。スキャナ48は、印刷ドラム100によって搬送される用紙Pから読み取り可能に構成される。
 スキャナ48は、図2に示すように、主として、撮像手段としての撮像素子48Aと、光学系48Bと、照明手段としての照明ランプ48Cと、を備えて構成される。
 撮像素子48Aは、用紙Pの幅方向の全域を撮像可能なリニアイメージセンサによって構成される。撮像素子48Aは、用紙Pの搬送方向と直交する方向を主走査方向として、主走査方向の全域の像をライン状に読み取る。
 光学系48Bは、印刷ドラム100によって搬送される用紙Pの表面の光学像を撮像素子48Aの受光面に結像させる。
 照明ランプ48Cは、印刷ドラム100によって搬送される用紙Pに向けて照明光を照射する。照明ランプ48Cは、たとえば、ライン照明によって構成され、撮像素子48Aによる読み取り部位に照明光を照射する。
 本実施の形態の印刷装置1では、搬送手段である印刷ドラム100及び画像読取手段であるスキャナ48によって画像読取装置が構成される。
 印刷部40は、以上のように構成される。用紙Pは、印刷ドラム100によって搬送される過程でヘッドユニット44を構成する各インクジェットヘッド46C、46M、46Yおよび46KからC、M、YおよびKの各色のインク滴が印刷面に打滴されて、印刷面にカラー画像が印刷される。用紙Pに印刷された画像は、必要に応じてスキャナ48によって読み取られる。
 〈インク乾燥部〉
 インク乾燥部50は、印刷部40による印刷直後の用紙Pを乾燥処理する。図1に示すように、インク乾燥部50は、主として、用紙Pを搬送するチェーングリッパ52と、チェーングリッパ52によって搬送される用紙Pの走行をガイドする用紙ガイド54と、チェーングリッパ52によって搬送される用紙Pの印刷面を加熱して乾燥させる加熱乾燥装置56と、を備えて構成される。
 チェーングリッパ52は、印刷部40の印刷ドラム100から用紙Pを受け取り、受け取った用紙Pを所定の搬送経路に沿って搬送し、集積部60へと移送する。チェーングリッパ52は、一定の走行経路に沿って走行する無端状のチェーン52Aを備え、そのチェーン52Aに備えられたグリッパ52Bによって用紙Pの先端を把持して、用紙Pを搬送する。用紙Pは、このチェーングリッパ52に搬送されることにより、インク乾燥部50に設定された加熱領域及び非加熱領域を通過して、集積部60に移送される。なお、加熱領域は、印刷部40から移送されてきた用紙Pが最初に水平に搬送される領域に設定され、非加熱領域は、用紙Pが傾斜して搬送される領域に設定される。
 用紙ガイド54は、チェーングリッパ52による用紙Pの搬送経路に沿って配置され、チェーングリッパ52によって搬送される用紙Pの走行をガイドする。用紙ガイド54は、第1ガイドボード54A及び第2ガイドボード54Bを備えて構成される。
 第1ガイドボード54Aは、加熱領域に配置されるガイドボードであり、中空の平板形状を有する。第1ガイドボード54Aは、上面部分が用紙Pのガイド面とされ、このガイド面の上を用紙Pが滑りながら搬送される。
 第1ガイドボード54Aのガイド面には、多数の吸着穴が備えられる。第1ガイドボード54Aは、この吸着穴を介して内部から負圧吸引することにより、用紙Pをガイド面に吸い付けながら、用紙Pの走行をガイドする。
 また、第1ガイドボード54Aには、ガイド面を冷却する冷却機構が備えられる。冷却機構は、たとえば、水冷式の冷却機構によって構成され、内部に配設された流路に冷却液を流すことにより、ガイド面を冷却する。第1ガイドボード54Aは、この冷却機構を利用して、ガイド面の温度が一定温度に制御される。
 第2ガイドボード54Bは、非加熱領域に配置されるガイドボードである。第2ガイドボード54Bの構成は、第1ガイドボード54Aの構成と同じである。すなわち、中空の平板形状を有し、用紙Pをガイド面に吸い付けながら、用紙Pの走行をガイドする。また、冷却機構が備えられ、ガイド面の温度が一定温度に制御される。
 加熱乾燥装置56は、加熱領域に設置され、加熱領域を搬送される用紙Pの印刷面を熱源からの輻射熱で加熱して乾燥させる。加熱乾燥装置56は、熱源としての複数の赤外線ランプ56Aを備えて構成され、チェーングリッパ52の内側に配置される。赤外線ランプ56Aは、加熱領域における用紙Pの搬送経路に沿って一定の間隔で配置される。
 インク乾燥部50は以上のように構成される。用紙Pは、チェーングリッパ52によって搬送される過程で印刷面を加熱乾燥装置56によって加熱され、乾燥処理される。
 〈集積部〉
 集積部60は、順次排紙される用紙Pを1カ所に集積する。図1に示すように、集積部60は、主として、チェーングリッパ52によってインク乾燥部50から搬送されてくる用紙Pを受け取り、集積する集積装置62を備えて構成される。
 チェーングリッパ52は、所定の集積位置で用紙Pをリリースする。集積装置62は、リリースされた用紙Pを回収し、束状に集積する。
 《制御系》
 図4は、印刷装置の制御系のシステム構成を示すブロック図である。
 同図に示すように、印刷装置1は、制御部としてコンピュータ200を備えている。印刷装置1の動作は、すべてコンピュータ200によって制御される。すなわち、給紙部10からの給紙、給紙された用紙Pの搬送、処理液塗布部20での処理液の塗布、処理液乾燥部30での乾燥、印刷部40での印刷、印刷された画像の読み取り、インク乾燥部50での乾燥、集積部60での集積等、すべての処理がコンピュータ200による制御の下、実施される。
 コンピュータ200は、所定の制御プログラムを実行することにより印刷装置1の各部を制御する制御部として機能する。
 コンピュータ200には、外部機器と通信するための通信部202、印刷装置1を操作するための操作部204、各種情報を表示するための表示部206、各種データを記憶するための記憶部208等が接続される。
 操作部204は、たとえば、操作ボタンやキーボード、マウス、タッチパネル等で構成することができる。表示部206は、たとえば、液晶ディスプレイなどのディスプレイ装置によって構成することができる。記憶部208は、たとえば、ハードディスクドライブなどの記憶装置により構成することができる。コンピュータ200が実行する制御プログラムや制御に必要な各種データ等は記憶部208に格納される。
 コンピュータ200は、通信部202を介して外部機器から印刷する画像データを取得する。コンピュータ200は、取得した画像データに対して所要の信号処理を施してドットデータを生成する。ドットデータは、一般に画像データに対して色変換処理、ハーフトーン処理を行って生成される。色変換処理は、sRGB(standard RGB)などで表現された画像データ(たとえば、RGB8ビットの画像データ)を印刷装置1で使用するインクの各色のインク量データに変換する処理である(本例では、C、M、YおよびKの各色のインク量データに変換する)。ハーフトーン処理は、色変換処理により生成された各色のインク量データに対して誤差拡散等の処理で各色のドットデータに変換する処理である。コンピュータ200は、画像データに対して色変換処理、ハーフトーン処理を行って各色のドットデータを生成する。そして、生成した各色のドットデータに従って、対応するインクジェットヘッドの駆動を制御することにより、画像データが表す画像を用紙Pに記録する。
 《濃度ムラ検出》
 コンピュータ200は、所定のプログラムを実行することにより、濃度ムラ検出部210として機能する。
 図5は、濃度ムラ検出部のシステム構成を示すブロック図である。
 濃度ムラ検出部210は、濃度検出用テストチャートをインクジェットヘッド46C、46M、46Yおよび46Kに印刷させ、その印刷結果をスキャナ48に読み取らせる。そして、そのスキャナ48によって読み取った濃度検出用テストチャートの画像データを検査画像データとして取得し、取得した検査画像データに基づいて濃度ムラの有無を検出する。
 濃度検出用テストチャートは、記憶部208に格納されており、濃度ムラ検出部210は、記憶部208から濃度検出用テストチャートのデータを取得して、インクジェットヘッド46C、46M、46Yおよび46Kに印刷させる。
 濃度ムラ検出部210は、スキャナ48から取得した検査用画像データを解像度変換し、解像度変換した検査画像データに基づいて、ノズルごとの濃度検出値を取得する。
 解像度変換は、撮像素子48Aの読み取り解像度をインクジェットヘッド46C、46M、46Yおよび46Kの記録解像度に合わせる処理である。たとえば、撮像素子48Aの読み取り解像度が500dpiであり、インクジェットヘッド46C、46M、46Yおよび46Kの記録解像度が1200dpiであれば、500dpiの検査画像データを1200dpiの検査画像データに変換する。なお、dpiは、dots per inchの略であり、ドット密度の単位である。1インチの幅の中にどれだけのドットを表現できるかを表す。
 ここで、ノズルごとの濃度検出値は、印刷した濃度検出用テストチャートの輝度値として取得される。
 図6は、濃度検出用テストチャートの一例を示す図である。
 濃度検出用テストチャートTCは、一定の濃度を有する短冊状の濃度パッチDP1~DP8を搬送方向yに沿って一定の間隔で配置して構成される。各濃度パッチDP1~DP8は、それぞれ異なる濃度を有し、搬送方向yの前側から後側に向かって段階的に高くなる設定とされる。
 濃度は、濃度パッチごとに検出される。各濃度パッチの濃度は、搬送方向yの濃度の平均値として取得される。
 上記のように、濃度検出値は、輝度値として検出される。そして、各濃度パッチのノズルごとの濃度検出値は、輝度の平均値として取得される。輝度値として検出されるので、数値が低いほど濃度が高いということになる。
 図7は、濃度パッチの濃度の検出結果を示すグラフである。同図(A)は、印刷した濃度パッチDPxに濃度ムラがない場合の濃度の検出結果を示しており、同図(B)は、印刷した濃度パッチDPxに濃度ムラがある場合の濃度の検出結果を示している。
 図7(A)に示すように、印刷した濃度パッチDPxに濃度ムラがない場合、検出される各ノズルの濃度検出値(輝度値)は一定となる。
 一方、印刷した濃度パッチDPxに濃度ムラがある場合、図7(B)に示すように、濃度ムラの生じているノズルに該当する部分の濃度検出値(輝度値)が変化する。
 このように、濃度検出値の変化の有無から濃度ムラの有無を検出できる。また、濃度ムラがある場合は、その位置を特定できる。
 濃度ムラが検出された場合、コンピュータ200は、必要に応じて濃度ムラ補正を実施する。あるいは、メンテナンスを実施する。
 《印刷処理の流れ》
 印刷処理は、(a)給紙、(b)処理液の塗布、(c)乾燥、(d)印刷、(e)乾燥および(f)集積の順で行われる。
 画像の印刷開始が指示されると、給紙部10から給紙が開始される。給紙部10から給紙された用紙Pは、まず、処理液塗布部20に搬送される。そして、その処理液塗布部20の処理液塗布ドラム22によって搬送される過程で印刷面に処理液が塗布される。
 処理液が塗布された用紙Pは、次に、処理液乾燥部30に搬送される。そして、その処理液乾燥部30の処理液乾燥ドラム32によって搬送される過程で印刷面に温風が吹き当てられて乾燥処理される。
 乾燥処理された用紙Pは、次に、印刷部40に搬送される。そして、その印刷部40の印刷ドラム100によって搬送される過程でシアン、マゼンタ、イエロおよびブラックの各色のインク滴が打滴されて、印刷面にカラー画像が印刷される。
 画像が印刷された用紙Pは、次に、インク乾燥部50に搬送される。そして、そのインク乾燥部50のチェーングリッパ52によって搬送される過程で印刷面に赤外線ランプ56Aからの熱が当てられて乾燥処理される。
 乾燥処理された用紙Pは、そのままチェーングリッパ52によって集積部60に搬送され、集積部60の集積装置62によって回収される。
 《印刷ドラム》
 上記のように、本実施の形態の印刷装置1は、画像読取装置を備えており、インラインで濃度ムラを検出できる。濃度ムラの検出は、インクジェットヘッド46C、46M、46Yおよび46Kによって濃度検出用テストチャートTCを印刷し、印刷された濃度検出用テストチャートTCの画像をスキャナ48で読み取ることにより行われる。
 スキャナ48は、印刷部40に備えられており、印刷ドラム100上で濃度検出用テストチャートTCの読み取りを行う。この印刷ドラム100には、メディア保持面である周面に用紙Pを吸着するための吸着穴112が備えられている。
 印刷ドラム100が吸着穴112を備えていると、薄い用紙Pを吸着した場合に、吸着穴112の影が透けて写り、濃度を検出する場合に悪影響を与える。
 図8は、吸着穴の有無による読み取り画像の相違を説明する説明図である。同図(A)は、吸着穴がない位置で均一な濃度の画像G0を読み取った場合を示している。また、同図(B)は、吸着穴がある位置で均一な濃度の画像G0を読み取った場合を示している。
 図8(A)に示すように、吸着穴がない領域では、均一な濃度の画像G0を読み取ると、均一な濃度の画像G1が得られる。
 一方、吸着穴がある領域では、図8(B)に示すように、読み取る画像G0の濃度が均一であっても、吸着穴112の影Sが写り込み、吸着穴の部分で濃度が高くなった画像G2が得られる。そして、このような影Sの写り込みが生じると、濃度ムラ検出に悪影響を及ぼす。
 図9は、吸着穴が濃度ムラ検出に及ぼす影響を説明する説明図である。図9(A)は、吸着穴の配置例を示している。図9(B)は、吸着穴が図9(A)の配列の場合にスキャナで読み取られる濃度パッチの画像を示している。図9(C)は、濃度の検出結果を示している。
 図9(A)に示すように、吸着穴が縦横一定ピッチで配置されている場合、薄い用紙に印刷された均一な濃度の濃度パッチの画像をスキャナによって読み取ると、図9(B)に示すように、読み取られる画像Iには、吸着穴の位置に対応して吸着穴の影SGが写り込む。この結果、印刷された濃度パッチに濃度ムラがない場合であっても、図9(C)に示すように、吸着穴の部分で濃度検出値が変化し、誤検出が生じる。
 本実施の形態の印刷装置1では、印刷ドラム100を次のように構成することによって、この問題を回避する。
 《印刷ドラムの第1の実施の形態》
 〈構成〉
 図10は、印刷ドラムの構成を示す斜視図である。
 印刷ドラム100は、円筒形状を有し、メディア保持面である周面104に用紙Pを巻き付けて回転することにより、用紙Pを搬送する。印刷ドラム100は、軸部を図示しない軸受に支持されて、印刷部40に設置される。印刷部40に設置された印刷ドラム100は、駆動手段としてのモータ108に接続される。印刷ドラム100は、このモータ108から回転動力を得て、軸を中心に回転する。
 印刷ドラム100は、外周面上の2カ所にグリッパ102を備える。用紙Pは、このグリッパ102によって先端が把持される。
 メディア保持面である印刷ドラム100の周面104には、吸着穴112及び溝114が規則的に配置される。印刷ドラム100は、吸着穴112を介して内部から吸引することにより、用紙Pを周面104に吸着させる。吸着穴112及び溝114の配置については後述する。
 印刷ドラム100の内部には、吸着穴112と連通する真空流路(不図示)が備えられる。真空流路は、印刷ドラム100の軸部を介して、印刷ドラム100の外部に設置された真空ポンプ110に接続される。印刷ドラム100は、この真空ポンプ110を駆動することにより、各吸着穴112から吸引される。
 吸引範囲は、一定範囲に限定される。この吸引範囲は、押圧ローラ42の設置位置からチェーングリッパ52への用紙Pの受け渡し位置までの間に設定される。各吸着穴112は、押圧ローラ42の設置位置からチェーングリッパ52への用紙Pの受け渡し位置までの間で吸引を受ける。
 図11は、印刷ドラムの周面の構成を示す展開図である。図12は、図11の一部の領域ZAを拡大した斜視図である。図13は、図11の一部の領域ZAを拡大した拡大図である。図14は、図13の14-14断面図である。図15は、図13の15-15断面図である。
 上記のように、印刷ドラム100の周面104には、吸着穴112及び溝114が備えられる。
 吸着穴112は、円形状を有する。吸着穴112は、用紙Pの搬送方向yに第1の間隔pt1で配置され、かつ、用紙Pの搬送方向と直交する方向xに第2の間隔pt2で配置される。
 溝114は、用紙Pの搬送方向yと直交する方向xに沿って配置される。そして、吸着穴112と同じ間隔で用紙Pの搬送方向yに配置される。すなわち、第1の間隔pt1で配置される。
 ここで、用紙Pの搬送方向yの長さを縦幅、搬送方向yと直交する方向xの長さを横幅とすると、溝114は、用紙Pの横幅以上の長さをもって配置される。このため、溝114は、用紙Pの保持領域HAを搬送方向yと直交する方向xに横切るように配置される。なお、用紙Pの保持領域HAとは、図11において破線で示す領域であり、印刷ドラム100の周面104において、用紙Pを保持する領域である。換言すると、搬送時に用紙Pが密着する領域が、周面104における用紙Pの保持領域である。溝114は、この保持領域を搬送方向と直交する方向xに横切って配置される。
 上記のように、溝114は、搬送方向yにおける吸着穴112の配置間隔と同じ間隔で配置される。すなわち、第1の間隔pt1で配置される。したがって、搬送方向yにおいて、吸着穴112と溝114は、同じ位置に配置される。
 溝114は、吸着穴112の直径dと同じ幅wを有し、溝114の内側に吸着穴112が配置される。すなわち、搬送方向と直交する方向xに並ぶ吸着穴112は、すべて1本の溝114の内側に収容されて配置される。溝114は、搬送方向と直交する方向xに並ぶ吸着穴112を直線状に繋ぐ役割を有する。
 〔作用〕
 図16は、本実施の形態の印刷ドラムの作用の説明図である。図16(A)は、本実施の形態の印刷ドラムの周面の一部を示している。図16(B)は、本実施の形態の印刷ドラムを使用した場合にスキャナによって読み取られる濃度パッチの読み取り画像を示している。図16(C)は、濃度の検出結果を示している。
 図16(A)に示すように、本実施の形態の印刷ドラム100は、周面104に配置される吸着穴112が、すべて溝114の内側に配置される。
 このため、均一な濃度で印刷された濃度パッチの画像をスキャナによって読み取ると、図16(B)に示すように、読み取られる画像Iには、溝114の影SGが写り込む。
 しかし、溝114は、用紙Pの保持領域において、用紙Pの搬送方向と直交する方向xに一様に形成されているため、溝114が配置されている位置では、用紙Pの幅方向の全域で均一な濃度となる。ここで、用紙Pの幅方向とは、用紙Pの搬送方向と直交し、かつ、メディア保持面と平行になる方向である。この方向は、スキャナ48による読み取りの主走査方向である。
 この結果、図16(C)に示すように、均一な濃度で印刷された濃度パッチの濃度検出値(輝度値)は、用紙Pの幅方向の全域で均一となる。すなわち、濃度パッチの濃度は、搬送方向yの濃度の平均値として取得されるので、影SGが写り込んだとしても、その影SGが用紙Pの幅方向の全域に均一に現れれば、平均値として取得される濃度は、用紙Pの幅方向の全域で均一となる。
 図17は、濃度ムラのある濃度パッチを読み取ったときの濃度の検出結果を説明する説明図である。図17(A)は、濃度ムラのある濃度パッチの画像を示している。図17(B)は、濃度ムラのある濃度パッチをスキャナによって読み取った場合の読み取り画像を示している。図17(C)は、濃度の検出結果を示している。
 図17(A)に示すように、濃度ムラのある濃度パッチの画像I1が印刷された用紙をスキャナによって読み取ると、図17(B)に示すように、読み取られる画像i1には、濃度ムラと共に溝114の影SGが写り込む。
 しかし、各領域の濃度を搬送方向yの平均値として捉えると、溝114の影SGによる濃度成分は、全体として相殺される。この結果、図17(C)に示すように、実際に濃度ムラが生じている部分の濃度検出値(輝度値)だけが変化する。したがって、この濃度検出値が変化している部分を検出することにより、濃度ムラの有無、及び、発生部位を検出できる。
 このように、本実施の形態の印刷ドラム100によれば、空気圧を利用して用紙Pを吸着する場合であっても、吸着穴112の影響を排除して、精度よく濃度ムラを検出できる。
 〈吸着穴及び溝の選定〉
 上記のように、溝114は、搬送方向における輝度の平均値として取得される濃度値を用紙Pの幅方向の全域にわたって一定とすることを目的として形成される。したがって、溝114は、この目的を実現する観点から深さhや幅wが決定される。
 具体的には、照明ランプの輝度や撮像素子の解像度、感度等、影に影響を及ぼす事項を考慮して溝114の深さhや幅wが設定される。一例として、基準となる用紙、すなわち、用紙の幅方向全域にわたって一定の透光性を有し、かつ、一定の反射率を有する用紙を搬送して、その画像をスキャナ48によって読み取り、読み取った画像から得られる輝度の搬送方向の積算値が、用紙Pの幅方向の全域にわたって一定となる条件で溝を形成する。輝度の搬送方向の積算値が、用紙Pの幅方向の全域にわたって一定となる条件で幅w及び深さhを選定して溝を形成する。これにより、印刷ドラム100の周面に形成する溝114を最適化できる。ここで、用紙の幅方向とは用紙の搬送方向に直交する方向である。
 基準となる用紙は、実際に印刷装置によって印刷する用紙を選択することが好ましい。このような用紙が複数存在する場合には、その中で最も透光性を有する用紙を基準となる用紙に選択することが好ましい。
 なお、溝114は、浅すぎると、吸着穴112との間で輝度差が生じる。その一方で、溝114は、深すぎると、用紙Pにシワ等の変形を生じさせるおそれがある。したがって、溝114は、吸着穴112との間で輝度差が生じない範囲において、可能な限り浅く形成することが好ましい。
 一例として、溝114の幅は、吸着穴112の直径と等しく形成し、溝114の深さは、50μm以上、300μm以下とすることができる。吸着穴112の直径は、たとえば、0.8mmとすることができる。
 〈変形例〉
 〔変形例(1)〕
 図18は、吸着穴及び溝の配置の変形例(1)を示す図である。
 上記実施の形態では、吸着穴112が、用紙Pの搬送方向yに第1の間隔pt1で配置され、かつ、用紙Pの搬送方向と直交する方向xに第2の間隔pt2で配置されているが、吸着穴112の配置は、これに限定されるものではない。
 図18に示すように、用紙Pの搬送方向yに沿って並ぶ吸着穴112の位置を交互にずらして配置することもできる。同図に示す例では、用紙Pの搬送方向yに沿って並ぶ吸着穴112の位置を半ピッチずらして配置している。このような配置は、いわゆる千鳥配置と呼ばれる。この場合も搬送方向と直交する方向に並ぶ吸着穴112がすべて1本の溝114で繋がれる。これにより、搬送方向の輝度の平均値として取得される濃度値を用紙Pの幅方向の全域にわたって一定とすることができる。
 〔変形例(2)〕
 図19は、吸着穴及び溝の配置の変形例(2)を示す図である。
 上記実施の形態では、搬送方向と直交する方向xに並ぶ吸着穴112を1本の溝114で繋ぐ構成としているが、印刷ドラム100の周面104には、吸着穴112のない溝114を配置することもできる。ただし、この場合も溝114は、用紙Pの保持領域HAを搬送方向と直交する方向xに横切るように配置することを要する。
 〔変形例(3)〕
 図20は、印刷中に濃度ムラ検出を実施する場合のテストチャートの印刷例を示す図である。
 図20に示すように、印刷中に濃度ムラ検出を行う場合、印刷対象の画像IG及び濃度検出用テストチャートTCを1枚の用紙Pに印刷する。
 なお、同図に示す例では、濃度検出用テストチャートTCを単一濃度の濃度パッチで構成した例を示している。
 この場合、たとえば、用紙Pの搬送方向yの前端部分に余白領域MAが設けられ、その余白領域MAに濃度検出用テストチャートTCが印刷される。
 このように、濃度検出用テストチャートTCが用紙Pの一部にのみ印刷される場合、印刷ドラム100には、その濃度検出用テストチャートTCが印刷された領域(余白領域MA)に対応する領域にのみ溝114を配置することができる。すなわち、周面の一部にのみ溝114を配置することができる。
 図21は、一部にのみ溝を配置する場合の印刷ドラムの周面の展開図である。
 同図に示すように、濃度検出用テストチャートTCが印刷された領域に対応する領域についてのみ溝114を配置し、搬送方向と直交する方向に並ぶ吸着穴112を溝114で繋ぐ。濃度検出用テストチャートTCが印刷された領域に対応する領域とは、用紙Pを吸着保持したときに濃度検出用テストチャートTCが印刷された領域が密着する領域である。図21では、この領域を斜線で示している。濃度検出用テストチャートTCが印刷される領域は、用紙Pの余白領域MAであるので、用紙Pの余白領域MAに対応して溝114が配置される。
 このように、必要な領域についてのみ溝114を配置することにより、溝114が用紙Pに与える影響を低減できる。また、製造も容易にできる。
 《印刷ドラムの第2の実施の形態》
 〈構成〉
 図22は、印刷ドラムの第2の実施の形態の周面の構成を示す展開図である。図23は、図22の一部の領域ZBを拡大した拡大図である。
 本実施の形態の印刷ドラム100では、吸着穴112の配置を最適化することによって、濃度ムラ検出に及ぼす吸着穴112の影の影響を低減する。具体的には、図22及び図23に示すように、搬送方向と直交する方向xの吸着穴112の並びを行とし、搬送方向yの吸着穴の並びを列とすると、吸着穴112は、次のように配置される。(1)各行に配置される吸着穴112は、前の行に配置される吸着穴112の次の列に配置される。(2)各列には同じ数の吸着穴112が配置される。(3)各列に配置される吸着穴112は、搬送方向と直交し、かつ、メディア保持面である周面104と平行になる直線上に投影された場合に、隣り合う吸着穴112が互いに隣接するように配置される。以下、この配置について説明する。
 図23に示すように、各吸着穴112の位置を行及び列の番号を用いて(M,N)と表示する。この場合、第1行および第1列の吸着穴112は(1,1)と表示され、第2行および第2列の吸着穴112は(2,2)と表示される。
 上記のように、(1)各行に配置される吸着穴112は、前の行に配置される吸着穴の次の列に配置される。たとえば、第2行に配置される吸着穴(2,n)は、第1行に配置される吸着穴(1,n)の次の列に配置される。したがって、第1行および第1列に吸着穴が配置されている場合、第2行目には、第2列目に吸着穴が配置される。同様に、第2行および第2列に吸着穴が配置されている場合、第3行目には、第3列目に吸着穴が配置される。このように、各行に配置される吸着穴112は、前の行に配置される吸着穴の次の列に配置される。
 本実施の形態の印刷ドラム100の場合、5行を一組とする吸着穴の配置パターンが、5回繰り返して配置される。したがって、第6行目に配置される吸着穴112の配置パターンは、第1行目に配置される吸着穴112の配置パターンと同じになり、第7行目に配置される吸着穴112の配置パターンは、第2行目に配置される吸着穴112の配置パターンと同じになる。
 また、5行を一組とするので、各行には、5列おきに吸着穴112が配置される。したがって、各行には(M+5x)列目に吸着穴112が配置される(x=0、1、2、3、…)。たとえば、3行目には、3、8、13、…列目に吸着穴112が配置される。
 また、各列には同じ数の吸着穴112が配置される。図22に示すように、1つのメディア保持面に着目すると、本実施の形態の印刷ドラム100では、1列に5個の吸着穴が配置されている。
 さらに、各列に配置される吸着穴112は、搬送方向と直交し、かつ、メディア保持面である周面104と平行になる直線上に投影された場合に、隣り合う吸着穴112が互いに隣接するように配置される。
 「搬送方向と直交し、かつ、メディア保持面と平行になる直線」とは、搬送方向yに直交する直線のなかで、メディア保持面と平行なものをいう。換言すると、メディア保持面と平行な面内で搬送方向yと直交する直線をいう。各列に配置される吸着穴112は、この直線上に投影されたときに、互いに隣接して配置される。
 また、「隣接して配置」は、吸着穴112が直線上に投影された場合に、隣り合う吸着穴同士が、少なくとも互いに接するように配置されることを意味する。したがって、重ねて配置する場合も含む概念である。
 図24は、吸着穴の行方向の配置間隔を説明する説明図である。同図(A)は、吸着穴の実際の配列を示している。同図(B)は、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影されたときの吸着穴の配列を示している。
 図24(B)に示すように、各列に配置される吸着穴112は、搬送方向と直交し、かつ、メディア保持面と平行になる直線Lx上に投影された場合に、隣り合う吸着穴112が互いに隣接するように配置される。特に、本実施の形態の印刷ドラム100のように、吸着穴112の形状が円形の場合、各列に配置される吸着穴112が、次の列に配置される吸着穴112と一部が重なるように配置される。すなわち、一部をオーバーラップさせて配置される。この場合、たとえば、第2列に配置される吸着穴(m,2)は、第1列に配置される吸着穴(m,1)及び第3列に配置される吸着穴(m,3)と一部が重なるように配置される。したがって、第2行、第2列に配置される吸着穴(2,2)は、第1行、第1列に配置される吸着穴(1,1)、及び、第3行、第3列に配置される吸着穴(3,3)と一部が重なるように配置される。
 〔作用〕
 図25は、第2の実施の形態の印刷ドラムの作用の説明図である。図25(A)は、本実施の形態の印刷ドラムを使用した場合にスキャナによって読み取られる濃度パッチの読み取り画像の一部を示している。図25(B)は、吸着穴の影の像が、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影された状態を示している。図25(C)は、濃度の検出結果を示している。
 図25(A)に示すように、本実施の形態の印刷ドラム100は、周面に吸着穴112を備えているため、均一な濃度で印刷された濃度パッチの画像をスキャナで読み取っても、その読み取り画像には吸着穴112の影Sが写り込む。この影Sは、吸着穴112の配置パターンに合致したパターンで現れる。
 上記のように、本実施の形態の印刷ドラム100は、(1)各行に配置される吸着穴112は、前の行に配置される吸着穴112の次の列に配置され、(2)各列には同じ数の吸着穴112が配置され、かつ、(3)各列に配置される吸着穴112は、隣接する列に配置される吸着穴112と一部が相互にオーバーラップして配置される。
 このように配置すると、図25(B)に示すように、用紙Pの幅方向の全域にわたって、ほぼ均一に吸着穴の影Sが現れる。ここで、用紙Pの幅方向とは、上記のように、用紙Pの搬送方向と直交し、かつ、メディア保持面と平行になる方向であり、スキャナ48による読み取りの主走査方向である。
 この結果、図25(C)に示すように、搬送方向yに沿う方向の輝度の平均値として濃度を取得した場合、濃度の検出値は、用紙Pの幅方向の全域にわたって、ほぼ均一な値となる。
 図26は、濃度ムラのない濃度パッチを読み取ったときの濃度の検出結果を説明する説明図である。図26(A)は、濃度ムラのない濃度パッチの画像を示している。図26(B)は、濃度ムラのない濃度パッチをスキャナによって読み取った場合の読み取り画像を示している。図26(C)は、濃度の検出結果を示している。
 図26(A)に示すように、濃度ムラのない濃度パッチの画像I0が印刷された用紙をスキャナによって読み取ると、図26(B)に示すように、読み取られる画像i0には、吸着穴112の影Sが写り込む。
 しかし、各領域の濃度を搬送方向yの平均値として捉えると、各領域には吸着穴112の影Sが、ほぼ均等に現れるので、全体としてみると、図26(C)に示すように、用紙Pの幅方向の全域でほぼ均一な濃度(輝度)となる。
 図27は、濃度ムラのある濃度パッチを読み取ったときの濃度の検出結果を説明する説明図である。図27(A)は、濃度ムラのある濃度パッチの画像を示している。図27(B)は、濃度ムラのある濃度パッチをスキャナによって読み取った場合の読み取り画像を示している。図27(C)は、濃度の検出結果を示している。
 図27(A)に示すように、濃度ムラのある濃度パッチの画像I1が印刷された用紙をスキャナによって読み取ると、図27(B)に示すように、読み取られる画像i1には、濃度ムラと共に吸着穴112の影Sが写る。
 しかし、各領域の濃度を搬送方向yの平均値として捉えると、吸着穴112の影Sによる濃度成分は、全体として相殺される。この結果、図27(C)に示すように、実際に濃度ムラが生じている部分の濃度検出値(輝度値)だけが変化する。したがって、この濃度検出値が変化している部分を検出することにより、濃度ムラの有無、及び、発生部位を検出できる。
 このように、本実施の形態の印刷ドラム100によれば、空気圧を利用して用紙Pを吸着する場合であっても、吸着穴112の影響を排除して、精度よく濃度ムラを検出できる。
 〈吸着穴の配置条件の決定方法〉
 上記のように、吸着穴112は、輝度の搬送方向の平均値として濃度を求めたときに、用紙Pの幅方向の全域にわたって、濃度がほぼ一定となるように配置する。
 具体的には、照明ランプの輝度や撮像素子の解像度、感度等、影に影響を及ぼす事項を考慮して配置間隔が設定される。一例として、基準となる用紙、すなわち、用紙の幅方向全域にわたって一定の透光性を有し、かつ、一定の反射率を有する用紙を搬送して、その画像をスキャナによって読み取った場合に、読み取った画像から得られる輝度の搬送方向の積算値が、用紙Pの幅方向の全域にわたって一定となる条件で吸着穴112を配置する。すなわち、出力される輝度の搬送方向の積算値が、用紙Pの幅方向の全域にわたって一定となるように、吸着穴の径、行と列の間隔を決定する。これにより、吸着穴112の配置を最適化できる。ここで、用紙の幅方向とは用紙の搬送方向に直交する方向である。
 基準となる用紙は、実際に印刷装置で印刷する用紙を選択することが好ましい。このような用紙が複数存在する場合には、その中で最も透光性を有する用紙を基準となる用紙に選択することが好ましい。
 なお、濃度値(輝度の平均値)は、用紙Pの幅方向の全域にわたって一定にすることが好ましいが、濃度ムラと区別可能な範囲で一定であればよい。影の影響は、使用する照明ランプの輝度や使用する撮像素子の解像度、感度などによって変動するからである。したがって、濃度値が一定の許容範囲内に収まるように、吸着穴112の配置条件を決定すればよい。特に列の間隔については、一定の許容範囲内において濃度値が、搬送方向と直交する方向の全域にわたって一定になる条件に設定すればよい。許容範囲は、たとえば、隣接色差ΔE<1となる範囲を許容範囲とすることができる。この場合、隣接色差ΔEがΔE<1となるように、吸着穴の配置間隔を調整する。
 なお、人間の視覚の特性を考慮すると、吸着穴112をずらす間隔、すなわち、列の間隔は0.3mm以下とすることが好ましい。
 吸着穴112は、円形状とし、その直径は、たとえば、0.8mmとすることができる。
 〈変形例〉
 〔変形例(1)〕
 テストチャートを印刷する領域が用紙の一部に限定される場合、吸着穴を上記条件で配置する領域も一部の領域に限定できる。たとえば、図20に示すように、用紙Pの一部の領域に濃度検出用テストチャートTCが印刷される場合、その濃度検出用テストチャートTCが印刷された領域に対応する領域についてのみ、上記条件で吸着穴を配置することができる。この場合、他の領域は他の配置条件で配置する。たとえば、他の領域は、縦横一定ピッチで配置することができる。
 図28は、一部の領域だけ吸着穴を特定の条件で配置した印刷ドラムの周面の展開図である。
 同図に示す例では、濃度検出用テストチャートTCが印刷された領域に対応する領域についてのみ上記条件で吸着穴112を配置し、他の領域については、縦横一定ピッチで吸着穴112を配置している。
 上記のように、濃度検出用テストチャートTCが印刷された領域に対応する領域とは、用紙Pを吸着保持したときに濃度検出用テストチャートTCが印刷された領域が密着する領域である。図28では、この領域を斜線で示している。濃度検出用テストチャートが印刷される領域は、用紙Pの余白領域MAである。したがって、用紙Pの余白領域MAに対応する領域について、吸着穴112が上記条件で配置される。その他の領域は、縦横一定ピッチで吸着穴112が配置される。すなわち、搬送方向yに一定の間隔で配置され、かつ、搬送方向と直交する方向に一定の間隔で配置される。
 〔変形例(2)〕
 図29は、吸着穴の変形例を説明する説明図である。同図(A)は、吸着穴の形状及び配列を示している。同図(B)は、搬送方向と直交し、かつ、メディア保持面と平行になる直線上に投影されたときの吸着穴の配列を示している。
 上記実施の形態では、吸着穴112の形状を円形状としているが、吸着穴112の形状は、これに限定されるものではない。図29に示すように、吸着穴112の形状は、四角形状とすることもできる。この場合も上述した配置条件で吸着穴112を配置する。
 《その他の実施の形態》
 〈突起を配置する場合〉
 メディア保持面に突起を規則的に配置することにより、シワの発生を防止する技術が知られている(たとえば、特開2013-151149号公報参照)。このような突起をメディア保持面に配置する場合、突起についても吸着穴と同じ条件で配置することが好ましい。
 図30は、周面に突起を備えた印刷ドラムの周面の展開図である。
 用紙Pの搬送方向と直交する方向xの突起116の並びを行とし、搬送方向yの突起116の並びを列とすると、突起116は、次のように配置される。すなわち、各行に配置される突起116は、前の行に配置される突起116の次の列に配置される。また、各列には同じ数の突起116が配置される。さらに、各列に配置される突起116は、搬送方向と直交する直線上に並べた場合に、隣り合う突起116が互いに隣接するように配置される。
 具体的な突起116の配置間隔や径は、照明ランプの輝度等を影に影響を及ぼす事項を考慮して設定される。一例として、基準となる用紙、すなわち、用紙の幅方向全域にわたって一定の透光性を有し、かつ、一定の反射率を有する用紙を搬送して、その画像をスキャナで読み取った場合に、読み取った画像から得られる輝度の搬送方向の積算値が、用紙Pの幅方向の全域にわたって一定となる条件で突起116を配置する。すなわち、出力される輝度の搬送方向の積算値が、用紙Pの幅方向の全域にわたって一定となるように、突起の径、行と列の間隔を決定する。ここで、用紙の幅方向とは用紙の搬送方向に直交する方向である。
 これにより、突起116によって形成される影の影響を低減でき、精度よく濃度ムラを検出できる。
 突起116は、たとえば、円柱形状又は半球形状により形成することができる。突起116の形状を円柱形状又は半球形状とする場合、その径は、たとえば、1.0mmとすることができる。
 また、突起116は、搬送方向yにおいて、各吸着穴112の間に配置することができる。特に、中間位置に配置することができる。
 なお、テストチャートを印刷する領域が用紙の一部に限定される場合、突起を上記条件で配置する領域も一部の領域に限定できる。
 また、図30に示す例では、第2の実施の形態の印刷ドラムのように、吸着穴が特定の条件で配置された印刷ドラムに突起を配置する例を示しているが、第1の実施の形態の印刷ドラムのように、溝を備えた印刷ドラムに突起を配置することもできる。
 〈搬送手段の他の例〉
 図31は、搬送手段の他の一例を示す斜視図である。
 上記実施の形態では、搬送手段を回転するドラム(印刷ドラム100)によって構成しているが、図31に示すように、一定の経路を走行して周回する無端状のベルト300によって搬送手段を構成することもできる。この場合、ベルト300の周面302が、メディア保持面を構成する。したがって、このベルト300の周面302に吸着穴及び溝が配置される。あるいは、このベルト300の周面302に吸着穴が、第2の実施の形態で説明した条件で配置される。なお、図31に示す形態は、周面302に溝を配置した形態を示している。
 〈印刷装置〉
 上記実施の形態では、本発明をインクジェット方式の印刷装置に適用した場合を例に説明したが、本発明の適用は、これに限定されるものではない。枚葉のメディアを搬送する装置全般に適用できる。
 また、上記実施の形態では、印刷部にスキャナを設置する場合を例に説明したが、スキャナを設置する位置は、これに限定されるものではない。
 また、上記実施の形態では、画像読取装置を構成する搬送手段が、印刷部の搬送手段と兼用されているが、専用の搬送手段を用意することもできる。
 〈画像読取装置〉
 上記実施の形態では、画像読取装置を印刷装置に組み込んだ例で説明したが、画像読取装置は単体で構成することもできる。この場合、たとえば、搬送手段としてのドラム又は無端状のベルト、及び、読取手段としてのスキャナを備えて構成される。
 また、画像読取装置とコンピュータとを組み合わせて、濃度ムラ検出装置として構成することもできる。この場合、コンピュータは、所定のプログラムを実行することにより、画像読取装置で読み取った画像から濃度を検出する濃度ムラ検出部として機能する。
 1…印刷装置、10…給紙部、12…給紙装置、14…フィーダボード、16…給紙ドラム、17…グリッパ、20…処理液塗布部、22…処理液塗布ドラム、23…グリッパ、24…処理液塗布装置、30…処理液乾燥部、32…処理液乾燥ドラム、33…グリッパ、34…処理液乾燥装置、40…印刷部、32…押圧ローラ、44…ヘッドユニット、46C、46M、46Y、46K…インクジェットヘッド、48…スキャナ、48A…撮像素子、48B…光学系、48C…照明ランプ、50…インク乾燥部、52…チェーングリッパ、52A…チェーン、52B…グリッパ、54…用紙ガイド、54A…第1ガイドボード、54B…第2ガイドボード、56…加熱乾燥装置、56A…赤外線ランプ、60…集積部、62…集積装置、100…印刷ドラム、102…グリッパ、104…印刷ドラムの周面、108…モータ、110…真空ポンプ、112…吸着穴、114…溝、116…突起、200…コンピュータ、202…通信部、204…操作部、206…表示部、208…記憶部、210…濃度ムラ検出部、300…ベルト、302…ベルトの周面、P…用紙

Claims (13)

  1.  吸着穴が規則的に配置されたメディア保持面にシート状のメディアを吸着させて搬送可能な搬送手段と、
     前記搬送手段によって搬送されるメディアから画像を読み取り可能な画像読取手段と、
     を備えた画像読取装置であって、
     前記メディア保持面には、前記メディアの保持領域を搬送方向と直交する方向に横切る溝が、搬送方向に沿って規則的に配置され、前記メディア保持面に配置される前記吸着穴が前記溝の内側に配置される、
     画像読取装置。
  2.  一定の透光性を有し、かつ、一定の反射率を有するメディアを前記搬送手段によって搬送して、前記画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、前記メディア保持面と平行になる方向の全域にわたって一定となる条件で前記溝が形成される、
     請求項1に記載の画像読取装置。
  3.  前記吸着穴は、搬送方向と直交する方向に第1の間隔で配置され、かつ、搬送方向に第2の間隔で配置され、
     前記溝は、搬送方向における前記吸着穴の配置間隔と同じ間隔で配置される、
     請求項1又は2に記載の画像読取装置。
  4.  吸着穴が規則的に配置されたメディア保持面にシート状のメディアを吸着させて搬送可能な搬送手段と、
     前記搬送手段によって搬送されるメディアから画像を読み取り可能な画像読取手段と、
     を備えた画像読取装置であって、
     搬送方向と直交する方向の前記吸着穴の並びを行とし、搬送方向の前記吸着穴の並びを列とすると、
     各行に配置される前記吸着穴は、前の行に配置される前記吸着穴の次の列に配置され、
     各列には同じ数の前記吸着穴が配置され、
     かつ、
     各列に配置される前記吸着穴は、搬送方向と直交し、かつ、前記メディア保持面と平行になる直線上に投影された場合に、隣り合う前記吸着穴が互いに隣接して配置される、
     画像読取装置。
  5.  一定の透光性を有し、かつ、一定の反射率を有するメディアを前記搬送手段によって搬送して、前記画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、前記メディア保持面と平行になる方向の全域にわたって一定となる条件で前記吸着穴が配置される、
     請求項4に記載の画像読取装置。
  6.  前記メディア保持面には、更に突起が規則的に配置され、
     搬送方向と直交する方向の前記突起の並びを行とし、搬送方向の前記突起の並びを列とすると、
     各行に配置される前記突起は、前の行に配置される前記突起の次の列に配置され、
     各列には同じ数の前記突起が配置され、
     かつ、
     各列に配置される前記突起は、搬送方向と直交し、かつ、前記メディア保持面と平行になる直線上に投影された場合に、隣り合う前記突起が互いに隣接して配置される、
     請求項1から5のいずれか1項に記載の画像読取装置。
  7.  一定の透光性を有し、かつ、一定の反射率を有するメディアを前記搬送手段によって搬送して、前記画像読取手段によって読み取った場合に、出力される輝度の搬送方向の積算値が、搬送方向と直交し、かつ、前記メディア保持面と平行になる方向の全域にわたって一定となる条件で前記突起が配置される、
     請求項6に記載の画像読取装置。
  8.  前記搬送手段が、回転するドラムであり、前記ドラムの周面が前記メディア保持面を構成する、
     請求項1から7のいずれか1項に記載の画像読取装置。
  9.  前記搬送手段が、周回する無端状のベルトであり、前記ベルトの周面が前記メディア保持面を構成する、
     請求項1から7のいずれか1項に記載の画像読取装置。
  10.  印刷手段と、
     請求項1から9のいずれか1項に記載の画像読取装置と、
     を備えた印刷装置。
  11.  前記印刷手段は、前記搬送手段によって搬送されるメディアに印刷する、
     請求項10に記載の印刷装置。
  12.  前記印刷手段は、インクジェット方式によって画像を印刷する、
     請求項11に記載の印刷装置。
  13.  前記画像読取装置によって読み取った画像データに基づいて、濃度ムラの有無を検出する濃度ムラ検出部を更に備えた、
     請求項10から12のいずれか1項に記載の印刷装置。
PCT/JP2015/063458 2014-09-22 2015-05-11 画像読取装置及び印刷装置 WO2016047192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016549975A JP6082170B2 (ja) 2014-09-22 2015-05-11 画像読取装置及び印刷装置
US15/445,370 US9883069B2 (en) 2014-09-22 2017-02-28 Image reading device and printing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192720 2014-09-22
JP2014-192720 2014-09-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/445,370 Continuation US9883069B2 (en) 2014-09-22 2017-02-28 Image reading device and printing apparatus

Publications (1)

Publication Number Publication Date
WO2016047192A1 true WO2016047192A1 (ja) 2016-03-31

Family

ID=55580733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063458 WO2016047192A1 (ja) 2014-09-22 2015-05-11 画像読取装置及び印刷装置

Country Status (3)

Country Link
US (1) US9883069B2 (ja)
JP (1) JP6082170B2 (ja)
WO (1) WO2016047192A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3231618A1 (en) * 2016-04-07 2017-10-18 FUJI-FILM Corporation Ink jet recording device and density unevenness correction method therefor
CN108688320A (zh) * 2017-04-07 2018-10-23 精工爱普生株式会社 液体喷出装置
CN111491067A (zh) * 2020-03-18 2020-08-04 广东维信智联科技有限公司 一种自动翻页扫描系统的吸附装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296018B2 (ja) * 2015-08-05 2018-03-20 コニカミノルタ株式会社 画像形成装置及びプログラム
EP3767933A1 (de) * 2019-07-18 2021-01-20 Heidelberger Druckmaschinen AG Dumc mit 2d-shadingkorrektur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280160A (ja) * 2007-05-14 2008-11-20 Ricoh Co Ltd 搬送装置及び画像形成装置
JP2010076224A (ja) * 2008-09-25 2010-04-08 Fujifilm Corp インクジェット記録方法
JP2013049567A (ja) * 2011-08-31 2013-03-14 Fujifilm Corp 搬送装置および画像形成装置
JP2013233682A (ja) * 2012-05-07 2013-11-21 Fujifilm Corp 画像記録装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6394596B1 (en) * 1999-10-05 2002-05-28 Hewlett-Packard Company Belt-type media support for a printer
US6400387B1 (en) * 2000-08-23 2002-06-04 Eastman Kodak Company Lathe bed scanning engine with adjustable bearing rods mounted therein
JP3662222B2 (ja) 2002-01-11 2005-06-22 ニスカ株式会社 原稿搬送装置および画像読取装置
JP2005126215A (ja) 2003-10-27 2005-05-19 Konica Minolta Medical & Graphic Inc シート材保持方法、シート材保持装置、画像記録装置、露光装置及び読取装置
JP5842430B2 (ja) * 2011-07-22 2016-01-13 富士ゼロックス株式会社 媒体供給装置および画像形成装置
JP5543564B2 (ja) * 2011-12-27 2014-07-09 富士フイルム株式会社 インクジェット記録装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280160A (ja) * 2007-05-14 2008-11-20 Ricoh Co Ltd 搬送装置及び画像形成装置
JP2010076224A (ja) * 2008-09-25 2010-04-08 Fujifilm Corp インクジェット記録方法
JP2013049567A (ja) * 2011-08-31 2013-03-14 Fujifilm Corp 搬送装置および画像形成装置
JP2013233682A (ja) * 2012-05-07 2013-11-21 Fujifilm Corp 画像記録装置及び方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3231618A1 (en) * 2016-04-07 2017-10-18 FUJI-FILM Corporation Ink jet recording device and density unevenness correction method therefor
CN108688320A (zh) * 2017-04-07 2018-10-23 精工爱普生株式会社 液体喷出装置
JP2018176496A (ja) * 2017-04-07 2018-11-15 セイコーエプソン株式会社 液体吐出装置
CN108688320B (zh) * 2017-04-07 2021-06-22 精工爱普生株式会社 液体喷出装置
CN111491067A (zh) * 2020-03-18 2020-08-04 广东维信智联科技有限公司 一种自动翻页扫描系统的吸附装置

Also Published As

Publication number Publication date
JP6082170B2 (ja) 2017-02-15
US9883069B2 (en) 2018-01-30
JPWO2016047192A1 (ja) 2017-04-27
US20170171420A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6082170B2 (ja) 画像読取装置及び印刷装置
JP6066493B2 (ja) 両面印刷方法及び装置
JP5442783B2 (ja) 画像記録装置、画像処理装置、画像記録方法及び画像処理方法並びにプログラム
JP5477954B2 (ja) 画像記録装置及び画像記録装置のヘッド調整方法
JP5406086B2 (ja) 用紙浮き検出装置及びインクジェット記録装置
JP6344862B2 (ja) 検査装置、検査方法及びプログラム、画像記録装置
JP2012006349A (ja) インクジェット印刷装置及びその印刷方法
JP6076848B2 (ja) インクジェット記録装置
JP2012035477A (ja) 記録装置及びその処理方法
JP6333765B2 (ja) インクジェット記録装置
US8820876B2 (en) Printing apparatus and inspection method
JP2014231155A (ja) 画像処理方法、画像処理装置、画像処理プログラム及び画像形成装置
JP2013237251A (ja) 画像読み取り方法及び画像記録装置
JP2011079199A (ja) インクジェット記録装置及び異常検出方法
JP5783965B2 (ja) メディア保持装置、メディア搬送装置、及び、インクジェット記録装置
US11338595B2 (en) Print apparatus, method for controlling the same, and storage medium
JP6461839B2 (ja) 記録ヘッド調整方法及び画像形成装置
WO2018116873A1 (ja) 乾燥装置及び画像形成装置
JP6171723B2 (ja) 液体吐出装置
JP2009166450A (ja) 記録媒体加熱装置、印刷および記録媒体加熱方法
JP2020049741A (ja) 画像記録方法、補正用データ作成方法、インクジェット記録装置、記録制御装置、及びプログラム
JP2018193171A (ja) 検出装置、検出方法、搬送装置、及びインクジェット記録装置
JP2011173279A (ja) 画像記録装置及び画像記録方法並びにドット形成位置評価方法
JP6898279B2 (ja) 画像形成装置、画像形成方法、及び乾燥装置
JP7080160B2 (ja) ベルト駆動装置及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844224

Country of ref document: EP

Kind code of ref document: A1