WO2016046954A1 - 色消しレンズ及びレーザ加工機 - Google Patents

色消しレンズ及びレーザ加工機 Download PDF

Info

Publication number
WO2016046954A1
WO2016046954A1 PCT/JP2014/075627 JP2014075627W WO2016046954A1 WO 2016046954 A1 WO2016046954 A1 WO 2016046954A1 JP 2014075627 W JP2014075627 W JP 2014075627W WO 2016046954 A1 WO2016046954 A1 WO 2016046954A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
laser
achromatic
achromatic lens
concave
Prior art date
Application number
PCT/JP2014/075627
Other languages
English (en)
French (fr)
Inventor
健二 熊本
京藤 友博
裕章 黒川
西田 聡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/075627 priority Critical patent/WO2016046954A1/ja
Priority to JP2015528788A priority patent/JPWO2016046954A1/ja
Publication of WO2016046954A1 publication Critical patent/WO2016046954A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present invention relates to an achromatic lens for laser processing and a laser processing machine.
  • chromatic aberration When condensing light containing multiple different wavelengths with a lens, the focal position changes according to the wavelength. This phenomenon is called “chromatic aberration”.
  • a lens capable of correcting such chromatic aberration is an “achromatic lens”.
  • an achromatic lens is produced by combining two or more lenses having different refractive indexes and Abbe's numbers.
  • the Abbe number is a parameter representing a property related to the dispersion of the optical material, and is also called an inverse dispersion rate. The larger the Abbe number, the smaller the dispersion and the smaller the chromatic aberration. Conversely, the smaller the Abbe number, the greater the dispersion and the greater the chromatic aberration.
  • Patent Document 1 discloses an achromatic lens that refracts laser light including a plurality of wavelengths within a wavelength range of 0.8 ⁇ m to 1.6 ⁇ m in the near infrared light region. More specifically, the achromatic lens includes a convex lens and a concave lens that have greatly different Abbe numbers in the near-infrared region. BK7 is illustrated as a material for the convex lens. Examples of the concave lens material include ZnSe (zinc selenide) and ZnS (zinc sulfide).
  • the direct laser diode includes a plurality of semiconductor lasers, and realizes high output by combining a plurality of laser beams emitted from the plurality of semiconductor lasers. Furthermore, in order to secure higher light condensing performance, development of a direct laser diode of WBC (Wavelength Beam Combiner) system is also progressing.
  • WBC Widelength Beam Combiner
  • a plurality of semiconductor lasers capable of emitting laser beams having different wavelengths are used.
  • a plurality of laser beams having different wavelengths are combined by a diffraction grating or the like.
  • a GaAs-based semiconductor laser that can oscillate with high efficiency is used, and coupled laser light having several tens to several hundreds of wavelengths is generated over a wavelength band of 850 nm to 1100 nm. As a result, a high output of kW class is realized.
  • the laser beam generated by the direct laser diode is transmitted to the machining head via the optical fiber. And the said laser beam is condensed by the condensing lens installed in the process head, and is irradiated to the workpiece
  • the diameter of the focused spot at this time is typically 100 ⁇ m to 500 ⁇ m.
  • Such a high-power laser processing machine using a direct laser diode is expected to be applied in fields such as cutting and welding as in the case of fiber lasers and YAG lasers.
  • the laser light generated by the direct laser diode includes a plurality of different wavelengths, and the line width is very wide as compared with the conventional laser light. For this reason, when the laser beam is condensed by the condenser lens, chromatic aberration is remarkably generated. Therefore, it is desirable to use an achromatic lens as the condenser lens.
  • a conventional achromatic lens when applied to high-power laser light, the following problems occur. That is, the optical properties of the achromatic lens are changed by heat.
  • a typical example of such a heat-dependent change is a “thermal lens effect” caused by light absorption of an object.
  • the thermal lens effect is not preferable because it causes temporal fluctuations in the refractive index and the focal position, which in turn hinders stable laser processing.
  • BK7 is cited as a material for the convex lens of the achromatic lens.
  • the absorptivity and linear expansion coefficient of BK7 are relatively large, the thermal lens effect appears remarkably.
  • the focal position changes by several mm.
  • the beam diameter at the initial focal position changes with time, and it becomes impossible to maintain a stable light collection intensity.
  • Such a heat-dependent change is a problem in laser processing that needs to be performed with a smaller concentration and precise processing, and is not practical.
  • One object of the present invention is to provide a technique capable of suppressing a heat-dependent change in optical properties of an achromatic lens for laser processing.
  • an achromatic lens for laser processing that condenses laser light including a plurality of different wavelengths.
  • the achromatic lens includes a convex lens made of synthetic quartz and a concave lens made of ZnS or ZnSe.
  • a laser processing machine in another aspect of the present invention, includes a laser generator that outputs laser light including a plurality of different wavelengths, and an achromatic lens that focuses the output laser light.
  • the achromatic lens includes a convex lens made of synthetic quartz and a concave lens made of ZnS or ZnSe.
  • FIG. 1 is a schematic diagram showing a configuration example of a laser beam machine 1 according to Embodiment 1 of the present invention.
  • the laser processing machine 1 performs laser processing on the workpiece 101 placed on the work table 100. More specifically, the laser processing machine 1 includes a laser generator 10 and a condenser lens 20.
  • the laser generator 10 generates and outputs laser light L including a plurality of different wavelengths.
  • a direct laser diode can be considered.
  • FIG. 1 schematically shows a configuration example when the laser generator 10 is a direct laser diode.
  • the laser generator 10 includes the semiconductor laser unit 11, the lens 12, and the diffraction grating 13.
  • the semiconductor laser unit 11 includes a plurality of semiconductor lasers, and each of the plurality of semiconductor lasers emits laser beams L1 to Lm having different wavelengths.
  • m is an integer of 2 or more.
  • a GaAs semiconductor laser having a wavelength band of 850 nm to 1100 nm is used.
  • the wavelengths of the plurality of laser beams L1 to Lm are in the range of 850 nm to 1100 nm.
  • the plurality of laser beams L 1 to Lm emitted from the semiconductor laser unit 11 enter the diffraction grating 13 through the lens 12. Then, the laser beams L1 to Lm having different wavelengths are combined by the diffraction grating 13, and as a result, the high-power laser beam L is generated.
  • the direct laser diode realizes the high-power laser beam L by combining a plurality of laser beams L1 to Lm having different wavelengths.
  • a high-power laser beam L of kW class is realized by coupling laser beams having several tens to several hundreds of wavelengths over a wavelength band of 850 nm to 1100 nm.
  • the laser generator 10 is not limited to a direct laser diode.
  • the laser generator 10 may be configured by combining a plurality of fiber lasers having different wavelengths.
  • the laser beam L output from the laser generator 10 is transmitted to the condenser lens 20 in the processing head via the optical fiber 15.
  • the condensing lens 20 condenses the laser beam L output from the laser generator 10 and irradiates the workpiece 101 with it.
  • the diameter of the focused spot at this time is typically 100 ⁇ m to 500 ⁇ m.
  • the laser light L output from the laser generator 10 includes a plurality of different wavelengths. Therefore, in order to correct chromatic aberration, a “achromatic lens” is used as the condenser lens 20 in the present embodiment.
  • An achromatic lens is manufactured by combining two or more lenses having different refractive indices and Abbe numbers.
  • the achromatic lens includes a convex lens and a concave lens.
  • a material having a relatively large Abbe number is used as the material of the convex lens
  • a material having a relatively small Abbe number is used as the material of the concave lens.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the condenser lens 20 which is an achromatic lens according to the present embodiment.
  • the condenser lens 20 according to the present embodiment includes a convex lens 21 and a concave lens 22.
  • the convex lens 21 and the concave lens 22 are arranged side by side along the optical axis of the laser light L, and the laser light L passes through the convex lens 21 and the concave lens 22 continuously.
  • an air gap AG of about several mm, for example, 5 mm, is formed between the convex lens 21 and the concave lens 22.
  • the number of convex lenses 21 and concave lenses 22 may be two or more. Further, although the convex lens 21 is disposed on the laser generator 10 side and the concave lens 22 is disposed on the workpiece 101 side, the reverse arrangement may be employed.
  • FOM is a figure of merit related to heat-dependent change, and is defined by the following equation.
  • the FOM increases as the thermal conductivity k increases.
  • the FOM increases as the absorption coefficient ⁇ , the refractive index temperature dependency dn / dT, and the linear expansion coefficient ⁇ decrease. Therefore, it can be said that the FOM exhibits stability against heat.
  • the larger the FOM the smaller the heat-dependent change such as the thermal lens effect. That is, by using a material having a large FOM, it is possible to effectively suppress a heat-dependent change in optical properties.
  • synthetic quartz is used as the material of the convex lens 21.
  • synthetic quartz UV grade
  • ZnS zinc sulfide
  • ZnSe zinc selenide
  • the correction of chromatic aberration is as follows.
  • the Abbe number V of synthetic quartz is about 100 to 150, and the Abbe number V of ZnS and ZnSe is about 60 to 80. Therefore, the difference in Abbe number V between the convex lens 21 and the concave lens 22 is sufficient for correcting chromatic aberration.
  • the FOM is relatively large because the thermal conductivity k is high. At least, compared to BK7, the stability to heat is high, and the heat-dependent change is small.
  • the combination of the convex lens 21 made of synthetic quartz and the concave lens 22 made of ZnS or ZnSe makes it possible not only to correct chromatic aberration but also to suppress heat-dependent changes. That is, according to the present embodiment, an achromatic lens for laser processing that can suppress a heat-dependent change in optical properties is realized.
  • an air gap AG of about several millimeters is formed between the convex lens 21 and the concave lens 22. If the convex lens 21 and the concave lens 22 are pasted together with an adhesive, the adhesive increases the absorption rate, so that the FOM of the entire achromatic lens is reduced. Providing an air gap AG between the convex lens 21 and the concave lens 22 is also preferable because it contributes to suppression of heat-dependent changes.
  • the achromatic lens according to the present embodiment that can suppress heat-dependent changes is preferably applied to condensing high-power laser light L.
  • the achromatic lens according to the present embodiment is preferably applied to condensing laser light L having a power of 1 kW or more. Even in the case of such a high-power laser beam L, it is possible to maintain a high light condensing property and realize stable laser processing.
  • Embodiment 2 As described above, ZnS or ZnSe that is the material of the concave lens 22 has a high thermal conductivity k. Therefore, by providing a cooling unit for cooling the concave lens 22, it is possible to further suppress the heat-dependent change.
  • a holder including a cooling unit for cooling the concave lens 22 is proposed.
  • FIG. 4 is a cross-sectional view showing a configuration example of the condenser lens 20 according to the second embodiment.
  • a condensing lens 20 shown in FIG. 4 includes a convex lens 21, a concave lens 22, and a holder 30 that holds the convex lens 21 and the concave lens 22.
  • the convex lens 21 and the concave lens 22 are the same as those in the first embodiment, and the description thereof is omitted.
  • the holder 30 includes an inner cylinder 31 and an outer cylinder 32.
  • the inner cylinder 31 is a first member for holding the convex lens 21.
  • the outer cylinder 32 is a second member for holding the concave lens 22.
  • the inner cylinder 31 and the outer cylinder 32 are detachable from each other, and the inner cylinder 31 can be inserted into the outer cylinder 32.
  • the outer peripheral surface of the inner cylinder 31 and the inner peripheral surface of the outer cylinder 32 are fixed by a screw mechanism.
  • the convex lens 21 is inserted into the inner cylinder 31 and further sandwiched between the ring member 33 and the inner cylinder 31 to be inserted later.
  • the concave lens 22 is inserted into the outer cylinder 32, and is further sandwiched between the inner cylinder 31 and the outer cylinder 32 that are inserted later.
  • an air gap AG is formed between the convex lens 21 held by the inner cylinder 31 and the concave lens 22 held by the outer cylinder 32.
  • a coolant channel 35 is formed in the outer cylinder 32 that holds the concave lens 22.
  • the coolant channel 35 is a channel through which a cooling medium flows, and functions as a cooling unit for cooling the concave lens 22.
  • the cooling may be water cooling or air cooling. In the case of air cooling, for example, a purge gas used for preventing contamination of the optical element is used as the cooling medium.
  • the cooling unit for cooling the concave lens 22 is formed in the holder 30. Since ZnS or ZnSe that is the material of the concave lens 22 has a high thermal conductivity k, it is possible to further suppress the heat-dependent change by providing such a cooling unit.
  • ZnS and ZnSe which are the materials of the concave lens 22, are deleterious, but since the inner cylinder 31 and the outer cylinder 32 can be separated, the disposal process of the concave lens 22 can be easily performed.
  • the holder 30 does not necessarily need to be separable, and may be an integral type.
  • 1 laser processing machine 10 laser generator, 11 semiconductor laser unit, 12 lens, 13 diffraction grating, 15 fiber, 20 condensing lens, 21 convex lens, 22 concave lens, 30 holder, 31 inner cylinder, 32 outer cylinder, 33 ring member , 35 refrigerant flow path, 100 work table, 101 work, AG air gap, L, L1-Lm laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Laser Beam Processing (AREA)
  • Lens Barrels (AREA)

Abstract

 レーザ加工用の色消しレンズであって、複数の異なる波長を含むレーザ光を集光する色消しレンズが提供される。当該色消しレンズは、合成石英からなる凸レンズと、ZnSまたはZnSeからなる凹レンズと、を備える。

Description

色消しレンズ及びレーザ加工機
 本発明は、レーザ加工用の色消しレンズ及びレーザ加工機に関する。
 複数の異なる波長を含む光をレンズで集光する場合、焦点位置は波長に応じて変わる。この現象は「色収差(chromatic aberration)」と呼ばれている。そのような色収差を補正することができるレンズが、「色消しレンズ(achromatic lens)」である。
 一般的に、色消しレンズは、屈折率及びアッベ数(Abbe's number)の異なる2枚以上のレンズを組み合わせることによって作製される。アッベ数とは、光学材料の分散に関する性質を表すパラメータであり、逆分散率とも呼ばれる。アッベ数が大きいほど、分散が小さく、色収差も小さくなる。逆に、アッベ数が小さいほど、分散が大きく、色収差も大きくなる。
 特許文献1は、近赤外光領域である0.8μm~1.6μmの波長範囲内で複数の波長を含むレーザ光を屈折させる色消しレンズを開示している。より詳細には、その色消しレンズは、近赤外領域においてアッベ数が大きく異なる凸レンズと凹レンズとを含む。凸レンズの材料としては、BK7が例示されている。凹レンズの材料としては、ZnSe(セレン化亜鉛)及びZnS(硫化亜鉛)が例示されている。
特開2011-180494号公報
 近年、産業用のレーザ加工機に関して、各種レーザの高出力化が進んでいる。また、同時に効率向上も必要条件とされており、例えば「ダイレクトレーザダイオード(DLD:Direct Laser Diode)」を利用したレーザ加工機が注目されている。ダイレクトレーザダイオードは、複数の半導体レーザを備え、それら複数の半導体レーザから出射される複数のレーザ光を結合することによって高出力を実現する。更に、より高い集光性を確保するために、WBC(Wavelength Beam Combiner)方式のダイレクトレーザダイオードの開発も進んでいる。
 より詳細には、ダイレクトレーザダイオードでは、それぞれ異なる波長のレーザ光を出射できる複数の半導体レーザが用いられる。そして、それら波長の異なる複数のレーザ光が回折格子等によって結合される。典型的には、高効率に発振可能なGaAs系の半導体レーザが用いられ、850nm~1100nmの波長帯域にわたって数十~数百の波長を有する結合レーザ光が生成される。結果として、kWクラスの高出力が実現される。
 ダイレクトレーザダイオードによって生成されたレーザ光は、光ファイバを介して加工ヘッドまで伝送される。そして、当該レーザ光は、加工ヘッド内に設置された集光レンズによって集光され、ワークテーブル上に載置されたワークに照射される。このときの集光スポットの径は、典型的には100μm~500μmである。このようなダイレクトレーザダイオードを利用した高出力のレーザ加工機は、ファイバレーザやYAGレーザと同様に、切断、溶接といった分野での応用が期待される。
 但し、上述の通り、ダイレクトレーザダイオードによって生成されるレーザ光は、複数の異なる波長を含んでおり、その線幅は従来のレーザ光と比較して非常に広くなる。そのため、当該レーザ光を集光レンズで集光する際に、色収差が顕著に発生する。よって、集光レンズとして色消しレンズを使用することが望ましい。
 しかしながら、高出力のレーザ光に対して従来の色消しレンズを適用した場合、次のような問題が発生する。それは、色消しレンズの光学的性質が熱によって変化してしまうことである。そのような熱依存変化の典型例として、物体の光吸収に起因する「熱レンズ効果(thermal lens effect)」が挙げられる。熱レンズ効果は、屈折率及び焦点位置の時間的変動を招き、ひいては安定的なレーザ加工を阻害するため、好ましくない。
 例えば上述の特許文献1では、色消しレンズの凸レンズの材料としてBK7が挙げられている。しかしながら、BK7の吸収率及び線膨張係数は比較的大きいため、熱レンズ効果が顕著に現れる。例えばkWクラスの高出力レーザ光がBK7レンズに照射された場合、焦点位置が数mm程度変化してしまう。その結果、最初の焦点位置でのビーム径が時間的に変化し、安定した集光強度を保つことができなくなる。このような熱依存変化は、より小さく集光して精密な加工を行うことが必要なレーザ加工では問題であり、実用的ではない。
 本発明の1つの目的は、レーザ加工用の色消しレンズに関して、光学的性質の熱依存変化を抑制することができる技術を提供することにある。
 本発明の1つの観点において、複数の異なる波長を含むレーザ光を集光する、レーザ加工用の色消しレンズが提供される。当該色消しレンズは、合成石英からなる凸レンズと、ZnSまたはZnSeからなる凹レンズと、を備える。
 本発明の他の観点において、レーザ加工機が提供される。当該レーザ加工機は、複数の異なる波長を含むレーザ光を出力するレーザ発生装置と、当該出力レーザ光を集光する色消しレンズと、を具備する。当該色消しレンズは、合成石英からなる凸レンズと、ZnSまたはZnSeからなる凹レンズと、を備える。
 本発明によれば、レーザ加工用の色消しレンズの光学的性質の熱依存変化を抑制することが可能となる。
本発明の実施の形態1に係るレーザ加工機の構成例を示す概略図 本発明の実施の形態1に係る集光レンズの構成例を示す概略図 各種の光学材料の性質に関するパラメータを示すテーブル 本発明の実施の形態2に係る集光レンズの構成例を示す断面図
 添付図面を参照して、本発明の実施の形態を説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係るレーザ加工機1の構成例を示す概略図である。レーザ加工機1は、ワークテーブル100上に載置されたワーク101に対してレーザ加工を行う。より詳細には、レーザ加工機1は、レーザ発生装置10と集光レンズ20とを備えている。
 レーザ発生装置10は、複数の異なる波長を含むレーザ光Lを生成し、出力する。そのようなレーザ発生装置10として、例えばダイレクトレーザダイオードが考えられる。図1には、レーザ発生装置10がダイレクトレーザダイオードである場合の構成例が概略的に示されている。当該構成例によれば、レーザ発生装置10は、半導体レーザユニット11、レンズ12、及び回折格子13を含んでいる。
 半導体レーザユニット11は、複数の半導体レーザを備えており、それら複数の半導体レーザはそれぞれ異なる波長のレーザ光L1~Lmを出射する。ここで、mは2以上の整数である。例えば、850nm~1100nmの波長帯域のGaAs系の半導体レーザが用いられる。その場合、複数のレーザ光L1~Lmのそれぞれの波長は、850nm~1100nmの範囲内に存在する。
 半導体レーザユニット11から出射された複数のレーザ光L1~Lmは、レンズ12を通して回折格子13に入射する。そして、それら波長の異なるレーザ光L1~Lmが回折格子13によって結合され、その結果、高出力のレーザ光Lが生成される。
 このように、ダイレクトレーザダイオードは、波長の異なる複数のレーザ光L1~Lmを結合することによって、高出力のレーザ光Lを実現する。例えば、850nm~1100nmの波長帯域にわたって数十~数百の波長を有するレーザ光の結合により、kWクラスの高出力のレーザ光Lが実現される。
 尚、レーザ発生装置10は、ダイレクトレーザダイオードに限られない。例えば、波長の異なる複数のファイバレーザを結合することによりレーザ発生装置10を構成してもよい。
 レーザ発生装置10から出力されたレーザ光Lは、光ファイバ15を介して、加工ヘッド内の集光レンズ20まで伝送される。集光レンズ20は、レーザ発生装置10から出力されたレーザ光Lを集光し、ワーク101に照射する。このときの集光スポットの径は、典型的には100μm~500μmである。上述の通り、レーザ発生装置10から出力されるレーザ光Lは、複数の異なる波長を含んでいる。よって、色収差を補正するために、本実施の形態では、集光レンズ20として「色消しレンズ」が用いられる。
 色消しレンズは、屈折率及びアッベ数の異なる2枚以上のレンズを組み合わせることによって作製される。典型的には、色消しレンズは、凸レンズと凹レンズを含む。その場合、凸レンズの材料として、アッベ数が比較的大きいものを使用し、凹レンズの材料として、アッベ数が比較的小さいものを使用する。
 図2は、本実施の形態に係る色消しレンズである集光レンズ20の構成例を示す概略図である。本実施の形態に係る集光レンズ20は、凸レンズ21と凹レンズ22を備えている。凸レンズ21と凹レンズ22は、レーザ光Lの光軸に沿って並んで配置されており、レーザ光Lは、凸レンズ21と凹レンズ22を連続して通過する。また、凸レンズ21と凹レンズ22との間には、数mm程度、例えば5mmのエアギャップAGが形成されている。尚、凸レンズ21や凹レンズ22の枚数は2枚以上であってもよい。また、凸レンズ21がレーザ発生装置10側、凹レンズ22がワーク101側に配置されているが、逆の配置でもよい。
 本実施の形態では、凸レンズ21と凹レンズ22のそれぞれの材料の選定にあたり、色消しを実現するためのアッベ数の差異だけでなく、“光学的性質の熱依存変化の抑制”も考慮に入れられる。
 図3は、各種の光学材料の性質に関するパラメータを示している。より詳細には、図3に示されているパラメータは、熱伝導率k、吸収率β(t=1cm)、屈折率温度依存性dn/dT、線膨張係数α、ポアソン比ν、屈折率n、FOM、及びアッベ数Vである。ここで、FOMは、熱依存変化に関する性能指数(Figure of Merit)であり、次の式で定義される。
Figure JPOXMLDOC01-appb-M000001
 FOMは、熱伝導率kが高くなるにつれて、大きくなる。また、FOMは、吸収率β、屈折率温度依存性dn/dT、線膨張係数αの各々が小さくなるにつれて、大きくなる。よって、FOMは、熱に対する安定性を示していると言える。FOMが大きいほど、熱レンズ効果等の熱依存変化は小さくなる。すなわち、FOMが大きい材料を用いることにより、光学的性質の熱依存変化を効果的に抑制することが可能となる。
 本実施の形態では、凸レンズ21の材料として合成石英が用いられる。中でも、内部の不純物と構造欠陥を抑制した、真空紫外用の合成石英(UVグレード)が用いられると好適である。一方、凹レンズ22の材料として、不純物を取り除いたZnS(硫化亜鉛)またはZnSe(セレン化亜鉛)が用いられる。このような凸レンズ21と凹レンズ22の組み合わせにより、色収差の補正と熱依存変化の抑制の両方を実現することができる。
 色収差の補正については、次の通りである。合成石英のアッベ数Vは100~150程度であり、ZnS及びZnSeのアッベ数Vは60~80程度である。よって、凸レンズ21と凹レンズ22との間のアッベ数Vの差は、色収差の補正に十分である。
 熱依存変化の抑制については、次の通りである。まず、比較例として、BK7の場合を考える。図3から明らかなように、BK7の吸収率βや線膨張係数αは大きいため、そのFOMは他の材料に比べて小さくなっている。すなわち、BK7は熱に対する安定性が低く、熱依存変化は大きくなる。実際に、kWクラスの高出力レーザ光がBK7レンズに照射された場合、焦点位置が数mm程度変化してしまう。その結果、最初の焦点位置でのビーム径が時間的に変化し、安定した集光強度を保つことができなくなる。このような熱依存変化は、より小さく集光して精密な加工を行うことが必要なレーザ加工では問題であり、実用的ではない。
 一方、合成石英の吸収率βや線膨張係数αは非常に小さく、そのFOMはBK7に比べてはるかに大きくなっている。すなわち、合成石英は熱に対する安定性が極めて高く、熱依存変化は非常に小さくなる。
 ZnSやZnSeに関しては、屈折率温度依存性dn/dTや線膨張係数αは大きいが、熱伝導率kが高いため、FOMも比較的大きくなっている。少なくともBK7よりは、熱に対する安定性は高く、熱依存変化は小さくなる。
 以上に説明されたように、合成石英からなる凸レンズ21とZnSまたはZnSeからなる凹レンズ22の組み合わせによって、色収差の補正だけでなく、熱依存変化の抑制も可能となる。すなわち、本実施の形態によれば、光学的性質の熱依存変化を抑制することができるレーザ加工用の色消しレンズが実現される。
 また、図2で示されたように、本実施の形態によれば、凸レンズ21と凹レンズ22との間に数mm程度のエアギャップAGが形成されている。仮に凸レンズ21と凹レンズ22とが接着剤によって張り合わされる場合、接着剤が吸収率を増加させるため、色消しレンズ全体としてのFOMは小さくなってしまう。凸レンズ21と凹レンズ22との間にエアギャップAGを設けることも、熱依存変化の抑制に寄与し、好適である。
 熱依存変化を抑制することができる本実施の形態に係る色消しレンズは、高出力のレーザ光Lの集光に適用されると好適である。例えば、本実施の形態に係る色消しレンズは、1kW以上のパワーのレーザ光Lの集光に適用されると好適である。そのような高出力のレーザ光Lの場合であっても、高集光性を維持し、安定的なレーザ加工を実現することが可能となる。
実施の形態2.
 上述の通り、凹レンズ22の材料であるZnSまたはZnSeは、高い熱伝導率kを有している。従って、凹レンズ22を冷却するための冷却部を設けることによって、熱依存変化を更に抑制することが可能となる。本発明の実施の形態2では、凹レンズ22を冷却するための冷却部を備えたホルダが提案される。
 図4は、実施の形態2に係る集光レンズ20の構成例を示す断面図である。図4に示される集光レンズ20は、凸レンズ21、凹レンズ22、及びそれら凸レンズ21及び凹レンズ22を保持するホルダ30を備えている。凸レンズ21及び凹レンズ22は、上記の実施の形態1と同じであり、その説明を省略する。
 ホルダ30は、内筒31と外筒32を備えている。内筒31は、凸レンズ21を保持するための第1部材である。一方、外筒32は、凹レンズ22を保持するための第2部材である。内筒31と外筒32とは互いに着脱可能であり、内筒31は外筒32の内部に挿入可能である。例えば、内筒31の外周面と外筒32の内周面は、ネジ機構によって固定される。
 より詳細には、凸レンズ21は、内筒31の内部に挿入され、更に後から挿入されるリング部材33と内筒31との間に挟み込まれる。また、凹レンズ22は、外筒32の内部に挿入され、更に後から挿入される内筒31と外筒32との間に挟み込まれる。このとき、内筒31に保持された凸レンズ21と外筒32に保持された凹レンズ22との間にはエアギャップAGが形成される。
 更に、凹レンズ22を保持する外筒32には冷媒流路35が形成されている。この冷媒流路35は、冷却媒体が流れる流路であり、凹レンズ22を冷却するための冷却部として機能する。尚、冷却は、水冷であっても空冷であってもよい。空冷の場合は、例えば、光学素子の汚れ防止に使われるパージガスが冷却媒体として用いられる。
 以上に説明されたように、本実施の形態によれば、凹レンズ22を冷却するための冷却部がホルダ30に形成されている。凹レンズ22の材料であるZnSまたはZnSeは高い熱伝導率kを有しているため、このような冷却部を設けることによって熱依存変化を更に抑制することが可能となる。
 また、凹レンズ22の材料であるZnS及びZnSeは劇物であるが、内筒31と外筒32とが分離可能であるため、凹レンズ22の廃却処理を容易に行うことが可能となる。但し、凸レンズ21と凹レンズ22を同時に廃却する場合は、ホルダ30は分離可能である必要は必ずしもなく、一体型であっても構わない。
 以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。
 1 レーザ加工機、10 レーザ発生装置、11 半導体レーザユニット、12 レンズ、13 回折格子、15 ファイバ、20 集光レンズ、21 凸レンズ、22 凹レンズ、30 ホルダ、31 内筒、32 外筒、33 リング部材、35 冷媒流路、100 ワークテーブル、101 ワーク、AG エアギャップ、L,L1~Lm レーザ光。

Claims (12)

  1.  複数の異なる波長を含むレーザ光を集光する、レーザ加工用の色消しレンズであって、
     合成石英からなる凸レンズと、
     ZnSまたはZnSeからなる凹レンズと
     を備える
     色消しレンズ。
  2.  前記レーザ光のパワーは1kW以上である
     請求項1に記載の色消しレンズ。
  3.  前記複数の異なる波長は、850nm~1100nmの範囲内に存在する
     請求項1又は2に記載の色消しレンズ。
  4.  前記凸レンズと前記凹レンズとの間にはエアギャップが形成されている
     請求項1から3のいずれか一項に記載の色消しレンズ。
  5.  前記凸レンズ及び前記凹レンズを保持するホルダを更に備え、
     前記ホルダには、前記凹レンズを冷却するための冷却部が形成されている
     請求項1から4のいずれか一項に記載の色消しレンズ。
  6.  前記冷却部は、冷却媒体が流れる流路である
     請求項5に記載の色消しレンズ。
  7.  前記凸レンズ及び前記凹レンズを保持するホルダを更に備え、
     前記ホルダは、
     前記凸レンズを保持する第1部材と、
     前記凹レンズを保持する第2部材と
     を備え、
     前記第1部材と前記第2部材とは互いに着脱可能に形成されている
     請求項1から4のいずれか一項に記載の色消しレンズ。
  8.  前記第2部材には、前記凹レンズを冷却するための冷却部が形成されている
     請求項7に記載の色消しレンズ。
  9.  請求項1から8のいずれか一項に記載の色消しレンズを備えるレーザ加工機。
  10.  複数の異なる波長を含むレーザ光を出力するレーザ発生装置と、
     前記出力されたレーザ光を集光する色消しレンズと
     を具備し、
     前記色消しレンズは、
     合成石英からなる凸レンズと、
     ZnSまたはZnSeからなる凹レンズと
     を備える
     レーザ加工機。
  11.  前記レーザ光のパワーは1kW以上である
     請求項10に記載のレーザ加工機。
  12.  前記複数の異なる波長は、850nm~1100nmの範囲内に存在する
     請求項10又は11に記載のレーザ加工機。
PCT/JP2014/075627 2014-09-26 2014-09-26 色消しレンズ及びレーザ加工機 WO2016046954A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/075627 WO2016046954A1 (ja) 2014-09-26 2014-09-26 色消しレンズ及びレーザ加工機
JP2015528788A JPWO2016046954A1 (ja) 2014-09-26 2014-09-26 色消しレンズ及びレーザ加工機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075627 WO2016046954A1 (ja) 2014-09-26 2014-09-26 色消しレンズ及びレーザ加工機

Publications (1)

Publication Number Publication Date
WO2016046954A1 true WO2016046954A1 (ja) 2016-03-31

Family

ID=55580513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075627 WO2016046954A1 (ja) 2014-09-26 2014-09-26 色消しレンズ及びレーザ加工機

Country Status (2)

Country Link
JP (1) JPWO2016046954A1 (ja)
WO (1) WO2016046954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215019A1 (de) 2016-08-11 2016-10-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden mit optimierter Gasdynamik
JP6227216B1 (ja) * 2017-03-21 2017-11-08 三菱電機株式会社 レーザ加工装置
WO2023234004A1 (ja) * 2022-06-02 2023-12-07 株式会社島津製作所 レーザ光照射装置及びレーザ加工装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160993A (ja) * 1996-11-27 1998-06-19 Canon Inc レンズの組み立て調整方法、レンズ調整機構、レンズ鏡筒、及び光学機器
JP2000098221A (ja) * 1998-09-18 2000-04-07 Asahi Optical Co Ltd 色消しレンズ系
JP2003090945A (ja) * 2001-07-10 2003-03-28 Olympus Optical Co Ltd レンズ保持装置および顕微鏡用対物レンズ
JP2003232993A (ja) * 2002-02-08 2003-08-22 Nikon Corp 屈折光学系
JP2004082166A (ja) * 2002-08-27 2004-03-18 Matsushita Electric Ind Co Ltd 光ファイバ用レーザ出射鏡筒
JP2005266259A (ja) * 2004-03-18 2005-09-29 Fujinon Corp 色消しレンズ系
JP2010243542A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp プロジェクター
JP2011180494A (ja) * 2010-03-03 2011-09-15 Sumitomo Electric Hardmetal Corp レーザ用光学部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160993A (ja) * 1996-11-27 1998-06-19 Canon Inc レンズの組み立て調整方法、レンズ調整機構、レンズ鏡筒、及び光学機器
JP2000098221A (ja) * 1998-09-18 2000-04-07 Asahi Optical Co Ltd 色消しレンズ系
JP2003090945A (ja) * 2001-07-10 2003-03-28 Olympus Optical Co Ltd レンズ保持装置および顕微鏡用対物レンズ
JP2003232993A (ja) * 2002-02-08 2003-08-22 Nikon Corp 屈折光学系
JP2004082166A (ja) * 2002-08-27 2004-03-18 Matsushita Electric Ind Co Ltd 光ファイバ用レーザ出射鏡筒
JP2005266259A (ja) * 2004-03-18 2005-09-29 Fujinon Corp 色消しレンズ系
JP2010243542A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp プロジェクター
JP2011180494A (ja) * 2010-03-03 2011-09-15 Sumitomo Electric Hardmetal Corp レーザ用光学部品

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215019A1 (de) 2016-08-11 2016-10-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden mit optimierter Gasdynamik
US10675708B2 (en) 2016-08-11 2020-06-09 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method for laser cutting with optimized gas dynamics
EP3315243B1 (de) 2016-08-11 2021-09-15 TRUMPF Werkzeugmaschinen GmbH + Co. KG Verfahren zum laserschneiden mit optimierter gasdynamik
DE102016215019C5 (de) 2016-08-11 2023-04-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden mit optimierter Gasdynamik
JP6227216B1 (ja) * 2017-03-21 2017-11-08 三菱電機株式会社 レーザ加工装置
WO2018173101A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 レーザ加工装置
US10864600B2 (en) 2017-03-21 2020-12-15 Mitsubishi Electric Corporation Laser machining device
WO2023234004A1 (ja) * 2022-06-02 2023-12-07 株式会社島津製作所 レーザ光照射装置及びレーザ加工装置

Also Published As

Publication number Publication date
JPWO2016046954A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP2009072789A (ja) レーザ加工装置
WO2013002402A1 (ja) コリメータおよびコリメータ付き光アイソレータ
JP2013503751A (ja) 少なくとも5mmの周辺厚さを有するZnSレンズを備えるレーザー集束ヘッド、およびそのような集束ヘッドを用いた方法およびレーザー切削ユニット
JP7277716B2 (ja) 光源装置、ダイレクトダイオードレーザ装置、および光結合器
WO2016046954A1 (ja) 色消しレンズ及びレーザ加工機
KR20130100890A (ko) 고 전력 레이저들을 위한 열 보상 렌즈
US10471537B2 (en) Direct diode laser processing apparatus and sheet metal processing method using the same
WO2015145608A1 (ja) レーザ装置
JP2016081994A (ja) ダイレクトダイオードレーザ発振器
JP2004082166A (ja) 光ファイバ用レーザ出射鏡筒
CN111032271B (zh) 具有用于过滤紫外线过程辐射的光学元件的激光加工头和对应的激光加工方法
JP2011180494A (ja) レーザ用光学部品
CN113518683B (zh) 用于激光加工系统的设备和具有这类设备的激光加工系统
JP2016078051A (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2009010066A (ja) パルスレーザ発振器
JP6035304B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた板金の加工方法
JP2012043849A (ja) ファイバレーザデリバリシステム
JP2018055875A (ja) 蛍光光源装置
JP2008211084A (ja) レーザ加工装置
JP6035303B2 (ja) ダイレクトダイオードレーザ加工装置及びこれを用いた金属板の加工方法
WO2020230364A1 (ja) 光学装置
JP2007027251A (ja) レーザー装置
JP6225533B2 (ja) ファイバカップリングレーザモジュール
JP7175408B2 (ja) 被加工物のレーザー加工用光学ユニット及びレーザー加工装置
JP3241707B2 (ja) レーザ加工装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015528788

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902490

Country of ref document: EP

Kind code of ref document: A1