WO2016046882A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2016046882A1
WO2016046882A1 PCT/JP2014/075066 JP2014075066W WO2016046882A1 WO 2016046882 A1 WO2016046882 A1 WO 2016046882A1 JP 2014075066 W JP2014075066 W JP 2014075066W WO 2016046882 A1 WO2016046882 A1 WO 2016046882A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
refrigeration cycle
condenser
cycle apparatus
Prior art date
Application number
PCT/JP2014/075066
Other languages
English (en)
French (fr)
Inventor
智隆 石川
肇 藤本
佐多 裕士
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/075066 priority Critical patent/WO2016046882A1/ja
Priority to JP2015531774A priority patent/JP5921777B1/ja
Priority to EP14902300.4A priority patent/EP3199891B1/en
Publication of WO2016046882A1 publication Critical patent/WO2016046882A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser

Definitions

  • the present invention relates to a refrigeration cycle apparatus used for applications such as refrigeration, air conditioning, and hot water supply.
  • Patent Document 1 As a waste heat utilization system of a refrigeration cycle apparatus such as a refrigerator and an air conditioner, as shown in Patent Document 1, a refrigerator connected to a showcase installed in a store and the waste heat of the refrigerator There is a thing provided with a hot water supply device that supplies hot water into the store using the.
  • exhaust heat is recovered from the high-temperature and high-pressure discharge gas refrigerant that is discharged from the compressor of the refrigerator and before flowing into the condenser.
  • a condenser of a general refrigeration cycle apparatus includes a header that distributes the refrigerant flowing into the condenser body.
  • the condenser When the refrigerant flowing into the header is in a gas phase, the condenser is evenly distributed by the header. It can be made to flow into each refrigerant path of the main body.
  • the discharged gas refrigerant discharged from the compressor is recovered and condensed before it flows into the condenser and becomes a gas-liquid two-phase, it cannot be evenly distributed in the header, causing the performance of the refrigerator to deteriorate. there is a possibility.
  • the present invention has been made in view of such points, and even when exhaust heat is recovered from the discharged gas refrigerant, the refrigerant distribution to the refrigerant paths of the condenser is always equalized, and high performance is avoided by avoiding performance degradation. It aims at obtaining the refrigerating cycle device which can obtain.
  • a refrigeration cycle apparatus includes a compressor, a multi-pass condenser having a condenser body having a plurality of refrigerant paths, a decompression unit, and an evaporator, and a refrigeration cycle in which refrigerant circulates. And a heat exchanger for recovering heat from the refrigerant discharged from the compressor to heat the heat exchange medium, and an equal distribution means for evenly distributing the refrigerant to the plurality of refrigerant paths of the condenser body It is.
  • Embodiment 1 FIG. First, Embodiment 1 of the present invention will be described.
  • This Embodiment 1 is an exhaust heat exchanger for using the heat of the discharge gas refrigerant in the middle of the refrigerant pipe that conveys the high-temperature and high-pressure discharge gas refrigerant discharged from the compressor of the refrigeration cycle apparatus to the condenser. Is provided. Then, water for producing hot water stored in the water storage tank is circulated in the exhaust heat heat exchanger to exchange heat between the exhaust heat gas refrigerant and water.
  • the water warmed with the exhaust heat exchanger is introduce
  • the water in the water storage tank is further heated with an electric heater to a set temperature.
  • the heater heating amount can be significantly reduced as compared with the case of using no exhaust heat, and a high energy saving effect can be obtained. Further, the capacity of the electric heater can be reduced, and the cost can be reduced.
  • the system of the first embodiment is particularly effective when used for a store such as a convenience store where houses are densely packed.
  • FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus in Embodiment 1 includes a refrigerator 100 and a water heater 101 for supplying hot water to a sink or the like as a hot water supply system separately from the refrigerator 100.
  • a compressor 1 and a condenser 2 are installed in the refrigerator 100 shown in FIG. 1, and an expansion valve 3 and an evaporator 4 as decompression means are installed in a showcase 102 in a store such as a convenience store. ing.
  • the refrigerator 100 and the showcase 102 are connected by a refrigerant pipe 11 and constitute a refrigeration cycle in which the refrigerant circulates through the compressor 1, the condenser 2, the expansion valve 3 and the evaporator 4.
  • an exhaust heat exchanger 5 is installed between the compressor 1 and the condenser 2, and the high-temperature and high-pressure discharged gas refrigerant discharged from the compressor 1 is exhausted through the refrigerant pipe 11. Then, the refrigerant flows into the condenser 2 in the refrigerator 100.
  • water as a heat exchange medium is guided to the exhaust heat exchanger 5 from the water storage tank 6 of the water heater 101 through the water pipe 12.
  • a water circulation pump 7 is provided in the water pipe 12, and a water circulation pipe 12 constitutes a circulation path for flowing water from the water storage tank 6 to the exhaust heat exchanger 5 and then returning it to the water storage tank 6.
  • the water guided to the exhaust heat exchanger 5 is returned to the water storage tank 6 after exchanging heat with the discharge gas refrigerant guided through the refrigerant pipe 11.
  • a water supply pipe (not shown) is connected to the water pipe 12 on the suction side of the water circulation pump 7 so that water from the water supply is supplied to the water pipe 12 through the water supply pipe. It has become.
  • An electric heater 8 is installed in the water storage tank 6 to heat the water in the water storage tank 6 (referred to as water for convenience, including heated hot water). The electric heater 8 is controlled so as to heat the water in the water storage tank 6 when the temperature is lower than the temperature.
  • the condenser 2 is a multi-pass heat exchanger having a plurality of refrigerant paths, and is disposed on the condenser main body 21 and the refrigerant inlet side of the condenser main body 21 to distribute the refrigerant to each refrigerant path. And a container 22.
  • FIG. 2 is a diagram showing a distributor in the condenser of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the distributor 22 is a header, and includes a main pipe 22a, an inlet pipe 22b having one end connected to the main pipe 22a, a plurality of ends connected to the refrigerant pipes of the condenser main body 21, and one end connected to the main pipe 22a.
  • the branch pipe 22c is provided.
  • the high-temperature and high-pressure discharged gas refrigerant compressed by the compressor 1 in the refrigeration cycle apparatus configured as described above is introduced into the exhaust heat exchanger 5 through the refrigerant pipe 11 for use of exhaust heat.
  • the discharged gas refrigerant introduced into the exhaust heat exchanger 5 is cooled by exchanging heat with water introduced into the exhaust heat exchanger 5 from the water storage tank 6 of the water heater 101 by the water circulation pump 7.
  • water flowing into the exhaust heat exchanger 5 is heated by heat exchange with the discharge gas refrigerant, and the heated water returns to the water storage tank 6 through the water pipe 12.
  • the hot water use manufactured by this Embodiment 1 can also be utilized for floor heating, road heating, etc. besides hot water supply. Therefore, the heat exchange medium may be a fluid such as brine, an HFC refrigerant, an HFO refrigerant, an HC refrigerant, CO 2 , ammonia, air, etc. in addition to water.
  • the heat exchange medium may be a fluid such as brine, an HFC refrigerant, an HFO refrigerant, an HC refrigerant, CO 2 , ammonia, air, etc. in addition to water.
  • the refrigeration cycle apparatus further includes a control unit 110 that controls the entire refrigeration cycle apparatus.
  • the control unit 110 is constituted by a microcomputer having control arithmetic processing means such as a CPU.
  • the control unit 110 has storage means (not shown), and has data in which a processing procedure related to control and the like is a program. Then, the control arithmetic processing means executes processing based on the program data to realize control.
  • the water in the water storage tank 6 is heated using the exhaust heat of the discharged gas refrigerant from the compressor 1. For this reason, the amount of heat exchange in the condenser 2 can be reduced, the condensation temperature can be lowered, that is, the compression ratio can be lowered, and the input of the compressor 1 can be reduced.
  • the operation compression ratio of the refrigerator 100 by reducing the operation compression ratio of the refrigerator 100, the power consumption is reduced and an energy saving effect is obtained.
  • Rotational speed control of the blower 9 for the condenser 2 is generally performed based on a high pressure or a condensation temperature.
  • the refrigerant flowing into the condenser 2 is cooled by water from the water storage tank 6 in the exhaust heat exchanger 5 and the temperature is lowered. For this reason, the amount of heat exchange in the condenser 2 is reduced. As a result, the rotational speed of the blower 9 when using exhaust heat according to the first embodiment can be controlled to be lower by the amount of heat exchange.
  • the air-cooled condenser 2 when used, it is possible to reduce the operating noise of the blower 9, and when it is used in a convenience store such as a densely populated house, There is an effect that can provide a system with special consideration.
  • the refrigeration cycle apparatus of the first embodiment has an equal distribution means that evenly distributes the refrigerant to each refrigerant path of the condenser main body 21 even when exhaust heat is recovered from the discharged gas refrigerant, thereby reducing performance. It is configured to avoid it reliably.
  • eight specific configurations as the equal distribution means will be described.
  • the equal distribution means is roughly divided into two types, and the refrigerant state at the condenser 2 inlet (exhaust heat exchanger 5 outlet) is changed to a gas single phase (that is, gas-liquid two-phase).
  • gas single-phase distribution type that distributes evenly
  • gas-liquid two-phase distribution type that distributes even when the condenser 2 inlet (exhaust heat exchanger 5 outlet) is gas-liquid two-phase And have.
  • Gas single phase distribution type There are six types of gas single-phase distribution type equal distribution means. This will be described in order below.
  • the first uniform distribution means is composed of a gas-liquid separator 13. Details will be described below.
  • FIG. 3 is a diagram showing a configuration in which the first equal distribution means is installed in the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the gas-liquid separator 13 is installed at the inlet of the condenser 2 and separates the gas-liquid two-phase refrigerant flowing out of the exhaust heat exchanger 5 into liquid refrigerant and gas refrigerant. Therefore, even if the refrigerant at the inlet of the condenser 2 is gas-liquid two-phase, the gas-liquid two-phase refrigerant is allowed to pass through the gas-liquid separator 13 before flowing into the distributor 22, and the gas single-phase refrigerant is passed through the condenser 2. It becomes possible to flow into the distributor 22.
  • the refrigerant can be evenly distributed to each refrigerant path of the condenser body 21 using the header as the distributor 22 as in the conventional case.
  • the liquid refrigerant separated by the gas-liquid separator 13 is combined with the liquid refrigerant at the outlet of the condenser 2 through the pipe 13a.
  • the second equal distribution means is configured by means for controlling the capacity of the compressor 1 so that the refrigerant state of the outlet refrigerant of the exhaust heat exchanger 5 becomes a gas single phase. Details will be described below.
  • the control unit 110 increases the number of rotations of the compressor to increase the degree of superheat, so that the outlet refrigerant of the exhaust heat exchanger 5 becomes a gas single phase.
  • the control unit 110 may directly detect and control the refrigerant superheat degree at the outlet of the exhaust heat exchanger 5, but cools the compressor 1 input and the sensible heat amount of the discharge gas refrigerant (the discharge gas refrigerant is cooled until it becomes saturated gas). Since the heat exchange amount of the exhaust heat exchanger 5 is less than or equal to the compressor input, a control method may be used.
  • the third equal distribution means is configured by the exhaust heat exchanger 5 whose size is adjusted so that the refrigerant is not condensed in the exhaust heat exchanger 5 at all times during the operation of the refrigeration cycle apparatus. Details will be described below.
  • the cooling load of the refrigerator 100 and the feed water temperature to the water heater 101 vary depending on the environmental conditions. For this reason, it is assumed that the exhaust heat heat exchanger 5 is most likely to condense, for example, winter operation, and if the exhaust heat exchanger 5 is selected so that the refrigerant does not condense at this time, the exhaust heat exchanger 5 will not condense throughout the year. It becomes. Note that the winter operation as an example is performed while the outside air temperature is low, so that the cooling load of the refrigerator 100 is small and the water temperature is also low. Therefore, in the first embodiment, the exhaust heat heat exchanger 5 is the most. It is a condition that tends to condense.
  • the refrigerant flowing into the condenser 2 can always be a gas single phase during the operation of the refrigeration cycle apparatus. it can.
  • the fourth equal distribution means is configured by means for controlling the flow rate of water flowing into the exhaust heat exchanger 5 so that the refrigerant does not condense in the exhaust heat exchanger 5. Details will be described below.
  • the control unit 110 controls the water circulation pump 7 to reduce the water flow rate and reduce the amount of heat exchange in the exhaust heat exchanger 5 to exhaust heat.
  • the degree of superheat of the outlet refrigerant of the heat exchanger 5 is expanded.
  • the controller 110 may directly detect and control the degree of refrigerant superheating at the outlet of the exhaust heat exchanger 5 as in the capacity control (second uniform distribution means) of the compressor 1.
  • a control method for setting the heat exchange amount of the exhaust heat exchanger 5 below the compressor 1 input It may be used.
  • the control method of the water flow rate may control the capacity of the water circulation pump 7 as described above, but may control the water flow path resistance.
  • the fifth equal distribution unit is configured by a heating unit that heats the water flowing into the exhaust heat exchanger 5 to a temperature equal to or higher than the refrigerant condensing temperature of the refrigerator 100 so that the refrigerant is not condensed in the exhaust heat exchanger 5. Yes. Details will be described below.
  • the temperature of the water flowing into the exhaust heat exchanger 5 is set to be equal to or higher than the condensation temperature of the refrigerant, the refrigerant to be cooled is not reliably condensed.
  • the water heater 101 may be preheated by the electric heater 8 or another heat source may be provided.
  • the water temperature is lower than the refrigerant condensing temperature
  • the water at the water temperature and the discharge gas refrigerant are heat-exchanged by the exhaust heat exchanger 5, and the temperature of the discharge gas refrigerant falls below the condensation temperature and condenses.
  • the phase refrigerant flows into the condenser 2. That is, when the water temperature is lower than the refrigerant condensing temperature, the two-phase refrigerant flows into the condenser 2 when all the discharged gas refrigerant flows into the condenser 2 through the exhaust heat exchanger 5. there is a possibility.
  • the refrigerant temperature does not fall below the refrigerant condensing temperature and does not condense even if heat is exchanged with water higher than the refrigerant condensing temperature. Therefore, when the water temperature is higher than the refrigerant condensation temperature, all of the discharged gas refrigerant is passed through the exhaust heat exchanger 5 to exchange heat with water, and then flows into the condenser 2.
  • the exhaust heat exchanger 5 to exchange heat with water
  • FIG. 4 is a diagram illustrating a configuration in which the refrigeration cycle apparatus according to Embodiment 1 of the present invention is provided with sixth equal distribution means.
  • FIG. 5 is an operation explanatory diagram of each switching valve in FIG. 4 according to the relationship between the water temperature of the water flowing into the exhaust heat exchanger of FIG. 4 and the condensation temperature.
  • all of the discharge gas refrigerant discharged from the compressor 1 always passes through the exhaust heat exchanger 5, but in FIG. The configuration is such that all can be passed.
  • the sixth uniform distribution means includes a bypass circuit 30 that connects the inlet and the outlet of the condenser 2, and the exhaust heat exchanger 5 is installed in the bypass circuit 30.
  • the sixth uniform distribution means includes another bypass circuit 31 that connects the outlet of the exhaust heat exchanger 5 and the inlet of the condenser 2.
  • the sixth equal distribution means further includes a switching valve 30a for opening and closing the bypass circuit 30, a switching valve 31a for opening and closing the bypass circuit 31, and a bypass circuit 30 in the main circuit between the compressor 1 and the condenser 2. And a switching valve 32 provided downstream of the branch portion.
  • the switching valve 30a and the switching valve 32 are opened, the switching valve 31a is shut off, and the compressor 1 is discharged as shown in FIG.
  • the refrigerant forms a flow path directly toward the condenser 2 and a flow path toward the outlet of the condenser 2 after passing through the exhaust heat exchanger 5 via the bypass circuit 30.
  • a part of the discharge gas refrigerant discharged from the compressor 1 flows into the exhaust heat exchanger 5 to heat the water by the condensation heat (exhaust heat of the discharge gas refrigerant), and from the exhaust heat exchanger 5. leak.
  • the refrigerant flowing into the condenser 2 is evenly distributed by the distributor 22 and passes through each refrigerant path of the condenser main body 21.
  • the refrigerant after passing through each refrigerant path of the condenser body 21 merges with the refrigerant after passing through the exhaust heat exchanger 5.
  • the flow rate of the bypass circuit 30 is adjusted and the exhaust heat exchanger 5 is surely subcooled.
  • the refrigerant after joining at the outlet of the condenser 2 can reliably ensure supercooling. If supercooling of the liquid refrigerant cannot be ensured, it becomes a gas-liquid two-phase at the inlet of the expansion valve 3, so that the flow rate decreases and the refrigeration capacity decreases, hunting occurs and the operation becomes unstable. Problems such as enlargement occur. For this reason, it is necessary to ensure supercooling of the refrigerant at the outlet of the condenser 2.
  • a flow rate adjustment valve may be installed in the bypass circuit 30 and the opening degree of the flow rate adjustment valve may be controlled by the control unit 110.
  • the switching valve 30a and the switching valve 32 are shut off and the switching valve 31a is opened as shown in FIG. In this case, a flow path similar to that of the first embodiment is formed. Therefore, all of the discharge gas refrigerant discharged from the compressor 1 flows into the exhaust heat exchanger 5 and heats the water with the exhaust heat of the discharge gas refrigerant. Even when water is heated by heat exchange with the discharge gas refrigerant, the water does not condense because the water temperature is equal to or higher than the condensation temperature. Therefore, the gas single-phase refrigerant flows into the condenser 2, and the distributor 22 of the condenser 2 can evenly distribute the refrigerant to each refrigerant path of the condenser body 21.
  • Gas-liquid two-phase distribution type There are three types of gas-liquid two-phase distribution type equal distribution means. Hereinafter, it demonstrates in order.
  • the seventh uniform distribution means reduces the pipe diameter of the inlet pipe 22b so that the refrigerant flow mode is distributed as an annular flow or an annular spray flow when the refrigerant flowing out of the exhaust heat exchanger 5 is in a gas-liquid two-phase. It is set. Details will be described below.
  • the liquid refrigerant can be evenly distributed by changing the flow mode of the refrigerant to the annular flow or the annular spray flow in the inlet pipe 22b of the distributor 22. Since the flow mode is mainly determined by the dryness of the refrigerant and the refrigerant flow rate at the inlet of the distributor 22, the flow mode of the refrigerant flowing through the inlet pipe 22b is exhausted so that the dryness and the refrigerant flow rate become an annular flow or an annular spray flow. The heat exchange amount of the heat heat exchanger 5 and the pipe diameter at the inlet of the distributor 22 are adjusted.
  • annular flow or an annular spray flow is obtained. Determined. Specifically, as the degree of dryness increases, that is, as the heat exchange amount of the exhaust heat exchanger 5 decreases, the annular flow approaches the annular spray flow.
  • the distributor 22 can be configured with the header shown in FIG. However, when there is a possibility that the refrigerant flowing through the inlet pipe 22b becomes an annular flow, it is better to use the distributor shown in FIG.
  • FIG. 6 is a diagram showing another configuration example of the distributor in the condenser of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the distributor 22 shown in FIG. 2 has a configuration in which a plurality of branch pipes 22c are connected to the side surface of the main pipe 22a.
  • the distributor 22 shown in FIG. 6 has an inlet pipe 22b whose one end is connected to an end of the main pipe 22a on the refrigerant inflow side, one end connected to the refrigerant outflow side of the main pipe 22a, and the other end of the condenser main body 21.
  • a plurality of branch pipes 22c connected to a plurality of refrigerant paths are provided, and a liquid film generation part 23 in the main pipe 22a is provided with a refrigerant inlet (distribution port) to the branch pipe 22c.
  • the pipe diameter of the inlet pipe 22b is set so that the flow mode of the refrigerant flowing through the inlet pipe 22b is at least an annular flow.
  • the certainty of uniform distribution can be increased by using the distributor 22 shown in FIG. Further, in order to eliminate distribution bias due to the influence of gravity, it is more effective to arrange the distributor 22 in a posture in which the branch pipe 22c of the distributor 22 shown in FIG. 6 faces the vertical direction.
  • the eighth equal distribution means is configured such that the number of the branch pipes 22c of the distributor 22 constituting the condenser 2 is two and the distribution to the condenser main body 21 is only two branches. Details will be described below.
  • the refrigerant path in the condenser 2 is divided into two and the distribution to the condenser main body 21 is made into only two branches. Thereby, it becomes possible to distribute a refrigerant
  • the area of the exhaust heat exchanger 5 can be expanded and a heat exchange amount can be increased significantly.
  • the amount of exhaust heat recovered from the discharged gas refrigerant by the exhaust heat heat exchanger 5 can be increased, the time for boiling water can be greatly shortened, and even when the amount of hot water used is large.
  • FIG. FIG. 7 is a diagram illustrating the configuration of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the first embodiment has a configuration in which the distributor 22 is provided downstream of the exhaust heat exchanger 5, but the second embodiment is upstream of the exhaust heat exchanger 5, that is, compressed with the exhaust heat exchanger 5.
  • a distributor 22 is provided between the machine 1 and the machine 1.
  • the second embodiment is characterized in that the distributor 22 corresponds to an equal distribution means and distributes the refrigerant upstream of the exhaust heat exchanger 5.
  • the distributor 22 includes the header shown in FIG.
  • the exhaust heat exchanger 5 passes the refrigerant after distribution through the distributor 22 so that the exhaust heat can be recovered from all the refrigerant after distribution by the distributor 22. It is configured to exchange heat with the heat exchange medium.
  • the exhaust heat exchanger 5 is configured by a shell-and-tube heat exchanger in which pipes through which each refrigerant flows are inserted into a shell-like flow path through which water as a heat exchange medium flows.
  • a configuration in which each pipe through which each refrigerant after distribution flows and a pipe through which water flows is brought into contact with each other to perform heat exchange is employed. If it is such a structure, even if it is the waste heat exchanger 5 in which water heat-exchanges with all the refrigerant
  • the same effects as those of the first embodiment can be obtained, and single-phase distribution (definitely equal) and two-phase distribution (no restriction on the amount of exhaust heat exchange). Both effects can be obtained simultaneously.
  • the discharge gas refrigerant from the compressor 1 needs to be high temperature.
  • These refrigerants including HFC refrigerants, HFC refrigerants, HFO refrigerants, HC refrigerants, or natural refrigerants such as CO 2 and ammonia, are all suitable for use of exhaust heat because they can be at high temperatures.
  • the present invention is particularly effective when used in a store (convenience store, supermarket) where a refrigeration apparatus, a hot water supply apparatus, and a hot water utilization apparatus are installed.
  • a store convenience store, supermarket
  • a refrigeration apparatus a hot water supply apparatus
  • a hot water utilization apparatus a hot water utilization apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 圧縮機1と、複数の冷媒経路を有する凝縮器本体21を備えた多パス型の凝縮器2と、膨張弁3と、蒸発器4とを有し、冷媒が循環する冷凍サイクルと、圧縮機1から吐出された冷媒から熱を回収して被熱交換媒体を加熱する排熱熱交換器5と、凝縮器本体21の複数の冷媒経路に冷媒を均等に分配する均等分配手段とを備えた。

Description

冷凍サイクル装置
 本発明は、冷凍、空調、給湯等の用途に利用する冷凍サイクル装置に関するものである。
 従来、冷凍機および空調機などの冷凍サイクル装置の排熱利用システムとしては、特許文献1に示すように、店舗に設置されるショーケースなどに接続される冷凍機と、その冷凍機の排熱を利用して店舗内に温水を供給する給湯装置とを備えたものがある。この排熱利用システムでは、冷凍機の圧縮機から吐出され、凝縮器に流入する前の高温高圧の吐出ガス冷媒から排熱を回収するようにしている。
特開2009-293839号公報(要約、図2)
 一般的な冷凍サイクル装置の凝縮器は、凝縮器本体に流入する冷媒を分配するヘッダーを備えており、ヘッダーに流入する冷媒が気相である場合、ヘッダーで冷媒を均等に分配して凝縮器本体の各冷媒経路に流入させることができる。しかし、圧縮機から吐出された吐出ガス冷媒が凝縮器に流入する前に熱回収されて凝縮し、気液二相となった場合、ヘッダーで均等に分配できず、冷凍機の性能低下を引き起こす可能性がある。
 本発明はこのような点を鑑みなされたもので、吐出ガス冷媒から排熱回収しても、常に凝縮器の各冷媒経路への冷媒分配を均等にし、性能低下を回避することで高い省エネ性を得ることが可能な冷凍サイクル装置を得ることを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機と、複数の冷媒経路を有する凝縮器本体を備えた多パス型の凝縮器と、減圧手段と、蒸発器とを有し、冷媒が循環する冷凍サイクルと、圧縮機から吐出された冷媒から熱を回収して被熱交換媒体を加熱する熱交換器と、凝縮器本体の複数の冷媒経路に冷媒を均等に分配する均等分配手段とを備えたものである。
 本発明によれば、性能低下を回避して高い省エネ効果を得ることができる。
本発明の実施の形態1における冷凍サイクル装置の構成を表す図である。 本発明の実施の形態1における冷凍サイクル装置の凝縮器における分配器を示した図である。 本発明の実施の形態1における冷凍サイクル装置において第1均等分配手段が設置された構成を表す図である。 本発明の実施の形態1における冷凍サイクル装置に第6均等分配手段を備えた構成を表す図である。 図4の排熱熱交換器に流入する水の水温度と凝縮温度との関係に応じた図4の各切替え弁の動作説明図である。 本発明の実施の形態1における冷凍サイクル装置の凝縮器における分配器の他の構成例を示した図である。 本発明の実施の形態2における冷凍サイクル装置の構成を表す図である。
実施の形態1.
 まず、本発明の実施の形態1を説明する。この実施の形態1は、冷凍サイクル装置の圧縮機から吐出された高温高圧の吐出ガス冷媒を凝縮器に搬送する冷媒配管の途中に、吐出ガス冷媒の熱を利用するための排熱熱交換器を設ける。そして、この排熱熱交換器に、貯水タンクに溜める温水を製造するための水を循環させて排熱ガス冷媒と水とを熱交換させるものである。
 また、本実施の形態1では、排熱熱交換器で温めた水を貯水タンクに導入して加熱するが、貯水タンク内の水温が設定温度まで達していない場合、貯水タンク内に設置された電気ヒータで貯水タンク内の水をさらに加熱して設定温度にする構成としている。これにより、排熱利用無しと比較してヒータ加熱量を大幅に低減でき、高い省エネ効果が得られる。また、電気ヒータの容量も低減でき、コスト低減も可能となる。
 さらに、上記構成とすることで、排熱熱交換器で吐出ガス冷媒が水で冷却されるため、凝縮温度が低下する。よって、圧縮比が低下することから圧縮機入力が低減し、冷凍機自身の省エネ効果を得ることができる。または、凝縮器が空冷式の場合、排熱熱交換器での冷却で凝縮温度が低下するため、凝縮器用の送風機の回転数を低下でき、省エネ効果を得ると共に、送風機の運転騒音も低減可能となる。従って、本実施の形態1のシステムは、住宅の密集するコンビニエンスストアなどの店舗用として採用すると特に効果大である。
 以下、本発明に係る冷凍装置の好適な実施の形態について図面を参照して説明する。なお、図1および後述の図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
 図1は、本発明の実施の形態1における冷凍サイクル装置の構成を表す図である。
 本実施の形態1における冷凍サイクル装置は、冷凍機100と、この冷凍機100とは別に、給湯システムとして流し台などに温水を供給するための温水器101とを備えている。
 図1に示す冷凍機100内には、圧縮機1および凝縮器2が設置され、コンビニエンスストアなどの店舗内のショーケース102内には減圧手段としての膨張弁3と蒸発器4とが設置されている。冷凍機100とショーケース102とは冷媒配管11によって接続され、圧縮機1、凝縮器2、膨張弁3および蒸発器4に冷媒が循環する冷凍サイクルを構成している。また、圧縮機1と凝縮器2との間には排熱熱交換器5が設置され、圧縮機1から吐出された高温高圧の吐出ガス冷媒が冷媒配管11を介して排熱熱交換器5に流れた後、冷凍機100内の凝縮器2に流れるようになっている。
 また、排熱熱交換器5には温水器101の貯水タンク6から、被熱交換媒体である水が水配管12を介して導かれる。水配管12には水循環ポンプ7が設けられ、貯水タンク6の水を排熱熱交換器5に流し、その後、貯水タンク6に戻す循環路が水配管12で構成されている。排熱熱交換器5に導かれた水は、冷媒配管11を介して導かれた吐出ガス冷媒と熱交換した後、貯水タンク6内に戻される。
 本実施の形態1では、水循環ポンプ7の吸込側の水配管12には給水配管(図示せず)が接続されており、水道からの水が給水配管を介して水配管12に給水されるようになっている。貯水タンク6内には貯水タンク6内の水(加熱された温水も含めて便宜上、水と称する)を加熱するための電気ヒータ8が設置され、後述の制御部110は、供給する温水が設定温度以下の場合に貯水タンク6内の水を加熱するように電気ヒータ8を制御する。
 凝縮器2は、複数の冷媒経路を有する多パス型の熱交換器であり、凝縮器本体21と、凝縮器本体21の冷媒入口側に配置され、各冷媒経路に冷媒を分配するための分配器22とを備えている。
 図2は、本発明の実施の形態1における冷凍サイクル装置の凝縮器における分配器を示した図である。
 分配器22は、ヘッダーであり、主管22aと、主管22aに一端が接続された入口管22bと、主管22aに一端が接続され、他端が凝縮器本体21の各冷媒経路に接続される複数の分岐管22cとを備えた構成となっている。
 以上のように構成された冷凍サイクル装置において圧縮機1で圧縮された高温高圧の吐出ガス冷媒は、排熱利用のため、冷媒配管11を介して排熱熱交換器5に導入される。排熱熱交換器5に導入された吐出ガス冷媒は、温水器101の貯水タンク6から水循環ポンプ7により排熱熱交換器5に導入される水と熱交換して冷却される。一方、排熱熱交換器5に流入した水は吐出ガス冷媒との熱交換により加熱され、加熱された水は水配管12を介して貯水タンク6内に戻る。
 なお、本実施の形態1により製造された温水用途は、給湯の他、床暖房、ロードヒーティングなどにも利用することも可能である。従って、被熱交換媒体は、水の他に、ブライン、HFC系冷媒、HFO系冷媒、HC系冷媒、CO、アンモニア、空気などの流体でも構わない。
 この冷凍サイクル装置はさらに、冷凍サイクル装置全体を制御する制御部110を備えている。制御部110は例えばCPU等の制御演算処理手段を有するマイクロコンピュータ等で構成されている。また、制御部110は記憶手段(図示せず)を有しており、制御等に係る処理手順をプログラムとしたデータを有している。そして、制御演算処理手段がプログラムのデータに基づく処理を実行して制御を実現する。
 本実施の形態1では、圧縮機1からの吐出ガス冷媒の排熱を利用して貯水タンク6の水を加熱する構成としている。このため、凝縮器2での熱交換量を低減でき、凝縮温度を低下、すなわち圧縮比を低下し、圧縮機1の入力低減を実現できる。このように、本実施の形態1によれば、冷凍機100の運転圧縮比を縮小することで消費電力量を低減して省エネ効果を得る。
 凝縮器2用の送風機9の回転数制御は、一般に、高圧圧力または凝縮温度に基づいて行われている。本実施の形態1において凝縮器2に流入する冷媒は、排熱熱交換器5にて貯水タンク6からの水で冷却され、温度が低下している。このため、凝縮器2での熱交換量が低減する。この結果、本実施の形態1の排熱利用時の送風機9の回転数は、熱交換量が低下した分だけ回転数を低く制御することが可能となる。
 このように、本実施の形態1によれば、空冷式の凝縮器2を用いる場合、送風機9の運転騒音を低減することが可能となり、住宅密集地などのコンビニエンスストアなどに採用した場合、環境に特に配慮したシステムを提供できる効果がある。
 しかしながら、一般的な冷凍機100の凝縮器2では、凝縮器2の入口の冷媒、すなわち分配器22に流入する冷媒が、排熱回収の結果、凝縮して気液二相となった場合、凝縮器本体21の各冷媒経路に流入する液成分を均等に分配することができず、冷凍機100の性能低下を引き起こす可能性がある。そこで、本実施の形態1の冷凍サイクル装置は、吐出ガス冷媒から排熱回収しても、常に凝縮器本体21の各冷媒経路に冷媒を均等に分配する均等分配手段を有し、性能低下を確実に回避する構成としている。以下、均等分配手段として8通りの具体的な構成ついて説明する。なお、均等分配手段は、大きく分けて2つのタイプに分けられ、凝縮器2入口(排熱熱交換器5出口)の冷媒状態がガス単相となるようにする(つまり、気液二相にならないようにする)ことで均等分配するガス単相分配タイプと、凝縮器2入口(排熱熱交換器5出口)が気液二相のときであっても均等分配する気液二相分配タイプとを有する。
[ガス単相分配タイプ]
 ガス単相分配タイプの均等分配手段には6種類ある。以下順に説明する。
(第1均等分配手段)
 第1均等分配手段は、気液分離器13で構成されている。以下、詳細に説明する。
 図3は、本発明の実施の形態1における冷凍サイクル装置において第1均等分配手段が設置された構成を表す図である。
 気液分離器13は、凝縮器2の入口に設置され、排熱熱交換器5から流出した気液二相冷媒を液冷媒およびガス冷媒に分離するものである。よって、凝縮器2入口の冷媒が気液二相であっても、気液二相冷媒を分配器22に流入する前に気液分離器13を通過させ、ガス単相冷媒を凝縮器2の分配器22に流入させることが可能となる。従って、従来と同様に分配器22としてヘッダーを用いて凝縮器本体21の各冷媒経路に冷媒を均等分配可能となる。なお、気液分離器13で分離された液冷媒は、配管13aを介して凝縮器2出口の液冷媒に合流させる構成とする。
(第2均等分配手段)
 第2均等分配手段は、排熱熱交換器5の出口冷媒の冷媒状態がガス単相となるように圧縮機1の容量を制御する手段で構成されている。以下、詳細に説明する。
 排熱熱交換器5の出口冷媒の過熱度が小さい場合、制御部110は圧縮機回転数を増加させて過熱度を拡大することで、排熱熱交換器5の出口冷媒がガス単相となるようにする。制御部110は、排熱熱交換器5出口の冷媒過熱度を直接検知して制御してもよいが、圧縮機1入力と吐出ガス冷媒の顕熱量(吐出ガス冷媒を飽和ガスとなるまで冷却する熱交換量)とがほぼ同等のため、排熱熱交換器5の熱交換量を圧縮機入力以下とする制御方法を用いてもよい。
(第3均等分配手段)
 第3均等分配手段は、冷凍サイクル装置の運転中、常に、排熱熱交換器5で冷媒が凝縮しないように、大きさが調整された排熱熱交換器5で構成される。以下、詳細に説明する。
 本実施の形態1の冷凍サイクル装置は年間を通して運転されるため、環境条件によって冷凍機100の冷却負荷、温水器101への給水温度が変化する。このため、最も排熱熱交換器5で凝縮しやすい環境条件、例えば冬期運転を想定し、このときに冷媒が凝縮しない大きさに排熱熱交換器5を選定すれば、通年で凝縮しない大きさとなる。なお、例とした冬期運転は、外気温度が低い中で運転されるため、冷凍機100の冷却負荷が小さく、水温度も低いことから、本実施の形態1において最も排熱熱交換器5で凝縮しやすい条件ということになる。
 このように排熱熱交換器5の大きさを調整し、冷媒が凝縮しない構成とすることで、冷凍サイクル装置の運転中、常に、凝縮器2に流入する冷媒をガス単相とすることができる。
(第4均等分配手段)
 第4均等分配手段は、排熱熱交換器5で冷媒が凝縮しないように、排熱熱交換器5に流入する水流量を制御する手段で構成されている。以下、詳細に説明する。
 排熱熱交換器5の出口冷媒の過熱度が小さい場合、制御部110は水循環ポンプ7を制御して水流量を低下させ、排熱熱交換器5での熱交換量を低減して排熱熱交換器5の出口冷媒の過熱度を拡大する。排熱熱交換器5の出口冷媒の過熱度を拡大することで、排熱熱交換器5の出口冷媒がガス単相となるようにする。制御部110は、圧縮機1の容量制御(第2均等分配手段)と同様に、排熱熱交換器5出口の冷媒過熱度を直接検知して制御してもよいが、圧縮機1入力と吐出ガス冷媒の顕熱量(吐出ガス冷媒を飽和ガスとなるまで冷却する熱交換量)とがほぼ同等のため、排熱熱交換器5の熱交換量を圧縮機1入力以下とする制御方法を用いてもよい。水流量の制御方法は、上述のように水循環ポンプ7の容量を制御しても良いが、水流路抵抗を制御しても良い。
(第5均等分配手段)
 第5均等分配手段は、排熱熱交換器5で冷媒が凝縮しないように、排熱熱交換器5へ流入する水を、冷凍機100の冷媒凝縮温度以上に加熱する加熱手段で構成されている。以下、詳細に説明する。
 排熱熱交換器5へ流入する水の温度を冷媒の凝縮温度以上とすれば、冷却される側の冷媒は確実に凝縮することがない。水温度を凝縮温度以上とするには、温水器101の電気ヒータ8で予め加熱しても良いし、別の熱源を備えても良い。
(第6均等分配手段)
 第6均等分配手段は、排熱熱交換器5へ流入する水の温度が冷媒凝縮温度未満であれば、吐出ガス冷媒の一部だけを排熱熱交換器5に通して水と熱交換させる。一方、排熱熱交換器5へ流入する水の温度が冷媒凝縮温度以上であれば、吐出ガス冷媒の全てを排熱熱交換器5に通して水と熱交換させる。以下、詳細に説明する。
 水温度が冷媒凝縮温度より低温であれば、その水温度の水と吐出ガス冷媒とを排熱熱交換器5で熱交換すると、吐出ガス冷媒の温度が凝縮温度よりも下がって凝縮し、二相冷媒が凝縮器2に流入する可能性がある。つまり、水温度が冷媒凝縮温度より低温であるときに、全ての吐出ガス冷媒を排熱熱交換器5を介して凝縮器2に流入させる構成とすると、二相冷媒が凝縮器2に流入する可能性がある。よって、吐出ガス冷媒の一部だけを排熱熱交換器5に通して凝縮させた後、凝縮器2の出口に合流させ、その他の吐出ガス冷媒は排熱熱交換器5に通さず、そのまま凝縮器2に流入させる。よって、凝縮器2に流入する冷媒はガス冷媒であるため、分配器22で冷媒を均等分配できる。
 一方、水温度が冷媒凝縮温度以上の高温であるときは、冷媒凝縮温度以上の水と熱交換しても冷媒温度は冷媒凝縮温度より下がらず、凝縮することがない。よって、水温度が冷媒凝縮温度以上の高温であるときは、吐出ガス冷媒の全てを排熱熱交換器5に通して水と熱交換させた後、凝縮器2に流入させるようにする。以下、具体的な構成について説明する。
 図4は、本発明の実施の形態1における冷凍サイクル装置に第6均等分配手段を備えた構成を表す図である。図5は、図4の排熱熱交換器に流入する水の水温度と凝縮温度との関係に応じた図4の各切替え弁の動作説明図である。
 上記図1の構成では、圧縮機1から吐出された吐出ガス冷媒の全てが必ず排熱熱交換器5を通過する構成としていたが、図4では、吐出ガス冷媒の一部と通過させるか、全てを通過させるかを選択可能な構成としている。
 第6均等分配手段は、凝縮器2の入口と出口とを接続するバイパス回路30を備えており、バイパス回路30に排熱熱交換器5を設置する。また、第6均等分配手段は、排熱熱交換器5の出口と凝縮器2入口とを接続するもう一つのバイパス回路31を備える。第6均等分配手段はさらに、バイパス回路30の開閉を行う切替え弁30aと、バイパス回路31の開閉を行う切替え弁31aと、圧縮機1と凝縮器2との間の主回路においてバイパス回路30への分岐部の下流に備えられた切替え弁32とを備える。
 排熱熱交換器5に流入する水温度が冷媒凝縮温度より低い場合、図5に示すように切替え弁30aと切替え弁32とを開放、切替え弁31aを遮断し、圧縮機1から吐出された冷媒が、直接凝縮器2に向かう流路と、バイパス回路30を介して排熱熱交換器5を通過した後、凝縮器2の出口に向かう流路とを形成する。これにより、圧縮機1から吐出された吐出ガス冷媒の一部が排熱熱交換器5に流入して凝縮熱(吐出ガス冷媒の排熱)により水を加熱して排熱熱交換器5から流出する。一方、吐出ガス冷媒の残りは、ガス単相のまま凝縮器2に流入される。よって、凝縮器2に流入する冷媒は分配器22で均等に分配されて凝縮器本体21の各冷媒経路を通過する。凝縮器本体21の各冷媒経路を通過後の冷媒は、排熱熱交換器5を通過後の冷媒と合流する。
 このように、吐出ガス冷媒の一部を排熱熱交換器5に流入させて凝縮熱により水を加熱する場合、バイパス回路30の流量を調整し、確実に排熱熱交換器5で過冷却が得られるようにすれば、凝縮器2出口で合流後の冷媒も確実に過冷却を確保できる。液冷媒の過冷却が確保できなければ、膨張弁3入口で気液二相となるため、流量が低下して冷凍能力低下を引き起こしたり、ハンチングを起こして不安定な運転となったり、騒音が大きくなったり、といった不具合が生じる。このため、凝縮器2出口の冷媒は過冷却を確保する必要がある。バイパス回路30の流量を制御するには、バイパス回路30に流量調整弁を設置して、制御部110にて流量調整弁の開度を制御すればよい。
 一方、水温度が冷媒凝縮温度以上の場合、図5に示すように切替え弁30aおよび切替え弁32を遮断、切替え弁31aを開放する。この場合、実施の形態1と同様の流路が形成される。よって、圧縮機1から吐出された吐出ガス冷媒の全てが排熱熱交換器5に流入し、吐出ガス冷媒の排熱で水を加熱する。吐出ガス冷媒との熱交換で水が加熱されても、水温度が凝縮温度以上のため、冷媒は凝縮しない。よって、ガス単相冷媒が凝縮器2に流入することになり、凝縮器2の分配器22は冷媒を凝縮器本体21の各冷媒経路へ均等分配できる。
[気液二相分配タイプ]
 気液二相分配タイプの均等分配手段には3種類ある。以下、順に説明する。
(第7均等分配手段)
 第7均等分配手段は、排熱熱交換器5から流出した冷媒が気液二相のときに、冷媒の流動様式を環状流または環状噴霧流として分配するように、入口管22bの配管径を設定したものである。以下、詳細に説明する。
 凝縮器2入口上流の冷媒が気液二相であっても、分配器22の入口管22bで冷媒の流動様式を環状流または環状噴霧流とすることで、液状冷媒を均等分配できる。流動様式は主に冷媒の乾き度と分配器22入口の冷媒流速とから決まるため、入口管22bを流れる冷媒の流動様式が環状流または環状噴霧流となる乾き度および冷媒流速となるように排熱熱交換器5の熱交換量と分配器22入口の配管径とを調節する。一般的に冷媒流速を速くする(分配器22の入口管22bの配管径を小さくする)ことで環状流または環状噴霧流となり、乾き度に応じて環状流または環状噴霧流のどちらとなるかが決まる。具体的には乾き度を増加させるに連れ、すなわち排熱熱交換器5の熱交換量を小さくするに連れ、環状流から環状噴霧流に近づく。
 入口管22bの配管径の設定によって、入口管22bを流れる冷媒を均質流である環状噴霧流に確実にできる場合は、分配器22は図2に示したヘッダーで構成できる。しかし、入口管22bを流れる冷媒が環状流となる可能性がある場合は、分配器22には、次の図6に示す分配器を用いた方がよい。
 図6は、本発明の実施の形態1における冷凍サイクル装置の凝縮器における分配器の他の構成例を示した図である。
 上記図2に示した分配器22は、主管22aの側面に複数の分岐管22cが接続された構成であった。図6に示した分配器22は、主管22aの冷媒流入側の端部に一端が接続された入口管22bと、主管22aの冷媒流出側に一端が接続され、他端が凝縮器本体21の複数の冷媒経路に接続される複数の分岐管22cを備え、主管22a内の液膜生成部23に分岐管22cへの冷媒入口(分配口)が設けられた構成を有する。入口管22bの配管径は、入口管22bを流れる冷媒の流動様式が少なくとも環状流となるように設定されている。
 入口管22bを流れる冷媒が環状流の可能性がある場合、図6に示した分配器22を用いることで、均等分配の確実性を高めることができる。また、重力の影響による分配の偏りをなくすために、図6に示した分配器22の分岐管22cが鉛直方向を向く姿勢で分配器22を配置するとさらに効果的である。
(第8均等分配手段)
 第8均等分配手段は、凝縮器2を構成する分配器22の分岐管22cの数を2本とし、凝縮器本体21への分配を二分岐のみとしたものである。以下、詳細に説明する。
 凝縮器2に流入する冷媒の分岐数が多くなると均等分配が難しくなることから、凝縮器2における冷媒経路を二つとし、凝縮器本体21への分配を二分岐のみとする。これにより、分岐数が多い場合に比べて冷媒を各冷媒経路に均等に分配することが可能となる。そして、このように二分岐分配とした場合でも、上記のように冷媒の流動様式を環状流または環状噴霧流としたり、重力の影響を受けない設置姿勢としたりすれば、さらに均等分配に効果的である。
(第7、第8均等分配手段の共通の効果)
 凝縮器2入口の冷媒が気液二相となると均等分配できない従来構成では、凝縮器2入口の冷媒が気液二相とならないように排熱熱交換器5の熱交換量を制限する必要が生じる。しかし、第7、第8均等分配手段を用いることで、凝縮器2入口の冷媒が気液二相となっても、上述したように凝縮器2で均等分配が可能となる。よって、排熱熱交換器5に対する熱交換量の制限が無くなるため、排熱熱交換器5の面積を拡大して熱交換量を大幅に増大できる。その結果、排熱熱交換器5で吐出ガス冷媒から回収する排熱量を増大でき、水の沸き上げ時間を大幅に短縮でき、温水使用量が多い場合でも対応可能となる。
 以上説明したように本実施の形態1によれば、圧縮機1から吐出された吐出ガス冷媒から排熱回収しても、凝縮器2の各冷媒経路への冷媒分配を均等にする均等分配手段を備えたので、冷凍機100の性能低下を確実に回避することができる。また、吐出ガス冷媒の排熱を有効に利用できるため、年間を通して高い省エネ性を得ることができる。
実施の形態2.
 図7は、本発明の実施の形態2における冷凍サイクル装置の構成を表す図である。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。
 上記実施の形態1は排熱熱交換器5の下流に分配器22を設けた構成であったが、実施の形態2は排熱熱交換器5の上流、つまり排熱熱交換器5と圧縮機1との間に分配器22を設けたものである。実施の形態2では、分配器22が均等分配手段に相当し、排熱熱交換器5の上流側で冷媒を分配することを特徴とする。分配器22は、図2に示したヘッダーで構成される。
 以上の構成とすることで、分配器22に流入する冷媒は必ずガス単相となるため、気液二相での分配となる可能性が無く、分配器22として用いたヘッダーで確実に冷媒を均等分配可能となる。
 また、排熱熱交換器5は排熱の回収効率を高めるため、分配器22で分配後の各冷媒全てから排熱回収できるように、分配器22で分配後の各冷媒が通過して被熱交換媒体と熱交換するように構成されている。例えば、排熱熱交換器5は、被熱交換媒体である水が流れるシェル状の流路内に、分配後の各冷媒が流れる各配管を挿入したシェルアンドチューブ型熱交換器で構成する。排熱熱交換器5の構成として他には、分配後の各冷媒が流れる各配管と水が流れる配管とを接触させて熱交換させる構成とする。このような構成であれば、水が、分配後の冷媒全てと熱交換する排熱熱交換器5であっても、コンパクトかつ高効率で熱交換可能となる。
 以上説明したように、本実施の形態2によれば、実施の形態1と同様の効果が得られると共に、単相分配(確実に均等)と二相分配(排熱熱交換量の制限無し)の両効果を同時に得ることができる。
 実施の形態1または実施の形態2における冷凍機100では、圧縮機1からの吐出ガス冷媒が高温となる必要がある。HFC系冷媒、HFC系冷媒、HFO系冷媒、HC系冷媒、またはCO、アンモニアなど自然冷媒を含めてこれらの冷媒は全て高温となり得るため、排熱利用に適している。
 本発明は、冷凍装置、給湯装置および温水利用装置が設置される店舗(コンビニエンスストア、スーパーマーケット)で利用して特に効果が大である。特にコンビニエンスストアは多数存在するから、各店舗で本発明を採用することで省エネルギー化によるCO削減効果は非常に大きく、環境問題の改善に極めて有用な発明である。
 1 圧縮機、2 凝縮器、3 膨張弁、4 蒸発器、5 排熱熱交換器(熱交換器)、6 貯水タンク、7 水循環ポンプ、8 電気ヒータ、9 送風機、11 冷媒配管、12 水配管、13 気液分離器、13a 配管、21 凝縮器本体、22 分配器、22a 主管、22b 入口管、22c 分岐管、23 液膜生成部、30 バイパス回路(第1バイパス回路)、30a 切替え弁、31 バイパス回路(第2バイパス回路)、31a 切替え弁、32 切替え弁、60 積層プレート式熱交換器、70 シェルアンドチューブ式熱交換器、100 冷凍機、101 温水器、102 ショーケース、110 制御部。

Claims (20)

  1.  圧縮機と、複数の冷媒経路を有する凝縮器本体を備えた多パス型の凝縮器と、減圧手段と、蒸発器とを有し、冷媒が循環する冷凍サイクルと、
     前記圧縮機から吐出された冷媒から熱を回収して被熱交換媒体を加熱する熱交換器と、
     前記凝縮器本体の前記複数の冷媒経路に前記冷媒を均等に分配する均等分配手段と
     を備えた冷凍サイクル装置。
  2.  前記凝縮器は、前記凝縮器本体の冷媒入口側に配置されたヘッダーを備え、
     前記均等分配手段は、前記ヘッダーと前記熱交換器との間に配置された気液分離器である
     請求項1記載の冷凍サイクル装置。
  3.  前記均等分配手段は、前記熱交換器で前記冷媒を凝縮させないように構成されている
     請求項1記載の冷凍サイクル装置。
  4.  前記均等分配手段は、前記熱交換器の出口冷媒の冷媒状態がガス単相となるように、前記圧縮機の容量を制御する
     請求項3記載の冷凍サイクル装置。
  5.  前記均等分配手段は、当該冷凍サイクル装置の運転中、常に、前記熱交換器に流入した冷媒が凝縮することのないように、大きさが調整された前記熱交換器である
     請求項3記載の冷凍サイクル装置。
  6.  前記均等分配手段は、前記熱交換器で冷媒が凝縮しないように前記被熱交換媒体の流量を制御する
     請求項3記載の冷凍サイクル装置。
  7.  前記均等分配手段は、前記熱交換器を通過する前記被熱交換媒体を、前記凝縮器における凝縮温度以上に加熱する加熱手段である
     請求項3記載の冷凍サイクル装置。
  8.  前記均等分配手段は、
     前記凝縮器をバイパスすると共に前記熱交換器が配置された第1バイパス回路と、第1バイパス回路における前記熱交換器の冷媒出口と前記冷凍サイクルにおける前記凝縮器の冷媒入口とを接続する第2バイパス回路とを備え、
     前記被熱交換媒体の温度が前記冷媒の凝縮温度未満であれば、前記圧縮機から吐出されて前記凝縮器に向かう冷媒の一部を前記第1バイパス回路に流入させて前記熱交換器を通過させ、
     前記被熱交換媒体の温度が前記冷媒の凝縮温度以上であれば、前記圧縮機から吐出された冷媒を前記第1バイパス回路に流入させて前記熱交換器に通過させた後、前記第2バイパス回路から前記凝縮器に流入させる
     請求項1記載の冷凍サイクル装置。
  9.  前記第1バイパス回路は、前記凝縮器をバイパスする前記冷媒の流量を制御する流量調整弁を備えた
     請求項8記載の冷凍サイクル装置。
  10.  前記流量調整弁は、前記熱交換器で冷媒が過冷却されるように調整される
     請求項9記載の冷凍サイクル装置。
  11.  前記均等分配手段は、前記熱交換器と前記圧縮機との間に配置され、前記圧縮機から吐出されたガス単相冷媒を分配する
     請求項1記載の冷凍サイクル装置。
  12.  前記均等分配手段は、主管と、前記主管に一端が接続され、他端が前記圧縮機に接続される入口管と、前記主管に一端が接続されると共に他端が前記熱交換器に接続され、前記凝縮器本体の前記複数の冷媒経路に接続される複数の分岐管とを備えた分配器で構成され、
     前記熱交換器は、前記分配器で分配された各冷媒が通過して前記被熱交換媒体と熱交換するように構成されている
     請求項11記載の冷凍サイクル装置。
  13.  前記熱交換器は、シェルアンドチューブ型熱交換器である
     請求項11または請求項12記載の冷凍サイクル装置。
  14.  前記熱交換器は、前記均等分配手段で分配された各冷媒が通過する各配管と前記被熱交換媒体が通過する配管とが接触して熱交換する構成である
     請求項11または請求項12記載の冷凍サイクル装置。
  15.  前記均等分配手段は、前記熱交換器から流出した冷媒が気液二相のときに、前記冷媒の流動様式を環状流または環状噴霧流として分配するように構成されている
     請求項1記載の冷凍サイクル装置。
  16.  前記均等分配手段は、主管と、前記主管に一端が接続された入口管と、前記主管に一端が接続され、他端が前記凝縮器本体の前記複数の冷媒経路に接続される複数の分岐管とを備え、前記入口管の配管径が、前記入口管を流れる冷媒の流動様式が環状流または環状噴霧流となるように設定されている
     請求項15記載の冷凍サイクル装置。
  17.  前記均等分配手段は、主管と、前記主管の冷媒流入側の端部に一端が接続された入口管と、前記主管の冷媒流出側の端部に一端が接続され、他端が前記凝縮器本体の前記複数の冷媒経路に接続される複数の分岐管とを備えた分配器で構成され、前記入口管の配管径が、前記入口管を流れる冷媒の流動様式が環状流となるように設定されている
     請求項15記載の冷凍サイクル装置。
  18.  前記複数の冷媒経路は二つであり、前記均等分配手段は前記圧縮機から吐出される前記冷媒を二つに分岐する
     請求項1または請求項2記載の冷凍サイクル装置。
  19.  前記冷媒は、HFC系冷媒、HFO系冷媒、HC系冷媒、CO、アンモニアであることを特徴とする請求項1~請求項18のいずれか一項に記載の冷凍サイクル装置。
  20.  前記被熱交換媒体は、水、ブライン、HFC系冷媒、HFO系冷媒、HC系冷媒、CO、アンモニア、空気であることを特徴とする請求項1~請求項19のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2014/075066 2014-09-22 2014-09-22 冷凍サイクル装置 WO2016046882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/075066 WO2016046882A1 (ja) 2014-09-22 2014-09-22 冷凍サイクル装置
JP2015531774A JP5921777B1 (ja) 2014-09-22 2014-09-22 冷凍サイクル装置
EP14902300.4A EP3199891B1 (en) 2014-09-22 2014-09-22 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075066 WO2016046882A1 (ja) 2014-09-22 2014-09-22 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2016046882A1 true WO2016046882A1 (ja) 2016-03-31

Family

ID=55580446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075066 WO2016046882A1 (ja) 2014-09-22 2014-09-22 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3199891B1 (ja)
JP (1) JP5921777B1 (ja)
WO (1) WO2016046882A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373531B1 (ja) * 2017-04-19 2018-08-15 三菱電機株式会社 ヒートポンプ装置
WO2018193658A1 (ja) * 2017-04-19 2018-10-25 三菱電機株式会社 ヒートポンプ装置
WO2020004219A1 (ja) * 2018-06-29 2020-01-02 株式会社デンソー 機器温調装置
WO2021245791A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷却装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008053A1 (ja) * 2016-07-04 2018-01-11 三菱電機株式会社 冷凍サイクルシステム
RU188096U1 (ru) * 2018-12-18 2019-03-29 Акционерное общество "Научно-технический комплекс "Криогенная техника" Холодильная установка на транскритическом цикле двуокиси углерода
WO2022082094A1 (en) * 2020-10-16 2022-04-21 Hill Phoenix, Inc. Co2 refrigeration system with external coolant control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101530A (ja) * 1997-09-30 1999-04-13 Mitsubishi Electric Corp 冷媒分配器およびそれを用いた冷凍サイクル装置
JP2008121982A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2008232508A (ja) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp 給湯器
JP2009300021A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2011247457A (ja) * 2010-05-25 2011-12-08 Hitachi Appliances Inc 給湯機
JP2013185741A (ja) * 2012-03-07 2013-09-19 Rinnai Corp ヒートポンプ式給湯装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213169A (ja) * 1982-06-03 1983-12-12 三菱重工業株式会社 冷凍装置
JPH03129269A (ja) * 1989-10-13 1991-06-03 Hitachi Ltd 空気調和機
US20060179874A1 (en) * 2005-02-17 2006-08-17 Eric Barger Refrigerant based heat exchange system
CN103090591A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热内平衡系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101530A (ja) * 1997-09-30 1999-04-13 Mitsubishi Electric Corp 冷媒分配器およびそれを用いた冷凍サイクル装置
JP2008121982A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2008232508A (ja) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp 給湯器
JP2009300021A (ja) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp 冷凍サイクル装置
JP2011247457A (ja) * 2010-05-25 2011-12-08 Hitachi Appliances Inc 給湯機
JP2013185741A (ja) * 2012-03-07 2013-09-19 Rinnai Corp ヒートポンプ式給湯装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373531B1 (ja) * 2017-04-19 2018-08-15 三菱電機株式会社 ヒートポンプ装置
WO2018193658A1 (ja) * 2017-04-19 2018-10-25 三菱電機株式会社 ヒートポンプ装置
CN110546442A (zh) * 2017-04-19 2019-12-06 三菱电机株式会社 热泵装置
CN110546442B (zh) * 2017-04-19 2020-09-15 三菱电机株式会社 热泵装置
US10890355B2 (en) 2017-04-19 2021-01-12 Mitsubishi Electric Corporation Heat pump apparatus
WO2020004219A1 (ja) * 2018-06-29 2020-01-02 株式会社デンソー 機器温調装置
WO2021245791A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷却装置
JPWO2021245791A1 (ja) * 2020-06-02 2021-12-09
JP7399285B2 (ja) 2020-06-02 2023-12-15 三菱電機株式会社 冷却装置

Also Published As

Publication number Publication date
EP3199891A4 (en) 2018-04-25
EP3199891B1 (en) 2019-05-29
EP3199891A1 (en) 2017-08-02
JPWO2016046882A1 (ja) 2017-04-27
JP5921777B1 (ja) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5921777B1 (ja) 冷凍サイクル装置
JP7175985B2 (ja) 空調機システム
JP4923103B2 (ja) 高速除霜ヒートポンプ
JP5411643B2 (ja) 冷凍サイクル装置および温水暖房装置
JP5637053B2 (ja) 冷凍サイクル装置及びそれを備えた温水暖房装置
JP6161005B2 (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP4428341B2 (ja) 冷凍サイクル装置
JP2009228979A (ja) 空気調和装置
KR101754685B1 (ko) 히트펌프식 급탕장치
KR101117032B1 (ko) 캐스케이드 열교환기를 구비한 히트펌프시스템
KR101138970B1 (ko) 공랭식 냉매 증발 응축기를 이용한 제상 시스템
JP6051401B2 (ja) ヒートポンプ式冷暖房給湯装置
JP2012127606A (ja) 冷凍空調装置
JPWO2018051409A1 (ja) 冷凍サイクル装置
JP5237157B2 (ja) 空気熱源ターボヒートポンプ
WO2013080497A1 (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
KR20140128695A (ko) 이원 냉동사이클 히트펌프시스템의 제어방법
JP2011099626A (ja) 冷凍サイクル装置及びそれを用いた温水暖房装置
KR100973328B1 (ko) 해안 지열 이용 일체용 캐스케이드 히트펌프 시스템
KR102185416B1 (ko) 냉방 시스템
JP5785800B2 (ja) 蒸気吸収式冷凍機
US20150096311A1 (en) Heat exchanger, and method for transferring heat
KR101627659B1 (ko) 하이브리드 히트펌프 보일러 시스템
KR101852797B1 (ko) 캐스케이드 히트펌프 장치
KR20140133375A (ko) 공기열 이원 사이클 히트펌프 냉난방 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015531774

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014902300

Country of ref document: EP