WO2018193658A1 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
WO2018193658A1
WO2018193658A1 PCT/JP2017/041983 JP2017041983W WO2018193658A1 WO 2018193658 A1 WO2018193658 A1 WO 2018193658A1 JP 2017041983 W JP2017041983 W JP 2017041983W WO 2018193658 A1 WO2018193658 A1 WO 2018193658A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
medium
temperature
heat storage
flow path
Prior art date
Application number
PCT/JP2017/041983
Other languages
English (en)
French (fr)
Inventor
泰光 野村
一法師 茂俊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/486,874 priority Critical patent/US10890355B2/en
Priority to JP2018513891A priority patent/JP6373531B1/ja
Priority to CN201780089722.0A priority patent/CN110546442B/zh
Priority to EP17906167.6A priority patent/EP3594589B1/en
Publication of WO2018193658A1 publication Critical patent/WO2018193658A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/269Time, e.g. hour or date
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat pump device that stores heat in a heat storage medium by a heat pump.
  • the conventional heat pump device includes a heat absorption side heat exchanger that exchanges heat between the outside air that is a heat source and the heat medium flowing through the heat pump circuit and heats the heat medium with heat absorbed from the outside air, and a heat medium and a heat storage tank.
  • a heat storage heat exchanger that exchanges heat with water, which is a heat storage medium, a use side heat exchanger that exchanges heat between the heat medium and the water in the bathtub, and compresses the heat medium to high temperature and pressure
  • the heat medium flow path of the heat pump circuit is connected in series in the order of the compressor, heat storage heat exchanger, pressure reducer, and heat absorption side heat exchanger.
  • the plurality of flow path switchers are switched so that the utilization side heat exchanger is disconnected from the flow path of the heat medium.
  • the heat medium flow path of the heat pump circuit is connected in series in the order of the compressor, the use side heat exchanger, the decompressor, and the heat storage heat exchanger.
  • the plurality of flow path switching units are switched so that the heat absorption side heat exchanger is separated from the flow path of the heat medium.
  • the heat flow path of the heat medium in the heat pump circuit is switched in series so that the compressor, the use side heat exchanger, the decompressor, and the heat absorption side heat exchanger are connected in series, and heat storage heat exchange is performed.
  • the vessel is disconnected from the heat medium flow path.
  • the flow of the heat medium is switched by using a plurality of flow switching devices, so that the hot water in the heat storage tank or the outside air is used as a heat source to heat up the hot water in the bathtub. It was.
  • the present invention has been made to solve the above-described problems. Even when the temperature of the heat storage medium is increased, the heat pump absorbs heat absorbed from the heat source while suppressing a decrease in efficiency of the heat pump.
  • An object is to provide a heat pump device capable of storing heat in a heat storage medium.
  • the heat pump device expands an inflowing heat medium and discharges it at a lower pressure than before the inflow, and the heat medium discharged from the pressure reducer flows in and heats between the heat medium and the heat source.
  • the heat absorption side heat exchanger that performs the exchange, the heat medium discharged from the heat absorption side heat exchanger, the compressor that compresses and discharges to a pressure higher than before the suction, and the heat medium that is discharged from the compressor flow in.
  • the heat exchanger that discharges the heat medium to the pressure reducer and the flow path of the heat medium that is discharged from the heat storage heat exchanger do not go through the user heat exchanger,
  • a decompressor via a first flow path circulating through the heat exchanger, compressor, and heat storage heat exchanger, or through the use side heat exchanger, Comprising heat-side heat exchanger, a compressor, and a flow path switcher for switching the heat storing heat exchanger to the second flow path circulating a.
  • the flow path switching unit switches the flow path of the heat medium to the first flow path or the second flow path, even when the temperature of the heat storage medium becomes high,
  • the heat absorbed from the heat source can be stored in the heat storage medium by the heat pump while suppressing a decrease in efficiency of the heat pump.
  • FIG. 1 is a schematic diagram showing the configuration of the heat pump apparatus according to Embodiment 1 of the present invention.
  • the heat pump apparatus 100 includes a heat pump circuit 10, a heat storage circuit 20, and a heat utilization circuit 30.
  • the heat pump circuit 10 includes a compressor 11, a heat storage heat exchanger 12, a use side heat exchanger 14, a decompressor 15, and a heat absorption side heat exchanger 16.
  • the heat pump circuit 10 moves the heat absorbed by the heat absorption side heat exchanger 16 to the heat storage heat exchanger 12 and the use side heat exchanger 14 by a refrigeration cycle using the heat medium 19 enclosed inside.
  • the use side heat exchanger 14 is provided on the downstream side of the heat storage heat exchanger 12 with respect to the direction in which the heat medium 19 flows.
  • the heat storage circuit 20 includes a heat storage tank 21 connected to the heat storage heat exchanger 12 of the heat pump circuit 10 and a circulation pump 22 that circulates the heat storage medium 29 in the heat storage circuit 20.
  • the heat medium 19 and the heat storage medium 29 of the heat pump circuit 10 exchange heat in the heat storage heat exchanger 12, so that the heat absorbed by the heat absorption side heat exchanger 16 of the heat pump circuit 10 is stored in the heat storage medium 29 in the heat storage tank 21.
  • the heat is stored.
  • the heat utilization circuit 30 includes a heat utilization terminal 31 connected to the utilization side heat exchanger 14 of the heat pump circuit 10 and a circulation pump 32 that circulates the heat utilization medium 39 used in the heat utilization terminal 31 to the heat utilization circuit 30. Have.
  • the heat medium 19 and the heat utilization medium 39 of the heat pump circuit 10 exchange heat in the utilization side heat exchanger 14, whereby the heat utilization medium 39 is heated by the heat absorbed by the heat absorption side heat exchanger 16 of the heat pump circuit 10.
  • the maximum temperature of the heat storage medium 29 is higher than the maximum temperature of the heat use medium 39, and the heat stored in the heat storage medium 29 is used for applications that require a higher temperature than the heat use medium 39.
  • the heat storage medium 29 stored in the heat storage tank 21 is water
  • the heat use medium 39 stored in the bath tub as the heat use terminal 31 is also water.
  • the hot water heated and stored in the heat storage tank 21 is used not only for hot water supply in the kitchen, washroom, shower, etc., but also for filling hot water in the bath tub as the heat utilization terminal 31. That is, the hot water stored in the bathtub becomes the heat utilization medium 39 by storing the hot water in the bath tub as the heat utilization terminal 31.
  • the heat utilization medium 39 stored in the bathtub is not limited to hot water, and may be water that has been cooled or hot water.
  • the heat utilization circuit 30 is used for reheating and heat retention for reheating the heat utilization medium 39 that is hot water stored in a bath tub that is the heat utilization terminal 31.
  • the heat pump circuit 10 of the heat pump device 100 includes a decompressor 15, a heat absorption side heat exchanger 16, a compressor 11, a heat storage heat exchanger 12, a use side heat exchanger 14, and a flow path switch 13. These are connected by pipes h1a to h1g.
  • a heat medium 19 is sealed inside the heat pump circuit 10, and the heat medium 19 passes through the pipes h 1 a to h 1 g and is used in the decompressor 15, the heat absorption side heat exchanger 16, the compressor 11, and the heat storage heat exchanger 12.
  • the side heat exchanger 14 and the flow path switch 13 are circulated.
  • the heat medium 19 may be a refrigerant used in a refrigeration cycle such as a natural refrigerant such as carbon dioxide or propane, or a hydrofluorocarbon refrigerant such as R410 or R32. Therefore, the heat pump circuit 10 may be called a refrigeration cycle circuit, and the heat medium 19 may be called a refrigerant.
  • the heat pump device 100 includes a controller 41 that controls the compressor 11, the decompressor 15, the blower fan 17, and the flow path switch 13 of the heat pump circuit 10.
  • the heat pump circuit 10 may be provided with devices other than the above, such as an accumulator for preventing liquid back to the compressor 11 as necessary.
  • the decompressor 15 squeezes and expands the heat medium 19 that has flowed into the decompressor 15, and discharges it toward the heat absorption side heat exchanger 16 at a pressure lower than that before flowing into the decompressor 15.
  • the decompressor 15 may be, for example, an electronic expansion valve or a capillary tube.
  • the decompressor 15 is preferably an electronic expansion valve.
  • the decompressor 15 is controlled by the controller 41.
  • the controller 41 controls the opening degree of the electronic expansion valve.
  • the heat absorption side heat exchanger 16 is connected to the decompressor 15 by a pipe h1c, and the heat medium 19 discharged from the decompressor 15 flows in, and heat is exchanged between the heat medium 19 and an external heat source. It is an exchanger.
  • the external heat source may be air, groundwater, or the like, but in the present invention, the case where the heat source is air will be described.
  • the heat absorption side heat exchanger 16 is, for example, a finned tube heat exchanger composed of a metal tube through which the heat medium 19 circulates and a plurality of metal fins that are separated from each other so that air as a heat source circulates. It's okay.
  • a blower fan 17 that is driven by an electric motor such as a DC motor is provided opposite to the heat absorption side heat exchanger 16.
  • Heat exchange between the air passing through the heat absorption side heat exchanger 16 and the heat medium 19 passing through the heat absorption side heat exchanger 16 is achieved by sending air as a heat source to the heat absorption side heat exchanger 16 by the blower fan 17. Is done. Since the temperature of the heat medium 19 in the heat absorption side heat exchanger 16 is controlled to be lower than the temperature of air, the heat medium 19 absorbs heat from the air that is the heat source.
  • the compressor 11 sucks the low-pressure heat medium 19 discharged from the heat absorption side heat exchanger 16, compresses the heat medium 19 to a pressure higher than before the suction, and discharges the heat medium 19 in a high-temperature and high-pressure state.
  • the compressor 11 has an electric motor capable of controlling the rotation speed and an inverter for driving the electric motor, and is capable of capacity control. The rotation speed of the compressor 11 is controlled based on a control signal input from the controller 41 to the inverter.
  • the heat storage heat exchanger 12 is connected to the discharge side of the compressor 11 by a pipe h1a, the heat medium 19 discharged from the compressor flows in, and the heat medium 19 and the heat storage medium 29 of the heat storage circuit 20 are water. It is a heat exchanger which performs heat exchange between.
  • the heat storage heat exchanger 12 includes a heat medium flow path 12a through which the heat medium 19 of the heat pump circuit 10 flows and a heat storage medium flow path 12b through which the heat storage medium 29 of the heat storage circuit 20 flows.
  • the path 12a and the heat storage medium flow path 12b are configured to be separated from each other via a member having a high thermal conductivity such as metal.
  • the temperature is higher than that of the medium 29.
  • the heat storage medium 29 is heated by the heat radiated from the heat medium 19 flowing into the heat storage heat exchanger 12.
  • the heat storage heat exchanger 12 is preferably excellent in heat exchange performance even if the temperature difference between the heat medium 19 that flows through the heat pump circuit 10 and the water that is the heat storage medium 29 that flows through the heat storage circuit 20 is small.
  • the heat medium pipe constituting the heat medium flow path 12a through which the heat medium 19 flows is wound around the water pipe constituting the heat storage medium flow path 12b through which water as the heat storage medium 29 flows and brazed to heat exchange for heat storage.
  • the heat storage heat exchanger 12 may be configured by winding a plurality of heat medium pipes in parallel around a groove formed by twisting the water pipe.
  • the heat storage heat exchanger 12 may be a plate heat exchanger.
  • the heat medium flow path 12a and the heat storage medium flow path 12b of the heat storage heat exchanger 12 are arranged so that the direction in which the heat medium 19 flows and the direction in which the heat storage medium 29 flows are opposed to each other. Is preferred.
  • the usage-side heat exchanger 14 is connected to the heat storage heat exchanger 12 via the flow path switch 13 by the pipe h1e and the pipe h1f, and the heat medium 19 discharged from the heat storage heat exchanger 12 flows in.
  • the heat exchanger 19 performs heat exchange between the heat medium 19 and water that is the heat utilization medium 39 of the heat utilization circuit 30.
  • the use-side heat exchanger 14 includes a heat medium flow path 14 a through which the heat medium 19 of the heat pump circuit 10 flows and a heat use medium flow path 14 b through which the heat use medium 39 of the heat use circuit 30 flows.
  • the medium flow path 14a and the heat utilization medium flow path 14b are configured to be separated from each other via a member having a high thermal conductivity such as a metal.
  • the use side heat exchanger 14 may be a heat exchanger having the same configuration as the heat storage heat exchanger 12.
  • the heat medium 19 that has flowed into the use-side heat exchanger 14 radiates heat in the heat storage heat exchanger 12, but has a higher temperature than the heat-use medium 39 that flows into the heat-use medium flow path 14 b.
  • the heat medium 19 flowing into the use side heat exchanger 14 dissipates heat, and the heat use medium 39 is heated by the heat dissipated at that time.
  • the usage-side heat exchanger 14 is connected to the decompressor 15 via the pipes h1g and h1b, and the heat medium 19 discharged from the usage-side heat exchanger 14 flows into the decompressor 15 again.
  • the flow path switch 13 is provided between the heat storage heat exchanger 12 and the use side heat exchanger 14, and is connected to the heat storage heat exchanger 12 through the pipe h1e, and is connected to the use side heat exchanger through the pipe h1f. 14.
  • the flow path switch 13 is connected to the decompressor 15 by a pipe h1b.
  • a pipe h1g connected to the downstream side of the use side heat exchanger 14 is connected between the flow path switch 13 and the decompressor 15 to the pipe 1b.
  • the flow path switch 13 may be an electric switching valve such as an electric three-way valve, for example, and may be constituted by two electric opening / closing valves provided in the pipe h1f and the pipe h1b.
  • the flow path switch 13 circulates the flow path of the heat medium 19 through the decompressor 15, the heat absorption side heat exchanger 16, the compressor 11, and the heat storage heat exchanger 12 without passing through the use side heat exchanger.
  • the flow path switching unit 13 not only switches the flow path of the heat medium 19 discharged from the heat storage heat exchanger 12 to either the first flow path or the second flow path, You may switch a flow path so that it may flow into both the 1st flow path and the 2nd flow path with the flow volume of a predetermined
  • the controller 41 switches the flow path switch 13 to the first flow path side that does not pass through the use side heat exchanger 14, whereby the flow path of the heat medium 19 is switched to the first flow path, and the heat medium 19. Circulates through the compressor 11, the heat storage heat exchanger 12, the decompressor 15, and the heat absorption side heat exchanger 16, and moves the heat absorbed by the heat absorption side heat exchanger 16 to the heat storage heat exchanger 12.
  • the controller 41 switches the flow path switch 13 to the second flow path side via the use side heat exchanger 14, the flow path of the heat medium 19 is switched to the second flow path.
  • the medium 19 circulates through the compressor 11, the heat storage heat exchanger 12, the use side heat exchanger 14, the decompressor 15, and the heat absorption side heat exchanger 16, and stores the heat absorbed by the heat absorption side heat exchanger 16.
  • the heat exchanger 12 and the use side heat exchanger 14 are moved.
  • the heat storage circuit 20 of the heat pump device 100 includes a heat storage tank 21 connected to the heat storage medium flow path 12b of the heat storage heat exchanger 12 by a pipe h2c, and a circulation pump 22 connected to the heat storage tank 21 by a pipe h2a. .
  • the circulation pump 22 is also connected to the heat storage medium flow path 12b of the heat storage heat exchanger 12 through a pipe h2b.
  • the circulation pump 22 has an electric motor whose rotation speed is controlled by a control signal from the controller 41, and the flow rate of the heat storage medium 29 that circulates the heat storage circuit 20 by the circulation pump 22 is adjusted by the controller 41.
  • the pipe h ⁇ b> 2 a is connected to the lower part of the heat storage tank 21, and the pipe h ⁇ b> 2 c is connected to the upper part of the heat storage tank 21.
  • the water, which is the heat storage medium 29 stored in the heat storage tank 21 gathers in the upper part of the heat storage tank 21 because the density decreases when heated to a high temperature. Therefore, in the heat storage tank 21, the temperature of the upper water is higher than the temperature of the lower water. Water that is the heat storage medium 29 in the heat storage tank 21 flows out from the pipe h ⁇ b> 2 a connected to the lower part of the heat storage tank 21, and is sent out by the circulation pump 22.
  • the water sent out from the heat storage tank 21 is heated by heat exchange with the heat medium 19 in the heat storage heat exchanger 12 to become hot water, and enters the heat storage tank 21 through the pipe h2c connected to the upper part of the heat storage tank 21. Inflow. As a result, the heat absorbed from the heat absorption side heat exchanger 16 is stored in the heat storage tank 21 as hot water.
  • the heat storage tank 21 is connected to a pipe h2d for supplying water as the heat storage medium 29 from the water supply and a pipe h2e for taking out hot water as the high-temperature heat storage medium 29 from the heat storage tank 21 to supply hot water. ing.
  • the pipe h2d is connected to the lower part of the heat storage tank 21, and the pipe h2e is connected to the upper part of the heat storage tank 21.
  • the pipe h2e is connected to the pipe h2f via the electric mixing valve 23.
  • a pipe h2g branched from the pipe h2d for supplying tap water is also connected to the electric mixing valve 23.
  • the opening of the electric mixing valve 23 is controlled by the controller 41, and hot water taken out from the heat storage tank 21 is mixed with tap water having a temperature lower than that of the hot water, and the temperature of the hot water to be supplied by the user is desired. Adjust to temperature.
  • the pipe h2d is connected to a water supply pipe 24a such as a water pipe, and tap water serving as the heat storage medium 29 is supplied through the pipe 24a.
  • the pipe h2f is connected to a pipe 24b for supplying hot water to a kitchen, a washroom, a bathroom, and the like, and hot water that is a heat storage medium 29 stored in the heat storage tank 21 is supplied through the pipe 24b.
  • the hot water supplied through the pipe 24 b is stored in a bath tub which is the heat utilization terminal 31 and becomes a heat utilization medium 39.
  • the heat utilization circuit 30 of the heat pump device 100 includes a heat utilization terminal 31 connected to the heat utilization medium flow path 14b of the utilization side heat exchanger 14 by a pipe h3c and a pipe 33b, and a pipe 33a and a pipe h3a to the heat utilization terminal 31. And a circulation pump 32 connected to each other.
  • the circulation pump 32 is also connected to the heat utilization medium flow path 14b of the utilization side heat exchanger 14 by a pipe h3b.
  • the pipe 33a, the pipe 33b, and the heat utilization terminal 31 constitute a part of the heat utilization circuit 30, but are provided outside the heat pump apparatus 100.
  • the circulation pump 32 is controlled by the controller 41 similarly to the circulation pump 22 of the heat storage circuit 20, and the flow rate of the heat utilization medium 39 that circulates the heat utilization circuit 30 by the circulation pump 32 is adjusted by the controller 41.
  • the pipe 33 a and the pipe 33 b are connected to a bath tub that is the heat utilization terminal 31. Water that is the heat utilization medium 39 stored in the bathtub flows out of the bathtub through the pipe 33 a and is sent out by the circulation pump 32. The water sent out from the bathtub is heated by heat exchange with the heat medium 19 in the use side heat exchanger 14, and flows into the bathtub through the pipe 33b. As a result, water or hot water that is the heat utilization medium 39 stored in the bath tub that is the heat utilization terminal 31 is heated or kept warm.
  • the heat pump device 100 includes a first temperature detector T1, a second temperature detector T2, and a third temperature detector T3 provided in the heat pump circuit 10, and a fourth temperature detector T4 provided in the heat storage tank 21.
  • a sixth temperature detector T6 provided on the downstream side of the electric mixing valve 23 for hot water supply and a fifth temperature detector T5 provided in the heat utilization circuit 30 are provided.
  • the pipe h3a of the heat utilization circuit 30 is provided with a water level detector L1 that detects the water level of the water stored in the bathtub of the heat utilization terminal 31.
  • Each of the temperature detectors T1 to T6 and the water level detector L1 is connected to the controller 41 by a signal line.
  • the first temperature detector T1 is provided in the pipe h1e connected to the downstream side of the heat storage heat exchanger 12, and detects the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12.
  • the place where the first temperature detector T1 is provided is not limited to the pipe h1e, and may be provided near the downstream end of the heat medium flow path 12a of the heat storage heat exchanger 12. In other words, it may be a position where the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 can be estimated.
  • the first temperature detector T1 may be provided on the upstream side of the heat storage medium flow path 12b of the heat storage heat exchanger 12, and may be provided, for example, in the pipe h2b or the pipe h2a. Since the heat storage medium 29 that exchanges heat with the heat medium 19 passes through the pipe h2b and the pipe h2a, if the temperature of the heat storage medium 29 is high, the amount of heat exchange in the heat storage heat exchanger 12 decreases, and the heat storage medium 29 Since the temperature of the heat medium 19 that has passed through the heat exchanger 12 also increases, the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 can be estimated.
  • the heat storage flowing into the detected heat storage heat exchanger 12 is correlated.
  • the temperature of the medium 29 may be treated as being based on the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12.
  • the second temperature detector T2 is provided in the pipe h1a connected to the discharge side of the compressor 11, and detects the temperature of the heat medium 19 discharged from the compressor 11.
  • the third temperature detector T3 is provided in the pipe h1g connected to the downstream side of the heat medium passage 14a of the use side heat exchanger 14, and the temperature of the heat medium 19 that has passed through the use side heat exchanger 14 is provided. Is detected.
  • the fourth temperature detector T ⁇ b> 4 is provided on the inner wall or the outer wall of the heat storage tank 21 and detects the temperature of water that is the heat storage medium 29 stored in the heat storage tank 21.
  • the fifth temperature detector T5 is provided in the pipe h3b connected to the upstream side of the heat use medium flow path 14b of the use side heat exchanger 14, and the heat use medium 39 flowing into the use side heat exchanger 14 is provided. Detect the temperature of water.
  • the fifth temperature detector T5 may be provided upstream of the use side heat exchanger 14 and downstream of the heat use terminal 31, and may be provided in the pipe h3a.
  • the sixth temperature detector T6 is provided in the pipe h2f on the downstream side of the electromagnetic mixing valve 23, and detects the temperature of hot water supplied through the pipe 24b.
  • the controller 41 controls the opening degree of the electromagnetic mixing valve 23 so that the temperature of the hot water detected by the sixth temperature detector T6 becomes a desired hot water supply temperature set by the user, and electromagnetic mixing is performed from the pipe h2e.
  • the flow rate of the hot water which is the heat storage medium 29 flowing into the valve 23 and the flow rate of tap water flowing into the electromagnetic mixing valve 23 from the pipe h2g are adjusted.
  • the water level detector L ⁇ b> 1 is provided in a pipe h ⁇ b> 3 a that connects the bath tub that is the heat utilization terminal 31 and the circulation pump 32.
  • the water level detector L1 is, for example, a pressure sensor that can detect the water level in the bathtub with pressure.
  • a predetermined amount or more of water, which is the heat utilization medium 39 is stored in the bathtub, the water level in the bathtub rises, and water flows from the bathtub into the pipe h3a through the pipe 33a.
  • the pressure detected by the water level detector L1 changes compared to before the water level detector L1 is immersed in water, and the water level detector L1. It is detected that the water level in the bathtub has reached the height of.
  • FIG. 2 is a block diagram showing the configuration of the controller of the heat pump apparatus according to Embodiment 1 of the present invention.
  • the controller 41 is composed of, for example, a microprocessor.
  • the controller 41 is connected to the first to sixth temperature detectors T1 to T6 and the water level detector L1 through signal lines, and the temperature information detected by the temperature detectors T1 to T6 and the water level detector L1. And water level information is entered.
  • the controller 41 is connected to the compressor 11, the flow path switch 13, the decompressor 15, the blower fan 17, the circulation pump 22, the electromagnetic mixing valve 23, and the circulation pump 32 by signal lines, and these devices A control signal for controlling the signal is output.
  • the controller 41 is connected to an input device 42 for a user to input various conditions to the controller 41 via a wired or wireless signal line.
  • the wireless signal line is a virtual signal line that transmits a signal using an electromagnetic wave such as infrared rays or radio waves as a medium.
  • the input device 42 is, for example, a remote controller or a HEMS (Home Energy Management System) controller.
  • the user of the heat pump apparatus 100 inputs a desired use temperature to the input device 42 and heats the water that is the heat use medium 39 by keeping it warm or by cooking, so that the water in the bathtub becomes the desired use temperature.
  • the use temperature is a temperature at which the user wants to use the heat use medium 39 stored in the bathtub.
  • the user of the heat pump device 100 inputs a desired hot water supply temperature to the input device 42 to obtain hot water adjusted to the desired hot water supply temperature.
  • the hot water supply temperature is the temperature of hot water flowing through the hot water supply pipe 24b.
  • the controller 41 has memorize
  • the controller 41 has a storage unit such as a memory inside or outside the microprocessor, and stores various conditions in the storage unit.
  • the controller 41 has a time measuring unit that measures time and date, and the controller 41 recognizes the time and date.
  • the timer unit is a timer function of a microprocessor, for example. Since the controller 41 recognizes the time by the time measuring unit, it recognizes, for example, whether the current time is daytime or nighttime. In addition, since the controller 41 recognizes the date by the time measuring unit, for example, it recognizes whether the current time is the summer or the winter.
  • the controller 41 stores a heat storage requirement amount.
  • the heat storage requirement is the amount of heat of the heat storage medium 29 stored in the heat storage tank 21 that the user needs according to the time zone.
  • the heat storage requirement amount is calculated by the controller 41 by inputting, for example, a family structure such as how many family members the user has into the input device 42. Then, the controller 41 may set the heat storage requirement to an optimum value according to the time and season. Alternatively, the heat storage requirement may be input directly from the input device 42 to the controller 41.
  • the controller 41 has a target heat storage temperature which is a target value of the temperature of the heat storage medium 29 in the heat storage tank 21 determined based on the heat storage requirement amount, and a target of the temperature of the heat medium 19 discharged from the discharge side of the compressor 11.
  • the heat pump apparatus 100 is configured.
  • FIG. 3 is a flowchart showing a control operation of the heat pump apparatus in Embodiment 1 of the present invention.
  • the control operation of FIG. 3 when hot water or low-temperature water is stored as the heat utilization medium 39 in the bath tub that is the heat utilization terminal 31, the water that is the heat accumulation medium 29 is heated to enter the heat accumulation tank 21.
  • This is a control operation when storing.
  • Such a situation is, for example, when the hot water in the heat storage tank 21 is poured into a bath tub that is the heat utilization terminal 31 or used in a shower while taking a bath. This is an operation that occurs when water having a low temperature is supplied.
  • step S1 the controller 41 determines a target heat storage temperature based on the heat storage requirement.
  • the necessary heat storage amount is the amount of heat storage required by the user calculated by the controller 41 according to information such as the family structure of the user input from the input device 42, time, or season.
  • the heat storage requirement is large, the temperature of the heat storage medium 29 stored in the heat storage tank 21 is high, but when the temperature of the heat storage medium 29 is high, the efficiency of the heat pump is lower than when the temperature of the heat storage medium 29 is low.
  • the controller 41 determines the target heat storage temperature so that the temperature of the heat storage medium 29 stored in the heat storage tank 21 is as low as possible within a range in which the necessary amount of heat storage can be covered.
  • step S2 the controller 41 determines a target discharge temperature.
  • the target discharge temperature is determined based on the target heat storage temperature so as to be higher than the target heat storage temperature.
  • target discharge temperature target heat storage temperature ⁇ ⁇ + ⁇ may be set.
  • step S3 the controller 41 determines the target heat utilization medium temperature.
  • step S4 the controller 41 determines the target use side heat exchanger passage temperature.
  • the target utilization side heat exchanger passage temperature is determined based on the utilization temperature of the heat utilization medium 39 at the heat utilization terminal 31 input by the user from the input device 42 or based on the target heat utilization medium temperature. It is determined to be higher than the temperature.
  • 2 ° C. may be satisfied.
  • step S5 the controller 41 determines the flow path switching temperature.
  • the channel switching temperature is a threshold temperature when the channel switching unit 13 switches between the first channel and the second channel, and the temperature detected by the first temperature detector T1 is equal to or higher than the channel switching temperature. If it becomes, the channel is switched.
  • the temperature detected by the first temperature detector T1 is referred to as a first temperature.
  • the temperatures detected by the second to sixth temperature detectors T2 to T6 are referred to as second to sixth temperatures, respectively.
  • the first temperature is a temperature indicating the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 detected by the first temperature detector T1.
  • the second temperature is a temperature indicating the temperature of the heat medium 19 discharged from the compressor 11 detected by the second temperature detector T2.
  • the third temperature is a temperature indicating the temperature of the heat medium 19 discharged from the use side heat exchanger 14 detected by the third temperature detector T3.
  • the controller 41 determines the flow path switching temperature to be higher than the utilization temperature of the heat utilization medium 39.
  • the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 is This is because the temperature of the heat utilization medium 39 flowing into the use side heat exchanger 14 is higher than that of the heat utilization medium 39, so that the use side heat exchanger 14 can dissipate heat from the heat medium 19 to the heat utilization medium 39.
  • the first temperature detector T ⁇ b> 1 when the first temperature detector T ⁇ b> 1 is provided in the pipe h ⁇ b> 1 e on the downstream side of the heat storage heat exchanger 12, the first temperature is the heat medium 19 that has passed through the heat storage heat exchanger 12. Indicates temperature. As described above, the first temperature detector T1 may be provided in the pipe h2a or the pipe h2b of the heat storage circuit 20 as long as the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 can be estimated.
  • the heat storage tank 21 may be provided. However, as an example in which the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 can be measured with the highest accuracy, the first temperature detector T1 is provided in the pipe h1e downstream of the heat storage heat exchanger 12. The case will be described.
  • step S6 the controller 41 rotates the compressor 11 and the circulation pump 22 of the heat storage circuit 20.
  • step S7 the controller 41 connects the flow path switch 13 to the first flow path so that the switching pipe h1e and the pipe h1b communicate with each other.
  • the heat medium 19 of the heat pump circuit 10 circulates through the compressor 11, the heat storage heat exchanger 12, the flow path switch 13, the decompressor 15, and the heat absorption side heat exchanger 16.
  • step S8 the controller 41 controls the rotation speed of the compressor 11 so that the second temperature detected by the second temperature detector T2 provided on the discharge side of the compressor 11 approaches the target discharge temperature.
  • step S9 the controller 41 controls the opening of the decompressor 15 so that the second temperature detected by the second temperature detector T2 provided on the discharge side of the compressor 11 approaches the target discharge temperature.
  • the second temperature detected by the second temperature detector T2 provided on the discharge side of the compressor 11 is the temperature of the high-temperature and high-pressure heat medium 19 discharged from the compressor 11.
  • the controller 41 does not include both step S8 and step S9, and only the rotational speed of the compressor 11 is controlled only in step S8, and the opening of the decompressor 15 remains at a constant value.
  • the temperature may be controlled to approach the target discharge temperature, or only the opening degree of the decompressor 15 is controlled only in step S9, and the second temperature is set to the target discharge temperature while the rotation speed of the compressor 11 remains constant. You may control so that it may approach.
  • the target discharge temperature is set higher than the target heat storage temperature
  • the temperature of the heat medium 19 discharged from the compressor 11 is higher than the temperature of the heat storage medium 29 circulating in the heat storage circuit 20. Therefore, when the heat medium 19 circulates in the heat pump circuit 10 and the heat storage medium 29 circulates in the heat storage circuit 20, the heat storage medium 29 is heated by the heat radiated from the heat medium 19, and the temperature of the heat storage medium 29 rises. To go.
  • the circulation amount of the heat medium 19, the circulation amount of the heat storage medium 29, and the capacity of the heat storage heat exchanger 12 are returned to the heat storage tank 21 as the heat storage medium 29 that has passed through the heat storage heat exchanger 12 once becomes the target heat storage temperature. You may comprise.
  • the heat storage medium 29 may be gradually heated while circulating through the heat storage circuit 20 many times, and may gradually reach the target heat storage temperature. Since the capacity
  • step S10 the controller 41 determines whether or not the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature.
  • the temperature of the heat storage medium 29 may be detected by a fourth temperature detector T4 provided in the heat storage tank 21.
  • the fourth temperature detector T4 may be provided in the pipe h2a and the pipe h2b as long as the temperature of the heat storage medium 29 can be detected without being limited to the inside of the heat storage tank 21.
  • step S10 when the controller 41 determines that the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature, the control by the controller 41 proceeds to step S11.
  • step S ⁇ b> 11 the controller 41 stops the compressor 11 and the circulation pump 22 of the heat storage circuit 20.
  • the heat storage tank 21 stores the amount of heat that can cover the required amount of heat storage.
  • the target heat storage temperature also changes according to the time or season, so the temperature of the heat storage medium 29 when proceeding to step S11 is also the time or season. It changes according to. In this way, by proceeding to step S11 according to the time measured by the controller, the temperature of the heat storage medium 29 at the time of stopping the heat storage operation is changed, thereby appropriately managing the power consumption and saving energy. Can be planned.
  • step S10 when it is determined in step S10 that the temperature of the heat storage medium 29 is not equal to or higher than the target heat storage temperature, the control by the controller 41 proceeds to step S12.
  • step S ⁇ b> 12 the controller 41 determines whether or not the water level in the bath tub that is the heat utilization terminal 31 is equal to or higher than the threshold value.
  • the water level in the bathtub is detected by a water level detector L1 provided in the pipe h3a.
  • the controller 41 determines that the water level in the bathtub is equal to or greater than the threshold value.
  • the flow path switch 13 does not switch the heat pump circuit 10 to the second flow path, and the first flow path does not pass through the use side heat exchanger 14. Only the heat medium 19 flows, and the heat absorbed from the heat absorption side heat exchanger 16 moves only to the heat storage heat exchanger 12.
  • step S12 when the controller 41 determines that the water level in the bathtub is equal to or higher than the threshold, the control by the controller 41 proceeds to step S13.
  • step S13 the controller 41 determines whether or not the first temperature detected by the first temperature detector T1 is equal to or higher than the flow path switching temperature.
  • the first temperature indicates the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12, and when the heat is sufficiently transferred from the heat medium 19 to the heat storage medium 29 in the heat storage heat exchanger 12, 1 Temperature is low enough.
  • the first temperature indicating the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 is shown.
  • step S13 when the controller 41 determines that the first temperature detected by the first temperature detector T1 is less than the flow path switching temperature, the heat can be sufficiently transferred from the heat medium 19 to the heat storage medium 29. Since it is in the state, the control by the controller 41 returns to step S8.
  • step S13 when the controller 41 determines in step S13 that the first temperature detected by the first temperature detector T1 is equal to or higher than the flow path switching temperature, the control by the controller 41 proceeds to step S14.
  • step S ⁇ b> 14 the controller 41 controls the flow path switch 13, and the flow path switch 13 uses the flow path of the heat medium 19 discharged from the heat storage heat exchanger 12 as the use side heat exchanger 14.
  • the pipe h1e and the pipe h1f communicate with each other via the flow path switch 13.
  • step S15 the controller 41 rotates the circulation pump 32 of the heat utilization circuit 30.
  • water as the heat utilization medium 39 circulates in the heat utilization circuit 30, and heat exchange is performed between the heat medium 19 and the heat utilization medium 39 in the utilization side heat exchanger 14.
  • the heat medium 19 flowing into the use-side heat exchanger 14 is once radiated by the heat storage heat exchanger 12, but the first temperature indicating the temperature of the heat medium 19 passing through the heat storage heat exchanger 12 flows.
  • the temperature is higher than the path switching temperature, and the temperature of the heat medium 19 is sufficiently higher than the temperature of the heat utilization medium 39. Accordingly, heat is transferred from the heat medium 19 to the heat use medium 39 by the use side heat exchanger 14, and the temperature of the water that is the heat use medium 39 rises.
  • the heat medium 19 whose temperature has been sufficiently lowered is discharged from the use side heat exchanger 14.
  • step S16 the controller 41 controls the rotation speed of the compressor 11 so that the second temperature detected by the second temperature detector T2 provided on the discharge side of the compressor 11 approaches the target discharge temperature.
  • the second temperature indicates the temperature of the high-temperature and high-pressure heat medium 19 discharged from the compressor 11.
  • step S17 the controller 41 causes the third temperature detected by the third temperature detector T3 provided on the downstream side of the use side heat exchanger 14 of the heat pump circuit 10 to approach the target use side heat exchanger passing temperature.
  • the opening degree of the decompressor 15 is controlled.
  • the third temperature indicates the temperature of the heat medium 19 flowing into the decompressor 15.
  • step S18 the controller 41 determines whether or not the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature.
  • the temperature of the heat storage medium 29 may be detected by a fourth temperature detector T4 provided in the heat storage tank 21.
  • the control by the controller 41 proceeds to step S19.
  • step S19 the controller 41 stops the circulation pump 32 of the heat utilization circuit 30. Thereby, heating of the water which is the heat utilization medium 39 in the bathtub is stopped.
  • step S18 if it is determined in step S18 that the temperature of the heat storage medium 29 is not equal to or higher than the target heat storage temperature, the control by the controller 41 returns to step S16 and is repeated until the temperature of the heat storage medium 29 becomes equal to or higher than the target heat storage temperature. .
  • the temperature of the hot water in the bath tub as the heat use terminal 31 may be lower than the target heat use medium temperature. If the user does not immediately use the bath tub which is the heat utilization terminal 31, it may be left as it is. However, when the user wants to use the bathtub that is immediately at the use temperature, the circulation pump of the compressor 11 and the heat use circuit 30 is stopped with the circulation pump 22 of the heat storage circuit 20 stopped after step S11. The hot water that is the heat utilization medium 39 in the bathtub can be heated.
  • the heat medium 19 includes the heat absorption side heat exchanger 16, the heat storage heat exchanger 12, and the use side heat exchanger 14. Circulate. Since the circulation pump 22 of the heat storage circuit 20 is stopped, heat radiation from the heat medium 19 to the heat storage medium 29 in the heat storage heat exchanger 12 becomes very small. Therefore, most of the heat absorbed from the heat source by the heat absorption side heat exchanger 16 can be moved to the use side heat exchanger 14 to heat the heat use medium 39 circulating in the heat use circuit 30. If the fifth temperature indicating the temperature of the heat utilization medium 39 detected by the fifth temperature detector T5 reaches the target heat utilization medium temperature, the compressor 11 and the circulation pump 32 of the heat utilization circuit 30 are stopped. Good.
  • the flow path switch 13 is switched to the second flow path side. Then, while the circulation pump 22 of the heat storage circuit 20 is stopped, the compressor 11 and the circulation pump 32 of the heat utilization circuit 30 are rotated to heat the hot water that is the heat utilization medium 39 in the bathtub and keep it warm.
  • the flow rate of the heat storage medium 29 flowing in the heat storage circuit 20 may be decreased by decreasing the rotation speed without stopping the circulation pump 22 of the heat storage circuit 20. That is, the controller 41 may control the circulation pump 22 of the heat storage circuit 20 and the circulation pump 32 of the heat utilization circuit 30 to change the ratio between the flow rate of the heat storage medium 29 and the flow rate of the heat utilization medium 39. . Thereby, the heat absorbed by the heat absorption side heat exchanger 16 can be moved to the heat storage medium 29 and the heat utilization medium 39 at a desired ratio.
  • the controller 41 may control the circulation pump 22 of the heat storage circuit 20 and the circulation pump 32 of the heat utilization circuit 30 based on the time measurement result by the time measuring unit of the controller 41. That is, the user inputs in advance the time at which he / she wants to use the bath tub as the heat utilization terminal 31 from the input device 42. For example, when it is input that the bathtub is used between 7:00 pm and 10:00 pm, the controller 41 of the heat pump apparatus 100 sets the temperature of the hot water in the tub to the target heat utilization medium from 11:00 pm to 6:00 am on the next day.
  • the flow path switch 13 is controlled to switch to the first flow path side that does not pass through the use side heat exchanger 14, and the compressor 11 And the circulation pump 22 of the heat storage circuit 20 is stopped.
  • the time measured by the timer unit of the controller 41 is 6 pm and the temperature of the hot water in the bathtub has not reached the target heat utilization medium temperature
  • the temperature of the heat storage medium 29 has reached the target heat storage temperature.
  • the flow path switch 13 is controlled to switch to the second flow path side via the use side heat exchanger 14, the circulation pump 22 of the heat storage circuit 20 is stopped, and the circulation pump 32 of the heat utilization circuit 30 is rotated.
  • the hot water that is the heat utilization medium 39 in the bathtub is heated.
  • the controller 41 controls the flow path switch 31 based on the time measured by the timekeeping unit, and controls the heat storage and heat utilization, thereby optimizing the power consumption in the home and the area and saving energy. Can be achieved.
  • the heat pump apparatus 100 operates.
  • a conventional heat pump device that stores heat by heating a heat storage medium using a heat pump
  • the temperature of the heat storage medium rises as heat storage proceeds into the heat storage tank during the heat storage operation.
  • the amount of heat released from the heat medium of the heat pump circuit in the heat storage heat exchanger to the heat storage medium decreases, so the temperature of the heat medium that returns to the compressor increases.
  • the pressure (discharge pressure) of the heat medium discharged from the compressor increases as the temperature of the heat storage medium increases.
  • the efficiency is higher when the discharge pressure is lower. Therefore, in the conventional heat pump device, the efficiency of the heat pump is reduced as the temperature of the heat storage medium is increased.
  • the use side heat exchanger 14 is provided on the downstream side of the heat storage heat exchanger 12 of the heat pump circuit 10 via the flow path switch 13.
  • the flow path switching unit 13 includes a flow path of the heat medium 19 that has passed through the heat storage heat exchanger 12, a first flow path that reaches the decompressor 15 without passing through the usage side heat exchanger 14, and usage side heat.
  • the second flow path to the decompressor 15 via the exchanger 14 is switched.
  • the heat pump apparatus 100 has 1st temperature detector T1 which detects the 1st temperature which shows the temperature of the heat medium 19 which passed the heat exchanger 12 for heat storage, the temperature of the heat storage medium 29 rises. Thus, it can be detected that the amount of heat released from the heat medium 19 to the heat storage medium 29 has decreased.
  • the controller 41 causes the channel switching unit 13 to change the channel of the heat medium 19 to the second channel. Since the switching is performed, the temperature of the heat medium 19 that is radiated from the heat medium 19 to the heat utilization medium 39 by the use side heat exchanger 14 and returns to the compressor 11 can be lowered. That is, in the heat pump device 100, even if the temperature of the heat storage medium 29 rises, the heat medium 19 radiates heat in the heat storage heat exchanger 12 and then radiates further in the use side heat exchanger 14. The amount of heat radiation can be increased compared to the case where heat is radiated only by the heat storage heat exchanger 12. As a result, the discharge pressure of the heat medium 19 discharged from the compressor 11 can be lowered, and the efficiency of the heat pump can be improved.
  • the heat pump The heat can be used efficiently while increasing the efficiency.
  • FIG. FIG. 4 is a schematic diagram showing the configuration of the heat pump apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing the configuration of the controller of the heat pump apparatus according to Embodiment 2 of the present invention. 4 and 5, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that the controller 141 controls the flow path switch 13 according to an instruction from a user or a control device.
  • the heat pump device 200 does not include the first temperature detector T ⁇ b> 1 in the pipe h ⁇ b> 1 e on the downstream side of the heat storage heat exchanger 12 of the heat pump circuit 10. Therefore, the controller 141 does not control the flow path switch 13 according to the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12, but is used based on the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12. The first flow path that does not pass through the side heat exchanger 14 and the second flow path that passes through the use side heat exchanger 14 are not switched.
  • the controller 141 of the heat pump device 200 controls the flow path switch 13 based on a start instruction and an end instruction input to the input device 142 connected to the controller 141 with a wired or wireless signal line. Therefore, as shown in FIG. 5, the controller 141 does not store the flow path switching temperature in a storage unit such as a memory.
  • the heat pump device 200 includes the first temperature detector T1 that detects the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 as described in the first embodiment, and the first temperature detector T1 detects the temperature.
  • a function of switching the flow path switching unit 13 may be further provided based on the first temperature indicating the temperature of the heat medium 19. That is, the heat pump device 100 described in the first embodiment may further include the function of the heat pump device 200 described in the second embodiment.
  • the heat storage medium 29 is water
  • the heat utilization medium 39 is water
  • the heated water stored in the heat storage tank 21 is used not only for hot water supply in the kitchen, washroom, shower, etc., but also for hot water filling the bath tub as the heat utilization terminal 31. Used.
  • the heat utilization terminal 31 is a bath, and water, which is a heat utilization medium 39, is stored and used in a bath tub.
  • the input device 142 is an instruction unit that transmits to the controller 141 a start instruction for instructing start of use of the use side heat exchanger 14 and an end instruction for instructing end of use of the use side heat exchanger 14.
  • the instructing unit may be, for example, a cooking start button, a cooking end button, a heat retention start button, or a heat retention end button provided in a remote controller that is the input device 142.
  • the start instruction for instructing the start of additional cooking is a start instruction for instructing the start of use of the use side heat exchanger 14, and the end instruction for instructing the end of chasing is used on the use side heat exchanger 14. Is an end instruction for instructing the end of use.
  • the start instruction for instructing the start of heat insulation is a start instruction for instructing the start of use of the use side heat exchanger 14, and the end instruction for instructing the end of heat insulation is provided by the use side heat exchanger 14.
  • the instruction unit may be a microprocessor provided in the HEMS controller.
  • the instruction means is a button provided on the remote controller.
  • FIG. 6 is a flowchart showing the control operation of the heat pump apparatus according to Embodiment 2 of the present invention.
  • the control operation of FIG. 6 is performed in a state where hot water or low-temperature water is stored as the heat utilization medium 39 in the bath tub which is the heat utilization terminal 31, and the water as the heat storage medium 29 is heated to enter the heat storage tank 21.
  • This is a control operation when an instruction to reheat the heat-use medium 39 in the bathtub is input to the input device 142 when stored.
  • the controller 141 moves the flow path switch 13 from the first flow path side that does not pass through the use side heat exchanger 14 based on the start instruction that instructs the use start of the use side heat exchanger 14 from the input device 142.
  • Such a situation is, for example, an operation that occurs when the user feels that the temperature of the hot water in the bathtub is low and heats up the heat storage medium 29 in the heat storage tank 21 to store the heat. It is.
  • the controller 141 of the heat pump apparatus 200 determines the target heat storage temperature, the target discharge temperature, and the target heat utilization medium temperature in steps S21 to S24. Determine the target use side heat exchanger passage temperature.
  • the controller 141 of the heat pump apparatus 200 rotates the compressor 11 and the circulation pump 22 of the heat storage circuit 20 in step S25 to step S28, and passes the flow path.
  • the switching device 13 is connected to the first flow path through the switching pipe h1e and the pipe h1b so that the second temperature detected by the second temperature detector T2 provided on the discharge side of the compressor 11 approaches the target discharge temperature.
  • one or both of the rotational speed of the compressor 11 and the opening of the decompressor 15 are controlled. Thereby, the heat storage operation
  • step S29 the controller 141 determines whether the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature based on the fourth temperature detected by the fourth temperature detector T4 provided in the heat storage tank 21. .
  • the controller 141 proceeds to step S30 and stops the compressor 11 and the circulation pump 22 of the heat storage circuit 20.
  • the heat storage tank 21 stores the amount of heat that can cover the necessary amount of heat storage.
  • step S31 it is determined whether or not there is a start instruction from the input device 142.
  • the start instruction from the input device 142 is transmitted from the input device 142 to the controller 141, for example, when the user presses the additional cooking button of the remote controller that is the input device 142.
  • the controller 141 determines that there is no start instruction from the input device 142
  • the control by the controller 141 returns to step S27.
  • the process proceeds to step S32.
  • step S ⁇ b> 33 the controller 141 determines whether or not the water level in the bath tub that is the heat utilization terminal 31 is equal to or higher than the threshold value. If the water level in the bathtub is less than the threshold, the control by the controller 141 returns to step S27. If the water level in the bathtub is equal to or greater than the threshold, the process proceeds to step S32.
  • step S ⁇ b> 33 the controller 141 controls the flow path switch 13 so that the flow path switch 13 passes the flow path of the heat medium 19 discharged from the heat storage heat exchanger 12 to the use side heat exchanger 14. To the second flow path leading to the decompressor 15.
  • step S34 to step S36 the controller 141 rotates the circulation pump 32 of the heat utilization circuit 30 and is provided on the discharge side of the compressor 11.
  • the third temperature detector provided on the downstream side of the use side heat exchanger 14 of the heat pump circuit 10 by controlling the rotation speed of the compressor 11 so that the second temperature detected by the two temperature detector T2 approaches the target discharge temperature.
  • the opening degree of the decompressor 15 is controlled so that the third temperature detected by T3 approaches the target use side heat exchanger passage temperature.
  • the heat medium 19 discharged from the compressor 11 in a high-temperature and high-pressure state radiates heat in the heat storage heat exchanger 12 and then further radiates in the use-side heat exchanger 14.
  • the efficiency reduction of the heat pump is suppressed as described in the first embodiment.
  • the controller 141 controls the rotation speed of the circulation pump 22 of the heat storage circuit 20 and the rotation speed of the circulation pump 32 of the heat utilization circuit 30, and flows to the heat utilization circuit 30 and the flow rate of the heat storage medium 29 flowing to the heat storage circuit 20.
  • the flow rate of the heat utilization medium 39 is controlled.
  • the user uses the input device 142 to make the hot water in the bathtub, and the temperature of the hot water that is the heat utilization medium 39 in the bath tub that is the heat utilization terminal 31. When the temperature difference between the two is large, the rotational speed of the circulation pump 22 of the heat storage circuit 20 may be reduced as necessary.
  • the controller 141 may change the ratio of the flow rate of the heat storage medium 29 and the flow rate of the heat utilization medium 39 by controlling the circulation pump 22 of the heat storage circuit 20 and the circulation pump 32 of the heat utilization circuit 30.
  • the circulation amount per unit time of the heat storage medium 29 circulating in the heat storage circuit 20 decreases, the amount of heat stored in the heat storage tank 21 per unit time decreases, but the amount of heat for heating the heat utilization medium 39 increases. Can be made. Thereby, the heat storage to the heat storage tank 21 can be continued while chasing the hot water in the bathtub without impairing the convenience of the user.
  • step S37 the controller 141 determines whether or not there is an end instruction from the input device 142.
  • the end instruction from the input device 142 is transmitted from the input device 142 to the controller 141 when the user presses the additional cooking stop button or the heat retention stop button of the remote controller. If the controller 141 determines that there is no termination instruction from the input device 142, the process returns to step S35. On the other hand, when the controller 141 determines that there is an end instruction from the input device 142, the process proceeds to step S38.
  • step S38 the controller 141 stops the circulation pump 32 of the heat utilization circuit 30. And control by the controller 141 returns to step S26, the controller 141 controls the flow path switch 13, and the flow path switch 13 is the flow path of the heat medium 19 which passed through the heat storage heat exchanger 12. Is switched to the first flow path reaching the decompressor 15 without passing through the use side heat exchanger 14, and the heat storage operation is continued.
  • step S29 When the controller 141 determines in step S29 that the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature, the controller 141 stops the compressor 11 and the circulation pump 22 of the heat storage circuit 20 in step S30. With the above operation, the heat storage tank 21 stores the amount of heat that can cover the required amount of heat storage.
  • the controller 141 can determine that there is a start instruction from the input device 142 and control the flow path switch 13. As a result, the user can start use when he / she wants to use the heat absorbed by the heat absorption side heat exchanger 16 for additional cooking or heat insulation in the bath which is the heat utilization terminal 31, and the heat absorption side heat exchanger 16 can be used. Therefore, the heat pump device 200 does not impair the convenience of the user. Note that when the user uses the heat absorbed by the heat absorption side heat exchanger 16, heat can be used via the use side heat exchanger 14, so the use start refers to the use start of the use side heat exchanger 14. Means.
  • the controller 141 controls the rotation speed of the circulation pump 22 of the heat storage circuit 20 and the rotation speed of the circulation pump 32 of the heat utilization circuit 30, the heat absorbed by the heat medium 19 by the heat absorption side heat exchanger 16 is stored in the heat storage circuit. Since the ratio between the amount of heat radiated to the heat storage medium 29 by the heat exchanger 12 and the amount of heat radiated to the heat utilization medium 39 by the use side heat exchanger 14 can be adjusted, the convenience for the user can be further enhanced. it can.
  • the heat pump device 200 of the second embodiment when the user inputs a start instruction to heat the heat utilization medium, the heat absorbed by the heat absorption side heat exchanger 16 is stored in the heat storage tank 21 by the heat pump, and the heat utilization is performed. While making it possible to use the terminal 31 for the additional cooking of a bath, it is possible to suppress a decrease in efficiency of the heat pump.
  • FIG. 7 is a schematic diagram showing the configuration of the heat pump apparatus according to Embodiment 3 of the present invention. 7, the same reference numerals as those in FIGS. 1 and 4 indicate the same or corresponding components, and the description thereof is omitted.
  • the difference from Embodiment 1 or Embodiment 2 of the present invention is that the heat storage medium 29 accommodated in the heat storage tank 21 is a heat storage medium containing a latent heat storage material.
  • the heat stored in the heat storage medium 29 is used for the panel heater 26 instead of the hot water supply, and the heat utilization terminal 31 is not a bath but a floor heater will be described.
  • fever stored in the thermal storage medium 29 may be utilized for hot water supply, and the heat utilization terminal 31 may be a bath.
  • the heat utilization terminal 31 may be a bath.
  • water is passed through a heat exchanger having a flow path for exchanging heat with the heat storage medium 29 including the latent heat storage material, the water is heated by the heat of the heat storage medium 29 and supplied with hot water. Good.
  • the heat stored in the heat storage medium 29 may be used by a heating device such as a panel heater or a floor heater, and the heat utilization terminal 31 is a panel.
  • a heating device such as a heater or floor heating may be used.
  • the heat pump devices according to Embodiments 1 to 3 of the present invention may use the stored heat for other purposes other than hot water supply and panel heaters, and the heat utilization terminal 31 is not limited to a bath or floor heating. It may be a terminal that uses heat for the purpose.
  • the other application may be a device that uses radiant heat such as a panel heater or floor heating, or may be a device that blows out hot air such as an air conditioner or a fan heater.
  • the heat storage heat exchanger 12 of the heat pump circuit 10 is provided in the heat storage tank 21, and the heat storage medium 29 including the latent heat storage material is provided in the heat storage tank 21. It has been.
  • a heat exchanger 27 having a flow path through which a heat medium 29 a circulating between the heat storage tank 21 and the panel heater 26 flows is provided in the heat storage tank 21.
  • the heat medium 29a is different from the heat medium 19 flowing through the heat pump circuit 10, and may be water or an antifreeze liquid, for example.
  • the heat storage heat exchanger 12 provided in the heat storage tank 21 may be a heat exchanger having a structure in which a heat storage medium 29 is provided outside a metal pipe provided with a flow path through which the heat medium 19 flows.
  • the heat exchanger 27 in the heat storage tank 21 may be a heat exchanger having a configuration in which the heat storage medium 29 is provided outside the metal pipe in which the flow path through which the heat medium 29a flows is provided.
  • the heat storage heat exchanger 12 and the heat exchanger 27 may be, for example, coil-type heat exchangers each formed by winding a metal pipe in a coil shape.
  • the panel heater 26 radiates the heat of the heat medium 29a into the room through a heat dissipation panel having a flow path through which the heat medium 29a flows to obtain heating.
  • a circulation pump 25 is provided between the panel heater 26 and the heat exchanger 27 in the heat storage tank 21. Since the rotational speed of the circulation pump 25 is controlled by the controller 241, the circulation amount of the heat medium 29 a that circulates between the heat exchanger 27 and the panel heater 26 in the heat storage tank 21 is controlled by the controller 241. The When the number of rotations of the circulation pump 25 per unit time is increased, the amount of circulation of the heat medium 29a increases, so that the amount of heat released into the room in which the panel heater 26 is installed can be increased.
  • the panel heater 26 is connected between a pipe h2h connected to the circulation pump 25 and a pipe h2e connected to the heat exchanger 27 via a pipe 24a and a pipe 24b.
  • the panel heater 26, the pipe 24a, and the pipe 24b are not included in the heat pump device 300.
  • a sixth temperature detector T6 is provided in the pipe h2e between the heat exchanger 27 and the panel heater 26 in the heat storage tank 21.
  • the controller 241 may control the rotational speed of the circulation pump 25 based on the sixth temperature detected by the sixth temperature detector T6.
  • the sixth temperature detector T6 may be provided in the pipe h2h.
  • the rotational speed of the circulation pump 25 may be controlled based on the temperature of the heat medium 29a supplied to the panel heater 26.
  • the rotational speed of the circulation pump 25 may be controlled based on the temperature of the heat medium 29a discharged from the panel heater 26.
  • the heat storage medium 29 accommodated in the heat storage tank 21 is a heat storage medium in which only the latent heat storage material or a latent heat storage material and a sensible heat storage material are mixed.
  • the latent heat storage material constituting the heat storage medium 29 may be one type of latent heat storage material, or a mixture of a plurality of types of latent heat storage material.
  • the latent heat storage material is a heat storage material that stores heat using latent heat that accompanies a phase change from solid to liquid due to melting, and the sensible heat storage material uses a temperature change without phase change. It is a heat storage material that stores heat.
  • a fourth temperature detector T4 is provided inside the heat storage tank 21, and the fourth temperature detector T4 detects a fourth temperature indicating the temperature of the heat storage medium 29.
  • the latent heat storage material may be, for example, a hydrate medium such as sodium acetate trihydrate or sodium thiosulfate pentahydrate, or an organic medium such as paraffin.
  • a hydrate medium such as sodium acetate trihydrate or sodium thiosulfate pentahydrate
  • an organic medium such as paraffin.
  • An example of the melting point of sodium acetate trihydrate is 58 ° C.
  • an example of the melting point of sodium thiosulfate pentahydrate is 48 ° C.
  • an example of the melting point of paraffin is 56 ° C.
  • the latent heat storage material has a higher melting point.
  • sodium acetate trihydrate is used for the latent heat storage material that uses a higher temperature such as a hot water supply or a panel heater.
  • paraffin is suitable.
  • heat storage density is 0.54 MJ / L for sodium acetate trihydrate, but 0.28 MJ / L for paraffin, and sodium acetate trihydrate is a heat storage tank rather than paraffin. Since 21 can be further reduced in size, it is preferable.
  • the sensible heat storage material is, for example, a liquid such as water or antifreeze, a solid having a higher melting point or a liquid having a higher boiling point than the temperature of the heat medium 19 discharged from the compressor 11. Since the heat storage amount per unit volume of the sensible heat storage material is smaller than the heat storage amount per unit volume of the latent heat storage material, the heat storage medium 29 does not include the sensible heat storage material and is configured only of the latent heat storage material. In order to reduce the size of the tank 21, it is more preferable. In the case of sodium acetate trihydrate, an example of latent heat per kg is 245 kJ, but an example of sensible heat per kg per 1 K is 2.617 kJ. The temperature of sodium trihydrate should be increased by about 93K.
  • the volume of the heat storage material must be increased. Therefore, since the sensible heat storage material requires a larger volume than the latent heat storage material, the heat storage tank 21 can be downsized by using the latent heat storage material.
  • FIG. 8 is a block diagram showing the configuration of the controller of the heat pump apparatus according to Embodiment 3 of the present invention. 8, the same reference numerals as those in FIGS. 2 and 5 denote the same or corresponding components, and the description thereof is omitted.
  • the input device 242 has a start instruction button for instructing start of use of the floor heater as the heat use terminal 31 and an end instruction button for instructing end of use. Furthermore, the input device 242 may include a temperature setting unit that sets the floor heating temperature of the floor heater.
  • the start of use of the floor heater means the start of use of the use side heat exchanger 14, and the end of use of the floor heater means the end of use of the use side heat exchanger 14.
  • the controller 241 stores the floor heating temperature, the indoor heating temperature, and the necessary heat storage amount in the storage unit.
  • the floor heating temperature is a set temperature of the floor heater input from the input device 242.
  • the room heating temperature is a set room temperature of the room heated by the panel heater 26 input from the operation unit of the panel heater 26 or the like.
  • the necessary amount of heat storage is a necessary amount of heat stored for use by the panel heater 26, and is calculated by the controller 241 based on information about the size of the room heated by the panel heater 26. Alternatively, the controller 241 changes the required heat storage amount according to the time measured by the timer.
  • the time measured by the timekeeping part is nighttime, set the heat storage requirement high, and if the time measured by the timekeeping part is daytime, set the heat storage requirement low, so that Electric power consumption may be suppressed.
  • Heat stored by setting a high heat storage requirement at night can be utilized through heating by the panel heater 26 in the daytime. As a result, it is possible to reduce daytime power consumption, which tends to increase power consumption.
  • the heat stored using cheap electricity charges at night can be used in the daytime, and the amount of electricity used in the daytime when the electricity charges are high can be reduced, which can contribute to the suppression of electricity charges.
  • FIG. 9 is a flowchart showing a control operation of the heat pump apparatus according to Embodiment 3 of the present invention.
  • the control operation of FIG. 9 is the second embodiment except that there is no step for determining the water level of the heat utilization medium 39 and no step for starting and stopping the rotation operation of the circulation pump of the heat storage circuit.
  • This is the same as FIG.
  • the heat utilization terminal 31 is a floor heater, since the heat utilization medium 39 is always enclosed in the flow path through which the heat utilization medium 39 provided under the floor, the water level of the heat utilization medium 39 is set. There is no need to judge.
  • the heat utilization medium 39 of the floor heater may be water or antifreeze. However, when the heat utilization terminal 31 is a bath tub, a step of determining the water level may be provided as described in the second embodiment.
  • the controller 241 determines a target heat storage temperature.
  • the target heat storage temperature is determined to be higher than the melting point of the latent heat storage material included in the heat storage medium 29. That is, the latent heat storage material is set to be melted by the heat flowing in through the heat storage heat exchanger.
  • the latent heat storage material included in the heat storage medium 29 is composed of a plurality of types, it is preferable to determine the target heat storage temperature to be higher than the melting point of the latent heat storage material having the highest melting point.
  • the latent heat storage material included in the heat storage medium 29 melts and changes from solid to liquid. Since the phase changes and the heat is stored using the latent heat due to the phase change, the amount of stored heat can be significantly increased as compared with the case where the target heat storage temperature is lower than the melting point of the latent heat storage material. Further, when the heat storage medium 29 includes a plurality of types of latent heat storage materials, if the target heat storage temperature is determined to be higher than the melting point of the latent heat storage material having the highest melting point, all the latent heat included in the heat storage medium 29 is determined. Since the latent heat at the time of phase change from solid to liquid of the heat storage material can be used, it is preferable.
  • the controller 241 determines the target discharge temperature in step S22, determines the target heat utilization medium temperature in step S23, and determines the target utilization side heat exchanger passage temperature in step S24.
  • the method for determining these target temperatures is as described in the first and second embodiments.
  • the controller 241 rotates the compressor 11 in step S25, and controls the flow path switch 13 in step S26 so that the flow path of the heat medium 19 does not pass through the use side heat exchanger 14. Switch to.
  • step S27 and step S28 the rotational speed of the compressor 11 and the opening of the decompressor 15 are controlled so that the temperature of the heat medium 19 discharged from the compressor 11 approaches the target discharge temperature.
  • step S29 the controller 241 determines whether or not the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature based on the fourth temperature detected by the fourth temperature detector T4 provided in the heat storage tank 21.
  • the controller 141 determines that the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature
  • the controller 141 proceeds to step S30 and stops the compressor 11.
  • the heat storage tank 21 stores the amount of heat that can cover the necessary heat storage amount.
  • step S29 determines that the temperature of the heat storage medium 29 is not equal to or higher than the target heat storage temperature. If the controller 241 determines in step S32 that there is a start instruction from the input device 242, the process proceeds to step S33. In step S ⁇ b> 33, the controller 141 controls the flow path switch 13 so that the flow path switch 13 passes through the flow path of the heat medium 19 to the decompressor 15 via the use-side heat exchanger 14. Switch to the flow path.
  • step S34 to step S36 the controller 241 rotates the circulation pump 32 of the heat utilization circuit 30, and the second temperature detected by the second temperature detector T2 provided on the discharge side of the compressor 11 is the target.
  • the rotation speed of the compressor 11 is controlled so as to approach the discharge temperature
  • the third temperature detected by the third temperature detector T3 provided on the downstream side of the use side heat exchanger 14 of the heat pump circuit 10 is the target use side heat exchange.
  • the opening degree of the decompressor 15 is controlled so as to approach the compressor passage temperature.
  • the heat utilization medium 39 circulates in the heat utilization circuit 30, and heat exchange between the heat medium 19 and the heat utilization medium 39 is performed in the utilization side heat exchanger 14. And since the heat utilization medium 39 heated by heat exchange with the heat medium 19 flows through the flow path provided under the floor and warms the floor, floor heating is performed.
  • the heat medium 19 discharged from the compressor 11 in a high-temperature and high-pressure state is the heat pump apparatus 300 according to the third embodiment. Since heat is further radiated by the use-side heat exchanger 14 after being radiated by the heat storage heat exchanger 12, the amount of heat radiated from the heat medium 19 is increased compared to the case where heat is radiated by the heat storage heat exchanger 12 alone. The reduction in efficiency is suppressed.
  • step S37 the controller 241 determines whether or not there is an end instruction from the input device 242. If the controller 241 determines that there is no termination instruction from the input device 242, the process returns to step S35. On the other hand, if the controller 241 determines that there is an end instruction from the input device 242, the process proceeds to step S38.
  • step S38 the controller 241 stops the circulation pump 32 of the heat utilization circuit 30. Then, the control by the controller 141 returns to step S26, the controller 141 controls the flow path switch 13, and the flow path switch 13 passes the flow path of the heat medium 19 via the use side heat exchanger 14. Without switching to the first flow path leading to the decompressor 15, the heat storage operation is continued.
  • step S29 When the controller 241 determines in step S29 that the temperature of the heat storage medium 29 is equal to or higher than the target heat storage temperature, the controller 241 stops the compressor 11 in step S30. With the above operation, the heat storage tank 21 stores the amount of heat that can cover the required amount of heat storage.
  • the heat stored in the heat storage medium 29 including the latent heat storage material in the heat storage tank 21 is used for the panel heater 26 as the controller 241 rotates the circulation pump 25.
  • the heat medium 29a flows to the heat exchanger 27 in the heat storage tank 21, and the heat of the heat storage medium 29 is radiated to the heat medium 29a. Since the latent heat storage material contained in the heat storage medium 29 is solidified during heat dissipation, the phase changes from liquid to solid.
  • the heat medium 29a is heated by the latent heat when the latent heat storage material undergoes a phase change from a liquid to a solid.
  • the heated heat medium 29a dissipates heat with the panel heater 26, whereby the room in which the panel heater 26 is installed can be heated.
  • the controller 241 controls the flow path switch 13 by a start instruction or an end instruction from the input device 242, but as described in the first embodiment, the flow The flow path switching temperature for switching the flow path is set by the path switching device 13, and the controller 241 compares the temperature of the heat medium 19 that has passed through the heat storage heat exchanger 12 with the flow path switching temperature to compare the flow path switching device. 13 may be controlled.
  • the heat utilization terminal 31 is a floor heater and the heat utilization medium 39 is water has been described.
  • the heat utilization medium 39 may also include a latent heat storage material as with the heat storage medium 29. Good.
  • the heat utilization medium 39 is a fluid heat storage material that stores heat using latent heat associated with a phase change from solid to liquid due to melting while maintaining fluidity.
  • a fluid heat storage material having a melting point near 30 to 35 ° C. which is generally preferred for a floor heater, may be selected.
  • the melting point of the latent heat storage material 29 is desirably about 56 to 58 ° C. Therefore, since the melting point of the fluid heat storage material is lower than the melting point of the latent heat storage material 29, the high temperature from the compressor 11 is high as in the heat pump device 100 described in the first embodiment and the heat pump device 200 described in the second embodiment.
  • the heat medium 19 discharged in a high-pressure state radiates heat in the heat storage heat exchanger 12 and then further radiates heat in the use side heat exchanger 14, the heat radiation amount of the heat medium 19 is only the heat storage heat exchanger 12. As compared with the case where heat is radiated, the efficiency reduction of the heat pump can be suppressed.

Abstract

ヒートポンプ装置(100)は、蓄熱用熱交換器(12)から排出された熱媒(19)と熱利用媒体(39)との間で熱交換を行なう利用側熱交換器(14)と、熱媒(19)の流路を利用側熱交換器(14)を経由せずに、吸熱側熱交換器(16)、蓄熱用熱交換器(12)を循環する第1の流路、または、利用側熱交換器(14)を経由して、吸熱側熱交換器(16)、蓄熱用熱交換器(12)を循環する第2の流路に切替える流路切替器(13)と、を備える。蓄熱媒体(12)の温度が高くなっても、ヒートポンプの効率低下を抑制しつつ、熱源から吸収した熱をヒートポンプで蓄熱媒体(12)に蓄熱できる。

Description

ヒートポンプ装置
 本発明は、ヒートポンプにより蓄熱媒体に蓄熱するヒートポンプ装置に関する。
 従来、冷凍サイクルを利用したヒートポンプにより外気から吸収した熱を蓄熱タンク内の温水の加熱と浴槽内の湯の追い炊きとに利用するヒートポンプ装置が知られている(例えば、特許文献1参照)。
 従来のヒートポンプ装置は、熱源である外気とヒートポンプ回路を流れる熱媒との間で熱交換を行い外気から吸収した熱で熱媒を加熱する吸熱側熱交換器と、熱媒と蓄熱タンク内の蓄熱媒体である水との間で熱交換を行う蓄熱用熱交換器と、熱媒と浴槽内の水との間で熱交換を行う利用側熱交換器と、熱媒を高温高圧に圧縮する圧縮機と、高圧の熱媒を絞り膨張させて低圧にするキャピラリーチューブからなる減圧器と、ヒートポンプ回路に流れる熱媒の流路を切替える三方弁からなる複数の流路切替器と、を備えている。
 ヒートポンプ装置が、蓄熱タンク内の水を加熱して蓄熱する際には、ヒートポンプ回路の熱媒の流路を、圧縮機、蓄熱用熱交換器、減圧器、吸熱側熱交換器の順に直列接続となるように複数の流路切替器を切替え、利用側熱交換器は、熱媒の流路から切り離される。また、ヒートポンプ装置が、浴槽内の湯を追い炊きする際には、ヒートポンプ回路の熱媒の流路を、圧縮機、利用側熱交換器、減圧器、蓄熱用熱交換器の順に直列接続となるように複数の流路切替器を切替え、吸熱側熱交換器は、熱媒の流路から切り離される。あるいは、ヒートポンプ回路の熱媒の流路を、圧縮機、利用側熱交換器、減圧器、吸熱側熱交換器の順に直列接続となるように複数の流路切替器を切替え、蓄熱用熱交換器は、熱媒の流路から切り離される。このように、従来のヒートポンプ装置では、複数の流路切替器を用いて熱媒の流路を切替えることで、蓄熱タンク内の温水あるいは外気を熱源とするヒートポンプにより浴槽内の湯を追い炊きしていた。
特開昭61-225539号公報
 しかしながら、特許文献1に記された従来のヒートポンプ装置では、ヒートポンプにより蓄熱媒体である蓄熱タンク内の水を加熱して蓄熱する際に、蓄熱媒体の温度が上昇するに従い、ヒートポンプ回路を循環する熱媒から蓄熱媒体への放熱量が減少するため、熱媒が十分に放熱した場合よりも圧縮機へ戻る熱媒の温度が高くなり、ヒートポンプの効率が低下するという問題点があった。
 本発明は、上述のような問題を解決するためになされたもので、蓄熱媒体の温度が高くなった場合であっても、ヒートポンプの効率低下を抑制しつつ、熱源から吸収した熱をヒートポンプで蓄熱媒体に蓄熱できるヒートポンプ装置を提供することを目的とする。
 本発明に係るヒートポンプ装置は、流入した熱媒を膨張させて流入前より低い圧力にして排出する減圧器と、減圧器から排出された熱媒が流入し、熱媒と熱源との間で熱交換を行う吸熱側熱交換器と、吸熱側熱交換器から排出された熱媒を吸込み、吸込み前より高い圧力に圧縮して吐出する圧縮機と、圧縮機から吐出された熱媒が流入し、熱媒と蓄熱媒体との間で熱交換を行う蓄熱用熱交換器と、蓄熱用熱交換器から排出された熱媒が流入し、熱媒と熱利用媒体との間で熱交換を行ない、熱媒を減圧器に排出する利用側熱交換器と、蓄熱用熱交換器から排出された熱媒の流路を、利用側熱交換器を経由せずに、減圧器、吸熱側熱交換器、圧縮機、および蓄熱用熱交換器を循環する第1の流路、または、利用側熱交換器を経由して、減圧器、吸熱側熱交換器、圧縮機、および蓄熱用熱交換器を循環する第2の流路に切替える流路切替器と、を備える。
 本発明に係るヒートポンプ装置によれば、流路切替器が熱媒の流路を第1の流路または第2の流路に切替えるので、蓄熱媒体の温度が高くなった場合であっても、ヒートポンプの効率低下を抑制しつつ、熱源から吸収した熱をヒートポンプで蓄熱媒体に蓄熱できる。
本発明の実施の形態1におけるヒートポンプ装置の構成を示す模式図である。 本発明の実施の形態1におけるヒートポンプ装置の制御器の構成を示すブロック図である。 本発明の実施の形態1におけるヒートポンプ装置の制御動作を示すフローチャートである。 本発明の実施の形態2におけるヒートポンプ装置の構成を示す模式図である。 本発明の実施の形態2におけるヒートポンプ装置の制御器の構成を示すブロック図である。 本発明の実施の形態2におけるヒートポンプ装置の制御動作を示すフローチャートである。 本発明の実施の形態3におけるヒートポンプ装置の構成を示す模式図である。 本発明の実施の形態3におけるヒートポンプ装置の制御器の構成を示すブロック図である。 本発明の実施の形態3におけるヒートポンプ装置の制御動作を示すフローチャートである。
実施の形態1.
 まず、本発明の実施の形態1におけるヒートポンプ装置の構成を説明する。図1は、本発明の実施の形態1におけるヒートポンプ装置の構成を示す模式図である。
 図1において、ヒートポンプ装置100は、ヒートポンプ回路10と、蓄熱回路20と、熱利用回路30と、を備えている。ヒートポンプ回路10は、圧縮機11、蓄熱用熱交換器12、利用側熱交換器14、減圧器15、および吸熱側熱交換器16を備えている。ヒートポンプ回路10は、内部に封入された熱媒19を利用した冷凍サイクルにより、吸熱側熱交換器16で吸収した熱を蓄熱用熱交換器12および利用側熱交換器14に移動させる。利用側熱交換器14は、熱媒19の流れる方向に対して蓄熱用熱交換器12の下流側に設けられている。
 蓄熱回路20は、ヒートポンプ回路10の蓄熱用熱交換器12に接続された蓄熱タンク21と、蓄熱回路20に蓄熱媒体29を循環させる循環ポンプ22とを有する。蓄熱用熱交換器12でヒートポンプ回路10の熱媒19と蓄熱媒体29とが熱交換を行うことで、ヒートポンプ回路10の吸熱側熱交換器16で吸収した熱が蓄熱タンク21内の蓄熱媒体29に蓄熱される。熱利用回路30は、ヒートポンプ回路10の利用側熱交換器14に接続された熱利用端末31と、熱利用端末31で用いられる熱利用媒体39を熱利用回路30に循環させる循環ポンプ32とを有する。利用側熱交換器14でヒートポンプ回路10の熱媒19と熱利用媒体39とが熱交換を行うことで、ヒートポンプ回路10の吸熱側熱交換器16で吸収した熱により熱利用媒体39が加熱される。蓄熱媒体29の最高温度は、熱利用媒体39の最高温度より高くなっており、蓄熱媒体29に蓄えた熱は、熱利用媒体39よりも高い温度を要する用途に利用される。
 本実施の形態1では、蓄熱タンク21に蓄熱した熱が給湯に用いられ、熱利用端末31が風呂である場合について説明する。すなわち、蓄熱タンク21に蓄えられる蓄熱媒体29は水であって、熱利用端末31である風呂の浴槽に蓄えられる熱利用媒体39も水である。加熱されて蓄熱タンク21に蓄えられた温水は、台所、洗面所、シャワーなどでの給湯だけでなく、熱利用端末31である風呂の浴槽に湯を張るためにも用いられる。すなわち、熱利用端末31である風呂の浴槽に湯が蓄えられることで、浴槽に蓄えられた湯が熱利用媒体39となる。浴槽に蓄えられた熱利用媒体39は、湯に限らず湯が冷めた水や水道から給水した水であってもよい。熱利用回路30は、熱利用端末31である風呂の浴槽に蓄えられた湯である熱利用媒体39を再度加熱する追い炊きや保温に用いられる。
 まず、本発明の実施の形態1のヒートポンプ装置100の構成について説明する。
 図1に示すようにヒートポンプ装置100のヒートポンプ回路10は、減圧器15、吸熱側熱交換器16、圧縮機11、蓄熱用熱交換器12、利用側熱交換器14、および流路切替器13を備えており、これらが配管h1a~h1gで接続されている。ヒートポンプ回路10の内部には熱媒19が封入されており、熱媒19が、配管h1a~h1gを通じて、減圧器15、吸熱側熱交換器16、圧縮機11、蓄熱用熱交換器12、利用側熱交換器14、および流路切替器13を循環する。熱媒19は、例えば、二酸化炭素、プロパンなどの自然冷媒や、R410、R32などのハイドロフルオロカーボン系冷媒などの冷凍サイクルで用いられる冷媒であってよい。このため、ヒートポンプ回路10は、冷凍サイクル回路と呼んでもよく、熱媒19は、冷媒と呼んでもよい。また、ヒートポンプ装置100は、ヒートポンプ回路10の圧縮機11、減圧器15、送風ファン17、および流路切替器13を制御する制御器41を備えている。なお、ヒートポンプ回路10は、圧縮機11への液バックを防止するためのアキュムレータなど上記以外の装置を必要に応じて備えていてもよい。
 減圧器15は、減圧器15に流入した熱媒19を絞り膨張させ、減圧器15に流入する前よりも低い圧力にして吸熱側熱交換器16に向けて排出する。減圧器15は、例えば、電子膨張弁やキャピラリーチューブであってよい。減圧器15に電子膨張弁を用いると、電子膨張弁の開度を制御することで、熱媒19の状態をより細かく制御することができるので、減圧器15は電子膨張弁が好ましい。減圧器15は制御器41により制御される。減圧器15が電子膨張弁である場合、制御器41は電子膨張弁の開度を制御する。
 吸熱側熱交換器16は、配管h1cで減圧器15に接続されており、減圧器15から排出された熱媒19が流入し、熱媒19と外部の熱源との間で熱交換を行う熱交換器である。外部の熱源は空気や地下水などであってよいが、本発明では熱源が空気である場合について説明する。吸熱側熱交換器16は、例えば、熱媒19が流通する金属管と、熱源である空気が流通するように互いに離隔して積層された複数の金属フィンとからなるフィンチューブ熱交換器であってよい。吸熱側熱交換器16に対向して直流モータなどの電動機で駆動される送風ファン17が設けられている。送風ファン17により熱源である空気が吸熱側熱交換器16に送り込まれることで、吸熱側熱交換器16を通過する空気と吸熱側熱交換器16を通過する熱媒19との間で熱交換が行われる。吸熱側熱交換器16内の熱媒19の温度は、空気の温度より低くなるように制御されているため、熱媒19は、熱源である空気から吸熱する。
 圧縮機11は、配管h1dで吸熱側熱交換器16に接続されている。なお、圧縮機11の液バックを防止するためにアキュムレータを用いる場合には、圧縮機11と吸熱側熱交換器16との間の配管h1dにアキュムレータを挿入すればよい。すなわち、アキュムレータが用いられる場合には、アキュムレータを配管h1dの一部とみなしてよい。ヒートポンプ回路10の配管h1a~h1gに他の装置を挿入する場合も同様であり、他の装置を配管の一部とみなしてよい。圧縮機11は、吸熱側熱交換器16から排出された低圧の熱媒19を吸込み、熱媒19を吸込み前よりも高い圧力に圧縮して高温高圧の状態で吐出する。圧縮機11は、回転数を制御可能な電動機と電動機を駆動するためのインバータとを有しており、容量制御可能となっている。圧縮機11は、制御器41からインバータに入力された制御信号に基づいて回転数が制御される。
 蓄熱用熱交換器12は、配管h1aで圧縮機11の吐出側に接続されており、圧縮機から吐出された熱媒19が流入し、熱媒19と蓄熱回路20の蓄熱媒体29である水との間で熱交換を行う熱交換器である。蓄熱用熱交換器12は、ヒートポンプ回路10の熱媒19が流れる熱媒用流路12aと蓄熱回路20の蓄熱媒体29が流れる蓄熱媒体用流路12bとを有しており、熱媒用流路12aと蓄熱媒体用流路12bとが金属などの熱伝導率が大きい部材を介して互いに離隔して設けられることで構成されている。圧縮機11から吐出され蓄熱用熱交換器12の熱媒用流路12aに流入した高温高圧の気相の熱媒19は、蓄熱用熱交換器12の蓄熱媒体用流路12bに流入する蓄熱媒体29よりも高温となっている。蓄熱用熱交換器12に流入した熱媒19から放熱された熱により蓄熱媒体29が加熱される。
 蓄熱用熱交換器12は、ヒートポンプ回路10を流れる熱媒19と蓄熱回路20を流れる蓄熱媒体29である水との温度差が小さくても熱交換性能に優れたものが好ましい。例えば、熱媒19が流れる熱媒用流路12aを構成する熱媒配管を、蓄熱媒体29である水が流れる蓄熱媒体用流路12bを構成する水配管に巻き付けロウ付けして蓄熱用熱交換器12を構成してよく、あるいは、水配管を捻ってできた溝に複数本の熱媒配管を平行に巻きつけて蓄熱用熱交換器12を構成してもよい。あるいは、蓄熱用熱交換器12は、プレート式熱交換器であってもよい。蓄熱用熱交換器12の熱媒用流路12aと蓄熱媒体用流路12bとは、熱媒19が流れる向きと蓄熱媒体29が流れる向きとが対向した対向流となるように配置されている方が好ましい。
 利用側熱交換器14は、流路切替器13を介して配管h1eと配管h1fとで蓄熱用熱交換器12に接続されており、蓄熱用熱交換器12から排出された熱媒19が流入し、熱媒19と熱利用回路30の熱利用媒体39である水との間で熱交換を行う熱交換器である。利用側熱交換器14は、ヒートポンプ回路10の熱媒19が流れる熱媒用流路14aと熱利用回路30の熱利用媒体39が流れる熱利用媒体用流路14bとを有しており、熱媒用流路14aと熱利用媒体用流路14bとが金属などの熱伝導率が大きい部材を介して互いに離隔して設けられることで構成されている。利用側熱交換器14は、蓄熱用熱交換器12と同様の構成の熱交換器であってよい。利用側熱交換器14に流入した熱媒19は、蓄熱用熱交換器12で放熱するが、熱利用媒体用流路14bに流入する熱利用媒体39よりも高温となっている。利用側熱交換器14に流入した熱媒19は放熱し、その際に放熱された熱により熱利用媒体39が加熱される。利用側熱交換器14は配管h1gおよび配管h1bで減圧器15に接続されており、利用側熱交換器14から排出された熱媒19は減圧器15に再び流入する。
 流路切替器13は、蓄熱用熱交換器12と利用側熱交換器14との間に設けられており、配管h1eで蓄熱用熱交換器12に接続され、配管h1fで利用側熱交換器14に接続されている。また、流路切替器13は、配管h1bで減圧器15に接続されている。配管1bには、流路切替器13と減圧器15との間で、利用側熱交換器14の下流側に接続された配管h1gが接続されている。流路切替器13は、例えば、電動三方弁などの電動切替弁であってよく、配管h1fと配管h1bとに設けられた2台の電動開閉弁により構成されていてもよい。流路切替器13は、熱媒19の流路を、利用側熱交換器を経由せずに、減圧器15、吸熱側熱交換器16、圧縮機11、および蓄熱用熱交換器12を循環する第1の流路、または、減圧器15、吸熱側熱交換器16、圧縮機11、蓄熱用熱交換器12、および利用側熱交換器14を循環する第2の流路に切替える。つまり、流路切替器13は、制御器41からの制御信号により制御されて、蓄熱用熱交換器12から排出された熱媒19の流路を、利用側熱交換器14を経由せずに配管h1bのみを通って減圧器15に至る第1の流路、または利用側熱交換器14を経由して配管h1f、配管h1g、配管h1bを通って減圧器15に至る第2の流路に切替える。流路切替器13は、蓄熱用熱交換器12から排出された熱媒19の流路を、第1の流路または第2の流路のいずれか一方に切替えるだけでなく、熱媒19が第1の流路と第2の流路との両方に所定の比率の流量で流れるように流路を切替えてもよい。
 制御器41が、流路切替器13を利用側熱交換器14を経由しない第1の流路側に切替えさせることにより、熱媒19の流路は第1の流路に切替わり、熱媒19は、圧縮機11、蓄熱用熱交換器12、減圧器15、および吸熱側熱交換器16を循環し、吸熱側熱交換器16で吸収した熱を蓄熱用熱交換器12に移動させる。一方、制御器41が、流路切替器13を利用側熱交換器14を経由する第2の流路側に切替えさせることにより、熱媒19の流路は第2の流路に切替わり、熱媒19は、圧縮機11、蓄熱用熱交換器12、利用側熱交換器14、減圧器15、および吸熱側熱交換器16を循環し、吸熱側熱交換器16で吸収した熱を蓄熱用熱交換器12と利用側熱交換器14に移動させる。
 ヒートポンプ装置100の蓄熱回路20は、蓄熱用熱交換器12の蓄熱媒体用流路12bに配管h2cで接続された蓄熱タンク21と、蓄熱タンク21に配管h2aで接続された循環ポンプ22とを有する。循環ポンプ22は、配管h2bで蓄熱用熱交換器12の蓄熱媒体用流路12bにも接続されている。循環ポンプ22は、制御器41からの制御信号により回転数が制御される電動機を有しており、制御器41によって循環ポンプ22で蓄熱回路20を循環させる蓄熱媒体29の流量が調整される。配管h2aは蓄熱タンク21の下部に接続されており、配管h2cは蓄熱タンク21の上部に接続されている。蓄熱タンク21内に蓄えられている蓄熱媒体29である水は、加熱されて高温になると密度が小さくなるので、蓄熱タンク21の上部に集まる。従って、蓄熱タンク21内では、上部の水の温度が下部の水の温度より高くなっている。蓄熱タンク21内の蓄熱媒体29である水は、蓄熱タンク21の下部に接続された配管h2aから流出し、循環ポンプ22によって送出される。蓄熱タンク21から送出された水は、蓄熱用熱交換器12で熱媒19との熱交換により加熱されて温水となり、蓄熱タンク21の上部に接続された配管h2cを通って蓄熱タンク21内に流入する。この結果、蓄熱タンク21内には、吸熱側熱交換器16から吸収された熱が温水として蓄えられる。
 また、蓄熱タンク21には、水道から蓄熱媒体29となる水を給水するための配管h2dと、蓄熱タンク21から高温の蓄熱媒体29である温水を取り出して給湯するための配管h2eとが接続されている。配管h2dは蓄熱タンク21の下部に接続され、配管h2eは蓄熱タンク21の上部に接続される。また、配管h2eは電動混合弁23を介して配管h2fに接続される。電動混合弁23には、水道水を給水するための配管h2dから分岐した配管h2gも接続される。電動混合弁23は、制御器41により開度が制御され、蓄熱タンク21から取り出される温水と、この温水より温度が低い水道水とを混合して、給湯する温水の温度を利用者の所望する温度に調整する。配管h2dは、水道管などの給水用の配管24aに接続されて、配管24aを通じて蓄熱媒体29となる水道水が給水される。また、配管h2fは、台所、洗面所、浴室などへ給湯するための配管24bに接続されており、配管24bを通じて蓄熱タンク21に蓄えられた蓄熱媒体29である温水が給湯される。配管24bを通じて給湯された温水は、熱利用端末31である風呂の浴槽に蓄えられ、熱利用媒体39となる。
 ヒートポンプ装置100の熱利用回路30は、利用側熱交換器14の熱利用媒体用流路14bに配管h3cおよび配管33bで接続された熱利用端末31と、熱利用端末31に配管33aおよび配管h3aで接続された循環ポンプ32とを有している。循環ポンプ32は配管h3bで利用側熱交換器14の熱利用媒体用流路14bにも接続されている。なお、配管33a、配管33b、熱利用端末31は、熱利用回路30の一部を構成するが、ヒートポンプ装置100の外部に設けられるものである。循環ポンプ32は、蓄熱回路20の循環ポンプ22と同様、制御器41によって制御され、制御器41によって循環ポンプ32で熱利用回路30を循環させる熱利用媒体39の流量が調整される。配管33aと配管33bとは熱利用端末31である風呂の浴槽に接続されている。浴槽内に蓄えられている熱利用媒体39である水は、配管33aを通って浴槽から流出し、循環ポンプ32によって送出される。浴槽から送出された水は利用側熱交換器14で熱媒19との熱交換により加熱され、配管33bを通って浴槽内に流入する。これにより熱利用端末31である風呂の浴槽に蓄えられた熱利用媒体39である水や湯の追い炊きや保温が行われる。
 ヒートポンプ装置100は、ヒートポンプ回路10に設けられた第1温度検出器T1、第2温度検出器T2、および第3温度検出器T3と、蓄熱タンク21内に設けられた第4温度検出器T4と、給湯用の電動混合弁23より下流側に設けられた第6温度検出器T6と、熱利用回路30に設けられた第5温度検出器T5とを備えている。また、熱利用回路30の配管h3aには、熱利用端末31である風呂の浴槽に蓄えられた水の水位を検出する水位検出器L1が設けられている。各温度検出器T1~T6および水位検出器L1は、信号線により制御器41に接続されている。
 第1温度検出器T1は、蓄熱用熱交換器12の下流側に接続された配管h1eに設けられており、蓄熱用熱交換器12を通過した熱媒19の温度を検出する。第1温度検出器T1が設けられる場所は、配管h1eに限られるものではなく、蓄熱用熱交換器12の熱媒用流路12aの下流端近傍に設けられていてもよい。つまり、蓄熱用熱交換器12を通過した熱媒19の温度が推測できる位置であればよい。
 また、第1温度検出器T1は、蓄熱用熱交換器12の蓄熱媒体用流路12bの上流側に設けてもよく、例えば、配管h2bや配管h2aに設けてもよい。配管h2bや配管h2aには、熱媒19と熱交換される蓄熱媒体29が通過するので、蓄熱媒体29の温度が高ければ、蓄熱用熱交換器12での熱交換量が減少し、蓄熱用熱交換器12を通過した熱媒19の温度も高くなるため、蓄熱用熱交換器12を通過した熱媒19の温度が推測できる。つまり、蓄熱用熱交換器12に流入する蓄熱媒体29の温度と蓄熱用熱交換器12を通過した熱媒19の温度とは相関があるので、検出した蓄熱用熱交換器12に流入する蓄熱媒体29の温度は蓄熱用熱交換器12を通過した熱媒19の温度に基づくものと扱ってよい。
 第2温度検出器T2は、圧縮機11の吐出側に接続された配管h1aに設けられており、圧縮機11から吐出された熱媒19の温度を検出する。第3温度検出器T3は、利用側熱交換器14の熱媒用流路14aの下流側に接続された配管h1gに設けられており、利用側熱交換器14を通過した熱媒19の温度を検出する。第4温度検出器T4は、蓄熱タンク21の内壁、または外壁に設けられており、蓄熱タンク21に蓄えられる蓄熱媒体29である水の温度を検出する。第5温度検出器T5は、利用側熱交換器14の熱利用媒体用流路14bの上流側に接続された配管h3bに設けられており、利用側熱交換器14に流入する熱利用媒体39である水の温度を検出する。第5温度検出器T5は、利用側熱交換器14の上流側で、かつ、熱利用端末31の下流側であればよく、配管h3aに設けられていてもよい。
 第6温度検出器T6は、電磁混合弁23より下流側の配管h2fに設けられ、配管24bを通って給湯される温水の温度を検出する。第6温度検出器T6で検出した温水の温度が、利用者が設定した所望の給湯温度となるように、制御器41が、電磁混合弁23の開度を制御して、配管h2eから電磁混合弁23に流入する蓄熱媒体29である温水の流量と、配管h2gから電磁混合弁23に流入する水道水の流量とを調整する。
 水位検出器L1は、熱利用端末31である風呂の浴槽と循環ポンプ32とを接続する配管h3aに設けられている。水位検出器L1は、例えば、圧力で浴槽内の水位を検出できる圧力センサーである。浴槽に所定量以上の熱利用媒体39である水が蓄えられると、浴槽内の水位が上昇し、水が浴槽から配管33aを通じて配管h3aに流れ込む。この結果、水位検出器L1が熱利用媒体39である水に浸かるため、水位検出器L1が水に浸かる前と比べて、水位検出器L1で検出している圧力が変化し、水位検出器L1の高さまで浴槽内の水位が達していることが検出される。
 次に、ヒートポンプ装置100の制御器41について説明する。図2は、本発明の実施の形態1におけるヒートポンプ装置の制御器の構成を示すブロック図である。
 制御器41は、例えば、マイクロプロセッサで構成される。制御器41は、第1~第6の各温度検出器T1~T6および水位検出器L1と信号線で接続されており、各温度検出器T1~T6および水位検出器L1で検出された温度情報および水位情報が入力される。また、制御器41は、圧縮機11、流路切替器13、減圧器15、送風ファン17、循環ポンプ22、電磁混合弁23、および循環ポンプ32に信号線で接続されており、これらの機器を制御するための制御信号を出力する。
 また、制御器41は、利用者が制御器41に諸条件を入力するための入力装置42と有線あるいは無線の信号線を介して接続されている。ここで、無線の信号線とは、例えば、赤外線や電波などの電磁波を媒体として信号を伝送する仮想的な信号線である。入力装置42は、例えば、リモートコントローラやHEMS(Home Energy Management System)コントローラである。
 ヒートポンプ装置100の利用者は、入力装置42に所望の利用温度を入力して、熱利用媒体39である水を保温あるいは追い炊きにより加熱して、浴槽内の水が所望の利用温度になるように設定する。ここで、利用温度とは浴槽内に蓄えられている熱利用媒体39を、利用者が利用したい温度である。また、ヒートポンプ装置100の利用者は、入力装置42に所望の給湯温度を入力して、所望の給湯温度に調整された湯を得る。ここで、給湯温度とは給湯用の配管24bを流通する温水の温度である。このため、制御器41は、入力装置42を介して入力された利用温度および給湯温度を記憶している。制御器41は、マイクロプロセッサの内部あるいは外部にメモリなどの記憶部を有しており、諸条件を記憶部に記憶している。
 制御器41は、時刻や月日を計る計時部を有しており、制御器41は時刻や月日を認識している。計時部は、例えば、マイクロプロセッサのタイマ機能である。制御器41は、計時部により時刻を認識しているため、例えば、現在が昼間であるか夜間であるかを認識している。また、制御器41は、計時部により月日を認識しているため、例えば、現在が夏季であるか冬季であるかを認識している。
 また、制御器41は、蓄熱必要量を記憶している。蓄熱必要量は、利用者が時間帯に応じて必要としている蓄熱タンク21内に蓄えられた蓄熱媒体29の熱量である。蓄熱必要量は、例えば、利用者が入力装置42に何人家族であるかといった家族構成を入力することで、制御器41により算出される。そして、制御器41は、時刻や季節に応じて蓄熱必要用を最適な値に設定してよい。あるいは、入力装置42から制御器41に直接、蓄熱必要量が入力されてもよい。
 制御器41は、蓄熱必要量に基づいて決定される蓄熱タンク21内の蓄熱媒体29の温度の目標値である目標蓄熱温度、圧縮機11の吐出側から吐出される熱媒19の温度の目標値である目標吐出温度、利用側熱交換器14を通過した熱媒19の温度の目標値である目標利用側熱交換器通過温度、熱利用端末31で利用される熱利用媒体39の温度の目標値である目標熱利用媒体温度、および流路切替器13により利用側熱交換器14を経由しない第1の流路と利用側熱交換器14を経由する第2の流路とを切替える際の閾値温度である流路切替温度を記憶部に記憶している。
 以上のように、ヒートポンプ装置100は構成される。
 次に、本発明の実施の形態1におけるヒートポンプ装置100の動作について説明する。図3は、本発明の実施の形態1におけるヒートポンプ装置の制御動作を示すフローチャートである。図3の制御動作は、熱利用端末31である風呂の浴槽に熱利用媒体39として湯や低温の水が蓄えられている場合に、蓄熱媒体29である水を加熱して蓄熱タンク21内に蓄える場合の制御動作である。このような状況は、例えば、蓄熱タンク21内の温水を熱利用端末31である風呂の浴槽に注ぎ入れた場合や入浴中のシャワーで利用した場合など、蓄熱タンク21内に給水用の配管24aから温度の低い水が給水された場合に起こる動作である。
 まず、図3に示すように、ステップS1で、制御器41は蓄熱必要量に基づいて目標蓄熱温度を決定する。蓄熱必要量は、入力装置42から入力された利用者の家族構成などの情報や、時刻あるいは季節に応じて制御器41が算出した利用者が必要とする蓄熱量である。蓄熱必要量が多い場合、蓄熱タンク21で蓄熱される蓄熱媒体29の温度は高くなるが、蓄熱媒体29の温度が高い場合、蓄熱媒体29の温度が低い場合に比べてヒートポンプの効率は低下する。逆に、蓄熱必要量が少ない場合、蓄熱タンク21で蓄熱される蓄熱媒体29の温度は低くなるが、蓄熱媒体29の温度が低い場合、蓄熱媒体29の温度が高い場合に比べてヒートポンプの効率は向上する。従って、制御器41は、蓄熱タンク21に蓄えられる蓄熱媒体29の温度が、蓄熱必要量を賄うことができる範囲で、できるだけ低い温度になるように目標蓄熱温度を決定する。
 次に、ステップS2で、制御器41は目標吐出温度を決定する。目標吐出温度は、目標蓄熱温度に基づいて、目標蓄熱温度よりも高くなるように決定される。例えば、目標吐出温度=目標蓄熱温度×α+βとしてよい。ここで、例えば、α=1.02、β=10℃であってよい。
 次に、ステップS3で、制御器41は目標熱利用媒体温度を決定する。目標熱利用媒体温度は、利用者が入力装置42から入力した熱利用端末31での熱利用媒体39の利用温度に基づいて決定される。例えば、制御器41は、目標熱利用媒体温度=利用温度として、目標熱利用媒体温度を決定してよい。
 次に、ステップS4で、制御器41は目標利用側熱交換器通過温度を決定する。目標利用側熱交換器通過温度は、利用者が入力装置42から入力した熱利用端末31での熱利用媒体39の利用温度に基づいて、あるいは目標熱利用媒体温度に基づいて、目標熱利用媒体温度より高くなるように決定される。例えば、制御器41は、目標利用側熱交換器通過温度=目標熱利用媒体温度+γとしてよい。ここで、例えば、γ=2℃であってよい。
 次に、ステップS5で、制御器41は流路切替温度を決定する。流路切替温度は、流路切替器13が第1の流路と第2の流路とを切替える際の閾値温度であり、第1温度検出器T1で検出した温度が流路切替温度以上となった場合に流路を切替える。以下、第1温度検出器T1が検出する温度を第1温度と呼ぶ。同様に、第2~6温度検出器T2~6が検出する温度をそれぞれ第2~6温度と呼ぶ。第1温度は、第1温度検出器T1が検出した蓄熱用熱交換器12を通過した熱媒19の温度を示す温度である。第2温度は、第2温度検出器T2が検出した圧縮機11から吐出された熱媒19の温度を示す温度である。第3温度は、第3温度検出器T3が検出した利用側熱交換器14から排出された熱媒19の温度を示す温度である。制御器41は、流路切替温度を熱利用媒体39の利用温度より高い温度に決定する。流路切替器13により熱媒19の流路が利用側熱交換器14を経由する第2の流路に切替わった場合に、蓄熱用熱交換器12を通過した熱媒19の温度が、利用側熱交換器14に流入する熱利用媒体39の温度より高いことで、利用側熱交換器14で熱媒19から熱利用媒体39へ放熱させることができるからである。
 図1に示すように、第1温度検出器T1を蓄熱用熱交換器12の下流側の配管h1eに設けた場合には、第1温度は蓄熱用熱交換器12を通過した熱媒19の温度を示す。先述したように、第1温度検出器T1は、蓄熱用熱交換器12を通過した熱媒19の温度を推定できる場所であれば、蓄熱回路20の配管h2aや配管h2bに設けてもよく、蓄熱タンク21に設けてもよい。しかし、ここでは最も精度良く蓄熱用熱交換器12を通過した熱媒19の温度を測定できる例として、蓄熱用熱交換器12の下流側の配管h1eに第1温度検出器T1が設けられている場合について説明する。
 制御器41は、流路切替温度を目標蓄熱温度より低い温度に決定する。より好ましくは、制御器41は、流路切替温度を目標蓄熱温度よりも低い温度であって目標利用側熱交換器通過温度よりも高い温度に決定する。例えば、利用者が設定した熱利用媒体39の利用温度が38℃であれば、目標熱利用媒体温度は38℃であり、目標利用側熱交換器通過温度はγ=2℃の場合、40℃である。そして、例えば、目標蓄熱温度が70℃であれば、制御器41は、流路切替温度を、例えば、50℃に決定してよい。制御器41が決定したこれらの目標温度や流路切替温度は、制御器41の記憶部に記憶される。
 次に、ステップS6で、制御器41は、圧縮機11と蓄熱回路20の循環ポンプ22とを回転させる。これにより、ヒートポンプ回路10には熱媒19が循環し、蓄熱回路20には蓄熱媒体29が循環する。そして、ステップS7で、制御器41は、流路切替器13を第1の流路に切替え配管h1eと配管h1bとを連通する。この結果、ヒートポンプ回路10の熱媒19は、圧縮機11、蓄熱用熱交換器12、流路切替器13、減圧器15、吸熱側熱交換器16を循環するようになる。
 次に、ステップS8で、制御器41は、圧縮機11の吐出側に設けられた第2温度検出器T2で検出した第2温度が、目標吐出温度に近づくように圧縮機11の回転数を制御する。また、ステップS9で、制御器41は、圧縮機11の吐出側に設けられた第2温度検出器T2で検出した第2温度が、目標吐出温度に近づくように減圧器15の開度を制御する。圧縮機11の吐出側に設けられた第2温度検出器T2で検出した第2温度は、圧縮機11から吐出される高温高圧の熱媒19の温度である。なお、制御器41は、ステップS8とステップS9との両方を備えておらず、ステップS8のみで圧縮機11の回転数のみを制御して減圧器15の開度は一定値のままで第2温度が目標吐出温度に近づくように制御してもよく、あるいはステップS9のみで減圧器15の開度のみを制御して圧縮機11の回転数は一定値のままで第2温度が目標吐出温度に近づくように制御してもよい。
 目標吐出温度は、目標蓄熱温度より高く設定されているため、圧縮機11から吐出される熱媒19の温度は、蓄熱回路20を循環する蓄熱媒体29の温度より高い。従って、熱媒19がヒートポンプ回路10を循環し、蓄熱媒体29が蓄熱回路20を循環することで、熱媒19から放熱された熱により蓄熱媒体29が加熱され、蓄熱媒体29の温度が上昇していく。熱媒19の循環量、蓄熱媒体29の循環量、蓄熱用熱交換器12の容量は、蓄熱用熱交換器12を一回通過した蓄熱媒体29が目標蓄熱温度となって蓄熱タンク21に戻されるように構成してもよい。あるいは、蓄熱媒体29が蓄熱回路20を何回も循環するうちに徐々に加熱されて、徐々に目標蓄熱温度に到達するように構成してもよい。徐々に目標蓄熱温度に到達する構成にすると、蓄熱用熱交換器12の容量を低減することができるので、ヒートポンプ装置100の低コスト化を図ることができる。
 ステップS10で、制御器41は、蓄熱媒体29の温度が目標蓄熱温度以上か否かを判断する。蓄熱媒体29の温度は、蓄熱タンク21内に設けた第4温度検出器T4で検出してよい。第4温度検出器T4は、蓄熱タンク21内に限らず、蓄熱媒体29の温度を検出できる場所であれば、例えば、配管h2a、配管h2bに設けてもよい。
 ステップS10で、制御器41が、蓄熱媒体29の温度が目標蓄熱温度以上と判断した場合、制御器41による制御は、ステップS11に進む。ステップS11で、制御器41は、圧縮機11および蓄熱回路20の循環ポンプ22を停止する。これにより、蓄熱タンク21内には、蓄熱必要量を賄うことができる熱量が蓄えられることになる。
 なお、制御器41が時刻や季節に応じて蓄熱必要量を変化させる場合には目標蓄熱温度も時刻や季節に応じて変化するので、ステップS11に進む際の蓄熱媒体29の温度も時刻や季節に応じて変化する。このように、制御器が計時部で計った時刻に応じてステップS11に進み蓄熱動作を停止する際の蓄熱媒体29の温度を変化させることで、電力消費量を適切に管理して省エネ化を図ることができる。
 一方、ステップS10で、蓄熱媒体29の温度が目標蓄熱温度以上ではないと判断した場合、制御器41による制御は、ステップS12に進む。ステップS12で、制御器41は、熱利用端末31である風呂の浴槽内の水位レベルは閾値以上か否かを判断する。浴槽内の水位レベルは、配管h3aに設けた水位検出器L1により検出される。水位検出器L1が浸かる量の水が浴槽内にある場合、制御器41は、浴槽内の水位レベルが閾値以上であると判断する。浴槽内の水位レベルが閾値未満の場合、熱利用回路30を熱利用媒体39である水が循環することができないため、制御器41による制御はステップS8に戻る。従って、浴槽内に水が蓄えられていない場合には、流路切替器13がヒートポンプ回路10を第2の流路に切替えることはなく、利用側熱交換器14を経由しない第1の流路のみに熱媒19が流れ、吸熱側熱交換器16から吸収された熱は、蓄熱用熱交換器12のみに移動する。
 ステップS12で、制御器41が浴槽内の水位レベルが閾値以上であると判断した場合は、制御器41による制御はステップS13に進む。ステップS13では、制御器41は、第1温度検出器T1で検出した第1温度が流路切替温度以上か否かを判断する。第1温度は、蓄熱用熱交換器12を通過した熱媒19の温度を示しており、蓄熱用熱交換器12で熱媒19から蓄熱媒体29に十分に熱が移動した場合には、第1温度は十分に低くなっている。一方、蓄熱媒体29の温度が上昇して、熱媒19から蓄熱媒体29に十分に熱が移動しなくなった場合には、蓄熱用熱交換器12を通過した熱媒19の温度を示す第1温度は高くなる。ステップS13で、制御器41が、第1温度検出器T1で検出した第1温度が流路切替温度未満であると判断した場合には、熱媒19から蓄熱媒体29に十分に熱が移動できる状態であるので、制御器41による制御はステップS8に戻る。
 一方、ステップS13で、制御器41が第1温度検出器T1で検出した第1温度が流路切替温度以上であると判断した場合、制御器41による制御はステップS14に進む。ステップS14では、制御器41は、流路切替器13を制御して、流路切替器13が、蓄熱用熱交換器12から排出された熱媒19の流路を、利用側熱交換器14を経由して減圧器15へ至る第2の流路に切替える。この結果、配管h1eと配管h1fとが流路切替器13を介して連通する。
 次に、ステップS15で、制御器41は、熱利用回路30の循環ポンプ32を回転させる。これにより、熱利用回路30に熱利用媒体39である水が循環し、利用側熱交換器14で熱媒19と熱利用媒体39との間で熱交換が行われる。利用側熱交換器14に流入する熱媒19は、蓄熱用熱交換器12で一旦放熱したものであるが、蓄熱用熱交換器12を通過する熱媒19の温度を示す第1温度が流路切替温度以上であり、熱媒19の温度は熱利用媒体39の温度に比べて十分に高い。従って、利用側熱交換器14で熱媒19から熱利用媒体39に熱が移動し、熱利用媒体39である水の温度が上昇する。そして、十分に温度が低下した熱媒19が、利用側熱交換器14から排出される。
 次に、ステップS16で、制御器41は、圧縮機11の吐出側に設けた第2温度検出器T2で検出した第2温度が目標吐出温度に近づくように、圧縮機11の回転数を制御する。第2温度は、圧縮機11から吐出された高温高圧の熱媒19の温度を示す。また、ステップS17で、制御器41は、ヒートポンプ回路10の利用側熱交換器14の下流側に設けた第3温度検出器T3が検出した第3温度が目標利用側熱交換器通過温度に近づくように減圧器15の開度を制御する。第3温度は、減圧器15に流入する熱媒19の温度を示している。
 次に、ステップS18で、制御器41は、蓄熱媒体29の温度が目標蓄熱温度以上か否かを判断する。蓄熱媒体29の温度は、蓄熱タンク21内に設けた第4温度検出器T4で検出してよい。ステップS18で、制御器41が、蓄熱媒体29の温度が目標蓄熱温度以上であると判断した場合、制御器41による制御は、ステップS19に進む。ステップS19で、制御器41は、熱利用回路30の循環ポンプ32を停止する。これにより、浴槽内の熱利用媒体39である水の加熱は停止される。一方、ステップS18で、蓄熱媒体29の温度が目標蓄熱温度以上ではないと判断した場合、制御器41による制御は、ステップS16に戻り、蓄熱媒体29の温度が目標蓄熱温度以上になるまで繰り返される。
 制御器41がステップS19で熱利用回路30の循環ポンプ32を停止した後、制御器41による制御はステップS11に進む。制御器41は、圧縮機11および蓄熱回路20の循環ポンプ22を停止する。そして、蓄熱タンク21内には、蓄熱必要量を賄うことができる熱量が蓄えられることになる。
 なお、蓄熱タンク21内の蓄熱媒体29の温度が目標蓄熱温度以に到達した時点で、熱利用端末31である風呂の浴槽内の温水の温度が目標熱利用媒体温度よりも低い場合がある。利用者がすぐに熱利用端末31である風呂の浴槽を使用しない場合には、そのまま放置してよい。しかし、利用者がすぐに利用温度になっている浴槽を使用したい場合には、ステップS11の後に、蓄熱回路20の循環ポンプ22を停止させたまま、圧縮機11と熱利用回路30の循環ポンプ32とを回転させて浴槽内の熱利用媒体39である温水を加熱することができる。この場合、流路切替器13は第2の流路側に流路を切替えているので、熱媒19は、吸熱側熱交換器16、蓄熱用熱交換器12、および利用側熱交換器14を循環する。蓄熱回路20の循環ポンプ22は停止しているので、蓄熱用熱交換器12での熱媒19から蓄熱媒体29への放熱は非常に小さくなる。従って、吸熱側熱交換器16で熱源から吸収した熱の大部分を利用側熱交換器14に移動させて、熱利用回路30を循環する熱利用媒体39を加熱することができる。そして、第5温度検出器T5で検出した熱利用媒体39の温度を示す第5温度が目標熱利用媒体温度に到達すれば、圧縮機11と熱利用回路30の循環ポンプ32とを停止すればよい。
 同様に、熱利用端末31である風呂の浴槽内の温水を保温するために、熱利用媒体39である温水のみを再加熱したい場合にも、流路切替器13を第2の流路側に切替えて、蓄熱回路20の循環ポンプ22を停止させたまま、圧縮機11と熱利用回路30の循環ポンプ32を回転させて浴槽内の熱利用媒体39である温水を加熱して保温すればよい。
 また、蓄熱回路20の循環ポンプ22を停止させずに回転数を減少させて、蓄熱回路20に流れる蓄熱媒体29の流量を減少させてもよい。つまり、制御器41が、蓄熱回路20の循環ポンプ22と熱利用回路30の循環ポンプ32とを制御して、蓄熱媒体29の流量と熱利用媒体39の流量との比率を変化させてもよい。これにより吸熱側熱交換器16で吸収した熱を、所望の比率で蓄熱媒体29および熱利用媒体39に移動させることができる。
 さらに、例えば、制御器41の計時部による時刻計測結果に基づいて、制御器41が、蓄熱回路20の循環ポンプ22と熱利用回路30の循環ポンプ32とを制御してもよい。すなわち、利用者は予め入力装置42から熱利用端末31である風呂の浴槽を利用したい時刻を入力しておく。例えば、午後7時~午後10時の間に浴槽を利用すると入力した場合、ヒートポンプ装置100の制御器41は、午後11時~翌日の午前6時までは、浴槽内の温水の温度が目標熱利用媒体温度に達していなくても、蓄熱媒体29の温度が目標蓄熱温度に達すると、流路切替器13を制御して利用側熱交換器14を経由しない第1の流路側に切替え、圧縮機11および蓄熱回路20の循環ポンプ22を停止する。一方、制御器41の計時部で計測した時刻が午後6時で浴槽内の温水の温度が目標熱利用媒体温度に達していない場合には、蓄熱媒体29の温度が目標蓄熱温度に達していても、流路切替器13を制御して利用側熱交換器14を経由する第2の流路側に切替え、蓄熱回路20の循環ポンプ22を停止させて、熱利用回路30の循環ポンプ32を回転させて、浴槽内の熱利用媒体39である温水を加熱する。このように、制御器41が計時部で計測した時刻に基づいて流路切替器31を制御し、蓄熱および熱利用を制御することで、家庭内や地域内の電力消費量を最適化し省エネ化を図ることができる。
 以上のように、ヒートポンプ装置100は動作する。
 次に、本発明のヒートポンプ装置100の作用効果について説明する。
 ヒートポンプにより蓄熱媒体を加熱して蓄熱する従来のヒートポンプ装置では、蓄熱動作中に、蓄熱タンク内への蓄熱が進行すると、蓄熱媒体の温度が上昇する。蓄熱媒体の温度上昇に伴って、蓄熱用熱交換器でのヒートポンプ回路の熱媒から蓄熱媒体への放熱量が減少するため、圧縮機に戻る熱媒の温度が上昇する。このため、圧縮機から吐出された熱媒の圧力(吐出圧力)は、蓄熱媒体の温度が上昇するに従い上昇していく。一般に、ヒートポンプ装置では吐出圧力が低い方が効率は高いため、従来のヒートポンプ装置では、蓄熱媒体の温度上昇に伴ってヒートポンプの効率が低下していた。
 一方、本発明の実施の形態1に係るヒートポンプ装置100では、ヒートポンプ回路10の蓄熱用熱交換器12の下流側に流路切替器13を介して利用側熱交換器14が設けられており、流路切替器13は、蓄熱用熱交換器12を通過した熱媒19の流路を、利用側熱交換器14を経由せずに減圧器15に至る第1の流路と、利用側熱交換器14を経由して減圧器15に至る第2の流路とを切替える。そして、ヒートポンプ装置100は、蓄熱用熱交換器12を通過した熱媒19の温度を示す第1温度を検出する第1温度検出器T1を有しているので、蓄熱媒体29の温度が上昇して熱媒19から蓄熱媒体29への放熱量が減少したことを検出できる。
 本発明のヒートポンプ装置100では、第1温度が予め設定された流路切替温度以上となった場合に、制御器41により流路切替器13が熱媒19の流路を第2の流路に切替えるので、利用側熱交換器14で熱媒19から熱利用媒体39に放熱させて圧縮機11に戻る熱媒19の温度を低下させることができる。つまり、ヒートポンプ装置100では、蓄熱媒体29の温度が上昇しても、熱媒19は、蓄熱用熱交換器12で放熱した後、利用側熱交換器14でさらに放熱するため、熱媒19が、蓄熱用熱交換器12のみで放熱する場合に比べて放熱量を多くすることができる。この結果、圧縮機11から吐出される熱媒19の吐出圧力を低くすることができ、ヒートポンプの効率を向上させることができる。
 そして、利用側熱交換器14で熱媒19から熱利用媒体39に放熱された熱は、熱利用端末31である風呂の追い炊きや浴槽内の湯の保温に利用することができるので、ヒートポンプの効率を高くしつつ、熱の有効利用を図ることができる。
実施の形態2.
 図4は、本発明の実施の形態2におけるヒートポンプ装置の構成を示す模式図である。また、図5は、本発明の実施の形態2におけるヒートポンプ装置の制御器の構成を示すブロック図である。図4および図5において、図1および図2と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、制御器141が、利用者や制御装置などからの指示により流路切替器13の制御を行う構成が相違している。
 図4に示すように本実施の形態2のヒートポンプ装置200は、ヒートポンプ回路10の蓄熱用熱交換器12の下流側の配管h1eに第1温度検出器T1を備えていない。従って、制御器141は、蓄熱用熱交換器12を通過した熱媒19の温度によって流路切替器13を制御せず、蓄熱用熱交換器12を通過した熱媒19の温度に基づいて利用側熱交換器14を経由しない第1の流路と利用側熱交換器14を経由する第2の流路とを切替えない。ヒートポンプ装置200の制御器141は、制御器141に有線あるいは無線の信号線で接続された入力装置142に入力された開始指示および終了指示に基づいて流路切替器13を制御する。従って、図5に示すように、制御器141はメモリなどの記憶部に流路切替温度を記憶していない。
 なお、ヒートポンプ装置200は、実施の形態1で説明したように蓄熱用熱交換器12を通過した熱媒19の温度を検出する第1温度検出器T1を備え、第1温度検出器T1が検出した熱媒19の温度を示す第1温度に基づいて、流路切替器13を切替える機能をさらに備えていてもよい。すなわち、実施の形態1で説明したヒートポンプ装置100が、本実施の形態2で説明するヒートポンプ装置200の機能をさらに備えていてもよい。
 本実施の形態2も実施の形態1と同様、蓄熱媒体29は水であって、熱利用媒体39も水である。実施の形態1と同様、加熱されて蓄熱タンク21に蓄えられた温水は、台所、洗面所、シャワーなどでの給湯だけでなく、熱利用端末31である風呂の浴槽に湯を張るためにも用いられる。また、熱利用端末31は風呂であって、熱利用媒体39である水が風呂の浴槽に蓄えられて利用される。
 図5に示すように、入力装置142は、利用側熱交換器14の利用開始を指示する開始指示および利用側熱交換器14の利用終了を指示する終了指示を制御器141に送信する指示手段(図示せず)を備えている。指示手段は、例えば、入力装置142であるリモートコントローラに設けられた、追い炊き開始ボタンや追い炊き終了ボタン、あるいは保温開始ボタンや保温終了ボタンであってよい。浴槽の追い炊きの場合には、追い炊き開始を指示する開始指示が利用側熱交換器14の利用開始を指示する開始指示であり、追い抱き終了を指示する終了指示が利用側熱交換器14の利用終了を指示する終了指示である。また、浴槽の保温の場合には、保温開始を指示する開始指示が利用側熱交換器14の利用開始を指示する開始指示であり、保温終了を指示する終了指示が利用側熱交換器14の利用終了を指示する終了指示である。また、入力装置142がHEMSコントローラである場合には、指示手段はHEMSコントローラ内に設けられたマイクロプロセッサであってもよい。ここでは、入力装置142がリモートコントローラであり、指示手段はリモートコントローラに設けられたボタンである場合について説明する。
 図6は、本発明の実施の形態2におけるヒートポンプ装置の制御動作を示すフローチャートである。図6の制御動作は、熱利用端末31である風呂の浴槽に熱利用媒体39として湯や低温の水が蓄えられている状態で、蓄熱媒体29である水を加熱して蓄熱タンク21内に蓄えている場合に、入力装置142に浴槽内の熱利用媒体39を再加熱する指示が入力された場合の制御動作である。制御器141は、入力装置142からの利用側熱交換器14の利用開始を指示する開始指示に基づいて、流路切替器13を、利用側熱交換器14を経由しない第1の流路側から、利用側熱交換器14を経由する第2の流路側に切替える。このような状況は、例えば、蓄熱タンク21内の蓄熱媒体29を加熱して熱を蓄えている際に、利用者が浴槽内の湯の温度が低いと感じて追い炊きする場合などに起こる動作である。
 まず、実施の形態1のステップS1からステップS4と同様に、ヒートポンプ装置200の制御器141は、ステップS21からステップS24で、目標蓄熱温度の決定、目標吐出温度の決定、目標熱利用媒体温度の決定、目標利用側熱交換器通過温度の決定を行う。
 次に、実施の形態1のステップS6からステップS9と同様に、ヒートポンプ装置200の制御器141は、ステップS25からステップS28で、圧縮機11と蓄熱回路20の循環ポンプ22を回転させ、流路切替器13を第1の流路に切替え配管h1eと配管h1bとを連通させ、圧縮機11の吐出側に設けられた第2温度検出器T2で検出した第2温度が目標吐出温度に近づくように圧縮機11の回転数または減圧器15の開度のいずれか一方もしくは両方を制御する。これにより、吸熱側熱交換器16から吸収した熱により蓄熱用熱交換器12の蓄熱媒体29を加熱する蓄熱動作が行われる。
 次に、ステップS29で、制御器141は、蓄熱タンク21内に設けた第4温度検出器T4で検出した第4温度に基づき、蓄熱媒体29の温度が目標蓄熱温度以上か否かを判断する。制御器141は、蓄熱媒体29の温度が目標蓄熱温度以上と判断した場合、ステップS30に進み、圧縮機11および蓄熱回路20の循環ポンプ22を停止する。これにより、実施の形態1で説明したように、蓄熱タンク21内には、蓄熱必要量を賄うことができる熱量が蓄えられることになる。
 一方、ステップS29で、蓄熱媒体29の温度が目標蓄熱温度以上ではないと判断した場合、ステップS31に進む。ステップS31で、入力装置142からの開始指示があるか否かを判断する。入力装置142からの開始指示は、例えば、利用者が入力装置142であるリモートコントローラの追い炊きボタンを押した場合に、入力装置142から制御器141に送信される。制御器141が、入力装置142からの開始指示はないと判断した場合は、制御器141による制御は、ステップS27に戻る。一方、制御器141が、入力装置142からの開始指示があると判断した場合は、ステップS32に進む。ステップS33で、制御器141は、熱利用端末31である風呂の浴槽内の水位レベルは閾値以上か否かを判断する。浴槽内の水位レベルが閾値未満の場合、制御器141による制御はステップS27に戻る。浴槽内の水位レベルが閾値以上の場合、ステップS32に進む。
 ステップS33で、制御器141は、流路切替器13を制御して、流路切替器13が、蓄熱用熱交換器12から排出された熱媒19の流路を、利用側熱交換器14を経由して減圧器15へ至る第2の流路に切替える。
 次に、実施の形態1のステップS15からステップS17と同様、ステップS34からステップS36で、制御器141は、熱利用回路30の循環ポンプ32を回転させ、圧縮機11の吐出側に設けた第2温度検出器T2で検出した第2温度が目標吐出温度に近づくように圧縮機11の回転数を制御し、ヒートポンプ回路10の利用側熱交換器14の下流側に設けた第3温度検出器T3が検出した第3温度が目標利用側熱交換器通過温度に近づくように減圧器15の開度を制御する。これにより、熱利用回路30に熱利用媒体39である水が循環し、利用側熱交換器14で熱媒19と熱利用媒体39との間の熱交換が行われる。
 この結果、圧縮機11から高温高圧の状態で吐出された熱媒19は、蓄熱用熱交換器12で放熱した後に、利用側熱交換器14でさらに放熱するため、熱媒19の放熱量が蓄熱用熱交換器12のみで放熱する場合に比べて多くなり、実施の形態1で説明したようにヒートポンプの効率低下が抑制される。
 なお、制御器141は、蓄熱回路20の循環ポンプ22の回転数および熱利用回路30の循環ポンプ32の回転数を制御し、蓄熱回路20に流れる蓄熱媒体29の流量および熱利用回路30に流れる熱利用媒体39の流量を制御している。利用者が、浴槽内の湯を追い炊きするために、入力装置142を介して入力した所望の利用温度と、熱利用端末31である風呂の浴槽内の熱利用媒体39である温水の温度との間の温度差が大きい場合などには、必要に応じて、蓄熱回路20の循環ポンプ22の回転数を低下させてよい。つまり、制御器141は、蓄熱回路20の循環ポンプ22および熱利用回路30の循環ポンプ32を制御して、蓄熱媒体29の流量と熱利用媒体39の流量との比率を変化させてよい。この場合、蓄熱回路20を循環する蓄熱媒体29の単位時間当たりの循環量が減少するため、蓄熱タンク21に単位時間当たりに蓄えられる熱量は減少するが、熱利用媒体39を加熱する熱量を増加させることができる。これにより利用者の利便性を損なうことなく、浴槽内の湯を追い炊きしつつ、蓄熱タンク21への蓄熱も継続することができる。
 次に、ステップS37で、制御器141は、入力装置142からの終了指示があるか否かを判断する。入力装置142からの終了指示は、利用者がリモートコントローラの追い炊き停止ボタンや保温停止ボタンを押した場合に、入力装置142から制御器141に送信される。制御器141が、入力装置142からの終了指示がないと判断した場合は、ステップS35に戻る。一方、制御器141が、入力装置142から終了指示があると判断した場合は、ステップS38に進む。
 ステップS38では、制御器141は熱利用回路30の循環ポンプ32を停止させる。そして、制御器141による制御は、ステップS26に戻り、制御器141は、流路切替器13を制御して、流路切替器13は蓄熱用熱交換器12を通過した熱媒19の流路を、利用側熱交換器14を経由せずに減圧器15に至る第1の流路に切替え、蓄熱運転を継続する。
 そして、ステップS29で、制御器141が蓄熱媒体29の温度が目標蓄熱温度以上であると判断すると、ステップS30で、制御器141は圧縮機11および蓄熱回路20の循環ポンプ22を停止させる。以上の動作により、蓄熱タンク21内には、蓄熱必要量を賄うことができる熱量が蓄えられることになる。
 以上のように、ヒートポンプ装置200では、蓄熱媒体29の温度が目標蓄熱温度以上となっておらず、蓄熱媒体29を加熱して蓄熱タンク21内に熱を蓄えている場合であっても、利用者が入力装置142から熱利用媒体39の加熱の開始を指示すると、制御器141は、入力装置142からの開始指示があったことを判断して流路切替器13を制御することができる。この結果、利用者は、熱利用端末31である風呂での追い炊きや保温に吸熱側熱交換器16で吸収した熱を利用したいときに利用を開始することができ、吸熱側熱交換器16で吸収した熱の利用を終了したいときに終了することができるので、ヒートポンプ装置200は利用者の利便性を損なうことがない。なお、利用者が吸熱側熱交換器16で吸収した熱を利用する場合には、利用側熱交換器14を介して熱を利用できるので、利用開始とは利用側熱交換器14の利用開始を意味する。
 また、制御器141が蓄熱回路20の循環ポンプ22の回転数と熱利用回路30の循環ポンプ32の回転数を制御するので、吸熱側熱交換器16で熱媒19が吸収した熱を、蓄熱用熱交換器12で蓄熱媒体29に放熱する量と利用側熱交換器14で熱利用媒体39に放熱する量との比を調整することができるので、利用者の利便性をさらに高めることができる。
 さらに、本実施の形態2のヒートポンプ装置200では、利用者が熱利用媒体を加熱する開始指示を入力すると、吸熱側熱交換器16で吸収した熱をヒートポンプにより蓄熱タンク21に蓄えるとともに、熱利用端末31である風呂の追い炊きなどに使用することを可能としながらも、ヒートポンプの効率低下を抑制することができる。
実施の形態3.
 図7は、本発明の実施の形態3におけるヒートポンプ装置の構成を示す模式図である。図7において、図1および図4と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1あるいは実施の形態2とは、蓄熱タンク21内に収容された蓄熱媒体29が潜熱蓄熱材を含む蓄熱媒体である点が相違している。
 なお、本実施の形態3では、蓄熱媒体29に蓄えた熱を給湯ではなくパネルヒータ26に利用し、熱利用端末31が風呂ではなく床暖房機である場合について説明するが、実施の形態1および実施の形態2で説明したように、蓄熱媒体29で蓄えた熱を給湯に利用し、熱利用端末31が風呂であってもよい。この場合、潜熱蓄熱材を含む蓄熱媒体29と熱交換を行う流路を備えた熱交換器に水を流して、この水が蓄熱媒体29の熱により加熱されて給湯されるように構成すればよい。同様に、実施の形態1および実施の形態2で説明したヒートポンプ装置においても、蓄熱媒体29で蓄熱した熱をパネルヒータや床暖房機などの暖房機具で利用してよく、熱利用端末31がパネルヒータや床暖房などの暖房機具であってもよい。本発明の実施の形態1~3に係るヒートポンプ装置は、蓄熱した熱を給湯やパネルヒータ以外の他の用途に使用するものであってよく、熱利用端末31は風呂や床暖房に限らず他の用途で熱を利用する端末であってよい。他の用途とは、パネルヒータや床暖房のように輻射熱を利用する機器であってもよく、また、例えば、空気調和機やファンヒーターのように温風を吹き出す機器であってもよい。
 図7に示すように、ヒートポンプ装置300は、ヒートポンプ回路10の蓄熱用熱交換器12が蓄熱タンク21内に設けられており、蓄熱タンク21内には、潜熱蓄熱材を含む蓄熱媒体29が設けられている。また、蓄熱タンク21内には、蓄熱タンク21とパネルヒータ26との間を循環する熱媒29aが流れる流路を有する熱交換器27が設けられている。なお、熱媒29aは、ヒートポンプ回路10を流れる熱媒19とは異なるものであって、例えば、水や不凍液であってよい。
 蓄熱タンク21内に設けられた蓄熱用熱交換器12は、内側に熱媒19が流れる流路が設けられた金属パイプの外側に蓄熱媒体29が設けられた構成の熱交換器であってよい。同様に、蓄熱タンク21内の熱交換器27は、内側に熱媒29aが流れる流路が設けられた金属パイプの外側に蓄熱媒体29が設けられた構成の熱交換器であってよい。蓄熱用熱交換器12および熱交換器27は、例えば、それぞれ金属パイプをコイル状に巻いて形成したコイル式熱交換器であってよい。
 パネルヒータ26は、熱媒29aが流れる流路を有する放熱パネルを介して、熱媒29aの熱を室内に放熱して暖房を得るものである。パネルヒータ26と蓄熱タンク21内の熱交換器27との間には循環ポンプ25が設けられている。循環ポンプ25の回転数は、制御器241によって制御されるため、蓄熱タンク21内の熱交換器27とパネルヒータ26との間を循環する熱媒29aの循環量は、制御器241によって制御される。循環ポンプ25の単位時間当たりの回転数を大きくすると、熱媒29aの循環量が多くなるので、パネルヒータ26が設置された室内への放熱量を増加させることができる。パネルヒータ26は、循環ポンプ25に接続された配管h2hと熱交換器27に接続された配管h2eとの間に、配管24aと配管24bとを介して接続されている。なお、本発明では、パネルヒータ26、配管24a、配管24bは、ヒートポンプ装置300には含まれないものとする。蓄熱タンク21内の熱交換器27とパネルヒータ26との間の配管h2eには、第6温度検出器T6が設けられている。制御器241は、第6温度検出器T6が検出した第6温度に基づいて循環ポンプ25の回転数を制御してよい。また、第6温度検出器T6は、配管h2hに設けられていてもよい。第6温度検出器T6を配管h2eに設けた場合は、パネルヒータ26に供給される熱媒29aの温度に基づいて循環ポンプ25の回転数を制御してよい。第6温度検出器T6を配管h2hに設けた場合は、パネルヒータ26から排出される熱媒29aの温度に基づいて循環ポンプ25の回転数を制御してよい。
 蓄熱タンク21内に収容された蓄熱媒体29は、潜熱蓄熱材のみ、あるいは潜熱蓄熱材と顕熱蓄熱材とが混合された蓄熱媒体である。蓄熱媒体29を構成する潜熱蓄熱材は、1種類の潜熱蓄熱材であってよく、複数種類の潜熱蓄熱材を混合したものであってもよい。ここで、潜熱蓄熱材とは、融解による固体から液体への相変化に伴う潜熱を利用して蓄熱する蓄熱材であり、顕熱蓄熱材とは、相変化を伴わず温度変化を利用して蓄熱する蓄熱材である。蓄熱材の単位体積あたりの潜熱は顕熱より大きいので、潜熱蓄熱材を用いることによってより小さな容積でより大きな熱量を蓄えることができる。従って、潜熱蓄熱材を用いることで、蓄熱タンク21を小型化することができる。蓄熱タンク21の内側には第4温度検出器T4が設けられており、第4温度検出器T4は、蓄熱媒体29の温度を示す第4温度を検出する。
 潜熱蓄熱材は、例えば、酢酸ナトリウム3水和物やチオ硫酸ナトリウム5水和物などの水和物媒体や、パラフィンなどの有機系媒体であってよい。酢酸ナトリウム3水和物の融点の一例は58℃、チオ硫酸ナトリウム5水和物の融点の一例は48℃、パラフィンの融点の一例は56℃である。蓄熱媒体29からより高い温度の熱量を取り出すには潜熱蓄熱材の融点が高い方が好ましく、給湯やパネルヒータなどのより高い温度を利用する用途の潜熱蓄熱材には、酢酸ナトリウム3水和物あるいはパラフィンが適している。また、蓄熱密度の一例は、酢酸ナトリウム3水和物が0.54MJ/Lであるのに対し、パラフィンは0.28MJ/Lであり、酢酸ナトリウム3水和物の方がパラフィンよりも蓄熱タンク21をより小型化することができるため好ましい。
 顕熱蓄熱材は、例えば、水や不凍液などの液体や、圧縮機11から吐出された熱媒19の温度よりも融点が高い固体や沸点が高い液体である。顕熱蓄熱材の単位体積あたりの蓄熱量は潜熱蓄熱材の単位体積あたりの蓄熱量より小さいので、蓄熱媒体29は、顕熱蓄熱材を含まず潜熱蓄熱材のみで構成される方が、蓄熱タンク21を小型化するためにはより好ましい。酢酸ナトリウム3水和物の場合、1kgあたりの潜熱の一例は245kJであるが、温度1Kあたりの1kgあたりの顕熱の一例は2.617kJであり、潜熱と同等の熱量を蓄えるには、酢酸ナトリウム3水和物の温度を約93K上昇させなければならない。このような高い温度上昇をヒートポンプによる加熱で得るのは困難であり、潜熱と同等の熱量を顕熱で蓄えるには、蓄熱材の体積を大きくしなければならなくなる。従って、顕熱蓄熱材の方が潜熱蓄熱材よりも大きな体積を必要とするので、潜熱蓄熱材を用いることによって蓄熱タンク21を小型化することができる。
 図8は、本発明の実施の形態3におけるヒートポンプ装置の制御器の構成を示すブロック図である。図8において、図2および図5と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。
 実施の形態2のヒートポンプ装置200と同様、入力装置242は熱利用端末31である床暖房機の利用開始を指示する開始指示ボタンと利用終了を指示する終了指示ボタンとを有している。さらに、入力装置242は、床暖房機の床暖房温度を設定する温度設定部を有していてよい。なお、床暖房機の利用開始は利用側熱交換器14の利用開始を意味し、床暖房機の利用終了は利用側熱交換器14の利用終了を意味している。
 制御器241は、記憶部に床暖房温度、室内暖房温度、蓄熱必要量を記憶している。床暖房温度は、入力装置242から入力される床暖房機の設定温度である。室内暖房温度は、パネルヒータ26の操作部などから入力されるパネルヒータ26によって暖められる部屋の設定室温である。蓄熱必要量は、パネルヒータ26で利用するために蓄える熱の必要量であり、パネルヒータ26で暖める部屋の広さの情報によって制御器241が算出する。あるいは、制御器241は、計時部で計測した時刻により蓄熱必要量を変更する。例えば、計時部で計測した時刻が夜間である場合に蓄熱必要量を高く設定し、計時部で計測した時刻が昼間である場合に蓄熱必要量を低く設定して、家庭内や地域における昼間の電力消費量を抑制するようにしてよい。夜間に蓄熱必要量を高く設定して蓄えた熱は、昼間にパネルヒータ26による暖房を通じて利用することができる。これにより電力使用量が多くなりがちな昼間の電力使用量を低減することができる。また、夜間の割安な電力料金を使用して蓄えた熱を昼間に使用し、電力料金が割高な昼間の電力使用量を削減することができ、電力料金の抑制にも貢献できる。
 次に、ヒートポンプ装置300の動作について説明する。図9は、本発明の実施の形態3におけるヒートポンプ装置の制御動作を示すフローチャートである。図9の制御動作は、熱利用媒体39の水位レベルを判断するステップが無い点と、蓄熱回路の循環ポンプの回転動作開始と停止とを行うステップが無い点とを除いて、実施の形態2の図6と同じである。熱利用端末31が床暖房機である場合には、床下に設けられた熱利用媒体39が流れる流路には、常に熱利用媒体39が封入されているため、熱利用媒体39の水位レベルを判断する必要がない。床暖房機の熱利用媒体39は、水や不凍液であってよい。ただし、熱利用端末31が風呂の浴槽である場合には、実施の形態2で説明したように水位レベルを判断するステップを設けてもよい。
 まず、制御器241は、目標蓄熱温度を決定する。目標蓄熱温度は蓄熱媒体29に含まれる潜熱蓄熱材の融点より高くなるように決定する。つまり、潜熱蓄熱材が蓄熱用熱交換器を介して流入した熱により融解するように設定する。蓄熱媒体29に含まれる潜熱蓄熱材が複数の種類からなる場合には、目標蓄熱温度が、最も融点が高い潜熱蓄熱材の融点よりも高くなるように決定するのが好ましい。例えば、目標蓄熱温度=蓄熱媒体29に含まれる潜熱蓄熱材の融点+δ、としてよく、例えば、δ=10℃であってよい。目標蓄熱温度を蓄熱媒体29に含まれる潜熱蓄熱材の融点より高く決定することで、蓄熱媒体29に蓄熱する際に、蓄熱媒体29に含まれる潜熱蓄熱材が融解して、固体から液体へと相変化し、相変化による潜熱を利用した蓄熱となるので、目標蓄熱温度が潜熱蓄熱材の融点より低い場合よりも蓄熱量を大幅に増加させることができる。また、蓄熱媒体29に複数種類の潜熱蓄熱材が含まれている場合、目標蓄熱温度を最も融点が高い潜熱蓄熱材の融点よりも高くなるように決定すると、蓄熱媒体29に含まれる全ての潜熱蓄熱材の固体から液体に相変化する際の潜熱を利用することができるので好ましい。
 次に、制御器241は、ステップS22で目標吐出温度を決定し、ステップS23で目標熱利用媒体温度を決定し、ステップS24で目標利用側熱交換器通過温度を決定する。これらの目標温度の決定方法は、実施の形態1や実施の形態2で説明した通りである。そして、制御器241は、ステップS25で圧縮機11を回転させ、ステップS26で流路切替器13を制御して熱媒19の流路を利用側熱交換器14を経由しない第1の流路に切替える。次に、ステップS27およびステップS28で圧縮機11の回転数や減圧器15の開度を制御して、圧縮機11から吐出された熱媒19の温度が目標吐出温度に近づくように制御する。
 次に、ステップS29で、制御器241は、蓄熱タンク21内に設けた第4温度検出器T4で検出した第4温度に基づき、蓄熱媒体29の温度が目標蓄熱温度以上か否かを判断する。制御器141は、蓄熱媒体29の温度が目標蓄熱温度以上であると判断した場合、ステップS30に進み、圧縮機11を停止する。これにより、実施の形態1および実施の形態2で説明したように、蓄熱タンク21内には、蓄熱必要量を賄うことができる熱量が蓄えられることになる。
 一方、ステップS29で、蓄熱媒体29の温度が目標蓄熱温度以上ではないと判断した場合、ステップS32に進む。ステップS32で、制御器241が入力装置242からの開始指示があると判断した場合、ステップS33に進む。ステップS33で、制御器141は、流路切替器13を制御して、流路切替器13が熱媒19の流路を利用側熱交換器14を経由して減圧器15へ至る第2の流路に切替える。
 次に、ステップS34からステップS36で、制御器241は、熱利用回路30の循環ポンプ32を回転させ、圧縮機11の吐出側に設けた第2温度検出器T2で検出した第2温度が目標吐出温度に近づくように圧縮機11の回転数を制御し、ヒートポンプ回路10の利用側熱交換器14の下流側に設けた第3温度検出器T3が検出した第3温度が目標利用側熱交換器通過温度に近づくように減圧器15の開度を制御する。これにより、熱利用回路30に熱利用媒体39が循環し、利用側熱交換器14で熱媒19と熱利用媒体39との間の熱交換が行われる。そして、熱媒19との熱交換で加熱された熱利用媒体39は、床下に設けられた流路を流れ、床を暖めるので床暖房が行われる。
 本実施の形態3のヒートポンプ装置300も、実施の形態1で説明したヒートポンプ装置200や実施の形態2で説明したヒートポンプ装置200と同様、圧縮機11から高温高圧の状態で吐出された熱媒19は、蓄熱用熱交換器12で放熱した後に、利用側熱交換器14でさらに放熱するため、熱媒19の放熱量が蓄熱用熱交換器12のみで放熱する場合に比べて多くなり、ヒートポンプの効率低下が抑制される。
 次に、ステップS37で、制御器241は、入力装置242からの終了指示があるか否かを判断する。制御器241が、入力装置242からの終了指示がないと判断した場合は、ステップS35に戻る。一方、制御器241が、入力装置242から終了指示があると判断した場合は、ステップS38に進む。
 ステップS38では、制御器241は熱利用回路30の循環ポンプ32を停止させる。そして、制御器141による制御は、ステップS26に戻り、制御器141は、流路切替器13を制御して、流路切替器13は熱媒19の流路を利用側熱交換器14を経由せずに減圧器15に至る第1の流路に切替え、蓄熱運転を継続する。
 そして、ステップS29で、制御器241が蓄熱媒体29の温度が目標蓄熱温度以上であると判断すると、ステップS30で、制御器241は圧縮機11を停止させる。以上の動作により、蓄熱タンク21内には、蓄熱必要量を賄うことができる熱量が蓄えられることになる。
 そして、蓄熱タンク21内の潜熱蓄熱材を含む蓄熱媒体29に蓄えられた熱は、制御器241が循環ポンプ25を回転させることでパネルヒータ26に利用される。循環ポンプ25が回転すると、熱媒29aが蓄熱タンク21内の熱交換器27に流れ、蓄熱媒体29の熱が熱媒29aに放熱される。蓄熱媒体29に含まれる潜熱蓄熱材は、放熱の際に凝固するので液体から固体に相変化する。熱媒29aは、潜熱蓄熱材が液体から固体に相変化する際の潜熱により加熱される。加熱された熱媒29aがパネルヒータ26で放熱することで、パネルヒータ26が設置された部屋を暖房することができる。
 なお、本実施の形態3では、制御器241が、入力装置242からの開始指示や終了指示により流路切替器13を制御する場合について説明したが、実施の形態1で説明したように、流路切替器13で流路を切替える流路切替温度を設定し、制御器241が、蓄熱用熱交換器12を通過した熱媒19の温度と流路切替温度とを比較して流路切替器13を制御してもよい。
 本実施の形態3では、熱利用端末31が床暖房機であり、熱利用媒体39が水の場合について説明したが、熱利用媒体39も、蓄熱媒体29同様に潜熱蓄熱材を含んでいてもよい。この場合、熱利用媒体39は、流動性を維持しつつ、融解による固体から液体への相変化に伴う潜熱を利用して蓄熱する流動性蓄熱材である。
 熱利用媒体39に流動性蓄熱材を使用する場合、床暖房機で一般的に好まれる30~35℃付近に融点を持つ流動性蓄熱材を選定すればよい。上記で述べたように、潜熱蓄熱材29の融点は56~58℃程度が望ましい。したがって、流動性蓄熱材の融点は、潜熱蓄熱材29の融点よりも低いため、実施の形態1で説明したヒートポンプ装置100や実施の形態2で説明したヒートポンプ装置200と同様、圧縮機11から高温高圧の状態で吐出された熱媒19は、蓄熱用熱交換器12で放熱した後に、利用側熱交換器14でさらに放熱するため、熱媒19の放熱量が、蓄熱用熱交換器12のみで放熱する場合に比べて多くなり、ヒートポンプの効率低下を抑制することができる。
 10 ヒートポンプ回路
 11 圧縮機
 12 蓄熱用熱交換器
 13 流路切替器
 14 利用側熱交換器
 15 減圧器
 16 吸熱側熱交換器
 19 熱媒
 20 蓄熱回路
 21 蓄熱タンク
 22 循環ポンプ
 29 蓄熱媒体
 30 熱利用回路
 31 熱利用端末
 32 循環ポンプ
 39 熱利用媒体
 41 制御器
 42 入力装置
 100、200、300 ヒートポンプ装置
 T1、T2、T3、T4、T5、T6 温度検出器

Claims (9)

  1.  流入した熱媒を膨張させて流入前より低い圧力にして排出する減圧器と、
     前記減圧器から排出された前記熱媒が流入し、前記熱媒と熱源との間で熱交換を行う吸熱側熱交換器と、
     前記吸熱側熱交換器から排出された前記熱媒を吸込み、吸込み前より高い圧力に圧縮して吐出する圧縮機と、
     前記圧縮機から吐出された前記熱媒が流入し、前記熱媒と蓄熱媒体との間で熱交換を行う蓄熱用熱交換器と、
     前記蓄熱用熱交換器から排出された前記熱媒が流入し、前記熱媒と熱利用媒体との間で熱交換を行ない、前記熱媒を前記減圧器に排出する利用側熱交換器と、
     前記蓄熱用熱交換器から排出された前記熱媒の流路を、前記利用側熱交換器を経由せずに、前記減圧器、前記吸熱側熱交換器、前記圧縮機、および前記蓄熱用熱交換器を循環する第1の流路、または、前記利用側熱交換器を経由して、前記減圧器、前記吸熱側熱交換器、前記圧縮機、および前記蓄熱用熱交換器を循環する第2の流路に切替える流路切替器と、
    を備えたヒートポンプ装置。
  2.  前記蓄熱用熱交換器を通過した前記熱媒の温度を示す第1温度を検出する第1温度検出器を有し、
     前記第1温度が前記熱利用媒体の利用温度以上となった場合に、前記流路切替器を前記第1の流路側から前記第2の流路側に切替える請求項1に記載のヒートポンプ装置。
  3.  前記流路切替器は、前記蓄熱用熱交換器と前記利用側熱交換器との間に設けられ、
     前記第1温度検出器は、前記蓄熱用熱交換器と前記流路切替器との間に設けられた請求項2に記載のヒートポンプ装置。
  4.  前記利用側熱交換器の利用開始を指示する開始指示が入力される入力装置を有し、
     前記開始指示に基づいて前記流路切替器を前記第1の流路側から前記第2の流路側に切替える請求項1に記載のヒートポンプ装置。
  5.  前記圧縮機から吐出された前記熱媒の温度を示す第2温度を検出する第2温度検出器と、前記利用側熱交換器から排出された前記熱媒の温度を示す第3温度を検出する第3温度検出器と、を有し、
     前記流路切替器を前記第1の流路側に切替えた場合、前記第2温度に基づいて前記圧縮機の回転数または前記減圧器の開度が制御され、
     前記流路切替器を前記第2の流路側に切替えた場合、前記第2温度に基づいて前記圧縮機の回転数が制御され、前記第3温度に基づいて前記減圧器の開度が制御される請求項1から4のいずれか1項に記載のヒートポンプ装置。
  6.  前記蓄熱用熱交換器は、前記蓄熱媒体が流通する蓄熱媒体用流路を有し、
     前記利用側熱交換器は、前記熱利用媒体が流通する熱利用媒体用流路を有し、
     前記蓄熱媒体用流路に接続された第1の循環ポンプと、前記熱利用媒体用流路に接続された第2の循環ポンプと、をさらに備え、
     前記流路切替器を前記第2の流路に切替えた場合に、前記第1の循環ポンプおよび前記第2の循環ポンプが制御されて、前記蓄熱媒体の流量と前記熱利用媒体の流量との比率が変化する請求項1から5のいずれか1項に記載のヒートポンプ装置。
  7.  前記蓄熱用熱交換器は、前記蓄熱媒体が収容された蓄熱タンク内に設けられ、
     前記蓄熱媒体は、前記蓄熱用熱交換器を介して流入した熱により融解する潜熱蓄熱材を含む請求項1から5のいずれか1項に記載のヒートポンプ装置。
  8.  前記潜熱蓄熱材は、酢酸ナトリウム3水和物を含む請求項7に記載のヒートポンプ装置。
  9.  前記熱利用媒体は、前記利用側熱交換器を介して流入した熱により融解する潜熱蓄熱材を含み、
     前記利用側媒体に含まれる前記潜熱蓄熱材の融点は、前記蓄熱媒体に含まれる前記潜熱蓄熱材の融点よりも低い請求項7または8に記載のヒートポンプ装置。
PCT/JP2017/041983 2017-04-19 2017-11-22 ヒートポンプ装置 WO2018193658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/486,874 US10890355B2 (en) 2017-04-19 2017-11-22 Heat pump apparatus
JP2018513891A JP6373531B1 (ja) 2017-04-19 2017-11-22 ヒートポンプ装置
CN201780089722.0A CN110546442B (zh) 2017-04-19 2017-11-22 热泵装置
EP17906167.6A EP3594589B1 (en) 2017-04-19 2017-11-22 Heat pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082928 2017-04-19
JP2017-082928 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018193658A1 true WO2018193658A1 (ja) 2018-10-25

Family

ID=63856496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041983 WO2018193658A1 (ja) 2017-04-19 2017-11-22 ヒートポンプ装置

Country Status (4)

Country Link
US (1) US10890355B2 (ja)
EP (1) EP3594589B1 (ja)
CN (1) CN110546442B (ja)
WO (1) WO2018193658A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114471400A (zh) * 2021-12-30 2022-05-13 苏州市协力化工设备有限公司 一种反应器的温度控制方法及控制系统
EP3998431A4 (en) * 2019-07-10 2022-07-20 Mitsubishi Electric Corporation HEAT RECOVERY DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111089324B (zh) * 2019-12-13 2021-10-22 宁波奥克斯电气股份有限公司 一种制热系统及制热系统的控制方法
US20240044555A1 (en) * 2021-02-04 2024-02-08 Lee Wa Wong Air Conditioning and Heat Pump System with Energy Efficient Heat Exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225539A (ja) 1985-03-30 1986-10-07 Toshiba Corp 給湯システム
JP2007192540A (ja) * 2007-04-06 2007-08-02 Matsushita Electric Ind Co Ltd ヒートポンプシステム
JP2013185741A (ja) * 2012-03-07 2013-09-19 Rinnai Corp ヒートポンプ式給湯装置
WO2016046882A1 (ja) * 2014-09-22 2016-03-31 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575325A (en) * 1948-02-14 1951-11-20 American Gas And Electric Comp Heat pump system
US4175698A (en) * 1977-11-11 1979-11-27 Tekram Associates, Inc. Method and apparatus for conservation of energy in a hot water heating system
US4155506A (en) * 1977-11-11 1979-05-22 Tekram Associates Method and apparatus for conservation of energy in a hot water heating system
US4163369A (en) * 1978-05-11 1979-08-07 Charles Owen Air-to-air heat pump
US4321797A (en) * 1978-10-06 1982-03-30 Air & Refrigeration Corp. Quick connector and shut-off valve assembly for heat recovery system
US4226606A (en) * 1978-10-06 1980-10-07 Air & Refrigeration Corp. Waste heat recovery system
US4363221A (en) * 1979-08-20 1982-12-14 Singh Kanwal N Water heating system having a heat pump
US5020721A (en) * 1989-09-19 1991-06-04 Gas Fired Products Rapid recovery gas hot water heater
JPH07229689A (ja) 1993-12-21 1995-08-29 Matsushita Electric Works Ltd 熱交換装置
US5558273A (en) * 1994-11-10 1996-09-24 Advanced Mechanical Technology, Inc. Two-pipe system for refrigerant isolation
US5918805A (en) * 1998-01-14 1999-07-06 Yankee Scientific, Inc. Self-powered space heating system
GB2339890A (en) * 1998-07-17 2000-02-09 Pichit Likitcheva Heat recovery from refrigeration and air conditioning systems
US6668567B2 (en) * 1999-09-17 2003-12-30 Robert Levenduski Thermal storage apparatus and method for air conditioning system
JP2003021428A (ja) * 2001-07-10 2003-01-24 Harman Kikaku:Kk ヒートポンプ式給湯装置
JP3742356B2 (ja) * 2002-03-20 2006-02-01 株式会社日立製作所 ヒートポンプ給湯機
US7644686B2 (en) * 2006-07-19 2010-01-12 Aos Holding Company Water heating distribution system
DE102008028178A1 (de) * 2008-05-30 2009-12-03 Konvekta Ag Klimaanlage zur Konditionierung mehrerer Fluide
JP5133321B2 (ja) 2009-10-13 2013-01-30 株式会社神戸製鋼所 蓄熱装置
KR101155497B1 (ko) * 2010-04-23 2012-06-15 엘지전자 주식회사 히트펌프식 급탕장치
KR101190492B1 (ko) * 2010-05-20 2012-10-12 엘지전자 주식회사 히트펌프 연동 급탕장치
KR101758179B1 (ko) * 2010-07-23 2017-07-14 엘지전자 주식회사 히트 펌프식 급탕장치
KR101212698B1 (ko) * 2010-11-01 2013-03-13 엘지전자 주식회사 히트 펌프식 급탕장치
US9677809B1 (en) * 2011-10-10 2017-06-13 Portland General Electric Company Plural heat pump and thermal storage system for facilitating power shaping services on the electrical power grid at consumer premises
JP5769684B2 (ja) * 2012-10-18 2015-08-26 三菱電機株式会社 ヒートポンプ装置
KR102025740B1 (ko) * 2012-10-29 2019-09-26 삼성전자주식회사 히트펌프장치
CN103090591A (zh) 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热内平衡系统
US20150267923A1 (en) * 2013-03-01 2015-09-24 Xin Fan Solar heating and central air conditioning with heat recovery system
CN104374115A (zh) * 2013-08-14 2015-02-25 开利公司 热泵系统、热泵机组及热泵系统的多功能模式控制方法
DE102014202849A1 (de) * 2014-02-17 2015-08-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Beladen eines thermischen Schichtspeichers
GB2514000B (en) * 2014-04-10 2015-03-25 Esg Pool Ventilation Ltd A fluid heating and/or cooling system and related methods
CN208443069U (zh) * 2015-01-09 2019-01-29 特灵国际有限公司 热泵系统
CN104833102A (zh) * 2015-05-22 2015-08-12 广东美的暖通设备有限公司 变频热泵热水机压缩机的频率控制方法及系统
US10433894B2 (en) * 2015-07-02 2019-10-08 Medtronic Cryocath Lp N2O liquefaction system with subcooling heat exchanger for medical device
US10345004B1 (en) * 2015-09-01 2019-07-09 Climate Master, Inc. Integrated heat pump and water heating circuit
SE541469C2 (en) * 2015-11-20 2019-10-08 Sens Geoenergy Storage Ab Methods and systems for heat pumping
SE541234C2 (en) * 2015-11-20 2019-05-07 Sens Geoenergy Storage Ab Methods and systems for heat pumping
SE540934C2 (en) * 2015-11-20 2018-12-27 Sens Geoenergy Storage Ab Methods and systems for heat pumping
US10323870B2 (en) * 2016-04-06 2019-06-18 Heatcraft Refrigeration Products Llc Optimizing liquid temperature and liquid pressure in a modular outdoor refrigeration system
US10458678B2 (en) * 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
US11029042B2 (en) * 2016-10-17 2021-06-08 Mitsubishi Electric Corporation Indoor unit for heat pump use apparatus and heat pump use apparatus including the same
WO2018185826A1 (ja) * 2017-04-04 2018-10-11 三菱電機株式会社 ヒートポンプ式給湯機の室外機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225539A (ja) 1985-03-30 1986-10-07 Toshiba Corp 給湯システム
JP2007192540A (ja) * 2007-04-06 2007-08-02 Matsushita Electric Ind Co Ltd ヒートポンプシステム
JP2013185741A (ja) * 2012-03-07 2013-09-19 Rinnai Corp ヒートポンプ式給湯装置
WO2016046882A1 (ja) * 2014-09-22 2016-03-31 三菱電機株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594589A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3998431A4 (en) * 2019-07-10 2022-07-20 Mitsubishi Electric Corporation HEAT RECOVERY DEVICE
CN114471400A (zh) * 2021-12-30 2022-05-13 苏州市协力化工设备有限公司 一种反应器的温度控制方法及控制系统
CN114471400B (zh) * 2021-12-30 2023-11-28 苏州市协力化工设备有限公司 一种反应器的温度控制方法及控制系统

Also Published As

Publication number Publication date
US20200011569A1 (en) 2020-01-09
CN110546442B (zh) 2020-09-15
CN110546442A (zh) 2019-12-06
EP3594589A4 (en) 2020-05-27
EP3594589B1 (en) 2021-06-30
EP3594589A1 (en) 2020-01-15
US10890355B2 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2018193658A1 (ja) ヒートポンプ装置
JP5073970B2 (ja) ヒートポンプ給湯床暖房装置
JP3977382B2 (ja) 貯湯式給湯装置
JP4485406B2 (ja) 貯湯式給湯装置
JP4778299B2 (ja) 貯湯式給湯装置およびその給湯混合弁の待機開度変更方法
JP3854169B2 (ja) ヒートポンプ式給湯装置
JP2004286307A (ja) 貯湯式給湯装置
KR101548073B1 (ko) 축열조와 분리된 열원의 뜨거운 열을 바로 사용하는 축열식 난방기 및 온수기
JP6373531B1 (ja) ヒートポンプ装置
JP4448488B2 (ja) 貯湯式給湯装置
JP2004197958A (ja) 貯湯式給湯装置
JP5587026B2 (ja) 風呂装置
JP2009127938A (ja) ヒートポンプ給湯機
JP2005315480A (ja) ヒートポンプ式給湯機
JP3950031B2 (ja) 貯湯式給湯装置
JP3864378B2 (ja) ヒートポンプ給湯機
JP4037781B2 (ja) 貯湯式給湯装置
JP3950032B2 (ja) 貯湯式給湯装置
JP2011127855A (ja) 貯湯式給湯装置
JP2003056905A (ja) 給湯装置
JP4284292B2 (ja) ヒートポンプ給湯装置
JP4101190B2 (ja) 貯湯式給湯装置
JP7152717B2 (ja) 給湯装置及び空調給湯設備
JP6628576B2 (ja) 暖房装置
JP2005241216A (ja) ヒートポンプ式給湯暖房装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017906167

Country of ref document: EP

Effective date: 20191010

NENP Non-entry into the national phase

Ref country code: DE