WO2016045440A1 - 一种采矿方法 - Google Patents
一种采矿方法 Download PDFInfo
- Publication number
- WO2016045440A1 WO2016045440A1 PCT/CN2015/084749 CN2015084749W WO2016045440A1 WO 2016045440 A1 WO2016045440 A1 WO 2016045440A1 CN 2015084749 W CN2015084749 W CN 2015084749W WO 2016045440 A1 WO2016045440 A1 WO 2016045440A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mining
- pit
- area
- zone
- joint
- Prior art date
Links
- 238000005065 mining Methods 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000002699 waste material Substances 0.000 claims abstract description 13
- 230000005484 gravity Effects 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000003245 coal Substances 0.000 description 27
- 230000008569 process Effects 0.000 description 5
- 239000011435 rock Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000009412 basement excavation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 235000000434 Melocanna baccifera Nutrition 0.000 description 1
- 241001497770 Melocanna baccifera Species 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002817 coal dust Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004162 soil erosion Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/32—Reclamation of surface-mined areas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/16—Methods of underground mining; Layouts therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/26—Methods of surface mining; Layouts therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C41/00—Methods of underground or surface mining; Layouts therefor
- E21C41/26—Methods of surface mining; Layouts therefor
- E21C41/28—Methods of surface mining; Layouts therefor for brown or hard coal
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F15/00—Methods or devices for placing filling-up materials in underground workings
Definitions
- This application relates to a mining method.
- the open-pit mining methods currently widely used have the advantages of sufficient resource utilization, low cost, high recovery rate, fast mining, large output, good working conditions and safe production; It is the exploitation of open-pit coal mines that is severely restricted by natural conditions.
- the process of mining not only the large-scale farmland is invaded, but also the artificial environment of the mining area is quite changed. It is concentrated in the destruction of topography and landform, heavy metal pollution, and increased soil erosion.
- underground mining is more environmentally friendly, it is more difficult to mine than the open pit mine, and the operating environment is harsh. It has higher requirements for mining equipment, operator quality and mining technology.
- permafrost is widely distributed, and its frozen soil is composed of Quaternary humus, sand and some bedrock, and the thickness will reach at least about 50-98 m, which is prone to poor engineering geological problems.
- the construction period of the well construction in this mining area will take at least 5 years, and the input cost is high, which is difficult for enterprises to maintain.
- traditional underground mining generally requires the excavation of main, auxiliary and wind wells, and the underground roadways are criss-crossed.
- the present application is directed to the problem of destructive landform and environmental pollution caused by coal mining in the prior art.
- a safe and efficient mining method is proposed.
- the mining method proposed by the present application may include: dividing the mining area into a plurality of joint mining areas; performing mining and forming pits in each of the joint mining areas; and performing well extraction and forming multiple in the slope of the mining pit The goaf roadway; and the stripping waste from the next joint mining area is backfilled into the pit of the previous joint mining area.
- the stripping waste of the first combined mining zone may be filled into the last combined mining zone after the mining work of the last combined mining zone is completed.
- the slope of the pit can be formed as a stepped platform.
- the order in which the plurality of goafs are formed may be sequential or non-sequential.
- the method may further include: processing the stripping waste into a paste, and filling the paste into the gobway by filling pump and/or gravity
- the safety angle of the slope of the pit may be no greater than about 40°.
- well mining may be performed in a manner that is end-mining.
- horizontal mining and up and down mining may be arranged according to the distribution structure of the ore layer of the associated mining area.
- the above method may further include performing surface greening after completing the backfilling of the joint mining zone.
- the abandoned rock soil and waste generated in the zone may be filled into the previous combined mining zone.
- the abandoned rock and waste generated in the zone can be filled into the first combined mining zone, and so on.
- the original landform of the previous joint mining area can be restored in time during the mining process, and trees and other vegetation can be planted in the filled joint mining area when the other areas are mined, thereby further greening and protecting the environment.
- FIG. 1 is a cross-sectional view of an exemplary mining area to which a mining method in accordance with an embodiment of the present application is applied;
- FIG. 2 is a top plan view of an exemplary mining area to which a mining method in accordance with an embodiment of the present application is applied;
- Figure 3 is a schematic view of the well mining by using the end coal mining machine
- FIG. 4 is a schematic view of a filling paste processing method according to an embodiment of the present application.
- FIG. 5 is a diagram schematically showing the sequence of hopping and filling in an established pit according to an embodiment of the present application.
- the mining area of an open pit mine is first divided into several small mining units, that is, multiple joint mining areas, and in each joint mining area, for example, excavators, mine cards, etc. are used for exposure and formation.
- Pit For example, for the minefield, the coal seam of the minefield is inclined in a V-shape in the north-south direction, and the coal belt is 1Km wide in the north and south, and the mining area of 5Km in the east and west can form the upper mouth of the open mining pit to be 600m ⁇ 600m, covering an area of 0.36km2.
- the depth of the slope is 200m
- the safety angle of the slope is 40° or not more than 40°
- the foundation pit is 120m wide.
- the slope of the pit can be formed as a stepped platform. as shown in picture 2, A specific size security platform can be built for each height drop. For example, a safety platform of 10 to 20 m wide can be built for every 10 m drop.
- the safety platform can be used to establish a transport corridor, while also preserving production operations locations for, for example, end state wells.
- the end state equipment can be placed at the front end of the mining layer to be used, and the well mining operation equipment can be used to complete the well mining work in the surrounding mine layer.
- the specific construction plan of the well mining is determined according to the area of the ore layer, the orientation of the ore layer and the dip angle of the ore layer; It can also be mined up and down, and only coal can be mined in the mining process. It should be noted that regardless of the steeply inclined coal seam or the near horizontal coal seam, each end roadway layout is mining in a near horizontal direction. The difference is that the mining position of the next lane of a roadway can be taken horizontally or vertically. The horizontal arrangement or the upper and lower arrangement mentioned here refers to the position layout of the end state. However, the mining direction in each roadway must be near-level excavation, and only the coal mining does not strip the rock when mining in Duanbang.
- each joint mining area is first open-pit mining and then end-harvest mining.
- Figure 3 shows a schematic diagram of mining using an end coal mining machine.
- the end coal mining area is used to draw a predetermined depth on the upper and lower sides of the coal seam area on a certain working platform (for example: 120m upper mining surface)
- the lower mining face is 600m).
- the stripping waste generated by the mining work in the second joint mining area such as geotechnical and waste slag, is filled into the pit of the first joint mining area, so that the original landform can be restored in time during the mining process. .
- the stripping waste of the first joint mining area is filled into the last joint mining area, thereby completely restoring the original surface appearance.
- the stripping slag of the first joint mining area can be piled up in a temporary dumping site as the backfill of the last joint mining area.
- vegetation such as trees can be planted after filling the pits.
- the stripping waste can also be processed into a paste.
- the paste is filled into the goaf through a filling pump and/or gravity.
- solid waste such as coal gangue and rock is processed into a paste slurry on the ground, and then, as shown in FIG. 4, the paste is filled into the goaf of the pit by filling pump and/or gravity.
- the paste is conveyed to the well through a pipeline, and the gob is filled in time, thereby supporting and controlling the movement of the overburden by the paste filling, thereby ensuring that the coal roadway always has a safe surrounding rock environment and improves The recovery rate of coal resources.
- paste filling is generally used in thick coal seams or inclined coal seams (considered as super thick coal).
- the horizontal thin coal seam can also be filled without filling, and the rectangular arrangement of the end state wells can be retained by temporary coal pillars and permanent coal pillars.
- the order of formation of the multiple goafs may be sequential or non-sequential.
- the mining sequence of the hopping shown in Figure 5 can be used for well mining.
- the mining method provided by the present application adopts a scheme of circulating well construction, multilateral mining, alternate backfilling, and organically combines coal mining and paste filling technology with gully mining to complete backfilling while achieving higher mine recovery rate. Greening and protecting the ecological environment of the mining area.
- the mining method provided by the present application reduces both the transport distance and the amount of excavation. Thereby reducing the production costs of mining enterprises.
- the reduction multi-well combination method can not only provide an effective technical way to crack the contradiction between resource exploitation and environmental protection, but also provide a demonstration for building an environmentally friendly mining area in the country, and a technology to promote resource development and environmental protection in China's ecologically fragile areas. Progress has important strategic implications.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Remote Sensing (AREA)
- Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Lining And Supports For Tunnels (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
- Operation Control Of Excavators (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
Description
Claims (9)
- 一种采矿方法,包括:将开采区划分为多个联采区;在每个所述联采区进行露采并形成采坑;在所述采坑的边坡进行井采并形成多个采空巷道;以及将下一联采区的剥离废弃物回填至上一个联采区的采坑中。
- 根据权利要求1所述的采矿方法,其中,当完成最后一个联采区的采矿工作后,将第一个联采区的剥离废弃物填充至所述最后一个联采区中。
- 根据权利要求1所述的采矿方法,其中,将所述采坑的边坡形成为阶梯状平台。
- 根据权利要求1所述的采矿方法,其中,所述方法还包括:将所述剥离废弃物加工成膏体,并通过填充泵和/或重力作用将所述膏体填入至所述采空巷道中。
- 根据权利要求1所述的采矿方法,其中,所述多个采空巷道的形成顺序是依次或非依次的。
- 根据权利要求1所述的采矿方法,其中,所述采坑的边坡的安全夹角不大于约40°。
- 根据权利要求1所述的采矿方法,其中,以端邦开采的方式进行所述井采。
- 根据权利要求1所述的采矿方法,其中,根据所述联采区的矿层分布结构布置水平开采和上下开采。
- 根据权利要求1-8中任一权利要求所述的采矿方法,还包括在完成联采区的回填之后进行地表绿化。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015320268A AU2015320268B2 (en) | 2014-09-23 | 2015-07-22 | Mining method |
US15/109,268 US9739146B2 (en) | 2014-09-23 | 2015-07-22 | Mining method |
CA2929663A CA2929663C (en) | 2014-09-23 | 2015-07-22 | Mining method |
EA201690486A EA029617B1 (ru) | 2014-09-23 | 2015-07-22 | Способ ведения разработки месторождений |
DE112015000180.8T DE112015000180T5 (de) | 2014-09-23 | 2015-07-22 | Bergbauverfahren |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410489128.9A CN104389606B (zh) | 2014-09-23 | 2014-09-23 | 一种基于环境保护的矿山还原式多井联采方法 |
CN201410489128.9 | 2014-09-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016045440A1 true WO2016045440A1 (zh) | 2016-03-31 |
Family
ID=52607555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/084749 WO2016045440A1 (zh) | 2014-09-23 | 2015-07-22 | 一种采矿方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9739146B2 (zh) |
CN (1) | CN104389606B (zh) |
AU (1) | AU2015320268B2 (zh) |
CA (1) | CA2929663C (zh) |
DE (1) | DE112015000180T5 (zh) |
EA (1) | EA029617B1 (zh) |
WO (1) | WO2016045440A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715503C1 (ru) * | 2019-09-25 | 2020-02-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К.Аммосова" | Способ открыто-подземной разработки пологозалегающих пластов |
CN113216972A (zh) * | 2021-05-07 | 2021-08-06 | 北方魏家峁煤电有限责任公司 | 一种基于埋藏深近水平厚煤层的半露天开采方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104389606B (zh) * | 2014-09-23 | 2015-09-09 | 海西博奥工程有限公司 | 一种基于环境保护的矿山还原式多井联采方法 |
CN106884676B (zh) * | 2017-04-19 | 2018-08-17 | 中国矿业大学 | 一种邻近露天矿的井工塌陷区治理方法 |
CN107313804B (zh) * | 2017-06-29 | 2019-05-17 | 中国矿业大学 | 一种露天煤矿端帮压煤充填综采回收方法 |
CN107654233B (zh) * | 2017-08-25 | 2019-05-28 | 张忠成 | 一种窄采区留梁露天开采工艺 |
CN108425674B (zh) * | 2018-03-27 | 2019-11-19 | 中煤科工能源投资有限公司 | 一种露天煤矿端帮煤的采煤方法 |
US10960444B2 (en) * | 2018-04-06 | 2021-03-30 | Karl William Yost | Closure methods for mines |
CN108508184B (zh) * | 2018-04-09 | 2023-08-18 | 山东科技大学 | 一种复杂条件煤层开采地表沉陷相似模拟试验装置及方法 |
CN109778825B (zh) * | 2019-01-09 | 2020-09-18 | 中国矿业大学 | 一种露天矿内排重构隔水层边界缝合方法 |
CN110644998B (zh) * | 2019-09-03 | 2020-12-15 | 中铁十九局集团矿业投资有限公司 | 一种露天采坑回填治理方法 |
CN110566207A (zh) * | 2019-09-10 | 2019-12-13 | 东北大学 | 一种露天转地下无底柱分段崩落法覆盖层全尾砂堆置方法 |
CN111396055B (zh) * | 2020-03-24 | 2021-03-30 | 中煤科工集团沈阳设计研究院有限公司 | 一种露天矿边帮压煤开采硐室布置方法 |
CN111364999A (zh) * | 2020-03-30 | 2020-07-03 | 中煤能源研究院有限责任公司 | 一种露天煤矿端帮压煤采充一体化的置换方法 |
RU2750445C1 (ru) * | 2020-11-20 | 2021-06-28 | федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") | Способ разработки обводненных месторождений полезных ископаемых |
RU2761791C1 (ru) * | 2021-04-07 | 2021-12-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный горный университет" | Способ разработки ограниченных в плане крутопадающих рудных тел |
CN113323666B (zh) * | 2021-06-29 | 2024-05-03 | 新疆天池能源有限责任公司 | 一种季节性冻土区露天煤矿靠帮开采方法 |
CN113446005B (zh) * | 2021-07-27 | 2022-04-01 | 中国矿业大学 | 一种边坡地质灾害治理与矿产资源回收方法 |
CN114032909A (zh) * | 2021-08-17 | 2022-02-11 | 国家能源投资集团有限责任公司 | 一种露天开采生态减损方法 |
CN113654424A (zh) * | 2021-09-02 | 2021-11-16 | 攀钢集团矿业有限公司 | 深凹露天矿新水平开沟方法 |
CN113877958B (zh) * | 2021-10-08 | 2023-03-03 | 中煤科工集团北京土地整治与生态修复科技研究院有限公司 | 矿区地形重塑分区及修复方法 |
CN114320298B (zh) * | 2022-01-05 | 2024-03-01 | 国家能源集团国源电力有限公司 | 采煤方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5782539A (en) * | 1995-11-16 | 1998-07-21 | Peterson; Randall D. | Wall-to-wall surface mining process |
CN102031972A (zh) * | 2009-09-25 | 2011-04-27 | 中国矿业大学(北京) | 露井联采的l型开采方法 |
CN102606161A (zh) * | 2012-03-26 | 2012-07-25 | 中钢集团马鞍山矿山研究院有限公司 | 倾斜、厚大矿床的露天地下三阶段开采方法 |
CN102606160A (zh) * | 2012-03-23 | 2012-07-25 | 中国矿业大学 | 露天矿易滑区煤炭回收方法 |
CN102644464A (zh) * | 2012-04-12 | 2012-08-22 | 东北大学 | 露天转地下矿山开采嵌入式人工境界矿柱的构建方法 |
CN103790589A (zh) * | 2014-01-22 | 2014-05-14 | 中钢集团马鞍山矿山研究院有限公司 | 露天转地下矿山的一种过渡衔接开采技术 |
CN104389606A (zh) * | 2014-09-23 | 2015-03-04 | 海西博奥工程有限公司 | 一种基于环境保护的新型矿山开采技术方案 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3775984A (en) * | 1971-08-18 | 1973-12-04 | C Livingston | Mining method and method of land reclamation |
US4007965A (en) * | 1975-07-18 | 1977-02-15 | Shuttle Jr Anthony J | Method of recovering useful minerals from subterranean deposits thereof |
US4150853A (en) | 1977-05-18 | 1979-04-24 | Mccoy Charles M | Method of strip mining |
US4219237A (en) * | 1977-09-30 | 1980-08-26 | The United States Of America As Represented By The United States Department Of Energy | Method for maximizing shale oil recovery from an underground formation |
US4453770A (en) | 1981-11-16 | 1984-06-12 | Dresser Industries, Inc. | Mining method and system |
US4589700A (en) * | 1984-02-21 | 1986-05-20 | Standard Oil Company (Indiana) | Strip-auger method of mining thin seams of hydrocarbonaceous deposits |
SU1681001A1 (ru) * | 1988-01-04 | 1991-09-30 | Белорусский филиал Всесоюзного научно-исследовательского и проектного института галургии | Способ покрыти хвостохранилищ калийного производства |
USH1584H (en) * | 1995-08-22 | 1996-08-06 | Atlantic Richfield Company | Mine tailings replacement |
RU2213224C1 (ru) | 2002-05-17 | 2003-09-27 | Красноярская государственная академия цветных металлов и золота | Способ открытой разработки месторождений полезных ископаемых |
CN101555796B (zh) * | 2009-03-15 | 2011-07-27 | 赵刚 | 急倾斜群煤层露天联合开采方法 |
CN201367917Y (zh) * | 2009-03-27 | 2009-12-23 | 袁秋新 | 冲击风压式管道排矸装置 |
RU2442896C1 (ru) * | 2010-08-31 | 2012-02-20 | Общество с ограниченной ответственностью "Экостройресурс" ООО "Экостройресурс" | Способ восстановления выработанных карьеров |
RU2471988C1 (ru) * | 2011-05-05 | 2013-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный университет" | Способ комбинированной разработки месторождений |
RU2521987C1 (ru) | 2013-04-02 | 2014-07-10 | федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" | Способ селективной отработки запасов нерабочего борта рабочей зоны карьера нагорных месторождений минерального сырья |
CN103590830B (zh) * | 2013-10-08 | 2015-04-01 | 中钢集团马鞍山矿山研究院有限公司 | 多矿体露天地下时空同步开采方法 |
CN103726850A (zh) * | 2013-10-09 | 2014-04-16 | 中国矿业大学 | 一种层状近水平矿床条区间三角矿量露天开采方法 |
CN103696773A (zh) * | 2013-12-26 | 2014-04-02 | 鞍钢集团矿业公司 | 近地表矿体的露天和坑内联合开采工艺 |
-
2014
- 2014-09-23 CN CN201410489128.9A patent/CN104389606B/zh active Active
-
2015
- 2015-07-22 WO PCT/CN2015/084749 patent/WO2016045440A1/zh active Application Filing
- 2015-07-22 EA EA201690486A patent/EA029617B1/ru unknown
- 2015-07-22 US US15/109,268 patent/US9739146B2/en active Active
- 2015-07-22 DE DE112015000180.8T patent/DE112015000180T5/de not_active Ceased
- 2015-07-22 AU AU2015320268A patent/AU2015320268B2/en active Active
- 2015-07-22 CA CA2929663A patent/CA2929663C/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5782539A (en) * | 1995-11-16 | 1998-07-21 | Peterson; Randall D. | Wall-to-wall surface mining process |
CN102031972A (zh) * | 2009-09-25 | 2011-04-27 | 中国矿业大学(北京) | 露井联采的l型开采方法 |
CN102606160A (zh) * | 2012-03-23 | 2012-07-25 | 中国矿业大学 | 露天矿易滑区煤炭回收方法 |
CN102606161A (zh) * | 2012-03-26 | 2012-07-25 | 中钢集团马鞍山矿山研究院有限公司 | 倾斜、厚大矿床的露天地下三阶段开采方法 |
CN102644464A (zh) * | 2012-04-12 | 2012-08-22 | 东北大学 | 露天转地下矿山开采嵌入式人工境界矿柱的构建方法 |
CN103790589A (zh) * | 2014-01-22 | 2014-05-14 | 中钢集团马鞍山矿山研究院有限公司 | 露天转地下矿山的一种过渡衔接开采技术 |
CN104389606A (zh) * | 2014-09-23 | 2015-03-04 | 海西博奥工程有限公司 | 一种基于环境保护的新型矿山开采技术方案 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715503C1 (ru) * | 2019-09-25 | 2020-02-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Северо-Восточный федеральный университет имени М.К.Аммосова" | Способ открыто-подземной разработки пологозалегающих пластов |
CN113216972A (zh) * | 2021-05-07 | 2021-08-06 | 北方魏家峁煤电有限责任公司 | 一种基于埋藏深近水平厚煤层的半露天开采方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104389606A (zh) | 2015-03-04 |
AU2015320268B2 (en) | 2017-08-31 |
CA2929663A1 (en) | 2016-03-31 |
EA029617B1 (ru) | 2018-04-30 |
CN104389606B (zh) | 2015-09-09 |
CA2929663C (en) | 2018-05-01 |
AU2015320268A1 (en) | 2016-06-02 |
US20160326872A1 (en) | 2016-11-10 |
US9739146B2 (en) | 2017-08-22 |
DE112015000180T5 (de) | 2016-06-30 |
EA201690486A1 (ru) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016045440A1 (zh) | 一种采矿方法 | |
CN102996131B (zh) | 一种预掘两巷前进式固体充填采煤方法 | |
CN1963149A (zh) | 建筑物下矸石置换条带煤柱的开采方法 | |
CN108915764A (zh) | 一种预留巷道胶结充填回收房式煤柱的方法 | |
CN112360462A (zh) | 短壁综采矸石充填注浆的开采工艺 | |
WO2022247176A1 (zh) | 一种充填崩落采矿法 | |
WO2014187163A1 (zh) | 一种特厚煤层倾斜分层固体充填采煤方法 | |
CN108087021A (zh) | 一种充填采煤回收遗留煤柱并控制隔水关键层稳定的方法 | |
CN103821558A (zh) | 煤矿采空区充填采矿系统及沿空留巷充填工艺 | |
CN104481536A (zh) | 控制覆岩裂隙与地表沉陷的掘采充平行作业的采煤方法 | |
JP2019531428A (ja) | 浅炭層保水採掘方法およびその応用 | |
CN102758442A (zh) | 一种土方开挖方法及明挖隧道施工方法 | |
CN109869150A (zh) | 一种矿山资源分段全采局充开采方法 | |
CN104989408A (zh) | 一种用于山区金属矿山安全高效的采矿方法 | |
CN106702182B (zh) | 一种稀土浸出液的回收系统 | |
CN105421198A (zh) | 一种露天煤矿修筑斜坡道的方法 | |
CN103388478B (zh) | 露天煤矿应用吊斗铲的运输道路形成方法 | |
CN105112652B (zh) | 一种稀土矿原地浸出母液回收渠体结构 | |
CN109899070B (zh) | 基于椭球体放矿结构的缓倾斜中厚矿体无固废充填采矿法 | |
CN1952349A (zh) | 利用矸石置换村庄下压煤的开采方法 | |
CN104088637A (zh) | 一种煤层群条件下上组浅埋残煤复采方法 | |
CN101158285A (zh) | 一种铜矿的地下开采方法 | |
CN105041315B (zh) | 一种露天转地下挂帮矿采动岩移控制方法 | |
CN114562325B (zh) | 一种基于耕地保护的矸石和超高水材料充填开采方法 | |
CN109184784A (zh) | 基于减轻采煤塌陷程度的综采煤矸石同步充填系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201690486 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120150001808 Country of ref document: DE Ref document number: 112015000180 Country of ref document: DE |
|
ENP | Entry into the national phase |
Ref document number: 2929663 Country of ref document: CA |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15844231 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015320268 Country of ref document: AU Date of ref document: 20150722 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15109268 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15844231 Country of ref document: EP Kind code of ref document: A1 |