WO2016043399A1 - 미세 유동 장치 및 미세 유동 장치의 제어설비 - Google Patents

미세 유동 장치 및 미세 유동 장치의 제어설비 Download PDF

Info

Publication number
WO2016043399A1
WO2016043399A1 PCT/KR2015/004249 KR2015004249W WO2016043399A1 WO 2016043399 A1 WO2016043399 A1 WO 2016043399A1 KR 2015004249 W KR2015004249 W KR 2015004249W WO 2016043399 A1 WO2016043399 A1 WO 2016043399A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressing member
flow path
moving
blocking
microfluidic device
Prior art date
Application number
PCT/KR2015/004249
Other languages
English (en)
French (fr)
Inventor
조윤경
김태형
김유빈
Original Assignee
국립대학법인 울산과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 울산과학기술대학교 산학협력단 filed Critical 국립대학법인 울산과학기술대학교 산학협력단
Priority to EP15801663.4A priority Critical patent/EP3020682B1/en
Priority to ES15801663T priority patent/ES2718982T3/es
Priority to CN201580001091.3A priority patent/CN106163978B/zh
Priority to US14/894,364 priority patent/US10130948B2/en
Priority to JP2016548997A priority patent/JP6192850B2/ja
Publication of WO2016043399A1 publication Critical patent/WO2016043399A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0027Structures for transforming mechanical energy, e.g. potential energy of a spring into translation, sound into translation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0026Valves using channel deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K2099/0071Microvalves with latching means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology

Definitions

  • the present invention relates to a microfluidic device for controlling fluid flow and a control device of the microfluidic device.
  • microfluidic devices perform several designated functions by controlling fluid flow through valves installed between a plurality of chambers containing a small amount of fluid.
  • Valves are one of the most important factors for fluid control in related studies that utilize microfluidics. By operating the valve, the fluid can be selectively transferred and stored, which enables the integration of various functions on a single chip. Therefore, various kinds of valve technologies utilizing pneumatic, magnetic force and wax have been developed to control microfluidic fluid.
  • a commonly used valve structure is a capillary valve that utilizes a balance of capillary and centrifugal forces generated when a fluid passes through a disk.
  • Capillary valves have the advantage of simplicity and ease of use because they utilize only the structure of the disc, but local fluid flow control is impossible because the valve can be opened and closed only by the disc speed. The disadvantage is that it cannot be reused later.
  • Wax-based valves have the advantage of local and selective microfluidic control and the ability to shut off the flow of vapor, thus facilitating reagent storage.
  • an external energy source such as a laser is required for the valve operation, reversible use is impossible, and, above all, it is difficult to integrate a reaction involving heat such as molecular diagnosis due to its high temperature.
  • valves according to the related art have big and small disadvantages in operation and control, and these disadvantages are a big problem in the development of on-site diagnosis devices requiring automation of the whole process from sample injection to result detection. Therefore, there is a need for a more improved structure of the valve in microfluidic devices.
  • the present invention provides a microfluidic device and a control device for the microfluidic device, which enable a simpler operation of a valve for adjusting the flow of a fluid.
  • the present invention also provides a microfluidic device and a control device for the microfluidic device that can be mechanized for operation of the valve.
  • the microfluidic device of the present embodiment may include a flat product having a plurality of chambers, at least one flow path connecting and connecting the chambers, and a valve for opening and closing the flow path.
  • the valve includes a blocking member for selectively blocking the flow path, a pressing member roll installed in the blocking member to move the blocking member, and the pressing member moves by pressing the blocking member by linearly reciprocating in the same direction as the external force.
  • the valve may further include a driving unit for reversibly controlling the opening and closing of the flow path by the blocking member by fixing the pressing member to the moved position or returning to the original position.
  • the pressing member may have a structure that is switched to any one of a first position for blocking the flow path or a second position for opening the flow path. May have the structure for selectively located at one of the second position for opening -, the drive section has a first position or the flow path for the flow path block wherein the pressing member. .
  • the blocking member may be made of a material having elasticity and depressed by the pressing member to be deformed to open and close the flow path.
  • the blocking member may include at least one selected from polydimethyl siloxane (PDMS), polybutadiene, butyl, polyisoprene, chloroprene, elastomeric resin, rubber, and silicone.
  • PDMS polydimethyl siloxane
  • the blocking member may have a structure that blocks the flow path by being elastically deformed when the pressing member moves to the first position.
  • the driving unit may include a fixing unit for fixing the pressing member moved to the first position or the second position by an external force, and a return unit for moving the pressing member to its original position.
  • the fixing part is disposed on the outer side of the blocking member and the housing in which the pressing member is movable, and the push bar connected to the outer end of the pressing member and extended outside the housing to apply an external force, along the direction of movement of the pressing member.
  • a first hole and a second hole formed at intervals in the housing to define a first position and a second position, and an elastic bar elastically deformable to the push bar; It may include a locking projection to be selectively caught in the two holes.
  • the locking projection may have a structure in which at least one surface forms an inclined surface along a moving direction of the pressing member.
  • the push bar may have a mark according to a push position on an outer surface of the push bar.
  • the return part may include an elastic member installed between the housing and the push bar in the housing to apply an elastic force to the push bar.
  • the return unit may be a structure for moving the pressing member by applying the elastic force of the blocking member generated while being deformed by the pressing member to the pressing member.
  • the fixing part is disposed on the outside of the blocking member and the inside of the support cylinder is installed so as to move the pressure member, the rotary cylinder connected to the outer end of the pressing member and installed rotatably in the support cylinder, the wrap around the outer end of the installation And a push bar which is extended to the outside of the supporting cylinder to apply an external force, and protrudes at intervals along the outer circumferential surface of the rotating cylinder .
  • a first latch a first latch that is alternately disposed along the inner circumferential surface of the support barrel in correspondence with the interval of the anchor and formed at intervals along the pressing member moving direction to define a first position and a second position, and wherein the latch is selectively latched.
  • the push bar may include a comb surface moving member for alternately moving to the first locking groove and the second locking groove.
  • the push bar may be formed on the outer surface of the marker according to the pressing position.
  • the return unit may include an elastic member installed between the support cylinder and the rotary cylinder in the support cylinder to apply an elastic force to the rotary cylinder.
  • the return unit may be a structure for moving the rotating cylinder by applying the elastic force of the blocking member generated while being deformed by the pressing member to the pressing member.
  • the control device of the present embodiment may include a control operation unit for opening and closing at least one of the plurality of valves provided in the microfluidic device.
  • the control operation portion is a drive button for applying an external force to the pressing member of the valve, and the vertical movement portion disposed in the vertical direction to the flat product to move the drive button up and down relative to the flat product, toward the center on the flat product
  • the controller may include a horizontal mover arranged in a horizontal direction to horizontally move the vertical mover, and a controller to control the vertical mover and the horizontal mover to move the driving button over the valve.
  • the lorler may be connected to the rotary shaft of the platform to control the amount of rotation of the platform through a motor for rotating the platform to move the selected valve among the valves provided in the platform to the drive button position.
  • the control operation unit may further include a return button provided at the vertical moving unit to separate the locking projection from the U hole or the second hole.
  • micro-fluidic device of this embodiment can be operated more conveniently through one push operation in a one-touch manner by improving the operability of the valve for controlling the flow of fluid.
  • the automation of the device can be achieved, thereby increasing the usability in various fields such as on-site diagnostic devices that require automation.
  • FIG. 1 is a schematic configuration diagram of a microfluidic device and a control device according to the present embodiment.
  • FIG. 2 is a plan view of the microfluidic device according to the present embodiment.
  • 3 A schematic diagram for explaining the operation of the valve structure and the valve ⁇ a microfluidic device according to this embodiment.
  • FIG. 4 is a schematic exploded view showing the valve structure of a microfluidic device according to another embodiment.
  • FIG. 5 is a schematic diagram illustrating an operation process of a valve according to the embodiment of FIG. 4.
  • FIG. 5 is a schematic diagram illustrating an operation process of a valve according to the embodiment of FIG. 4.
  • Figure 6 is a photograph showing a fluid flow i of a microfluidic device according to this embodiment.
  • FIG. 1 and 2 show a microfluidic device and a control arrangement according to an embodiment of the invention.
  • the microfluidic device 100 of the present embodiment includes a flat product 110 having a plurality of chambers 114 and 116, a plurality of flow passages 118 connecting the chambers 114 and 116, and each of the flow passages. And a valve 120 for opening and closing 118 to selectively communicate between the chambers 114 and 116.
  • the microfluidic device 100 may, for example, be mounted to an analysis system and used to analyze a sample.
  • the analysis system includes a motor 200 that rotates the platform of the microfluidic device, and emits light to the microfluidic device for analysis. It may be provided with a spectrometer for analyzing the light passing through the light source and the microfluidic device.
  • the analysis system detects a component according to the color of the sample changed by the reagent using a light source and a spectroscope. Different wavelengths appear in the spectrometer according to the color of the analyte, and the analyte can be detected by the detected wavelength.
  • the analysis system may further include a camera and strobe light for surveillance.
  • the analysis system may be modified into various structures according to the structure of the microfluidic device or the analysis target, and is not particularly limited.
  • the flat product 110 has a rotation core, for example, may be made of a rotatable disk shape.
  • the platform 110 may be configured by attaching two substrates to form the chambers 114 and 116 and the flow path 118.
  • a substrate disposed relatively upward along the y-axis direction is referred to as a first substrate 111
  • a substrate disposed below is referred to as a second substrate 113. do.
  • chambers 114 and 116 are formed on the inner surface of the crab 2 substrate 113 and flow paths 118 connecting the chambers are formed.
  • the first substrate 111 is bonded to the crab 2 substrate 113 to block the open upper portions of the chambers 114 and 116 and the flow path 118.
  • the chamber and the flow path may be formed on the first substrate as opposed to the above structure, and are not particularly limited.
  • the first substrate 111 and the second substrate 113 are bonded by various methods such as adhesion using an adhesive, ultrasonic welding, and laser welding to form a flat product 110.
  • the flat pain 110 may be formed of a material having chemical and biological stability and optical transparency.
  • the manufacturing substrate 111 may act as a blocking member (see 122 of FIG. 3) that elastically deforms to block the flow path 118. This will be described in more detail later.
  • the flat product 110 is divided into a plurality of regions, and each region may be provided with a microfluidic structure 112 that operates independently. Accordingly, a plurality of microfluidic structures 112 are provided in the flat product 110 to analyze a plurality of samples using one flat product 110 .
  • the microfluidic structure 112 has a chamber 114 for sample injection and a chamber for analysis. Includes a server 116. Each chamber 114, 116 is connected through a flow path 118, and a valve 120 for opening and closing the flow path 118 is installed in the flow path 118.
  • the chamber 114 for sample injection is a chamber located closest to the center of rotation of the flat product 110.
  • the chamber 116 for analysis is located farther from the center of rotation of the platform 110 than the ramber 114 for sample injection.
  • the sample to be analyzed may be injected into the chamber 114 for sample injection, and the reagent for analyzing the sample may be injected into the chamber 116 for analysis.
  • the sample stored in the chamber 114 may move to the quarter server 116 connected to the flow path by the centrifugal force.
  • a valve 120 installed between chamber 114 and chamber 116 controls the movement of the sample.
  • a control device for controlling and driving the microfluidic device 100 is disposed outside the microfluidic device 100 and is provided with at least one of the plurality of valves 120 provided in the platform 110. It includes a control operation unit 300 for opening and closing any one.
  • control operation unit 300 is a drive button 310 for applying an external force to the valve 120, and is disposed in a vertical direction to the platform 110 to drive the drive button 310 flat ( A vertical moving part 320 moving up and down relative to 110, on the platform 110 . It is arranged in a horizontal direction toward the core to control the horizontal moving part 330, the vertical moving part 320 and the horizontal moving part 330 to horizontally move the vertical moving part 320 valves the drive button 310 And controller 340 to move above 120.
  • control operation unit 300 is connected to the rotary shaft of the controller 110, the controller 340 of the platform 110 through the motor 200 for rotating the platform 110 By controlling the amount of rotation, it may be a structure for moving the selected valve 120 of the plurality of valves 120 provided in the flat 110 to the drive button 310 position.
  • the vertical moving part 320 moves the driving button 310 along the y-axis direction with respect to the platform 110 in FIG. 1.
  • the horizontal moving part 330 moves the driving button 310 along the X-axis direction in FIG. 1.
  • the vertical moving part 320 and the horizontal moving part 330 may be, for example, a rail moving structure using a moving rail and a linear motor.
  • the vertical moving part 320 and the horizontal moving part 330 may have a rectangular coordinate system.
  • Any structure surface capable of moving the driving button 310 is applicable.
  • the motor 200 moves the position of the valve 120 on the ⁇ plane of FIG. 1 by rotating the platform 110. Accordingly, the driving button 310 may be moved with respect to the valve 120 with respect to the X-axis and the y-axis, and the valve 120 may be moved with respect to the driving button 310 with respect to the z-axis. This is like moving the drive button 310 three-axis, it is possible to accurately position the drive button 310 on the valve 120 to be controlled.
  • the driving button 310 is for applying pressure by pressing the push bar (see FIGS. 3 and 4) provided in the valve 120.
  • the driving button 310 moves back and forth like a driving cylinder to move the push bar in a linear direction. It can be a structure that can be.
  • valve 120 may be mechanically operated by moving the driving button 310 to a desired position according to the control driving of the controller 340.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2, showing the structure of the valve according to the present embodiment.
  • the valve will be described with reference to FIG. 3.
  • the valve 120 is provided with a blocking member 122 for selectively blocking the flow path 118, a pressing member 124 and a pressing member 124 installed at the blocking member 122 to move the blocking member 122. It includes a drive for fixing to the moving position or to return to the original position.
  • the blocking member 122 is pressed by the pressing member 124 is elastically deformed or returned to its original state has a structure for opening and closing the flow path 118.
  • the opening structure will be described as an example.
  • the blocking member 122 may be made of a material having elasticity so as to be elastically deformable.
  • the blocking member 122 may be made of at least one material selected from an elastomeric resin such as polydimethylsiloxane (PDMS), polybutadiene, butyl, polyisoprene, chloroprene, or rubber or silicone. .
  • PDMS polydimethylsiloxane
  • polybutadiene polybutadiene
  • butyl polyisoprene
  • chloroprene or rubber or silicone.
  • the blocking member 122 is made of a crab 1 substrate 111 or It may be integrally formed on the first substrate 111. In addition to this structure, the blocking member 122 may be separately provided only in the flow path 118 of the first substrate 111.
  • the blocking member 122 is pressed while the pressing member 124 is moved by an external force and is elastically deformed to block the flow path 118.
  • the blocking member 122 opens the blocked flow path 118 while restoring the original state by its elastic return force.
  • the position where the pressing member 124 presses the blocking member 122 to elastically deform so that the flow path 118 is called a first position P1, and the home position where the pressing member 124 is returned so that the flow path 118 is opened. Is called the 2 position (P2).
  • the blocking member 122 is elastically deformed when the pressing member 124 moves to the first position P1 to block the flow path 118.
  • the pressing member 124 is a bar-shaped structure having a predetermined length.
  • the pressing member 124 is disposed on the blocking member 122 and moves along the vertical direction (y-axis direction in FIG. 3) to pressurize and deform the blocking member 122. Let's do it.
  • the pressing member 124 has a structure to press and move the blocking member 122 by linear reciprocating motion in the same direction as the direction of the external force. Accordingly, the pressing member 124 is switched to one of the first position P1 for blocking the flow path 118 or the second position P2 for opening the flow path 118. Therefore, an external force for operating the valve 120 is transmitted in series to the blocking member 122 through the pressing member 124, so that the flow passage 118 can be opened and closed more easily. In addition, the operability of the valve 120 is improved to enable the opening and closing operation of the flow path 118 more easily through one push operation in a one-touch manner.
  • the drive unit reversibly controls the opening and closing of the flow path 118 by the blocking member 12.2 by fixing the pressing member 124 to the first position P1 or returning to the second position P2 which is the original position.
  • the driving member 124 is selectively positioned in one of the crab 1 position P1 or the crab 2 position P2.
  • the drive unit is a fixed part for positioning the pressing member 124 moved to the first position (P1) or the second position (P2) by an external force, and the pressing member 124 to move distally And a return section for the purpose.
  • the fixing part is disposed outside the blocking member 122.
  • the pressing member 124 is installed to be movable, and the push bar 133 connected to the outer end of the pressing member 124 and extended outside the housing 131 to apply an external force, the pressing A first hole 135 and a crab 2 hole 137 which are formed at intervals in the housing 131 along the moving direction of the member 124 to define a first position P1 and a second position P2;
  • An elastic bar 139 that is elastically deformable to the push bar 133, protruding from the elastic bar 139 to be selectively caught by the crab 1 hole 135 or the second hole 137.
  • group 141 is elastically deformable to the push bar 133, protruding from the elastic bar 139 to be selectively caught by the crab 1 hole 135 or the second hole 137.
  • the return portion is within the housing ( 131) .
  • an elastic member 143 installed between the lower end of the housing 131 and the push bar 133 to apply an elastic force to the push bar 133.
  • the elastic member 143 may be, for example, an elastic spring.
  • the return unit does not have a separate elastic member, and the elastic member of the blocking member 122 generated while being pressed and deformed by the pressing member 124 is applied to the pressing member 124 to press the pressing member 124. ) May be moved.
  • the housing 131 may have a cylindrical shape with both ends open.
  • the housing 131 may be disposed above the blocking member 122 and coupled to the blocking member 122.
  • the pressing member 124 moves through the open lower end of the housing 131 to elastically deform the blocking member 122.
  • the push bar 133 is coupled to the upper end of the pressing member 124 is installed to protrude upward through the open upper end of the housing 131 ⁇
  • the push bar 133 is a member in contact with the external force, the pressing member ( It is directly connected to 124, and transmits the external force to the pressure member 124 as it is. Accordingly, when the push bar 133 is pressed by an external force, the pressing member 124 linearly moves in the housing 131 in the direction of the external force, thereby directly deforming the blocking member 122.
  • the push bar 133 is pressed by an external force to enter and exit the housing 131.
  • the push bar 133 has a protruding height with respect to the housing 131 according to the position of the pressing member 124. Therefore, the opening and closing state of the valve 120 can be easily confirmed from the outside through the height of the protrusion of the push bar 133 relative to the housing 131.
  • the push bar 133 may further include a mark 145 according to the push position on the outer surface. The position at which the mark 145 is formed is not hidden by the housing 131 when the push bar 133 is pressed into the housing 131, and the housing 131 when the push bar 133 returns to its original position.
  • the mark 145 is covered by the housing 131 in the state where the pressing member 124 is moved to the first position P1, which is the blocking position of the passage 118, and the pressing member 124 is covered by the passage 118.
  • the second position (P2) that is an open position may be formed in a position exposed to the outside of the housing (131).
  • the first hole 135 and the crab 2 hole 137 are formed on the side surface of the housing 131 at intervals along the y-axis direction.
  • the first hole 135 and the second hole 137 are formed along the same line along the y axis.
  • the distance between the first hole 135 and the second hole 137 is the movement range of the pressing member 124, that is, the first position P1. Define the second position P2.
  • the elastic bar 139 has a bar or rib-like structure extending upwardly from the pressing member 124 to have its own elastic force.
  • the elastic bar 139 is formed to apply an elastic force toward the inner circumferential surface of the housing 131.
  • the locking protrusion 141 is formed at one side of the elastic bar 139 at a position facing the first hole 135 based on when the pressing member 124 is pressed to reach the first position P1.
  • the blocking member 122 is elastically deformed to block the flow path 118
  • the locking projection 141 formed on the elastic bar 139 Is inserted into the first hole 135 to fix the pressing member 124 in the second position P2 with respect to the housing 131.
  • the elastic member 143 installed between the push bar 133 and the housing 131 is compressed to provide a return force necessary to return the pressing member 124 to its original position.
  • the locking projection 141 must pass between the two holes 137 in the U-hole 135 when moving the pressing member 124, so that the surface facing the second hole 137 with respect to the direction of movement It is a structure in which the inclined surface inclined at the predetermined angle was formed. Accordingly, when the locking protrusion 141 moves out of the first hole 135 as the pressing member 124 moves, the locking protrusion 141 is pushed into the housing 131 while contacting the inclined surface and the first hole U35. Spaced apart from the hole 135. In this process, the elastic bar 139, on which the locking protrusion 141 is formed, is elastically bent inward, thereby generating elastic return force.
  • the locking projection 141 When the pressing member 124 is completely moved to the second position (P2), the locking projection 141 also reaches the second hole 137 position, the elastic bar 139 is elastically curved The locking protrusion 141 is fitted into the second hole 137 while returning to the original state by the elastic return force. The locking protrusion 141 maintains an upper portion fitted to the second hole 137 of the housing 131 by the elastic force of the elastic bar 139.
  • the pressing member 124 is fixed to the second position (P2), the blocking member 122 is pressed by the pressing member 124 to block the flow path 118.
  • the pressing member 124 is returned to the second position P2 which is the original position.
  • the pressing member 124 is released and compressed by the pressing member 124.
  • the pressing member 124 is moved upward by the elastic force of the elastic member 143 that was present.
  • the pressing member 124 moves upward to reach the second position P2
  • the locking projection 141 is caught in the crab 2 hole 137 by the elastic force of the elastic bar 139 and the movement of the pressing member 124 is stopped. Is stopped.
  • the pressing member 124 is moved to its original position, the second position P2, the pressing state of the blocking member 122 is released, and the blocking member 122, which has been elastically deformed, is restored to its original state and the flow path 118 is opened. Done.
  • control operation unit 300 further includes a return button 350 provided in the vertical moving unit 320 to press the locking protrusion 141 to separate from the first hole 135.
  • the return button 350 is installed to be driven in the X-axis direction. Accordingly, the driving button 300 is driven so that the return button 350 is located in the first hole 135, and the locking protrusion 141 is caught in the first hole 135 by driving the return button 350. Can be easily released from the U-hole 135.
  • the valve 120 is a blocking member 122 for selectively blocking the flow path 118, a pressing member 124, a pressing member 124 installed in the blocking member 122 to move the blocking member 122. To fix or return to the home position Include.
  • the driving unit reversibly controls the opening and closing of the flow path 118 by the blocking member 122 by fixing the pressing member 124 to the crab 1 position P1 or returning to the original position 12 position P2.
  • the driving member causes the pressing member 124 to be selectively positioned at one of the first position P1 or the second position P2.
  • the drive unit is a fixed part for positioning the pressing member 124 moved to the first position (P1) or the second position (P2) by an external force, and the pressing member 124 is moved to the original position And a return section for the purpose.
  • the fixing part is disposed outside the blocking member 122, and the supporting member 151 has a pressing member 124 movably installed therein, and is connected to the outer end of the pressing member 124.
  • a rotary cylinder 153 which is rotatably installed inside the support cylinder 151, is installed to surround the outer end of the rotary cylinder 153, and extends outside the support cylinder 151 to apply an external force to the push bar 155.
  • a fixed clamp 157 protruding at intervals along the outer circumferential surface of the rotary cylinder 153, and alternately disposed along the inner circumferential surface of the support cylinder 151 in correspondence to the interval of the fixed clamp 157, and the pressing member 124 in a moving direction.
  • the first locking groove 161 and the second locking groove 163, which are formed at intervals along the gap to define the first position P1 and the crab second position P2, and the latch 157 is selectively engaged. It is formed along the inner leading end of the push bar 155, the clamp (157) It is in contact with the top and the inclined surface ⁇ 167 between the first locking groove 161 and the crab 2 locking groove 163 when the push bar 155 is pressed by an external force, the clamp 157 along the inclined surface 167 And a comb surface moving member 165 for alternately moving to the first locking groove 161 and the crab 2 locking groove 163.
  • the return portion is provided between the lower end of the support cylinder 151 and the rotary cylinder 153 inside the support cylinder 15 1 to provide an elastic member 169 for applying an elastic force to the rotary cylinder 153.
  • the elastic member 169 may be, for example, an elastic spring.
  • the return unit does not have a separate elastic member, and is applied to the pressing member 124 by applying the elastic force of the blocking member 122 generated while being pressed and deformed by the pressing member 124 to the rotating cylinder 153. ) May be moved.
  • the support cylinder 151 may be formed in a cylindrical shape with both ends open.
  • the support cylinder 151 is disposed above the blocking member 122 and may be coupled to the blocking member 122.
  • the pressing member 124 moves through the open lower end of the support cylinder 151 to elastically deform the blocking member 122.
  • the push bar 155 is coupled to the top of the rotary cylinder 153 is installed to protrude upward through the open ' top of the support cylinder 151.
  • the push bar 155 is a member that is in contact with an external force, is directly connected to the pressing member 124 via the rotating cylinder 153, and transmits the external force to the pressing member 124 as it is.
  • the pressing member 124 linearly moves in the support cylinder 151 in the direction of the external force, thereby directly deforming the blocking member 122.
  • the push bar 155 is pressed by an external force to enter and exit the support cylinder 151.
  • the push bar 155 has a protruding height with respect to the support cylinder 151 according to the position of the pressing member 124. Accordingly, the opening and closing state of the valve 120 can be easily confirmed from the outside through the height of the protrusion of the push bar 155 with respect to the support cylinder 151.
  • the push bar 155 may be further formed with a mark according to the push position on the outer surface of the push bar 155. ) can be formed in the supporting cylinder 151, when pressed into the cylinder does not go to the support 151, when the push bar 155 returns to its original position to be exposed to the outside of the support tube 151 shown position. That is, the mark is covered by the support cylinder 151 in the state where the pressing member 124 is moved to the first position P1, which is the blocking position of the flow passage 118, and the pressing member 124 is in the opening position of the flow passage 118. When moved to the second position (P2) it may be formed in a position exposed to the outside of the support cylinder 151.
  • the first locking groove 161 and the second locking groove 163 are alternately formed at intervals.
  • the first locking groove 161 and the second locking groove 163 has a structure in which the fastener 157 formed on the outer circumferential surface of the rotary cylinder 153 is fitted into the hook. It is blocked, and the clamp 157 is caught.
  • the rotary cylinder 153 is formed in a cylindrical shape rotatably installed in the support cylinder 151.
  • the outer circumferential surface of the rotating cylinder 153 is provided with a fixing clamp 157 to be fitted into the first locking groove 161 or the second locking groove 163.
  • the push bar 155 is coupled to the top of the rotary cylinder 153.
  • the push bar 155 is made of a cylindrical shape having an open bottom and fitted to the top of the rotary cylinder 153. remind The push bar 155 is limited in rotation relative to the support cylinder 151 so that only the movement up and down is possible.
  • the push bar 155 may be coupled to the support cylinder 151 in a splined structure, for example. Accordingly, the push bar 155 is moved only up and down with respect to the fixed support cylinder 151, and the rotary cylinder 153 is installed to rotate between the support cylinder 151 and the push bar 155.
  • the inclined surface moving member 165 for moving is formed.
  • the inclined surface moving member 165 is continuously formed at intervals along the lower end of the push bar 155.
  • the spacing of the inclined surface moving member 165 corresponds to the spacing between the first locking hook 161 and the second locking groove 163.
  • the inclined plane 167 is the inclined surface 167 is in contact with the fixing clasp 157. Accordingly, the fixing clamp 157 slides along the inclined surface 167 of the inclined surface moving member 165 and the fixing clamp 157 is moved while the rotary cylinder 153 rotates.
  • the upper end of the fixing member 157 may also be formed to be inclined at an angle to the inclined surface 167 of the inclined surface moving member 165 so that the fixing member 157 may slide more smoothly with respect to the inclined surface 167.
  • a portion between the hanging U locking groove 161 and the second locking groove 163 may also be formed to be inclined so that the fastener 157 can easily slide and move.
  • the pressure member 124 is moved to the first position P1 or the second position through the organic operation relationship between the clamp 157, the first locking groove 161, the second locking groove 163, and the inclined surface moving member 165. It becomes possible to move to (P2).
  • the inclined surface moving member 165 is formed such that the inclined surface 167 is placed between the first locking groove 161 and the second locking groove 163. Accordingly, when the inclined surface moving member 165 pushes the clamp 157 to move out of the first locking groove 161 or the second locking groove 163, between the first locking groove 161 and the second locking groove 163. The detent 157 is moved along the inclined surface 167 of the. Therefore, while the rotating cylinder 153 in which the fixing clamp 157 is formed is rotated in one direction in the supporting cylinder 151, the fixing clamp 157 is formed along the inclined surface 167 of the inclined moving member 165. In the second locking groove 163 or the 12 locking grooves 163 will be moved from the first locking groove (161). In FIG.
  • the height difference between the closed upper ends of the first locking grooves 161 and the second locking grooves 163 formed at an ivory height from the lower end of the supporting cylinder 151 along the y-axis direction is that of the pressing member 124.
  • the movement range, i.e., the first position P1 and the second position P2, is defined.
  • the closed upper end of the first locking groove 161 is formed at a height such that the upper end of the clamp 157 is caught on the basis of when the pressing member 124 is pressed to reach the first position P1.
  • the closed upper end of the second locking groove 163 is formed above the first locking groove 161 and the clamping member (124) returns to its original position and reaches the crab 2 position (P2) as a reference. 157 is formed to a height such that the top of the hook is caught.
  • the rotating cylinder 153 rotates and the fixing clamp 157 formed in the rotating cylinder 153 is moved along the inclined surface 167 of the inclined surface moving member 165, and the position of the fixing clamp 157 is roughly 12 locking grooves 163. In the first locking groove 161 is moved.
  • the pressing member 124 pressed by the rotary cylinder 153 is in a state of reaching the first position P1.
  • the pressing member 124 In the first position PI, the blocking member 122 is elastically deformed by the pressing member 124 to fill the flow path 118, and the clamp 157 is inserted into the crab 1 locking groove 161 to support the cylinder.
  • the pressing member 124 is fixed to the first position P1 with respect to 151.
  • the valve 120 of the present embodiment can open the flow path 118 by pressing the push bar 155 only once in a one-touch manner to return the pressure member 124 to its original position.
  • the cladding member 165 formed at the bottom of the push bar 155 is located in the first locking groove 161. 157) is pressed.
  • the fastener 157 is fitted into the crab 1 locking groove 161 of the support cylinder 151 extending up and down, and is pressed down along the first locking groove 161 by the pressing force of the push bar 155.
  • the rotating cylinder 153 in which the 157 is formed is moved downward.
  • the pressure member 124 When the pressure member 124 is moved to the second position P2 which is the original position, the pressing state of the blocking member 122 is released to restore the blocking member 122 that has been elastically deformed to open the flow path 118. do. As such, the valve 120 may be easily opened and closed through the one push operation.
  • FIG. 6 is a photograph showing the fluid flow in the microfluidic device 100 manufactured according to the present embodiment.
  • the valve 120 applies the same fluid flow result when the valve 120 of the structure shown in FIG. 3 is applied or the valve 120 of the structure shown in FIG. 5 is applied.
  • the microfluidic device 100 to which the valve 120 structure of FIG. 5 is applied will now be described.
  • FIGS. 6A and 6D show the valve 120 closed
  • FIGS. 6B and 6C and 6E and 6F show the valve 120 open.
  • the fluid flows into the injection chamber 114 in the microfluidic device 100 and rotates the flat 110, the fluid is transferred through the channel 118, which is a microchannel. With the valve 120 closed, fluid does not pass through the flow path 118 as shown in FIG. 6A. Thus, in the present embodiment, it can be seen that the flow of fluid is completely blocked when the valve 120 is closed.
  • valve 120 is simply in a closed state. It is switched to the open state to open the flow path 118.
  • the fluid flows through the flow path 118.
  • valve 120 When the flow path 118 is opened to contact and pressurize the valve 120 once again while the fluid is flowing, the valve 120 is simply closed due to the reversible driving. As shown in FIG. 6D, the flow of the fluid through the flow path 118 Is blocked. When the valve 120 is pressed once more in a one-touch manner, the valve 120 can be simply opened, and the fluid flows again through the flow path 118 as shown in FIGS. 6E and 6F.
  • the valve 120 is driven by one contact press according to the one-touch method, so that the opening and closing of the flow path 118 can be easily performed.
  • the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range. [Explanation of code]
  • first substrate 112 microfluidic
  • first hole 137 second hole
  • Support cylinder 153 Rotary cylinder

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

유체의 흐름을 조정하기 위한 밸브를 보다 간편하고 기계적으로 조작할 수 있도록, 복수의 챔버들이 구비된 플랫폼과, 상기 챔버들 사이를 연결하는 적어도 하나 이상의 유로, 상기 유로를 개폐하는 밸브를 포함하고, 상기 밸브는 상기 유로를 선택적으로 차단하는 차단부재, 상기 차단부재에 설치되어 차단부재를 이동시키는 가압부재를 포함하고, 상기 가압부재는 외력의 방향과 같은 방향으로 직선 왕복 운동하여 차단부재를 눌러 이동시키는 구조이고, 상기 밸브는 가압부재를 이동된 위치에 고정하거나 원위치로 복귀시켜 차단부재에 의한 유로의 개폐를 가역적으로 제어하는 구동부를 더 포함하는 미세 유동 장치를 제공한다.

Description

[명세서】
【발명의 명칭; J
미세 유동 장치 및 미세 유동 장치의 제어설비
【기술분야】
본 발명은 유체 흐름을 제어하기 위한 미세 유동 장치와 미세 유동 장치의 제어설비에 관한 것이다.
【발명의 배경이 되는 기술】
일반적으로, 미세 유동 장치는 소량의 유체를 수용하는 복수의 챔버 사이에 설치된 벨브를 통해 유체 흐름을 제어하여 여러 지정된 기능을 수행한다. 밸브는 미세유체를 활용하는 관련 연구에서 유체 제어를 위한 가장 중요한 요소 증 하나이다. 밸브의 조작을 통해 선택적으로 유체를 이송 및 저장 할 수 있으며, 이를 통해서 여러 가지 기능들을 단일 칩에 일체화 할 수 있게 된다. 따라서 공압, 자기력, 왁스 등을 활용한 다양한 종류의 벨브 기술들이 미세 유체를 제어하기 위해 개발 되어왔다.
일반적으로 사용되는 밸브 구조로, 디스크내에서 유체가 지나갈 시에 생기는 모세관 힘과 원심력의 균형을 활용한 모세관 밸브가 있다. 모세관 밸브는 디스크의 구조만을 활용하기 때문에 제작이 간단하고 사용이 쉽다는 장점이 있지만, 밸브의 개폐가 오직 디스크 회전수로만 조절이 가능하기 때문에 국소적인 유체 흐름 조절이 불가능하고, 유체가 한번 흐르고 한 뒤에 재사용이 불가능하다는 단점을 지니고 있다.
이러한 단점을 개선하고자 자성비드가 분산된 왁스를 레이저를 활용하여 선택적으로 녹이고 재결정화시켜 채널을 개폐하는 방식의 밸브가 개발되었다. 왁스를 활용한 밸브는 국소적 및 선택적인 미세 유체 제어가 가능하고 증기의 흐름을 차단 할 수 있기 때문에 시약 저장에도 용이하다는 장점이 있다. 그러나 밸브 작동을 위해 레이져와 같은 외부 에너지 자원이 필요하며, 가역적인 사용이 불가능하고, 무엇보다도 고온에 약하여 분자진단 등과 같은 열이 수반되는 반응의 일체화에는 사용이 어렵다는 단점이 있다.
또한, 왁스를 사용한 밸브의 단점을 극복하기 위해, 탄성을 갖는 물질을 활용하여 디스크 상에서 미세유체의 흐름을 조절 할 수 있는 밸브가 개발되고 있으나, 이러한 구조 역시 밸브 개폐를 위해서는 수동적으로 가압부재를 조작 해주어야 한다는 단점을 지니고 있다.
이와 같이 종래 기술에 따른 밸브들은 조작 및 제어에 크고 작은 단점들을 가지고 있으며, 이러한 단점들은 샘플 주입으로부터 결과 검출까지 전 과정의 자동화가 필요한 현장진단 디바이스 개발 등에서 큰 문제로 작용한다. 따라서 미세유동장치에서 밸브의 보다 개선된 구조가 요구된다.
【발명의 내용】
【해결하고자 하는 과제】
이에, 유체의 흐름을 조정하기 위한 밸브를 보다 간편하게 조작할 수 있도록 된 미세 유동 장치 및 미세 유동 장치의 제어 설비를 제공한다.
또한 , 밸브의 조작을 기계화할 수 있도록 된 미세 유동 장치 및 미세 유동 장치의 제어 설비를 제공한다.
【과제의 해결 수단】
본 실시예의 미세 유동 장치는 복수의 챔버들이 구비된 플랫품과, 상기 챔버들 사이를 연.결하는 적어도 하나 이상의 유로, 상기 유로를 개폐하는 밸브를 포함할 수 있다.
상기 밸브는 상기 유로를 선택적으로 차단하는 차단부재, 상기 차단부재에 설치되어 차단부재를 이동시키는 가압부재롤 포함하고, 상기 가압부재는 외력의 방향과 같은 방향으로 직선 왕복 운동하여 차단부재를 눌러 이동시키는 구조이고, 상기 밸브는 가압부재를 이동된 위치에 고정하거나 원위치로 복귀시켜 차단부재에 의한 유로의 개폐를 가역적으로 제어하는 구동부를 더 포함할 수 있다.
상기 가압부재는 유로 차단을 위한 제 1 위치 또는 유로 개방을 위한 제 2 위치중 어느 하나로 위치 전환되는 구조일 수 있다. ' 상기 구동부는 상기 가압부재를 유로 차단을 위한 제 1 위치 또는 유로— 개방을 위한 제 2 위치 중 하나에 선택적으로 위치시키는 구조일 수 있다. .
상기 차단부재는 탄성을 갖는 재질로 이루어져 가압부재에 의해 눌러져 변형되어 유로를 개폐하는 구조일 수 있다.
상기 차단부재는 폴리디메틸실록산 (polydimethyl s i loxane , PDMS) , 폴리부타디엔, 부틸, 폴리이소프렌, 클로로프렌, 탄성합성수지, 고무, 실리콘에서 선택되는 적어도 어느 하나를 포함할 수 있다. 상기 차단부재는 가압부재가 제 1 위치로 이동시 탄성 변형되어 유로를 차단하는 구조일 수 있다.
상기 구동부는 외력에 의해 상기 제 1 위치 또는 제 2 위치로 이동된 가압부재를 위치 고정하기 위한 고정부와, 상기 가압부재를 원위치로 이동시키기 위한 복귀부를 포함할 수 있다.
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 하우징과, 상기 가압부재 외측 선단에 연결되고 하우징 외부로 연장되어 외력이 가해지는 누름바, 상기 가압부재의 이동방향을 따라 하우징에 간격을 두고 형성되어 제 1 위치와 제 2 위치를 규정하는 제 1 구멍과 제 2 구멍, 상기 누름바에 탄력적으로 변형 가능하게 설치되는 탄성바, 상기 탄성바에 돌출 형성되어 상기 게 1 구멍 또는 제 2 구멍에 선택적으로 걸리도록 된 걸림돌기를 포함할 수 있다.
상기 걸림돌기는 가압부재의 이동방향을 따라 적어도 일면이 경사면을 형성한 구조일 수 있다.
상기 누름바는 외측면에 누름 위치에 따른 표식이 형성될 수 있다ᅳ 상기 복귀부는 상기 하우징 내부에서 하우.징과 누름바 사이에 설치되어 누름바에 탄성력을 인가하는 탄성부재를 포함할 수 있다.
상기 복귀부는 상기 가압부재에 의해 눌러져 변형되면서 생성된 차단부재의 탄성력을 가압부재에 인가하여 가압부재를 이동시키는 구조일 수 있다.
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 지지통과, 상기 가압부재 외측 선단에 연결되고 지지통 내부에서 회전가능하게 설치되는 회전통, 상기 회전통 외측 선단을 감싸며 설치되고 지지통 외부로 연장되어 외력이 가해지는 누름바, 상기 회전통 외주면을 따라 간격을 두고 돌출 형성되는. 고정쇠, 상기 고정쇠의 간격에 대응하여 지지통 내주면을 따라 교대로 배치되고 가압부재 이동방향을 따라 간격을 두고 형성되어 제 1 위치와 제 2 위치를 규정하며 상기 고정쇠가 선택적으로 걸리도록 된 제 1 걸림홈과 제 2 걸림홈, 상기 누름바의 내측 선단을 따라 형성되어 고정쇠 상단과 접하며 상기 게 1 걸림홈과 제 2 걸림홈 사이에서 경사면을 이루어 외력에 의해 누름바가 눌려졌을 때 상기 고정솨를 경사면을 따라 제 1 걸림홈과 제 2 걸림홈으로 교대로 이동시키기 위한 빗면이동부재를 포함할 수 있다.
상기 누름바는 외측면에 누름 위치에 따른 표식이 형성될 수 있다.
상기 복귀부는 상기 지지통 내부에서 지지통과 회전통 사이에 설치되어 회전통에 탄성력을 인가하는 탄성부재를 포함할 수 있다.
상기 복귀부는 상기 가압부재에 의해 눌러져 변형되면서 생성된 차단부재의 탄성력을 가압부재로 인가하여 회전통을 이동시키는 구조일 수 있다. 본 실시예의 제어 설비는 상기 미세 유동 장치에 구비된 복수의 밸브 중 적어도 어느 하나를 개폐 작동하기 위한 제어작등부를 포함할 수 있다.
상기 제어작동부는 상기 밸브의 가압부재에 외력을 인가하는 구동버튼과, 상기 플랫품에 수직방향으로 배치되어 구동버튼을 플랫품에 대해 상하로 이동시키는 수직이동부, 상기 플랫품 상에 중심을 향해 수평방향으로 배치되어 수직이동부를 수평이동시키는 수평이동부, 상기 수직이동부와 수평이동부를 제어하여 상기 구동버튼을 밸브 위로 이동시키는 컨트를러를 포함할 수 있다ᅳ 상기 제어작동부는 상기 컨트를러가 상기 플랫품의 회전축에 연결되어 플랫폼을 회전시키기 위한 모터를 통해 플랫폼의 회전량을 제어하여, 플랫품에 구비된 밸브 중 선택된 밸브를 구동버튼 위치로 이동시키는 구조일 수 있다. 상기 제어작동부는 상기 수직이동부에 구비되어 상기 걸림돌기를 눌러 거 U 구멍 또는 제 2 구멍에서 분리시키기 위한 복귀버튼을 더 포함할 수 있다. 【발명의 효과】
본 실시예의 미.세 유동 장치는, 유체의 흐름을 제어하는 밸브의 조작성이 개선되어 원터치 방식으로 한번의 누름 동작을 통해 보다 간편하게 조작할 수 있다.
또한, 밸브의 조작을 기계화함으로써, 장치의 자동화를 이를 수 있다ᅳ 이에, 자동화가 필요한 현장진단 디바이스 등 다양한 분야에서 활용성을 높일 수 있다.
【도면의 간단한 설명】
도 1은 본 실시예에 따른 미세 유동 장치와 제어설비의 개략적인 구성도이다.
도 2는 본 실시예에 따른 미세 유동 장치의 평면도이다. 도 3은. 본 실시예에 따른 미세 유동 장치의 밸브 구조와 밸브의 작동과정을 설명하기 위한 개략적인 도면이다.
도 4는 또다른 실시예에 따른 미세 유동 장치의 밸브 구조를 도시한 개략적인.분해도이다.
도 5는 도 4의 실시예에 따른 밸브의 작동과정을 설명하기 위한 개략적인 도면이다ᅳ
도 6은 본 실시예에 따른 미세 유동 장치의 유체 흐름을 나타낸 사진이다.
【발명을 실시하기 위한 구체적인 내용】
이하에서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는' '의 의미는 특정 특성 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및 /또는 군의 존재나 부가를 제외시키는 것은 아니다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 실시예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 이에, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1과 도 2는 본 발명의 실시예에 따른 미세 유동 장치와 제어설비를 도시하고 있다.
본 실시예의 미세 유동 장치 ( 100)는 복수의 챔버 ( 114, 116)들이 구비된 플랫품 ( 110)과, 상기 챔버 ( 114 , 116)들 사이를 연결하는 복수의 유로 ( 118), 상기 각 유로 ( 118)를 개폐하여 챔버 ( 114, 116)들 사이를 선택적으로 연통하는 밸브 ( 120)를 포함한다.
상기 미세 유동 장치 ( 100)는 예를 들어, 분석 시스템에 장착되어 시료를 분석하기 위해 사용될 수 있다. 분석 시스템은 미세 유동 장치의 플랫폼을 회전시키는 모터 (200)를 구비하며 , 분석을 위해 미세 유동 장치에 빛을 조사하는 광원 및 미세 유동 장치를 통과한 빛을 분석하는 분광기를 구비할 수 있다. 상기 분석 시스템은 광원과 분광기를 이용하여 시약에 의하여 변한 시료의 색상에 따른 성분을 검출한다. 분석 대상 물질의 색상에 따라 분광기에는 각기 다른 파장이 나타나며 검출된 파장에 의하여 분석 대상 물질을 검출할 수 있다. 또한, 분석 대상 물질의 농도가 높으면 흡광도도 이에 비례하여 증가하므로ᅳ 분광기에서 측정된 흡광도를 바탕으로 분석 물질의 농도를 검출할 수 있다. 상기 분석 시스템은 감시를 위한 카메라와 스트로브 라이트를 더 포함할 수 있다. 상기 분석 시스템은 미세 유동 장치의 구조나 분석 대상에 따라 다양한 구조로 변형가능하며, 특별히 한정되지 않는다.
상기 플랫품 (110)은 회전 증심을 가지며, 예를 들어 회전 가능한 원판 형상으로 이루어질 수 있다. 플랫품 (110)은 챔버 (114,116)와 유로 (118)를 형성하기 위해, 두 개의 기판을 부착하여 구성할 수 있다. 이하 설명의 편의를 위해, 도 3에 도시된 바와 같이, y축 방향을 따라 상대적으로 위쪽에 배치된 기판을 제 1 기판 (111)이라 하고, 아래쪽에 배치된 기판을 게 2 기판 (113)이라 한다. 본 실시예에서, 상기 게 2 기판 (113)의 내면에는 음각 형상의 유체를 수용하는 챔버 (114,116)와, 챔버를 연결하는 유로 (118)가 형성된다. 제 1 기판 (111)은 게 2 기판 (113)에 접합되어 챔버 (114,116)와 유로 (118)의 개방된 상부를 막게 된다. 물론, 상기 구조와 반대로 제 1 기판에 챔버와 유로가 형성될 수 있으며 특별히 한정되지 않는다. 상기 제 1 기판 (111)과 제 2 기판 (113)은 접착제를 이용한 접착, 초음파 융착, 레이저 융착 등 다양한 방법으로 접합되어 플랫품 (110)을 형성한다. 또한, 플랫픔 (110)은 화학적 및 생물학적 안정성과 광학적 투명성을 가지는 소재로 이루어질 수 있다.
본 실시예에서, 상기 제工 기판 (111)은 탄성적으로 변형하여 유로 (118)를 차단하는 차단부재 (도 3의 122 참조)로서 작용할 수 있다. 이에 대해서는 뒤에서 보다 상세하게 설명한다.
상기 플랫품 (110)은 복수의 영역으로 구분되며, 각 영역마다 독립적으로 작동하는 미세 유동 구조물 (112)이 마련될 수 있다. 이에 따라 플랫품 (110)에는 복수개의 미세 유동 구조물 (112)이 마련되어 하나의 플랫품 (110)을 이용하여 복수개의 시료를 분석할 수 있다.
미세 유동 구조물 (112)은 시료주입을 위한 챔버 (114)와 분석을 위한 ¾버 (116)를 포함한다. 각 챔버 (114,116)들은 유로 (118)를 통해서 연결되며 유로 (118)에는유로 (118)를 개폐하는 밸브 (120)가 설치된다.
시료주입을 위한 챔버 (114)는 플랫품 (110)의 회전 중심에서 가장 가깝게 위치하는 챔버이다. 분석을 위한 챔버 (116)는 시료주입을 위한 램버 (114)보다 플랫품 (110)의 회전 중심에서 더 멀리 배치된다. 시료주입을 위한 챔버 (114)에는 분석 대상인 시료가 주입되고, 분석을 위한 챔버 (116)에는 시료의 분석을 위한 시약이 주입될 수 있다.
플랫품 (110)이 회전하면 원심력에 의하여 챔버 (114)에 저장된 시료가 유로로 연결된 ¾버 (116)로 이동할 수 있다. 챔버 (114)와 챔버 (116) 사이에 설치된 밸브 (120)가 시료의 이동을 통제한다.
도 1에 도시된 바와 같이, 상기 미세 유동 장치 (100)를 제어 구동하기 위한 제어설비는 미세 유동 장치 (100) 외측에 배치되어 상기 플랫품 (110)에 구비된 복수의 밸브 (120) 중 적어도 어느 하나를 개폐 작동하기 위한 제어작동부 (300)를 포함한다.
본 실시예에서, 상기 제어작동부 (300)는 상기 밸브 (120)에 외력을 인가하는 구동버튼 (310)과, 상기 플랫폼 (110)에 수직방향으로 배치되어 구동버튼 (310)을 플랫품 (110)에 대해 상하로 이동시키는 수직이동부 (320), 상기 플랫품 (110) 상에 . 증심을 향해 수평방향으로 배치되어 수직이동부 (320)를 수평이동시키는 수평이동부 (330), 상기 수직이동부 (320)와 수평이동부 (330)를 제어하여 상기 구동버튼 (310)을 밸브 (120) 위로 이동시키는 컨트를러 (340)를 포함한다.
또한, 상기 제어작동부 (300)는 상기 컨트를러 (340)가 상기 플랫품 (110)의 회전축에 연결되어 플랫품 (110)을 회전시키기 위한 모터 (200)를 통해 플랫품 (110)의 회전량을 제어하여, 플랫품 (110)에 구비된 복수의 밸브 (120) 중 선택된 밸브 (120)를 구동버튼 (310) 위치로 이동시키는 구조일 수 있다.
상기 수직이동부 (320)는 도 1에서 플랫폼 (110)에 대해 y축 방향을 따라 구동버튼 (310)을 이동시키게 된다. 상기 수평이동부 (330)는 도 1에서 X축 방향을 따라 구동버튼 (310)을 이동시키게 된다. 상기 수직이동부 (320)와 수평이동부 (330)는 예를 들어, 이동레일과 리니어모터를 이용한 레일 이동 구조일 수 있다ᅳ 상기 수직이동부 (320)와 수평이동부 (330)는 직교 좌표계를 따라 구동버튼 (310)을 이동시킬 수 있는 구조면 모두 적용가능하다.
상기 모터 (200)는 플랫폼 (110)을 회전시킴으로써, 도 1의 χζ평면 상에서 벨브 (120)의 위치를 이동시키게 된다. 이에, X축과 y축에 대해서는 밸브 (120)에 대해 구동버튼 (310)을 이동시키고 z축에 대해서는 구동버튼 (310)에 대해 밸브 (120)를 이동시킬 수 있게 된다. 이는 마치 구동버튼 (310)을 3축 이동시키는 것과 같아, 구동버튼 (310)을 제어하고자 하는 밸브 (120) 상에 정확히 위치시킬 수 있게 된다.
상기 구동버튼 (310)은 밸브 (120)에 구비된 누름바 (도 3과 도 4의 참조)를 눌러 압력을 가하기 위한 것으로, 예를 들어 구동실린더와 같이 전후진하여 누름바를 직선 방향으로 이동시킬 수 있는 구조일 수 있다.
따라서, 컨트롤러 (340)의 제어 구동에 따라 구동버튼 (310)을 원하는 위치로 이동시켜 밸브 (120)를 기계적으로 조작할 수 있게 된다.
도 3은 도 2의 A-A선 단면도로, 본 실시예에 따른 밸브의 구조를 도시하고 있다. 이하, 도 3을 참조하여 상기 밸브에 대해 설명한다.
상기 밸브 (120)는 상기 유로 (118)를 선택적으로 차단하는 차단부재 (122), 상기 차단부재 (122)에 설치되어 차단부재 (122)를 이동시키는 가압부재 (124), 가압부재 (124)를 이동 위치에 고정하거나 원위치로 복귀시키는 구동부를 포함한다.
상기 차단부재 (122)는 가압부재 (124)에 의해 눌러져 탄성 변형되거나 원 상태로 복귀되어 유로 (118)를 개폐하는 구조로 되어 있다. 이하, 본 실시예에서는 도 3에 도시된 바와 같이, 가압부재 (124)에 의해 눌려져 차단부재 (122)가 탄성변형되었을 때, 유로 (118)를 차단하고, 원상태로 복귀되어 유로 (118)를 개방하는 구조를 예로서 설명한다.
상기 차단부재 (122)는 탄성 변형가능하도록 자체적으로 탄성을 갖는 재질로 이루어질 수 있다.
예를 들어, 상기 차단부재 (122)는 폴리디메틸실록산 (polydimethylsiloxane, PDMS) , 폴리부타디엔, 부틸, 폴리이소프렌, 클로로프렌 등의 탄성합성수지, 또는 고무, 실리콘에서 선택되는 적어도 어느 하나의 재질로 이루어질 수 있다.
본 실시예에서 상기 차단부재 (122)는 게 1 기판 (111)으로 이루어지거나 제 1 기판 ( 111)에 일체로 형성될 수 있다. 이러한 구조 외에 계 1 기판 ( 111)의 유로 ( 118) 부분에만 별도로 차단부재 (122)가 설치될 수 있다.
상기 차단부재 (122)는 가압부재 (124)가 외력에 의해 이동되면서 눌려져 탄성 변형되어 유로 (118)를 차단하게 된다. 그리고, 가압부재 ( 124)가 원위치로 복귀되면 차단부재 ( 122)는 자체 탄성 복귀력에 의해 원상태를 회복하면서 차단되어 있던 유로 (118)를 개방시킨다. 유로 (118)가 차단되도록 가압부재 (124)가 차단부재 ( 122)를 눌러 탄성변형시키는 위치를 제 1 위치 (P1)라 하고, 유로 (118)가 개방되도록 가압부재 ( 124)가 복귀된 원위치를 게 2 위치 (P2)라 한다.
이에, 본 실시예에서, 상기 차단부재 ( 122)는 가압부재 (124)가 제 1 위치 (P1)로 이동시 탄성 변형되어 유로 (118)를 차단하게 된다.
상기 가압부재 ( 124)는 소정의 길이를 갖는 바 형태의 구조물로, 상기 차단부재 (122) 상에 배치되며 상하방향 (도 3의 y축 방향)을 따라 이동하여 차단부재 ( 122)를 가압 변형시킨다.
본 실시예에서, 상기 가압부재 ( 124)는 외력의 방향과 같은 방향으로 직선 왕복 운동하여 차단부재 ( 122)를 눌러 이동시키는 구조로 되어 있다. 이에, 상기 가압부재 (124)는 유로 ( 118) 차단을 위한 게 1 위치 (P1) 또는 유로 (118) 개방을 위한 제 2 위치 (P2) 중에서 어느 하나로 위치 전환된다. 따라서, 밸브 (120) 작동을 위한 외력이 가압부재 (124)를 통해 차단부재 ( 122)에 직렬적으로 전달되어 보다 용이하게 유로 (118)를 개폐시킬 수 있게 된다. 또한, 밸브 ( 120)의 조작성이 개선되어 원터치 방식으로 한번의 누름 동작을 통해 보다 간편하게 유로 (118)를 개폐 작동시킬 수 있게 된다.
상기 구동부는 가압부재 ( 124)를 제 1 위치 (P1)에 고정하거나 원위치인 제 2 위치 (P2)로 복귀시켜 차단부재 (12.2)에 의한 유로 (118)의 개폐를 가역적으로 제어하게 된다. 상기 구동부에 의해 상기 가압부재 (124)는 게 1 위치 (P1) 또는 게 2 위치 (P2) 중 하나에 선택적으로 위치하게 된다.
이를 위해, 상기 구동부는 외력에 의해 상기 제 1 위치 (P1) 또는 제 2 위치 (P2)로 이동된 가압부재 (124)를 위치 고정하기 위한 고정부와, 상기 가압부재 (124)를 원위차로 이동시키기 위한 복귀부를 포함한다.
도 3에 도시된 바와 같이, 상기 고정부는 차단부재 (122) 외측에 배치되고 내부에는 가압부재 (124)가 이동가능하게 설치되는 하우징 (131)과, 상기 가압부재 (124) 외측 선단에 연결되고 하우징 (131) 외부로 연장되어 외력이 가해지는 누름바 (133), 상기 가압부재 (124)의 이동방향을 따라 하우징 (131)에 간격을 두고 형성되어 제 1 위치 (P1)와 제 2 위치 (P2)를 규정하는 제 1 구멍 (135)과 게 2 구멍 (137), 상기 누름바 (133)에 탄력적으로 변형 가능하게 설치되는 탄성바 (139), 상기 탄성바 (139)에 돌출 형성되어 상기 게 1 구멍 (135) 또는 제 2 구멍 (137)에 선택적으로 걸리도록 된 걸림돌기 (141)를 포함한다.
본 실시예에서 , 상기 복귀부는 상기 하우징 (131).부에서 하우징 (131) 하단과 누름바 (133) 사이에 설치되어 누름바 (133)에 탄성력을 인가하는 탄성부재 (143)를 포함한다. 상기 탄성부재 (143)는 예를 들어 탄성스프링일 수 있다. 상기한 구조 외에, 상기 복귀부는 별도의 탄성부재를 구비하지 않고, 상기 가압부재 (124)에 의해 눌러져 변형되면서 생성된 차단부재 (122)의 탄성력을 가압부재 (124)에 인가하여 가압부재 (124)를 이동시키는 구조일 수 있다.
상기 하우징 (131)은 양단이 개방된 원통형태로 이루어질 수 있다. 상기 하우징 (131)은 차단부재 (122) 위쪽에 배치되어 차단부재 (122)에 결합될 수 있다. 상기 하우징 (131)의 개방된 하단을 통해 가압부재 (124)가 이동하여 차단부재 (122)를 탄성 변형시키게 된다. 상기 누름바 (133)는 가압부재 (124) 상단에 결합되어 하우징 (131)의 개방된 상단을 통해 위쪽으로 돌출되도록 설치된다ᅳ 상기 누름바 (133)는 외력과 접촉되는 부재이며, 가압부재 (124)와 직결되어 있어, 외력을 그대로 가압부재 (124)에 전달한다. 이에, 외력에 의해 누름바 (133)가 눌려지면 외력의 방향대로 하우징 (131) 내에서 가압부재 (124)가 직선 이동하여 바로 차단부재 (122)를 가압 변형시키게 된다.
상기 누름바 (133)는 외력에 의해 눌려져 하우징 (131) 내부로 출입하게 된다. 상기 누름바 (133)는 가압부재 (124)의 위치에 따라 하우징 (131)에 대한 돌출 높이가 달라진다. 이에 , 하우징 (131)에 대한 상기 누름바 (133)의 돌출 높이를 통해 밸브 (120)의 개폐 상태를 외부에서 용이하게 확인할 수 있다. 밸브 (120) 개폐 상태를 보다 용이하게 확인할 수 있도록, 본 실시예에서 상기 누름바 (133)는 외측면에 누름 위치에 따른 표식 (145)이 더 형성될 수 있다. 상기 표식 (145)의 형성 위치는 누름바 (133)가 하우징 (131) 내부로 눌려졌을 때는 하우징 (131)에 가려 보이지 않고, 누름바 (133)가 원위치로 복귀되면 하우징 (131) 밖으로 노출되어 보이는 위치에 형성될 수 있다. 즉, 상기 표식 (145)은 가압부재 ( 124)를 유로 ( 118) 차단 위치인 게 1 위치 (P1)로 이동시킨 상태에서는 하우징 ( 131)에 가려지고, 가압부재 (124)가 유로 ( 118) 개방 위치인 제 2 위치 (P2)로 이동되었을 때는 하우징 (131) 외부로 노출되는 위치에 형성될 수 있다.
상기 하우징 (131)의 측면에는 제 1 구멍 (135)과 게 2 구멍 (137)이 y축 방향을 따라 간격을 두고 형성된다. 상기 제 1 구멍 (135)과 제 2 구멍 ( 137)은 y축을 따라 동일 선상을 따라 형성된다. 상기 제 1 구멍 (135)과 제 2 구멍 (137) 간의 간격은 가압부재 (124)의 이동범위 즉, 제 1 위치 (P1)와. 제 2 위치 (P2)를 규정한다.
상기 탄성바 (139)는 자체적으로 탄성력을 갖도록 가압부재 ( 124)에서 위쪽으로 길게 연장된 바 또는 리브 형태의 구조로 되어 있다. 상기 탄성바 ( 139)는 하우징 ( 131)의 내주면을 향해 탄성력을 가할 수 있도록 형성된다. 상기 걸림돌기 ( 141)는 가압부재 ( 124)가 눌려져 제 1 위치 (P1)에 도달하였을 때를 기준으로 상기 제 1 구멍 (135)과 대웅되는 위치에서 탄성바 (139) 일측에 형성된다. 이에, 가압부재 (124)가 이동되어 제 1 위치 (P1)에 도달하게 되면 차단부재 ( 122)가 탄성변형되어 유로 ( 118)를 차단하게 되고, 탄성바 (139)에 형성된 걸림돌기 (141)는 제 1 구멍 (135)에 끼워져 하우징 ( 131)에 대해 가압부재 ( 124)를 제 2 위치 (P2)에 고정시키게 된다. 이 과정에서 누름바 (133)와 하우징 (131) 사이에 설치된 탄성부재 ( 143)가 압축되면서 상기 가압부재 (124)를 원위치로 복귀시키는 데 필요한 복귀력을 제공하게 된다.
본 실시예에서, 상기 걸림돌기 ( 141)는 가압부재 ( 124) 이동시 거 U 구멍 (135)에서 게 2 구멍 (137) 사이를 지나야 하므로 , 제 2 구멍 ( 137)을 향하는 면이 이동방향에 대해 소정 각도로 기울어진 경사면을 형성한 구조로 되어 있다. 이에, 가압부재 (124) 이동에 따라 걸림돌기 (141)가 제 1 구멍 (135)을 벗어날 때 경사면과 제 1 구멍 U35)에 접하면서 걸림돌기 (141)가 하우징 ( 131) 안으로 밀려들어가 게 1 구멍 (135)에서 이격된다. 이 과정에서 걸림돌기 ( 141)가 형성된 탄성바 (139)가 안쪽으로 탄력적으로 휘어지면서 탄성복귀력이 발생된다. 가압부재 ( 124)가 완전히 제 2 위치 (P2)로 이동하게 되면 걸림돌기 (141) 역시 제 2 구멍 (137) 위치에 도달하게 되고, 탄력적으로 휘어져 있던 탄성바 ( 139)가 탄성복귀력에 의해 원상태로 복귀되면서 걸림돌기 ( 141)는 제 2 구멍 (137)에 끼워지게 된다. 상기 걸림돌기 ( 141)는 탄성바 (139)의 탄성력에 의해 하우징 ( 131)의 제 2 구멍 ( 137)에 끼워진 상좨를 유지한다. 이에 , 가압부재 (124)는 제 2 위치 (P2)에 고정되고, 차단부재 ( 122)는 가압부재 (124)에 의해 눌려져 유로 ( 118)를 차단하게 된다.
이 상태에서, 유로 (118)를 개방 작동시키기 위해서는 상기 가압부재 (124)를 원위치인 제 2 위치 (P2)로 복귀시킨다. 상기 제 1 구멍 ( 135)에 걸려 있는 걸림돌기 (141)에 외력을 가해 제 1 구멍 (135)에서 이격시켜 주게 되면, 가압부재 (124)의 고정이 해제되면서 가압부재 ( 124)에 의해 압축되어 있던 탄성부재 ( 143)의 탄성력에 의해 가압부재 ( 124)는 위로 이동하게 된다. 가압부재 ( 124)가 위로 이동하여 제 2 위치 (P2)에 이르게 되면 걸림돌기 ( 141)는 탄성바 ( 139)의 탄성력에 의해 게 2 구멍 (137)에 끼워져 걸리면서 가압부재 (124)의 이동은 정지된다. 가압부재 (124)가 원위치인 제 2 위치 (P2)로 이동되면, 차단부재 (122)에 대한 누름 상태가 해제되어 탄성변형되어 있던 차단부재 (122)가 원상태로 회복되면서 유로 (118)를 개방하게 된다.
여기서, 상기 걸림돌기 (141)를 눌러 제 1 구멍 (135)으로부터 이격시키는 외력은 본 실시예의 제어작동부 (300)를 통해 얻을 수 있다. 이를 위해, 상기 제어작동부 (300)는 상기 수직이동부 (320)에 구비되어 상기 걸림돌기 ( 141)를 눌러 제 1 구멍 ( 135)에서 분리시키기 위한 복귀버튼 (350)을 더 구비한다.
상기 복귀버튼 (350)은 X축 방향으로 구동되도록 설치된다. 이에, 상기 복귀버튼 (350)이 제 1 구멍 (135)에 위치하도록 제어작동부 (300)를 구동하고, 복귀버튼 (350)을 구동하여 제 1 구멍 (135)에 걸려 있는 걸림돌기 (141)를 거 U 구멍 (135)에서 용이하게 이탈 시킬 수 있다.
도 4와 도 5는 상기 밸브의 또다른 실시예를 도시하고 있다.
본 실시예의 밸브 ( 120)에서 구동부의 구조를 제외하고 다른 구성부는 위에서 언급한 구조와 동일하며, 이하 동일한 구성요소에 대해서는 동일한 부호를 사용하며 그 상세한 설명은 상략한다.
상기 밸브 (120)는 상기 유로 (118)를 선택적으로 차단하는 차단부재 (122), 상기 차단부재 (122)에 설치되어 차단부재 ( 122)를 이동시키는 가압부재 ( 124), 가압부재 (124)를 이동 위치에 고정하거나 원위치로 복귀시키는 구동부를 포함한다.
상기 구동부는 가압부재 (124)를 게 1 위치 (P1)에 고정하거나 원위치인 거 12 위치 (P2)로 복귀시켜 차단부재 (122)에 의한 유로 ( 118)의 개폐를 가역적으로 제어하게 된다ᅳ 상기 구동부에 의해 상기 가압부재 (124)는 게 1 위치 (P1) 또는 제 2 위치 (P2) 중 하나에 선택적으로 위치하게 된다.
이를 위해, 상기 구동부는 외력에 의해 상기 제 1 위치 (P1) 또는 제 2 위치 (P2)로 이동된 가압부재 ( 124)를 위치 고정하기 위한 고정부와, 상기 가압부재 (124)를 원위치로 이동시키기 위한 복귀부를 포함한다.
도 4에 도시된 바와 같이, 상기 고정부는 차단부재 (122) 외측에 배치되고 내부에는 가압부재 ( 124)가 이동가능하게 설치되는 지지통 (151)과, 상기 가압부재 (124) 외측 선단에 연결되고 지지통 ( 151) 내부에서 회전가능하게 설치되는 회전통 ( 153), 상기 회전통 ( 153) 외측 선단을 감싸며 설치되고 지지통 ( 151) 외부로 연장되어 외력이 가해지는 누름바 (155), 상기 회전통 (153) 외주면을 따라 간격을 두고 돌출 형성되는 고정쇠 (157), 상기 고정쇠 (157)의 간격에 대응하여 지지통 (151) 내주면을 따라 교대로 배치되고 가압부재 (124) 이동방향을 따라 간격을 두고 형성되어 제 1 위치 (P1)와 게 2 위치 (P2)를 규정하며 상기 고정쇠 ( 157)가 선택적으로 걸리도록 된 제 1 걸림홈 (161)과 제 2 걸림홈 (163), 상기 누름바 (155)의 내측 선단을 따라 형성되어 고정쇠 ( 157) 상단과 접하며 상기 제 1 걸림홈 ( 161)과 게 2 걸림홈 (163) 사이에서 경사면 Γ167)을 이루어 외력에 의해 누름바 ( 155)가 눌려졌을 때 상기 고정쇠 (157)를 경사면 (167)을 따라 제 1 걸림홈 ( 161)과 게 2 걸림홈 ( 163)으로 교대로 이동시키기 위한 빗면이동부재 ( 165)를 포함한다.
본 실시예에서, 상기 복귀부는 상기 지지통 (151) 내부에서 지지통 (151) 하단과 회전통 ( 153) 사이에 설치되어 회전통 (153)에 탄성력을 인가하는 탄성부재 (169)를 포함할 수 있다ᅳ 상기 탄성부재 (169)는 예를 들어 탄성스프링일 수 있다. 상기한 구조 외에, 상기 복귀부는 별도의 탄성부재를 구비하지 않고, 상기 가압부재 ( 124)에 의해 눌러져 변형되면서 생성된 차단부재 (122)의 탄성력을 가압부재 (124)로 인가하여 회전통 (153)을 이동시키는 구조일 수 있다.
상기 지지통 ( 151)은 양단이 개방된 원통형태로 이루어질 수 있다. 상기 지지통 ( 151)은 차단부재 ( 122) 위쪽에 배치되며 차단부재 (122)에 결합될 수 있다. 상기 지지통 (151)의 개방된 하단을 통해 가압부재 (124)가 이동하여 차단부재 (122)를 탄성 변형시키게 된다. 상기 누름바 (155)는 회전통 (153) 상단에 결합되어 지지통 (151)의 개방된' 상단을 통해 위쪽으로 돌출되도록 설치된다. 상기 누름바 (155)는 외력과 접촉되는 부재이며, 회전통 (153)을 매개로 가압부재 (124)와 직결되어 있어, 외력을 그대로 가압부재 (124)에 전달한다. 이에, 외력에 의해 누름바 (155)가 눌려지면 외력의 방향대로 지지통 (151) 내에서 가압부재 (124)가 직선 이동하여 바로 차단부재 (122)를 가압 변형시키게 된다. 상기 누름바 (155)는 외력에 의해 눌려져 지지통 (151) 내부로 출입하게 된다. 상기 누름바 (155)는 가압부재 (124)의 위치에 따라 지지통 (151)에 대한 돌출 높이가 달라진다. 이에, 지지통 (151)에 대한 상기 누름바 (155)의 돌출 높이를 통해 밸브 (120)의 개폐 상태를 외부에서 용이하게 확인할 수 있다. 밸브 (120) 개폐 상태를 보다 용이하게 확인할 수 있도록, 본 실시예에서 상기 누름바 (155)는 외측면에 누름 위치에 따른 표식이 더 형성될 수 있다ᅳ 상기 표식의 형성 위치는 누름바 (155)가 지지통 (151) 내부로 눌려졌을 때는 지지통 (151)에 가려 보이지 않고, 누름바 (155)가 원위치로 복귀되면 지지통 (151) 밖으로 노출되어 보이는 위치에 형성될 수 있다. 즉, 상기 표식은 가압부재 (124)를 유로 (118) 차단 위치인 제 1 위치 (P1)로 이동시킨 상태에서는 지지통 (151)에 가려지고, 가압부재 (124)가 유로 (118) 개방 위치인 제 2 위치 (P2)로 이동되었을 때는 지지통 (151) 외부로 노출되는 위치에 형성될 수 있다.
상기 지지통 (151)의 내주면에는 게 1 걸림홈 (161)과 제 2 걸림홈 (163)이 간격을 두고 교대로 형성된다. 상기 제 1 걸림홈 (161)과 제 2 걸림홈 (163)은 회전통 (153) 외주면에 형성된 고정쇠 (157)가 끼워져 걸리도록 된 구조로, 하단은 개방되어 고정쇠 (157)가 삽입되고 상단은 막혀져 고정쇠 (157)가 걸리도록 되어 있다.
상기 회전통 (153)은 원통형태로 이루어져 지지통 (151) 내에서 회전가능하게 설치된다. 상기 회전통 (153)의 외주면에는 상기 제 1 걸림홈 (161)이나 제 2 걸림홈 (163)에 끼워지는 고정쇠 (157)가 돌출 형성된다.
상기 회전통 (153)의 상단에 누름바 (155)가 결합된다. 상기 누름바 (155)는 하단이 개방된 원통형태로 이루어져 회전통 (153) 상단에 끼워져 설치된다. 상기 누름바 (155)는 지지통 (151)에 대해 회전이 제한되어 오직 상하로의 이동만이 가능하게 결합된다. 이를 위해, 상기 누름바 (155)는 예를 들어, 지지통 (151)과 스플라인 구조로 결합될 수 있다. 이에, 고정된 지지통 (151)에 대해 누름바 (155)는 상하로만 이동되고, 회전통 (153)은 지지통 (151)과 누름바 (155) 사이에서 회전되도록 설치된다.
상기 누름바 (155)의 하단에는 누름바 (155)의 상하 이동시 회전통 (153)의 고정쇠 (157)를 지지통 (151)의 제 1 걸림홈 (161) 또는 제 2 걸림홈 (163)으로 이동시키기 위한 빗면이동부재 (165)가 형성된다. 상기 빗면이동부재 (165)는 누름바 (155) 하단을 따라 간격을 두고 연속적으로 형성된다. 상기 빗면이동부재 (165)의 형성 간격은 상기 제 1 걸림훔 (161)과 제 2 걸림홈 (163) 사이의 간격에 대응된다.
상기 빗면이동부재 (165)는 고정쇠 (157)와의 접하는 면이 경사면 (167)을 이룬다. 이에 , 고정쇠 (157)는 빗면이동부재 (165)의 경사면 (167)을 따라 미끄러지게 되고 회전통 (153)이 회전하면서 고정쇠 (157)가 이동된다. 상기 고정쇠 (157)가 경사면 (167)에 대해 보다 원활하게 미끄러질 수 있도록 고정쇠 (157)의 상단 역시 빗면이동부재 (165)의 경사면 (167)과 대웅되는 각도로 경사지게 형성될 수 있다. 또한, 상기 거 U 걸림홈 (161)과 제 2 걸림홈 (163) 사이 부분도 고정쇠 (157)가 용이하게 미끄러져 이동할 수 있도록 경사지게 형성될 수 있다.
상기 고정쇠 (157)와 제 1 걸림홈 (161), 제 2 걸림홈 (163) 및 빗면이동부재 (165)의 유기적 작동 관계를 통해 가압부재 (124)를 제 1 위치 (P1) 또는 제 2 위치 (P2)로 이동시킬 수 있게 된다.
즉, 상기 빗면이동부재 (165)는 상기 제 1 걸림홈 (161)과게 2 걸림홈 (163) 사이에서 경사면 (167)이 놓여지도록 형성된다. 이에 상기 빗면이동부재 (165)가 고정쇠 (157)를 밀어 제 1 걸림홈 (161) 또는 계 2 걸림홈 (163) 밖으로 이동시키게 되면 제 1 걸림홈 (161)과 제 2 걸림홈 (163) 사이의 경사면 (167)을 따라 고정쇠 (157)가 이동된다. 따라서, 고정쇠 (157)가 형성된 회전통 (153)이 지지통 (151) 내에서 일방향으로 회전되면서 고정쇠 (157)는 빗면이동부재 (165)의 경사면 (167)을 따라 제 1 걸림홈 (161)에서 제 2 걸림홈 (163) 또는 거 12 걸림홈 (163)에서 게 1 걸림흠 (161)으로 이동하게 된다. 도 4에 y축 방향을 따라 지지통 (151) 하단에서부터 상아한 높이로 형성되는 상기게 1 걸림홈 (161)과 제 2 걸림홈 (163)의 막혀있는 상단간 높이차는 가압부재 (124)의 이동범위 즉, 제 1 위치 (P1)와 제 2 위치 (P2)를 규정한다.
상기 제 1 걸림홈 (161)의 막힌 상단은 가압부재 (124)가 눌려져 제 1 위치 (P1)에 도달하였을 때를 기준으로 상기 고정쇠 (157) 상단이 걸리도록 된 높이로 형성된다.
상기 제 2 걸림홈 (163)의 막힌 상단은 제 1 걸림홈 (161)보다 위쪽에 형성되며 가압부재 (124)가 원위치로 복귀하여 게 2 위치 (P2)에 도달하였을 때를 기준으로 상기 고정쇠 (157)의 상단이 걸리도록 된 높이로 형성된다.
이에 도 5에 도시된 바와 같이, 유로 (118)가 개방되어 있는 상태에서 누름바 (155)에 외력을 가해 눌러주게 되면 누름바 (155)가 직선 이동되면서 누름바 (155) 하단에 형성된 빗면이동부재 (165)가 제 2 걸림홈 (163)에 위치하고 있는 고정쇠 (157)의 상단을 가압하게 된다. 고정쇠 (157)는 상하로 연장된 지지통 (151)의 제 2 걸림홈 (163)에 끼워져 있어서 누름바 (155)의 가압력에 의해 제 2 걸림홈 (163)을 따라 아래로 눌려지고, 고정쇠 (157)가 형성된 회전통 (153)은 아래로 이동하게 된다.
회전통 (153)이 아래로 이동함에 따라 회전통 (153) 하부에 배치된 가압부재 (124)가 이동된다. 가압부재 (124)가 아래로 이동하면서 차단부재 (122)가 탄성변형된다. 이 과정에서 지지통 (151)과 회전통 (153) 사이에 설치된 탄성부재 (169)가 압축되면서 회전통 (153)에 지속적으로 탄성력을 인가하게 된다. 누름바 (155)에 밀려 고정쇠 (157)가 제 2 걸림홈 (163)의 하단을 완전히 벗어나게 되면, 고정쇠 (157)와 게 2 걸림홈 (163) 간의 간섭이 해제되면서 회전통 (153)의 회전이 가능한 상태가 된다. 이에, 탄성부재 (169)의 탄성력을 받고 있는 상태에서 고정쇠 (157)는 빗면이동부재 (165)의 경사면 (167)을 따라 미끄러지면서 희전통 (153)은 지지통 (151)에 대해 회전된다.
회전통 (153)이 회전하고 회전통 (153)에 형성된 고정쇠 (157)는 빗면이동부재 (165)의 경사면 (167)을 따라 이동되어, 고정쇠 (157)의 위치는 거 12 걸림홈 (163)에서 제 1 걸림홈 (161)으로 이동된다.
고정쇠 (157)가 제 1 걸림홈 (161)으로 이동하면 회전통 (153)에 의해 눌려지는 가압부재 (124)는 제 1 위치 (P1)에 도달한 상태가 된다. 가압부재 (124)가 제 1 위치 (PI)에 하게 되면 가압부재 (124)에 의해 차단부재 (122)가 탄성변형되어 유로 (118)를 차 하게 되고, 고정쇠 (157)는 게 1 걸림홈 (161)에 끼워져 지지통 (151)에 대해 가압부재 (124)를 제 1 위치 (P1)에 고정시키게 된다.
이 상태에서, 유로 (118)를 개방 작동시키기 위해서는 상기 가압부재 (124)를 원위치인 게 2 위치 (P2)로 복귀시킨다. 이를 위해 본 실시예의 밸브 (120)는 원터치 방식으로 상기 누름바 (155)를 단지 한번 누르는 것으로 가압부재 (124)를 원위치시켜 유로 (118)를 개방할 수 있게 된다.
즉, 누름바 (155)에 외력을 가해 눌러주게 되면 누름바 (155)가 직선 이동되면서 누름바 (155) 하단에 형성된 빗면이동부재 (165)가 제 1 걸림홈 (161)에 위치하고 있는 고정쇠 (157)의 상단을 가압하게 된다. 고정쇠 (157)는 상하로 연장된 지지통 (151)의 게 1 걸림홈 (161)에 끼워져 있어서 누름바 (155)의 가압력에 의해 제 1 걸림홈 (161)을 따라 아래로 눌려지고, 고정쇠 (157)가 형성된 회전통 (153)은 아래로 이동하게 된다.
누름바 (155)에 밀려 고정쇠 (157)가 게 1 걸림홈 (161)의 하단을 완전히 벗어나게 되면, 고정쇠 (157)와 제 1 걸림홈 (161) 간의 간섭이 해제되면서 회전통 (153)의 회전이 가능한 상태가 된다. 이에, 탄성부재 (169)의 탄성력을 받고 있는 상태에서 고정쇠 (157)는 빗면이동부재 (165)의 경사면 (167)을 따라 미끄러지면서 회전통 (153)은 지지통 (151)에 대해 회전된다. 희전통 (153)이 회전하고 회전통 (153)에 형성된 고정쇠 (157)는 빗면이동부재 (165)의 경사면 (167)을 따라 이동되어, 고정쇠 (157)의 위치는 제 1 걸람홈 (161)에서 제 2 걸림홈 (163)으로 이동된다.
고정쇠 (157)가 게 2 걸림홈 (163)으로 이동하면, 탄성부재 (169)의 탄성력을 받고 있는 회전통 (153)은 제 2 걸림홈 (163)의 상단에 고정쇠 (157)가 걸릴 때까지 위로 상승하게 된다. 회전통 (153)이 상승함에 따라 회전통 (153)에 의해 눌려져 있던 가압부재 (124)가 위로 이동된다. 고정쇠 (157)가 제 2 걸림홈 (163)을 따라 이동되어 제 2 걸림홈 (163) 상단에 걸리게 되면 가압부재 (124) 역시 위로 이동되어 제 2 위치 (P2)에 도달하게 되며 가압부재 (124)의 이동은 정지된다. 가압부재 (124)가 원위치인 제 2 위치 (P2)로 이동되면 차단부재 (122)에 대한 누름 상태가 해제되어 탄성변형되어 있던 차단부재 (122)가 원상태로 회복되면서 유로 (118)를 개방하게 된다. 이와 같이, 한번의 누룸 동작을 통해 용이하게 밸브 (120)를 구동하여 유로 (118)를 개폐할 수 있게 된다.
도 6은 본 실시예에 따른 제조된 미세 유동 장치 (100)에 있어서 유체 흐름을 나타낸 사진이다. 도 6의 미세 유동 장치 (100)에서 밸브 (120)는 도 3에 도시된 구조의 밸브 (120)를 적용하거나 또는 도 5에 도시된 구조의 밸브 (120)를 적용한 경우 모두 동일한 유체 흐름 결과를 얻을 수 있었으며, 이하, 도 5의 밸브 (120) 구조를 적용한 미세 유동장치 (100)에 대해 설명한다.
도 6a와 도 6d는 밸브 (120)가 닫혀진 상태이며, 도 6b와 도 6c 및 도 6e와 도 6f는 밸브 (120)가 개방된 상태이다.
상기 미세 유동 장치 (100)에서 유체를 주입 챔버 (114)에 주입 후 플랫품 (110)을 회전시키게 되면 유체는 미세 채널인 유로 (118)를 통해 이송된다. 밸브 (120)가 닫혀진 상태에서는 도 6a에 나타난 바와 같이 유체는 유로 (118)를 통과하지 못한다. 이에ᅳ 본 실시예에서 밸브 (120)가 닫혀졌을 때 유체의 흐름이 완전히 차단됨을 알 수 있다.
이 후 제어작동부 (300)의 구동버튼 (310)을 작동하여 밸브 (120)를 원터치 방식으로 한번와 누룸 압력을 인가하여 밸브 (120)를 작동하게 되면, 간단하게 밸브 (120)가 닫힘 상태에서 개방 상태로 전환되어 유로 (118)를 개방시키게 된다. 이에, 도 6b와 도 6c에 나타난 바와 같이, 유체는 유로 (118)를 통해 흐르게 된다.
유로 (118)가 개방되어 유체가 흐르는 상태에서 다시 한번 밸브 (120)를 접촉 가압하게 되면 가역적 구동으로 인해 밸브 (120)는 간단히 닫혀져 도 6d에 나타난 바와 같이 유로 (118)를 통한 유체의 흐름은 차단된다. 다시 밸브 (120)를 원터치 방식으로 한번 더 눌러주게 되면 밸브 (120)가 간단하게 개방작동되어 도 6e와 도 6f에서 보듯이 유로 (118)를 통해 유체가 다시 흐름을 알 수 있다.
이와 같이 , 본 실시예에 따르면 원터치 방식에 따른 한번의 접촉 가압에 의해 밸브 (120)가 구동되어 유로 (118)의 개폐를 용이하게 수행할 수 있게 된다. 상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명와 범위에 속하는 것은 당연하다. 【부호의 설명】
111 : 제 1 기판 112 : 미세 유동
113 : 제 2 기판 114,116 : 챔버
118 : 유로 120 : 밸브
.122 : 차단부재 124 : 가압부재
131 : 하우징 133,155 : 누름바
135 : 제 1 구멍 137 : 제 2 구멍
139 : 탄성바 141 : 걸림돌기
143, 169 : 탄성부재 145, 170 : 표식
151 : 지지통 153 : 회전통
157 : 고정쇠 161 : 게 1 걸림홈
163 : 제 2 걸림홈 165 : 빗면이동부재
167 : 경사면

Claims

【특허청구범위】
【청구항 11
복수의 챔버들이 구비된 플랫품과, 상기 챔버들 사이를 연결하는 적어도 하나 이상의 유로, 상기 유로를 개폐하는 밸브를 포함하고,
상기 밸브는 상기 유로를 선택적으로 차단하는 차단부재, 상기 차단부재에 설치되어 차단부재를 이동시키는 가압부재를 포함하고,
상기 가압부재는 외력의 방향과 같은 방향으로 직선 왕복 운동하여 차단부재를 눌러 이동시키는 구조이고,
상기 밸브는 가압부재를 이동된 위치에 고정하거나 원위치로 복귀시켜 차단부재에 의한 유로의 개폐를 가역적으로 제어하는 구동부를 더 포함하는 미세 유동 장치 .
【청구항 2]
게 1 항에 있어서, ,
상기 가압부재는 유로 차단을 위한 게 1 위치 또는 유로 개방을 위한 제 2 위치중 어느 하나로 위치 전환되는 구조의 미세 유동 장치.
【청구항 3】
제 2 항에 있어서,
상기 구동부는 상기 가압부재를 유로 차단을 위한 제 1 위치 또는 유로 개방을 위한 제 2 위치 중 하나에 선택적으로 위치시키는 구조의 미세 유동 장치.
【청구항 4】
제 3 항에 있어서,
상기 차단부재는 탄성을 갖는 재질로 이루어져 가압부재에 의해 눌러져 변형되어 유로를 개폐하는 구조의 미세 유동 장치 .
【청구항 5]
제 4항에 있어서,
상기 차단부재는 폴리디메틸실록산 (polydimethyl si loxane , PDMS) , 폴리부타디엔, 부틸, 폴리이소프렌, 클로로프렌, 탄성합성수지, 고무, 실리콘에서 선택되는 적.어도 어느 하나를 포함하는 미세 유동 장치.
【청구항 6】
제 4 항에 있어서, 상기 차단부재는 가압부재가 제 1 위치로 이동시 탄성 변형되어 유로를 차단하는 구조의 미세 유동 장치 .
【청구항 71
제 2 항 내지 제 6 항 중 어느 한 항에 있어서,
상기 구동부는 외력에 의해 상기 제 1 위치 또는 게 2 위치로 이동된 가압부재를 위치 고정하기 위한 고정부와, 상기 가압부재를 원위치로 이동시키기 위한 복귀부를 포함하는 미세 유동 장치 .
【청구항 8】
제 7 항에 있어서,
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 하우징과, 상기 가압부재 외측 선단에 연결되고 하우징 외부로 연장되어 외력이 가해지는 누름바, 상기 가압부재의 이동방향을 따라 하우징에 간격을 두고 형성되어 제 1 위치와 제 2 위치를 규정하는 계 1 구멍과 제 2 구멍, 상기 누름바에 탄력적으로 변형 가능하게 설치되는 탄성바, 상기 탄성바에 돌출 형성되어 상기 제 1 구멍 또는 제 2 구멍에 선택적으로 걸리도록 된 걸림돌기를 포함하는 미세 유동 장치 .
【청구항 9】
제 8 항에 있어서,
상기 복귀부는 상기 하우징 내부에서 하우징과 누름바 사이에 설치되어 누름바에 탄성력을 인가하는 탄성부재를 포함하는 미세 유동 장치.
【청구항 10】
제 8 항에 있어서,
상기 복귀부는 상기 가압부재에 의해 눌러져 변형되면서 생성된 차단부재의 탄성력을 가압부재에 인가하여 가압부재를 이동시키는 구조의 미세 유동 장치 .
【청구항 11】
제 9 항에 있어서,
상기 걸림돌기는 가압부재의 이동방향을 따라 적어도 일면이 경사면을 형성한 구조의. 미세 유동 장치.
【청구항 12】 제 9 항에 있어서,
상기 누름바는 외측면에 누름 위치에 따른 표식이 형성된 미세 유동 장치 .
【청구항 13】
제 7 항에 있어서,
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 지지통과, 상기 가압부재 외측 선단에 연결되고 지지통 내부에서 회전가능하게 설치되는 회전통, 상기 회전통 외측 선단을 감싸며 설치되고 지지통 외부로 연장되어 외력이 가해지는 누름바ᅳ 상기 회전통 외주면을 따라. 간격을 두고 돌출 형성되는 고정쇠, 상기 고정쇠의 간격에 대응하여. 지지통 내주면을 따라 교대로 배치되고 가압부재 이동방향을 따라 간격을 두고 형성되어 제 1 위치와 게 2 위치를 규정하며 상기 고정쇠가 선택적으로 걸리도록 된 제 1 걸림홈과 제 2 걸림홈, 상기 누름바의 내측 선단을 따라 형성되어 고정쇠 상단과 접하며 상기 제 1 걸림홈과 제 2 걸림홈 사이에서 경사면을 이루어 외력에 의해 누름바가 눌려졌을 때 상기 고정쇠를 경사면을 따라 제 1 걸림홈과 제 2 걸림홈으로 교대로 이동시키기 위한 빗면이동부재를 포함하는 미세 유동 장치 .
【청구항 14】
제 13 항에 있어서,
상기 복귀부는 상기 지지통 내부에서 지지통과 회전통 사이에 설치되어 회전통에 탄성력을 인가하는 탄성부재를 포함하는 미세 유동 장치.
【청구항 15】
제 13 항에 있어서,
상기 복귀부는 상기 가압부재에 의해 눌러져 변형되면서 생성된 차단부재의 탄성력을 가압부재로 인가하여 회전통을 이동시키는 구조의 미세 유동 장치ᅳ
【청구항 16】
제 14 항에 있어서,
상기 누름바는 외측면에 누름 위치에 따른 표식이 형성된 미세 유동 장치 .
【청구항 17】
복수의 챔버들이 구비된 플¾품과, 상기 챔버들 사이를 연결하는 적어도 하나 이상의 유로, 상기 유로를 개폐하는 밸브를 포함하고, 상기 밸브는 상기 유로를 선택적으로 차단하는 차단부재, 상기 차단부재에 설치되어 차단부재를 이동시키는 가압부재를 포함하고, 상기 가압부재는 외력의 방향과 같은 방향으로 직선 왕복 운동하여. 차단부재를 눌러 이동시키는 구조이고, 상기 밸브는 가압부재를 이동된 위치에 고정하거나 원위치로 복귀시켜 차단부재에 의한 유로의 개폐를 가역적으로 제어하는 구동부를 더 포함하는 미세 유동 장치 및, 상기 미세 유동 장치에 구비된 복수의 밸브 중 적어도 어느 하나를 개폐 작동하기 위한 제어작동부
를 포함하는 미세 유동 장치의 제어설비 .
【청구항 18】
제 17 항에 있어서,
상기 가압부재는 유로 차단을 위한 제 1 위치 또는 유로 개방을 위한 제 2 위치증 어느 하나로 위치 전환되는 구조의 미세 유동 장치의 제어설비.
【청구항 19】
제 18 항에 있어서,
상기 구동부는 상기 가압부재를 유로 차단을 위한 게 1 위치 또는 유로 개방을 위한 게 2 위치 중 하나에 선택적으로 위치시키는 구조의 미세 유동 장치의 제어설비.
【청구항 20]
제 19 항에 있어서,
상기 차단부재는 탄성을 갖는 재질로 이루어져 가압부재에 의해 눌러져 변형되어 유로를 개폐하는 구조의 미세 유동 장치의 -제어설비 .
【청구항 21】
제 20 항에 있어서,
상기 구동부는 외력에 의해 상기 제 1 위치 또는 제 2 위치로 이동된 가압부재를 위치 고정하기 위한 고정부와, 상기 가압부재를 원위치로 이동시키기 위한 복귀부를 포함하는 미세 유동 장치의 제어설비.
【청구항 22】 제 21 항에 있어서,
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 하우징과, 상기 가압부재 외측 선단에 연결되고 하우징 외부로 연장되어 외력이 가해지는 누름바, 상기 가압부재의 이동방향을 따라 하우징에 간격을 두고 형성되어 제 1 위치와 제 2 위치를 규정하는 게 1 구멍과 제 2 구멍, 상기 누름바에 탄력적으로 변형 가능하게 설치되는 탄성바, 상기 탄성바에 돌출 형성되어 상기 제 1 구멍 또는 제 2 구멍에 선택적으로 걸리도록 된 걸림돌기를 포함하는 미세 유동 장치의 제어설비.
【청구항 23】
제 21 항에 있어서,
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 지지통과, 상기 가압부재 외측 선단에 연결되고 지지통 내부에서 회전가능하게 설치되는 회전통, 상기 회전통 외측 선단을 감싸며 설치되고 지지통 외부로 연장되어 외력이 가해지는 누름바, 상기 회전통 외주면을 따라 간격을 두고 돌출 형성되는 고정쇠, 상기 고겋쇠의 간격에 대응하여 지지통 내주면을 따라 교대로 배치되고 가압부재 이동방향을 따라 간격을 두고 형성되어 제 1 위치와 제 2 위치를 규정하며 상기 고정쇠가 선택적으로 걸리도록 된 제 1 걸림홈과 제 2 걸림홈, 상기 누름바의 내측 선단을 따라 형성되어 고정쇠 상단과 접하며 상기 제 1 걸림홈과 제 2 걸림홈 사이에서 경사면을 이루어 외력에 의해 누름바가 눌려졌을 때 상기 고정쇠를 경사면을 따라 제 1 걸림홈과 제 2 걸림홈으로 교대로 이동시키기 위한 빗면이동부재를 포함하는 미세 유동 장치의 제어설비.
【청구항 24】
제 23 항에 있어서,
상기 복귀부는 상기 지지통 내부에서 지지통과 회전통 사이에 설치되어 회전통에 탄성력을 인가하는 탄성부재를 포함하는 미세 유동 장치의 제어설비.
【청구항 25]
제 17 항 내지 제 24 항 중 어느 한 항에 있어서,
상기 제어작동부는 상기 밸브의 가압부재에 외력을 인가하는 구동버튼과, 상기 플랫품에 수직방향으로 배치되어 구동버튼을 플랫품에 대해 상하로 이동시키는 수직이동부, 상기 플랫품 상에 중심을 향해 수평방향으로 배치되어 수직이동부를 수평이동시키는 수평이동부, 상기 수직이동부와 수평이동부를 제어하여 상기 구동버튼을 밸브 위로 이동시키는 컨트를러를 포함하는 미세 유동 장치의 제어설비.
【창구항 26】
제 25 항에 있어서,
상기 제어작동부는 상기 컨트를러가 상기 플랫품의 회전축에 연결되어 플랫폼을 회전시키기 위한 모터를 통해 플랫폼의 회전량을 제어하여, 플랫품에 구비된 밸브 중 선택된 밸브를 구동버튼 위치로 이동시키는 구조의 미세 유동 장치의 제어설비. .
【청구항 27】
제 26 항에 있어서,
상기 구동부는 외력에 의해 상기 제 1 위치 또는 제 2 위치로 이동된 가압부재를 위치 고정하기 위한 고정부와, 상기 가압부재를 원위치로 이동시키기 위한 복귀부를 포함하고,
상기 고정부는 차단부재 외측에 배치되고 내부에는 가압부재가 이동가능하게 설치되는 하우징과, 상기 가압부재 외측 선단에 연결되고 하우징 외부로 연장되어 외력이 가해지는 누름바, 상기 가압부재의 이동방향을 따라 하우징에 간격을 두고 형성되어 게 1 위치와 제 2 위치를 규정하는 게 1 구멍과 제 2 구멍, 상기 누름바에 탄력적으로 변형 가능하게 설치되는 탄성바, 상기 탄성바에 돌출 형성되어 상기 제 1 구멍 또는 거 12 구멍에 선택적으로 걸리도록 된 걸림돌기를 포함하며,
상기 제어작동부는 상기 수직이동부에 구비되어 상기 걸림돌기를 눌러 상기 고정부의 게 1 구멍 또는 게 2 구멍에서 분리시키기 위한 복귀버튼을 더 포함하는 미세 유동 장치의 제어설비 .
PCT/KR2015/004249 2014-09-15 2015-04-28 미세 유동 장치 및 미세 유동 장치의 제어설비 WO2016043399A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15801663.4A EP3020682B1 (en) 2014-09-15 2015-04-28 Microfluidic device and control equipment for microfluidic device
ES15801663T ES2718982T3 (es) 2014-09-15 2015-04-28 Dispositivo microfluídico y equipo de control para dispositivo microfluídico
CN201580001091.3A CN106163978B (zh) 2014-09-15 2015-04-28 微流动装置及微流动装置的控制设备
US14/894,364 US10130948B2 (en) 2014-09-15 2015-04-28 Microfluidic device and control equipment for microfluidic device
JP2016548997A JP6192850B2 (ja) 2014-09-15 2015-04-28 微細流動装置および微細流動装置の制御設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140121909A KR101638941B1 (ko) 2014-09-15 2014-09-15 미세 유동 장치 및 미세 유동 장치의 제어설비
KR10-2014-0121909 2014-09-15

Publications (1)

Publication Number Publication Date
WO2016043399A1 true WO2016043399A1 (ko) 2016-03-24

Family

ID=55533419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004249 WO2016043399A1 (ko) 2014-09-15 2015-04-28 미세 유동 장치 및 미세 유동 장치의 제어설비

Country Status (7)

Country Link
US (1) US10130948B2 (ko)
EP (1) EP3020682B1 (ko)
JP (1) JP6192850B2 (ko)
KR (1) KR101638941B1 (ko)
CN (1) CN106163978B (ko)
ES (1) ES2718982T3 (ko)
WO (1) WO2016043399A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD841186S1 (en) * 2015-12-23 2019-02-19 Tunghai University Biochip
KR101992865B1 (ko) * 2017-10-11 2019-06-27 한국과학기술원 미세유체 채널의 유로 제어 밸브
KR101997837B1 (ko) * 2017-10-27 2019-07-08 울산과학기술원 미세 유동 장치 및 미세 유동 장치의 제어설비
JP2019132775A (ja) * 2018-02-01 2019-08-08 株式会社エンプラス 流体取扱装置
CN109058582A (zh) * 2018-09-07 2018-12-21 深圳市刚竹医疗科技有限公司 阀装置
CN109261232A (zh) * 2018-11-16 2019-01-25 常州工学院 一种可片上集成的微流控制方法及微阀装置
CN110985693B (zh) * 2019-12-13 2021-06-25 大连海事大学 一种便携式可编程的并行流体控制平板挤压微阀装置
TW202128281A (zh) * 2019-12-30 2021-08-01 美商伊路米納有限公司 與流動池一同使用之致動系統及方法
CN113970634A (zh) * 2020-07-22 2022-01-25 天亮医疗器材股份有限公司 生物检测系统及生物检测装置
CN112730196B (zh) 2020-12-25 2022-03-11 西南石油大学 一种高温高压微观可视化流动装置及实验方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340797A (ja) * 2002-03-15 2003-12-02 Kawamura Inst Of Chem Res マイクロ流体デバイス及びその流量調節方法
JP2007085537A (ja) * 2005-08-23 2007-04-05 Seiko Instruments Inc マイクロバルブユニット
US20100116343A1 (en) * 2005-01-31 2010-05-13 President And Fellows Of Harvard College Valves and reservoirs for microfluidic systems
JP2013015134A (ja) * 2011-06-30 2013-01-24 Agilent Technologies Inc マイクロ流体装置および外付けの圧電アクチュエータ
KR101347373B1 (ko) * 2012-07-17 2014-01-06 국립대학법인 울산과학기술대학교 산학협력단 밸브를 갖는 미세 유동 장치, 및 미세 유동 장치의 제조방법
KR20140072706A (ko) * 2012-12-05 2014-06-13 성균관대학교산학협력단 유공 폐쇄막을 이용한 박막 밸브 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782935B3 (fr) * 1998-09-08 2000-10-20 Biomerieux Sa Dispositif permettant des reactions, systeme de transfert entre dispositifs et procede de mise en oeuvre d'un tel systeme
US6981518B2 (en) 2002-03-15 2006-01-03 Cytonome, Inc. Latching micro-regulator
JP4459718B2 (ja) 2003-10-31 2010-04-28 セイコーインスツル株式会社 マイクロバルブ機構
JP4208820B2 (ja) 2003-11-28 2009-01-14 株式会社東芝 核酸検出カセット
DE602004004612T2 (de) * 2004-05-22 2007-05-24 Agilent Technologies, Inc. (n.d. Ges. d. Staates Delaware), Santa Clara Bauteil eines mikrofluidischen Ventils
KR100851980B1 (ko) 2006-09-05 2008-08-12 삼성전자주식회사 열 활성 유닛을 구비한 원심력 기반의 미세유동 장치, 이를포함하는 미세유동 시스템 및 상기 미세유동 시스템의구동방법
KR100978682B1 (ko) 2008-07-18 2010-08-30 이재춘 배수구 개폐장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340797A (ja) * 2002-03-15 2003-12-02 Kawamura Inst Of Chem Res マイクロ流体デバイス及びその流量調節方法
US20100116343A1 (en) * 2005-01-31 2010-05-13 President And Fellows Of Harvard College Valves and reservoirs for microfluidic systems
JP2007085537A (ja) * 2005-08-23 2007-04-05 Seiko Instruments Inc マイクロバルブユニット
JP2013015134A (ja) * 2011-06-30 2013-01-24 Agilent Technologies Inc マイクロ流体装置および外付けの圧電アクチュエータ
KR101347373B1 (ko) * 2012-07-17 2014-01-06 국립대학법인 울산과학기술대학교 산학협력단 밸브를 갖는 미세 유동 장치, 및 미세 유동 장치의 제조방법
KR20140072706A (ko) * 2012-12-05 2014-06-13 성균관대학교산학협력단 유공 폐쇄막을 이용한 박막 밸브 장치

Also Published As

Publication number Publication date
JP6192850B2 (ja) 2017-09-06
KR101638941B1 (ko) 2016-07-12
EP3020682A4 (en) 2017-01-18
US10130948B2 (en) 2018-11-20
EP3020682B1 (en) 2019-01-09
US20170173582A1 (en) 2017-06-22
JP2016536619A (ja) 2016-11-24
CN106163978A (zh) 2016-11-23
EP3020682A1 (en) 2016-05-18
ES2718982T3 (es) 2019-07-05
KR20160031778A (ko) 2016-03-23
CN106163978B (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2016043399A1 (ko) 미세 유동 장치 및 미세 유동 장치의 제어설비
JP5762389B2 (ja) 微小流体装置のための、計量流体ローディングシステムを備える微小流体システム
TWI714844B (zh) 流體控制及處理卡匣
JP3768486B2 (ja) 微小流体取扱装置
EP3779257A1 (en) Multifunctional microvalve capable of controlling flow of fluid, microfluidic chip and method
JP5677414B2 (ja) ラブ・オン・ア・チップ・システム内の流体流の制御装置および方法ならびにこの装置の製造方法
CA2866754C (en) Device with rotary valve for manipulation of liquids
WO2006123578A1 (ja) 検体中の標的物質を分析するための検査チップおよびマイクロ総合分析システム
JP6526927B1 (ja) 流体蠕動層ポンプ
JP4246642B2 (ja) マイクロ流体システム
KR101347373B1 (ko) 밸브를 갖는 미세 유동 장치, 및 미세 유동 장치의 제조방법
WO2017069256A1 (ja) ナノ流体デバイス及び化学分析装置
KR101737121B1 (ko) 마이크로 유체 시스템
JPS6121475A (ja) 弁装置及びその使用方法
Romero-Soto et al. Wirelessly-controlled electrolysis pumps on lab-on-a-disc for automation of bioanalytical assays
US7892490B2 (en) Semiautomatic operating device for microchip
JP6974608B2 (ja) 微細流動装置および微細流動装置の制御設備
Chung et al. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application
Kong et al. A valveless pneumatic fluid transfer technique applied to standard additions on a centrifugal microfluidic platform
KR101986429B1 (ko) 음압발생부를 가진 미세유체분석칩 및 그 사용 방법
JP5095793B2 (ja) 微細流体素子及びこれを用いた流体の流れ制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016548997

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14894364

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015801663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015801663

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE