WO2016042879A1 - 殺菌装置 - Google Patents
殺菌装置 Download PDFInfo
- Publication number
- WO2016042879A1 WO2016042879A1 PCT/JP2015/068734 JP2015068734W WO2016042879A1 WO 2016042879 A1 WO2016042879 A1 WO 2016042879A1 JP 2015068734 W JP2015068734 W JP 2015068734W WO 2016042879 A1 WO2016042879 A1 WO 2016042879A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- wavelength
- wavelength light
- sterilizer
- ultraviolet rays
- Prior art date
Links
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 62
- 238000004659 sterilization and disinfection Methods 0.000 claims description 52
- 230000001678 irradiating effect Effects 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 208000031650 Surgical Wound Infection Diseases 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 15
- 241000894006 Bacteria Species 0.000 description 14
- 239000013307 optical fiber Substances 0.000 description 14
- 238000001356 surgical procedure Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 208000027418 Wounds and injury Diseases 0.000 description 11
- 230000000813 microbial effect Effects 0.000 description 11
- 210000001082 somatic cell Anatomy 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 208000028169 periodontal disease Diseases 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000003491 skin Anatomy 0.000 description 3
- 230000002861 ventricular Effects 0.000 description 3
- 208000005888 Periodontal Pocket Diseases 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- PSHMSSXLYVAENJ-UHFFFAOYSA-N dilithium;[oxido(oxoboranyloxy)boranyl]oxy-oxoboranyloxyborinate Chemical compound [Li+].[Li+].O=BOB([O-])OB([O-])OB=O PSHMSSXLYVAENJ-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- COQAIRYMVBNUKQ-UHFFFAOYSA-J magnesium;barium(2+);tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Mg+2].[Ba+2] COQAIRYMVBNUKQ-UHFFFAOYSA-J 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- YNIMYGPEFYMMLO-UHFFFAOYSA-N [Li+].[Rb+].OB(O)O.OB(O)O.OB(O)O.OB([O-])[O-] Chemical compound [Li+].[Rb+].OB(O)O.OB(O)O.OB(O)O.OB([O-])[O-] YNIMYGPEFYMMLO-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 229940030602 cardiac therapy drug Drugs 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000003239 periodontal effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/0005—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
- A61L2/0011—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
- A61L2/0029—Radiation
- A61L2/0047—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0624—Apparatus adapted for a specific treatment for eliminating microbes, germs, bacteria on or in the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/063—Radiation therapy using light comprising light transmitting means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
- A61N2005/0647—Applicators worn by the patient the applicator adapted to be worn on the head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0658—Radiation therapy using light characterised by the wavelength of light used
- A61N2005/0661—Radiation therapy using light characterised by the wavelength of light used ultraviolet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
Definitions
- the present invention relates to a sterilization apparatus that sterilizes by irradiating ultraviolet rays, and more particularly to a sterilization apparatus that can visualize the irradiation range of ultraviolet rays.
- SSI surgical site infection
- Patent Document 1 discloses a technique for sterilizing a surgical site using an ultraviolet lamp. According to Patent Document 1, it is possible to sterilize a range including a surgical site by irradiating ultraviolet rays with an ultraviolet lamp. Furthermore, the irradiation range of ultraviolet rays is visualized by irradiating visible rays together with ultraviolet rays.
- Patent Document 2 discloses a spectrum of an ultraviolet lamp that emits ultraviolet rays having a wavelength range of about 190 nm to 230 nm, and a multilayer dielectric filter or chemical filter that substantially prevents the ultraviolet rays from containing light outside the above wavelength range.
- a sterilization device comprising a filter element is disclosed. According to Patent Document 2, microbial bacteria can be sterilized without damaging human body cells.
- Non-Patent Document 1 discloses a sterilization technique using a Kr—Br excimer lamp having a peak wavelength of 207 nm, in which light having a wavelength of 210 nm or more is cut by a filter. According to Non-Patent Document 1, microbial bacteria can be sterilized while suppressing the occurrence of human cell damage and skin cell mutation.
- Patent Document 3 describes a treatment method for periodontal disease in which ultraviolet rays are guided from an ultraviolet light source using an optical fiber and irradiated to an affected area. According to Patent Document 3, periodontal pathogens can be sterilized by attaching an optical fiber to the tip of an instrument used by a dentist.
- Patent Document 2 since only ultraviolet rays are irradiated, the irradiation range of ultraviolet rays cannot be visualized. In an actual surgical environment, it is necessary to quickly irradiate a target affected area with ultraviolet rays. Therefore, there is a problem that it is difficult to handle in the surgical environment that the irradiation range of ultraviolet rays cannot be visualized.
- Patent Document 2 proposes a technique that uses a fluorescent material as an absorbing material and emits visible light when absorbing ultraviolet light to indicate that the lamp is in operation. It does not visualize the range.
- Patent Document 3 since the wavelength of ultraviolet rays applied to the affected area is not specified, there is a problem that human cells are damaged by the wavelength of the irradiated ultraviolet rays. Furthermore, in patent document 3, since only an ultraviolet-ray is irradiated, there exists a problem that the irradiation range of an ultraviolet-ray cannot be visualized.
- the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to realize a sterilizer that achieves both excellent safety and operability.
- a sterilization apparatus is a sterilization apparatus that irradiates an object with light including ultraviolet rays, and has a peak wavelength in a wavelength range of 190 nm to 230 nm. It is characterized by emitting wavelength light and second wavelength light having a peak wavelength in a wavelength range of 400 nm or more and 780 nm or less.
- the sterilization apparatus sterilizes an affected part (target object) by irradiating light including ultraviolet rays.
- ultraviolet rays refer to light having a wavelength of 10 nm or more and less than 400 nm, and generally means light in a wavelength range in which a bactericidal effect is recognized.
- this embodiment demonstrates an example of the structure which irradiates an affected part with an ultraviolet laser as an ultraviolet-ray, this invention is not limited to the following structures.
- FIG. 1 is a block diagram showing a configuration of a sterilizer 1 according to the present embodiment.
- the sterilization apparatus 1 includes a semiconductor laser element (laser light source) 2, a frequency doubling element (frequency conversion element) 3, a dimming element 4, and a case 5.
- the semiconductor laser element 2 is a light source that oscillates (emits) the second wavelength light L ⁇ 2 having a peak wavelength in a wavelength range of 400 nm or more and 460 nm or less.
- the second wavelength light L ⁇ 2 oscillated from the semiconductor laser element 2 is a coherent visible light laser having the same wavelength and phase.
- the semiconductor laser element 2 emits the second wavelength light L ⁇ 2 toward the frequency doubling element 3.
- Such a frequency doubling element 3 can be made of, for example, a crystal nonlinear optical material.
- single crystal nonlinear optical materials include beta-barium borate (BBO), potassium beryllium borate (potassium fluroborato berylate), lithium tetraborate, lithium rubidium tetraborate (lithium tetraborate)
- magnesium barium fluoride magnesium barium fluoride and the like can be given.
- the frequency doubling element 3 emits the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 toward the dimming element 4.
- the dimming element 4 dims (attenuates) the second wavelength light L ⁇ 2 emitted from the frequency doubling element 3.
- the light reducing element 4 attenuates the second wavelength light L ⁇ 2 by absorbing or reflecting a part of the second wavelength light L ⁇ 2 .
- the dimming element 4 transmits the first wavelength light L ⁇ 1 emitted from the frequency doubling element 3 without substantially dimming.
- Examples of such a dimming element 4 include an interference filter and a dichroic mirror. Control such as freely changing the intensity ratio between the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 by changing the attenuation (dimming) rate, transmittance, or reflectance of the dimming element 4 is possible. It becomes possible. Further, it is possible to control such that only light in a desired wavelength range is transmitted among the second wavelength light L ⁇ 2 and light in other wavelength ranges is removed.
- the dimming element 4 may be omitted, and the second wavelength light L ⁇ 2 emitted from the frequency doubling element 3 may be emitted from the sterilizer 1 without being dimmed. Furthermore, by freely adding an optical element having the same function as that of the dimming element 4, light in another wavelength range included in the second wavelength light L ⁇ 2 (that is, the wavelength dimmed by the dimming element 4). Light outside the range) may be dimmed.
- the case 5 is a housing that houses the semiconductor laser element 2, the frequency doubling element 3, and the dimming element 4. Inside the case 5, the semiconductor laser element 2, the frequency doubling element 3, and the dimming element 4 are arranged on a straight line in this order. The end of the case 5 on the side of the dimming element 4 is open, and the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 are emitted to the outside from this end.
- FIG. 2 is a graph showing the spectrum of light emitted from the sterilizer 1 to the affected part 6, and FIG. 3 is a graph obtained by enlarging the spectrum in the wavelength range of more than 230 nm and less than 400 nm shown in FIG. 2 and 3, the vertical axis indicates irradiance, and the vertical axis indicates the wavelength.
- the affected part is a first wavelength light L ⁇ 1 having a peak wavelength P1 in a wavelength range of 200 nm to 230 nm and a second wavelength light L ⁇ 2 having a peak wavelength P2 in a wavelength range of 400 nm to 460 nm. 6 is irradiated.
- the first wavelength light L ⁇ 1 having the peak wavelength P1 in the wavelength range of 200 nm or more and 230 nm or less can sterilize microbial bacteria without damaging somatic cells. Therefore, the affected part 6 can be safely sterilized by irradiating the affected part 6 with the first wavelength light L ⁇ 1 .
- the second wavelength light L ⁇ 2 having the peak wavelength P2 in the wavelength range of 400 nm or more and 460 nm or less is visible to the human eye. Therefore, by irradiating with the first wavelength light L .lambda.1 a second wavelength light L .lambda.2 the affected area 6, it can be visualized irradiation range of the first wavelength light L .lambda.1.
- the affected part 6 is hardly irradiated with ultraviolet rays in the wavelength range of more than 230 nm and less than 400 nm, which is a noise level.
- the light intensity of ultraviolet rays in the wavelength range of more than 230 nm and less than 400 nm irradiated to the affected part 6 is 3 mW / cm 2 or more, the possibility of damaging somatic cells is increased. Therefore, in the sterilizer 1, damage to somatic cells is suppressed by setting the light intensity of ultraviolet rays in a wavelength range of more than 230 nm and less than 400 nm irradiated to the affected part 6 to less than 3 mW / cm 2 .
- the sterilization apparatus 1 including the frequency doubling element 3 that converts a part of the second wavelength light L ⁇ 2 emitted from the semiconductor laser element 2 into the first wavelength light L ⁇ 1 .
- the sterilization device 1 since a part of the second wavelength light L .lambda.2 is converted by the frequency doubling element 3 to the first wavelength light L .lambda.1, less than 230nm ultra 400nm that may damage the somatic cells Ultraviolet rays are hardly generated. Therefore, unlike Patent Document 2, there is no need to provide a spectral filter element or the like that prevents the ultraviolet rays generated by the ultraviolet lamp from containing light outside the wavelength range of 190 nm to 230 nm, and space saving of the sterilizer 1 is achieved. Is advantageous.
- the spectral filter element does not have a transmittance of 100% and attenuates ultraviolet rays in a wavelength range of 190 nm or more and 230 nm or less, so that the light use efficiency is lowered.
- the sterilization apparatus 1 since such a light use efficiency does not decrease, high light use efficiency can be realized.
- Patent Document 2 discloses a technique for adding argon to an excilamp, for example, as another technique for preventing ultraviolet rays from containing light outside the wavelength range of 190 nm to 230 nm. Accompanying increased manufacturing costs. On the other hand, according to the sterilization apparatus 1, since a relatively inexpensive frequency doubling element 3 is used, an increase in manufacturing cost can be suppressed.
- the sterilizing device 1 a portion of the second wavelength light L .lambda.2 emitted from the semiconductor laser element 2 is transmitted through the frequency doubling element 3 without being wavelength converted, the affected area with the first wavelength light L .lambda.1 6 is irradiated. Therefore, the irradiation range of the first wavelength light L ⁇ 1 can be visualized. Therefore, it is not necessary to provide a light source that emits the first wavelength light L ⁇ 1 for sterilization and a light source that emits the second wavelength light L ⁇ 2 for visualizing the irradiation range of the first wavelength light L ⁇ 1.
- the sterilizer 1 can be downsized.
- the sterilization apparatus 1 it is possible to irradiate the affected part 6 with ultraviolet rays with a constant light intensity as compared with the case where an ultraviolet lamp or LED is used. In an actual surgical environment, it is required to quickly irradiate the affected part 6 with ultraviolet rays having a target light intensity.
- the ultraviolet rays from the ultraviolet lamp or LED are condensed, if the distance between the affected part and the sterilizer changes, the irradiation area of the ultraviolet rays changes, and the light intensity density of the ultraviolet rays changes.
- the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 are laser light, and each is substantially parallel light.
- the irradiation area does not change and the affected part 6 is irradiated with the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 with a constant light intensity. Can do.
- the beam diameter of the first wavelength light L ⁇ 1 can be made smaller than when an ultraviolet lamp or LED is used. . Therefore, it is possible to suitably irradiate the first wavelength light L ⁇ 1 even to the complicated and steep affected part 6.
- the sterilization method which irradiates the affected part 6 continuously with an ultraviolet-ray like conventional.
- the light source generates heat. 2.
- the life of the light source is likely to be reduced. 3. It is very dangerous for doctors. 4).
- a doctor's hand or the like prevents ultraviolet rays from reaching a wound (called a wound) generated by surgery.
- the sterilizer 1 may intermittently emit the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 by controlling the driving of the semiconductor laser element 2.
- microbial bacteria form a biofilm as a self-protective reaction after reaching the wound.
- the time for forming the biofilm is about 30 minutes after reaching the wound.
- the first wavelength light L ⁇ 1 when the first wavelength light L ⁇ 1 is intermittently emitted from the sterilizer 1, it is preferable to switch the emission / stop of the first wavelength light L ⁇ 1 at intervals of 10 minutes from the start of the operation. It is more preferable to switch the emission / stop of the wavelength light L ⁇ 1 . Thereby, it becomes possible to achieve power saving of the sterilizer 1 while maintaining the sterilization effect.
- the sterilizer 1 includes the first wavelength light L ⁇ 1 having a peak wavelength in the wavelength range of 200 nm to 230 nm and the second wavelength having a peak wavelength in the wavelength range of 400 nm to 460 nm.
- the light L ⁇ 2 is emitted.
- the first wavelength light L ⁇ 1 having a peak wavelength in the wavelength range of 200 nm or more and 230 nm or less can sterilize microbial bacteria without damaging somatic cells, the first wavelength light L ⁇ 1 is applied to the affected area 6. By irradiating, the affected part 6 can be sterilized safely.
- the second wavelength light L ⁇ 2 having a peak wavelength in the wavelength range of 400 nm or more and 460 nm or less is visible to the human eye, the second wavelength light L ⁇ 2 is irradiated to the affected area together with the first wavelength light L ⁇ 1 . Thereby, the irradiation range of the first wavelength light L ⁇ 1 can be visualized.
- light having a peak wavelength in the wavelength range of 200 nm to 230 nm is used as the first wavelength light L ⁇ 1 and used as the second wavelength light L ⁇ 2 having the peak wavelength in the wavelength range of 400 nm to 460 nm.
- the configuration has been described.
- the first wavelength light L .lambda.1 may be a light having a peak wavelength in 230nm or less in the wavelength range of 190 nm
- the second wavelength light L .lambda.2 with light having a peak wavelength in 780nm or less in the wavelength range of 400nm I just need it. If it is a sterilizer that irradiates the affected part 6 with the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 having peak wavelengths in the wavelength range, it is possible to achieve both excellent safety and operability.
- the sterilization apparatus includes, instead of the semiconductor laser element 2 and the frequency doubling element 3, a first light source that emits a first wavelength light L ⁇ 1 having a peak wavelength in a wavelength range of 190 nm to 230 nm, and 400 nm to 780 nm.
- a second light source that emits a second wavelength light L ⁇ 2 having a peak wavelength in the following wavelength range may be provided.
- the first light source examples include ultraviolet light generating light sources such as semiconductor laser elements, lamps, and LEDs that can emit the first wavelength light L ⁇ 1 .
- the LED that emits the first wavelength light L ⁇ 1 is generally not commercially available.
- “Creative Research Promotion Project CREST Research Area“ Light and Photon Science and Technology for Creating New Functions ” Research on 350nm-band InAlGaN-based deep ultraviolet high-efficiency light-emitting devices " 13 ” can be used.
- ultraviolet rays having a peak wavelength of 222 nm can be emitted.
- the emission wavelength of this LED ranges from 220 nm to 250 nm.
- the peak wavelength is shortened, or the current value is controlled so that the light intensity at a wavelength of 230 nm to 250 nm is 3 mW / cm 2. Then, it is possible to realize an LED that emits the first wavelength light L ⁇ 1 .
- examples of the second light source include visible light generating light sources such as a semiconductor laser element, a lamp, and an LED that can emit the second wavelength light L ⁇ 2 . Since these light sources are generally commercially available, they are not illustrated here.
- the first wavelength light L .lambda.1 such as adenovirus, etc.
- a wavelength suitable for the virus not only microorganisms but also viruses can be sterilized.
- the sterilization apparatus may include a scanning mechanism that irradiates the affected area 6 while scanning the first wavelength light L ⁇ 1 .
- a scanning mechanism that irradiates the affected area 6 while scanning the first wavelength light L ⁇ 1 .
- FIG. 4 is a block diagram showing a configuration of the sterilizer 11 according to the present embodiment. 4 indicates the beam diameter of the first wavelength light L ⁇ 1 emitted from the sterilizer 1, a2 indicates the beam diameter of the first wavelength light L ⁇ 1 emitted from the plano-concave lens 8, and a2 'Indicates the beam diameter of the first wavelength light L ⁇ 1 irradiated to the affected part 6.
- the sterilizer 11 includes a plano-convex lens 7 and a plano-concave lens 8 in addition to the sterilizer 1 described above.
- plano-convex lens 7 is an optical member that condenses the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 emitted from the sterilizer 1.
- a planar emission surface 7b that emits light.
- Plano-convex lens 7 refracts a first wavelength light L .lambda.1 and the second wavelength light L .lambda.2 so that the beam diameter of the first wavelength light L .lambda.1 and the second wavelength light L .lambda.2 gradually decreases, the plano-concave lens 8 Exit toward.
- plano-concave lens 8 is an optical member that makes the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 emitted from the plano-convex lens 7 substantially parallel light.
- Plano-concave lens 8 a planar entrance face 8a for entering the first wavelength light L .lambda.1 and the second wavelength light L .lambda.2 emitted from the plano-convex lens 7, a first wavelength light L .lambda.1 and the second wavelength light L .lambda.2 And an exit surface 8b having a concave curved surface.
- Plano-concave lens 8 as first-wavelength light L .lambda.1 and the second wavelength light L .lambda.2 is respectively substantially parallel light by refracting the first wavelength light L .lambda.1 and the second wavelength light L .lambda.2, toward the diseased part 6 Exit.
- the parallelism of light will be described using the first wavelength light L ⁇ 1 as an example.
- the parallelism of light is k
- the beam diameter of the first wavelength light L ⁇ 1 emitted from the plano-concave lens 8 is a2
- the beam diameter of the first wavelength light L ⁇ 1 irradiated to the affected part 6 is a2 ′
- the first wavelength light L ⁇ 1 can be condensed, and if it is made larger. It is possible to broaden the first wavelength light L ⁇ 1 .
- the distance between the sterilizer 11 and the affected part 6 is actually considered to be within 1 m. Therefore, during the operation, when the first wavelength light L ⁇ 1 is irradiated, the distance between the sterilizer 11 and the affected part 6 changes with a distance of 1 m as an upper limit.
- the substantially parallel light means in the formula (1) 0.2 ⁇ k ⁇ 5 Formula (3) Means to satisfy.
- the plano-convex lens 7 and the plano-concave lens 8 it is possible to irradiate the affected part 6 with the first wavelength light L ⁇ 1 , which is substantially parallel light with the beam diameter reduced from a1 to a2 ′. Therefore, even if the distance between the sterilizer 11 and the affected part 6 is changed, the affected part 6 can be irradiated with the first wavelength light L ⁇ 1 with a constant light intensity.
- the beam diameter a2 ′ of the first wavelength light L ⁇ 1 irradiated to the affected part 6 can be reduced, and for example, the beam diameter a2 ′ can be less than 1 cm 2 . Accordingly, the first wavelength light L ⁇ 1 can be suitably irradiated even on the complicated and steep affected part 6.
- the second wavelength light L ⁇ 2 is irradiated to the affected part 6 as the substantially parallel light with a reduced beam diameter together with the first wavelength light L ⁇ 1 , so that the irradiation range of the first wavelength light L ⁇ 1 is reduced. It can be visualized appropriately.
- the beam diameter a2 ′ of the first wavelength light L ⁇ 1 irradiated to the affected area 6 is reduced with respect to the beam diameter a1 of the first wavelength light L ⁇ 1 emitted from the sterilizer 1 (a1> a2 ′).
- the present invention is not limited to this configuration. Using the same principle, the beam diameter a2 ′ of the first wavelength light L ⁇ 1 irradiated to the affected area 6 is increased with respect to the beam diameter a1 of the first wavelength light L ⁇ 1 emitted from the sterilizer 1 (a1 ⁇ a2 ′) may be adopted.
- FIG. 5 is a block diagram showing a configuration of the sterilizer 12 according to the present embodiment.
- This sterilizer 12 is used as a sterilizer for medical implants.
- the light emitted from the sterilizer 1 includes the second wavelength light L ⁇ 2, but in the drawing, the second wavelength light L ⁇ 2 is omitted and only the first wavelength light L ⁇ 1 is illustrated.
- the sterilizer 12 includes an optical fiber 9 in addition to the sterilizer 1 described above.
- the optical fiber 9 is a light guide member that guides the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 emitted from the sterilizer 1.
- the optical fiber 9 is incident first wavelength light L .lambda.1 and the second wavelength light L .lambda.2 from one end, the first wavelength light L .lambda.1 and the second wavelength light from the exit hole formed in plurality on the peripheral surface of the vicinity of the other end L ⁇ 2 is emitted.
- the optical fiber 9 has a two-layer structure in which an inner core is covered with a clad having a refractive index lower than that of the core.
- the core is mainly composed of quartz glass (silicon oxide) having almost no absorption loss of laser light
- the clad is composed mainly of quartz glass or a synthetic resin material having a refractive index lower than that of the core. .
- the left ventricular assist heart pump and the catheter 10 are widely known. Left ventricular assist heart pumps are becoming increasingly important in cardiac therapy. These are hopeful for patients waiting for a complete heart transplant.
- the sterilization apparatus 12 it is possible to sterilize microorganisms and viruses existing near the catheter 10 by irradiating the first wavelength light L ⁇ 1 while the catheter 10 is in the body. Naturally, the somatic cell near the catheter 10 is not damaged by the first wavelength light L ⁇ 1 .
- the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 emitted from the sterilizer 1 enter the optical fiber 9.
- the catheter 10 is inserted into the human body through the skin 61 through a perforation 62 opened in the skin 61.
- the first wavelength light L ⁇ 1 propagates through the optical fiber 9 and is emitted from the peripheral surface of the optical fiber 9 near the catheter 10. Thereby, while the catheter 10 is in the body, the probability of infection by the catheter 10 can be reduced by irradiating the catheter 10 with the first wavelength light L ⁇ 1 .
- the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 emitted from the sterilizer 1 are laser beams, they can be incident on the optical fiber 9 with high coupling efficiency. Therefore, according to the sterilizer 12, light utilization efficiency can be improved.
- FIG. 6 is a perspective view showing a pencil-type sterilizer 13.
- the sterilization apparatus according to the present invention may be a pencil-type sterilization apparatus 13.
- the optical fiber 9 may be connected to the pencil-type sterilizer 13 so that the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 (not shown) are propagated and emitted.
- the battery can be driven by using the pencil-type sterilization apparatus 13. Therefore, the pencil-type sterilizer 13 can be easily used in an actual surgical environment.
- FIG. 7 is a schematic view showing the sterilizer 14 that can be attached to the medical glove 40. As shown in FIG. 7, the sterilizer 14 may be attached to the medical glove 40. As a result, it is possible to quickly irradiate the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 (not shown) where the surgeon points.
- FIG. 8 is a schematic view showing a medical goggles-type sterilizer 15.
- the medical goggles type sterilizer 15 is a goggle 50 in which a sterilizer 1 (not shown) is built.
- the goggles 50 incorporating the sterilizer 1 have a function of cutting ultraviolet rays in addition to the function of medical goggles generally used. For example, by attaching a camera, a sensor, or the like to the goggles 50, it is possible to irradiate the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 (not shown) ahead of the operator's line of sight.
- FIG. 9 is a schematic view showing the sterilizer 16 that can be attached to the helmet 60.
- the sterilizer 16 may be attached to the helmet 60.
- a camera or a sensor to the helmet 60, it is possible to irradiate the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 (not shown) at the tip of the operator's line of sight.
- FIG. 10 is a schematic diagram showing a sterilizer 17 that can be used for dental surgery.
- dental surgery it is known that periodontal disease, in particular, will recur immediately.
- periodontal disease in particular, will recur immediately.
- both good bacteria and bad bacteria are present, and both bacteria produce biofilms. Microorganisms escape into the biofilm and grow.
- periodontal pockets In periodontal disease, deep grooves called periodontal pockets are formed, making it impossible to physically deliver drugs, and microbial bacteria in biofilms cannot be sterilized by drugs .
- the sterilization device 17 can sterilize the periodontal pocket with ultraviolet rays, and the sterilization device 17 irradiates the local region with the first wavelength light L ⁇ 1 , thereby causing periodontal disease. Treatment becomes possible.
- the application example of the sterilization apparatus which concerns on this invention is not limited to the above-mentioned thing.
- a sterilizer is built in the endoscope, and the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 emitted from the sterilizer are propagated by the optical fiber and emitted from the distal end of the endoscope.
- the first wavelength light L ⁇ 1 and the second wavelength light L ⁇ 2 are propagated by the optical fiber and emitted from the distal end of the endoscope.
- the sterilization apparatus is a sterilization apparatus that irradiates a target (affected part 6) with light containing ultraviolet rays, the first wavelength light having a peak wavelength in a wavelength range of 190 nm to 230 nm, and 400 nm.
- the second wavelength light having a peak wavelength in the wavelength range of 780 nm or less is emitted.
- the sterilizer emits first wavelength light having a peak wavelength in a wavelength range of 190 nm to 230 nm.
- the first wavelength light having a peak wavelength in a wavelength range of 190 nm or more and 230 nm or less can sterilize microbial bacteria without damaging somatic cells. Therefore, the object can be safely sterilized by irradiating the object with the first wavelength light.
- the sterilizer emits second wavelength light having a peak wavelength in a wavelength range of 400 nm or more and 780 nm or less.
- the second wavelength light having a peak wavelength in the wavelength range of 400 nm or more and 780 nm or less is visible to the human eye. Therefore, the irradiation range of the first wavelength light can be visualized by irradiating the object with the second wavelength light together with the first wavelength light.
- the intensity of light with a wavelength range of more than 230 nm and less than 400 nm irradiated on the object may be less than 3 mW / cm 2 .
- the intensity of light in the wavelength range of more than 230 nm and less than 400 nm irradiated on the object is 3 mW / cm 2 or more, there is a high possibility of damaging somatic cells. Therefore, it is possible to suppress damage to somatic cells by setting the intensity of light in the wavelength range of more than 230 nm and less than 400 nm irradiated to the object to less than 3 mW / cm 2 .
- the laser light source that oscillates the second wavelength light and the second wavelength light oscillated from the laser light source are received, A frequency conversion element that converts part of the two-wavelength light into the first wavelength light, and the frequency conversion element converts the first wavelength light and the second wavelength light that has not been converted into the first wavelength light. It may be emitted.
- the sterilization apparatus includes a frequency conversion element that converts a part of the second wavelength light emitted from the laser light source into the first wavelength light, and the first wavelength light emitted from the frequency conversion element and the first wavelength light. Two-wavelength light irradiates the object.
- Patent Document 2 discloses a technique for adding argon to an excilamp, for example, as another technique for preventing ultraviolet rays from containing light outside the wavelength range of 190 nm to 230 nm. Accompanying increased manufacturing costs. On the other hand, according to said structure, since the comparatively cheap frequency conversion element is used, the increase in manufacturing cost can be suppressed.
- part of the second wavelength light emitted from the laser light source passes through the frequency conversion element without being wavelength-converted, and is irradiated onto the object together with the first wavelength light. Therefore, it is possible to visualize the irradiation range of the first wavelength light. Therefore, since it is not necessary to provide a light source that emits the first wavelength light for sterilization and a light source that emits the second wavelength light for visualizing the first wavelength light, the sterilization apparatus can be downsized. it can.
- the first wavelength light is laser light
- the beam diameter of the first wavelength light can be reduced as compared with the case where an ultraviolet lamp or LED is used. Therefore, it is possible to suitably irradiate the first wavelength light even to a complicated and steep affected part (object).
- a light attenuating element that attenuates the second wavelength light may be provided.
- the intensity ratio of the 1st wavelength light irradiated to a target object and a 2nd wavelength light is changed freely by changing the attenuation factor of the light reduction element, the transmittance
- the first wavelength light is substantially parallel light
- the second wavelength light is substantially parallel light
- each of the first wavelength light and the second wavelength light is substantially parallel light, the irradiation area does not change even when the distance between the sterilizer and the object is changed.
- the object can be irradiated with the first wavelength light and the second wavelength light with a constant light intensity.
- the operability of the sterilizer can be improved.
- the beam diameter of the first wavelength light applied to the object may be less than 1 cm 2 .
- the beam diameter of the 1st wavelength light irradiated to a target object is less than 1 cm ⁇ 2 >, a 1st wavelength light is suitably irradiated also to a complicated and steep affected part (target object). be able to.
- the first wavelength light may be intermittently emitted.
- the life of the light source and the power saving of the sterilization apparatus can be achieved while maintaining the sterilization effect.
- the sterilization apparatus according to the present invention is a sterilization apparatus that generates at least one ultraviolet ray, and has a peak at a first wavelength of about 190 nm to 230 nm and a peak at a second wavelength of about 400 nm to 780 nm. It is characterized by having a light source.
- the light intensity density of the third wavelength having a wavelength of about 230 nm to 400 nm is less than 3 mW / cm 2 .
- the sterilizing apparatus preferably includes a device for attenuating the light of the second wavelength.
- the light of the first wavelength and the second wavelength is substantially parallel light.
- the beam diameter of the first wavelength is preferably less than 1 cm 2 .
- the light having the first wavelength is generated in a pulsed manner.
- the present invention can be used for a sterilization apparatus that irradiates ultraviolet rays, and can be particularly preferably used for medical equipment used during surgery.
- Sterilizer 2 Semiconductor laser element (light source) 3 Frequency doubler (frequency converter) 4 Dimming element 5 Case 6 Affected part (object) 7 Plano-convex lens 8 Plano-concave lens 9 Optical fiber 10 Catheter 11 Sterilizer 12 Sterilizer 13 Sterilizer 14 Sterilizer 15 Sterilizer 16 Sterilizer 17 Sterilizer 61 Skin 62 Perforation (object) a2 ′ beam diameter L ⁇ 1 first wavelength light L ⁇ 2 second wavelength light P1 peak wavelength P2 peak wavelength
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Laser Surgery Devices (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
以下、本発明の実施の形態について、図1から図3に基づいて説明すれば以下のとおりである。本実施形態に係る殺菌装置は、紫外線を含む光を患部(対象物)に照射して殺菌するものである。本明細書において、紫外線とは、波長が10nm以上400nm未満の光のことを指し、一般的に殺菌効果が認められている波長範囲の光のことを意味する。
図1は、本実施形態に係る殺菌装置1の構成を示すブロック図である。図1に示すように、殺菌装置1は、半導体レーザ素子(レーザ光源)2、周波数倍増素子(周波数変換素子)3、減光素子4、およびケース5を備えている。
半導体レーザ素子2は、400nm以上460nm以下の波長範囲にピーク波長を有する第二波長光Lλ2を発振(出射)する光源である。この半導体レーザ素子2から発振される第二波長光Lλ2は、波長および位相が揃ったコヒーレントな可視光線レーザである。半導体レーザ素子2は、第二波長光Lλ2を、周波数倍増素子3へ向けて出射する。
周波数倍増素子3は、半導体レーザ素子2から発振された第二波長光Lλ2を受けて、当該第二波長光Lλ2の一部の周波数を倍増(波長を半減)させて、200nm以上230nm以下の波長範囲にピーク波長を有する第一波長光Lλ1に変換する(λ1=λ2/2)。第一波長光Lλ1および第二波長光Lλ2の両方は、周波数倍増素子3からレーザ光として、同時に出射される。
減光素子4は、周波数倍増素子3から出射された第二波長光Lλ2を減光する(減衰させる)ものである。減光素子4は、第二波長光Lλ2の一部を吸収または反射することによって、第二波長光Lλ2を減光する。一方、減光素子4は、周波数倍増素子3から出射された第一波長光Lλ1をほぼ減光することなく透過させる。
ケース5は、半導体レーザ素子2、周波数倍増素子3、および減光素子4を収容する筐体である。ケース5の内部には、半導体レーザ素子2、周波数倍増素子3、および減光素子4がこの順で、直線上に配置されている。ケース5は減光素子4側の端部が開口しており、この端部から第一波長光Lλ1および第二波長光Lλ2が外部へ出射される。
図2は、殺菌装置1から患部6に照射される光のスペクトルを示すグラフであり、図3は、図2に示される230nm超400nm未満の波長範囲のスペクトルを拡大したグラフである。図2および図3では、縦軸が放射照度を示し、縦軸が波長を示している。
1.光源が発熱する。
2.光源の寿命が低下する可能性が高い。
3.医師にとって非常に危険である。
4.医師の手などにより、紫外線が手術で発生した傷(創傷という)に届くことが妨げられる。
1.微生物菌が創傷に奥深く入ってしまう前に紫外線を照射する。
2.微生物菌がバイオフィルムを形成する前に紫外線を照射する。
ことが必要であると言える。
本発明に係る殺菌装置は、半導体レーザ素子2および周波数倍増素子3に代えて、190nm以上230nm以下の波長範囲にピーク波長を有する第一波長光Lλ1を出射する第一光源と、400nm以上780nm以下の波長範囲にピーク波長を有する第二波長光Lλ2を出射する第二光源とを、それぞれ備えていてもよい。
また、本発明に係る殺菌装置は、第一波長光Lλ1を走査しつつ患部6に照射するスキャン機構を備えていてもよい。これにより、局所的のみならず、広い範囲に第一波長光Lλ1を照射することが可能となる。広い範囲に第一波長光Lλ1を照射することはLEDや紫外線ランプでも可能であるが、紫外線レーザである第一波長光Lλ1を走査しつつ照射することにより、複雑で急峻な患部6に対しても一定の光強度で第一波長光Lλ1を照射することが可能となる。
本発明の他の実施形態について、図4に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図4は、本実施形態に係る殺菌装置11の構成を示すブロック図である。なお、図4に示す符号a1は殺菌装置1から出射される第一波長光Lλ1のビーム径を示し、a2は平凹レンズ8から出射される第一波長光Lλ1のビーム径を示し、a2’は患部6に照射される第一波長光Lλ1のビーム径を示している。
平凸レンズ7は、殺菌装置1から出射された第一波長光Lλ1および第二波長光Lλ2を集光する光学部材である。平凸レンズ7は、殺菌装置1から出射された第一波長光Lλ1および第二波長光Lλ2を入射させる凸曲面状の入射面7aと、第一波長光Lλ1および第二波長光Lλ2を出射する平面状の出射面7bとを備えている。
平凹レンズ8は、平凸レンズ7から出射された第一波長光Lλ1および第二波長光Lλ2を略平行光にする光学部材である。平凹レンズ8は、平凸レンズ7から出射された第一波長光Lλ1および第二波長光Lλ2を入射させる平面状の入射面8aと、第一波長光Lλ1および第二波長光Lλ2を出射する凹曲面状の出射面8bとを備えている。
第一波長光Lλ1を例にして、光の平行度について説明する。光の平行度をk、平凹レンズ8から出射される第一波長光Lλ1のビーム径をa2、患部6に照射される第一波長光Lλ1のビーム径をa2’とした場合、平行度kは、
k=a2/a2’・・・式(1)
で表される。
d=f1-f2・・・式(2)
を満たすときに、第一波長光Lλ1を完全な平行光とすることができる。
0.2<k<5・・・式(3)
を満たすことを意味するものとする。
本発明の他の実施形態について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図5は、本実施形態に係る殺菌装置12の構成を示すブロック図である。この殺菌装置12は、医療用インプラントの殺菌装置として用いられるものである。なお、殺菌装置1から出射される光には第二波長光Lλ2が含まれるが、図面では第二波長光Lλ2を省略し第一波長光Lλ1のみを図示している。
光ファイバ9は、殺菌装置1から出射された第一波長光Lλ1および第二波長光Lλ2を導光する導光部材である。この光ファイバ9は、一端から第一波長光Lλ1および第二波長光Lλ2を入射させ、他端近傍の周面に複数形成された出射孔から第一波長光Lλ1および第二波長光Lλ2を出射する。
医療用インプラントとしては、広く左心補助心臓ポンプやカテーテル10が知られている。左心補助心臓ポンプは、心臓治療において、重要度が増してきている。これらは、完全心臓移植を待つ患者にとって希望となっている。しかし、医療用インプラントには、決定的な問題がある。それは、医療用インプラントが体外と接触する部分、すなわち左心補助心臓ポンプであれば電源との電気伝達経路、カテーテル10であれば体外に置かれるカテーテルの出口部分(ポンプなどを置くことが多い)から、シャワー時などに容易に感染が起こることである。
本発明の他の実施形態について、図6~図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
図6は、ペンシル型の殺菌装置13を示す斜視図である。図13に示すように、本発明に係る殺菌装置を、ペンシル型の殺菌装置13とすることが考えられる。また、ペンシル型の殺菌装置13に光ファイバ9を接続して、第一波長光Lλ1および第二波長光Lλ2(図示省略)を伝搬させて出射させてもよい。
図7は、医療用手袋40に取り付け可能な殺菌装置14を示す模式図である。図7に示すように、医療用手袋40に殺菌装置14を取り付けてもよい。これにより、術者が指差したところに、素早く第一波長光Lλ1および第二波長光Lλ2(図示省略)を照射することが可能となる。
図8は、医療用ゴーグル型の殺菌装置15を示す模式図である。この医療用ゴーグル型の殺菌装置15は、ゴーグル50に図示しない殺菌装置1が内蔵されたものである。
図9は、ヘルメット60に取り付け可能な殺菌装置16を示す模式図である。図9に示すように、ヘルメット60に殺菌装置16を取り付けてもよい。また、例えばカメラやセンサをヘルメット60に取り付けることにより、術者の視線の先に第一波長光Lλ1および第二波長光Lλ2(図示省略)を照射することが可能となる。
図10は、歯科手術に使用可能な殺菌装置17を示す模式図である。歯科手術において、特に歯周病はすぐに再発することが知られている。口内では、善玉菌および悪玉菌の両方が存在し、両菌がバイオフィルムを生成している。そのバイオフィルムに微生物菌が逃げ込んで増殖する。
本発明の態様1に係る殺菌装置は、紫外線を含む光を対象物(患部6)に照射する殺菌装置であって、190nm以上230nm以下の波長範囲にピーク波長を有する第一波長光と、400nm以上780nm以下の波長範囲にピーク波長を有する第二波長光と、を出射することを特徴としている。
本発明は以下のように表現することもできる。すなわち、本発明に係る殺菌装置は、少なくとも一つの紫外線を発生する殺菌装置であって、波長約190nm~230nmの第一波長にピークを持ち、さらに波長約400nm~780nmの第二波長にピークを持つ光源を備えることを特徴としている。
2 半導体レーザ素子(光源)
3 周波数倍増素子(周波数変換素子)
4 減光素子
5 ケース
6 患部(対象物)
7 平凸レンズ
8 平凹レンズ
9 光ファイバ
10 カテーテル
11 殺菌装置
12 殺菌装置
13 殺菌装置
14 殺菌装置
15 殺菌装置
16 殺菌装置
17 殺菌装置
61 皮膚
62 穿孔(対象物)
a2’ ビーム径
Lλ1 第一波長光
Lλ2 第二波長光
P1 ピーク波長
P2 ピーク波長
Claims (5)
- 紫外線を含む光を対象物に照射する殺菌装置であって、
190nm以上230nm以下の波長範囲にピーク波長を有する第一波長光と、
400nm以上780nm以下の波長範囲にピーク波長を有する第二波長光と、
を出射することを特徴とする殺菌装置。 - 前記対象物に照射される230nm超400nm未満の波長範囲の光の強度が、3mW/cm2未満であることを特徴とする請求項1に記載の殺菌装置。
- 前記第二波長光を発振するレーザ光源と、
前記レーザ光源から発振された前記第二波長光を受けて、当該第二波長光の一部を前記第一波長光に変換する周波数変換素子とを備え、
前記周波数変換素子は、前記第一波長光および当該第一波長光に変換されなかった前記第二波長光を出射することを特徴とする請求項1または2に記載の殺菌装置。 - 前記第二波長光を減光する減光素子を備えることを特徴とする請求項1から3のいずれか一項に記載の殺菌装置。
- 前記第一波長光は、略平行光であり、
前記第二波長光は、略平行光であることを特徴とする請求項1から4のいずれか一項に記載の殺菌装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016548596A JP6303019B2 (ja) | 2014-09-19 | 2015-06-29 | 殺菌装置 |
CN201580050471.6A CN106794357B (zh) | 2014-09-19 | 2015-06-29 | 杀菌装置 |
EP15842195.8A EP3195900A4 (en) | 2014-09-19 | 2015-06-29 | Sterilizing apparatus |
US15/512,423 US10307495B2 (en) | 2014-09-19 | 2015-06-29 | Sterilizing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014191511 | 2014-09-19 | ||
JP2014-191511 | 2014-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016042879A1 true WO2016042879A1 (ja) | 2016-03-24 |
Family
ID=55532924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068734 WO2016042879A1 (ja) | 2014-09-19 | 2015-06-29 | 殺菌装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10307495B2 (ja) |
EP (1) | EP3195900A4 (ja) |
JP (2) | JP6303019B2 (ja) |
CN (1) | CN106794357B (ja) |
WO (1) | WO2016042879A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018033750A (ja) * | 2016-08-31 | 2018-03-08 | 東芝ライテック株式会社 | 殺菌装置 |
WO2018131582A1 (ja) * | 2017-01-10 | 2018-07-19 | ウシオ電機株式会社 | 紫外線殺菌装置 |
JP2018114197A (ja) * | 2017-01-20 | 2018-07-26 | ウシオ電機株式会社 | 紫外線殺菌装置 |
WO2019077817A1 (ja) * | 2017-10-19 | 2019-04-25 | ウシオ電機株式会社 | 殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法 |
JP2019122947A (ja) * | 2018-01-19 | 2019-07-25 | 三菱電機株式会社 | 殺菌装置及び給湯装置 |
JP2021506514A (ja) * | 2017-12-22 | 2021-02-22 | イニコア メディカル,インコーポレイテッド | 消毒方法および装置 |
JP2021526905A (ja) * | 2018-06-08 | 2021-10-11 | タッチ ユーブイ, インコーポレイテッド | 自己消毒表面を有するデバイス |
WO2021255961A1 (ja) * | 2020-06-18 | 2021-12-23 | 日本国土開発株式会社 | 消毒装置、車両、および建設機械 |
US20220273833A1 (en) * | 2017-05-09 | 2022-09-01 | Crosby Innovations, LLC | Far uv-c apparatus and confirmation of use |
WO2023112344A1 (ja) * | 2021-12-15 | 2023-06-22 | 三菱重工サーマルシステムズ株式会社 | 除菌システム及び空調機、並びに除菌方法、並びに除菌プログラム |
WO2023157281A1 (ja) * | 2022-02-21 | 2023-08-24 | 日本電信電話株式会社 | 光伝送装置、光照射システム、及び光伝送方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6025756B2 (ja) | 2011-03-07 | 2016-11-16 | ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | 殺菌装置、及び、殺菌装置の作動方法 |
US20180169279A1 (en) | 2011-03-07 | 2018-06-21 | The Trustees Of Columbia University In The City Of New York | Apparatus, method and system for selectively affecting and/or killing a virus |
JP6493703B1 (ja) * | 2017-09-28 | 2019-04-03 | ウシオ電機株式会社 | 殺菌方法、殺菌装置 |
EP3616750A1 (en) | 2018-08-27 | 2020-03-04 | S1 Sähkö Oy | System and method for reducing microorganisms |
JP7182078B2 (ja) * | 2019-03-29 | 2022-12-02 | ウシオ電機株式会社 | 殺菌状態検出方法、殺菌方法、殺菌状態検出装置、殺菌装置 |
DE102019124017B4 (de) * | 2019-09-06 | 2024-10-10 | Charité - Universitätsmedizin Berlin | Vorrichtung und Verfahren zur UV-Antiseptik |
JP7245798B2 (ja) * | 2020-01-29 | 2023-03-24 | 株式会社日立産機システム | 紫外線発光装置を備えたクリーンエア装置およびパスボックス |
US20230130283A1 (en) * | 2020-02-18 | 2023-04-27 | Ushio Denki Kabushiki Kaisha | Bacteriostatic method |
WO2021220210A1 (en) * | 2020-04-29 | 2021-11-04 | X Glasses Ltd | A protective visor |
US11116858B1 (en) | 2020-05-01 | 2021-09-14 | Uv Innovators, Llc | Ultraviolet (UV) light emission device employing visible light for target distance guidance, and related methods of use, particularly suited for decontamination |
CN113663094A (zh) * | 2020-05-15 | 2021-11-19 | 北京岽河正浩科技有限公司 | 一种激光消毒灭菌方法及设备 |
CN112190727B (zh) * | 2020-09-15 | 2022-11-18 | 武汉光谷航天三江激光产业技术研究院有限公司 | 一种基于传送带的紫外激光杀菌消毒系统及方法 |
JPWO2022137920A1 (ja) * | 2020-12-23 | 2022-06-30 | ||
CN112841494A (zh) * | 2021-02-22 | 2021-05-28 | 福建鸿博光电科技有限公司 | 一种替代防腐剂的紫外光照射方法及其装置 |
US20220266057A1 (en) * | 2021-02-25 | 2022-08-25 | John William Thompson | Touchless-switch skin sanitizing system-uvc far light |
US11656529B2 (en) | 2021-08-19 | 2023-05-23 | Goodrich Lighting Systems, Inc. | Light conversion systems, methods, and devices |
CN115291188A (zh) * | 2022-07-06 | 2022-11-04 | 深圳市镭神智能系统有限公司 | 一种具有消杀功能的激光雷达,货物运输车和消杀机器人 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146394A (ja) * | 1996-11-19 | 1998-06-02 | Teruo Hoshino | 滅菌治療装置 |
JPH10248759A (ja) * | 1997-03-14 | 1998-09-22 | Kimura Giken Kk | 殺菌機構付き便室 |
JPH10328289A (ja) * | 1997-06-05 | 1998-12-15 | Noda Medical Kk | 殺菌空間作製装置 |
JP2005111034A (ja) * | 2003-10-09 | 2005-04-28 | Nippon Koki Kogyo Kk | 歯ブラシの滅菌装置 |
JP2006502756A (ja) * | 2002-07-25 | 2006-01-26 | アトランティウム レイザーズ リミテッド | 標的部位の化学的又は物理的特性に影響を与える方法及び装置 |
JP2007007083A (ja) * | 2005-06-29 | 2007-01-18 | Univ Of Tokushima | 紫外線殺菌装置 |
JP2010264238A (ja) * | 2009-05-18 | 2010-11-25 | Dental Equipment Llc Dba Pelton & Crane | 消毒反応器を備えた歯科用ハンドツール |
US20130178921A1 (en) * | 2007-03-15 | 2013-07-11 | Charles Brian Rogers | System and apparatus providing a controlled light source for medicinal applications |
JP2013166132A (ja) * | 2012-02-16 | 2013-08-29 | Sharp Corp | 紫外線光源装置 |
JP2014508612A (ja) * | 2011-03-07 | 2014-04-10 | ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | バクテリアに選択的に作用するとともに/又は殺菌する装置、方法及びシステム |
JP2015112439A (ja) * | 2013-12-14 | 2015-06-22 | 倫文 木原 | 自動床面殺菌装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5178616A (en) | 1988-06-06 | 1993-01-12 | Sumitomo Electric Industries, Ltd. | Method and apparatus for intravascular laser surgery |
JPH01308550A (ja) | 1988-06-06 | 1989-12-13 | Sumitomo Electric Ind Ltd | 血管内レーザ手術装置 |
CN1072971C (zh) * | 1994-09-09 | 2001-10-17 | 卡迪奥福克斯有限公司 | 光疗装置 |
US5906609A (en) | 1997-02-05 | 1999-05-25 | Sahar Technologies | Method for delivering energy within continuous outline |
WO2006087650A2 (en) * | 2005-02-17 | 2006-08-24 | Philips Intellectual Property & Standards Gmbh | All-solid-state uv laser system |
US20110054574A1 (en) | 2009-08-26 | 2011-03-03 | Perry Felix | Ultraviolet sterilizer for surgery |
JP2011225318A (ja) * | 2010-04-19 | 2011-11-10 | Chugoku Electric Power Co Inc:The | 巻き込み防止装置 |
CN101817572A (zh) * | 2010-04-28 | 2010-09-01 | 南京工业大学 | 用于工业循环冷却水系统的超声杀菌除藻方法 |
US20130015362A1 (en) | 2011-07-12 | 2013-01-17 | Sharp Kabushiki Kaisha | Fluid purification and sensor system |
JP2013066685A (ja) | 2011-09-22 | 2013-04-18 | Ikooru:Kk | 紫外線照射による歯周病治療の治療装置 |
US8743922B2 (en) | 2011-10-21 | 2014-06-03 | Sharp Kabushiki Kaisha | Ultraviolet laser |
US20140105784A1 (en) * | 2012-10-15 | 2014-04-17 | Sharp Kabushiki Kaisha | Ultraviolet treatment device |
US9310664B2 (en) | 2013-12-20 | 2016-04-12 | Sharp Kabushiki Kaisha | Frequency-converted light source |
-
2015
- 2015-06-29 US US15/512,423 patent/US10307495B2/en active Active
- 2015-06-29 WO PCT/JP2015/068734 patent/WO2016042879A1/ja active Application Filing
- 2015-06-29 CN CN201580050471.6A patent/CN106794357B/zh not_active Expired - Fee Related
- 2015-06-29 EP EP15842195.8A patent/EP3195900A4/en not_active Withdrawn
- 2015-06-29 JP JP2016548596A patent/JP6303019B2/ja not_active Expired - Fee Related
-
2018
- 2018-03-02 JP JP2018037309A patent/JP6609338B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146394A (ja) * | 1996-11-19 | 1998-06-02 | Teruo Hoshino | 滅菌治療装置 |
JPH10248759A (ja) * | 1997-03-14 | 1998-09-22 | Kimura Giken Kk | 殺菌機構付き便室 |
JPH10328289A (ja) * | 1997-06-05 | 1998-12-15 | Noda Medical Kk | 殺菌空間作製装置 |
JP2006502756A (ja) * | 2002-07-25 | 2006-01-26 | アトランティウム レイザーズ リミテッド | 標的部位の化学的又は物理的特性に影響を与える方法及び装置 |
JP2005111034A (ja) * | 2003-10-09 | 2005-04-28 | Nippon Koki Kogyo Kk | 歯ブラシの滅菌装置 |
JP2007007083A (ja) * | 2005-06-29 | 2007-01-18 | Univ Of Tokushima | 紫外線殺菌装置 |
US20130178921A1 (en) * | 2007-03-15 | 2013-07-11 | Charles Brian Rogers | System and apparatus providing a controlled light source for medicinal applications |
JP2010264238A (ja) * | 2009-05-18 | 2010-11-25 | Dental Equipment Llc Dba Pelton & Crane | 消毒反応器を備えた歯科用ハンドツール |
JP2014508612A (ja) * | 2011-03-07 | 2014-04-10 | ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク | バクテリアに選択的に作用するとともに/又は殺菌する装置、方法及びシステム |
JP2013166132A (ja) * | 2012-02-16 | 2013-08-29 | Sharp Corp | 紫外線光源装置 |
JP2015112439A (ja) * | 2013-12-14 | 2015-06-22 | 倫文 木原 | 自動床面殺菌装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3195900A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018033750A (ja) * | 2016-08-31 | 2018-03-08 | 東芝ライテック株式会社 | 殺菌装置 |
US10910210B2 (en) | 2017-01-10 | 2021-02-02 | Ushio Denki Kabushiki Kaisha | Ultraviolet sterilizer |
WO2018131582A1 (ja) * | 2017-01-10 | 2018-07-19 | ウシオ電機株式会社 | 紫外線殺菌装置 |
JP2018114197A (ja) * | 2017-01-20 | 2018-07-26 | ウシオ電機株式会社 | 紫外線殺菌装置 |
US20220273833A1 (en) * | 2017-05-09 | 2022-09-01 | Crosby Innovations, LLC | Far uv-c apparatus and confirmation of use |
WO2019077817A1 (ja) * | 2017-10-19 | 2019-04-25 | ウシオ電機株式会社 | 殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法 |
JP2019072411A (ja) * | 2017-10-19 | 2019-05-16 | ウシオ電機株式会社 | 殺菌装置 |
JP2021506514A (ja) * | 2017-12-22 | 2021-02-22 | イニコア メディカル,インコーポレイテッド | 消毒方法および装置 |
JP7050936B2 (ja) | 2017-12-22 | 2022-04-08 | イニコア メディカル,インコーポレイテッド | 消毒方法および装置 |
JP2019122947A (ja) * | 2018-01-19 | 2019-07-25 | 三菱電機株式会社 | 殺菌装置及び給湯装置 |
JP2021526905A (ja) * | 2018-06-08 | 2021-10-11 | タッチ ユーブイ, インコーポレイテッド | 自己消毒表面を有するデバイス |
WO2021255961A1 (ja) * | 2020-06-18 | 2021-12-23 | 日本国土開発株式会社 | 消毒装置、車両、および建設機械 |
JPWO2021255961A1 (ja) * | 2020-06-18 | 2021-12-23 | ||
WO2023112344A1 (ja) * | 2021-12-15 | 2023-06-22 | 三菱重工サーマルシステムズ株式会社 | 除菌システム及び空調機、並びに除菌方法、並びに除菌プログラム |
WO2023157281A1 (ja) * | 2022-02-21 | 2023-08-24 | 日本電信電話株式会社 | 光伝送装置、光照射システム、及び光伝送方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106794357A (zh) | 2017-05-31 |
US10307495B2 (en) | 2019-06-04 |
JP2018126522A (ja) | 2018-08-16 |
CN106794357B (zh) | 2019-02-19 |
EP3195900A4 (en) | 2017-09-13 |
JP6303019B2 (ja) | 2018-03-28 |
EP3195900A1 (en) | 2017-07-26 |
JPWO2016042879A1 (ja) | 2017-08-03 |
US20170290932A1 (en) | 2017-10-12 |
JP6609338B2 (ja) | 2019-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6609338B2 (ja) | 医療用殺菌装置及びその使用方法、並びに、医療具及びその使用方法 | |
Al-Watban et al. | The comparison of effects between pulsed and CW lasers on wound healing | |
US9061082B2 (en) | Ultraviolet-based sterilization | |
US11154724B2 (en) | Systems and methods for anti-microbial effect for bones | |
US7201767B2 (en) | Device for ultraviolet radiation treatment of body tissues | |
JP2012510345A5 (ja) | ||
US20220088409A1 (en) | Surgical site disinfection devices | |
JP4769948B2 (ja) | 医療用発光装置 | |
US11813368B2 (en) | Anti-microbial blue light systems and methods | |
JP2018525117A (ja) | 医療装置消毒システム及び方法 | |
US20080077204A1 (en) | Optical biofilm therapeutic treatment | |
CN115551556A (zh) | 远程根除病原体 | |
Rajan et al. | Evolution and advancement of lasers in dentistry-A literature review | |
JP2009172051A (ja) | 歯科用治療装置 | |
KR20130094127A (ko) | 구강용 레이저 조사기 | |
Asnaashari et al. | The effect of high-power lasers on root canal disinfection: a systematic review | |
Kaur et al. | Dental LASER: A Boon in Dentistry & its significance in Covid-19 | |
JP2016214376A (ja) | 内視鏡用光線力学的治療装置 | |
US12011325B2 (en) | System and method for treatment of periodontic pockets using disposable inserts | |
Das et al. | Lasers in Prosthodontics | |
JP2022519820A (ja) | 光照射装置 | |
US20090052184A1 (en) | Multi-Purpose Light Source | |
EP4392136A1 (en) | Anti-microbial blue light systems and methods | |
Ruga et al. | Manual of diode laser in dentistry and stomatology | |
KR20020060020A (ko) | 고출력 반도체 레이저 다이오드(high power semiconductorlaser diode)를 이용한 광역동 치료 및 진단(photodynamictreatment / diagnosis)용 의료용 레이저 기구 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842195 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016548596 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512423 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015842195 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015842195 Country of ref document: EP |