WO2019077817A1 - 殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法 - Google Patents

殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法 Download PDF

Info

Publication number
WO2019077817A1
WO2019077817A1 PCT/JP2018/025949 JP2018025949W WO2019077817A1 WO 2019077817 A1 WO2019077817 A1 WO 2019077817A1 JP 2018025949 W JP2018025949 W JP 2018025949W WO 2019077817 A1 WO2019077817 A1 WO 2019077817A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength range
filter
sterilizer
transmitted
Prior art date
Application number
PCT/JP2018/025949
Other languages
English (en)
French (fr)
Inventor
敬祐 内藤
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66092581&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019077817(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2019077817A1 publication Critical patent/WO2019077817A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention relates to a sterilizing apparatus using ultraviolet light, and more particularly to a sterilizing apparatus and a sterilizing method for inactivating bacteria and the like by irradiating ultraviolet light, and a sterilizing method for Staphylococcus aureus.
  • UV sterilization a method of inactivating bacteria and viruses present on the surface of a living tissue, for example, the skin surface or gastrointestinal surface of a human body by irradiating ultraviolet light (hereinafter, also simply referred to as "UV sterilization") is known.
  • UV sterilization is performed, for example, by applying ultraviolet light to DNA in cells of a target organism to be sterilized such as bacteria and viruses.
  • the intracellular DNA is absorbed by ultraviolet light to destroy the genetic code of the DNA, thereby preventing normal growth and metabolism of the cell, thereby preventing the sterilization target organism having the cell. Activate.
  • a sterilizer that performs UV sterilization on a living body, ultraviolet light with a wavelength range of 190 nm or more and 230 nm or less that is harmless to animal cells such as human cells while achieving a UV sterilizing effect on a target organism to be disinfected Selective irradiation is performed, and according to such a sterilizer, bacteria, viruses and the like present on the surface of the living tissue can be selectively UV-sterilized without damaging animal cells such as human cells.
  • ultraviolet light i.e., light in an invisible range
  • ultraviolet light having a wavelength of 230 nm or less is used, which makes visual observation more difficult.
  • Patent Document 1 discloses a first wavelength light having a peak wavelength in a wavelength range of 190 nm to 230 nm and a second wavelength light having a peak wavelength in a wavelength range of 400 nm to 780 nm.
  • a sterilizer has been proposed that emits and.
  • the first wavelength light ultraviolet light
  • the second wavelength light is light in the visible range, it can be viewed visually. Therefore, the irradiation range of the first wavelength light can be visualized by irradiating the second wavelength light with the first wavelength light.
  • both safety and operability of grasping the irradiation range can be realized.
  • the above-mentioned sterilizer has the following problems.
  • the above-mentioned sterilizing apparatus is incorporated in, for example, an endoscope and used in vivo
  • the first wavelength light and the second wavelength light are propagated by, for example, an optical fiber and irradiated to the inside of the organism.
  • the color rendering of the second wavelength light is low, it is possible to operate the endoscope while visually recognizing the camera image to accurately irradiate the first wavelength light to a site to be irradiated with ultraviolet light (irradiation target site)
  • ultraviolet light irradiation target site
  • “visual observation” includes not only direct visual observation but also indirect visual observation which is photographed by an endoscope camera or the like and visually recognized through a monitor.
  • another problem is that the second wavelength light irradiated with the first wavelength light contains an excessive amount of blue light (light in the wavelength range of 380 nm to 460 nm). It has been found through intensive studies of the inventor that
  • the present invention has been made based on the above circumstances, and its object is to sterilize and disinfect an organism to be disinfected present on the surface of a living tissue while suppressing harm to animal cells.
  • the visible light with high color rendering property together with the ultraviolet light relating to UV sterilization it is possible to surely recognize the region to be irradiated and to surely grasp the range (the ultraviolet light irradiation range) to which the ultraviolet light is irradiated.
  • a sterilizer comprises a light source unit that emits light having a continuous spectrum over a wavelength range of 200 nm to 500 nm. And a filter for cutting light in the wavelength range of greater than 230 nm to 400 nm and attenuating light in the wavelength range of greater than 400 nm to 500 nm, The light transmitted through the filter is irradiated to the living body.
  • the filter has a ratio of light in the wavelength range of 400 nm to 500 nm to light in the wavelength range of 200 nm to 230 nm in the transmitted light transmitted through the filter is 0.18 or less Is preferred.
  • the filter is such that the ratio of light in the wavelength range of 701 nm to 800 nm to light in the wavelength range of 200 nm to 230 nm in the transmitted light transmitted through the filter is 0.05 or less Is preferred.
  • the light source unit comprises a short arc type discharge lamp in which mercury is enclosed as a luminescent gas, and a condensing optical system having a reflecting mirror disposed so as to surround the periphery thereof. be able to.
  • the light source unit may be configured by a laser excitation lamp in which a luminescent gas composed of xenon gas is sealed.
  • the average color rendering index Ra of the light emitted from the optical filter is 80 or more.
  • the sterilization method of the present invention emits light having a continuous spectrum from the light source section over a wavelength range of 200 nm to 500 nm,
  • the filter cuts off light in the wavelength range of greater than 230 nm to 400 nm and attenuates light in the wavelength range of greater than 400 nm to 500 nm,
  • the light transmitted through the filter is irradiated to the living body.
  • the ratio of the light in the wavelength range of 400 nm to 500 nm to the light in the wavelength range of 200 nm to 230 nm in the transmitted light transmitted through the filter is 0.18 or less.
  • the ratio of light in the wavelength range of 701 nm to 800 nm to light in the wavelength range of 200 nm to 230 nm in transmitted light transmitted through the filter is preferably 0.05 or less.
  • the sterilization method of S. aureus of the present invention is characterized by sterilization of S. aureus using the above-mentioned sterilization method.
  • the sterilizer of the present invention among the light in the wavelength range of 200 nm to 500 nm, the light in which the light in the wavelength range of more than 230 nm to 400 nm is cut is irradiated to the living tissue, and hence it exists on the surface of the living tissue.
  • FIG. 1 is a schematic diagram which shows an example of a structure of the sterilizer which concerns on the 1st Embodiment of this invention.
  • the sterilizing apparatus 1 according to the first embodiment includes a short arc discharge lamp (hereinafter, also simply referred to as a "discharge lamp”) 11 and a light collector having a reflecting mirror 12 disposed to surround the discharge lamp 11.
  • a short arc discharge lamp hereinafter, also simply referred to as a "discharge lamp”
  • a light collector having a reflecting mirror 12 disposed to surround the discharge lamp 11.
  • a light source unit 10 made of an optical system transmits light in a wavelength range of 200 nm to 230 nm (hereinafter, also referred to as “specific wavelength light A”), and light in a wavelength range of 230 nm to 400 nm (hereinafter, “specific wavelength light And an optical filter 20 for attenuating light in a wavelength range of more than 400 nm to 500 nm (hereinafter also referred to as “specific wavelength light C”).
  • the light transmitted through the optical filter 20 is irradiated to the living tissue.
  • the discharge lamp 11 constituting the light source unit 10 in the sterilizer 1 of the present invention a lamp that emits light having a continuous spectrum over a wavelength range of 200 nm to 500 nm can be used.
  • the discharge lamp 11 is a so-called double-end sealed type, and has, for example, an elliptical bulb-shaped light-emitting tube portion 14 forming a light-emitting space S1, and both ends of the light-emitting tube portion 14 continuously along the tube axis direction. It has a bulb, for example, made of synthetic quartz glass (Suprasil F310), having outwardly extending sealing tubes 15 and 16. Inside the light emitting tube portion 14, an anode 18 and a cathode 19 which are a pair of electrodes are disposed to face each other.
  • the inter-electrode distance between the anode 18 and the cathode 19 is, for example, 1 to 10 mm.
  • mercury is enclosed in the light emitting tube portion 14 as a light emitting gas.
  • the filling pressure (mercury vapor pressure) of the luminescent gas is, for example, 1 ⁇ 10 7 Pa.
  • the anode 18 is made of, for example, tungsten.
  • the cathode 19 is made of, for example, a tungsten sintered body impregnated with an electron-emissive material (emitter material) such as barium oxide (BaO) or calcium oxide (CaO).
  • emitter material such as barium oxide (BaO) or calcium oxide (CaO).
  • the anode 18 and the cathode 19 are respectively connected to the feeding means (not shown), and a lighting circuit (not shown) generates a voltage of a predetermined magnitude between the anode 18 and the cathode 19.
  • a lighting circuit (not shown) generates a voltage of a predetermined magnitude between the anode 18 and the cathode 19.
  • the reflecting mirror 12 is disposed on the side of the cathode 19 of the discharge lamp 11 so as to surround the periphery of the light emitting tube portion 14. Specifically, for example, it is constituted by an ellipsoidal reflector having a first focal point and a second focal point, with a lamp insertion opening 12a formed at the top, and a reflecting surface 12b is formed on the inner surface thereof It is configured.
  • the sealing tube portion 16 on the cathode 19 side of the discharge lamp 11 is inserted into the lamp insertion opening 12a, the optical axis X coincides with the lamp central axis C of the discharge lamp 11, and It is disposed in a state where the position coincides with the center position (light emitting point) between the anode 18 and the cathode 19.
  • the reflective surface 12b may be any one having reflectivity for ultraviolet light in a wavelength range of 230 nm or less including the specific wavelength light A and specific wavelength light C, from the viewpoint of enhancing the reflectance for ultraviolet light in a wavelength range of 230 nm or less
  • the light emitted from the sterilizer 1 of the present invention is incident on an incident optical system 40 such as an optical fiber, and the incident optical system 40 has a reflecting mirror 12 at the center of the incident end surface 40 a of the incident optical system 40.
  • the incident optical system 40 has a reflecting mirror 12 at the center of the incident end surface 40 a of the incident optical system 40.
  • the second reflecting surface 12b of the second reflecting surface 12b is Of the second reflecting surface 12b of the second reflecting surface 12b.
  • the light emitted from the discharge lamp 11 of the light source unit 10 and reflected by the reflecting mirror 12 is collected on the optical path until it is condensed on the second focal point of the reflecting mirror 12.
  • An optical filter 20 is disposed. Specifically, for example, a disk-shaped optical filter 20 is provided in a state of closing the opening of the reflecting mirror 12 on the anode 18 side of the discharge lamp 11.
  • the optical filter 20 transmits the specific wavelength light A, cuts the specific wavelength light B, and attenuates the specific wavelength light C.
  • the first attenuation filter that absorbs the specific wavelength light B, and the specific It can be composed of a second attenuation filter that absorbs wavelength light C.
  • the optical filter 20 is configured as, for example, a first attenuation filter and a second attenuation filter laminated on the same glass substrate.
  • a band pass filter having a center wavelength of 214 nm and having an OD (Optical Density) value of 4.0 or more for the specific wavelength light B can be used.
  • the second attenuation filter use a short pass filter having a cut-on / cut-off wavelength of 400 nm and having an OD value of 2.0 or more for the specific wavelength light C and a block wavelength range of 400 nm to 500 nm.
  • the first attenuation filter of the optical filter 20 may be of a nature that reflects the specific wavelength light B. However, since the reflected specific wavelength light B is irradiated to the bulb of the discharge lamp 11, the first attenuation filter absorbs the specific wavelength light B because the deterioration of the bulb proceeds at an early stage. It is preferred that
  • the optical filter 20 preferably has a ratio of the specific wavelength light C to the specific wavelength light A in the transmitted light transmitted through the optical filter 20 is 0.18 or less.
  • the lower limit of the ratio of the specific wavelength light C to the specific wavelength light A is the case where the light emitted from the optical filter 20 is directly viewed by the naked eye at the place where the living tissue is irradiated, and the camera connected to the endoscope Although it differs depending on the case of viewing through a monitor and further depending on the performance such as the sensitivity of the camera of the endoscope, it may be a degree that allows a viewer to sense light when viewing. Specifically, it is preferably 0.0001 or more.
  • the ratio of the specific wavelength light C to the specific wavelength light A is represented by an area ratio integrated with the wavelength in the spectrum of the transmitted light transmitted through the optical filter 20. If the ratio of the specific wavelength light C to the specific wavelength light A is excessive, the biological tissue is strongly irradiated with the blue light, which may make it impossible to secure high safety for animal cells. In addition, when the ratio of the specific wavelength light C to the specific wavelength light A is too small, the irradiation target site can not be viewed with certainty, which may make it difficult to grasp the ultraviolet irradiation range.
  • the ratio of light in the wavelength range of 701 nm to 800 nm (hereinafter also referred to as “specific wavelength light D”) to the specific wavelength light A in the transmitted light transmitted through the optical filter 20 is 0.05. It is preferable that it is the following. If the ratio of the specific wavelength light D to the specific wavelength light A is excessive, the near-infrared light is irradiated to the living tissue, which may make it impossible to secure high safety for animal cells. .
  • a wavelength range of 200 nm to 500 nm indicates a wavelength range of 200 nm ⁇ ⁇ ⁇ 500 nm, where ⁇ is a wavelength.
  • a wavelength range of 200 nm to 230 nm indicates a wavelength range of 200 nm ⁇ ⁇ ⁇ 230 nm, where ⁇ is a wavelength.
  • a wavelength range of more than 230 nm to 400 nm indicates a wavelength range of 230 nm ⁇ ⁇ 400 nm, where ⁇ is a wavelength.
  • a wavelength range of more than 400 nm to 500 nm indicates a wavelength range of 400 nm ⁇ ⁇ 500 nm, where ⁇ is a wavelength.
  • the wavelength range of 701 nm to 800 nm indicates a wavelength range of 701 nm ⁇ ⁇ ⁇ 800 nm, where ⁇ is a wavelength.
  • the light emitted from the optical filter 20 preferably has spectral radiation characteristics such that the average color rendering index Ra is 80 or more, preferably 90 or more, and more preferably 95 or more.
  • the upper limit of the average color rendering index Ra is 100.
  • the light emitted from the optical filter 20 is particularly a special color rendering index related to R9 (red color), a special color rendering index related to R13 (skin color of white-based caucasian skin color), a special color according to R15 (skin color of mongoloid) It is particularly preferred to have spectral emission characteristics such that the color rendering index is 80 or more, preferably 90 or more, more preferably 95 or more.
  • the average color rendering index Ra is measured in accordance with JIS Z 8726: 1990 (color rendering evaluation method of light source).
  • the light emitted from the discharge lamp 11 constituting the light source unit 10 is reflected by the reflecting surface 12 b of the reflecting mirror 12 and condensed to the second focal point through the optical filter 20 and incident.
  • the light is incident on the incident end face 40 a of the optical system 40.
  • the light incident on the incident optical system 40 is irradiated to the irradiation target site through the optical fiber, whereby the sterilization / disinfection of the sterilization target organism such as bacteria present in the irradiation target site is performed.
  • the optical filter 20 of the light in the wavelength range of 200 nm to 500 nm emitted from the discharge lamp 11, the specific wavelength light A passes through the optical filter 20, and the specific wavelength light B is cut.
  • the specific wavelength light C is attenuated.
  • the irradiation amount (irradiation density) of the light irradiated to the living tissue from the discharge lamp 11 through the optical filter 20 is determined by the exposure amount calculated from the irradiation density and the irradiation time. It may be an amount that is large enough to sterilize the target organism on the surface of the tissue.
  • the irradiation amount of light is, for example, 5 to 420 mJ / cm 2 although it varies depending on the irradiation time.
  • the specific wavelength light B emitted from the discharge lamp 11 and incident on the optical filter 20 is also increased, so that the specific wavelength light B harmful to the living body can be surely cut. It may not be possible.
  • the irradiation amount of light is excessively small, it may take a long time to sufficiently disinfect and disinfect the target organism to be disinfected.
  • FIG. 2 is a graph showing a spectral distribution curve of light emitted from the sterilizer according to the first embodiment of the present invention.
  • the spectrum of light (radiation light) immediately after emitted from the discharge lamp 11 is indicated by a dashed line as a0, and the spectrum of light (irradiation light) after passing through the optical filter 20 is indicated as a1 as a straight line.
  • optical axis distance of the optical path from the bright spot where the arc discharge occurs in the short arc discharge lamp 51 to the optical filter 52 is 70 mm, and the optical axis distance of the optical path from the optical filter 52 to the cell sample (bottom surface of petri dish 53) is 20 mm is there.
  • filter [A] which does not permeate
  • the ratio of the specific wavelength light C to the specific wavelength light A in the light transmitted through the filter [A] was 0.18.
  • the ratio of the specific wavelength light D to the specific wavelength light A in the light transmitted through the filter [A] was 0.03.
  • the cell type is JCRB9004 (HeLa), and the number of cells contained in one petri dish is 40 ⁇ 10 4 cells.
  • HeLa JCRB9004
  • the lid of the petri dish was removed with the cell culture fluid removed.
  • the irradiation amount of light irradiated to the cell (exposure), respectively 0mJ / cm 2, 5mJ / cm 2, 10mJ / cm 2, 20mJ / cm 2, 40mJ / cm 2, 80mJ / cm 2, It performed on seven conditions used as 120 mJ / cm ⁇ 2 >.
  • one sample one petri dish of cells
  • the intensity (illuminance) of the light irradiated to the cells was 22.3 ⁇ W / cm 2 in common, and the irradiation time was changed.
  • the exposure amount 0 mJ / cm 2 was relatively evaluated as the survival rate 100%.
  • the relationship between the exposure dose and the cell survival rate is indicated by " ⁇ " in the graph of FIG.
  • the average color rendering index Ra of the light irradiated to the cells was 77
  • the special color rendering index according to R9 was 20
  • the special color rendering index according to R13 was 85
  • the special color rendering index according to R15 was 86.
  • Example A2 An experiment was conducted in which cells were irradiated with ultraviolet light in the same manner as in Experimental Example A1, except that the optical filter was changed from filter [A] to filter [B].
  • the filter [B] does not transmit light in a wavelength range of wavelength 230 nm or more (OD value for specific wavelength light B is 4.0) Specification for specific wavelength light A in light after passing through the filter [B]
  • the ratio of wavelength light C was 0.03.
  • the ratio of the specific wavelength light D to the specific wavelength light A in the light transmitted through the filter [B] was 0.04.
  • the relationship between the exposure dose and the cell viability is shown by “ ⁇ ” in the graph of FIG.
  • the average color rendering index Ra of the light irradiated to the cells was 85
  • the special color rendering index according to R9 was 20
  • the special color rendering index according to R13 was 90
  • the special color rendering index according to R15 was 90.
  • Comparative Experiment Example A3 An experiment was conducted in which cells were irradiated with ultraviolet light in the same manner as in Experimental Example A1, except that an optical filter was not used and a low pressure mercury lamp was used instead of the short arc discharge lamp. A low pressure mercury lamp emits light having a bright line spectrum at a wavelength of 254 nm. The relationship between the exposure dose and the cell survival rate is indicated by “ ⁇ ” in the graph of FIG. In addition, the average color rendering index Ra of light irradiated to the cells was 50, the special color rendering index for R9 was -46, the special color rendering index for R13 was 53, and the special color rendering index for R15 was 57 .
  • Example B1 An experiment was conducted in which S. aureus was irradiated with ultraviolet light in the same manner as in Experimental Example A1, except that the cell sample was replaced with S. aureus (NBRC. 12732). Specifically, a solution obtained by adding a bacterial solution having a viable cell concentration of 9 ⁇ 10 5 CFU / mL in a 3 mL petri dish was used as a sample.
  • the intensity (illuminance) of light irradiated to S. aureus was common at 22.3 ⁇ W / cm 2 , and the irradiation time was changed.
  • 0.1 mL of a sample stock solution was applied to an agar medium and cultured at 37 ° C. for 48 hours. Thereafter, the number of colonies generated in the agar medium was examined. At this time, the inactivation rate was calculated using a formula represented by the following formula (1).
  • the sample stock solution is diluted 10-fold with physiological saline, 0.1 mL of the diluted bacterial solution is collected, and this is applied to an agar medium and cultured similarly. did. This operation was repeated until the number of colonies became 300 CFU or less, and when it became 300 CFU or less, the number of colonies of the sample was calculated by multiplying the number of colonies at this time by the dilution ratio.
  • Example B2 An experiment was conducted to irradiate Staphylococcus aureus with ultraviolet light in the same manner as in Experimental Example B1, except that the optical filter was changed from the filter [A] to the same filter [B] as that used in Experimental Example A2.
  • the relationship between the exposure dose and the S. aureus inactivation rate is indicated by “ ⁇ ” in the graph of FIG.
  • the ratio of the specific wavelength light C to the specific wavelength light A is 0.18
  • the ratio of the specific wavelength light C to the specific wavelength light A is 0.
  • the filter [B] which is 03 the decrease in human cell viability is moderate as compared with the case of irradiating light having a bright line spectrum at a wavelength of 254 nm from a low pressure mercury lamp.
  • the cell viability of the cell death line of human cells is indicated by a chain line in FIG.
  • the filter [A] when the filter [B] is used, the average color rendering index Ra is higher than when the light from the low pressure mercury lamp is irradiated as it is.
  • the color rendering index, the special color rendering index according to R13, and the special color rendering index according to R15 all have high values. Further, as is clear from FIG. 7, when bacteria (S. aureus) are used as the filter [A], 3 when the filter [B] is used and when the light from the low pressure mercury lamp is irradiated as it is It was confirmed that there was almost no difference in inactivation rate between the two configurations. From the above, when the filter [A] is used and when the filter [B] is used, the safety against human cells is secured, and then selectively kills the sterilization target organism (S. aureus). In addition, it was confirmed that the site to be irradiated could be viewed with certainty.
  • the sterilizer 1 described above among the light in the wavelength range of 200 nm to 500 nm, the light from which the specific wavelength light B has been cut is irradiated to the living tissue, and hence it exists on the surface of the living tissue. Can be sterilized and disinfected while securing safety for animal cells, and since irradiation is performed in the state where specific wavelength light C that is visible light is attenuated, damage to animal cells is suppressed However, due to the high color rendering of the specific wavelength light C, the region to be irradiated can be reliably viewed, and the ultraviolet radiation range can be reliably grasped.
  • the sterilizer according to the first embodiment of the present invention has been described above, the sterilizer according to the first embodiment is not limited to the above embodiment, and various modifications can be made.
  • the first attenuation filter and the second attenuation filter constituting the optical filter 20 are of the nature of absorbing the specific wavelength light B and the specific wavelength light C, respectively
  • the first attenuation filter and the second attenuation filter may be provided on the optical path up to the reflecting surface 12b of the reflecting mirror, for example, on the inner surface of the reflecting surface 12b of the reflecting mirror 12.
  • FIG. 3 is a schematic diagram which shows an example of a structure of the sterilizer which concerns on the 2nd Embodiment of this invention.
  • the laser excitation lamp 31 constituting the light source unit 10A of the sterilizing apparatus 1A according to the second embodiment is an electrodeless lamp having no electrode in the light emission space S2, and the laser from the excitation laser light source Light is condensed from the outside into the light emission space S2, a plasma is generated at the focal position F of the condenser lens 38, and the generated plasma excites the light emission gas enclosed in the light emission space S2 to emit light.
  • the laser excitation lamp 31 has a cylindrical outer shape, and a body 30 made of a ceramic (polycrystalline alumina) having a concavely curved reflecting surface 30 a that opens in the front, and the body 30
  • a condenser lens 38 for condensing the laser light in the light emission space S2.
  • the body 30 is supported by a cylindrical metal base 35.
  • the reflective surface 30a of the body 30 may have an elliptical surface having a first focus and a second focus.
  • the reflective surface 30a may be any one having reflectivity for ultraviolet light in a wavelength range of 230 nm or less including the specific wavelength light A and light for the specific wavelength light C, from the viewpoint of enhancing the reflectance for ultraviolet rays in a wavelength range of 230 nm or less
  • the light emitting window member 32 is made of, for example, a disk-like light transmitting material.
  • the light emitting window member 32 is supported by the window support member 32a, and the first cylindrical metal having an inner diameter that the window support member 32a and the body 30 conform to the outer diameters of the window support member 32a and the body 30. It is being fixed to the fuselage
  • the metal base 35 is formed with a disk-shaped first recess 35 ⁇ / b> A having a large diameter on the front side facing the body 30. Then, at a position corresponding to the hole portion 34 of the body 30 in the first recess 35A, a disk-like through hole 35B for passing laser light from the laser light source for excitation is communicated with the first recess 35A.
  • the light incident window member 33 which transmits the laser beam from the laser light source for excitation is fitted in the through hole 35B.
  • a second recess 35C that opens in the rear of the metal base 35 is formed in a state in which the second recess 35A communicates with the first recess 35A and extends in the same direction as the column axis direction of the body 30.
  • an exhaust pipe 36 having an outer diameter that matches the inner diameter of the second recess 35C is airtightly inserted in a state of extending outward.
  • the exhaust pipe 36 is sealed to the inner wall of the second recess 35C, and the end portion of the exhaust pipe 36 which is projected to the outside is squeezed in the radial direction after sealing the luminescent gas in the light emission space S2.
  • the pipe meats are in close contact with each other.
  • the metal base 35 and the metal base 35 and the body 30 are commonly fitted in a cylindrical second metal cylinder 37b having an inner diameter that matches the outer diameter of the metal base 35 and the body 30. Are fixed to the torso 30.
  • the light emitted from the sterilizer 1A of the present invention is incident on an incident optical system 40 such as an optical fiber, and the incident optical system 40 is such that the center of the incident end face 40a of the incident optical system 40 It is arrange
  • the irradiation amount (irradiation density) of the light irradiated to the living tissue from the laser excitation lamp 31 through the optical filter 20 is the exposure amount calculated from the irradiation density and the irradiation time of the living tissue. It is sufficient if the amount is such that it has a size sufficient to sterilize the object to be disinfected on the surface thereof.
  • the irradiation amount of light is, for example, 5 to 420 mJ / cm 2 although it varies depending on the irradiation time.
  • the specific wavelength light B emitted from the laser excitation lamp 31 and incident on the optical filter 20 is also increased to surely cut the specific wavelength light B harmful to the living body. May not be On the other hand, when the irradiation amount of light is excessively small, it may take a long time to sufficiently disinfect and disinfect the target organism to be disinfected.
  • the excitation laser light source for example, a CW laser which oscillates laser light continuously can be used.
  • the wavelength of the laser light oscillated from the excitation laser light source can be 1090 nm, and the average output can be 100 W.
  • a light emission gas made of xenon gas is enclosed.
  • the sealing pressure of the luminescent gas is set to 20 atm during sealing and 40 to 60 atm.
  • An optical filter 20 is disposed on the optical path up to Specifically, for example, a disk-shaped optical filter 20 is provided in contact with the light emission surface of the light emission window member 32 in a state of closing the entire surface of the light emission surface of the light emission window member 32.
  • the same filter as that used in the sterilizer 1 according to the first embodiment can be used.
  • the sterilizer 1A described above light generated by the laser excitation lamp 31 constituting the light source unit 10A is reflected by the reflective surface 30a of the body 30, and is condensed at the second focal point through the optical filter 20 and is incident The light is incident on the incident end face 40 a of the optical system 40.
  • the light incident on the incident optical system 40 is irradiated to the irradiation target site through the optical fiber, whereby sterilization and disinfection are performed on a sterilization target organism such as bacteria existing in the irradiation target site.
  • the optical filter 20 of the light in the wavelength range of 200 nm to 500 nm emitted from the discharge lamp 11, the specific wavelength light A passes through the optical filter 20, and the specific wavelength light B is cut.
  • the specific wavelength light C is attenuated.
  • FIG. 4 is a graph showing a spectral distribution curve of light emitted from the sterilizer according to the second embodiment of the present invention.
  • the spectrum of light (emission light) immediately after emitted from the laser excitation lamp 31 is shown by a dashed line as b0, and the spectrum of light (irradiation light) after passing through the optical filter 20 is shown as a straight line as b1.
  • the same effect as the sterilizer 1 according to the first embodiment can be obtained.
  • the sterilizer which concerns on the 2nd Embodiment of this invention was demonstrated, the sterilizer which concerns on 2nd Embodiment is not limited to said embodiment, It is possible to add a various change.
  • the optical filter 20 is not limited to being provided in contact with the light emission surface of the light emission window member 32, and the light emitted from the light emission window member 32 is collected until it is condensed to the second focus. It may be configured to be provided at a position not in contact with the light emitting surface of the light emitting window member 32 on the road.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本発明は、生体組織の表面上に存在する殺菌対象生物を、動物細胞に対する危害を抑制しながら殺菌・消毒することができ、しかも、UV殺菌に係る紫外線と共に演色性の高い可視光を照射することによって照射対象部位を確実に視認することができて紫外線照射範囲を確実に把握することができる殺菌装置および殺菌方法を提供することを課題とする。 本発明の殺菌装置は、200nm~500nmの波長域にわたって連続スペクトルを有する光を放射する光源部と、230nm超~400nmの波長域の光をカットし、400nm超~500nmの波長域の光を減衰させるフィルタとを備えてなり、前記フィルタを透過した光が生体に照射されることを特徴とする。前記フィルタは、当該フィルタを透過した透過光における、200nm~230nmの波長域の光に対する400nm超~500nmの波長域の光の比率が0.18以下のものであることが好ましい。

Description

殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法
 本発明は、紫外線を利用した殺菌装置に関し、更に詳しくは紫外線を照射することにより細菌などを不活化する殺菌装置および殺菌方法並びに黄色ブドウ球菌の殺菌方法に関する。
 従来、生体組織の表面上、例えば人体の皮膚表面や胃腸表面に存在する細菌やウィルスを、紫外線を照射することによって不活化する(以下、単に「UV殺菌」ともいう。)方法が知られている。UV殺菌は、例えば細菌やウィルスなどの殺菌対象生物の細胞内のDNAに紫外線を作用させることにより行われる。具体的には、細胞内のDNAに紫外線を吸収させてDNAの遺伝コードを破壊し、当該細胞の増殖・代謝が正常に行われないようにすることにより、当該細胞を有する殺菌対象生物を不活化する。
 UV殺菌を生体に対して行う殺菌装置においては、殺菌対象生物に対してはUV殺菌効果が得られながらヒト細胞などの動物細胞に対しては無害な190nm以上230nm以下の波長域にある紫外線を選択的に照射しており、このような殺菌装置によれば、ヒト細胞などの動物細胞を害することなく当該生体組織の表面に存在する細菌やウィルスなどを選択的にUV殺菌することができる。
 しかしながら、このような殺菌装置においては、紫外線すなわち不可視域の光のみを生体組織の表面に照射するので、紫外線が照射されている位置を目視により判別することができない、という問題がある。特に、生体組織を害することなくUV殺菌を行う場合には、230nm以下の波長の紫外線を用いることとなるため、目視がより困難となる。
 このような問題に対して、例えば、特許文献1には、190nm以上230nm以下の波長域にピーク波長を有する第一波長光と、400nm以上780nm以下の波長域にピーク波長を有する第二波長光とを出射する殺菌装置が提案されている。
 この殺菌装置においては、第一波長光(紫外線)が照射されることによって、ヒト細胞などの動物細胞を害することなく生体組織の表面に存在する殺菌対象生物をUV殺菌することができ、さらに、第二波長光は可視域の光なので目視が可能であり、従って、第一波長光と共に第二波長光が照射されることにより、第一波長光の照射範囲を可視化することができる。その結果、この殺菌装置によれば、安全性と、照射範囲の把握という操作性とが両立して実現される。
国際公開第2016/042879号
 しかしながら、上記の殺菌装置においては、以下のような問題があることが判明した。
 上記の殺菌装置を、例えば内視鏡に組み込んで生体内において使用する場合には、第一波長光および第二波長光を、例えば光ファイバにより伝搬させて生体内に照射することになるが、その際、第二波長光の演色性が低いため、カメラ画像を視認しながら内視鏡を操作して紫外線を照射すべき部位(照射対象部位)に正確に第一波長光を照射することは困難である、という問題がある。なお、本明細書においては、「目視」とは、直接的な目視に加え、内視鏡のカメラ等で撮影し、モニタを介して視認する間接的な目視も含むものとする。
 また、別の問題として、第一波長光と共に照射される第二波長光に青色光(380nm~460nmの波長域の光)が過度に含まれていると動物細胞を死滅させてしまう等の悪影響が生じることが、発明者の鋭意検討により判明した。
 本発明は、以上のような事情に基づいてなれたものであって、その目的は、生体組織の表面上に存在する殺菌対象生物を、動物細胞に対する危害を抑制しながら殺菌・消毒することができ、しかも、UV殺菌に係る紫外線と共に演色性の高い可視光を照射することによって照射対象部位を確実に視認することができて紫外線を照射する範囲(紫外線照射範囲)を確実に把握することができる殺菌装置および殺菌方法並びに黄色ブドウ球菌の殺菌方法を提供することにある。
 本発明の殺菌装置は、200nm~500nmの波長域にわたって連続スペクトルを有する光を放射する光源部と、
 230nm超~400nmの波長域の光をカットし、400nm超~500nmの波長域の光を減衰させるフィルタとを備えてなり、
 前記フィルタを透過した光が生体に照射されることを特徴とする。
 本発明の殺菌装置においては、前記フィルタが、当該フィルタを透過した透過光における、200nm~230nmの波長域の光に対する400nm超~500nmの波長域の光の比率が0.18以下のものであることが好ましい。
 本発明の殺菌装置においては、前記フィルタが、当該フィルタを透過した透過光における、200nm~230nmの波長域の光に対する701nm~800nmの波長域の光の比率が0.05以下のものであることが好ましい。
 本発明の殺菌装置においては、前記光源部が、発光ガスとして水銀が封入されたショートアーク型放電ランプと、その周囲を取り囲むよう配置された反射鏡を有する集光光学系とよりなる構成とすることができる。
 本発明の殺菌装置においては、前記光源部が、キセノンガスからなる発光ガスが封入されたレーザ励起ランプからなる構成とすることができる。
 本発明の殺菌装置においては、前記光学フィルタから出射された光の平均演色評価数Raが80以上であることが好ましい。
 本発明の殺菌方法は、光源部から200nm~500nmの波長域にわたって連続スペクトルを有する光を放射し、
 フィルタにより、230nm超~400nmの波長域の光をカットし、400nm超~500nmの波長域の光を減衰させ、
 前記フィルタを透過した光が生体に照射されることを特徴とする。
 本発明の殺菌方法においては、前記フィルタを透過した透過光における、200nm~230nmの波長域の光に対する400nm超~500nmの波長域の光の比率が0.18以下であることが好ましい。
 本発明の殺菌方法においては、前記フィルタを透過した透過光における、200nm~230nmの波長域の光に対する701nm~800nmの波長域の光の比率が0.05以下であることが好ましい。
 本発明の黄色ブドウ球菌の殺菌方法は、上記の殺菌方法を用い、黄色ブドウ球菌を殺菌することを特徴とする。
 本発明の殺菌装置によれば、200nm~500nmの波長域の光のうち、230nm超~400nmの波長域の光がカットされた光が生体組織に照射されるので、生体組織の表面上に存在する殺菌対象生物を、動物細胞に対する安全性が確保されながら殺菌・消毒することができ、しかも、400nm超~500nmの波長域の可視光が減衰された状態で照射されるので、動物細胞に対する危害を抑制しながら当該400nm超~500nmの波長域の光が照射されることによって演色性を高い状態とすることができるので、照射対象部位を確実に視認することができて紫外線照射範囲を確実に把握することができる。
本発明の第1の実施形態に係る殺菌装置の構成の一例を示す模式図である。 本発明の第1の実施形態に係る殺菌装置から放射される光の分光分布曲線を示すグラフである。 本発明の第2の実施形態に係る殺菌装置の構成の一例を示す模式図である。 本発明の第2の実施形態に係る殺菌装置から放射される光の分光分布曲線を示すグラフである。 実験例および比較実験例において用いた殺菌装置の概要を示す模式図である。 露光量と、ヒト細胞の生存率との関係を示すグラフである。 露光量と、黄色ブドウ球菌の不活化率との関係を示すグラフである。
 以下、本発明の殺菌装置の実施の形態について説明する。
<第1の実施形態>
 図1は、本発明の第1の実施形態に係る殺菌装置の構成の一例を示す模式図である。
 第1の実施形態に係る殺菌装置1は、ショートアーク型放電ランプ(以下、単に「放電ランプ」ともいう。)11および当該放電ランプ11の周囲を取り囲むよう配置された反射鏡12を有する集光光学系よりなる光源部10と、200nm~230nmの波長域の光(以下、「特定波長光A」ともいう。)を透過させ、230nm超~400nmの波長域の光(以下、「特定波長光B」ともいう。)をカットすると共に、400nm超~500nmの波長域の光(以下、「特定波長光C」ともいう。)を減衰させる光学フィルタ20とを備えている。この殺菌装置1においては、光学フィルタ20を透過した光が生体組織に照射される。
 本発明の殺菌装置1における光源部10を構成する放電ランプ11としては、200nm~500nmの波長域にわたって連続スペクトルを有する光を放射するものを用いることができる。
 放電ランプ11は、いわゆる両端封止型のものであって、発光空間S1を形成する例えば楕円球形状の発光管部14と、発光管部14の両端に連続して管軸方向に沿ってそれぞれ外方に延びる封止管部15,16を有する、例えば合成石英ガラス(Suprasil F310)よりなるバルブを備えている。
 発光管部14の内部には、一対の電極である陽極18および陰極19が互いに対向して配置されている。ここに、陽極18と陰極19との電極間距離は、例えば1~10mmである。
 また、発光管部14内には、発光ガスとして水銀が封入されている。
 発光ガスの封入圧(水銀蒸気圧)は、例えば1×10Paである。
 陽極18は、例えばタングステンにより構成されている。
 陰極19は、例えば酸化バリウム(BaO)、酸化カルシウム(CaO)などの易電子放射性物質(エミッタ物質)が含浸されたタングステン焼結体により構成されている。
 上記の放電ランプ11においては、陽極18および陰極19が、それぞれ給電手段(図示せず)に接続されており、図示しない点灯回路によって、陽極18および陰極19の間に所定の大きさの電圧が印加されると、陰極19と陽極18との間でアーク放電が生じ、当該放電ランプ11が点灯される。
 反射鏡12は、放電ランプ11の陰極19側において、発光管部14の周囲を取り囲むよう配置されている。
 具体的には、例えば、頂部にランプ挿入用開口部12aが形成された、第1焦点および第2焦点を有する楕円面反射鏡により構成されており、その内表面に反射面12bが形成されて構成されている。
 反射鏡12は、ランプ挿入用開口部12a内に放電ランプ11の陰極19側の封止管部16が挿入され、光軸Xが放電ランプ11のランプ中心軸Cと一致し、第1焦点の位置が陽極18と陰極19の電極間中心位置(発光点)と一致する状態で、配置されている。
 反射面12bは、特定波長光Aを含む230nm以下の波長域の紫外線および特定波長光Cについての反射性を有するものであればよく、230nm以下の波長域の紫外線に対する反射率を高めるという観点から、例えばアルミニウムなどによる金属蒸着膜や誘電体多層膜より構成されることが好ましい。
 本発明の殺菌装置1から出射された光は、光ファイバなどの入射光学系40に入射されるが、この入射光学系40は、当該入射光学系40の入射端面40aの中心が、反射鏡12の反射面12bの第2焦点の位置と一致する位置に、配置される。
 そして、本発明の殺菌装置1においては、光源部10の放電ランプ11から放射され、反射鏡12によって反射された光が、当該反射鏡12の第2焦点に集光されるまでの光路上に光学フィルタ20が配置される。具体的には、例えば円盤状の光学フィルタ20が、反射鏡12における放電ランプ11の陽極18側の開口を塞ぐ状態に設けられる。
 この光学フィルタ20は、特定波長光Aを透過させ、特定波長光Bをカットすると共に、特定波長光Cを減衰させるものであり、例えば、特定波長光Bを吸収する第1減衰フィルタと、特定波長光Cを吸収する第2減衰フィルタとからなるものとすることができる。光学フィルタ20は、具体的には、例えば第1減衰フィルタおよび第2減衰フィルタが同一のガラス基材上に積層して設けられたものとして構成される。
 第1減衰フィルタとしては、例えば中心波長が214nmのバンドパスフィルタであって、特定波長光Bに対するOD(Optical Density)値が4.0以上であるものを用いることができる。
 第2減衰フィルタとしては、カットオン/カットオフ波長が400nmのショートパスフィルタであって、特定波長光Cに対するOD値が2.0以上、ブロック波長帯レンジが400nm~500nmであるものを用いることができる。
 光学フィルタ20の第1減衰フィルタは、特定波長光Bを反射する性質のものであってもよい。しかしながら、反射された特定波長光Bは放電ランプ11のバルブに照射されてしまうので、バルブの劣化が早期に進行してしまうという理由から、第1減衰フィルタは特定波長光Bを吸収する性質のものであることが好ましい。
 また、光学フィルタ20は、当該光学フィルタ20を透過した透過光における、特定波長光Aに対する特定波長光Cの比率が0.18以下のものであることが好ましい。特定波長光Aに対する特定波長光Cの比率の下限は、光学フィルタ20から出射された光が生体組織に照射されるところを肉眼で直接視認する場合と、内視鏡のカメラ等に接続されたモニタを介して視認する場合とによって異なり、さらに、内視鏡のカメラの感度等の性能によっても異なるが、視認したときに視認者が光を感知可能である程度であればよい。具体的には、0.0001以上であることが好ましい。特定波長光Aに対する特定波長光Cの比率は、光学フィルタ20を透過した透過光のスペクトルにおける波長に対して積算した面積比で表される。
 特定波長光Aに対する特定波長光Cの比率が過大である場合は、生体組織に対して青色光が強く照射されることとなり、動物細胞に対する高い安全性を確保することができなくなるおそれがある。また、特定波長光Aに対する特定波長光Cの比率が過小である場合は、照射対象部位を確実に視認することができず、紫外線照射範囲の把握が不十分となるおそれがある。
 また、光学フィルタ20は、当該光学フィルタ20を透過した透過光における、特定波長光Aに対する701nm~800nmの波長域の光(以下、「特定波長光D」ともいう。)の比率が0.05以下のものであることが好ましい。
 特定波長光Aに対する特定波長光Dの比率が過大である場合は、生体組織に対して近赤外光が照射されることとなり、動物細胞に対する高い安全性を確保することができなくなるおそれがある。
 本明細書において、200nm~500nmの波長域とは、λを波長とするとき、200nm≦λ≦500nmの波長域を示すものである。また、200nm~230nmの波長域とは、λを波長とするとき、200nm≦λ≦230nmの波長域を示すものである。また、230nm超~400nmの波長域とは、λを波長とするとき、230nm<λ≦400nmの波長域を示すものである。また、400nm超~500nmの波長域とは、λを波長とするとき、400nm<λ≦500nmの波長域を示すものである。また、701nm~800nmの波長域とは、λを波長とするとき、701nm≦λ≦800nmの波長域を示すものである。
 光学フィルタ20から出射された光は、平均演色評価数Raが80以上、好ましくは90以上、より好ましくは95以上となる分光放射特性を有することが好ましい。なお、平均演色評価数Raの上限は100である。
 また、光学フィルタ20から出射された光は、特に、R9(赤色)に係る特殊演色評価数、R13(白色系のコーカソイドの肌色)に係る特殊演色評価数、R15(モンゴロイドの肌色)に係る特殊演色評価数が80以上、好ましくは90以上、より好ましくは95以上となる分光放射特性を有することが特に好ましい。
 平均演色評価数Raは、JIS Z 8726:1990(光源の演色性評価方法)に準じて測定されるものである。
 上記の殺菌装置1においては、光源部10を構成する放電ランプ11から放射された光が、反射鏡12の反射面12bによって反射され、光学フィルタ20を介して第2焦点に集光されて入射光学系40の入射端面40aに入射される。入射光学系40に入射された光は、光ファイバを介して照射対象部位に照射され、これにより、当該照射対象部位に存在するバクテリアなどの殺菌対象生物に対する殺菌・消毒が行われる。
 このとき、光学フィルタ20においては、放電ランプ11から放射された200nm~500nmの波長域の光のうち、特定波長光Aは当該光学フィルタ20を透過し、特定波長光Bはカットされると共に、特定波長光Cが減衰される。
 本発明の殺菌装置1において、放電ランプ11から光学フィルタ20を介して生体組織に照射される光の照射量(照射密度)は、当該照射密度と照射時間とから算出される露光量が、生体組織の表面上における殺菌対象生物を殺菌することができる程度の大きさとなる量であればよい。光の照射量は、照射時間によっても異なるが、例えば5~420mJ/cmとされる。光の照射量が過度に多い場合には、放電ランプ11から放射されて光学フィルタ20に入射する特定波長光Bも多くなって、この生体に有害な特定波長光Bを確実にカットすることができないおそれがある。一方、光の照射量が過度に少ない場合には、殺菌対象生物の十分な殺菌・消毒に長時間を要してしまうおそれがある。
 図2は、本発明の第1の実施形態に係る殺菌装置から放射される光の分光分布曲線を示すグラフである。放電ランプ11から放射された直後の光(放射光)のスペクトルをa0として鎖線で示し、また、光学フィルタ20を通過した後の光(照射光)のスペクトルをa1として直線で示した。
 以下、本発明の効果を示すための実験例について説明する。
<実験例A1>
 本発明の殺菌装置を用いて、細胞へ紫外線を照射する実験を行った。具体的には、以下の通りである。
 図5に示されるように、水銀が封入されたショートアーク型放電ランプ51(型式:UXL-S155A)からの光を、光学フィルタ52を介してシャーレ53に入っている細胞サンプルに照射した。
 ショートアーク型放電ランプ51におけるアーク放電が生じる輝点から光学フィルタ52までの光路の光軸距離は70mm、光学フィルタ52から細胞サンプル(シャーレ53の底部表面)までの光路の光軸距離は20mmである。
 光学フィルタとしては、波長230nm超の波長域の光を透過させない(特定波長光Bに対するOD値が4.0)フィルタ〔A〕を用いた。
 フィルタ〔A〕を透過した後の光における特定波長光Aに対する特定波長光Cの比率は0.18であった。また、フィルタ〔A〕を透過した後の光における特定波長光Aに対する特定波長光Dの比率は0.03であった。
 細胞サンプルは、細胞の種類がJCRB9004(HeLa)であり、1つのシャーレに含まれている細胞数は40×10cellsである。細胞サンプルに光を照射する際には、細胞培養液を除去した状態で、シャーレの蓋を取った状態とした。
 光の照射は、細胞に照射される光の照射量(露光量)がそれぞれ0mJ/cm、5mJ/cm、10mJ/cm、20mJ/cm、40mJ/cm、80mJ/cm、120mJ/cmとなる7条件で行った。光の照射においては、照射条件毎に1サンプル(1シャーレの細胞)を使用した。
 上記照射条件において、細胞に照射される光の強度(照度)は22.3μW/cmで共通とし、照射時間を変更した。
 照射試験後、新鮮な細胞培養液を2mL加え、24時間培養した後、「Cell Counting Kit-8」(同仁化学社製)を用いて、細胞の生存率を測定した。このとき、露光量0mJ/cm(=照射していないサンプル)を生存率100%として相対評価した。露光量と、細胞の生存率との関係を図6のグラフにおいて「■」で示す。
 また、細胞に照射される光の平均演色評価数Raは77、R9に係る特殊演色評価数は20、R13に係る特殊演色評価数は85、R15に係る特殊演色評価数は86であった。
<実験例A2>
 実験例A1において、光学フィルタをフィルタ〔A〕からフィルタ〔B〕に代えたこと以外は同様にして、細胞へ紫外線を照射する実験を行った。
 フィルタ〔B〕は、波長230nm超の波長域の光を透過させない(特定波長光Bに対するOD値が4.0)ものである
 フィルタ〔B〕を透過した後の光における特定波長光Aに対する特定波長光Cの比率は0.03であった。また、フィルタ〔B〕を透過した後の光における特定波長光Aに対する特定波長光Dの比率は0.04であった。
 露光量と、細胞の生存率との関係を図6のグラフにおいて「●」で示す。
 また、細胞に照射される光の平均演色評価数Raは85、R9に係る特殊演色評価数は20、R13に係る特殊演色評価数は90、R15に係る特殊演色評価数は90であった。
<比較実験例A3>
 実験例A1において、光学フィルタを用いず、ショートアーク型放電ランプの代わりに低圧水銀ランプを用いたこと以外は同様にして、細胞へ紫外線を照射する実験を行った。
 低圧水銀ランプは、波長254nmに輝線スペクトルを有する光を放射するものである。
 露光量と、細胞の生存率との関係を図6のグラフにおいて「◇」で示す。
 また、細胞に照射される光の平均演色評価数Raは50、R9に係る特殊演色評価数は-46、R13に係る特殊演色評価数は53、R15に係る特殊演色評価数は57であった。
<実験例B1>
 実験例A1において、細胞サンプルを黄色ブドウ球菌(NBRC.12732)に代えたこと以外は同様にして、黄色ブドウ球菌へ紫外線を照射する実験を行った。具体的には、生菌数濃度が9×10CFU/mLである菌液を3mLシャーレに入れたものをサンプルとして用いた。
 光の照射は、黄色ブドウ球菌に照射される光の照射量(露光量)がそれぞれ0mJ/cm、2mJ/cm、4mJ/cm、6mJ/cm、8mJ/cm、10mJ/cm、12mJ/cm、14mJ/cm、16mJ/cm、18mJ/cm、20mJ/cm、22mJ/cm、24mJ/cm、26mJ/cm、28mJ/cm、30mJ/cmとなる15条件で行った。光の照射においては、照射条件毎に1サンプル(1シャーレの黄色ブドウ球菌)を使用した。
 上記照射条件において、黄色ブドウ球菌に照射される光の強度(照度)は22.3μW/cmで共通とし、照射時間を変更した。
 照射試験後、寒天培地にサンプル原液を0.1mL塗布し、37℃で48時間培養した。その後、寒天培地に発生したコロニーの数を調べた。このとき、不活化率は下記式(1)で表される計算式を用いて算出した。なお、コロニー数が300CFU以上であった場合には、サンプル原液を生理食塩水で10倍希釈し、希釈後の菌液を0.1mL分取し、これを寒天培地に塗布し、同様に培養した。この操作を、コロニー数が300CFU以下となるまで繰り返し、300CFU以下となった場合に、このときのコロニー数に希釈倍率を掛けることで、そのサンプルのコロニー数を算出した。
 式(1):不活化率(LOG)=LOG10{(N1)/(N0)}
〔N1:照射後のコロニー数[CFU]、N0:照射前のコロニー数[CFU]=9×10[CFU]〕
 露光量と、黄色ブドウ球菌の不活化率との関係を図7のグラフにおいて「■」で示す。
<実験例B2>
 実験例B1において、光学フィルタをフィルタ〔A〕から、実験例A2において用いたものと同じフィルタ〔B〕に代えたこと以外は同様にして、黄色ブドウ球菌へ紫外線を照射する実験を行った。
 露光量と、黄色ブドウ球菌の不活化率との関係を図7のグラフにおいて「●」で示す。
<比較実験例B3>
 実験例B1において、光学フィルタを用いず、ショートアーク型放電ランプの代わりに低圧水銀ランプを用いたこと以外は同様にして、黄色ブドウ球菌へ紫外線を照射する実験を行った。
 低圧水銀ランプは、波長254nmに輝線スペクトルを有する光を放射するものである。
 露光量と、黄色ブドウ球菌の不活性率との関係を図7のグラフにおいて「△」で示す。
 図6から明らかなように、特定波長光Aに対する特定波長光Cの比率が0.18であるフィルタ〔A〕を用いた場合、および、特定波長光Aに対する特定波長光Cの比率は0.03であるフィルタ〔B〕を用いた場合は、共に、低圧水銀ランプからの波長254nmに輝線スペクトルを有する光を照射した場合と比較して、ヒト細胞の生存率の下がり方は穏やかであることが確認された。なお、ヒト細胞の細胞死滅ラインのCell生存率を、図6において鎖線で示す。
 一方、フィルタ〔A〕を用いた場合およびフィルタ〔B〕を用いた場合は、低圧水銀ランプからの光そのまま照射した場合と比較して、平均演色評価数Raが高く、さらに、R9に係る特殊演色評価数、R13に係る特殊演色評価数、および、R15に係る特殊演色評価数について、いずれも高い値が得られることが確認された。
 また、図7から明らかなように、細菌(黄色ブドウ球菌)は、フィルタ〔A〕を用いた場合、フィルタ〔B〕を用いた場合、および、低圧水銀ランプからの光そのまま照射した場合の3つの構成の間において、ほとんど不活化速度に差がないことが確認された。
 以上のことから、フィルタ〔A〕を用いた場合およびフィルタ〔B〕を用いた場合には、ヒト細胞に対する安全性が確保された上で選択的に殺菌対象生物(黄色ブドウ球菌)を死滅させることができ、しかも、照射対象部位を確実に視認することができることが確認された。
 以上のように、上記の殺菌装置1によれば、200nm~500nmの波長域の光のうち、特定波長光Bがカットされた光が生体組織に照射されるので、生体組織の表面上に存在する殺菌対象生物を、動物細胞に対する安全性が確保されながら殺菌・消毒することができ、しかも、可視光である特定波長光Cが減衰された状態で照射されるので、動物細胞に対する危害を抑制しながら当該特定波長光Cの演色性の高さによって照射対象部位を確実に視認することができて紫外線照射範囲を確実に把握することができる。
 以上、本発明の第1の実施形態に係る殺菌装置について説明したが、第1の実施形態に係る殺菌装置は上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば、光学フィルタ20を構成する第1減衰フィルタおよび第2減衰フィルタが特定波長光Bおよび特定波長光Cをそれぞれ吸収する性質のものである場合においては、当該第1減衰フィルタおよび第2減衰フィルタは、放電ランプ11から放射された光が反射鏡の反射面12bに至るまでの光路上、例えば反射鏡12の反射面12bの内面に設けられている構成とされていてもよい。
<第2の実施形態>
 本発明の第2の実施形態に係る殺菌装置は、光源部がレーザ励起ランプを用いたものに変更されたことの他は第1の実施形態に係る殺菌装置と同様の構成を有するものである。
 図3は、本発明の第2の実施形態に係る殺菌装置の構成の一例を示す模式図である。
 第2の実施形態に係る殺菌装置1Aの光源部10Aを構成するレーザ励起ランプ31は、発光空間S2内に電極を備えない無電極ランプであり、集光レンズ38によって励起用レーザ光源からのレーザ光が外部から発光空間S2内に集光され、集光レンズ38の焦点位置Fにおいてプラズマが発生し、発生したプラズマによって発光空間S2内に封入された発光ガスが励起されて発光するものである。
 レーザ励起ランプ31は、具体的には、外形が円柱状であり、内部に、前方に開口する凹状に湾曲した反射面30aを有するセラミックス(多結晶アルミナ)よりなる胴体30と、当該胴体30の前面開口30bを塞ぐための光出射窓部材32と、当該胴体30の後方における反射面30aの底部に開口する貫通孔(ホール部)34に対向するよう設けられた光入射窓部材33と、胴体30、光出射窓部材32および光入射窓部材33によって囲まれた発光空間S2の外部に配置された、レーザ光を出射する励起用レーザ光源(図示せず)と、この励起用レーザ光源からのレーザ光を発光空間S2に集光する集光レンズ38と、を有している。胴体30は円柱状の金属ベース35によって支持されている。
 胴体30の反射面30aは、第1焦点および第2焦点を有する楕円面を有するものとすることができる。
 反射面30aは、特定波長光Aを含む230nm以下の波長域の紫外線および特定波長光Cについての反射性を有するものであればよく、230nm以下の波長域の紫外線に対する反射率を高めるという観点から、例えばアルミニウムなどによる金属蒸着膜や誘電体多層膜より構成されることが好ましい。
 光出射窓部材32は、例えば円盤状の光透過性材料からなるものである。光出射窓部材32は、窓支持部材32aによって支持され、当該窓支持部材32aと胴体30とが、当該窓支持部材32aおよび胴体30の外径に適合する内径を有する円筒状の第1の金属筒体37a内に共通に嵌合されることによって、胴体30に固定されている。
 金属ベース35には、胴体30と対向する前方に大径の円盤状の第1凹所35Aが形成されている。そして、当該第1凹所35Aにおける胴体30のホール部34に対応する位置に、励起用レーザ光源からのレーザ光を通過させるための円盤状の貫通孔35Bが、当該第1凹所35Aに連通する状態に形成されており、当該貫通孔35Bに、励起用レーザ光源からのレーザ光を透過する光入射窓部材33が嵌合されている。また、第1凹所35Aに連通して胴体30の柱軸方向と同方向に伸びる状態に、金属ベース35の後方に開口する第2凹所35Cが形成されている。第2凹所35C内には、当該第2凹所35Cの内径に適合する外径を有する排気管36が、外部に伸びる状態に気密に挿入されている。排気管36は、第2凹所35Cの内壁に封着されており、当該排気管36の外部に突出された端部は、発光空間S2に発光ガスを封入した後に径方向に押し潰されて管肉同士が気密に密着された状態とされている。
 金属ベース35は、当該金属ベース35と胴体30とが、この金属ベース35および胴体30の外径に適合する内径を有する円筒状の第2の金属筒体37b内に共通に嵌合されることによって、胴体30に固定されている。
 集光レンズ38は、その光軸X2が胴体30の反射面30aの光軸C2と一致し、当該集光レンズ38の焦点Fが胴体30の反射面30aの第1の焦点と一致する状態で、配置されている。
 本発明の殺菌装置1Aから出射された光は、光ファイバなどの入射光学系40に入射されるが、この入射光学系40は、当該入射光学系40の入射端面40aの中心が、胴体30の反射面30aの第2焦点の位置と一致する位置に、配置される。
 この殺菌装置1Aにおいて、レーザ励起ランプ31から光学フィルタ20を介して生体組織に照射される光の照射量(照射密度)は、当該照射密度と照射時間とから算出される露光量が、生体組織の表面上における殺菌対象生物を殺菌することができる程度の大きさとなる量であればよい。光の照射量は、照射時間によっても異なるが、例えば5~420mJ/cmとされる。光の照射量が過度に多い場合には、レーザ励起ランプ31から放射されて光学フィルタ20に入射する特定波長光Bも多くなって、この生体に有害な特定波長光Bを確実にカットすることができないおそれがある。一方、光の照射量が過度に少ない場合には、殺菌対象生物の十分な殺菌・消毒に長時間を要してしまうおそれがある。
 励起用レーザ光源としては、例えば連続的にレーザ光を発振するCWレーザを用いることができる。
 励起用レーザ光源から発振されるレーザ光の波長は1090nm、平均出力は100Wのものとすることができる。
 発光空間S2内には、例えばキセノンガスからなる発光ガスが封入されている。
 発光ガスの封入圧は、封入時で20気圧、点灯時で40~60気圧とされる。
 そして、この殺菌装置1Aにおいては、光源部10Aのレーザ励起ランプ31において発生し、胴体30の反射面30aによって反射された光が、当該胴体30の反射面30aの第2焦点に集光されるまでの光路上に光学フィルタ20が配置される。具体的には、例えば円盤状の光学フィルタ20が、光出射窓部材32の光出射面の全面を塞ぐ状態に、当該光出射窓部材32の光出射面に接触して設けられる。
 光学フィルタ20としては、第1の実施形態に係る殺菌装置1において用いたものと同様のものを用いることができる。
 上記の殺菌装置1Aにおいては、光源部10Aを構成するレーザ励起ランプ31において発生された光が、胴体30の反射面30aによって反射され、光学フィルタ20を介して第2焦点に集光されて入射光学系40の入射端面40aに入射される。入射光学系40に入射された光は、光ファイバを介して照射対象部位に照射され、これにより、照射対象部位に存在するバクテリアなどの殺菌対象生物に対する殺菌・消毒が行われる。
 このとき、光学フィルタ20においては、放電ランプ11から放射された200nm~500nmの波長域の光のうち、特定波長光Aは当該光学フィルタ20を透過し、特定波長光Bはカットされると共に、特定波長光Cが減衰される。
 図4は、本発明の第2の実施形態に係る殺菌装置から放射される光の分光分布曲線を示すグラフである。レーザ励起ランプ31から放射された直後の光(放射光)のスペクトルをb0として鎖線で示し、また、光学フィルタ20を通過した後の光(照射光)のスペクトルをb1として直線で示した。
 以上のように、上記の殺菌装置1Aによれば、第1の実施形態に係る殺菌装置1と同様の効果を得ることができる。
 以上、本発明の第2の実施形態に係る殺菌装置について説明したが、第2の実施形態に係る殺菌装置は上記の実施の形態に限定されず、種々の変更を加えることが可能である。
 例えば、光学フィルタ20は、光出射窓部材32の光出射面に接触して設けられることに限定されず、光出射窓部材32から出射された光が第2焦点に集光されるまでの光路上における、当該光出射窓部材32の光出射面に接触しない位置に設けられる構成とされていてもよい。
1,1A 殺菌装置
10,10A 光源部
11 ショートアーク型放電ランプ
12 反射鏡
12a ランプ挿入用開口部
12b 反射面
14 発光管部
15,16 封止管部
18 陽極
19 陰極
30 胴体
30a 反射面
30b 前面開口
31 レーザ励起ランプ
32 光出射窓部材
32a 窓支持部材
33 光入射窓部材
34 貫通孔(ホール部)
35 金属ベース
35A 第1凹所
35B 貫通孔
35C 第2凹所
36 排気管
37a 第1の金属筒体
37b 第2の金属筒体
38 集光レンズ
40 入射光学系
40a 入射端面
51 ショートアーク型放電ランプ
52 光学フィルタ
53 シャーレ
S1,S2 発光空間
 
 

Claims (10)

  1.  200nm~500nmの波長域にわたって連続スペクトルを有する光を放射する光源部と、
     230nm超~400nmの波長域の光をカットし、400nm超~500nmの波長域の光を減衰させるフィルタとを備えてなり、
     前記フィルタを透過した光が生体に照射されることを特徴とする殺菌装置。
  2.  前記フィルタが、当該フィルタを透過した透過光における、200nm~230nmの波長域の光に対する400nm超~500nmの波長域の光の比率が0.18以下のものであることを特徴とする請求項1に記載の殺菌装置。
  3.  前記フィルタが、当該フィルタを透過した透過光における、200nm~230nmの波長域の光に対する701nm~800nmの波長域の光の比率が0.05以下のものであることを特徴とする請求項1に記載の殺菌装置。
  4.  前記光源部が、発光ガスとして水銀が封入されたショートアーク型放電ランプと、その周囲を取り囲むよう配置された反射鏡を有する集光光学系とよりなることを特徴とする請求項1~請求項3のいずれかに記載の殺菌装置。
  5.  前記光源部が、キセノンガスからなる発光ガスが封入されたレーザ励起ランプからなることを特徴とする請求項1~請求項3のいずれかに記載の殺菌装置。
  6.  前記光学フィルタから出射された光の平均演色評価数Raが80以上であることを特徴とする請求項1~請求項5のいずれかに記載の殺菌装置。
  7.  光源部から200nm~500nmの波長域にわたって連続スペクトルを有する光を放射し、
     フィルタにより、230nm超~400nmの波長域の光をカットし、400nm超~500nmの波長域の光を減衰させ、
     前記フィルタを透過した光が生体に照射されることを特徴とする殺菌方法。
  8.  前記フィルタを透過した透過光における、200nm~230nmの波長域の光に対する400nm超~500nmの波長域の光の比率が0.18以下であることを特徴とする請求項7に記載の殺菌方法。
  9.  前記フィルタを透過した透過光における、200nm~230nmの波長域の光に対する701nm~800nmの波長域の光の比率が0.05以下であることを特徴とする請求項7に記載の殺菌方法。
  10.  請求項7~請求項9のいずれかに記載の殺菌方法を用い、黄色ブドウ球菌を殺菌することを特徴とする黄色ブドウ球菌の殺菌方法。
     
     
PCT/JP2018/025949 2017-10-19 2018-07-10 殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法 WO2019077817A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202573A JP6497427B1 (ja) 2017-10-19 2017-10-19 殺菌装置
JP2017-202573 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019077817A1 true WO2019077817A1 (ja) 2019-04-25

Family

ID=66092581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025949 WO2019077817A1 (ja) 2017-10-19 2018-07-10 殺菌装置および殺菌方法、並びに黄色ブドウ球菌の殺菌方法

Country Status (3)

Country Link
JP (1) JP6497427B1 (ja)
TW (1) TW201922298A (ja)
WO (1) WO2019077817A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043554A1 (de) 2019-09-06 2021-03-11 Universität Greifswald Vorrichtung und verfahren zur uv-antiseptik
JP2021176285A (ja) * 2020-05-08 2021-11-11 憲保 池田 ウィルス不働態化法及び不働態化装置
EP4035691A1 (en) * 2021-02-02 2022-08-03 Ushio Denki Kabushiki Kaisha Inactivation apparatus and inactivation method
CN114867497A (zh) * 2020-02-18 2022-08-05 优志旺电机株式会社 抑菌方法
WO2023204180A1 (ja) * 2022-04-18 2023-10-26 ウシオ電機株式会社 菌又はウイルスの不活化装置、治療装置、放電ランプ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020502B1 (en) 2020-05-01 2021-06-01 Uv Innovators, Llc Ultraviolet (UV) light emission device, and related methods of use, particularly suited for decontamination
JP7099500B2 (ja) * 2020-08-25 2022-07-12 ウシオ電機株式会社 不活化装置および不活化方法
JP7237902B2 (ja) * 2020-09-14 2023-03-13 ミネベアミツミ株式会社 殺菌システム、殺菌装置、制御装置、制御方法および制御プログラム
JP7470616B2 (ja) 2020-10-30 2024-04-18 株式会社日立製作所 個人認証装置
JP6885504B1 (ja) * 2020-12-15 2021-06-16 ウシオ電機株式会社 不活化装置および不活化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166132A (ja) * 2012-02-16 2013-08-29 Sharp Corp 紫外線光源装置
JP2015112439A (ja) * 2013-12-14 2015-06-22 倫文 木原 自動床面殺菌装置
WO2016042879A1 (ja) * 2014-09-19 2016-03-24 シャープ株式会社 殺菌装置
JP2016220684A (ja) * 2011-03-07 2016-12-28 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク バイオ組成物破壊装置、バイオ組成物破壊装置の作動方法、殺菌装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220684A (ja) * 2011-03-07 2016-12-28 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク バイオ組成物破壊装置、バイオ組成物破壊装置の作動方法、殺菌装置
JP2013166132A (ja) * 2012-02-16 2013-08-29 Sharp Corp 紫外線光源装置
JP2015112439A (ja) * 2013-12-14 2015-06-22 倫文 木原 自動床面殺菌装置
WO2016042879A1 (ja) * 2014-09-19 2016-03-24 シャープ株式会社 殺菌装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043554A1 (de) 2019-09-06 2021-03-11 Universität Greifswald Vorrichtung und verfahren zur uv-antiseptik
CN114867497A (zh) * 2020-02-18 2022-08-05 优志旺电机株式会社 抑菌方法
CN114867497B (zh) * 2020-02-18 2024-02-13 优志旺电机株式会社 抑菌方法
JP2021176285A (ja) * 2020-05-08 2021-11-11 憲保 池田 ウィルス不働態化法及び不働態化装置
EP4035691A1 (en) * 2021-02-02 2022-08-03 Ushio Denki Kabushiki Kaisha Inactivation apparatus and inactivation method
WO2023204180A1 (ja) * 2022-04-18 2023-10-26 ウシオ電機株式会社 菌又はウイルスの不活化装置、治療装置、放電ランプ

Also Published As

Publication number Publication date
TW201922298A (zh) 2019-06-16
JP2019072411A (ja) 2019-05-16
JP6497427B1 (ja) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6497427B1 (ja) 殺菌装置
US10910210B2 (en) Ultraviolet sterilizer
US11607558B2 (en) Apparatus, method, and system for selectively effecting and/or killing bacteria
JP6604339B2 (ja) 紫外線殺菌装置
CN108601854B (zh) 杀菌装置
JP6558376B2 (ja) 紫外線放射装置
US20220125963A1 (en) Sterilization apparatus using uv light source harmless to human body
US9801966B2 (en) Systems and methods of microbial sterilization using polychromatic light
US10857254B2 (en) Protective pipe for a UV tube, in particular a UV-C tube
CN106794357A (zh) 杀菌装置
JP2006040867A (ja) エキシマランプ装置
WO2004080494A1 (ja) 閃光パルスによる光殺菌方法及びその装置
US20200164099A1 (en) Disinfection device and compressor system, connection device and treatment device with such a device
JP5795043B2 (ja) 殺菌装置
JP2010056008A (ja) 無水銀殺菌ランプおよび殺菌装置
CN212880333U (zh) 深紫外杀菌消毒准分子灯
US20180220683A1 (en) Systems and methods of microbial sterilization using polychromatic light
JP2023074719A (ja) 不活化装置、光学フィルタ
CN112494681A (zh) 紫外线消毒装置显示光照范围的方法及紫外线消毒装置
WO2024024376A1 (ja) 不活化装置
KR20220130480A (ko) 살균등 및 이를 포함하는 살균장치
CN215869290U (zh) 一种光等离子灯管
JP7349188B2 (ja) 紫外線照射装置
JP2017205700A (ja) 水処理方法および水処理装置
KR20010086418A (ko) 유체관을 내장한 자외선 살균등 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868653

Country of ref document: EP

Kind code of ref document: A1