JP7349188B2 - 紫外線照射装置 - Google Patents

紫外線照射装置 Download PDF

Info

Publication number
JP7349188B2
JP7349188B2 JP2022136018A JP2022136018A JP7349188B2 JP 7349188 B2 JP7349188 B2 JP 7349188B2 JP 2022136018 A JP2022136018 A JP 2022136018A JP 2022136018 A JP2022136018 A JP 2022136018A JP 7349188 B2 JP7349188 B2 JP 7349188B2
Authority
JP
Japan
Prior art keywords
ultraviolet
gas discharge
ultraviolet light
discharge tube
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022136018A
Other languages
English (en)
Other versions
JP2022174128A (ja
Inventor
傳 篠田
仁 平川
健司 粟本
武文 日▲高▼
純一郎 ▲高▼橋
哲也 牧野
雅行 脇谷
洋子 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKOH TECH CO., LTD.
Original Assignee
SHIKOH TECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIKOH TECH CO., LTD. filed Critical SHIKOH TECH CO., LTD.
Publication of JP2022174128A publication Critical patent/JP2022174128A/ja
Application granted granted Critical
Publication of JP7349188B2 publication Critical patent/JP7349188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/06Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for filtering out ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/12Lighting means

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

本発明は、紫外線照射装置に関し、特にウイルスや各種細菌の除菌(殺菌・滅菌を含む)や消臭のための深紫外線照射装置に関するものである。なお、本発明において、深紫外線とは波長200nm~300nmの範囲の紫外域の放射線を意味し、この内、228nm付近にピーク波長を持つ深紫外線をUVC1と呼び、また260nm付近にピーク波長を持つ深紫外線をUVC2と称するものとする。また真空紫外線(VUV)は、希ガス放電で発生する波長200nm以下の紫外線を意味するものとする。
従来から紫外線による除菌や消臭効果はよく知られており、紫外線照射による各種の除菌あるいは殺菌装置が知られている(例えば、特許文献1~4参照)。また、下記特許文献1においては、ウイルス不活化に有益でかつ人体細胞に影響を及ぼさない紫外線として波長200~230nmが最適であることが提案されている。そして特許文献1に開示された装置では、上記波長範囲の深紫外光を放射する光源として波長222nmに幅の狭いピーク波長を有するエキシマランプが代表例として挙げられている。
特表2014-58612号公報 国際公開第2016/125708号 特開2015-193521号公報 国際公開第2018/235723号
しかしながら波長222nmの深紫外線を放射するエキシマランプは放電ガスとして毒性の強い塩化クリプトン(KrCl)を使用するものであり、破損時において環境上の問題が避けられない。またKrClエキシマでは発光波長幅が狭く、不活化できる細菌やウイルスが限られるという課題もある。即ち、このエキシマランプの発光は波長がほぼ222nmに集中するため、これより短い波長領域においてより効率的な不活化能力が期待できるにも係わらず、これが利用できないわけである。
更に、特許文献2に開示された従来の殺菌用面発光紫外光源デバイスでは、ガス放電チューブを構成するガラス材料(旧材料)の制約や蛍光体材料の制約から専ら260nm近辺にピーク波長を有するUVC2光源デバイスが製品化の限界となっていた。UVC2の光源デバイスに用いたガラス材料では240nmの付近から短い波長がチューブ外囲器を構成するガラス材料によって吸収されるために、ウイルスや細菌に対して高い殺菌効果の期待できるより短波長の深紫外線を透過する新規なガラス材料の開発が望まれていた。また新規な蛍光体から適切な発光効率でより短い波長の深紫外光を出すための新しいプロセスの開発も必要であった
従って本発明は、上記のような課題を解決して多くのウイルスや細菌に対する幅広い除菌効果を有し、しかも人体に対する影響の少ない安全な深紫外線照射装置を提供するものである。
上記課題を解決するための本発明による紫外線照射装置は、細菌不活化に有益とされる222nm近辺の波長をエキシマランプから放射する従来の方式と異なり、深紫外蛍光体を利用するガス放電チューブアレイ型の面発光光源デバイスを深紫外光源として用いることを基本とする。従来のガス放電チューブアレイ型の面発光深紫外光源デバイス自体は、上記特許文献2等において既に知られている。しかしながら本発明においては、キセノンガス(Xe)の放電で励起されて228nm近辺の波長をピークとして少なくとも210~250nmの波長範囲の幅広い発光スペクトル(UVC1)を有する深紫外蛍光体層を利用すると共に、必要に応じて発光面(配列された各ガス放電チューブの発光面からなる配列面)に対向して前記蛍光体発光スペクトルの内240nm以上の波長域の紫外線の透過を実質的に阻止する光学フィルタを配置することを特徴とする。
本発明で組み合わせる光学フィルタは、紫外線透過基板の表面に形成した誘電体多層膜フィルタの構成を有し、前記紫外線透過基板が前記面発光紫外光源デバイスの発光面と対向する向きに配置される。当該紫外線透過基板は、前記発光面から前記誘電体多層膜フィルタへの放射光の入射角度を調節するように機能する。
本発明の他の側面として、ガス放電チューブの外囲器を構成するガラス材料として真空紫外線を外部に取り出せる新しい紫外線透過ガラスを選ぶことにより、積極的に172nmのXeから発する真空紫外線VUVを放射する共に、同時にUVC1も効率的に放出できるガス放電チューブアレイから成る面発光紫外光源デバイスを利用することを特徴とする。かくして、本発明の他の側面では、VUVとUVC1を同時に放射する面発光光源デバイスの発光面と上記光学フィルタとの間にオゾン発生空間を形成し、この空間で発生したオゾンを環境空間に放出するようにした紫外線照射装置の構成を特徴とする。
本発明の更に別の側面として、ガス放電チューブの外囲器を構成するガラス管の厚みを調整することで、内部で発生する紫外線の短波長側の放射を制限する一方、発光面に対向して配置する光学フィルタにより長波長側の放射を制限した紫外線照射装置を提供する。かかる構成により、殺菌・除菌に最も効果の期待できる200nmから250nmの波長範囲を広くカバーし、かつ人体に有害な真空紫外域の紫外線や波長240nm以上の深紫外域の紫外線の放射を防止するデバイス設計が可能となる。
ここで、本発明の基礎となるガス放電チューブ用ガラス外囲器の設計思想について説明する。従来、本発明者等は、260nm付近にピークを持つUVC2の面発光光源デバイスを実用化していたが、228nm付近にピークを持つ新しい深紫外蛍光体を、UVC2発光用チューブの外囲器に用いていた旧硼珪酸系ガラス(BS1)の細管に適用して紫外光源デバイスを試作すると、図9を参照して後述するように、旧ガラスBS1の透過率は250nm以下の波長域において急激に小さくなるために、弱い発光強度しか得られなかった。
一方、種々の実験結果に基づいて試作した新硼珪酸系ガラス(BS2)を使用すると、短波長域における紫外線透過率が大幅に改善され、図9の曲線Gで示すように250nm以下の紫外線も充分な強度で透過する発光スペクトルを得ることができた。しかし、しかし紫外線の透過率が過度に向上すると、チューブ内部でガス放電によって発生した真空紫外線がガラス外囲器を透過し、180nm付近の波長を持つ紫外線も同時に放射される。ガスの放電により発生する真空紫外域の放射は、環境空気を分解してオゾンの発生に寄与し、発生したオゾンによる空気清浄化の効果が期待できる反面、使用環境によっては毒性のあるオゾンの発生は必ずしも好ましいものではない。
したがって、最適な除菌効果を得る上においては、250nm以下の紫外線は十分に通すが、オゾンの発生を伴う真空紫外線の放射を阻止するガラス外囲器を実現することが必要である。そこで、本発明者等は、ガス放電チューブの外囲器を構成する紫外線透過ガラスの材料と厚みと透過率との関係について種々実験の結果、旧ガラスよりもさらに紫外線の通りやすい硼珪酸系紫外線透過ガラスとして市場で入手可能な肉厚0.6mmのガラス管を入手してその透過率を分析した。図9に点線Fで示す新硼珪酸系ガラス(BS2)の元管の透過率は、未だ228nm付近の透過率が70%程度と低く、さらに波長が短くなると共に急速に透過率が悪くなり210nmではその透過率が50%以下であった。これに対して細管を作る条件を調整して、元管と同じガラスを用いて肉厚を90μm程度に薄くしたガラス外囲器のガス放電チューブを作成した。その結果、真空紫外線の管外への放射は極めて制限されたものしか観測できず、かつ228nmでは90%以上の紫外線の透過を実現することができた。つまり、新しいガラス外囲器素材として新規の硼珪酸ガラスを使用しチューブの厚みをコントロールすることで、放射する紫外線の短波長側の透過率を選択できることを確認した。
本発明によれば、ウイルス不活化に有益な波長(222nm)の深紫外線の発生光源として、毒性の強いKrClガスや環境問題のある水銀を使用しないことを特徴としたガス放電チューブアレイ型の面発光紫外光源デバイスを利用するので、全体として取り扱いの安全な紫外線照射装置を得ることができる。また使用する深紫外蛍光体の発光は単一のウイルスのみならず多種の細菌に対しても高い感受性を有する240nm以下の波長域においても広い発光スペクトルを有するので、より効率的でかつ幅広い除菌・殺菌効果を得ることが可能となる。
更に本発明で利用する面発光紫外光源デバイスによれば、深紫外線1(UVC1)の放射と同時に真空紫外線(VUV)を放射することができる。よって、発光面と光学フィルタとの間にオゾン発生空間を構成してその間を流通する空気を真空紫外線VUVで分解してオゾンを発生させ、当該オゾンによる除菌や消臭効果を併せて利用することが可能となる。
ガス放電チューブアレイ型の面発光紫外光源デバイスの構成を示す概略図である。 ガス放電チューブに形成する蛍光体の発光スペクトルを示す線図である。 ウイルスや細菌の紫外線波長感受性を示す線図である。 本発明による紫外線照射装置の第1の実施形態を示す断面構成図である。 光学フィルタの透過特性と入射角依存性を示す線図である。 第1の実施形態による紫外線照射装置の組み立て構成を示す概略図である。 本発明による紫外線照射装置の第2の実施形態を示す概略構成図である。 第2の実施形態の面発光紫外光源デバイスのVUVとUVCを含んだ発光スペクトルを示す線図である。 ガス放電チューブの発光特性とガラス管の紫外線透過特性の関係を示す線図である。 本発明による紫外光源デバイスの発光波長特性と、紫外線の細菌に対する不活化曲線及び相対有害作用特性との関係を示す線図である。
以下、図面を用いてこの発明をさらに詳述する。なお、以下の説明は、すべての点で例示であって、この発明を限定するものと解されるべきではない。
《面発光紫外光源デバイスの基本的構成と駆動原理》
本発明において面発光紫外光源デバイスとして用いるガス放電チューブアレイは、使用する蛍光体とガラス管の素材を除いて上記特許文献2に開示された構成と基本的に変わらない。
(ガス放電チューブ)
図1(a)は、深紫外線発光素子となるガス放電チューブの横断面図である。ガス放電チューブ1は、一例として長径寸法2mm、短径寸法1mm程度の扁平楕円断面を有するガラス細管2を主体とし、その背面側内面に深紫外の蛍光体層3を備える。それと共に、内部に真空紫外線を発光するネオン(Ne)とキセノン(Xe)の混合ガスまたはHeとXe、或いはArとXeなどの希ガスを含んだ放電ガス4を封入して両端を封止した構成を有する。
ガラス細管2の材料としては、UVCのみを発生させるときには安価な硼珪酸系のガラスを用い、VUVとUVCを同時に発生させるときは微量のフッ素等を添加して紫外線透過率を改良した硼珪酸系のガラスが用いられる。具体的には特許文献3に開示されたような硼珪酸系の組成を有する紫外線透過ガラスが好適である。勿論高価ではあるが紫外線透過性に優れた石英硝子を用いてもよい。前記硼珪酸系のガラス管を肉厚200μm以下、好ましくは100μm程度まで線引き(リドロー)して肉厚を薄くすることにより、波長140nm程度の真空紫外域から波長280nm程度の深紫外域まで80%以上の透過率で透過するガラス細管2が得られる。但し肉厚が50μm以下になると強度が不足して破損の危険があるので好ましくない。
また本発明において新たに採用する深紫外の蛍光体層3としては、例えば上記特許文献4に開示されたような波長228nm近辺に発光スペクトルのピークを有するルテチュームとスカンジュームのリン酸塩から成る蛍光体を用いる。本発明で使用する蛍光体の発光スペクトルは、その一例を図2に示すように228nmをピークとして200nm~260nmに及ぶ連続した広い波長幅を有し、少なくとも210nm~250nmの範囲で有効な深紫外光を放射する。
〔面発光紫外光源デバイス〕
紫外線発光素子としてのガス放電チューブ1が、図1(b)に示すように電極対12(電極12Xと電極12Yの対)を備えた電極基板11の上に複数本平行に並べられてガス放電アレイ型の面発光紫外光源デバイス10が作られる。電極基板11は、例えばポリイミド系の絶縁基板13を基体とし、その上面に粘着層でガス放電チューブ1の配列を支持し、対向する下面に電極対12を備える。別の構成として絶縁基板13の上面に電極対12を形成し、その上に絶縁層を兼ねた粘着層でガス放電チューブの配列を支持するようにしてもよい。電極対12は、各ガス放電チューブ1の底部背面に対向して、共通の電極スリット(電極間隙G)を挟んで両側に広がるパターンの電極12Xと電極12Yとから成る。
電極基板11の基体となる絶縁基板13をポリイミド系樹脂の絶縁フィルムで構成し、各ガス放電チューブ相互間に隙間を空けて配列した構成とすれば、全体としてチューブ配列方向に湾曲可能なフレキシブルな面発光紫外光源デバイス10を構成することができる。また電極基板11に表裏を貫通する通気孔または通気スリットを形成して各ガス放電チューブ1の底面が部分的に露出する構成とすれば、各ガス放電チューブ1の放熱に都合がよい。
〔駆動原理〕
図1(c)は、駆動原理を説明するための模式図である。電極対12を構成する電極Xと電極12Yに対し、インバータ回路15は、ピーク間電圧(P-P電圧)が1000~2000Vで周波数が30~40KHzの交番駆動電圧を印加する。インバータ回路15により印加される交番駆動電圧の上昇過程において電極12Xと電極12Yとの間の電極間隙Gに対応するガス放電チューブ1内の放電間隙で初期放電が発生する。それに引き続いて交番駆動波電圧の上昇に伴ってガス放電チューブ1の長手方向に放電が拡張する。
交番駆動電圧の印加によって、このような放電が電極12X、12Yに対応するガス放電チューブ1内の領域で、蓄積電荷の極性を交代しながら交互に繰り返して発生する。ガス放電チューブに封入するガスをネオン(Ne)とキセノン(Xe)の混合ガスとした場合、他のガスに比べて低い放電電圧で143nmと172nmの真空紫外線(VUV)の放射を伴う放電が発生する。このVUVの励起により蛍光体層3より228nmを中心波長とした深紫外線(UVC1)の放射が行われる。この駆動原理と具体的な駆動回路は上記特許文献2に詳細に述べられている。
(実施形態1)
以下、本発明の第1の実施形態について図面を参照して詳細に説明する。
図2は、上記ガス放電チューブアレイ型の面発光紫外光源デバイス10の深紫外の蛍光体層3からの発光スペクトルを示す線図である。縦軸は発光強度としての発光光子数(フォトカウント)であり、横軸は波長を示す。この発光スペクトルから明らかなように215~245nmの連続した波長範囲においてピーク波長228nmの70%以上の発光強度が得られることが判る。
他方、図3は、2011年1月に日本紫外線水処理技術協会から発行されたニュースレター第4号(No.4)に掲載の各種ウイルス及び大腸菌の波長感受性を示す線図である。この線図から波長230nm以下の短波長側において各種ウイルスや細菌の紫外線感受性の高まることが判る。即ち、上述の紫外の蛍光体層3からのブロードな深紫外線を照射することで、KrClエキシマランプからの222nmの単一波長の照射に比べて多くの細菌・ウイルスに対するより高い殺菌効果を得ることができる。
図4は、上記図2のような発光スペクトルを有する面発光紫外光源デバイス10に光学フィルタ20を組み合わせた本発明による紫外線照射装置の基本的断面構成を示す図である。光学フィルタ20は、紫外線透過基板、好ましくは厚さ1mm程の合成石英基板21上に形成されたHfO/SiOからなる誘電体多層膜フィルタ22の構成を有し、図5に示す実線Aの透過特性を持つ。即ち、蛍光体層3のピーク波長228nmを含む230nm以下の深紫外線は透過し、人体組織に悪影響を及ぼす可能性の高い240nm以上の紫外線の透過は阻止する特性となっている。
ところで本発明において光源として使用するガス放電チューブアレイ10からの深紫外光は広い放射角度を持つ。他方、面発光紫外光源デバイス10に組み合わせる誘電体多層膜フィルタ22は図5に示すような入射角依存性を有する。図5において、誘電体多層膜フィルタ22の表面に垂直な方向からの入射が角度の基準である。実線Aで示す入射角0(ゼロ)度の透過特性に比べ、入射角10度の放射線に対しては点線Bのような透過特性となる。更に、入射角度20度の放射光に対しては破線Cのように、入射角が大きくなるほど透過曲線が短波長側にシフトする傾向がある。つまり、面発光紫外光源デバイス10からの放射光を誘電体多層膜フィルタ22に直接入射させる構成では、広角に放射される紫外光の周辺部分の光はフィルタを充分に透過できない結果となる。
本発明においては、面発光紫外光源デバイス10からの深紫外放射光ができるだけ効率良く誘電体多層膜フィルタ22を透過するよう、当該フィルタの入射面側に石英基板21が位置する関係で両者を組合せて配置する。即ち、かかる配置構成において石英基板21が誘電体多層膜フィルタ22の前において各ガス放電チューブ1から広角に放射される深紫外光の内、放射角度の大きな部分の光の光学フィルタ20への入射角光を変換する光学素子として機能する。図4において、ガス放電チューブ1の放射面から誘電体多層膜フィルタ22に至る放射光の屈折の様子を矢印線23で示している。面発光紫外光源デバイス10を構成するガス放電チューブ1の発光面からの放射光は、石英基板21との間の空間の屈折率(空気n≒1)と当該石英基板の屈折率(n=1.5)との差により入射角度が狭まる方向に放射角が修正されて誘電体多層膜フィルタ22に入射することになる。この結果、光学フィルタを透過して放射される228nmを中心とした深紫外光の放射強度の減衰を抑えることができる。
なお、更に面発光紫外光源デバイス10から広角に放射される深紫外の放射光23の誘電体多層膜フィルタ22への入射損失を減らすために、光学フィルタ20を構成する石英基板21の入射面側に回折格子として機能するストライプまたは格子パターンのリブを設けてもよい。ガス放電チューブ1の配列ピッチに対応したストライプリブにより面発光紫外光源デバイス10の各ガス放電チューブから広角に放射された深紫外線の誘電体多層膜フィルタ22への入射角度を狭めることができる。
図6(a)は、実施形態1としての紫外線照射装置の組み立て構成を示す斜視概略図である。図示しない空気導入孔を有するベース基板30の上に駆動回路基板40が配置され、更にその上方に送風ファン50と面発光紫外光源デバイス60並びに光学フィルタ20が4本の支柱31で組み立て支持されている。また全体は、上方に紫外線照射窓(開口)を有する点線図示のような筐体に中に納められる。図6においては便宜上、面発光紫外光源デバイス60の発光面が略水平となり、紫外線の照射方向は上向きとなるよう配置してあるが、照射方向は任意に定めることができる。
ここで上記面発光紫外光源デバイス60としては、図6(b)に示すようなスリット付きの電極基板61を用いる。即ち、上記図1(b)を参照して先に説明した電極基板11と異なり、図6(b)に示す電極基板61は、放電間隙用の隙間Gとほぼ平行に電極基板61を貫通する複数の貫通スリット64が形成されている。このようなスリット付き電極基板61においては、配列されたガス放電チューブ1の底面(背面)が部分的に下方に向けて露出すると共に、隣接するガス放電チューブ相互間の隙間と貫通スリット64との交差部に通気孔が形成された形となる。従って、送風ファン50から前記通気孔を通る冷却空気の流れによって面発光紫外光源デバイス60を効果的に冷却することができる。なお電極基板に設ける通気孔は、上記のようなスリット形状に限らず、放電チューブの背面が部分的に露出するよう多数の小穴を分散配置した形でもよい。
(実施形態2)
図7は、本発明の第2の実施形態として、オゾンの発生を伴う紫外線照射装置の構成を示す概略図である。図示省略した通気孔を有するベース基板30の上に、ガス放電チューブアレイ型の面発光紫外光源デバイス10を左右両側から挟むように光学フィルタ20と駆動回路基板40とが配置された組み立て構体が支持されている。面発光紫外光源デバイス10と光学フィルタ20との間に、オゾン発生空間51として作用する空間が形成されている。また、面発光紫外光源デバイス10と駆動回路基板40との間に、放熱路52として機能する空間が形成されている。オゾン発生空間51および放熱路52の端面に対向して送風ファン50が設けられており、該送風ファン50の送風により、オゾン発生空間51からオゾンの排出が行われ、同時に放熱路52からガス放電チューブアレイ10と駆動回路基板40の発熱が放出される。
かかる構成において、面発光紫外光源デバイス10を構成する各ガス放電チューブ1は、先に図1を参照して説明したように、ガラス細管2が紫外線透過性の高い石英ガラスまたは薄い硼珪酸系ガラスである場合、蛍光体層3の228nm近辺をピーク波長とした少なくとも210nm~250nmの波長幅を有する深紫外発光スペクトル(UVC1)と同時に172nmの真空紫外線(VUV)を放射する。図8に、上記実施形態で使用したガス放電チューブアレイ型の面発光紫外光源デバイスからのUVCとVUVとの放射スペクトルを示している。
駆動回路基板40には面発光紫外光源デバイスに交番駆動電圧を供給するインバータ回路15を含んだ駆動回路の他、照射時間を制御するタイマーや、全体を制御する制御回路が搭載されている。駆動回路によって面発光紫外光源デバイス10が駆動されると、波長228nm近辺をピーク波長とした240nm以下の深紫外線が光学フィルタ20を透過して照射され、照射空間の空気や対象物の除菌・殺菌が行われる。
他方、ガス放電チューブ1の中で発生した真空紫外線の内、紫外線反射機能も有する蛍光体層3で反射されて発光面から放射されるキセノンガスからの波長172nmの真空紫外線は、面発光紫外光源デバイス10を構成する各ガス放電チューブ1の発光面と光学フィルタ20との間のオゾン発生空間51に存在する空気を分解してオゾンを発生させる。発生したオゾンは、送風ファン50からの空気と共に上方に排気されて環境空気に対する除菌作用を果たす。勿論オゾン自体は強い酸化作用と毒性を有するので、無人の閉じた空間では濃度に係わらず除菌・殺菌に極めて有効であるが、その反面有人環境空間への過剰な放出は制限しなければならない。即ち、低濃度のオゾンは人体に無害であり、空間除菌には極めて有益である。
従って、有人空間へ放出するオゾンはオゾン濃度が定められた基準値0.1ppmを超えないように制御する必要がある。因みに、長さ8Cmのガス放電チューブを12本配列した発光面積8×3cmの面発光紫外光源デバイス10において1時間当り20mgのオゾンを発生することができる。このような面発光紫外光源デバイスを利用したオゾンの発生量は、駆動交番電圧の印可を間欠的に行い、そのデューティ比を変えることで適切に制御することができる他、環境空間のオゾン濃度のモニター値をフィードバックして駆動をオン/オフして制御することもできる。
(実施形態3)
上記実施形態2においては、深紫外域の放射と同時に真空紫外線を放射してオゾンを生成し、オゾンとUVC1の双方を利用する装置構成について説明したが、使用環境によってはオゾンの生成が望ましくない場合もある。本発明者等は、キセノン(Xe)ガスの放電による真空紫外線の外部への放射をチューブ外囲器のガラスの厚みでコントロールできることを確認した。即ち合成石英から成るガラスチューブの場合は、ガラスの厚みによる紫外線透過率の調整はできないが、硼珪酸系の紫外線透過ガラスを使用したチューブにおいては厚さを薄くすると同一波長に対しては紫外線の透過率が上がると同時に、短い波長側にシフトする。
図9は、市場で入手可能な硼珪酸系の紫外線透過ガラス管の紫外線透過率と、紫外線放射スペクトルとの関係を示す線図である。曲線Dは、従来260nmの紫外線を出す旧の硼珪酸ガラス(BS1)チューブの紫外線透過率の特性である。このガラスで228nmの蛍光体を採用してデバイスを作成した場合曲線Eの発光波形となる。このように、210~250nmの範囲で十分な紫外線発光が得られない。一方、曲線Fは硼珪酸系紫外線透過ガラス管(BS2)として市場で入手した直径15.7mm、厚み0.6mmのガラス母材管の透過率曲線であり、220nmの波長では約70%の透過率で短波長側に向けて紫外線の透過率が下がっており、かつカットオフ波長が約205nmである。この母材管を長径2.5mm、短径1mmで厚み90μmの扁平楕円断面のチューブに線引き(リドロー)した場合、曲線Gの透過率特性が得られた。
図9において、曲線Hは、先に図8に示した真空紫外線と蛍光体層からの深紫外線との放射スペクトルであり、この特性は石英ガラスチューブまたは先に述べたような真空紫外線を通しやすい硼珪酸系ガラス管(BS2)の厚みを70μm以下まで薄くしたチューブで構成したガス放電デバイスで得ることができる。他方、曲線Iは、上記曲線Gの透過率特性を持った厚み90μmの硼珪酸ガラスチューブ(BS2)で構成した同じ深紫外蛍光体層を有するガス放電チューブからの発光特性を示している。かかる構成の光源デバイスでは、178nm付近にピークの現れる真空紫外領域の放射がカットされ、200~260nmに及ぶブロードバンドの紫外発光の得られることが分かる。
図10は、228nmをピーク波長とする深紫外蛍光体層からの図2に示したブロードバンド発光特性曲線と同じ特性(図9の曲線Iと同等)に、細菌に対する不活化曲線Jと、相対分光有害特性曲線Kを重ねて示す線図である。細菌に対する不活化曲線Jは、図3に示した大腸菌などの波長感受性を示す線図と同じ出典であり、相対分光有害特性Kは、日本工業規格JIS(Z8812-1987)で定められた周知の特性である。この線図から明らかなように、細菌に対する不活化作用は、略240nmの波長から短波長側においてより高まり、他方、人体に対する有害作用は270nmの波長から短波長側に向けて減少する傾向にある。この関係から波長200nm~240nmの範囲の広い波長幅の深紫外線が有害作用を低く抑えて、幅広く殺菌作用を果たすことがよく理解できる。因みに、曲線Lは、比較のために特許文献1に開示されたKrClガスのエキシマランプの222nm単一波長特性を示しており、細菌不活化作用が限られたものとなる。
(その他の変形例)
以上は本発明の代表的構成例であるが、他に種々の変形が可能である。例えば、ガス放電チューブアレイ型の面発光紫外光源デバイスは水銀フリーであることの他、電極基板をフレキシブルな構成とすることにより、チューブの配列方向に湾曲可能な構成を特徴としている。従って面発光紫外光源デバイス10の発光面を凹面状に湾曲した構成とし、合わせて光学フィルタ20も入射面側が凹面となる構成にすることにより、照射対象に対する照射光を収束して照射強度を高めることができる。或いは凹面状に湾曲させた光源デバイスの前に先の光学フィルタに代えて紫外線透過材料から成るレンチキュラーレンズのような光学素子を配置し、照射光を更に収束させるようにしてもよい。
また実施形態2のように深紫外線の照射と同時にオゾンを発生させてオゾンによる空気の除菌を併せて行う場合、面発光紫外光源デバイス10を構成する複数本のガス放電チューブを必ずしも同じ発光スペクトルのものにする必要はない。蛍光体層3の代わりに、酸化マグネシューム(MgO)や酸化アルミニューム(Al)等の紫外線反射層を形成した真空紫外線放射専用のガス放電チューブを深紫外線放射用のガス放電チューブの間に混在配列したハイブリッドアレイ構成としてもよい。或いは、深紫外蛍光体層3の材料として上記228nmにピーク波長を有するブロードバンド発光の蛍光体を使用したガス放電チューブ加えて、例えば特許文献4に開示された191nmや209nmにピーク波長を有する蛍光体を使用したガス放電チューブを規則的に混在配列すれば、超ブロードバンドで発光強度フラットなガス放電チューブアレイ型の光源デバイスを構成することができ、このデバイスを240nm以上の波長をカットする光学フィルタと組み合わせることにより、有害作用が低く、ウイルスや細菌に対する幅広い不活化効果を発揮する紫外線照射装置を得ることができる。
蛍光体層3として実質的に240nm以上の発光スペクトル成分を持たない228nmに中心波長を有するブロードバンドの深紫外蛍光体材料を用いる場合、又は発光波長スペクトルが240nmを超えても無人環境で使用する照射装置を構成する場合には、光学フィルタ20は省略しても構わない。或いは誘電体多層膜フィルタ22に代えて単なる紫外線透過材料の保護板を配置し、面発光紫外光源デバイス10との間にオゾン発生空間を形成するようにしてもよい。
本発明の更なる発展系として、先に説明したようなVUVの光と、蛍光体によるUVCの光とを同時に発生する面発光紫外光源デバイスを利用して空気除菌装置を構成することもできる。即ち、周囲環境からの除菌すべき空気の導入開口と、除菌済空気の排出開口を備えた除菌ボックスの中に図6(a)或いは図7の構成と同様に、駆動回路基板40、送風ファン50、VUV+UVC面発光光源デバイス60を配置することで空気除菌装置を得ることができる。この場合、蛍光体からの深紫外光は外部に放出せず、除菌ボックスの中においてVUVで発生したオゾン、及びオゾンとUVCとの反応で生じる発生期の活性酸素と共に導入された空気の除菌・消臭作用を果たし、除菌ボックスからは清浄な空気と残余のオゾンを環境に放出する。蛍光体層は、コーティング面が紫外線反射機能を有する深紫外域発光のものを適宜使用できるが、260nmにピークを有するUVC2発光蛍光体が好適である。光学フィルタ20は不要として省略するか、代わりに空気排出孔を備えた蓋を配置する。
更に、長尺のガス放電チューブをその長手方向と交差する方向の放電用電極ギャップを挟んだ複数の電極対を配置した電極基板上に多数本配列することで、大型の放射面を有する紫外線照射装置を構成することができる。放射面のサイズは、ガス放電チューブの長さと配列本数並びに分割した電極対の配置パターンで決めることができる。また小規模サイズの面発光紫外光源デバイスを複数個タイリングして大型放射面の照射装置を構成してもよい。
また面発光紫外光源デバイスは、紫外線透過性の扁平なガラス外囲器の中に、深紫外蛍光体層と、該蛍光体層を励起して深紫外線を発生させる紫外線または電子線励起源を封入した構成とすることもできる。電子線励起源としてはフィールドエミッション原理で電子を放出する構成を用いることができる。
(まとめ)
何れにしても本発明によれば、人体に対する紫外線の悪影響を最小限とした形でウイルスや細菌に対する除菌・殺菌効果を有する安全な紫外線照射装置を得ることができる。
この発明の態様には、上述した複数の態様のうちの何れかを組み合わせたものも含まれる。
前述した実施の形態の他にも、この発明について種々の変形例があり得る。それらの変形例は、この発明の範囲に属さないと解されるべきものではない。この発明には、請求の範囲と均等の意味および前記範囲内でのすべての変形とが含まれるべきである。
1:ガス放電チューブ、 2:ガラス細管、 3:蛍光体層、 4:放電ガス、 G:電極間隙、 10,60:面発光紫外光源デバイス、ガス放電チューブアレイ、 11,61:電極基板、 12:電極対、 12X,12Y:電極、 13:絶縁基板、 15:インバータ回路、 20:光学フィルタ、 21:石英基板,合成石英基板、 22:誘電体多層膜フィルタ、 23:放射光、矢印線、 30:ベース基板、 31:支柱、 40:駆動回路基板、 50:送風ファン、 51:オゾン発生空間、 52:放熱路、 64:貫通スリット

Claims (14)

  1. 紫外発光用のガス放電チューブが共通の電極対上に複数本平行に配列され、少なくとも210~250nmの波長範囲に及ぶ深紫外域の紫外線を発生する光源デバイスの発光面の前に、前記紫外線の内240nm以上の紫外線の透過を実質的に阻止する光学フィルタが配置され、前記ガス放電チューブを構成するガラス外囲器の前面側は、前記紫外線の短波長側の放射が制限されるように選択された厚みを有することを特徴とする紫外線照射装置。
  2. 紫外発光用のガス放電チューブが共通の電極対上に複数本平行に配列され、少なくとも210~250nmの波長範囲に及ぶ深紫外域の紫外線を発生する光源デバイスの発光面の前に、前記紫外線の内、長波長側である240nm以上の紫外線の透過を実質的に阻止する光学フィルタを配置し、更に前記光源デバイス内で発生した真空紫外線を含む紫外線の短波長側の放射を前記ガス放電チューブを構成するガラス外囲器の前面側の厚みで選択的に制御する構成を特徴とする紫外線照射装置。
  3. 発光面となる前面側と、対向する背面側とを有し、紫外線透過ガラスから成るガラス外囲器を主体とし、前記ガラス外囲器の背面側の内面に少なくとも210~250nmの波長範囲に及ぶ深紫外域の紫外線を発する蛍光体層が設けられ、内部に真空紫外線を発する放電ガスが封入されたガス放電チューブと、該ガス放電チューブの背面側に対向して放電間隙を構成する隙間を挟んで両側に広がるように配置された電極対とを備えて成る紫外光源デバイスを含み、該紫外光源デバイスを構成するガス放電チューブの前記発光面の前に前記蛍光体層の発光スペクトルの内240nm以上の紫外線の透過を実質的に阻止する光学フィルタを配置すると共に、前記ガス放電チューブ内で発生した真空紫外線を含む短波長側の放射を前記ガラス外囲器の前面側の厚みで選択的に制御した構成を特徴とする紫外線照射装置。
  4. 発光面となる前面側と、対向する背面側を有し、紫外線透過ガラスから成るガラス外囲器を主体とし、前記ガラス外囲器の背面側の内面に深紫外域の紫外線を発する蛍光体層が設けられ、内部に真空紫外線を発する放電ガスが封入されたガス放電チューブと、絶縁支持体上に放電間隙を構成する隙間を挟んで両側に広がる電極対を備えて前記ガス放電チューブの背面側を支持する電極基板とから成る紫外光源デバイスを含み、該紫外光源デバイスを構成するガス放電チューブの前記前面側に、前記蛍光体層の発光スペクトルの内の長波長側の放射を制限するための入射面側に回折格子を備えた光学フィルタを配置し、更に前記ガス放電チューブ内で発生した真空紫外線のオゾンの発生を伴う放射を前記ガラス外囲器の前面側の厚みで選択的に制御する構成を特徴とする紫外線照射装置。
  5. 前記ガラス外囲器は、前面側の厚みが70μm以上の硼珪酸系紫外線透過ガラスで構成されることを特徴とする請求項4に記載の紫外線照射装置。
  6. 発光面となる前面側と、対向する背面側とを有するガラス細管を主体とし、前記ガラス細管の背面側の内面に深紫外の蛍光体層が設けられると共に、内部に放電ガスが封入されて成るガス放電チューブを複数本並行に配列して構成したガス放電チューブアレイと、前記ガス放電チューブアレイの背面側に対向して各ガス放電チューブに共通の放電間隙を構成する電極スリットを挟んで両側に広がるパターンの電極対を備え、各ガス放電チューブの前面側配列面の前に前記蛍光体層の発光スペクトルの内240nm以上の紫外線の透過を実質的に阻止するため入射面側に回折格子を備えた光学フィルタが配置されると共に、前記ガラス細管を70μm以上の肉厚を有するガラスで構成したことを特徴とする紫外線照射装置。
  7. 前記蛍光体層が、228nm近辺をピーク波長とするブロードバンドの発光スペクトルを有することを特徴とする請求項~4、6の何れか1項に記載の紫外線照射装置。
  8. 前記光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に設けられた回折格子とを備えることを特徴とする請求項1~3の何れか1項に記載の紫外線照射装置。
  9. 前記光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に前記ガス放電チューブからの放射光の該誘電体多層膜フィルタへの入射角度を狭めるように設けられたストライプパターンのリブとを備えることを特徴とする請求項13の何れか1項に記載の紫外線照射装置。
  10. 前記光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に前記ガス放電チューブからの放射光の該誘電体多層膜フィルタへの入射角度を狭めるように設けられた格子パターンのリブとを備えることを特徴とする請求項13の何れか1項に記載の紫外線照射装置。
  11. 前記光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に前記ガス放電チューブからの放射光の該誘電体多層膜フィルタへの入射角度を狭めるよう前記ガス放電チューブの配列に対応して設けられたストライプパターンまたは格子パターンの複数のリブとを備えることを特徴とする請求項1または2に記載の紫外線照射装置。
  12. 前記回折格子を備えた光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に設けられた回折格子とから成り、該回折格子はストライプパターンのリブであることを特徴とする請求項4または6の何れか1項に記載の紫外線照射装置。
  13. 前記回折格子を備えた光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に設けられた回折格子とから成り、該回折格子は格子パターンのリブであることを特徴とする請求項4または6の何れか1項に記載の紫外線照射装置。
  14. 前記回折格子を備えた光学フィルタは、石英基板の紫外線出射面側に形成された誘電体多層膜構造のフィルタと、前記石英基板の紫外線入射面側に設けられた回折格子とから成り、該回折格子は前記ガス放電チューブの配列ピッチに対応したストライプパターンまたは格子パターンの複数のリブであることを特徴とする請求項6に記載の紫外線照射装置。
JP2022136018A 2020-11-24 2022-08-29 紫外線照射装置 Active JP7349188B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020194593 2020-11-24
JP2020194593 2020-11-24
PCT/JP2021/042827 WO2022113943A1 (ja) 2020-11-24 2021-11-22 紫外線照射装置
JP2022524717A JP7137891B1 (ja) 2020-11-24 2021-11-22 紫外線照射装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022524717A Division JP7137891B1 (ja) 2020-11-24 2021-11-22 紫外線照射装置

Publications (2)

Publication Number Publication Date
JP2022174128A JP2022174128A (ja) 2022-11-22
JP7349188B2 true JP7349188B2 (ja) 2023-09-22

Family

ID=81754550

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022524717A Active JP7137891B1 (ja) 2020-11-24 2021-11-22 紫外線照射装置
JP2022136018A Active JP7349188B2 (ja) 2020-11-24 2022-08-29 紫外線照射装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022524717A Active JP7137891B1 (ja) 2020-11-24 2021-11-22 紫外線照射装置

Country Status (4)

Country Link
US (1) US20230258315A1 (ja)
JP (2) JP7137891B1 (ja)
CN (1) CN115885365A (ja)
WO (1) WO2022113943A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135592A1 (ja) * 2022-12-23 2024-06-27 日本電気硝子株式会社 光学フィルタ、殺菌装置、及び紫外線検出装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114197A (ja) 2017-01-20 2018-07-26 ウシオ電機株式会社 紫外線殺菌装置
JP2018190686A (ja) 2017-05-11 2018-11-29 合同会社紫光技研 紫外光源装置とその製造方法
WO2018235723A1 (ja) 2017-06-20 2018-12-27 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2892097B2 (ja) * 1990-04-18 1999-05-17 株式会社小糸製作所 自動車用ヘッドランプ
JP4885286B2 (ja) * 2010-03-17 2012-02-29 篠田プラズマ株式会社 紫外光照射装置
JP6489411B2 (ja) * 2014-03-19 2019-03-27 日本電気硝子株式会社 紫外線透過ガラス
JP7021875B2 (ja) * 2017-07-19 2022-02-17 株式会社オーク製作所 オゾン処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114197A (ja) 2017-01-20 2018-07-26 ウシオ電機株式会社 紫外線殺菌装置
JP2018190686A (ja) 2017-05-11 2018-11-29 合同会社紫光技研 紫外光源装置とその製造方法
WO2018235723A1 (ja) 2017-06-20 2018-12-27 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置

Also Published As

Publication number Publication date
JP2022174128A (ja) 2022-11-22
JP7137891B1 (ja) 2022-09-15
WO2022113943A1 (ja) 2022-06-02
US20230258315A1 (en) 2023-08-17
JPWO2022113943A1 (ja) 2022-06-02
CN115885365A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN110167605B (zh) 紫外线杀菌装置
JP6558376B2 (ja) 紫外線放射装置
US11007378B2 (en) Sterilization apparatus
Bergman Germicidal UV sources and systems
WO2021025064A1 (ja) 光照射装置
JP7349188B2 (ja) 紫外線照射装置
WO2017159342A1 (ja) 紫外線放射装置
JP2021029502A (ja) 殺菌装置および室内殺菌システム
JP2018190686A (ja) 紫外光源装置とその製造方法
JP7145597B2 (ja) オゾン生成装置およびエキシマランプ点灯方法
KR20070088999A (ko) 살균 장치
WO2024166702A1 (ja) 紫外線発光素子および紫外線照射装置
JPWO2022113943A5 (ja)
ES2719141T3 (es) Dispositivo y método de producción de radiación
JP7177556B2 (ja) 除菌用オゾン発生装置
JP3045989B2 (ja) 紫外線発光パネル及び該紫外線発光パネルを用いた浄化装置
WO2024024376A1 (ja) 不活化装置
TWI825353B (zh) 紫外線照射裝置
WO2023176084A1 (ja) 紫外光照射装置
KR102585542B1 (ko) 광 조사 장치
WO2024177083A1 (ja) 紫外線発光機、紫外線発光装置、及び殺菌消毒装置
KR20230151324A (ko) 방열 기능을 갖는 원자외선 발생 장치
JP2023008493A (ja) 紫外光放射装置
JP2000107269A (ja) 空気清浄機
KR20230144325A (ko) 원자외선 발광 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7349188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150