WO2023157281A1 - 光伝送装置、光照射システム、及び光伝送方法 - Google Patents
光伝送装置、光照射システム、及び光伝送方法 Download PDFInfo
- Publication number
- WO2023157281A1 WO2023157281A1 PCT/JP2022/006880 JP2022006880W WO2023157281A1 WO 2023157281 A1 WO2023157281 A1 WO 2023157281A1 JP 2022006880 W JP2022006880 W JP 2022006880W WO 2023157281 A1 WO2023157281 A1 WO 2023157281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical transmission
- optical
- wavelength
- transmission line
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 178
- 230000005540 biological transmission Effects 0.000 title claims abstract description 149
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000013307 optical fiber Substances 0.000 abstract description 73
- 238000001514 detection method Methods 0.000 description 20
- 230000001954 sterilising effect Effects 0.000 description 16
- 238000004659 sterilization and disinfection Methods 0.000 description 15
- 239000007787 solid Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 241000700605 Viruses Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004038 photonic crystal Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
Definitions
- the present disclosure relates to an optical transmission device, a light irradiation system, and an optical transmission method that supply light to a distant object through an optical transmission line such as an optical fiber.
- a mobile sterilization robot is an autonomous mobile robot that emits ultraviolet light.
- a mobile sterilization robot can sterilize a wide range automatically without human intervention by irradiating ultraviolet light while moving in a building such as a hospital room (for example, see Non-Patent Document 1. .).
- Stationary air purifier is a device that is installed on the ceiling or in a predetermined place in a room and decontaminates while circulating the air in the room.
- Stationary air purifiers do not irradiate ultraviolet light to the outside and have no effect on the human body, so they are capable of highly safe sterilization (see, for example, Non-Patent Document 2).
- Portable Sterilizer A portable sterilizer is a portable device equipped with an ultraviolet light source such as a fluorescent lamp, a mercury lamp, or an LED. A user brings the portable sterilizer to an area to be sterilized and irradiates it with ultraviolet light (see, for example, Non-Patent Document 3). Thus, the portable sterilizer can be used in various places.
- the mobile sterilization robot is an autonomous mobile robot that irradiates ultraviolet light, and in a building such as a hospital room, by irradiating ultraviolet light while moving in the room, it can be automatically performed without human intervention. Although it can sterilize a wide range, it requires a large-scale apparatus and is expensive because it uses high-power ultraviolet light. Therefore, the mobile sterilization robot has a problem that it is difficult to realize it economically.
- a stationary air purifier is a device that is installed on the ceiling or in a predetermined place in a room and sterilizes while circulating the air in the room. Highly safe sterilization is possible.
- the portable sterilizer is a portable device equipped with an ultraviolet light source, and can be used in various places by being brought to the area to be sterilized by the user and irradiated.
- the user does not necessarily have the skills and knowledge, there is a risk that depending on the method of use, there is a risk of affecting the human body, and there is a possibility that it is not possible to know whether the operation has been performed to obtain a sufficient sterilization effect in the target area. be.
- the portable sterilizer has a problem that it is difficult to obtain a sterilization effect regardless of the user's skill and knowledge.
- a system using an optical fiber can be considered for the above-mentioned problems (1) to (3).
- By transmitting the ultraviolet light from the light source using a thin and flexible optical fiber it has the flexibility to irradiate the ultraviolet light output from the tip of the fiber to the desired location for pinpoint sterilization and virus inactivation. becomes possible.
- sterilization or virus inactivation is referred to as “sterilization or the like”.
- FIG. 1 is a diagram for explaining the configuration and problems of an ultraviolet transmission system 300 using optical fibers.
- the ultraviolet light transmission system 300 includes an ultraviolet light source unit 11 that outputs ultraviolet light, an ultraviolet light optical transmission line 50 that is an optical fiber, and an irradiation unit 13 that irradiates a target location with ultraviolet light.
- ultraviolet light has wavelengths that are harmful to the human body, it is required to operate safely by avoiding ultraviolet light irradiation to the human body.
- Safety is ensured by providing a safety mechanism 13a that shuts off the irradiation area so that the radiation does not occur.
- the transmission loss in the optical fiber is large, and the power of the reflected light received by the light source is extremely small.
- the method for avoiding the risk of ultraviolet light irradiation described above has the problem that it is difficult to accurately detect breakage of the optical fiber or disconnection of the connector and reliably stop the leakage of ultraviolet light.
- the present invention provides an optical transmission device, a light irradiation system, and an optical transmission method that can accurately detect breakage of an optical fiber or disconnection of a connector and reliably stop light leakage.
- the purpose is to
- an optical transmission apparatus multiplexes light of a main wavelength for transmission and light of another wavelength for detecting a breakage of an optical fiber or disconnection of a connector into the light of the main wavelength.
- the optical transmission device includes: a light supply unit for inputting light of two wavelengths having different transmission losses in the optical transmission line into the optical transmission line; a detector for measuring the light intensity of the light of the other wavelength, which is reflected by the optical transmission line and has the transmission loss smaller than 1, out of the light of the two wavelengths; a control unit that stops the light of the one wavelength from entering the optical transmission line when the light intensity is higher than a threshold; Prepare.
- an optical transmission method includes: injecting light of two wavelengths with different transmission losses in the optical transmission line into the optical transmission line; measuring the light intensity of the light of the other wavelength, which is reflected by the optical transmission line and has the transmission loss smaller than the wavelength of 1, and when the light intensity is higher than the threshold, stopping light of wavelength 1 from entering the optical transmission line; I do.
- the one wavelength light is ultraviolet light
- the other wavelength is 750 to 850 nm or 1000 to 1100 nm.
- the one wavelength is the "main wavelength", and the other wavelengths are the “other wavelengths”.
- Light of other wavelengths has a smaller transmission loss than light of one wavelength, and reflected light of other wavelengths due to breakage of the optical fiber or disconnection of the connector has less attenuation than reflected light of one wavelength. Therefore, reflected light of other wavelengths is easier to detect than reflected light of one wavelength. Therefore, the present invention can provide an optical transmission device and an optical transmission method that can accurately detect breakage of an optical fiber or disconnection of a connector, and reliably stop light leakage.
- the light supply unit of the optical transmission device includes two light sources that respectively output light of the two wavelengths, and multiplexes the light of the two wavelengths from the light sources. and an optical multiplexer/demultiplexer that demultiplexes the light of the other wavelengths among the reflected light that entered the optical transmission line and was reflected by the optical transmission line, and inputs the demultiplexed light to the detector.
- the light supply unit of the optical transmission device includes one light source that outputs one of the light of the two wavelengths, and a part of the light output from the light source that a wavelength converter that converts to generate the other of the two wavelengths of light; and an optical multiplexer/demultiplexer for demultiplexing the light of the other wavelength among the reflected light reflected on the path and inputting it to the detector.
- the optical transmission device is characterized by having a plurality of optical transmission lines, and further comprising an optical switch for switching incident destinations of the light of the two wavelengths. By performing path switching with an optical switch, it is possible to identify in which optical transmission path an optical fiber breakage or connector disconnection has occurred.
- a light irradiation system is a light irradiation system comprising: the optical transmission device; and an irradiation unit that irradiates a target area with light transmitted through the optical transmission line, wherein is provided with a wavelength filter that cuts off light with a wavelength of
- This light irradiation system can block light of other wavelengths for detecting optical fiber breakage and disconnection of a connector before light irradiation, and can irradiate only light of a desired wavelength.
- the optical transmission path of the light irradiation system according to the present invention is characterized by having an optical branching section for branching the light from the optical transmission device into a plurality of parts. If this light irradiation system is a 1:N system in which the optical transmission line has an optical branching section, in which optical transmission line is the optical fiber breakage or connector disconnection occurring due to route switching at the optical branching section? can be specified.
- the present invention can provide an optical transmission device, a light irradiation system, and an optical transmission method that can accurately detect breakage of an optical fiber or disconnection of a connector, and reliably stop light leakage.
- FIG. 1 is a diagram for explaining an optical transmission device according to the present invention; FIG. It is a figure explaining the optical transmission path of the light irradiation system which concerns on this invention. It is a figure explaining the irradiation part of the light irradiation system which concerns on this invention. 1 is a diagram for explaining an optical transmission device according to the present invention; FIG. It is a figure explaining the light irradiation system which concerns on this invention. It is a figure explaining the light irradiation system which concerns on this invention.
- FIG. 2 is a diagram illustrating the light irradiation system 301 of this embodiment.
- the light irradiation system 301 includes an optical transmission device 20 that outputs light to an optical transmission line 50 and an irradiation unit 30 that irradiates a target area with the light transmitted through the optical transmission line 50 .
- FIG. 3 is a diagram for explaining the optical transmission device 20.
- the optical transmission device 21 is a light supply unit 21 for inputting light of two wavelengths (L1, L2) having different transmission losses in the optical transmission line 50 into the optical transmission line 50; a detector 22 for measuring the light intensity of the light L2 of the other wavelength, which is reflected by the optical transmission line 50 and has the transmission loss smaller than the wavelength of 1, out of the light of the two wavelengths; a control unit 23 that stops the light L1 of one wavelength from entering the optical transmission line 50 when the light intensity is higher than a threshold; Prepare.
- the light supply unit 21 is two light sources (24-1, 24-2) that respectively output the lights (L1, L2) of the two wavelengths; Two wavelengths of light (L1, L2) from the light sources (24-1, 24-2) are combined and entered into the optical transmission line 50, and the other wavelengths of the reflected light reflected by the optical transmission line 50 are combined.
- an optical multiplexer/demultiplexer 25 that demultiplexes the light L2 of and inputs it to the detector 22; Prepare.
- one wavelength of light is ultraviolet light and the other wavelength is 750 to 850 nm or 1000 to 1100 nm will be described. These wavelengths are examples, and one wavelength and another wavelength may be set according to the magnitude of transmission loss in the optical transmission line 50 .
- the light source 24-1 outputs or stops the ultraviolet light (light of wavelength 1) L1 according to an instruction from the control unit 23.
- the operation of outputting or stopping the light is realized by a configuration of turning on/off the light source or a configuration of shutting off using a shutter mechanism provided in the light source.
- the light source 24-2 outputs detection light (light of another wavelength) L2 of a wavelength with a small transmission loss in the optical transmission line 50.
- the wavelength of the detection light L2 is around 800 nm, or around 1000 to 1100 nm.
- the detection light L2 may be not only continuous wave light, but also modulated light such as chopped light for improving detection sensitivity, or pulsed light for specifying the reflection position with time resolution. good.
- the optical multiplexer/demultiplexer 25 multiplexes the ultraviolet light L1 and the detection light L2 and outputs them to the optical transmission line 50 . Also, the optical multiplexer/demultiplexer 25 inputs return light (backscattered light or reflected light) from the optical transmission line 50 to the detector 22 . Although the return light includes light having the same wavelength as the ultraviolet light L1, the light having the same wavelength as the detection light L2, which has less transmission loss in the optical transmission line 50, has a higher light intensity and is the main light.
- the detector 22 measures the light intensity of the returned light. The measurement result is notified to the control unit 23 . If the optical fiber breaks or the connector disconnection X1 occurs in the optical transmission line 50, the light intensity of the returned light increases. When the light intensity of the returned light is equal to or higher than the threshold value, the control unit 23 determines that the optical fiber is broken or the connector is disconnected X1 in the optical transmission line 50, and the ultraviolet light L1 is leaking. to stop the output of the ultraviolet light L1.
- an optical fiber having a cross section as shown in FIG. 4 can be used.
- optical fibers having hole structures shown in FIGS. 4(2) to 4(4) and shown in FIG. 4(5) It may be an optical fiber having a plurality of core regions, or an optical fiber having the structure shown in FIGS. 4(6) to 4(10).
- (1) Solid Core Optical Fiber This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 . "Full" means "not hollow".
- the solid core can also be realized by forming an annular low refractive index region in the clad.
- Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
- the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
- Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber.
- This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
- photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core.
- Optical characteristics that cannot be realized can be realized.
- This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
- Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core optical fibers can disperse and transmit light as many times as the number of cores, so high power can be used for efficient sterilization. There is an advantage that the service life can be extended.
- Solid-core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 with a high refractive index are spaced apart in a clad 60 .
- This optical fiber guides light in such a manner that the optical wave coupling between the solid cores 52 is sufficiently small so that the effect of the optical wave coupling can be ignored. Therefore, the solid-core multi-core optical fiber has the advantage that each core can be treated as an independent waveguide. (7) Hole-Assisted Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures and core regions of (2) above are arranged in a clad 60 . (8) Hole structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (3) above are arranged in the clad 60 .
- Hollow-core multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (4) above are arranged in the clad 60 .
- Coupling-core type multi-core optical fiber This optical fiber has a structure in which a plurality of coupling-core structures of (5) above are arranged in a clad 60 .
- an optical device such as a fan-in-fan-out is used,
- the light L1 of the wavelength and the detection light L2 are distributed and input to each core, and the irradiation unit 30 combines the light propagated through each core using an optical device such as a fan-in-fan-out.
- the intensity of the light that can be propagated through the optical transmission line 50 can be increased, and not only the intensity of the light L1 output from the output unit 30 can be increased, but also the light intensity for detection that returns to the optical transmission device 20 can be increased.
- the light intensity of the light L2 can also be increased, and the detection sensitivity of optical fiber breakage and connector disconnection can be enhanced.
- the light L1 of one wavelength and the detection light L2 may be transmitted for each core.
- FIG. 5 is a diagram for explaining the irradiation unit 30.
- the irradiation unit 30 includes a wavelength filter 31 that blocks light L2 of other wavelengths and an optical system 32 that irradiates light L1 of one wavelength to an irradiation target location.
- the wavelength filter 31 transmits only the ultraviolet light L1 and blocks the detection light L2.
- the optical system 32 outputs the ultraviolet light L1 as a beam having a predetermined shape.
- the light irradiation system 301 uses light of a wavelength with little transmission loss in the optical transmission line 50. Therefore, the light intensity of the returned light is high, and the breakage of the optical fiber and the disconnection of the connector X1 can be accurately detected. can be done.
- FIG. 6 is a diagram for explaining the optical transmission device 20 of this embodiment.
- the light supply unit 21 is one light source 24 that outputs one (L1 or L2) of the two wavelengths of light (L1, L2); a wavelength converter 26 that wavelength-converts part of the light (L1 or L2) output by the light source 24 to generate the other of the two wavelengths of light (L2 or L1);
- the light from the light source 24 and the light from the wavelength converter 26 are multiplexed and enter the optical transmission line 50, and the light L2 of the other wavelength of the reflected light reflected by the optical transmission line 50 is demultiplexed and detected.
- an optical multiplexer/demultiplexer 25 input to the device 22; Prepare.
- the light source 24 outputs detection light L2 (light having a wavelength of around 800 nm or around 1000 to 1100 nm) and the wavelength converter 26 generates ultraviolet light L1.
- the light source 24 may output the ultraviolet light L1 and the wavelength converter 26 may generate the detection light L2.
- the output of a laser with a wavelength longer than that of ultraviolet light is input to a nonlinear optical material, and ultraviolet light can be extracted as harmonics generated here.
- the light supply unit 21 of this embodiment uses this method.
- the light source 24 outputs light with a wavelength of 1064 nm, for example. Since this light is also used as the detection light L2, it is branched by the optical branching unit 27 to the bypass path 29 having no wavelength converter.
- the wavelength converter 26 has a nonlinear optical material and generates ultraviolet light L1 of 266 nm as the fourth harmonic of light of wavelength 1064 nm.
- the optical multiplexer/demultiplexer 25 multiplexes the detection light L 2 from the bypass path 29 and the ultraviolet light L 1 from the wavelength converter 26 and outputs the multiplexed light to the optical transmission line 50 .
- the detector 22 measures the light intensity of the returned light. The measurement result is notified to the control unit 23 .
- the control unit 23 determines that the optical fiber is broken or the connector is disconnected X1 in the optical transmission line 50, and the ultraviolet light L1 is leaking. Instruct to stop outputting light at 1064 nm.
- the single light source 24 is shared not only as a light source for the detection light L2 but also as a light source for generating the ultraviolet light L1.
- the number of parts can be reduced compared to
- FIG. 7 is a diagram illustrating the light irradiation system 302 of this embodiment.
- the light irradiation system 302 has a plurality of optical transmission lines 50 and further includes an optical switch 71 for switching the incident destinations of light of two wavelengths. That is, the light irradiation system 302 has a plurality of light irradiation targets, and the ultraviolet light L1 from the optical transmission device 20 is distributed by the optical switch to irradiate each irradiation target area with the ultraviolet light L1.
- the optical transmission device 20 of the light irradiation system 302 has the same configuration as the optical transmission device 20 described with reference to FIGS.
- the optical switch 50 branches the optical transmission line 50 into N optical transmission lines (50-1 to 50-N).
- the optical transmission lines (50-1 to 50-N) are the optical fibers described in FIG. Irradiation units (30-1 to 30-N) are connected to the far ends of the optical transmission lines (50-1 to 50-N), respectively.
- the irradiation units (30-1 to 30-N) have the same configuration as the irradiation unit 30 described with reference to FIG.
- the optical switch 71 may be in the same housing as the optical transmission device 20, or may be in the middle of the path from the optical transmission device 20 to the irradiation target location.
- the optical switch 71 switches the output port of the ultraviolet light L1 at a predetermined timing, so that a single optical transmission device 20 can be used in a 1:N configuration with a plurality of irradiation units (30-1 to 30-N).
- the switching control unit 72 controls switching timing for transmitting the ultraviolet light L1 from the output port of the optical switch 71 to each irradiation unit (30-1 to 30-N).
- the optical transmission device 20 measures the optical intensity of the returned light as described in the first embodiment while checking the switching timing of the optical switch 71 .
- the optical transmission device 20 detects that the optical intensity of the returned light is equal to or higher than the threshold value at the timing when the optical switch 71 communicates with the output port, the optical transmission device 20 selects the optical transmission path (Fig. If it is 7, it can be determined that the ultraviolet light L1 is leaking due to breakage of the optical fiber or disconnection of the connector X1 in the optical transmission line 50-1).
- the light irradiation system 302 can identify in which optical transmission line after optical branching the ultraviolet light leaks.
- FIG. 8 is a diagram illustrating the light irradiation system 303 of this embodiment.
- the light irradiation system 303 is different from the light irradiation system 301 shown in FIG. and a single-core optical fiber (50-1 to N) as described in (1) to (5) of FIG. The difference is that it has a propagating P-MP configuration (N is the number of cores of the multi-core optical fiber 50-0).
- the optical transmission apparatus 20 uses an optical device such as a fan-in-fan-out to distribute and input the light L1 of one wavelength and the detection light L2 to each core of the multi-core optical fiber 50-0.
- the optical device 75 divides the light L1 of one wavelength and the detection light L2 propagated through each core of the multi-core optical fiber 50-0 into single-core optical fibers (50-1 to N).
- the single-core optical fibers (50-1 to N) propagate the one-wavelength light L1 and the detection light L2 input from the optical device 75 to the irradiation units (30-1 to N), respectively.
- the detection light L2 when the detection light L2 returns to the optical transmission device 20, it can be detected that the optical fiber is broken or the connector is disconnected at any part of the optical transmission line 50.
- Ultraviolet light source unit 13 Irradiation unit 13a: Safety mechanism 20: Optical transmission device 21: Light supply unit 22: Detector 23: Control unit 24, 24-1, 24-2: Light source 25: Optical multiplexer/demultiplexer 26 : wavelength converter 27: optical splitter 29: bypass paths 30, 30-1, 30-2, . , 50-2, 50-N: optical transmission line 52: solid core 52a: region 53: hole 53a: hole group 60: clad 71: optical switch 72: switching control section 75: optical device
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Communication System (AREA)
Abstract
本発明は、光ファイバの破断やコネクタ外れを正確に検出でき、光の漏れを確実に停止できる光伝送装置、光照射システム、及び光伝送方法を提供することを目的とする。 本発明に係る光伝送装置21は、光伝送路50での伝送損失が異なる2つの波長の光(L1,L2)を光伝送路50に入射する光供給部21と、光伝送路50で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光L2の光強度を測定する検出器22と、前記光強度が閾値より高い場合に1の波長の光L1を光伝送路50に入射することを停止させる制御部23と、を備える。
Description
本開示は、光ファイバなどの光伝送路で遠方にある対象物に光を供給する光伝送装置、光照射システム、及び光伝送方法に関する。
光ファイバなどの光伝送路で遠方にある対象物に光を供給するシステムとして、感染症予防などを目的とする紫外光を用いた殺菌又は不活性化システムがある。このようなシステムには、大きく3つのカテゴリの製品がある。
(1)移動型殺菌ロボット
移動型殺菌ロボットは、紫外光を照射する自律移動型のロボットである。移動型殺菌ロボットは、病室などの建物内において、部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌ができる(例えば、非特許文献1を参照。)。
(2)据え置き型空気清浄機
据え置き型空気清浄機は、天井や室内の所定の場所に設置し、室内の空気を循環させながら除染する装置である。据え置き型空気清浄機は、外部へ紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である(例えば、非特許文献2を参照。)。
(3)ポータブル型殺菌装置
ポータブル型殺菌装置は、蛍光灯や水銀ランプ、LEDの紫外光源を搭載したポータブル型の装置である。ユーザは、ポータブル型殺菌装置を殺菌を行いたいエリアに持って行き、紫外光を照射する(例えば、非特許文献3を参照。)。このように、ポータブル型殺菌装置は、様々な場所で使用可能である。
(1)移動型殺菌ロボット
移動型殺菌ロボットは、紫外光を照射する自律移動型のロボットである。移動型殺菌ロボットは、病室などの建物内において、部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌ができる(例えば、非特許文献1を参照。)。
(2)据え置き型空気清浄機
据え置き型空気清浄機は、天井や室内の所定の場所に設置し、室内の空気を循環させながら除染する装置である。据え置き型空気清浄機は、外部へ紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である(例えば、非特許文献2を参照。)。
(3)ポータブル型殺菌装置
ポータブル型殺菌装置は、蛍光灯や水銀ランプ、LEDの紫外光源を搭載したポータブル型の装置である。ユーザは、ポータブル型殺菌装置を殺菌を行いたいエリアに持って行き、紫外光を照射する(例えば、非特許文献3を参照。)。このように、ポータブル型殺菌装置は、様々な場所で使用可能である。
しかし、これらの従来技術には、次のような課題がある。
(1)移動型殺菌ロボットは、紫外光を照射する自律移動型のロボットであり、病室などの建物内において、部屋の中を移動しながら紫外光を照射することで、人手を介さず自動で広い範囲の殺菌を実現できるが、高出力の紫外光を照射するため、装置が大掛かりなもので高価である。このため、移動型殺菌ロボットには、経済的に実現することが困難という課題がある。
(2)据え置き型空気清浄機は、天井や室内の所定の場所に設置し、室内の空気を循環させながら殺菌する装置であり、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。しかし、循環させた室内の空気を殺菌する方法のため、据え置き型空気清浄機には、殺菌したい場所に直接紫外光を照射することが困難という課題がある。
(3)ポータブル型殺菌装置は、紫外光源を搭載したポータブル型の装置であり、ユーザが、殺菌対象のエリアに持って行って照射することで、様々な場所で使用可能である。しかし、ユーザが必ずしもスキルや知識を持ち合わせていないため、使用方法によっては、人体に影響が出るリスクがある他、対象箇所で十分な殺菌効果が得られるように操作したか分からないという可能性がある。つまり、ポータブル型殺菌装置には、ユーザのスキルや知識に関わらず殺菌効果を得ることが困難という課題がある。
(1)移動型殺菌ロボットは、紫外光を照射する自律移動型のロボットであり、病室などの建物内において、部屋の中を移動しながら紫外光を照射することで、人手を介さず自動で広い範囲の殺菌を実現できるが、高出力の紫外光を照射するため、装置が大掛かりなもので高価である。このため、移動型殺菌ロボットには、経済的に実現することが困難という課題がある。
(2)据え置き型空気清浄機は、天井や室内の所定の場所に設置し、室内の空気を循環させながら殺菌する装置であり、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。しかし、循環させた室内の空気を殺菌する方法のため、据え置き型空気清浄機には、殺菌したい場所に直接紫外光を照射することが困難という課題がある。
(3)ポータブル型殺菌装置は、紫外光源を搭載したポータブル型の装置であり、ユーザが、殺菌対象のエリアに持って行って照射することで、様々な場所で使用可能である。しかし、ユーザが必ずしもスキルや知識を持ち合わせていないため、使用方法によっては、人体に影響が出るリスクがある他、対象箇所で十分な殺菌効果が得られるように操作したか分からないという可能性がある。つまり、ポータブル型殺菌装置には、ユーザのスキルや知識に関わらず殺菌効果を得ることが困難という課題がある。
株式会社スマートロボティクスのウェブサイト(https://www.smartrobotics.jp/products/uvc/)、2022年2月4日検索。
岩崎電気株式会社ウェブサイト(https://www.iwasaki.co.jp/optics/sterilization/air/air03.html)、2022年2月4日検索。
フナコシ株式会社ウェブサイト(https://www.funakoshi.co.jp/contents/68182)、2022年2月4日検索。
上述した課題(1)~(3)に対して、光ファイバを用いたシステムが考えられる。細くて曲げやすい光ファイバを用いて光源からの紫外光を伝送することで、ファイバ先端から出力される紫外光をピンポイントで殺菌やウィルスの不活化を行いたい場所へ照射する柔軟性を備えることが可能となる。なお、本明細書では、「除菌やウィルスの不活化」を「殺菌等」と記載する。
しかしながら、光ファイバを用いたシステムには、光伝送路における光ファイバの破断やコネクタ外れによる紫外線の漏れの検出に課題がある。図1は、光ファイバを用いた紫外線伝送システム300の構成及び課題を説明する図である。紫外線伝送システム300は、紫外光を出力する紫外光源部11、光ファイバである紫外光の光伝送路50、及び対象箇所に紫外光を照射する照射部13を備える。
紫外光は人体に有害な波長であるため、人体への紫外光照射を回避するようにして安全に運用することが求められる。例えば、紫外光の照射対象箇所において人体に影響を与えない光強度となるように紫外光源部11の出力パワーを制御すること、あるいは紫外光の照射対象箇所に不特定多数の人が入って来ないように照射領域を遮断する安全機構13aを設けること、で安全性を担保する。
一方で、光伝送路においては、通常時は光ファイバ内に紫外光が閉じ込まれた状態のため、周囲の人への照射は回避されている状態である。しかし、光ファイバの破断やコネクタ外れX1が生じると、この部分で紫外光の漏れが発生し、周囲の人への照射リスクが発生する。
このリスクに対応する方法として、光ファイバの破断やコネクタ外れなどの際に発生する反射光(フレネル反射)を検出して紫外光の漏れを把握する方法がある。具体的には、紫外光源部に光伝送路からの反射光をモニタリングする手段を設け、一定以上の反射光のパワーを検出した場合、光ファイバの破断やコネクタ外れによる紫外光の漏れが発生したと判断できる。この時に、紫外光源部から紫外光の出力を停止させれば、周囲の人への紫外光の照射リスクを回避できる。
しかしながら、紫外光の波長領域は光ファイバでの伝送損失が大きく、光源側で受信する反射光のパワーが非常に小さくなる。このため、上述した紫外光の照射リスクの回避方法には、光ファイバの破断やコネクタ外れを正確に検出し、紫外光の漏れを確実に停止することが困難という課題がある。
そこで、本発明は、前記課題を解決するために、光ファイバの破断やコネクタ外れを正確に検出でき、光の漏れを確実に停止できる光伝送装置、光照射システム、及び光伝送方法を提供することを目的とする。
上記目的を達成するために、本発明に係る光伝送装置は、伝送目的の主たる波長の光とともに、光ファイバ破断やコネクタ外れなどを検出するための別波長の光を主たる波長の光に多重することとした。
具体的には、本発明に係る光伝送装置は、
光伝送路での伝送損失が異なる2つの波長の光を前記光伝送路に入射する光供給部と、
前記光伝送路で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光の光強度を測定する検出器と、
前記光強度が閾値より高い場合に前記1の波長の光を前記光伝送路に入射することを停止させる制御部と、
を備える。
光伝送路での伝送損失が異なる2つの波長の光を前記光伝送路に入射する光供給部と、
前記光伝送路で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光の光強度を測定する検出器と、
前記光強度が閾値より高い場合に前記1の波長の光を前記光伝送路に入射することを停止させる制御部と、
を備える。
また、本発明に係る光伝送方法は、
光伝送路での伝送損失が異なる2つの波長の光を前記光伝送路に入射すること、
前記光伝送路で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光の光強度を測定すること、及び
前記光強度が閾値より高い場合に前記1の波長の光を前記光伝送路に入射することを停止すること、
を行う。
光伝送路での伝送損失が異なる2つの波長の光を前記光伝送路に入射すること、
前記光伝送路で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光の光強度を測定すること、及び
前記光強度が閾値より高い場合に前記1の波長の光を前記光伝送路に入射することを停止すること、
を行う。
例えば、前記1の波長の光が紫外光であり、前記他の波長が750~850nm又は1000~1100nmである。
前記1の波長が前記「主たる波長」、前記他の波長が前記「別波長」である。他の波長の光は1の波長の光に比べて伝送損失が小さく、光ファイバ破断やコネクタ外れによる他の波長の反射光は1の波長の反射光より減衰が小さい。このため、他の波長の反射光は1の波長の反射光より検出が容易である。従って、本発明は、光ファイバの破断やコネクタ外れを正確に検出でき、光の漏れを確実に停止できる光伝送装置及び光伝送方法を提供することができる。
1つの構成例として、本発明に係る光伝送装置の前記光供給部は、前記2つの波長の光をそれぞれ出力する2つの光源と、前記光源からの前記2つの波長の光を合波して前記光伝送路に入射し、前記光伝送路で反射された反射光のうち前記他の波長の光を分波して前記検出器に入力する光合分波器と、を備える。
他の構成例として、本発明に係る光伝送装置の前記光供給部は、前記2つの波長の光のうちの一方を出力する1つの光源と、前記光源が出力した前記光の一部を波長変換して前記2つの波長の光のうちの他方を生成する波長変換器と、前記光源からの光と前記波長変換器からの光を合波して前記光伝送路に入射し、前記光伝送路で反射された反射光のうち前記他の波長の光を分波して前記検出器に入力する光合分波器と、を備えることを特徴とする。
本発明に係る光伝送装置の前記光伝送路が複数であり、前記2つの波長の光の入射先を切り替える光スイッチをさらに備えることを特徴とする。光スイッチで経路切替を行うことで、いずれの光伝送路で光ファイバ破断やコネクタ外れなどが発生しているかを特定することができる。
本発明に係る光照射システムは、前記光伝送装置と、前記光伝送路で伝送された光を対象領域に照射する照射部と、を備える光照射システムであって、前記照射部は、前記他の波長の光を遮断する波長フィルタを備えることを特徴とする。本光照射システムは、光照射前に光ファイバ破断やコネクタ外れ検出用の他の波長の光を遮断し、所望の1の波長の光だけを照射することができる。
本発明に係る光照射システムの前記光伝送路は、前記光伝送装置からの光を複数に分岐する光分岐部を有することを特徴とする。本光照射システムが光伝送路が光分岐部を備える1:Nシステムの場合、光分岐部で経路切替を行うことで、いずれの光伝送路で光ファイバ破断やコネクタ外れなどが発生しているかを特定することができる。
なお、上記各発明は、可能な限り組み合わせることができる。
本発明は、光ファイバの破断やコネクタ外れを正確に検出でき、光の漏れを確実に停止できる光伝送装置、光照射システム、及び光伝送方法を提供することができる。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
[実施形態1]
図2は、本実施形態の光照射システム301を説明する図である。光照射システム301は、光伝送路50に光を出力する光伝送装置20と、光伝送路50で伝送された光を対象領域に照射する照射部30と、を備える。
図2は、本実施形態の光照射システム301を説明する図である。光照射システム301は、光伝送路50に光を出力する光伝送装置20と、光伝送路50で伝送された光を対象領域に照射する照射部30と、を備える。
図3は、光伝送装置20を説明する図である。光伝送装置21は、
光伝送路50での伝送損失が異なる2つの波長の光(L1,L2)を光伝送路50に入射する光供給部21と、
光伝送路50で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光L2の光強度を測定する検出器22と、
前記光強度が閾値より高い場合に1の波長の光L1を光伝送路50に入射することを停止させる制御部23と、
を備える。
光伝送路50での伝送損失が異なる2つの波長の光(L1,L2)を光伝送路50に入射する光供給部21と、
光伝送路50で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光L2の光強度を測定する検出器22と、
前記光強度が閾値より高い場合に1の波長の光L1を光伝送路50に入射することを停止させる制御部23と、
を備える。
本実施形態の場合、光供給部21は、
前記2つの波長の光(L1,L2)をそれぞれ出力する2つの光源(24-1、24-2)と、
光源(24-1、24-2)からの2つの波長の光(L1,L2)を合波して光伝送路50に入射し、光伝送路50で反射された反射光のうち他の波長の光L2を分波して検出器22に入力する光合分波器25と、
を備える。
前記2つの波長の光(L1,L2)をそれぞれ出力する2つの光源(24-1、24-2)と、
光源(24-1、24-2)からの2つの波長の光(L1,L2)を合波して光伝送路50に入射し、光伝送路50で反射された反射光のうち他の波長の光L2を分波して検出器22に入力する光合分波器25と、
を備える。
本明細書では、1の波長の光が紫外光であり、他の波長が750~850nm又は1000~1100nmである例で説明する。これらの波長は例であり、光伝送路50における伝送損失の大小に応じて1の波長及び他の波長を設定すればよい。
光源24-1は、制御部23からの指示に応じて、紫外光(1の波長の光)L1の出力又は停止を行う。光の出力又は停止の動作は、光発生源をオン/オフする構成、もしくは、光発生源に具備するシャッター機構を用いて遮断する構成で実現する。
光源24-2は、光伝送路50において伝送損失が小さい波長の検出用光(他の波長の光)L2を出力する。例えば、検出用光L2の波長は、800nm付近、又は1000~1100nm付近である。また、検出用光L2は、連続発振光だけではなく、検出感度を向上させるためのチョップ光などの変調光や、時間分解を持たせて反射位置を特定するためのパルス光などを用いても良い。
光合分波器25は、紫外光L1と検出用光L2を合波して光伝送路50に出力する。また、光合分波器25は、光伝送路50からの戻り光(後方散乱光や反射光)を検出器22に入力する。なお、戻り光には紫外光L1と同じ波長の光も含まれるが、光伝送路50での伝送損失が少ない検出用光L2と同じ波長の光のほうが光強度が大きくメインである。
検出器22は、戻り光の光強度を測定する。測定結果は制御部23に通知される。光伝送路50において光ファイバの破断やコネクタ外れX1が発生すると、戻り光の光強度が大きくなる。制御部23は、戻り光の光強度が閾値以上の場合、光伝送路50において光ファイバの破断やコネクタ外れX1が発生して紫外光L1の漏れていると判断し、光源24-1に対して紫外光L1の出力を停止するように指示する。
光導波路50の光ファイバは、図4に示すような断面を持つ光ファイバを使用することができる。図4(1)のような一般的な添加物を用いた充実型光ファイバの他、図4(2)~(4)に記載した空孔構造を有する光ファイバ、図4(5)に記載した複数のコア領域を有する光ファイバ、もしくは図4(6)~(10)の構造を有する光ファイバであっても良い。
(1)充実コア光ファイバ
この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外光によるファイバ劣化を緩和し長寿命化できるというメリットがある。
(6)充実コア型マルチコア光ファイバ
この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
(1)充実コア光ファイバ
この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌等ができる、また、結合コア型光ファイバは、紫外光によるファイバ劣化を緩和し長寿命化できるというメリットがある。
(6)充実コア型マルチコア光ファイバ
この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
なお、光伝送路50として図4の(6)~(10)で説明したようなマルチコア光ファイバを用いる場合、ファンインファンナウトのような光デバイスを用い、光伝送装置20が出力する1の波長の光L1と検出用光L2を各コアに分配して入力し、照射部30にてファンインファンナウトのような光デバイスを用いて各コアで伝搬した光を合波する。この構成の場合、光伝送路50で伝搬できる光強度を強くすることができ、出力部30から出力させる光L1の光強度を強くすることだけでなく、光伝送装置20に戻ってくる検出用光L2の光強度も強くすることができ、光ファイバの破断やコネクタ外れの検出感度を高めることができる。
また、光伝送路50として図4の(6)~(10)で説明したようなマルチコア光ファイバを用いる場合、1の波長の光L1と検出用光L2をコア別に伝送してもよい。
図5は、照射部30を説明する図である。照射部30は、他の波長の光L2を遮断する波長フィルタ31と照射対象箇所に1の波長の光L1を照射する光学系32を備える。本実施形態であれば、波長フィルタ31は紫外光L1のみを透過し、検出用光L2を遮断する。光学系32は、紫外光L1を所定の形状のビームで出力する。
光照射システム301は、以上の説明のように光伝送路50において伝送損失が少ない波長の光を用いるため、戻り光の光強度が大きく、光ファイバの破断やコネクタ外れX1を正確に検知することができる。
[実施形態2]
本実施形態の光照射システムは、光伝送装置20の構成が実施形態1で説明した光伝送装置20の構成と異なる。
図6は、本実施形態の光伝送装置20を説明する図である。本実施形態の場合、光供給部21は、
2つの波長の光(L1,L2)のうちの一方(L1又はL2)を出力する1つの光源24と、
光源24が出力した光(L1又はL2)の一部を波長変換して前記2つの波長の光のうちの他方(L2又はL1)を生成する波長変換器26と、
光源24からの光と波長変換器26からの光を合波して光伝送路50に入射し、光伝送路50で反射された反射光のうち他の波長の光L2を分波して検出器22に入力する光合分波器25と、
を備える。
本実施形態の光照射システムは、光伝送装置20の構成が実施形態1で説明した光伝送装置20の構成と異なる。
図6は、本実施形態の光伝送装置20を説明する図である。本実施形態の場合、光供給部21は、
2つの波長の光(L1,L2)のうちの一方(L1又はL2)を出力する1つの光源24と、
光源24が出力した光(L1又はL2)の一部を波長変換して前記2つの波長の光のうちの他方(L2又はL1)を生成する波長変換器26と、
光源24からの光と波長変換器26からの光を合波して光伝送路50に入射し、光伝送路50で反射された反射光のうち他の波長の光L2を分波して検出器22に入力する光合分波器25と、
を備える。
本実施形態では、光源24が検出用光L2(波長が800nm付近、又は1000~1100nm付近の光)を出力し、波長変換器26で紫外光L1を生成する例で説明する。光源24が紫外光L1を出力し、波長変換器26で検出用光L2を生成してもよい。
紫外光より長波長域のレーザの出力を非線形光学材料に入力し、ここで発生する高調波として紫外光を取り出すことができる。本実施形態の光供給部21は、この方法を利用する。光源24は、例えば、波長が1064nmの光を出力する。この光は検出用光L2としても使用するので、光分岐部27で波長変換器の無いバイパス経路29へ分岐させておく。波長変換器26は、非線形光学材料を有しており、波長1064nmの光の4倍高調波として266nmの紫外光L1を発生する。光合分波器25は、バイパス経路29からの検出用光L2と波長変換器26からの紫外光L1を合波して光伝送路50へ出力する。
検出器22は、戻り光の光強度を測定する。測定結果は制御部23に通知される。制御部23は、戻り光の光強度が閾値以上の場合、光伝送路50において光ファイバの破断やコネクタ外れX1が発生して紫外光L1の漏れていると判断し、光源24に対して波長1064nmの光の出力を停止するように指示する。
本実施形態の光伝送装置20は、単一の光源24を検出用光L2の光源としてだけではなく、紫外光L1を発生させるための光源としても共用するため、実施形態1の光伝送装置20と比べて部品点数を低減することができる。
[実施形態3]
図7は、本実施形態の光照射システム302を説明する図である。光照射システム302は、図2の光照射システム301に対し、光伝送路50が複数であり、2つの波長の光の入射先を切り替える光スイッチ71をさらに備えることを特徴とする。つまり、光照射システム302は、光の照射対象が複数であり、光伝送装置20からの紫外光L1は光スイッチで分配してそれぞれの照射対象域に紫外光L1を照射する。
図7は、本実施形態の光照射システム302を説明する図である。光照射システム302は、図2の光照射システム301に対し、光伝送路50が複数であり、2つの波長の光の入射先を切り替える光スイッチ71をさらに備えることを特徴とする。つまり、光照射システム302は、光の照射対象が複数であり、光伝送装置20からの紫外光L1は光スイッチで分配してそれぞれの照射対象域に紫外光L1を照射する。
光照射システム302の光伝送装置20は、図3や図6で説明した光伝送装置20の構成と同じである。光スイッチ50は、光伝送路50をN本の光伝送路(50-1~50-N)へ分岐する。光伝送路(50-1~50-N)は、図4で説明した光ファイバである。光伝送路(50-1~50-N)の遠端には、それぞれ照射部(30-1~30-N)が接続される。照射部(30-1~30-N)は、図5で説明した照射部30の構成と同じである。
光スイッチ71は、光伝送装置20と同じ筐体内にあってもよいし、光伝送装置20から照射対象箇所までの経路の途中にあってもよい。光スイッチ71は、所定のタイミングで、紫外光L1の出力ポートを切り替えることで、単一の光伝送装置20を用いて複数の照射部(30-1~30-N)との1:N構成を実現する。
切替制御部72は、光スイッチ71の出力ポートから各照射部(30-1~30-N)へ紫外光L1を送信する切替タイミングを制御する。
光伝送装置20は、光スイッチ71の切替タイミングと照合しながら、実施形態1で説明したように戻り光の光強度を測定する。光伝送装置20は、光スイッチ71がある出力ポートに疎通させているタイミングで、戻り光の光強度が閾値以上であることを検出した場合には、その出力ポートに対応した光伝送路(図7であれば光伝送路50-1)で光ファイバの破断やコネクタ外れX1による紫外光L1の漏れが発生していると判断できる。
光照射システム302は、光スイッチを用いた1:Nシステム構成において、光分岐後のどの光伝送路で紫外光の漏れが発生しているかを特定することができる。
[実施形態4]
図8は、本実施形態の光照射システム303を説明する図である。光照射システム303は、図2の光照射システム301に対し、光伝送路50が、図4の(6)~(10)で説明したようなマルチコア光ファイバ50-0、ファンインファンアウトのような光デバイス75、及び図4の(1)~(5)で説明したようなシングルコア光ファイバ(50-1~N)で構成され、複数の照射部(30-1~N)へ光を伝搬するP-MP構成であることが相違する(Nはマルチコア光ファイバ50-0のコア数)。
図8は、本実施形態の光照射システム303を説明する図である。光照射システム303は、図2の光照射システム301に対し、光伝送路50が、図4の(6)~(10)で説明したようなマルチコア光ファイバ50-0、ファンインファンアウトのような光デバイス75、及び図4の(1)~(5)で説明したようなシングルコア光ファイバ(50-1~N)で構成され、複数の照射部(30-1~N)へ光を伝搬するP-MP構成であることが相違する(Nはマルチコア光ファイバ50-0のコア数)。
光伝送装置20は、ファンインファンナウトのような光デバイスを用い、1の波長の光L1と検出用光L2をマルチコア光ファイバ50-0の各コアに分配して入力する。光デバイス75は、マルチコア光ファイバ50-0の各コアが伝搬する1の波長の光L1と検出用光L2をシングルコア光ファイバ(50-1~N)に分割する。シングルコア光ファイバ(50-1~N)は、光デバイス75で入力された1の波長の光L1と検出用光L2を照射部(30-1~N)へそれぞれ伝搬する。
光照射システム303の場合、検出用光L2が光伝送装置20へ戻ってきた場合、光伝送路50のいずれかの部分で光ファイバの破断やコネクタ外れが発生したことを検出できる。
11:紫外光光源部
13:照射部
13a:安全機構
20:光伝送装置
21:光供給部
22:検出器
23:制御部
24、24-1、24-2:光源
25:光合分波器
26:波長変換器
27:光分岐部
29:バイパス経路
30、30-1、30-2、・・・、30-N:照射部
31:波長フィルタ
32:光学系
50、50-0、50-1、50-2、50-N:光伝送路
52:充実コア
52a:領域
53:空孔
53a:空孔群
60:クラッド
71:光スイッチ
72:切替制御部
75:光デバイス
13:照射部
13a:安全機構
20:光伝送装置
21:光供給部
22:検出器
23:制御部
24、24-1、24-2:光源
25:光合分波器
26:波長変換器
27:光分岐部
29:バイパス経路
30、30-1、30-2、・・・、30-N:照射部
31:波長フィルタ
32:光学系
50、50-0、50-1、50-2、50-N:光伝送路
52:充実コア
52a:領域
53:空孔
53a:空孔群
60:クラッド
71:光スイッチ
72:切替制御部
75:光デバイス
Claims (8)
- 光伝送路での伝送損失が異なる2つの波長の光を前記光伝送路に入射する光供給部と、
前記光伝送路で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光の光強度を測定する検出器と、
前記光強度が閾値より高い場合に前記1の波長の光を前記光伝送路に入射することを停止させる制御部と、
を備える光伝送装置。 - 前記光供給部は、
前記2つの波長の光をそれぞれ出力する2つの光源と、
前記光源からの前記2つの波長の光を合波して前記光伝送路に入射し、前記光伝送路で反射された反射光のうち前記他の波長の光を分波して前記検出器に入力する光合分波器と、
を備えることを特徴とする請求項1に記載の光伝送装置。 - 前記光供給部は、
前記2つの波長の光のうちの一方を出力する1つの光源と、
前記光源が出力した前記光の一部を波長変換して前記2つの波長の光のうちの他方を生成する波長変換器と、
前記光源からの光と前記波長変換器からの光を合波して前記光伝送路に入射し、前記光伝送路で反射された反射光のうち前記他の波長の光を分波して前記検出器に入力する光合分波器と、
を備えることを特徴とする請求項1に記載の光伝送装置。 - 前記光伝送路が複数であり、前記2つの波長の光の入射先を切り替える光スイッチをさらに備えることを特徴とする請求項1から3のいずれかに記載の光伝送装置。
- 前記1の波長の光が紫外光であり、前記他の波長が750~850nm又は1000~1100nmであることを特徴とする請求項1から4のいずれかに記載の光伝送装置。
- 請求項1から5のいずれかに記載の光伝送装置と、
前記光伝送路で伝送された光を対象領域に照射する照射部と、
を備える光照射システムであって、
前記照射部は、前記他の波長の光を遮断する波長フィルタを備えることを特徴とする光照射システム。 - 前記光伝送路は、前記光伝送装置からの光を複数に分岐する光分岐部を有することを特徴とする請求項6に記載の光照射システム。
- 光伝送路での伝送損失が異なる2つの波長の光を前記光伝送路に入射すること、
前記光伝送路で反射された、前記2つの波長の光のうち前記伝送損失が1の波長より小さい他の波長の光の光強度を測定すること、及び
前記光強度が閾値より高い場合に前記1の波長の光を前記光伝送路に入射することを停止すること、
を行う光伝送方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/006880 WO2023157281A1 (ja) | 2022-02-21 | 2022-02-21 | 光伝送装置、光照射システム、及び光伝送方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/006880 WO2023157281A1 (ja) | 2022-02-21 | 2022-02-21 | 光伝送装置、光照射システム、及び光伝送方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023157281A1 true WO2023157281A1 (ja) | 2023-08-24 |
Family
ID=87578159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006880 WO2023157281A1 (ja) | 2022-02-21 | 2022-02-21 | 光伝送装置、光照射システム、及び光伝送方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023157281A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216626A (ja) * | 2008-03-12 | 2009-09-24 | National Taiwan Univ Of Science & Technology | 受動光線路網の破断点検出システム |
WO2010041564A1 (ja) * | 2008-10-09 | 2010-04-15 | 独立行政法人情報通信研究機構 | ファイバフューズ検知装置 |
WO2016042879A1 (ja) * | 2014-09-19 | 2016-03-24 | シャープ株式会社 | 殺菌装置 |
WO2020054674A1 (ja) * | 2018-09-10 | 2020-03-19 | 古河電気工業株式会社 | 光プローブ、医療用レーザプローブ、および焼灼装置 |
JP2020524589A (ja) * | 2017-06-21 | 2020-08-20 | イニコア メディカル,インコーポレイテッド | 消毒方法および装置 |
-
2022
- 2022-02-21 WO PCT/JP2022/006880 patent/WO2023157281A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009216626A (ja) * | 2008-03-12 | 2009-09-24 | National Taiwan Univ Of Science & Technology | 受動光線路網の破断点検出システム |
WO2010041564A1 (ja) * | 2008-10-09 | 2010-04-15 | 独立行政法人情報通信研究機構 | ファイバフューズ検知装置 |
WO2016042879A1 (ja) * | 2014-09-19 | 2016-03-24 | シャープ株式会社 | 殺菌装置 |
JP2020524589A (ja) * | 2017-06-21 | 2020-08-20 | イニコア メディカル,インコーポレイテッド | 消毒方法および装置 |
WO2020054674A1 (ja) * | 2018-09-10 | 2020-03-19 | 古河電気工業株式会社 | 光プローブ、医療用レーザプローブ、および焼灼装置 |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "About "Fivery", a technology to prevent infections such as the new coronavirus - Delivering ultraviolet light safely and reliably using optical fiber and centralized control -", NTT HOLDING COMPANY NEWS RELEASE., 13 November 2020 (2020-11-13), XP093085213, Retrieved from the Internet <URL:https://group.ntt/jp/newsrelease/2020/11/13/201113b.html> [retrieved on 20230924] * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5951017B2 (ja) | 光ファイバレーザ装置 | |
WO2022009443A1 (ja) | 紫外光照射システム | |
WO2023157281A1 (ja) | 光伝送装置、光照射システム、及び光伝送方法 | |
WO2023058144A1 (ja) | 紫外光照射システム及び紫外光照射方法 | |
JP7548315B2 (ja) | 紫外光照射システム及び除染方法 | |
US20230408761A1 (en) | Ultraviolet light irradiation system and method | |
WO2022085123A1 (ja) | 紫外光照射システム及び紫外光照射方法 | |
WO2022024406A1 (ja) | 紫外光照射システム | |
WO2022215110A1 (ja) | 紫外光照射システム及び紫外光照射方法 | |
JP7571789B2 (ja) | 紫外光照射システム | |
WO2022185458A1 (ja) | 紫外光照射システム及び紫外光照射方法 | |
WO2023084668A1 (ja) | 紫外光照射システム及び制御方法 | |
WO2023084677A1 (ja) | 紫外光照射システム | |
WO2023084675A1 (ja) | 紫外光照射システム | |
WO2023084669A1 (ja) | 紫外光照射システム及び照射方法 | |
US20240335578A1 (en) | Ultraviolet light irradiation system and control method | |
JP7552700B2 (ja) | 紫外光照射システム及び除染方法 | |
US20230302173A1 (en) | Ultraviolet light irradiation system and ultraviolet light irradiation method | |
WO2023073771A1 (ja) | 紫外光照射システム | |
US20240216559A1 (en) | Ultraviolet light irradiation system and ultraviolet light irradiation method | |
CN115135981A (zh) | 光纤的连接状态判断系统以及光纤的连接状态判断方法 | |
WO2023084666A1 (ja) | 紫外光照射システム | |
WO2024084561A1 (ja) | 光伝送システムの設計方法及び設計装置 | |
WO2024105873A1 (ja) | 光スポット整形器及び光伝送システム | |
WO2023073774A1 (ja) | 紫外光照射システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22927182 Country of ref document: EP Kind code of ref document: A1 |