WO2023073774A1 - 紫外光照射システム - Google Patents

紫外光照射システム Download PDF

Info

Publication number
WO2023073774A1
WO2023073774A1 PCT/JP2021/039340 JP2021039340W WO2023073774A1 WO 2023073774 A1 WO2023073774 A1 WO 2023073774A1 JP 2021039340 W JP2021039340 W JP 2021039340W WO 2023073774 A1 WO2023073774 A1 WO 2023073774A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
branching
optical fiber
irradiation
light
Prior art date
Application number
PCT/JP2021/039340
Other languages
English (en)
French (fr)
Inventor
誉人 桐原
友宏 谷口
聖 成川
亜弥子 岩城
和秀 中島
隆 松井
裕之 飯田
千里 深井
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/039340 priority Critical patent/WO2023073774A1/ja
Publication of WO2023073774A1 publication Critical patent/WO2023073774A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system that uses ultraviolet light to sterilize and inactivate viruses.
  • Non-Patent Document 1 is an autonomous mobile robot that irradiates ultraviolet light. By irradiating the robot with ultraviolet light while moving in a room in a building such as a hospital room, the robot can automatically realize sterilization in a wide range without human intervention.
  • Stationary air purifier The product of Non-Patent Document 2 is a device that is installed on the ceiling or at a predetermined place in a room, and performs sterilization while circulating the air in the room.
  • Non-Patent Document 3 is a portable apparatus equipped with an ultraviolet light source. A user can bring the device to a desired area and irradiate it with ultraviolet light. Therefore, the device can be used in various places.
  • Kantum Ushikata Co., Ltd. website https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot
  • June 22, 2020 Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html
  • June 22, 2020 Funakoshi Co., Ltd. website https://www.funakoshi.co.jp/contents/68182
  • Non-Patent Document 1 has the following problems.
  • Economy Since the product of Non-Patent Document 1 is irradiated with high-output ultraviolet light, the apparatus becomes large and expensive. Therefore, the product of Non-Patent Document 1 has a problem that it is difficult to realize an economical system.
  • Non-Patent Document 3 cannot irradiate ultraviolet light to narrow pipes or areas where people cannot enter.
  • the product of Non-Patent Literature has a problem of versatility in that it can irradiate any place with ultraviolet light.
  • (3) Operability The product of Non-Patent Document 3 is portable and can be irradiated with ultraviolet light at various locations. However, in order to obtain sufficient effects such as sterilization at the target location, the user is required to have skill and knowledge, and there is a problem in operability.
  • an ultraviolet light irradiation system 300 using an optical fiber as shown in FIG. 1 is conceivable.
  • This ultraviolet light irradiation system transmits ultraviolet light from the light source 11 using a thin and flexible optical fiber, and irradiates the ultraviolet light output from the tip of the optical fiber 14 to an irradiation target area AR to be sterilized or the like with pinpoint accuracy.
  • the versatility of the above problem (2) can be solved because the ultraviolet light can be irradiated to any place simply by moving the irradiation unit 13 at the tip of the optical fiber 14 .
  • the operability of the above problem (3) can be resolved.
  • an optical distribution unit 12 such as an optical splitter in the optical transmission line 16 to form a P-MP (Point to MultiPoint) system configuration such as FTTH (Fiber To The Home)
  • FTTH Fiber To The Home
  • the length of the optical fiber 14, the area of the irradiation target area AR, and the illuminance required for the irradiation target area AR are different.
  • the energy of ultraviolet light considering the time to be supplied to each direction and the energy of ultraviolet light considering the time to irradiate the irradiation target area AR is the integrated light amount (unit: J).
  • the energy per unit time is defined as power (unit: W)
  • the power per unit area of the ultraviolet light applied to the irradiation target area AR is defined as illuminance (W/m 2 ).
  • the energy per unit area in the irradiation target area AR will be described as the amount of ultraviolet rays (unit: J/m 2 or W ⁇ s/m 2 ).
  • A) Fairness Each path 14 has a different transmission loss depending on the length of the optical fiber and the distance from the irradiation unit to the irradiation target area, and the area of the irradiation target area AR is also different.
  • the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to obtain uniform illuminance in each irradiation target area AR.
  • the ultraviolet light irradiation system 300 has a problem that it is difficult to obtain a fair sterilization effect in each irradiation target area AR.
  • (B) Safety The transmission loss varies depending on the length of the optical fiber 14, and the illuminance varies depending on the area of the irradiation target area AR.
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, there is a case where the irradiation target area AR is irradiated with the ultraviolet light with excessive illuminance.
  • the ultraviolet light irradiation system 300 may be irradiated with ultraviolet light having an excessive illuminance, which poses a problem of difficulty in ensuring safety.
  • (C) Efficiency Further, in the irradiation target area AR, there are places where sterilization, etc., should be completed in a short period of time with increased illuminance, and places where sterilization, etc., should be performed for a long time with ultraviolet light with reduced illuminance.
  • the light distribution unit 12 of the ultraviolet light irradiation system 300 power-splits the ultraviolet light at an equal splitting ratio, it is difficult to supply the ultraviolet light with the illuminance desired for each irradiation target area AR.
  • the ultraviolet light irradiation system 300 cannot perform sterilization or the like by a method according to the irradiation target area AR, and has a problem that it is difficult to improve the working efficiency.
  • the present invention is an ultraviolet light irradiation system that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency. intended to provide
  • the ultraviolet light irradiation system is a bus type in which ultraviolet light propagated through an optical fiber is extracted by an optical branching portion attached to the optical fiber, and the branching ratio of the optical branching portion (light energy ratio of the ultraviolet light extracted from the fiber).
  • the "branching ratio” may be a power ratio when power is split like a coupler, or may be a time ratio due to route switching of an optical switch.
  • the ultraviolet light irradiation system includes: an ultraviolet light source that generates ultraviolet light; an optical fiber having one end connected to the ultraviolet light source and propagating the ultraviolet light from one end; one or more optical branching units installed at arbitrary positions in the longitudinal direction of the optical fiber and extracting part of the ultraviolet light propagating through the optical fiber at a predetermined branching ratio; an irradiating unit that irradiates each irradiation target area with the ultraviolet light that reaches the other end of the optical fiber and the ultraviolet light extracted by the light branching unit; Prepare.
  • This ultraviolet light irradiation system extracts the ultraviolet light transmitted by the optical fiber at the optical branching part near the irradiation target area, and irradiates the irradiation target area with the ultraviolet light.
  • the branching ratio of each branching portion is set according to the conditions of the irradiation target area. As a specific method for adjusting the branching ratio, the following methods are conceivable.
  • Each of the light branching units has the branching ratio for branching the ultraviolet light from the optical fiber so that the amount of ultraviolet light irradiated to each of the irradiation target areas is equal.
  • the aforementioned problem (A) can be solved.
  • Each of the light branching units has the branching ratio for branching the ultraviolet light from the optical fiber so that the amount of ultraviolet light irradiated to each of the irradiation target areas is equal to or less than a predetermined reference value. .
  • the aforementioned problem (B) can be solved.
  • Each of the light branching units has the branching ratio for branching the ultraviolet light from the optical fiber so as to satisfy the amount of ultraviolet light required by each of the irradiation target areas.
  • the aforementioned problem (C) can be solved.
  • control unit that changes the branching ratio of each of the optical branching units.
  • the present invention can provide an ultraviolet light irradiation system that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency.
  • the ultraviolet light irradiation system is a bus type
  • one optical fiber is arranged so as to pass through each irradiation target area (in a unicursal route), and in each irradiation target area, at the optical branching part Can drop ultraviolet light. Therefore, compared to the ultraviolet light irradiation system 300, the total length of the optical fibers in the system as a whole can be shortened, and costs such as material costs and construction costs can be reduced. Therefore, the present ultraviolet light irradiation system can solve the above problem (D).
  • the ultraviolet light irradiation system according to the present invention employs a light branching unit with a variable branching ratio, the number, position, area, or conditions such as sterilization (sterilization in a short time or a long time) can be achieved.
  • the branching ratio can be adjusted according to the conditions after the change.
  • the present invention can provide an ultraviolet light irradiation system that can obtain effects such as fair sterilization in each irradiation target area, can ensure safety, and can improve work efficiency.
  • FIG. 2 is a diagram illustrating the ultraviolet light irradiation system 301 of this embodiment.
  • the ultraviolet light irradiation system 301 is an ultraviolet light source unit 11 that generates ultraviolet light; an optical fiber 16 having one end connected to the ultraviolet light source and propagating the ultraviolet light from one end; one or more optical branching units 12-5 installed at arbitrary positions in the longitudinal direction of the optical fiber 16 and extracting part of the ultraviolet light propagating through the optical fiber 16 at a predetermined branching ratio; an irradiation unit 13 for irradiating the irradiation target areas AR with the ultraviolet light reaching the other end of the optical fiber 16 and the ultraviolet light extracted by the light branching unit 12-5; Prepare.
  • the ultraviolet light source unit 11 outputs light in the ultraviolet region (ultraviolet light) that is effective for sterilization and the like. Let P [W] be the power of the ultraviolet light output by the ultraviolet light source unit 11 .
  • the ultraviolet light source section 11 and the irradiation section 13-N+1 are connected by an optical fiber 16. FIG.
  • FIG. 3 is a diagram illustrating a cross section of an optical fiber that can be used as the optical fiber 16.
  • This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 .
  • “Full” means "not hollow”.
  • the solid core can also be realized by forming an annular low refractive index region in the clad.
  • Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like). This structure is called a photonic crystal fiber.
  • This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core.
  • Optical characteristics that cannot be realized can be realized.
  • This optical fiber has a core region made of air. Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires. This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • Coupling Core Optical Fiber In this optical fiber, a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 . Coupling-core type optical fibers can disperse and send light as many times as the number of cores, so high power can be used for efficient sterilization.Coupling-core type optical fibers mitigate fiber deterioration due to ultraviolet rays and have a long life. It has the advantage of being able to
  • One or a plurality of optical branching units 12-5 are installed in the optical fiber 16 between the ultraviolet light source unit 11 and the irradiation unit 13-N+1, and drop part of the ultraviolet light from the optical fiber 16.
  • the optical branching unit 12-5 is, for example, an unequal branching coupler, a variable branching ratio coupler, or an optical switch.
  • the optical branching unit 12-5 is an unequal branching coupler
  • a branching ratio is set in advance for each by a method described later.
  • the unequal splitting coupler splits the power of the ultraviolet light from the optical fiber 16 at a set splitting ratio, and outputs the light to the drop port on the irradiation unit 13 side.
  • the ultraviolet light output from the drop port is irradiated to the irradiation target areas AR (1 to N) through the irradiation unit 13, respectively.
  • FIG. 4 is a diagram for explaining the ultraviolet light irradiation system 302 when the optical branching unit 12-5 is a variable branching ratio coupler.
  • the ultraviolet light irradiation system 302 is different from the ultraviolet light irradiation system 301 in FIG. 3 in that it further includes a control section 15-5 that changes the branching ratio of each light branching section 12-5. If the controller 15-5 is provided on one end side of the optical fiber 16 (on the side of the ultraviolet light source section 11), the branching ratio of each light branching section can be remotely adjusted from the side of the ultraviolet light source section.
  • the branching ratio of each variable branching ratio coupler is set by the control unit 15-5. Each branching ratio is determined by a method described later.
  • the branching ratio variable coupler branches the power of the ultraviolet light propagating through the optical fiber 16 at a set branching ratio, and outputs the branching ratio to the drop port on the irradiation unit 13 side.
  • the variable branching ratio coupler has a configuration including a Mach-Zehnder interferometer that changes the branching ratio with a heater, as disclosed in Reference 1, for example.
  • the ultraviolet light output from the drop port is irradiated to the irradiation target areas AR (1 to N) through the irradiation unit 13, respectively.
  • the structure is the ultraviolet light irradiation system 302 in FIG.
  • the optical switch outputs the ultraviolet light propagating through the optical fiber 16 to the Drop port according to the switching timing instructed by the control unit 15-5.
  • the switching timing is determined by a method described later.
  • the ultraviolet light output from the drop port is irradiated to the irradiation target areas AR (1 to N) through the irradiation unit 13, respectively.
  • the “branching ratio of the optical branching unit 12-5” includes the switching timing when the optical branching unit 12-5 is an optical switch and the time ratio of switching to the Drop port depending on the timing. shall be
  • the irradiation unit 13 irradiates the ultraviolet light transmitted by the light branching unit 12-5 to a predetermined target location (irradiation target area AR) for sterilization or the like.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for the wavelength of ultraviolet light.
  • the optical splitter 12-5 of the present embodiment has the branching ratio for splitting the ultraviolet light from the optical fiber 16 so that the amount of ultraviolet light irradiated to each irradiation target area AR is equal.
  • an unequal branching coupler an unequal branching coupler having a branching ratio obtained as follows is installed as the optical branching unit 12-5.
  • the branching ratio obtained as follows is set in the optical branching unit 12-5 from the control unit 15-5.
  • the branching ratio (switching timing) obtained as follows is set in the optical branching unit 12-5 from the control unit 15-5.
  • each irradiation target area AR is equal and the distance from the irradiation unit 13 to the irradiation target area AR is equal, the amount of ultraviolet light irradiated to each irradiation target area AR is equal.
  • the branching ratio of each optical branching unit 12-5 is determined according to the propagation loss. The amount of ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
  • the branching ratio of the optical branching unit 12-5 is determined in consideration of the following points in addition to the above transmission loss.
  • the ultraviolet light is dropped to an irradiation target area having a large area (for example, AR1), and the branching ratio to the drop port of the light branching unit 12-5 is increased to drop the ultraviolet light to an irradiation target area having a small area (for example, AR2).
  • the ratio of branching to the Drop port of the optical branching unit 12-5 is reduced.
  • the amount of ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
  • (a2) When the distances from the irradiation unit 13 to the irradiation target area AR are different from each other as shown in FIG. .
  • the branching ratio to the drop port of the light branching unit 12-5 that drops the ultraviolet light to the irradiation target area (for example, AR1) having a long distance from the irradiation unit 13 to the irradiation target area AR is increased, and the irradiation target from the irradiation unit 13
  • the branching ratio to the drop port of the optical branching unit 12-5 that drops the ultraviolet light to the irradiation target area (for example, AR2) having a short distance to the area AR is reduced.
  • the amount of ultraviolet light to each irradiation target area AR becomes uniform, and effects such as fair sterilization can be obtained.
  • the branching ratio of the optical branching unit 12-5 is determined in consideration of the following points.
  • the ultraviolet light can be delivered to the irradiation target area AR that requires a small amount of ultraviolet light.
  • the ratio of branching to the drop port of the optical branching unit 12-5 for dropping is reduced.
  • the requirements of each irradiation target area AR can be fairly met, and effects such as fair sterilization can be obtained.
  • S n [m 2 ] be the area of the ultraviolet light spot irradiated to the irradiation target area ARn.
  • the drop port branching ratio ⁇ n of the optical branching unit 12-5-n is set as follows. Note that n is an integer from 1 to N (N is an integer of 2 or more). However, S N+1 [m 2 ] is the area of the ultraviolet light spot irradiated to the irradiation target area ARN+1.
  • FIG. 7 is a diagram for explaining switching timing of each optical switch.
  • This control is an operation when the transmission loss of the ultraviolet light to the irradiation target area AR and the irradiation area are different.
  • the control unit 15-5 controls the optical switch, which is each optical branching unit 12-5-i, to operate to give the drop port an opportunity to supply ultraviolet light for the time T i .
  • T i be the time obtained by equation (3).
  • E [W ⁇ s/m 2 ] is the amount of ultraviolet light required for sterilization or the like.
  • T N+1 is a port that is not a Drop port of the optical splitter 12-5-N (a port where the ultraviolet light of the optical fiber 16 passes through the optical switch and propagates to the irradiation unit 13-N+1).
  • the ultraviolet light irradiation system 302 can ensure the effect of sterilization and the like for each irradiation target area AR every time T inact [s] of Expression (4).
  • the switching control unit 15-2 sets the time of opportunity for supplying ultraviolet light to each output port of the optical switch 12-2 to T i /M [s] (M is a natural number of 2 or more). A similar effect can be obtained by controlling.
  • the light branching unit 12-5 has a branching ratio for branching the ultraviolet light from the optical fiber 16 so that the amount of ultraviolet light applied to each irradiation target area AR is equal to or less than a predetermined reference value.
  • the branch ratio is set as follows.
  • the illuminance of ultraviolet light should be, for example, 6.0 mJ/cm 2 or less (0.0 mJ/cm 2 per unit time) within 8 hours per day in order to reduce the amount of exposure to humans and perform sterilization safely.
  • the branching ratio is set such that the amount of ultraviolet light irradiated to each irradiation target area AR is equal to or less than a reference value.
  • the optical branching unit 12-5 has a branching ratio for branching the ultraviolet light from the optical fiber 16 so as to satisfy the amount of ultraviolet light required by each irradiation target area AR.
  • the branch ratio is set as follows. (c1) Considering that the longer the distance of propagation through the optical fiber 16, the greater the transmission loss, the optical branching unit 12- responsible for the irradiation target area AR1, which requires sterilization or the like in a short time, as shown in FIG. Increase the branching ratio to the drop port of 5-1 (or lengthen the supply time T1 ), and the drop port of the optical branching unit 12-5-2 that is in charge of the irradiation target area AR2 that performs sterilization etc.
  • the branching ratio of the optical branching unit 12-5 is set based on the deactivation request time.
  • the required inactivation time is required to satisfy the desired inactivation rate (ratio of bacteria before and after irradiation, or ratio of viruses before and after irradiation). means time.
  • irradiation target areas AR for long-term sterilization include rooms where exposure to high-intensity ultraviolet light is to be avoided (places where people and animals come and go) and the intake/outlet of air-conditioning equipment. can.
  • irradiation target area AR that performs sterilization or the like in a short time include a closed space such as a UV sterilization box that does not allow people or animals to enter.
  • the branching ratio of the optical branching unit 12-5 may be set by combining the branching ratio setting methods (a0), (a1), (a2), (a3), (b1), and (c1). .
  • FIG. 1 In the ultraviolet light irradiation system 300 of FIG. 1, the light distributor 12 distributes the ultraviolet light to each route 14 and propagates it to each irradiation target area AR, as described above.
  • the ultraviolet light source unit 11 and the light branching unit 12 are arranged in the same place (for example, in one housing). Therefore, the optical fiber that is the route 14 must be laid to each irradiation target area AR, and the total extension of the optical fiber becomes longer according to the number of irradiation target areas AR, resulting in the cost of system members and construction. becomes higher.
  • the ultraviolet light irradiation system 301 of the present invention shown in FIG. It is a bus-type configuration that drops the In this configuration, only one optical fiber 16 and a short optical fiber between the optical branching section 12-5 and the irradiating section 13 are laid. For this reason, the total length of the optical fibers is substantially the same regardless of the number of irradiation target areas AR, and it is possible to avoid an increase in the cost of system members and construction in accordance with the number of irradiation target areas AR.
  • the branching ratio of the variable branching ratio coupler which is the light branching unit 12-5, and the switching timing of the optical switch can be remotely controlled from the ultraviolet light source unit 11 side. can.
  • the bus-type ultraviolet light irradiation system 301 avoids an increase in the total length of the optical fiber due to an increase in the number of irradiation target areas AR compared to the conventional star-type ultraviolet light irradiation system 300, thereby reducing costs. can be achieved.
  • FIG. 9 is a flow chart explaining a method of determining the branching ratio of the light branching unit 12-5 of the ultraviolet light irradiation system (301, 302).
  • Step S01 Ultraviolet light output power P [W] of ultraviolet light source 11, loss L fiber-n [a. u. ], loss L air-n [a. u. ], the area S n [m 2 ], and the amount of ultraviolet light [J/m 2 ] required by each irradiation target area AR, or information on the required inactivation time.
  • Step S02 Judge whether the effect to be ensured by the ultraviolet light irradiation system 301 is fairness.
  • Step S03 If the effect to be ensured by the ultraviolet light irradiation system 301 is fairness ("Yes" in step S02), each light branching is performed by the above (a0), (a1), (a2) or (a3).
  • Step S ⁇ b>04 It is judged whether the effect to be ensured by the ultraviolet light irradiation system 301 is safety.
  • Step S ⁇ b>06 It is judged whether the effect to be ensured by the ultraviolet light irradiation system 301 is efficiency.
  • Step S07 If the effect to be ensured in the ultraviolet light irradiation system 301 is efficiency ("Yes" in step S06), the branching ratio of each light branching unit 12-5 is determined according to (c1) described above.
  • Ultraviolet light source unit 12 Light distribution unit (equally branched) 12-5, 12-5-1, . . . , 12-5-N: optical branching units 13, 13-1, . ) 16: Optical fiber 15-5: Control unit 52: Solid core 52a: Region 53: Hole 53a: Hole group 53c: Hole 60: Cladding 300, 301, 302: Ultraviolet light irradiation system AR1, AR2, . , ARN, ARN+1: irradiation target area (area to be irradiated with ultraviolet light)

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができる紫外光照射システムを提供することを目的とする。 本発明に係る紫外光照射システム301は、紫外光を発生させる紫外光源部11と、前記紫外光源部に一端が接続され、一端から前記紫外光を伝搬する光ファイバ16と、光ファイバ16の長手方向の任意位置に設置され、所定の分岐比で光ファイバ16を伝搬する前記紫外光の一部を取り出す1又は複数の光分岐部12-5と、光ファイバ16の他端に到達する前記紫外光及び光分岐部12-5で取り出された前記紫外光をそれぞれの照射対象域ARに照射する照射部13と、を備える。

Description

紫外光照射システム
 本開示は、紫外光を用いて殺菌やウィルスの不活化を行う紫外光照射システムに関する。
 感染症予防などの目的から、紫外光を用いた殺菌やウィルスの不活化を行うシステムの需要が高まっている。当該システムには、大きく3つのカテゴリの製品がある。なお、本明細書では、「殺菌等」と記載する場合、殺菌とウィルスの不活化を意味するものとする。
(I)移動型殺菌ロボット
 非特許文献1の製品は、紫外光を照射する自律移動型のロボットである。当該ロボットは、病室などの建物内の部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の殺菌等を実現できる。
(II)据え置き型空気清浄機
 非特許文献2の製品は、天井や室内の所定の場所に設置され、室内の空気を循環しながら殺菌等する装置である。当該装置は、直接紫外光を照射せず、人体への影響がないため、安全性の高い殺菌が可能である。
(III)ポータブル型殺菌装置
 非特許文献3の製品は、紫外光源を搭載したポータブル型の装置である。ユーザが当該装置を所望のエリアに持って行って紫外光を照射できる。このため、当該装置は様々な場所で使用可能である。
カンタム・ウシカタ株式会社ウェブサイト(https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot)、2020年6月22日検索 岩崎電気株式会社ウェブサイト(https://www.iwasaki.co.jp/optics/ARrilization/air/air03.html)、2020年6月22日検索 フナコシ株式会社ウェブサイト(https://www.funakoshi.co.jp/contents/68182)、2020年6月22日検索
 しかし、非特許文献に記載される装置には次のような課題がある。
(1)経済性
 非特許文献1の製品は、高出力の紫外光を照射するため、装置が大掛かりとなり高価となる。このため、非特許文献1の製品には経済的なシステムの実現が困難という課題がある。
(2)汎用性
 非特許文献1の製品は、紫外光照射箇所がロボットが移動/進入できる場所に限定されるため、細かい場所や奥まった場所などへの紫外光の照射が困難である。
 非特許文献2の製品は、循環させた室内の空気を殺菌するため、殺菌等をしたい場所に直接紫外光を照射することができない。
 非特許文献3の製品は、例えば、細い管路や人が入られないエリアについては紫外光を照射することができない。
 このように、非特許文献の製品には、任意の場所に紫外光を照射できるという汎用性に課題がある。
(3)操作性
 非特許文献3の製品は、可搬性であり様々な場所で紫外光の照射が可能である。しかし、対象箇所で十分な殺菌等の効果が得られるためには、ユーザにスキルや知識を要求しており、操作性に課題がある。
 これらの課題に対して、図1のような光ファイバを用いた紫外光照射システム300が考えられる。この紫外光照射システムは、細くて曲げやすい光ファイバを用いて光源11から紫外光を伝送し、光ファイバ14の先端から出力される紫外光をピンポイントで殺菌等したい照射対象域ARへ照射する。光ファイバ14の先端の照射部13を移動させるだけで任意の場所に紫外光を照射できるため上記課題(2)の汎用性を解消できる。また、紫外光光源の移動や設定が不要でユーザにスキルや知識を求めないため、上記課題(3)の操作性も解消できる。さらに、光スプリッタのような光分配部12を光伝送路16に設け、FTTH(Fiber To The Home)のようなP-MP(Point to MultiPoint)のシステム構成とすることで、単一の光源をシェアすることで複数の箇所を殺菌等できる。このため、上記課題(1)の経済性も解消できる。
 しかし、紫外光照射システムとしてのP-MP構成の実現には次のような課題がある。
 光ファイバ14の長さ、照射対象域ARの面積、及び照射対象域ARで求められる照度(殺菌等に必要な照度)はそれぞれ異なる。しかし、図1のような紫外光照射システム300が備える光分配部12は光の分岐比が等しく、紫外光源部11から出力された紫外光は、複数の方路14(例えば単一コアの光ファイバ)に等しくパワー分岐される。なお、本明細書では、各方路へ供給する時間を考慮した紫外光のエネルギー及び照射対象域ARに照射する時間を考慮した紫外光のエネルギーを積算光量(単位J)とし、それら紫外光の単位時間あたりのエネルギーをパワー(単位W)とし、照射対象域ARに照射する紫外光の単位面積当たりのパワーを照度(W/m)として説明する。また、照射対象域ARにおける単位面積当たりのエネルギーを紫外線量(単位J/m又はW・s/m)として説明する。
(A)公平性
 それぞれの方路14は光ファイバの長さや照射部から照射対象域までの距離により伝送損失が異なり、照射対象域ARの面積も異なる。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、照射対象域ARそれぞれは均等な照度を得ることが難しい。つまり、紫外光照射システム300には各照射対象域ARで公平な殺菌等の効果が得られ難いという課題がある。
(B)安全性
 光ファイバ14の長さにより伝送損失が変わり、照射対象域ARの面積によって照度が変わる。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、過剰な照度の紫外光が照射対象域ARに照射されるケースがある。つまり、紫外光照射システム300には構成によって過剰な照度の紫外光が照射されることもあり、安全性を担保することが困難という課題がある。
(C)効率性
 さらに、照射対象域ARには、照度を上げて短時間で殺菌等を終わらせたい場所や照度を下げた紫外光で長時間殺菌等を行う場所も存在する。しかし、紫外光照射システム300の光分配部12が等しい分岐比で紫外光をパワー分岐するため、それぞれの照射対象域ARが所望する照度の紫外光を供給することが難しい。つまり、紫外光照射システム300には照射対象域ARに応じた方法で殺菌等を行えず、作業効率を向上させることが困難という課題がある。
 本発明は、これらの課題を解決するために、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができる紫外光照射システムを提供することを目的とする。
 上記目的を達成するために、本発明に係る紫外光照射システムは、光ファイバで伝搬される紫外光を光ファイバに取り付けた光分岐部で取り出すバス型とし、当該光分岐部の分岐比(光ファイバから取り出す紫外光のエネルギー比)で調整することとした。なお、本明細書において「分岐比」とは、カプラのようにパワー分岐するときのパワー比である場合と、光スイッチの方路切り替えによる時間比である場合がある。
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源部と、
 前記紫外光源部に一端が接続され、一端から前記紫外光を伝搬する光ファイバと、
 前記光ファイバの長手方向の任意位置に設置され、所定の分岐比で前記光ファイバを伝搬する前記紫外光の一部を取り出す1又は複数の光分岐部と、
 前記光ファイバの他端に到達する前記紫外光及び前記光分岐部で取り出された前記紫外光をそれぞれの照射対象域に照射する照射部と、
を備える。
 本紫外光照射システムは、光ファイバで伝送される紫外光を照射対象域近傍の光分岐部で取り出し、照射対象域に紫外光を照射する。照射対象域の条件に応じてそれぞれの分岐部の分岐比を設定する。具体的な分岐比の調整手法としては以下のようなものが考えられる。
 それぞれの前記光分岐部は、それぞれの前記照射対象域へ照射される紫外光量が等しくなるように前記光ファイバから前記紫外光を分岐する前記分岐比を有することを特徴とする。前述の課題(A)を解決することができる。
 それぞれの前記光分岐部は、それぞれの前記照射対象域へ照射される紫外光量が所定の基準値以下となるように前記光ファイバから前記紫外光を分岐する前記分岐比を有することを特徴とする。前述の課題(B)を解決することができる。
 それぞれの前記光分岐部は、それぞれの前記照射対象域が要求する紫外光量を満たすように前記光ファイバから前記紫外光を分岐する前記分岐比を有することを特徴とする。前述の課題(C)を解決することができる。
 それぞれの前記光分岐部の前記分岐比を変化させる制御部をさらに備えることを特徴とする。
 従って、本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができる紫外光照射システムを提供することができる。
 また、紫外光照射システム300のように1つの光分配部を使う場合、次のような課題も生じる。
課題(D):紫外光照射システム300では、紫外光源部11と光分配部12を同一の場所(同じ筐体内)に配置する。そうすると、各照射対象域までの距離が長くなるため、システム全体として光ファイバの総長が長くなり、資材費や施工費などのコストを低減することが困難という課題がある。
 本発明に係る紫外光照射システムであれば、バス型であるから1本の光ファイバを各照射対象域を通るように(一筆書きルートで)配置し、各照射対象域にて光分岐部で紫外光をDropできる。このため、紫外光照射システム300に比べ、システム全体として光ファイバの総長が短くなり、資材費や施工費などのコストを低減することができる。
 従って、本紫外光照射システムは、上記の課題(D)を解決することができる。
 さらに、本発明に係る紫外光照射システムは、分岐比可変の光分岐部を採用すれば、照射対象域の数、位置、面積、あるいは殺菌等の条件(短時間で殺菌等を行う、あるいは長時間かけて殺菌等を行う等)が事後的に変化した場合でも、変化後の条件に応じて分岐比を調整することができるというメリットもある。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、各照射対象域で公平な殺菌等の効果が得られ、安全性を担保することができ、且つ作業効率を向上させることができる紫外光照射システムを提供することができる。
本発明の課題を説明する図である。 本発明に係る紫外光照射システムを説明する図である。 光ファイバの断面構造を説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムの効果を説明する図である。 本発明に係る紫外光照射システムの効果を説明する図である。 本発明に係る紫外光照射システムの光分岐部に設定する分岐比を設計するフローチャートである。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図2は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光源部に一端が接続され、一端から前記紫外光を伝搬する光ファイバ16と、
 光ファイバ16の長手方向の任意位置に設置され、所定の分岐比で光ファイバ16を伝搬する前記紫外光の一部を取り出す1又は複数の光分岐部12-5と、
 光ファイバ16の他端に到達する前記紫外光及び光分岐部12-5で取り出された前記紫外光をそれぞれの照射対象域ARに照射する照射部13と、
を備える。
 紫外光源部11は、殺菌等に有効である紫外領域の光(紫外光)を出力する。紫外光源部11が出力する紫外光のパワーをP[W]とする。紫外光源部11と照射部13-N+1とは光ファイバ16で接続される。
 光ファイバ16は、紫外光源部11が出力した紫外光を遠端の照射部13-N+1まで伝搬する。光ファイバなので従来技術のロボットや装置が入り込めない細かい場所などにも敷設することができる。図3は、光ファイバ16に使用可能な光ファイバの断面を説明する図である。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
 光分岐部12-5は、紫外光源部11から照射部13-N+1の間の光ファイバ16に1又は複数設置され、光ファイバ16から紫外光の一部をドロップする。光分岐部12-5は、例えば、不等分岐カプラ、分岐比可変カプラ、又は光スイッチである。
 光分岐部12-5が不等分岐カプラである場合、後述する手法によりそれぞれに分岐比が予め設定されている。不等分岐カプラは、光ファイバ16から紫外光を設定された分岐比でパワー分岐し、照射部13側のDropポートに出力する。Dropポートから出力された紫外光は照射部13を介して、それぞれ照射対象域AR(1~N)に照射される。
 図4は、光分岐部12-5が分岐比可変カプラである場合の紫外光照射システム302を説明する図である。紫外光照射システム302は、それぞれの光分岐部12-5の分岐比を変化させる制御部15-5をさらに備えることが図3の紫外光照射システム301との相違点である。制御部15-5を光ファイバ16の一端側(紫外光源部11側)に備えれば、各光分岐部の分岐比を紫外光源部側から遠隔調整することができる。
 分岐比可変カプラのそれぞれは、分岐比が制御部15-5により設定される。それぞれの分岐比は、後述する手法により決定される。分岐比可変カプラは、光ファイバ16を伝搬する紫外光を設定された分岐比でパワー分岐し、照射部13側のDropポートに出力する。分岐比可変カプラは、例えば、参考文献1に開示されるような、ヒーターで分岐比を変化させるマッハツェンダ干渉計を備える構成である。Dropポートから出力された紫外光は照射部13を介して、それぞれ照射対象域AR(1~N)に照射される。
(参考文献1)NTT技術ジャーナル(https://www.ntt.co.jp/journal/0505/files/jn200505012.pdf)、2005年5月発行
 光分岐部12-5が光スイッチである場合も、図4の紫外光照射システム302の構造となる。光スイッチは、光ファイバ16を伝搬する紫外光を制御部15-5からの指示された切り替えタイミングに従ってDropポートに出力する。切り替えタイミングは、後述する手法により決定される。Dropポートから出力された紫外光は照射部13を介して、それぞれ照射対象域AR(1~N)に照射される。なお、本明細書では、「光分岐部12-5の分岐比」には、光分岐部12-5が光スイッチである場合の切り替えタイミング及びそのタイミングによりDropポートに切り替えている時間比が含まれるものとする。
 照射部13は、光分岐部12-5で伝送された紫外光を、殺菌等を行う所定の対象箇所(照射対象域AR)に照射する。照射部13は、紫外光の波長に対して設計されたレンズなどの光学系で構成されている。
 例えば、本実施形態の光分岐部12-5は、それぞれの照射対象域ARへ照射される紫外光量が等しくなるように光ファイバ16から前記紫外光を分岐する前記分岐比を有する。具体的には、不等分岐カプラであれば、以下のように得られた分岐比の不等分岐カプラを光分岐部12-5として設置する。分岐比可変カプラであれば、以下のように得られた分岐比を制御部15-5から光分岐部12-5に設定する。光スイッチであれば、以下のように得られた分岐比(切り替えタイミング)を制御部15-5から光分岐部12-5に設定する。
(a0)基本的に、光ファイバ16を伝搬する距離が長いほど伝送損失は大きくなる。つまり、図2や図4のように、各照射対象域ARの面積が等しく、照射部13から照射対象域ARまでの距離が等しい場合、それぞれの照射対象域ARへ照射される紫外光量を等しくするためには、各光分岐部12-5の分岐比(Dropポートの分岐比率)を伝搬損失に応じて決定する。各照射対象域ARへの紫外光量が均一となり公平な殺菌等の効果が得られる。
(a1)図5のようにそれぞれの照射対象域ARの面積が異なる場合、上記の伝送損失に加え、次の点を考慮して光分岐部12-5の分岐比を決定する。
 例えば、面積が大きい照射対象域(例えばAR1)へ紫外光をDropする光分岐部12-5のDropポートへの分岐比率を大きく、面積が小さい照射対象域(例えばAR2)へ紫外光をDropする光分岐部12-5のDropポートへの分岐比率を小さくする。各照射対象域ARへの紫外光量が均一となり公平な殺菌等の効果が得られる。
(a2)図6のように照射部13から照射対象域ARまでの距離がそれぞれ異なる場合、上記の伝送損失に加え、次の点を考慮して光分岐部12-5の分岐比を決定する。
 例えば、照射部13から照射対象域ARまでの距離が長い照射対象域(例えばAR1)へ紫外光をDropする光分岐部12-5のDropポートへの分岐比率を大きく、照射部13から照射対象域ARまでの距離が短い照射対象域(例えばAR2)へ紫外光をDropする光分岐部12-5のDropポートへの分岐比率を小さくする。各照射対象域ARへの紫外光量が均一となり公平な殺菌等の効果が得られる。
(a3)また、上記の伝送損失に加え、次の点を考慮して光分岐部12-5の分岐比を決定する。
 例えば、殺菌等に大きな紫外光量を要求する照射対象域ARへ紫外光をDropする光分岐部12-5のDropポートへの分岐比率を大きく、小さな紫外光量でよい照射対象域ARへ紫外光をDropする光分岐部12-5のDropポートへの分岐比率を小さくする。各照射対象域ARの要求を公平に満たすことができ、公平な殺菌等の効果が得られる。
 ここで、光分岐部12-5が不等分岐カプラ又は分岐比率可変カプラである場合の分岐比の設定例を説明する。
光分岐部12-5-1から各照射部13-nまでの損失(光分岐部12-5の通過損失含む)をLfiber-n[a.u.]とし、照射部13-nから照射対象域ARnまでのそれぞれの損失をLair-n[a.u.]とする。また、照射対象域ARnに照射される紫外光のスポットの面積をS[m]とする。上記(a0)、(a1)及び(a2)の場合、光分岐部12-5-nのDropポートの分岐比率εは次のように設定する。なお、nは1からN(Nは2以上の整数)までの整数である。ただし、SN+1[m]は照射対象域ARN+1に照射される紫外光のスポットの面積である。
Figure JPOXMLDOC01-appb-M000001
 一方、光分岐部12-5が光スイッチである場合の分岐比(切り替えタイミング)の設定例を説明する。
 紫外光源部11が出力する紫外光のパワーをP[W]とする。光スイッチで経路切り替えに要する時間をTsw[s]とする。紫外光源部11から各照射部13-iまでの損失(光スイッチの通過損失含む)をLfiber-i[a.u.]とし、照射部13-iから照射対象域ARまでのそれぞれの損失をLair-i[a.u.]とする。なお、iは1からN+1までの整数である。
 図7は、各光スイッチの切り替えタイミングを説明する図である。本制御は、照射対象域ARへの紫外光の伝送損失と照射面積が異なる場合の動作である。
 制御部15-5は、各光分岐部12-5-iである光スイッチに対し、Dropポートにそれぞれ時間Tだけ紫外光を供給できる機会を与える動作をするよう制御する。Tは式(3)で求められる時間とする。
Figure JPOXMLDOC01-appb-M000002
 ここで、E[W・s/m]は殺菌等に必要な紫外光量である。
 ただし、TN+1は光分岐部12-5-NのDropポートではないポート(光ファイバ16の紫外光が光スイッチを通過して照射部13-N+1へ伝搬するポート)
 光スイッチをこのように動作させ、前記機会に紫外光を供給することで、すべての照射対象域ARに対して最短周期で殺菌等に必要な紫外線量E[W・s/m]が照射できる。つまり、紫外光照射システム302は、各照射対象域ARに対し、式(4)の時間Tinact[s]おきに殺菌等の効果を担保することができる。
Figure JPOXMLDOC01-appb-M000003
 また、切り替え制御部15-2が、光スイッチ12-2に対し、各出力ポートに紫外光を供給する機会の時間をT/M[s](Mは2以上の自然数)になるように制御しても、同様の効果が得られる。
 照射対象域ARへ人間や動物の出入りがある場合、安全性を担保する必要がある。その場合、光分岐部12-5は、それぞれの照射対象域ARへ照射される紫外光量が所定の基準値以下となるように光ファイバ16から前記紫外光を分岐する分岐比を有する。具体的には、次のように分岐比を設定する。
(b1)紫外光の照度には、人間への暴露量を小さくして安全に除菌等を行うため、例えば、1日あたり8時間以内で6.0mJ/cm以下(単位時間あたり0.2μW/cm)という基準値(JISZ8812)がある。このため、光ファイバ16を伝搬する距離が長いほど伝送損失は大きくことを考慮した上で、紫外光源部11が出力する紫外光パワー、損失Lfiber-n[a.u.]、損失Lair-n[a.u.]、及び面積S[m]に基づき、それぞれの照射対象域ARへ照射される紫外光量が基準値以下となるような分岐比とする。
 このように光分岐部12-5の分岐比を設定することで、過剰な紫外光量が照射対象域ARへ照射されることを防止し、紫外光照射システム301の安全性を担保することができる。
 また、光分岐部12-5は、それぞれの照射対象域ARが要求する紫外光量を満たすように光ファイバ16から前記紫外光を分岐する分岐比を有する。具体的には、次のように分岐比を設定する。
(c1)光ファイバ16を伝搬する距離が長いほど伝送損失は大きいことを考慮した上で、図8のように短時間での殺菌等が必要な照射対象域AR1を担当する光分岐部12-5-1のDropポートへの分岐比率を大きく(又は供給時間Tを長く)、時間をかけて殺菌等を行う照射対象域AR2を担当する光分岐部12-5-2のDropポートへの分岐比率を小さく(又は供給時間Tを短く)する。所望の照射対象域ARに大きな紫外光量を分配でき、短時間での殺菌等が可能となる。一方、時間をかけて殺菌等を行う照射対象域ARには小さな紫外光量とする。つまり、不活化要求時間に基づいて光分岐部12-5の分岐比を設定する。ここで、不活化要求時間とは、所望の不活化率(照射前の状態と照射後の状態の菌の比率、あるいは照射前の状態と照射後の状態のウィルスの比率)を満たすために要する時間を意味する。
 このように光分岐部12-5の分岐比を設定することで、照射対象域ARの殺菌等の要望(不活化要求時間)に応じることができ、紫外光照射システム301の効率性を向上させることができる。
 なお、長時間かけて殺菌等を行う照射対象域ARとしては、高い照度の紫外光の暴露を回避したい部屋(人や動物の出入りがある場所)や空調設備の吸気口/吹出口などが例示できる。短時間で殺菌等を行う照射対象域ARとしては、UV除菌ボックスなど、人や動物が中に入らないような閉空間を構成するものが例示できる。
 また、上述した分岐比の設定手法(a0)、(a1)、(a2)、(a3)、(b1)及び(c1)を組み合わせて光分岐部12-5の分岐比を設定してもよい。
(効果)
 図1と図2を比較して本発明の効果を説明する。
 図1の紫外光照射システム300は、前述のように光分配部12で紫外光を各方路14へ分配し、各照射対象域ARまで伝搬している。そして、紫外光源部11と光分岐部12とは同一場所(例えば1つの筐体内)に配置されている。このため、それぞれの照射対象域ARまで方路14である光ファイバを敷設しなければならず、照射対象域ARの数に応じて光ファイバの総延長が長くなり、システムの部材や施工のコストが高くなる。
 一方、図2の本発明の紫外光照射システム301は、1本の光ファイバ16を敷設し、各照射対象域ARの近傍に光分岐部12-5を配置して、光ファイバ16から紫外光をドロップするバス型の構成である。この構成では、敷設する光ファイバは1本の光ファイバ16及び光分岐部12-5と照射部13との間の短い光ファイバだけである。このため、照射対象域ARの数に関わらず光ファイバの総延長がほぼ同じであり、システムの部材や施工のコストが照射対象域ARの数に応じて高くなることを回避できる。
 なお、図4の紫外光照射システム302の構成であれば、光分岐部12-5である分岐比可変カプラの分岐比や光スイッチの切り替えタイミングを紫外光源部11側から遠隔操作をすることができる。
 このように、バス型の紫外光照射システム301は、従来のスター型の紫外光照射システム300に対し、照射対象域ARの数の増加による光ファイバの総延長が伸びることを回避し、コスト低減を図ることができる。
(実施形態2)
 図9は、紫外光照射システム(301、302)の光分岐部12-5の分岐比を決定する方法を説明するフローチャートである。
 具体的には、次のように設計する。
 ステップS01:紫外光源11の紫外光出力パワーP[W]、損失Lfiber-n[a.u.]、損失Lair-n[a.u.]、面積S[m]、及び各照射対象域ARが要求する紫外光量[J/m]又は不活化要求時間の情報を入手する。
 ステップS02:紫外光照射システム301で担保させたい効果は公平性であるかを判断する。
 ステップS03:紫外光照射システム301で担保させたい効果は公平性である場合(ステップS02で“Yes”)、前述の(a0)、(a1)、(a2)又は(a3)によってそれぞれの光分岐部12-5の分岐比を決定する。
 ステップS04:紫外光照射システム301で担保させたい効果は安全性であるかを判断する。
 ステップS05:紫外光照射システム301で担保させたい効果は安全性である場合(ステップS04で“Yes”)、前述の(b1)によってそれぞれの光分岐部12-5の分岐比を決定する。
 ステップS06:紫外光照射システム301で担保させたい効果は効率性であるかを判断する。
 ステップS07:紫外光照射システム301で担保させたい効果は効率性である場合(ステップS06で“Yes”)、前述の(c1)によってそれぞれの光分岐部12-5の分岐比を決定する。
 ステップS08:紫外光照射システム301で担保させたい効果が公平性、安全性及び効率性のいずれでもない場合、分岐比の設定を中止する。
11:紫外光源部
12:光分配部(等分岐)
12-5、12-5-1、・・・、12-5-N:光分岐部
13、13-1、・・・、13-N、13-N+1:照射部
14:方路(光ファイバ)
16:光ファイバ
15-5:制御部
52:充実コア
52a:領域
53:空孔
53a:空孔群
53c:空孔
60:クラッド
300、301、302:紫外光照射システム
AR1、AR2、・・・、ARN、ARN+1:照射対象域(紫外光を照射しようとする領域)

Claims (5)

  1.  紫外光を発生させる紫外光源部と、
     前記紫外光源部に一端が接続され、一端から前記紫外光を伝搬する光ファイバと、
     前記光ファイバの長手方向の任意位置に設置され、所定の分岐比で前記光ファイバを伝搬する前記紫外光の一部を取り出す1又は複数の光分岐部と、
     前記光ファイバの他端に到達する前記紫外光及び前記光分岐部で取り出された前記紫外光をそれぞれの照射対象域に照射する照射部と、
    を備える紫外光照射システム。
  2.  それぞれの前記光分岐部は、それぞれの前記照射対象域へ照射される紫外光量が等しくなるように前記光ファイバから前記紫外光を分岐する前記分岐比を有することを特徴とする請求項1に記載の紫外光照射システム。
  3.  それぞれの前記光分岐部は、それぞれの前記照射対象域へ照射される紫外光量が所定の基準値以下となるように前記光ファイバから前記紫外光を分岐する前記分岐比を有することを特徴とする請求項1に記載の紫外光照射システム。
  4.  それぞれの前記光分岐部は、それぞれの前記照射対象域が要求する紫外光量を満たすように前記光ファイバから前記紫外光を分岐する前記分岐比を有することを特徴とする請求項1に記載の紫外光照射システム。
  5.  それぞれの前記光分岐部の前記分岐比を変化させる制御部をさらに備えることを特徴とする請求項1から4のいずれかに記載の紫外光照射システム。
PCT/JP2021/039340 2021-10-25 2021-10-25 紫外光照射システム WO2023073774A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039340 WO2023073774A1 (ja) 2021-10-25 2021-10-25 紫外光照射システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/039340 WO2023073774A1 (ja) 2021-10-25 2021-10-25 紫外光照射システム

Publications (1)

Publication Number Publication Date
WO2023073774A1 true WO2023073774A1 (ja) 2023-05-04

Family

ID=86157521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039340 WO2023073774A1 (ja) 2021-10-25 2021-10-25 紫外光照射システム

Country Status (1)

Country Link
WO (1) WO2023073774A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372910A (ja) * 1991-06-24 1992-12-25 Shin Etsu Chem Co Ltd 光分岐比および光結合比が可変な光カプラ
JPH10241430A (ja) * 1996-12-27 1998-09-11 Toshiba Lighting & Technol Corp 光コンセントシステムおよび照明システム
JP2005241893A (ja) * 2004-02-26 2005-09-08 Ntt Electornics Corp 光ガイド及び光ガイドシステム
JP2020036068A (ja) * 2018-08-27 2020-03-05 日本電信電話株式会社 光通信システム及び光通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04372910A (ja) * 1991-06-24 1992-12-25 Shin Etsu Chem Co Ltd 光分岐比および光結合比が可変な光カプラ
JPH10241430A (ja) * 1996-12-27 1998-09-11 Toshiba Lighting & Technol Corp 光コンセントシステムおよび照明システム
JP2005241893A (ja) * 2004-02-26 2005-09-08 Ntt Electornics Corp 光ガイド及び光ガイドシステム
JP2020036068A (ja) * 2018-08-27 2020-03-05 日本電信電話株式会社 光通信システム及び光通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FIVERY: "About ''Fivery'', a technology to prevent infections such as the new coronavirus. Safe and reliable delivery of UV rays with optical fiber and centralized control", NTT NEWS RELEASE, NTT, JP, 13 November 2020 (2020-11-13), JP, pages 1 - 4, XP009543181, Retrieved from the Internet <URL:https://group.ntt/jp/newsrelease/2020/11/13/201113b.html> [retrieved on 20230316] *

Similar Documents

Publication Publication Date Title
HUP0301300A2 (en) Method and apparatus for photobiostimulation of biological tissue, biostimulation device and method for the treatment of tissue
BR0012719A (pt) Guia de onda ótica tendo dispersão negativa e aef grande
WO2013160770A3 (en) Fiber laser system for medical applications
JP2024059974A (ja) 紫外光照射システム
CN201719371U (zh) 超脉冲二氧化碳点阵激光输出装置
WO2023073774A1 (ja) 紫外光照射システム
WO2023073771A1 (ja) 紫外光照射システム
WO2023073885A1 (ja) 紫外光照射システム
WO2023084665A1 (ja) 紫外光照射システム
WO2023058144A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2023073884A1 (ja) 紫外光照射システム
JPH01316705A (ja) 高エネルギレーザ光の伝送装置
WO2023084668A1 (ja) 紫外光照射システム及び制御方法
JP2019506359A5 (ja)
WO2023084675A1 (ja) 紫外光照射システム
WO2023084674A1 (ja) 紫外光照射システム及び制御方法
WO2023084666A1 (ja) 紫外光照射システム
WO2023084669A1 (ja) 紫外光照射システム及び照射方法
WO2022254713A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2023084677A1 (ja) 紫外光照射システム
US20230270898A1 (en) Ultraviolet light irradiation system and decontamination method
WO2024105875A1 (ja) 光伝送システム及び光伝送方法
WO2024105873A1 (ja) 光スポット整形器及び光伝送システム
WO2022085123A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2022085142A1 (ja) 紫外光照射システム及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962324

Country of ref document: EP

Kind code of ref document: A1