WO2016042730A1 - 電動機およびそれを備える電気機器 - Google Patents

電動機およびそれを備える電気機器 Download PDF

Info

Publication number
WO2016042730A1
WO2016042730A1 PCT/JP2015/004513 JP2015004513W WO2016042730A1 WO 2016042730 A1 WO2016042730 A1 WO 2016042730A1 JP 2015004513 W JP2015004513 W JP 2015004513W WO 2016042730 A1 WO2016042730 A1 WO 2016042730A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
electric motor
stator
shaft
Prior art date
Application number
PCT/JP2015/004513
Other languages
English (en)
French (fr)
Inventor
登史 小川
祐一 吉川
治彦 角
幸弘 岡田
植田 浩司
慎一 堤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580038423.5A priority Critical patent/CN106537741A/zh
Priority to US15/326,012 priority patent/US20170201166A1/en
Priority to JP2016501256A priority patent/JP5942178B1/ja
Publication of WO2016042730A1 publication Critical patent/WO2016042730A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the present invention relates to an electric motor including an embedded magnet type rotor in which a rotor core is filled with a plurality of permanent magnets with a predetermined interval, and an electric device including the electric motor.
  • a rotor is located on the inner peripheral side of the stator via a gap.
  • the stator is substantially cylindrical and generates a rotating magnetic field.
  • the rotor includes a shaft and a rotor core.
  • the rotor has a magnetic pole formed by a permanent magnet included in the rotor core. The rotor rotates about the shaft.
  • the rotor uses a permanent magnet as part of the rotor core. Specifically, a magnet hole into which a permanent magnet is inserted is formed in the rotor core. A small piece of a permanent magnet or the like is inserted into the magnet hole.
  • an electric motor in which a permanent magnet is embedded in the rotor core is also referred to as an interior permanent magnet (IPM) motor.
  • IPM interior permanent magnet
  • a magnet embedded rotor is widely used for the rotor.
  • the first purpose to be achieved is to ensure the strength of the rotor against the centrifugal force applied to the rotor when the rotor rotates at high speed.
  • the second objective to be achieved is to generate magnetic saliency in the rotor by including a permanent magnet inside the rotor core. If magnetic saliency occurs in the rotor, rotational torque is generated in the rotor. The rotational torque is a reluctance torque in addition to the magnet torque.
  • the permanent magnet a small piece of Nd—Fe—B based sintered magnet or a small piece of ferrite sintered magnet is widely used.
  • the magnet hole formed in the rotor core is formed with a dimension slightly larger than the outer shape of the small piece of permanent magnet. If the size of the magnet hole is slightly larger than the outer shape of the small piece of the permanent magnet, the workability when assembling the rotor is improved. The reason why workability is improved is as follows.
  • the magnet hole formed in the rotor core is formed through a process of processing metal.
  • the process of processing a metal is referred to as a metal processing process. Therefore, since the magnet hole is processed with high accuracy, the dimensional tolerance is small.
  • the small piece of the permanent magnet described above is created through a process of sintering magnet powder or the like.
  • the process of sintering magnet powder or the like is referred to as a sintering process.
  • the sintering process is similar to the process in which ceramics are baked in a kiln. Therefore, deformations such as warping and bending may occur in the small pieces of the permanent magnet that have undergone the sintering process.
  • the deformation generated in the small pieces of the permanent magnet can be eliminated if a step of polishing with a grindstone or the like can be performed.
  • the process of polishing with a grindstone or the like is referred to as a polishing process.
  • the motor does not employ a polishing process to cope with deformations that occur in small pieces of the permanent magnet. Or even if it employ
  • the size of the magnet hole is made slightly larger than the outer shape of the small piece of the permanent magnet to cope with the deformation generated in the small piece of the permanent magnet.
  • the defect is a point that requires equipment, an increase in work processes, and the like.
  • the small piece of the permanent magnet is a column having a rectangular cross section.
  • a column having a rectangular cross-sectional shape is a planar plate.
  • the small piece of the permanent magnet is a column having a trapezoidal cross-sectional shape.
  • the small piece of the permanent magnet is a column having a circular cross section.
  • a column having a circular cross section is a plate having a substantially U-shaped cross section.
  • Each permanent magnet piece created through the molding process described above has a large dimensional tolerance. Therefore, when these small pieces of permanent magnets are employed, a gap is generated between the rotor core and the small pieces of permanent magnet.
  • Patent Document 1 discloses a magnet embedded rotor in which a small piece of a permanent magnet having a high energy density is inserted into a magnet hole, and then a mixture constituting a bonded magnet is filled in the magnet hole. Yes.
  • the mixture forming the bonded magnet enters the gap between the small piece of the permanent magnet and the magnet hole.
  • the mixture that forms the bonded magnet that has entered the gap eliminates the magnetic resistance caused by the gap. Therefore, the magnetic flux density generated by the magnet embedded rotor is improved.
  • the relative permeability of the Nd—Fe—B based sintered magnet and ferrite sintered magnet is almost the same as the relative permeability of air. These relative permeability values are slightly greater than 1.0.
  • the relative permeability of the bond magnet including the Nd—Fe—B based sintered magnet powder and the bond magnet including the ferrite sintered magnet powder is substantially the same as the relative permeability of air. These relative permeability values are also slightly larger than 1.0.
  • a bond magnet containing Nd—Fe—B sintered magnet powder and a bond magnet containing ferrite sintered magnet powder are equivalent to an air layer. Therefore, even if the above-mentioned bonded magnet is filled in the gap between the small piece of the permanent magnet and the magnet hole, improvement in the magnetic flux density generated by the magnet-embedded rotor cannot be expected.
  • the mixture that has entered the gap between the small piece of the permanent magnet and the magnet hole has a slight thickness. Even if magnetization is performed on the mixture that forms the bonded magnet in the direction in which the slight thickness is generated, the magnetic force that can be obtained from the mixture is small. This is because the influence of the demagnetizing field is large on the mixture forming the bonded magnet. That is, the magnetic force of the mixture that has entered the gap between the small piece of the permanent magnet and the magnet hole does not contribute much to the improvement of the magnetic flux density generated by the magnet-embedded rotor.
  • the magnetic flux density generated by the magnet embedded rotor can be expected to be improved.
  • the bonded magnet and the bonded magnetic body are referred to as a bonded magnet.
  • a bond magnet or the like reaches magnetic saturation due to a magnetic field from the outside or a magnetic field from a small piece of a permanent magnet.
  • the bond magnet or the like reaches magnetic saturation, the relative permeability of the bond magnet or the like decreases to a value close to the relative permeability of air. Therefore, since this configuration is equivalent to a state having an air layer, an improvement in the magnetic flux density generated by the magnet-embedded rotor cannot be expected.
  • a material of the bond magnet a material having a high saturation magnetic flux density and a relative permeability larger than the relative permeability of air is a useful substance.
  • Patent Document 2 discloses a technique related to a bonded magnet having an increased relative magnetic permeability.
  • Patent Document 1 there is no description regarding the relative magnetic permeability of the bonded magnet and the magnetic permeability of the bonded magnet.
  • An electric motor targeted by the present invention includes a stator, a rotor, and a pair of bearings.
  • the stator has a stator core and a winding.
  • the stator core is formed in an annular shape.
  • the winding is wound around the stator core and a drive current is passed.
  • the rotor is located on the inner peripheral side of the stator core and has a shaft, a rotor core, and a bonded magnet.
  • the shaft of the shaft is located on the annular central axis of the stator core.
  • the rotor core is attached to the shaft and forms a column in the axial direction of the shaft.
  • the rotor core includes an outer peripheral surface formed along the axial center, and a plurality of magnet holes positioned along the outer peripheral surface.
  • the bond magnet is formed by mixing a magnet material and a resin material.
  • the bonded magnet is filled in each of the plurality of magnet holes. When the bonded magnet is filled in each of the plurality of magnet holes, a high-density portion having a high density and a low-density portion having a density lower than that of the high-density portion are formed in the filling direction.
  • ⁇ A pair of bearings are located across the rotor core.
  • the pair of bearings rotatably supports the shaft.
  • the rotor has a plurality of d-axis magnetic flux paths and a plurality of q-axis magnetic flux paths.
  • the plurality of d-axis magnetic flux paths generate magnet torque out of the rotational torque generated in the rotor by the rotating magnetic field generated by the stator when a drive current is passed through the winding.
  • the plurality of q-axis magnetic flux paths generate reluctance torque out of rotational torque.
  • Each of the d-axis magnetic flux paths is located so as to intersect with each of the plurality of bond magnets.
  • Each of the q-axis magnetic flux paths is located along each of the plurality of bond magnets.
  • the center position of the rotor core is located on the side where the high-density portion exists with respect to the center position of the stator core in the axial direction of the shaft.
  • FIG. 1 is a perspective assembly view of main parts constituting the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an assembling process of main parts constituting the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing an outline of the electric motor according to Embodiment 1 of the present invention.
  • 4 is an enlarged view of a main part of the electric motor shown in FIG.
  • FIG. 5 is an explanatory diagram showing magnetic flux paths generated in the rotor used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 6 is a plan view of a rotor used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 1 is a perspective assembly view of main parts constituting the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an assembling process of main parts constituting the electric motor according to Embodiment 1 of the present
  • FIG. 7 is a cross-sectional view showing an outline of another electric motor according to Embodiment 1 of the present invention.
  • FIG. 8 is a cross-sectional view showing an outline of the electric motor according to Embodiment 2 of the present invention.
  • FIG. 9 is an enlarged view of a main part of the electric motor shown in FIG.
  • FIG. 10 is an enlarged view of an essential part of the electric motor shown in FIG.
  • FIG. 11 is a cross-sectional view showing an outline of another electric motor according to Embodiment 2 of the present invention.
  • FIG. 12 is a configuration diagram showing an outline of the electric apparatus according to Embodiment 3 of the present invention.
  • the electric motor according to the embodiment of the present invention and an electric device including the electric motor can suppress the performance variation of the permanent magnet type electric motor using the bond magnet by the configuration described later.
  • the reason is that, by filling the mixture constituting the bonded magnet, the electric motor in the present embodiment can exhibit stable performance even when the density of the bonded magnet is sparse.
  • the conventional permanent magnet type motor had the following structural improvements. That is, when an Nd—Fe—B sintered magnet having a high energy density is used as a small piece of a permanent magnet, the magnet-embedded rotor becomes expensive.
  • a gap exists between the embedded permanent magnet piece and the magnet hole in the embedded magnet rotor, so that there is a loss in the magnetic flux density generated by the embedded magnet rotor. Arise.
  • the embedded magnet rotor filled with bonded magnets has the following points to be improved.
  • the magnet hole included in the rotor core is formed along the central axis of the rotor core.
  • the magnet hole is filled with a mixture that forms a bonded magnet from a filling port opened in one of the magnet holes.
  • the filled mixture is cured to become a bonded magnet.
  • the density of the bonded magnet in the portion located far from the filling port is lower than the density of the bonded magnet in the portion located near the filling port.
  • the bonded magnet is in a sparse / dense state.
  • a magnetic gradient corresponding to the sparse / dense state of the bond magnet is generated in the amount of magnetic flux generated from the bond magnet in the central axis direction of the rotor core, that is, in the axial direction of the shaft. Therefore, a magnetic attraction force is generated in the rotor due to this magnetic gradient in the axial direction of the shaft.
  • the center position of the stator core and the center position of the rotor core Deviate.
  • the magnetic attractive force acts so that the filling port side where the density of the bond magnet is high is attracted toward the direction in which the center position of the stator core exists in the axial direction of the shaft.
  • FIG. 1 is a perspective assembly view of main parts constituting the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing an assembling process of main parts constituting the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing an outline of the electric motor according to Embodiment 1 of the present invention.
  • 4 is an enlarged view of a main part of the electric motor shown in FIG.
  • FIG. 5 is an explanatory diagram showing magnetic flux paths generated in the rotor used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 6 is a plan view of a rotor used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 7 is a cross-sectional view showing an outline of another electric motor according to Embodiment 1 of the present invention.
  • the electric motor 100 includes a magnet-embedded rotor 10 and a stator 40.
  • the magnet-embedded rotor 10 may be simply referred to as the rotor 10.
  • the rotor 10 and the stator 40 are prepared in parallel.
  • a rotor core 11 is prepared for the rotor 10 (S1).
  • a thin steel plate constituting the rotor core 11 is punched with a mold.
  • Each steel plate is also punched with a magnet hole by a die.
  • the shaft 12 is inserted into a plurality of steel plates punched with a mold.
  • the plurality of steel plates are stacked along the axis of the shaft 12 to form the rotor core 11.
  • the magnet hole formed in the rotor core 11 is filled with a mixture constituting a bonded magnet (S2).
  • the mixture constituting the bonded magnet is used in a state where magnet powder, resin material, a small amount of additives and the like are melted.
  • the mixture forming the bonded magnet is filled into the magnet hole from the gate included in the insert mold.
  • the mixture filled in the rotor 10 is cured through a molding process to become a bonded magnet.
  • the molding process is performed according to the characteristics of the resin material contained in the mixture (S3).
  • the molding process refers to a process in which a bonded magnet is molded.
  • the molding step includes the following steps. That is, the molding step includes a heating step in which the mixture is heated to melt the heated mixture. In the heated mixture, a thermosetting reaction occurs, so that the mixture is cured. The cured mixture is cooled through a cooling step. The cooled mixture becomes a bonded magnet.
  • the molding step includes the following steps. That is, the molding step includes a heating step in which the mixture is heated to melt the heated mixture. The heated mixture is cooled through a cooling step. The cooled mixture is re-cured and becomes a bonded magnet.
  • a mixture that forms a bonded magnet may be referred to as a bonded magnet.
  • stator core 41 is prepared for the stator 40 (S4).
  • the stator core 41 can be formed by laminating thin steel plates.
  • An insulator 42 which is an insulating member, is attached to the stator core 41 (S5).
  • the rotor 10 and the stator 40 prepared for each are combined (S7).
  • the rotor 10 is incorporated on the inner peripheral side of the stator 40 via a gap.
  • the description of the main part of the electric motor 100 will be described later.
  • a pair of bearings 30 are attached to the shaft 12 of the rotor 10.
  • the rotor 10 is rotatably supported by a pair of bearings 30.
  • the electric motor 100 includes a stator 40, a rotor 10, and a pair of bearings 30.
  • the stator 40 has a stator core 41 and a winding 43.
  • the stator core 41 is formed in an annular shape.
  • the winding 43 is wound around the stator core 41.
  • a drive current is passed through the winding 43.
  • the core wire included in the winding 43 one including any of copper, copper alloy, aluminum, and aluminum alloy can be used.
  • the rotor 10 is located on the inner peripheral side of the stator core 41 and has a shaft 12, a rotor core 11, and a bond magnet 14.
  • the shaft 12 has an axis 12 a positioned on the annular central axis 41 a of the stator core 41.
  • the rotor core 11 is attached to the shaft 12 and forms a column in the direction of the axis 12 a of the shaft 12.
  • the rotor core 11 includes an outer peripheral surface 11c formed along the axis 12a and a plurality of magnet holes 13 positioned along the outer peripheral surface 11c.
  • the bond magnet 14 is formed by mixing a magnet material and a resin material. As shown in FIG. 3, the bonded magnet 14 is filled in each of the plurality of magnet holes 13.
  • a high-density portion 14b having a higher density and a low-density portion 14c having a lower density than the high-density portion 14b are formed in the filling direction.
  • the pair of bearings 30 are located with the rotor core 11 in between.
  • the pair of bearings 30 rotatably supports the shaft 12.
  • the rotor 10 has a plurality of d-axis magnetic flux paths 20 and a plurality of q-axis magnetic flux paths 21.
  • the plurality of d-axis magnetic flux paths 20 generate magnet torque out of the rotational torque generated in the rotor 10 by the rotating magnetic field generated by the stator 40 when a drive current is passed through the winding (43).
  • the plurality of q-axis magnetic flux paths 21 generate reluctance torque out of rotational torque.
  • Each of the d-axis magnetic flux paths 20 is located so as to intersect with each of the plurality of bond magnets 14.
  • Each of the q-axis magnetic flux paths 21 is located along each of the plurality of bond magnets 14.
  • the center position 11 b of the rotor core 11 is located on the side where the high-density portion 14 b exists with respect to the center position 41 b of the stator core 41 in the direction of the axis 12 a of the shaft 12. .
  • the electric motor 100 includes a stator 40 and a rotor 10.
  • the stator 40 includes a stator core 41 and a winding 43 wound around the stator core 41.
  • the rotor 10 is located on the inner peripheral side of the stator 40.
  • the rotor 10 is positioned with a minute gap between the rotor 10 and the stator 40.
  • the rotor 10 includes a rotor core 11, a shaft 12, and a bonded magnet 14 that is a permanent magnet.
  • a plurality of punched steel plates 41 c are laminated in the direction of the axis 12 a of the shaft 12.
  • the shaft 12 is attached to the rotor core 11.
  • the bonded magnet 14 is filled in a plurality of magnet holes 13 formed in the rotor core 11.
  • the pair of bearings 30 rotatably support the shaft 12.
  • the rotor core 11 includes a plurality of magnet holes 13 that are positioned along the outer peripheral surface 11 c of the rotor core 11 with a constant interval.
  • the magnet hole 13 has an arc shape that is convex from the outer peripheral surface 11 c toward the shaft 12. Specifically, the magnet hole 13 is convex at the central portion 13b, and both end portions 13c are positioned in the vicinity of the outer peripheral surface 11c.
  • the mixture 14 a constituting the bonded magnet 14 is used in a state where a magnet material, a resin material, and a plurality of additives are melted.
  • the mixture 14a constituting the bonded magnet 14 is filled into the magnet hole 13 from the gate 50 which is an insert fitting through the filling port 13a.
  • the bonded magnet 14 is hardened through a molding process after the magnet hole 13 is filled with the mixture 14a.
  • the molding step includes a step of applying pressure to the filled mixture 14a.
  • the molding step includes the following steps. That is, the molding step includes a heating step in which the mixture is heated to melt the heated mixture. In the heated mixture, a thermosetting reaction occurs, so that the mixture is cured. The cured mixture is cooled through a cooling step. The cooled mixture becomes a bonded magnet.
  • the molding step includes the following steps. That is, the molding step includes a heating step in which the mixture is heated to melt the heated mixture. The heated mixture is cooled through a cooling step. The cooled mixture is re-cured and becomes a bonded magnet.
  • FIG. 3 shows a state in which the mixture 14 a forming the bonded magnet 14 is filled from the gate 50 in a state where the rotor 10 and the stator 40 are combined.
  • FIG. 3 illustrates the characteristics of the electric motor 100 according to the first embodiment, which will be described later, in an easy-to-understand manner.
  • the magnet hole 13 is filled with the mixture 14 a forming the bonded magnet 14 with the rotor 10 alone.
  • the mixture 14a which comprises the bonded magnet 14 is filled in the magnet hole 13 in the state in which the rotor 10 was incorporated in the stator 40.
  • the mixture 14a which comprises the bond magnet 14 is filled into the magnet hole 13 from the gate 50 which is an insert mold through the filling port 13a.
  • the mixture 14a that forms the bonded magnet 14 to be filled is a mixture of a magnet material, a resin material, and a small amount of additives.
  • the filling pressure applied to the mixture 14a in the magnet hole 13 is not uniform. That is, the mixture 14a filled in the melted state in the magnet hole 13 has a density of the bond magnet in the portion located on the opposite side of the filling port 13a, and the density of the bond magnet in the portion located on the filling port 13a side. Lower than.
  • the bond magnet 14 has a magnetic gradient in which the amount of magnetic flux decreases in the direction along the axis 12a from the filling port 13a side to the anti-filling port 13a side.
  • the magnetic gradient generates a magnetic attractive force acting in the direction of the axis 12a.
  • this magnetic attractive force is a factor that shifts the positional relationship between the stator and the rotor. That is, when combining the stator and the rotor, the electric motor is combined so that the center position of the stator core and the center position of the rotor core have a predetermined positional relationship. Since the magnetic attractive force acts after the stator and the rotor are combined, the positional relationship between the center position of the stator core and the center position of the rotor core cannot maintain a predetermined positional relationship. In other words, in the electric motor, a deviation occurs in the positional relationship between the center position of the stator core and the center position of the rotor core. Therefore, the electric motor cannot obtain expected predetermined characteristics.
  • the center position 11b of the rotor core 11 is in the direction of the axis 12a relative to the center position 41b of the stator core 41 according to the magnetic gradient. It is shifted and assembled.
  • the electric motor 100 according to the first embodiment is assembled by shifting the center position 11b of the rotor core 11 toward the filling port 13a with respect to the center position 41b of the stator core 41 in the direction of the axis 12a.
  • the center position 11b of the rotor core 11 is filled with respect to the center position 41b of the stator core 41 in the direction of the axis 12a in accordance with the density state of the bonded magnets 14 filled in the magnet holes 13. 13a is shifted and assembled.
  • the electric motor 100 can exhibit stable performance even if the magnetic attraction force due to the magnetic gradient acts on the rotor core 11 in the direction of the axis 12a.
  • the rotor 10 is combined on the inner peripheral side of the stator 40.
  • the center position 11b of the rotor core 11 is shifted from the center position 41b of the stator core 41 toward the filling port 13a by a distance corresponding to the magnetic gradient and assembled.
  • the electric motor 100 has improved energy efficiency and stable characteristics.
  • the filling port 13a is located on the side opposite to the output shaft 12b.
  • the electric motor 100 can obtain the same function and effect even when the filling port 13 a is located on the output shaft 12 b side.
  • the center position 11b of the rotor core 11 is located on the filling port 13a side with respect to the center position 41b of the stator core 41 in the direction of the axis 12a.
  • the rotor 10 shown in FIG. 6 has 6 poles. That is, the number of magnet holes 13 is six.
  • the technical scope of the present invention extends to rotors with other pole numbers. Specifically, when n is a natural number, if the rotor has 2n times the number of poles, the technical scope of the present invention extends to the rotor of this configuration.
  • combinations of the number of poles and the number of slots include 10 poles and 9 slots, 10 poles and 12 slots, 12 poles and 9 slots, and 14 poles and 12 slots.
  • combinations of the number of poles and the number of slots include 4 poles 24 slots, 4 poles 36 slots, 6 poles 36 slots, 8 poles 48 slots, and the like.
  • combinations of the number of poles and the number of slots include 4 poles and 12 slots, and 6 poles and 18 slots.
  • the magnet hole 13 has an arc shape.
  • the technical scope of the present invention extends to magnet holes of other shapes. Specifically, the same effect can be obtained even if the magnet hole has an arc shape including two or more different curvatures. In addition, the same effect can be obtained when the magnet hole is V-shaped, U-shaped, or U-shaped with a corner at the bottom.
  • FIG. 8 is a cross-sectional view showing an outline of the electric motor according to Embodiment 2 of the present invention.
  • FIG. 9 is an enlarged view of a main part of the electric motor shown in FIG.
  • FIG. 10 is an enlarged view of an essential part of the electric motor shown in FIG.
  • FIG. 11 is a cross-sectional view showing an outline of another type electric motor according to Embodiment 2 of the present invention.
  • the electric motor 100a according to the second embodiment of the present invention has the following configuration in addition to the electric motor 100 described in the first embodiment.
  • the bearing 30 a located on the side where the high density portion 14 b exists has the pressing mechanism 31.
  • the pressing mechanism 31 presses the rotor core 11 toward the side where the low density portion 14 c exists in the direction of the axis 12 a of the shaft 12.
  • the pressing mechanism 31 is formed of an elastic body.
  • the bearing 30 a located on the filling port 13 a side which is the side where the high density portion 14 b exists, is a ball bearing 130.
  • the ball bearing 130 includes an inner ring 130a, an outer ring 130b, and a sphere 130c.
  • the inner ring 130 a is attached to the shaft 12.
  • the outer ring 130b is positioned to face the inner ring 130a.
  • the plurality of spheres 130c are located between the inner ring 130a and the outer ring 130b.
  • the outer ring 130b has an elastic body (31).
  • the elastic body (31) presses the rotor core 11 toward the side opposite to the side where the filling port 13a is located, which is the side where the low density portion 14c exists.
  • the elastic body (31) is attached to an end face 130d opposite to the side where the filling port 13a of the outer ring 130b is located.
  • the electric motor 100a has a pressing mechanism 31 on a bearing 30a located on the filling port 13a side in the axial center 12a direction.
  • the pressing mechanism 31 presses the rotor 10 from the filling port 13a side toward the anti-filling port 13a side in the axial center 12a direction.
  • the following phenomenon may occur.
  • the magnetic attraction force due to the magnetic gradient acts on the rotor core 11 in the direction of the axis 12a.
  • the center position 11b of the rotor core 11 and the center position 41b of the stator core 41 coincide with each other due to the magnetic attractive force.
  • the electric motor 100 shown in Embodiment 1 is a form in which the positional relationship between the rotor 10 and the stator 40 is held by a magnetic force called a magnetic attractive force.
  • the rotor 10 when the electric motor 100 is driven, the rotor 10 may vibrate in the direction of the axis 12a.
  • the vibration of the rotor 10 causes the electric motor 100 to vibrate.
  • the vibration of the rotor 10 causes noise from the electric motor 100.
  • the electric motor 100a according to the second embodiment has a pressing mechanism 31 as a physical means.
  • the electric motor 100a is incorporated by being shifted to the filling port 13a side, which is the side where the high-density portion 14b exists, with respect to the central position 41b of the stator core 41 in the direction of the axis 12a. It is.
  • the pressing mechanism 31 is attached to the bearing 30a located on the filling port 13a side in the direction of the axis 12a.
  • the pressing mechanism 31 is attached so that the bearing 30a applies a force that presses the rotor 10 in the direction of the output shaft 12b in the direction of the axis 12a.
  • FIGS. 9 and 10 a case where the bearing 30 a is a ball bearing 130 is shown.
  • the ball bearing 130 includes an inner ring 130a, an outer ring 130b, and a sphere 130c.
  • the inner ring 130 a is attached to the shaft 12.
  • the outer ring 130b is positioned to face the inner ring 130a.
  • a sphere 130c is located between the inner ring 130a and the outer ring 130b.
  • the outer ring 130b has the pressing mechanism 31 attached to the end surface 130d located on the opposite side of the end surface facing the filling port 13a.
  • the pressing mechanism 31 presses the rotor 10 in the direction of the output shaft 12b via the ball bearing 130.
  • one of the two forces is the magnetic attraction force described in the first embodiment.
  • the electric motor 100a In the direction of the axis 12a, the electric motor 100a is combined with the center position 11b of the rotor core 11 and the center position 41b of the stator core 41 being shifted.
  • the magnetic attractive force acts so that the center position 11b of the rotor core 11 and the center position 41b of the stator core 41 coincide.
  • the other one of the two forces is a pressing force by the pressing mechanism 31 described above.
  • the pressing force acts on the rotor 10 in the direction of the output shaft 12b.
  • the electric motor 100a according to the second embodiment can stably maintain the positional relationship between the rotor 10 and the stator 40 even when the electric motor 100a is driven.
  • the pressing mechanism 31 is made of an elastic body.
  • the elastic body a spring washer, a disc spring washer, or the like can be used.
  • Other members can be used as long as they have the same effects.
  • the electric motor 100a provides stable performance and is driven with low vibration and low noise.
  • the filling port 13a is located on the side opposite to the output shaft 12b.
  • the electric motor 100a can obtain the same operation and effect even when the filling port 13a is located on the output shaft 12b side.
  • the pressing mechanism 31 is attached to the bearing 30b located on the output shaft 12b side.
  • the center position 11 b of the rotor core 11 is located on the filling port 13 a side with respect to the center position 41 b of the stator core 41 in the direction of the axis 12 a.
  • FIG. 12 is a configuration diagram showing an outline of the electric apparatus according to Embodiment 3 of the present invention.
  • the electric device 200 includes the electric motor 100 described in the first embodiment and a control unit 201 that controls the electric motor 100.
  • the electric device 200 includes the electric motor 100a described in the second embodiment and the control unit 201 that controls the electric motor 100a.
  • the electric device 200 includes home appliances such as an air conditioner.
  • the electric device 200 is an industrial device such as a robot.
  • the electric motor of the present invention can exhibit stable performance even when the density of the bonded magnets becomes dense as a result of filling the mixture forming the bonded magnets.
  • the application of the type motor of the present invention is not particularly limited.
  • the electric motor of the present invention can be applied to various electric devices such as home appliances such as air conditioners and industrial devices such as robots.
  • Rotor Embedded magnet rotor
  • 11 rotor core 11a central axis 11b, 41b central position 11c outer peripheral surface 12 shaft 12a axial center 12b output shaft 13 magnet hole 13a filling port 13b central part 13c end part 14 bonded magnet 14a mixture 14b high density part 14c low density part 20 d-axis magnetic flux Passage 21 q-axis magnetic flux passage 30, 30a, 30b Bearing 31 Pressing mechanism (elastic body)
  • Stator Stator core 41a Annular center axis 41c Steel plate 42 Insulator 43 Winding 50 Gate 100, 100a Electric motor 130 Ball bearing 130a Inner ring 130b Outer ring 130c Spherical body 130d End face 200 Electric equipment 201 Control part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本発明の電動機(100)は、ステータ(40)と、ロータ(10)と、一対のベアリング(30)と、を備える。ステータ(40)は、環状に形成されるステータコア(41)を有する。ロータ(10)は、ステータコア(41)の内周側に位置し、シャフト(12)と、ロータコア(11)と、ボンド磁石(14)と、を有する。ボンド磁石(14)は、磁石孔(13)に充填される。ボンド磁石(14)は、密度が高い高密度部(14b)と、高密度部(14b)よりも密度が低い低密度部(14c)と、が形成される。電動機(100)は、シャフト(12)の軸心(12a)方向において、ロータコア(11)の中心位置(11b)がステータコア(41)の中心位置(41b)に対して高密度部(14b)が存在する側に位置する。

Description

電動機およびそれを備える電気機器
 本発明は、ロータコアの内部に、所定の間隔を有して複数の永久磁石が充填された、磁石埋込型ロータを備える電動機と、その電動機を備える電気機器に関する。
 従来、永久磁石が用いられた電動機は、ステータの内周側に、ギャップを介して、ロータが位置する。
 ステータは、略円筒状であり、回転磁界を発生する。
 ロータは、シャフトと、ロータコアと、を備える。ロータは、ロータコアが有する永久磁石により、磁極が形成される。ロータは、シャフトを中心に回転する。
 ロータは、永久磁石がロータコアの一部に用いられる。具体的に、ロータコアには、永久磁石が挿入される磁石孔が形成される。磁石孔には、永久磁石の小片等が挿入される。
 本構成のように、永久磁石がロータコアの内部に埋め込まれた電動機は、磁石埋込型(IPM:Interior Permanent Magnet)モータともいう。
 ロータには、つぎの目的を達成するため、磁石埋込型ロータが広く用いられる。
 すなわち、達成する目的のひとつ目は、ロータが高速で回転する際、ロータに加えられる遠心力に対して、ロータの強度を確保することである。
 達成する目的のふたつ目は、永久磁石をロータコアの内部に含むことにより、ロータに磁気的突極性を生じさせることである。ロータに磁気的突極性が生じれば、ロータには、回転トルクが生じる。回転トルクは、マグネットトルクに加えて、リラクタンストルクが生じる。
 永久磁石には、Nd-Fe-B系の焼結磁石を小片にしたものや、フェライト焼結磁石を小片にしたもの等が広く用いられる。
 永久磁石の小片を用いる場合、ロータコアに形成される磁石孔は、永久磁石の小片の外形よりも少し大きい寸法で形成される。磁石孔が永久磁石の小片の外形よりも少し大きい寸法であれば、ロータを組み立てる際の作業性が向上する。作業性が向上する理由は、以下のとおりである。
 すなわち、ロータコアに形成される磁石孔は、金属を加工する工程を経て、形成される。以下、金属を加工する工程を、金属加工工程という。よって、磁石孔には、高い精度の加工が施されるため、寸法公差は小さい。
 一方、上述した永久磁石の小片は、磁石粉末等を焼結する工程を経て、作成される。以下、磁石粉末等を焼結する工程を、焼結工程という。焼結工程は、陶磁器などが窯で焼かれる工程に似ている。よって、焼結工程を経た、永久磁石の小片には、反りや撓みなどの変形が生じることがある。永久磁石の小片に生じた変形は、砥石等で研磨する工程を経ることができれば、解消できる。以下、砥石等で研磨される工程を、研磨工程という。
 電動機では、永久磁石の小片に生じた変形に対応するために、研磨工程を採用していない。あるいは、電動機において、研磨工程を採用したとしても、永久磁石の小片を研磨できる量は僅かである。しかも、永久磁石の小片を研磨する精度は、低い。
 従って、上述したように、電動機では、磁石孔の寸法を永久磁石の小片の外形よりも少し大きくすることで、永久磁石の小片に生じた変形に対応している。なお、研磨工程を用いる場合、つぎの不具合が生じる。つまり、不具合とは、設備が必要となる点、作業工程が増える点などである。
 しかしながら、磁石孔の寸法を永久磁石の小片の外形よりも少し大きくする場合、ロータコアと永久磁石の小片との間には隙間が生じる。ロータコアと永久磁石の小片との間に生じた隙間は、磁気抵抗として作用する。よって、ロータの表面に生じる磁束密度は低下する。
 また、Nd-Fe-B系の焼結磁石やフェライト焼結磁石等で作成される、永久磁石の小片は、陶磁器のように、硬く、脆いという性質を有する。よって、永久磁石の小片は、その形状を複雑にすることができない。
 具体的に、永久磁石の小片では、つぎの形状が採用される。すなわち、永久磁石の小片は、断面形状が長方形である、柱体である。断面形状が長方形の柱体は、平面状の板体である。その他、永久磁石の小片は、断面形状が台形である、柱体である。永久磁石の小片は、断面形状が円弧状である、柱体である。断面形状が円弧状の柱体は、断面形状が略U字状の板体である。
 上述した成形過程を経て作成される、いずれの永久磁石の小片も、寸法公差が大きい。よって、これらの永久磁石の小片を採用する場合、ロータコアと永久磁石の小片との間には、隙間が生じる。
 この対応として、特許文献1では、高いエネルギー密度を有する、永久磁石の小片が磁石孔に挿入された後、磁石孔にボンド磁石を成す混合物が充填される、磁石埋込型ロータが開示されている。磁石埋込型ロータでは、永久磁石の小片と磁石孔との隙間に、ボンド磁石を成す混合物が入り込む。隙間に入り込んだボンド磁石を成す混合物は、隙間が原因で生じていた磁気抵抗を解消する。よって、磁石埋込型ロータが発する磁束密度は、向上する。
 ところで、Nd-Fe-B系の焼結磁石やフェライト焼結磁石が有する比透磁率は、空気の比透磁率とほぼ同じである。これらの比透磁率の値は、1.0よりも僅かに大きい。同様に、Nd-Fe-B系の焼結磁石の粉末を含むボンド磁石やフェライト焼結磁石の粉末を含むボンド磁石が有する比透磁率も、空気の比透磁率とほぼ同じである。これらの比透磁率の値も、1.0よりも僅かに大きい。
 換言すれば、Nd-Fe-B系の焼結磁石の粉末を含むボンド磁石や、フェライト焼結磁石の粉末を含むボンド磁石は、空気の層と等価である。よって、永久磁石の小片と磁石孔との隙間に、上述したボンド磁石を充填しても、磁石埋込型ロータが発する磁束密度の向上は、期待できない。
 また、永久磁石の小片と磁石孔との隙間に入り込んだ混合物は、僅かな厚みである。この僅かな厚みが生じる方向において、ボンド磁石を成す混合物に対して磁化を行っても、混合物から得ることができる磁力は僅かである。その理由は、ボンド磁石を成す混合物には、反磁界の影響が大きいためである。つまり、永久磁石の小片と磁石孔との隙間に入り込んだ混合物が有する磁力は、磁石埋込型ロータが発する磁束密度の向上に対して、あまり貢献しない。
 つぎに、空気が有する比透磁率よりも大きな値の比透磁率を有する、ボンド磁石やボンド磁性体を用いれば、磁石埋込型ロータが発する磁束密度は、向上することが期待できる。以下の説明において、ボンド磁石やボンド磁性体は、ボンド磁石等という。しかし、本構成では、ボンド磁石等が外部からの磁界や、永久磁石の小片からの磁界により、磁気飽和に至ることが考えられる。ボンド磁石等が磁気飽和に至った場合、ボンド磁石等が有する比透磁率は、空気の比透磁率に近い値まで低下する。よって、本構成は、空気の層を有する状態と等しくなるため、磁石埋込型ロータが発する磁束密度の向上が、期待できない。
 なお、ボンド磁石の材料として、飽和磁束密度が高く、しかも、空気が有する比透磁率よりも大きな値の比透磁率を有するものは、有用な物質である。
 つぎに、特許文献2では、比透磁率が高められたボンド磁石に関する技術が開示されている。
 ところで、特許文献1では、ボンド磁石の比透磁率や、ボンド磁石の透磁率に関する記載は見当たらない。
 当然のことながら、ボンド磁石等を用いる場合、ボンド磁石等が有する比透磁率、あるいは、磁気飽和や反磁界などの影響を確認することは重要である。
特開平10-304610号公報 国際公開第2012/157304号
 本発明が対象とする電動機は、ステータと、ロータと、一対のベアリングと、を備える。
 ステータは、ステータコアと、巻線と、を有する。ステータコアは、環状に形成される。巻線は、ステータコアに巻き回されて、駆動電流が流される。
 ロータは、ステータコアの内周側に位置し、シャフトと、ロータコアと、ボンド磁石と、を有する。シャフトは、ステータコアの環状中心軸上に、その軸心が位置する。ロータコアは、シャフトに取り付けられて、シャフトの軸心方向に柱体を成す。ロータコアは、軸心に沿って形成される外周面と、外周面に沿って位置する、複数の磁石孔と、を含む。ボンド磁石は、磁石材料と樹脂材料とを混合してなる。ボンド磁石は、複数の磁石孔のそれぞれに充填される。ボンド磁石は、複数の磁石孔のそれぞれに充填される際、充填方向において、密度が高い高密度部と、高密度部よりも密度が低い低密度部と、が形成される。
 一対のベアリングは、ロータコアを挟んで位置する。一対のベアリングは、シャフトを回転自在に支持する。
 さらに、ロータは、複数のd軸磁束通路と、複数のq軸磁束通路と、を有する。複数のd軸磁束通路は、巻線に駆動電流が流されるとき、ステータが発生する回転磁界によってロータに生じる回転トルクのうち、マグネットトルクを発生する。同様に、複数のq軸磁束通路は、回転トルクのうち、リラクタンストルクを発生する。
 d軸磁束通路のそれぞれは、複数のボンド磁石のそれぞれと交差して位置する。q軸磁束通路のそれぞれは、複数のボンド磁石のそれぞれに沿って位置する。
 電動機は、シャフトの軸心方向において、ロータコアの中心位置がステータコアの中心位置に対して高密度部が存在する側に位置する。
図1は、本発明の実施の形態1における電動機を構成する主要部の斜視組立図である。 図2は、本発明の実施の形態1における電動機を構成する主要部の組立工程を示すフロー図である。 図3は、本発明の実施の形態1における電動機の概要を示す断面図である。 図4は、図3に示した電動機の要部拡大図である。 図5は、本発明の実施の形態1における電動機に用いられるロータに生じる磁束通路を示す説明図である。 図6は、本発明の実施の形態1における電動機に用いられるロータの平面図である。 図7は、本発明の実施の形態1における他の電動機の概要を示す断面図である。 図8は、本発明の実施の形態2における電動機の概要を示す断面図である。 図9は、図8に示した電動機の要部拡大図である。 図10は、図9に示した電動機のさらに要部拡大図である。 図11は、本発明の実施の形態2における他の電動機の概要を示す断面図である。 図12は、本発明の実施の形態3における電気機器の概要を示す構成図である。
 本発明の実施の形態である電動機、および、それを備える電気機器は、後述する構成により、ボンド磁石を用いた永久磁石型の電動機の性能ばらつきを抑制できる。その理由は、ボンド磁石を成す混合物を充填することにより、ボンド磁石の密度に疎密の状態が生じても、本実施の形態における電動機が安定した性能を発揮できるためである。
 つまり、従来の永久磁石型の電動機には、つぎの構造上の改善すべき点があった。すなわち、高いエネルギー密度を有するNd-Fe-B系の焼結磁石を、永久磁石の小片として用いた場合、磁石埋込型ロータは高価になる。
 さらに、上述したように、磁石埋込型ロータには、埋め込まれた永久磁石の小片と磁石孔との間に存在する隙間が生じるため、磁石埋込型ロータが発する磁束密度には、損失が生じる。
 また、ボンド磁石が充填される磁石埋込型ロータでは、つぎの改善すべき点がある。ロータコアが含む磁石孔は、ロータコアの中心軸に沿って形成される。磁石孔には、磁石孔の一方に開口された充填口からボンド磁石を成す混合物が充填される。充填された混合物は、硬化して、ボンド磁石となる。
 このような方法で製造されたボンド磁石は、充填口から遠方に位置する部分におけるボンド磁石の密度が、充填口の近傍に位置する部分のボンド磁石の密度よりも低い。
 よって、ボンド磁石には、疎密の状態が生じる。ボンド磁石に疎密の状態が生じると、ロータコアの中心軸方向、すなわち、シャフトの軸心方向において、ボンド磁石から生じる磁束量には、ボンド磁石の疎密状態に応じた、磁気勾配が発生する。したがって、ロータには、シャフトの軸心方向において、この磁気勾配に起因する、磁気吸引力が生じる。
 この結果、永久磁石型の電動機を組み立てる際、シャフトの軸心方向において、ステータコアの中心位置と、ロータコアの中心位置とを合わせても、磁気吸引力により、ステータコアの中心位置とロータコアの中心位置とは、ずれる。磁気吸引力は、シャフトの軸心方向において、ボンド磁石の密度が高い充填口側がステータコアの中心位置が存在する方向に向かって吸引されるよう、作用する。
 このような永久磁石型の電動機は、期待される、所定の性能を発揮することができない。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態は、本発明を具現化した一例であって、本発明の技術的範囲を制限するものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における電動機を構成する主要部の斜視組立図である。図2は、本発明の実施の形態1における電動機を構成する主要部の組立工程を示すフロー図である。
 また、図3は、本発明の実施の形態1における電動機の概要を示す断面図である。図4は、図3に示した電動機の要部拡大図である。図5は、本発明の実施の形態1における電動機に用いられるロータに生じる磁束通路を示す説明図である。図6は、本発明の実施の形態1における電動機に用いられるロータの平面図である。図7は、本発明の実施の形態1における他の電動機の概要を示す断面図である。
 まず、図1、図2を用いて、本発明の実施の形態1における電動機を組み立てる工程の一例について、概要を説明する。なお、以下の説明において、電動機は、永久磁石型の電動機を例示して説明する。
 図1に示すように、本実施の形態1における電動機100は、磁石埋込型ロータ10と、ステータ40と、を備える。なお、以下の説明において、磁石埋込型ロータ10は、単に、ロータ10ということもある。
 図2に示すように、ロータ10と、ステータ40とは、並行して準備される。
 まず、ロータ10は、ロータコア11が準備される(S1)。ロータコア11を構成する薄い鋼板が、金型で打ち抜かれる。それぞれの鋼板は、金型により、磁石孔も打ち抜かれる。金型で打ち抜かれた、複数の鋼板には、シャフト12が挿入される。複数の鋼板は、シャフト12の軸心に沿って積層されて、ロータコア11を形成する。
 つぎに、ロータコア11に形成された磁石孔には、ボンド磁石を成す混合物が充填される(S2)。ボンド磁石を成す混合物は、磁石粉末、樹脂材料および少量の添加剤等が溶融した状態で用いられる。ボンド磁石を成す混合物は、インサート金型が含むゲートから磁石孔に充填される。
 ロータ10に充填された混合物は、成形工程を経て硬化され、ボンド磁石となる。成形工程は、混合物に含まれる樹脂材料の特性に応じた工程が施される(S3)。
 ここで、成形工程とは、ボンド磁石が成形される工程をいう。特に、樹脂材料として熱硬化性樹脂が用いられる場合、成形工程は、つぎの工程を含む。すなわち、成形工程では、混合物を加熱して、加熱された混合物を溶融する、加熱工程を含む。加熱された混合物では、熱硬化反応が生じるため、混合物は硬化する。硬化した混合物は、冷却工程を経て、冷却される。冷却された混合物は、ボンド磁石となる。
 また、樹脂材料として熱可塑性樹脂が用いられる場合、成形工程は、つぎの工程を含む。すなわち、成形工程では、混合物を加熱して、加熱された混合物を溶融する、加熱工程を含む。加熱された混合物は、冷却工程を経て、冷却される。冷却された混合物は、再硬化し、ボンド磁石となる。
 なお、以下の説明において、ボンド磁石を成す混合物を、ボンド磁石ということもある。
 一方、ステータ40は、ステータコア41が準備される(S4)。ステータコア41は、ロータコア11と同様、薄い鋼板が積層されて形成できる。ステータコア41には、絶縁部材であるインシュレータ42が取り付けられる(S5)。
 つぎに、インシュレータ42が取り付けられたステータコア41には、電流が流される巻線43が巻き回される(S6)。
 それぞれに準備された、ロータ10と、ステータ40とは、組み合わされる(S7)。
 図3に示すように、本実施の形態1における電動機100は、ステータ40の内周側に、ギャップを介して、ロータ10が組み込まれる。電動機100の主要部分の説明は、後述する。図1に示すように、ロータ10が、ステータ40に組み込まれる際、ロータ10が有するシャフト12には、一対のベアリング30が取り付けられる。ロータ10は、一対のベアリング30により、回転自在に支持される。
 つぎに、図3から図6を用いて、本発明の実施の形態1における電動機について、詳細に説明する。なお、図を見易くするため、ハッチングは、主な部材にのみ施している。
 図3、図4に示すように、本実施の形態1における電動機100は、ステータ40と、ロータ10と、一対のベアリング30と、を備える。
 ステータ40は、ステータコア41と、巻線43と、を有する。ステータコア41は、環状に形成される。巻線43は、ステータコア41に巻き回される。巻線43には、駆動電流が流される。巻線43が含む芯線は、銅、銅合金、アルミニウム、アルミニウム合金のうち、いずれかを含むものが使用できる。
 ロータ10は、ステータコア41の内周側に位置し、シャフト12と、ロータコア11と、ボンド磁石14と、を有する。シャフト12は、ステータコア41の環状中心軸41a上に、その軸心12aが位置する。ロータコア11は、シャフト12に取り付けられて、シャフト12の軸心12a方向に柱体を成す。図6に示すように、ロータコア11は、軸心12aに沿って形成される外周面11cと、外周面11cに沿って位置する、複数の磁石孔13と、を含む。ボンド磁石14は、磁石材料と樹脂材料とを混合してなる。図3に示すように、ボンド磁石14は、複数の磁石孔13のそれぞれに充填される。ボンド磁石14は、複数の磁石孔13のそれぞれに充填される際、充填方向において、密度が高い高密度部14bと、高密度部14bよりも密度が低い低密度部14cと、が形成される。
 一対のベアリング30は、ロータコア11を挟んで位置する。一対のベアリング30は、シャフト12を回転自在に支持する。
 さらに、図5に示すように、ロータ10は、複数のd軸磁束通路20と、複数のq軸磁束通路21と、を有する。複数のd軸磁束通路20は、巻線(43)に駆動電流が流されるとき、ステータ40が発生する回転磁界によってロータ10に生じる回転トルクのうち、マグネットトルクを発生する。同様に、複数のq軸磁束通路21は、回転トルクのうち、リラクタンストルクを発生する。
 d軸磁束通路20のそれぞれは、複数のボンド磁石14のそれぞれと交差して位置する。q軸磁束通路21のそれぞれは、複数のボンド磁石14のそれぞれに沿って位置する。
 図3、図4に示すように、電動機100は、シャフト12の軸心12a方向において、ロータコア11の中心位置11bがステータコア41の中心位置41bに対して高密度部14bが存在する側に位置する。
 さらに、図面を用いて、本実施の形態1における電動機について、詳細に説明する。
 図3に示すように、電動機100は、ステータ40と、ロータ10と、を備える。ステータ40は、ステータコア41と、ステータコア41に巻き回された巻線43と、を有する。ロータ10は、ステータ40の内周側に位置する。ロータ10は、ステータ40との間に微小隙間を有して、位置する。
 ロータ10は、ロータコア11と、シャフト12と、永久磁石であるボンド磁石14と、を有する。ロータコア11は、打ち抜かれた複数の鋼板41cが、シャフト12の軸心12a方向に積層される。シャフト12は、ロータコア11に取り付けられる。ボンド磁石14は、ロータコア11に形成された、複数の磁石孔13に充填される。
 一対のベアリング30は、シャフト12を回転自在に支持する。
 ここで、本実施の形態1におけるロータ10について、説明する。
 図6に示すように、ロータコア11は、ロータコア11の外周面11cに沿って、一定の間隔を有して位置する複数の磁石孔13を含む。磁石孔13は、外周面11cからシャフト12に向かって凸となる、円弧状の形状である。具体的には、磁石孔13は、中央部13bが凸となり、両方の端部13cが外周面11cの近傍に位置する。
 図3に示すように、ボンド磁石14を成す混合物14aは、磁石材料と、樹脂材料と、複数の添加剤とが、溶融した状態で用いられる。ボンド磁石14を成す混合物14aは、インサート金具であるゲート50から、充填口13aを介して、磁石孔13に充填される。ボンド磁石14は、磁石孔13に混合物14aが充填された後、成形工程を経て、硬化される。一般的に、成形工程では、充填された混合物14aに圧力を加える工程が含まれる。
 上述したように、特に、樹脂材料として熱硬化性樹脂が用いられる場合、成形工程は、つぎの工程を含む。すなわち、成形工程では、混合物を加熱して、加熱された混合物を溶融する、加熱工程を含む。加熱された混合物では、熱硬化反応が生じるため、混合物は硬化する。硬化した混合物は、冷却工程を経て、冷却される。冷却された混合物は、ボンド磁石となる。
 また、樹脂材料として熱可塑性樹脂が用いられる場合、成形工程は、つぎの工程を含む。すなわち、成形工程では、混合物を加熱して、加熱された混合物を溶融する、加熱工程を含む。加熱された混合物は、冷却工程を経て、冷却される。冷却された混合物は、再硬化し、ボンド磁石となる。
 なお、図3では、ロータ10とステータ40とが組み合わされた状態で、ボンド磁石14を成す混合物14aが、ゲート50から充填される状態が示されている。図3は、後述する、本実施の形態1における電動機100の特徴を分かり易く、図示したものである。実際の物づくりでは、ロータ10が単独の状態で、ボンド磁石14を成す混合物14aが、磁石孔13に充填される。
 また、図7に示すように、ボンド磁石14を成す混合物14aが充填される充填口13aは、出力軸12b側に位置しても、同様の作用効果を得ることができる。このとき、軸心12a方向において、ロータコア11の中心位置11bは、ステータコア41の中心位置41bに対して充填口13a側に位置する。
 なお、本実施の形態1における電動機100において、ロータ10がステータ40に組み込まれた状態で、ボンド磁石14を成す混合物14aが、磁石孔13に充填されることを排除するものではない。
 ロータ10を製造する際、ボンド磁石14を成す混合物14aは、インサート金型であるゲート50から充填口13aを介して、磁石孔13に充填される。上述したように、充填されるボンド磁石14を成す混合物14aは、磁石材料と樹脂材料と少量の添加剤とを混合したものである。このとき、磁石孔13内において、混合物14aに加えられる充填圧力は、均一にならない。つまり、磁石孔13内において、溶融された状態で充填される混合物14aは、充填口13aの反対側に位置する部分のボンド磁石の密度が、充填口13a側に位置する部分のボンド磁石の密度よりも低くなる。
 よって、磁石孔13内に充填されたボンド磁石14の内部では、密度に疎密の状態が生じる。したがって、ボンド磁石14は、軸心12aに沿った方向において、充填口13a側から反充填口13a側に向かって磁束量が小さくなるという、磁気勾配を有する。磁気勾配は、軸心12a方向に作用する、磁気吸引力を発生する。
 一般的に、この磁気吸引力は、ステータと、ロータとの位置関係がずれる要因となる。つまり、電動機は、ステータとロータとを組み合わせる際、ステータコアの中心位置と、ロータコアの中心位置とが、所定の位置関係となるよう、組み合わされる。ステータとロータとが組み合わされた後、磁気吸引力が作用するため、ステータコアの中心位置とロータコアの中心位置との位置関係は、所定の位置関係を維持できない。換言すれば、電動機は、ステータコアの中心位置と、ロータコアの中心位置との位置関係に、ずれが生じる。よって、電動機は、期待される、所定の特性を得ることができない。
 そこで、図3、図4に示すように、本実施の形態1における電動機100は、磁気勾配に応じて、ロータコア11の中心位置11bが、ステータコア41の中心位置41bに対して、軸心12a方向にずらされて、組み立てられる。
 具体的には、本実施の形態1における電動機100は、軸心12a方向において、ロータコア11の中心位置11bが、ステータコア41の中心位置41bに対して充填口13a側にずらされて、組み立てられる。
 換言すれば、電動機100は、磁石孔13に充填されたボンド磁石14の疎密状態に応じて、軸心12a方向において、ロータコア11の中心位置11bが、ステータコア41の中心位置41bに対して充填口13a側にずらされて、組み立てられる。
 よって、電動機100は、軸心12a方向において、磁気勾配に起因する磁気吸引力がロータコア11に作用しても、安定した性能を発揮することができる。
 すなわち、電動機100において、ロータ10は、ステータ40の内周側に組み合わされる。軸心12a方向において、ロータコア11の中心位置11bは、ステータコア41の中心位置41bに対して、磁気勾配に応じた距離分、充填口13a側にずらされて、組み立てられる。
 電動機100が組み立てられた後、ロータ10には、ロータコア11を出力軸12b側へ吸引する磁気吸引力が作用する。よって、電動機100は、軸心12a方向において、ロータコア11の中心位置11bと、ステータコア41の中心位置41bとが一致する。
 軸心12a方向において、ロータコア11の中心位置11bと、ステータコア41の中心位置41bとが一致すれば、ロータ10とステータ40との間において、相互に作用する磁気力が、最低限の損失で利用できる。よって、電動機100は、エネルギー効率が向上し、特性も安定する。
 なお、上述した説明において、図3に示した電動機100は、充填口13aが反出力軸12b側に位置する。
 本発明の技術的範囲は、本構成に限定されるものではない。すなわち、図7に示すように、電動機100は、充填口13aが出力軸12b側に位置しても、同様の作用効果を得ることができる。このとき、軸心12a方向において、ロータコア11の中心位置11bは、ステータコア41の中心位置41bに対して充填口13a側に位置する。
 また、図6に示したロータ10は、極数が6である。つまり、磁石孔13の数は、6である。
 本発明の技術的範囲は、他の極数のロータにも及ぶ。具体的には、nを自然数とするとき、ロータが2n倍の極数を有していれば、本発明の技術的範囲は、本構成のロータにも及ぶ。
 例えば、ステータコアに巻線が集中巻で巻き回される電動機では、つぎの極数とスロット数の組合せでも、同様の作用効果を得ることができる。すなわち、極数とスロット数の組合せには、10極9スロットや、10極12スロットや、12極9スロットや、14極12スロット等がある。
 また、ステータコアに巻線が分布巻で巻き回される電動機では、つぎの極数とスロット数の組合せでも、同様の作用効果を得ることができる。すなわち、極数とスロット数の組合せには、4極24スロットや、4極36スロットや、6極36スロットや、8極48スロット等がある。
 また、ステータコアに巻線が波巻で巻き回される電動機では、つぎの極数とスロット数の組合せでも、同様の作用効果を得ることができる。すなわち、極数とスロット数の組合せには、4極12スロットや、6極18スロット等がある。
 さらに、図6に示したロータ10は、磁石孔13の形状が円弧状である。
 本発明の技術的範囲は、他の形状の磁石孔にも及ぶ。具体的には、磁石孔は、異なる2以上の曲率を含む円弧状でも、同様の作用効果を得ることができる。その他、磁石孔は、V字状や、U字状、底部が角を有するU字状などでも、同様の作用効果を得ることができる。
 (実施の形態2)
 図8は、本発明の実施の形態2における電動機の概要を示す断面図である。図9は、図8に示した電動機の要部拡大図である。図10は、図9に示した電動機のさらに要部拡大図である。図11は、本発明の実施の形態2における他の型電動機の概要を示す断面図である。
 なお、本実施の形態1における電動機と同様の構成については、同じ符号を付して、説明を援用する。
 図8から図10に示すように、本発明の実施の形態2における電動機100aは、実施の形態1にて説明した電動機100に加えて、以下の構成を備える。
 すなわち、一対のベアリング30のうち、高密度部14bが存在する側に位置するベアリング30aは、押圧機構31を有する。押圧機構31は、シャフト12の軸心12a方向において、低密度部14cが存在する側に向けてロータコア11を押圧する。
 特に、押圧機構31は、弾性体で形成される。
 また、顕著な作用効果を奏する、実施の形態は、以下のとおりである。
 すなわち、図9、図10に示すように、一対のベアリング30のうち、高密度部14bが存在する側である、充填口13a側に位置するベアリング30aは、玉軸受130である。玉軸受130は、内輪130aと、外輪130bと、球体130cと、を含む。内輪130aは、シャフト12に取り付けられる。外輪130bは、内輪130aと対向して位置する。複数の球体130cは、内輪130aと外輪130bとの間に位置する。
 シャフト12の軸心12a方向において、外輪130bは、弾性体(31)を有する。弾性体(31)は、低密度部14cが存在する側である、充填口13aが位置する側の反対側に向けて、ロータコア11を押圧する。弾性体(31)は、外輪130bの充填口13aが位置する側の反対側の端面130dに取り付けられる。
 さらに、図面を用いて、本実施の形態2における電動機について、詳細に説明する。
 図8に示すように、電動機100aは、軸心12a方向において、充填口13a側に位置するベアリング30aに、押圧機構31を有する。押圧機構31は、軸心12a方向において、充填口13a側から反充填口13a側に向かって、ロータ10を押圧する。
 つまり、実施の形態1で示した形態では、つぎの現象が生じることがある。
 すなわち、電動機100は、軸心12a方向において、磁気勾配に起因する磁気吸引力がロータコア11に作用する。電動機100は、磁気吸引力により、ロータコア11の中心位置11bと、ステータコア41の中心位置41bとが一致する。
 ところで、実施の形態1で示した電動機100は、ロータ10とステータ40との位置関係が磁気吸引力という磁力によって保持される、形態である。
 本形態の場合、電動機100が駆動する際、ロータ10が軸心12a方向に振動することがある。ロータ10の振動は、電動機100が振動する要因となる。あるいは、ロータ10の振動は、電動機100から騒音が生じる要因となる。
 そこで、本実施の形態2における電動機100aは、物理的な手段として、押圧機構31を有する。
 すなわち、電動機100aは、ステータ40の内周部にロータ10を組み込む際、つぎの対応が行われる。
 まず、電動機100aは、軸心12a方向において、ロータコア11の中心位置11bがステータコア41の中心位置41bに対して、高密度部14bが存在する側である、充填口13a側にずらされて、組み込まれる。
 さらに、電動機100aは、軸心12a方向において、充填口13a側に位置するベアリング30aに、押圧機構31が取り付けられる。押圧機構31は、軸心12a方向において、ベアリング30aがロータ10を出力軸12b方向に押圧する力を作用するよう、取り付けられる。
 具体例として、図9、図10に示すように、ベアリング30aが、玉軸受130である場合を示す。
 玉軸受130は、内輪130aと、外輪130bと、球体130cと、を含む。内輪130aは、シャフト12に取り付けられる。外輪130bは、内輪130aと対向して位置する。内輪130aと外輪130bとの間には、球体130cが位置する。
 このとき、軸心12a方向において、外輪130bは、充填口13aと対向する端面の反対側に位置する端面130dに、押圧機構31が取り付けられる。
 本構成とすれば、押圧機構31は、玉軸受130を介して、ロータ10を出力軸12b方向へ押圧する。
 よって、本実施の形態2における電動機100aは、ボンド磁石14に生じた磁気勾配に起因する磁気吸引力が生じたとしても、2つの力により、軸心12a方向において、ロータ10とステータ40との位置関係を維持できる。
 すなわち、2つの力のうち、ひとつは、実施の形態1で説明した磁気吸引力である。軸心12a方向において、電動機100aは、ロータコア11の中心位置11bとステータコア41の中心位置41bとがずらされて、組み合わされる。磁気吸引力は、ロータコア11の中心位置11bとステータコア41の中心位置41bとが、一致するよう、作用する。
 また、2つの力のうち、他のひとつは、上述した押圧機構31による、押圧力である。軸心12a方向において、押圧力は、ロータ10を出力軸12b方向に作用する。
 上述した2つの力により、本実施の形態2における電動機100aは、電動機100aが駆動している場合でも、ロータ10とステータ40との位置関係を安定して維持できる。
 特に、押圧機構31は、弾性体で構成される。弾性体の具体例として、ばね座金(Spring Washer)や、皿ばね座金(Conical Spring Washer)などを用いることができる。同様の作用効果を奏するものであれば、他の部材を用いることもできる。
 本構成とすれば、軸心12a方向において、磁気吸引力に起因する、ロータ10の振動が生じても、弾性体が、この振動を吸収する。よって、電動機100aは、安定した性能を提供するとともに、低振動、低騒音で駆動される。
 なお、上述した説明において、図8に示した電動機100aは、充填口13aが反出力軸12b側に位置する。
 本発明の技術的範囲は、本構成に限定されるものではない。すなわち、図11に示すように、電動機100aは、充填口13aが出力軸12b側に位置しても、同様の作用効果を得ることができる。このとき、押圧機構31は、出力軸12b側に位置するベアリング30bに取り付けられる。また、軸心12a方向において、ロータコア11の中心位置11bは、ステータコア41の中心位置41bに対して充填口13a側に位置する。
 (実施の形態3)
 図12は、本発明の実施の形態3における電気機器の概要を示す構成図である。
 なお、本実施の形態1、2における電動機と同様の構成については、同じ符号を付して、説明を援用する。
 図12に示すように、本発明の実施の形態3における電気機器200は、実施の形態1にて説明した電動機100と、電動機100を制御する制御部201と、を備える。
 あるいは、本発明の実施の形態3における電気機器200は、実施の形態2にて説明した電動機100aと、電動機100aを制御する制御部201と、を備える。
 本構成とすれば、上述した実施の形態1、2で説明した作用効果が援用される、電気機器200を得ることができる。
 具体的には、電気機器200は、エアコンなどの家電機器がある。あるいは、電気機器200は、ロボットなどの産業機器がある。
 本発明の電動機は、ボンド磁石を成す混合物を充填した結果、ボンド磁石の密度に疎密状態が生じても、安定した性能を発揮することができる。本発明の型電動機は、特に用途は限定されない。本発明の電動機は、エアコンなどの家電機器や、ロボットなどの産業機器など、各種の電気機器に適用できる。
 10 ロータ(磁石埋込型ロータ)
 11 ロータコア
 11a 中心軸
 11b,41b 中心位置
 11c 外周面
 12 シャフト
 12a 軸心
 12b 出力軸
 13 磁石孔
 13a 充填口
 13b 中央部
 13c 端部
 14 ボンド磁石
 14a 混合物
 14b 高密度部
 14c 低密度部
 20 d軸磁束通路
 21 q軸磁束通路
 30,30a,30b ベアリング
 31 押圧機構(弾性体)
 40 ステータ
 41 ステータコア
 41a 環状中心軸
 41c 鋼板
 42 インシュレータ
 43 巻線
 50 ゲート
 100,100a 電動機
 130 玉軸受
 130a 内輪
 130b 外輪
 130c 球体
 130d 端面
 200 電気機器
 201 制御部

Claims (5)

  1.       環状に形成されるステータコアと、
          前記ステータコアに巻き回されて、駆動電流が流される巻線と、
       を有するステータと、
       前記ステータコアの内周側に位置し、
          前記ステータコアの環状中心軸上に、その軸心が位置する、シャフトと、
          前記シャフトに取り付けられて、前記シャフトの軸心方向に柱体を成し、
             前記軸心に沿って形成される外周面と、
             前記外周面に沿って位置する、複数の磁石孔と、
          を含む、ロータコアと、
             磁石材料と樹脂材料とを混合して成り、前記複数の磁石孔のそれぞれに充填されるとともに、前記複数の磁石孔のそれぞれに充填される際、充填方向において、
                密度が高い高密度部と、
                前記高密度部よりも密度が低い低密度部と、
          が形成される、ボンド磁石と、
       を有するロータと、
       前記ロータコアを挟んで位置し、前記シャフトを回転自在に支持する、一対のベアリングと、
    を備え、
    前記ロータは、
       前記巻線に前記駆動電流が流されるとき、前記ステータが発生する回転磁界によって前記ロータに生じる回転トルクのうち、マグネットトルクを発生する、複数のd軸磁束通路と、
       前記回転トルクのうち、リラクタンストルクを発生する、複数のq軸磁束通路と、
    を有し、前記d軸磁束通路のそれぞれは、前記複数のボンド磁石のそれぞれと交差して位置し、前記q軸磁束通路のそれぞれは、前記複数のボンド磁石のそれぞれに沿って位置するとともに、前記軸心方向において、前記ロータコアの中心位置が、前記ステータコアの中心位置に対して前記高密度部が存在する側に位置する、
    電動機。
  2. 前記一対のベアリングのうち、前記高密度部が存在する側に位置するベアリングは、前記軸心方向において、前記低密度部が存在する側に向けて前記ロータコアを押圧する、押圧機構を有する、請求項1に記載の電動機。
  3. 前記押圧機構は、弾性体で形成される、請求項2に記載の電動機。
  4. 前記一対のベアリングのうち、前記高密度部が存在する側に位置するベアリングは、
       前記シャフトに取り付けられる内輪と、
       前記内輪と対向して位置する外輪と、
       前記内輪と前記外輪との間に位置する、複数の球体と、
    を含む、玉軸受であり、
    前記軸心方向において、前記外輪は、前記低密度部が存在する側に向けて前記ロータコアを押圧するとともに、前記外輪の前記低密度部が存在する側の端面に取り付けられる、弾性体を有する、請求項1に記載の電動機。
  5.    請求項1から4のいずれか一項に記載した電動機と、
       前記電動機を制御する制御部と、
    を備える電気機器。
PCT/JP2015/004513 2014-09-17 2015-09-07 電動機およびそれを備える電気機器 WO2016042730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580038423.5A CN106537741A (zh) 2014-09-17 2015-09-07 电动机和具备该电动机的电气设备
US15/326,012 US20170201166A1 (en) 2014-09-17 2015-09-07 Electric motor and electrical apparatus comprising same
JP2016501256A JP5942178B1 (ja) 2014-09-17 2015-09-07 電動機およびそれを備える電気機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-188956 2014-09-17
JP2014188956 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016042730A1 true WO2016042730A1 (ja) 2016-03-24

Family

ID=55532788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004513 WO2016042730A1 (ja) 2014-09-17 2015-09-07 電動機およびそれを備える電気機器

Country Status (4)

Country Link
US (1) US20170201166A1 (ja)
JP (1) JP5942178B1 (ja)
CN (1) CN106537741A (ja)
WO (1) WO2016042730A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845071B (zh) * 2016-10-24 2021-06-01 松下知识产权经营株式会社 飞行装置
CN110537314A (zh) * 2017-04-24 2019-12-03 松下知识产权经营株式会社 电动机组件、电动机、装置
JP2020191696A (ja) * 2019-05-17 2020-11-26 Tdk株式会社 回転電機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233802A (ja) * 1996-02-28 1997-09-05 Sankyo Seiki Mfg Co Ltd モータ
JPH1051984A (ja) * 1996-08-06 1998-02-20 Matsushita Electric Ind Co Ltd 永久磁石同期電動機
JPH11262205A (ja) * 1998-03-12 1999-09-24 Fujitsu General Ltd 永久磁石電動機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271722A (ja) * 1997-03-21 1998-10-09 Matsushita Electric Ind Co Ltd 永久磁石埋め込みロータ
JP4734957B2 (ja) * 2005-02-24 2011-07-27 トヨタ自動車株式会社 ロータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233802A (ja) * 1996-02-28 1997-09-05 Sankyo Seiki Mfg Co Ltd モータ
JPH1051984A (ja) * 1996-08-06 1998-02-20 Matsushita Electric Ind Co Ltd 永久磁石同期電動機
JPH11262205A (ja) * 1998-03-12 1999-09-24 Fujitsu General Ltd 永久磁石電動機

Also Published As

Publication number Publication date
JPWO2016042730A1 (ja) 2017-04-27
CN106537741A (zh) 2017-03-22
JP5942178B1 (ja) 2016-06-29
US20170201166A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
US10875053B2 (en) Method for making a component for use in an electric machine
JP5108236B2 (ja) モータ用ロータ
JP5398512B2 (ja) アキシャルギャップ型永久磁石モータ、それに用いるロータ、及びそのロータの製造方法
US10050481B2 (en) Permanent magnet type motor and method for manufacturing permanent magnet type motor
WO2016042720A1 (ja) 電動機
WO2015147304A1 (ja) 弓形磁石片、永久磁石片、永久磁石組立体、永久磁石応用装置およびモータ
JP7262926B2 (ja) ラジアルギャップ型回転電機
JP2008245488A (ja) リング状磁石及びその製造方法、並びにモータ
JP2012039746A (ja) 磁石挿入方法、ロータ及び電動機
JP5942178B1 (ja) 電動機およびそれを備える電気機器
WO2017056480A1 (ja) 電動機要素、電動機、装置
US20080172861A1 (en) Methods for manufacturing motor core parts with magnetic orientation
JP2016072995A (ja) 埋め込み磁石型ロータおよびそれを備えた電動機
JP6655290B2 (ja) アキシャルギャップ型回転電機
JP2016226274A (ja) ロータアセンブリ及びこのロータアセンブリを有するモータ
JP2016213980A (ja) 永久磁石形電動機の回転子の製造方法
JP5766134B2 (ja) シャフト型リニアモータ可動子、永久磁石、リニアモータ
JP6384543B2 (ja) 極異方性リング磁石、及びそれを用いた回転子
JP6788945B2 (ja) 電気機械のためのロータ、ロータを有する電気機械、およびロータの製造方法
JP2017070031A (ja) ロータ
JP2010252417A (ja) アウターロータ型ipmモータとそのロータ
JP5692105B2 (ja) Ipmモータ用ロータの製造方法
JP2015198475A (ja) ロータコア
JP2016178784A (ja) 磁石部材の製造装置およびその製造方法
JP6341115B2 (ja) 極異方性リング磁石、及びそれを用いた回転子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016501256

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842382

Country of ref document: EP

Kind code of ref document: A1