WO2016041280A1 - 有机电致发光器件及其制备方法、显示装置 - Google Patents

有机电致发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2016041280A1
WO2016041280A1 PCT/CN2014/094078 CN2014094078W WO2016041280A1 WO 2016041280 A1 WO2016041280 A1 WO 2016041280A1 CN 2014094078 W CN2014094078 W CN 2014094078W WO 2016041280 A1 WO2016041280 A1 WO 2016041280A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
auxiliary electrode
organic electroluminescent
forming
gas generating
Prior art date
Application number
PCT/CN2014/094078
Other languages
English (en)
French (fr)
Inventor
王辉锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/768,524 priority Critical patent/US9508933B2/en
Publication of WO2016041280A1 publication Critical patent/WO2016041280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/18Deposition of organic active material using non-liquid printing techniques, e.g. thermal transfer printing from a donor sheet
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques

Definitions

  • Embodiments of the present invention relate to an organic electroluminescent device, a method of fabricating the same, and a display device.
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • the OLED device is generally composed of an anode layer, a light-emitting layer and a cathode layer, and can be classified into two types, a bottom emission and a top emission, depending on the light-emitting surface. Since the top emission device can obtain a larger aperture ratio, it has become a research hotspot in recent years.
  • Top-emitting OLEDs require a thin cathode and a reflective anode to increase the transmittance of light, while a thin transparent cathode has a large square resistance and a large voltage drop (IR Drop). Generally, the farther away from the power supply point, the voltage drop of the OLED light-emitting surface is higher. Obviously, the OLED device has obvious illuminating unevenness.
  • auxiliary electrodes which are in communication with the transparent cathode and which are in communication with each other.
  • the auxiliary electrode is generally composed of a metal having a small resistivity, and has a thick thickness, a sheet resistance of about 1 ⁇ , and a current voltage drop. Thereby, the voltage drop across the cathode panel at the time of energization is small, and the brightness uniformity is improved.
  • the auxiliary electrode Since the auxiliary electrode is opaque, light cannot pass, and thus the added auxiliary electrode cannot be placed directly above the light-emitting layer. According to whether the auxiliary electrode is fabricated on the array substrate (array back sheet) or on the color film substrate (color film back sheet), it can be divided into an upper auxiliary electrode and a lower auxiliary electrode.
  • the color filter substrate and the OLED substrate are pressed against the cartridge under vacuum, and the conductive layer on the spacer contacts and deforms under pressure under the cathode.
  • the deformation of the spacer may cause the conductive layer to break, there is a danger that the auxiliary electrode and the cathode are connected to be disconnected, so the force of the pressing must be precisely controlled; 2. Since the conductive layer and the cathode contact on the spacer are There is a risk of contact failure due to face contact.
  • the auxiliary electrode is fabricated in a non-light-emitting region on the cathode.
  • a thin cathode metal is also easily overetched.
  • the auxiliary electrode is fabricated by using a Fine Metal Mask (FMM) vapor deposition technique.
  • FMM Fine Metal Mask
  • the vapor-deposited auxiliary electrode is not a problem, but there is a problem that the auxiliary electrode is generally thick and the evaporation time is slightly longer. More deadly is that as the size of the panel increases, the corresponding FMM also increases, and the alignment problem caused by the mask (MASK) due to gravity variability occurs.
  • MASK mask
  • At least one embodiment of the present invention provides a method of fabricating an organic electroluminescent device, comprising: forming an auxiliary electrode on a resin layer of an organic electroluminescent substrate; forming a gas generating layer on the auxiliary electrode; Forming an organic electroluminescent layer on the generating layer; placing an acceptor substrate on the organic electroluminescent layer, and then scanning the auxiliary electrode region with a laser, so that the gas generating layer is decomposed under laser irradiation to release gas, thereby Transferring the organic electroluminescent layer of the auxiliary electrode region onto the acceptor substrate; removing the acceptor substrate; forming a cathode on the auxiliary electrode.
  • the gas generating layer employs a material capable of releasing a gas under laser excitation.
  • the gas generating layer material may be gallium nitride (GaN), aluminum nitride (AlN), pentaerythritol tetranitrate (PETN) or trinitrotoluene (TNT).
  • GaN gallium nitride
  • AlN aluminum nitride
  • PETN pentaerythritol tetranitrate
  • TNT trinitrotoluene
  • the gas generating layer may have a thickness of 10 nm to 100 ⁇ m.
  • the gas generating layer may have a thickness of 200 to 500 nm.
  • a photothermal conversion layer may be formed between the auxiliary electrode and the gas generating layer, and the photothermal conversion layer may be composed of a light absorbing material.
  • the light absorbing material may be an organic film, a metal oxide, a metal sulfide, and a composite thereof.
  • a buffer layer may be formed between the gas generating layer and the organic electroluminescent layer, the buffer layer for controlling adhesion between the gas generating layer and the organic electroluminescent layer.
  • the buffer layer may be composed of an organic substance or a metal oxide.
  • an anode is formed on the resin layer and a pixel defining layer structure having a pixel region and an auxiliary electrode region is formed.
  • the pixel defining layer structure is formed before the auxiliary electrode is formed, or the pixel defining layer structure is formed after the auxiliary electrode is formed.
  • an organic electroluminescent layer is formed on the gas generating layer, at the anode and The organic electroluminescent layer is formed on the pixel defining layer structure.
  • the method further includes forming a gate layer, a gate insulating layer, an active layer, an etch barrier layer, a passivation layer, and the like on the glass substrate Resin layer.
  • the cathode may be formed on the organic electroluminescent layer while forming a cathode on the auxiliary electrode.
  • Embodiments of the present invention also provide an organic electroluminescent device which is produced by any of the foregoing methods.
  • Embodiments of the present invention also provide a display device including the foregoing organic electroluminescent device.
  • FIG. 1 is a schematic structural view of preparing an auxiliary electrode in a method of fabricating an organic electroluminescent device according to an embodiment of the invention
  • FIG. 2 is a schematic view of a PDL structure prepared in a method of fabricating an organic electroluminescent device according to an embodiment of the invention
  • 3a is a schematic structural view of preparing an OLED layer in a method of fabricating an organic electroluminescent device according to an embodiment of the invention
  • 3b is a schematic structural view of preparing a buffer layer and/or a photothermal conversion layer in a method of fabricating an organic electroluminescent device according to an embodiment of the invention
  • FIG. 4 is a schematic structural view of a stripping auxiliary electrode region OLED layer in a method of fabricating an organic electroluminescent device according to an embodiment of the invention
  • FIG. 5 is a schematic structural view of a cathode prepared in a method of fabricating an organic electroluminescent device according to an embodiment of the invention
  • FIG. 6 is a schematic structural view of a color filter substrate and an OLED device in a box according to an embodiment of the invention.
  • the auxiliary electrode is formed on the array substrate, and then the auxiliary electrode region is irradiated by laser irradiation after the organic electroluminescence (OLED) layer is fabricated, and is coated on the auxiliary electrode layer.
  • OLED organic electroluminescence
  • the photothermal conversion layer is heated, the OLED layer is melted to complete the OLED layer peeling, and then the transparent electrode is evaporated to realize the conduction between the auxiliary electrode and the OLED transparent electrode.
  • the carbonization of the OLED layer of the solution after laser irradiation is easily transferred to the light-emitting region in the subsequent process to cause pixel defects.
  • the technical problem to be solved by the embodiments of the present invention is how to overcome the defect of the pixel region by the new auxiliary electrode preparation process, thereby improving the quality of the display of the light emitting device.
  • FIGS. 1 to 6 there is provided a method of fabricating an organic electroluminescent device, comprising the steps of:
  • a cathode 7 is formed on the auxiliary electrode 2.
  • the auxiliary electrode 2 is preferably a metal having a resistivity of less than 10 ⁇ 10 -8 ⁇ m, such as silver, copper, aluminum, molybdenum, and alloys thereof.
  • the thickness of the metal may be from 100 nm to 1000 nm, and the metal wiring may be in the form of a mesh or a strip.
  • the gas generating layer includes a material capable of releasing a gas under excitation of a certain amount of laser light, and may have a thickness of 10 nm to 100 ⁇ m, preferably 200 to 500 nm.
  • the bandgap energy of the material is small, for example, a material that can easily absorb the energy of the ultraviolet band laser.
  • Optional gas generating layer materials such as GaN (band gap 3.3 eV), AlN (band gap 6.3 eV), which can be decomposed under laser irradiation to produce N 2 and corresponding metals.
  • the optional gas generating layer may be a material such as pentaerythritol tetranitrate (PETN) or trinitrotoluene (TNT) which decomposes under laser irradiation to produce N 2 .
  • the gas generating material may be a gas generating material or a mixture of a plurality of gas materials, or a gas generating material doped with other photothermal conversion materials or the like.
  • the principle of peeling is that the laser light source is radiated to the gas generating layer through the substrate, and the gas generating layer material absorbs a large amount of energy of the laser light, so that the temperature of the material rises rapidly, and the gas is thermally decomposed to generate gas, thereby separating the gas generating layer and the auxiliary electrode. Therefore, by placing a suitable acceptor substrate on the OLED layer and then scanning the auxiliary electrode region with the laser, the gas generating layer is decomposed under the irradiation of the laser to release the gas, thereby realizing the transfer of the auxiliary electrode region OLED layer to the acceptor substrate. on.
  • the present embodiment may further include forming a photothermal conversion layer 20 between the auxiliary electrode 2 and the gas generating layer 4, as shown in FIG. 3b.
  • the photothermal conversion layer 20 may be composed of a light absorbing material that absorbs most of the light in the infrared and visible regions, and the laser absorbing material may be an organic film, a metal oxide, a metal sulfide, and a composite thereof.
  • the present embodiment may further include forming a buffer layer 21 between the gas generating layer 4 and the organic electroluminescent layer 6, as shown in FIG. 3b.
  • the buffer layer 21 can be used to control the adhesion between the gas generating layer 4 and the OLED layer 6, making the transfer easier, and the buffer layer 21 can be composed of an organic substance or a metal oxide.
  • the embodiment may further include forming the anode 3 on the resin layer and forming a pixel defining layer (PDL) structure 5 having a pixel region and an auxiliary electrode region.
  • PDL pixel defining layer
  • the preparation method of the organic electroluminescence device may include: referring to FIG. 1, forming an anode 3 and an auxiliary electrode 2 on the TFT back sheet resin layer 1 by a film forming, exposure, development, drying, etc., on the auxiliary electrode 2
  • the gas generating layer 4 is formed, and a PDL (for example, bank-like) structure 5 having a pixel (Pixel) region and an auxiliary electrode region 22 is formed on the resin layer 1 by a process of film formation, exposure, development, drying, or the like (see figure 2).
  • the fabrication of PDL structure 5 can be assisted After the electrode 2 is formed, it may be formed before the auxiliary electrode 2 is formed.
  • the method of fabricating the PDL structure 5 may include the following steps.
  • a PDL film for a PDL structure is formed.
  • a photoresist film is formed on the surface of the substrate containing the anode, and the common film formation methods include spin coating, slit, etc.; the height of the PDL may be 0.1 ⁇ m to 100 ⁇ m, preferably 1 5 ⁇ m; the PDL material may be a resin, polyimide, silicone, SiO 2 or the like.
  • a half exposure technique (Half-Tone) can be used.
  • the present embodiment may further include forming the organic electroluminescent layer 6 on the anode and the PDL defining structure while forming the organic electroluminescent layer 6 on the gas generating layer.
  • a typical OLED light-emitting layer 6 includes one or more layers of a hole injection layer, a hole transport layer, a light-emitting layer, a hole blocking layer, an electron blocking layer, an electron transport layer, an electron injection layer, and the like. Or a series white light structure of a plurality of the above OLED layer units.
  • the top-emitting OLED device generally adopts a WOLED (White Organic Light-Emitting Diodes) device structure, that is, an OLED layer is deposited on the PDL layer with an opening mask.
  • WOLED White Organic Light-Emitting Diodes
  • the following steps may be further included: forming a gate layer, a gate insulating layer, an active layer, an etch barrier layer, a passivation layer, and a resin layer on the glass substrate.
  • a TFT pattern having a thickness of 1 ⁇ m to 100 ⁇ m is formed by repeating a film formation, exposure, etching, and development process a plurality of times on a glass substrate, and common film formation processes include sputtering, enhanced chemical vapor deposition (PECVD), and steaming. Plating, spin coating, knife coating, printing, inkjet printing, etc.
  • PECVD enhanced chemical vapor deposition
  • the present embodiment may further include forming the cathode 7 on the organic electroluminescent layer while forming the cathode 7 on the auxiliary electrode 2.
  • the cathode 7 is deposited on the OLED layer.
  • the cathode 7 is a transparent electrode, preferably a transparent metal having good conductivity and an oxide thereof.
  • Transparent electrodes which can be recommended are ITO, thin metal, graphene, etc. or a combination thereof.
  • top-emitting OLED devices generally adopt a WOLED device structure, that is, an oxide mask is used to vapor-deposit the cathode on the OLED layer. (Cathode), thereby forming the structure of the surface cathode.
  • the auxiliary electrode region Due to the use of an open mask, in addition to the deposition of the OLED layer and the cathode metal in the pixel region, the auxiliary electrode region also deposits the OLED layer and the cathode metal. The auxiliary electrode region may also not deposit cathode metal.
  • a suitable acceptor substrate 12 is placed on the OLED layer, and then the auxiliary electrode region is scanned by the laser A, and the gas generating layer 4 is decomposed under the irradiation of the laser A to release the gas 13, thereby realizing the auxiliary electrode.
  • the region OLED layer is transferred onto the acceptor substrate 12.
  • the embodiment may further include: forming a black matrix 10, a color film (Color-filter, CF) 9 by an exposure and development process on the glass substrate 11, for example, including R/ A G/B pixel unit) and an overcoat layer 8, and then an auxiliary electrode is formed over the flat layer 8, after which the CF substrate and the OLED substrate are accurately aligned and vacuum-bonded.
  • a black matrix 10 a color film (Color-filter, CF) 9 by an exposure and development process on the glass substrate 11, for example, including R/ A G/B pixel unit) and an overcoat layer 8, and then an auxiliary electrode is formed over the flat layer 8, after which the CF substrate and the OLED substrate are accurately aligned and vacuum-bonded.
  • CF color film
  • an organic electroluminescence device which is produced by any of the foregoing methods.
  • a display device comprising any of the foregoing organic electroluminescent devices.
  • the display device includes, but is not limited to, a liquid crystal display, a liquid crystal television, a liquid crystal display, etc., and may also be a display device that requires a display module, such as a digital photo frame, an electronic paper, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator, and the like.
  • a display module such as a digital photo frame, an electronic paper, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator, and the like.
  • the embodiment of the present invention can effectively reduce the contact failure between the auxiliary electrode and the cathode by using the new top-emitting OLED device auxiliary electrode manufacturing process, and avoid the laser-sintering of the organic material or the residue after the cathode is transferred to the pixel region in the subsequent process. Pixel defects, thereby improving the quality of the display of the light-emitting device and improving the yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件的制备方法,包括:在有机电致发光基板的树脂层(1)上形成辅助电极(2);在辅助电极(2)上形成气体产生层(4);在气体产生层(4)上形成有机电致发光层(6);在有机电致发光层(6)上放置受体基板(12),然后用激光扫描辅助电极区(22),使得气体产生层(4)在激光照射下发生分解,释放出气体,从而将辅助电极区(22)的有机电致发光层(6)转移到受体基板(12)上;移除受体基板(12);在辅助电极上形成阴极(7)。该制作工艺可有效降低辅助电极同阴极的接触不良。

Description

有机电致发光器件及其制备方法、显示装置 技术领域
本发明的实施例涉及一种有机电致发光器件及其制备方法、显示装置。
背景技术
有机电致发光器件(Organic Light-Emitting Diode,OLED)相对于LCD(Liquid Crystal Display,液晶显示器)具有自发光、反应快、视角广、亮度高、色彩艳、轻薄等优点。OLED器件通常由阳极层、发光层和阴极层组成,根据发光面不同可分为底发射和顶发射两种。由于顶发射器件可以获得更大的开口率,近年来成为研究的热点。顶发射OLED需要薄的阴极和反射阳极以增加光的透过率,而薄的透明阴极方阻较大,电压降(IR Drop)严重,一般离电源供给地点越远的OLED发光面电压降越明显,从而导致OLED器件有明显的发光不均匀现象。
为改善器件的亮度不均匀现象,人们提出了很多方案,其大多是增加与所述透明阴极连通且相互连通的辅助电极。辅助电极一般可由电阻率小的金属组成,其厚度较厚,方块电阻约1Ω,电流压降减小。由此,通电时经过阴极面板的电压降较小,亮度均匀性得到改善。
由于辅助电极不透明,光不能通过,因此增加的辅助电极不能放置于发光层的正上方。根据辅助电极是制作在阵列基板(阵列背板)上还是在彩膜基板(彩膜背板)上,其可分为上辅助电极和下辅助电极两种解决方案。
对于上辅助电极方案而言,通过彩膜基板和OLED基板在真空下压合对盒,隔垫物上导电层在压力下和阴极接触并形变。这存在两个问题:1、隔垫物形变可能导致导电层断裂,存在辅助电极和阴极连接断路的危险,因此必须精确控制压合的力度;2、由于隔垫物上导电层和阴极接触是面接触而存在接触不良风险。
对于下辅助电极方案而言,为了避免辅助电极和阴极接触不良的风险,将辅助电极制作在阴极上的不发光区。这就存在一个问题:通过现有的曝光工艺、可以较容易实现辅助电极的定位精度要求,但是OLED材料对潮气和 水汽非常敏感,无法兼容TFT刻蚀工序。另一方面薄的阴极金属也容易被过刻蚀。采用精细金属掩膜(Fine Metal Mask,FMM)蒸镀技术制作辅助电极,对于小尺寸面板来说,蒸镀辅助电极不成问题,但存在辅助电极一般较厚,蒸镀时间稍长的问题。更为致命的是随着面板尺寸的增大,所对应的FMM也随之增大,掩膜(MASK)由于重力曲张导致的对位问题随之产生。
发明内容
本发明至少一个实施例提供一种有机电致发光器件的制备方法,其包括:在有机电致发光基板的树脂层上形成辅助电极;在所述辅助电极上形成气体产生层;在所述气体产生层上形成有机电致发光层;在所述有机电致发光层上放置受体基板,然后用激光扫描辅助电极区,使得所述气体产生层在激光照射下发生分解,释放出气体,从而将所述辅助电极区的有机电致发光层转移到所述受体基板上;移除所述受体基板;在所述辅助电极上形成阴极。
例如,所述气体产生层采用在激光激发下能释放气体的材料。
例如,所述气体产生层材料可为氮化镓(GaN)、氮化铝(AlN)、季戊四醇四硝酸酯(PETN)或者三硝基甲苯(TNT)。
例如,所述气体产生层的厚度可为10nm-100μm。例如,所述气体产生层的厚度可为200-500nm。
例如,可在所述辅助电极与所述气体产生层之间形成光热转换层,所述光热转换层可由光吸收材料组成。
例如,所述光吸收材料可为有机膜、金属氧化物、金属硫化物及其复合物。
例如,可在所述气体产生层与所述有机电致发光层之间形成缓冲层,所述缓冲层用于控制所述气体产生层与所述有机电致发光层之间的粘附力。
例如,所述缓冲层可由有机物或金属氧化物组成。
例如,在所述树脂层上形成阳极以及形成具备像素区和辅助电极区的像素界定层结构。
例如,在形成所述辅助电极之前形成所述像素界定层结构,或者,在形成所述辅助电极之后形成所述像素界定层结构。
例如,在所述气体产生层上形成有机电致发光层的同时,在所述阳极和 所述像素界定层结构上形成所述有机电致发光层。
例如,在形成所述辅助电极、所述阳极以及所述像素界定层结构之前,还可包括在玻璃基板上形成栅极层、栅绝缘层、有源层、刻蚀阻挡层、钝化层以及树脂层。
例如,可在所述辅助电极上形成阴极的同时,在所述有机电致发光层上形成所述阴极。
本发明的实施例还提供一种有机电致发光器件,所述有机电致发光器件通过前述任一种方法制得。
本发明的实施例还提供一种显示装置,其包括前述有机电致发光器件。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为根据本发明实施例的有机电致发光器件的制备方法中制备辅助电极的结构示意图;
图2为根据本发明实施例的有机电致发光器件的制备方法中制备PDL结构的示意图;
图3a为根据本发明实施例的有机电致发光器件的制备方法中制备OLED层的结构示意图;
图3b为根据本发明实施例的有机电致发光器件的制备方法中制备缓冲层和/或光热转换层的结构示意图;
图4为根据本发明实施例的有机电致发光器件的制备方法中剥离辅助电极区OLED层的结构示意图;
图5为根据本发明实施例的有机电致发光器件的制备方法中制备阴极的结构示意图;
图6为根据本发明实施例的将彩膜基板和OLED器件进行对盒的结构示意图。
附图标记:
1-树脂层;2-辅助电极;3-阳极;4-气体产生层;5-像素界定层结构;6- 有机电致发光层;7-阴极(透明电极);8-平坦层;9-彩色像素层;10-黑矩阵;11-玻璃基板;12-受体基板;20-光热转换层;21-缓冲层;22-辅助电极区。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了克服背景技术中提及的缺陷,人们使用了如下方案:把辅助电极制作在阵列基板上,然后在有机电致发光(OLED)层制作后通过激光照射辅助电极区,涂覆在辅助电极层之上的光热转换层发热后把OLED层熔化,从而完成OLED层剥离,之后蒸镀透明电极实现辅助电极和OLED透明电极的导通。而该方案OLED层在激光照射后的碳化在随后的工艺中容易转移到发光区从而引起像素缺陷。
本发明的实施例要解决的技术问题是如何通过新的辅助电极制备工艺来克服像素区缺陷,从而提高发光器件显示的品质。
如图1~6所示,根据本发明第一实施例,提供一种有机电致发光器件的制备方法,其包括以下步骤:
S1、在有机电致发光基板的树脂(Resin)层1上形成辅助电极2;
S2、在辅助电极2上形成气体产生层4;
S3、在气体产生层4上形成有机电致发光层6;
S4、在有机电致发光层6上放置受体基板12,然后用激光扫描辅助电极区22,使得气体产生层4在激光照射下发生分解,释放出气体,从而将辅助电极区22的有机电致发光层6转移到受体基板12上;
S5、移除受体基板12;
S6、在辅助电极2上形成阴极7。
例如,辅助电极2优选电阻率小于10×10-8Ω·m的金属,如银、铜、铝、钼及其合金。金属的厚度可以为100nm-1000nm,金属布线可以是网状,也 可以是条状。
气体产生层包括在一定能量的激光激发下能释放气体的材料,厚度可为10nm-100μm,优选200-500nm。材料的带隙能量要小,例如,可选易于吸收紫外波段激光的能量的材料。可选的气体产生层材料如GaN(带隙3.3eV)、AlN(带隙6.3eV),它们在激光照射下可以分解产生N2和对应的金属。另外可选的气体产生层也可以是季戊四醇四硝酸酯(PETN)、三硝基甲苯(TNT)等材料,它们在激光照射下可以分解产生N2。气体产生材料可以是上述一种气体产生材料或者多种气体材料的混合,或者气体产生材料掺杂其它光热转化材料等。
剥离原理是激光光源透过衬底辐射到气体产生层,气体产生层材料大量吸收激光的能量,从而材料的温度迅速上升,发生热分解产生气体,从而实现气体产生层与辅助电极的分离。因此,通过在OLED层之上放置合适的受体基板,然后用激光扫描辅助电极区,气体产生层在激光的照射下发生分解,释放出气体,从而实现辅助电极区OLED层转移到受体基板上。
例如,本实施例还可以包括在辅助电极2与气体产生层4之间形成光热转换层20,如图3b所示。
例如,光热转换层20可由光吸收材料组成,该材料可以吸收红外和可见光区大部分光,激光吸收材料可以是有机膜、金属氧化物、金属硫化物及其复合物。
例如,本实施例还可以包括在气体产生层4与有机电致发光层6之间形成缓冲层21,如图3b所示。
缓冲层21可用来控制气体产生层4与OLED层6之间的粘附力,使得转移更容易,缓冲层21可由有机物或金属氧化物组成。
例如,本实施例还可以包括:在树脂层上形成阳极3以及形成具备像素区和辅助电极区的像素界定层(PDL)结构5。
例如,该有机电致发光器件的制备方法可包括:参见图1,通过成膜、曝光、显影、干燥等工艺在TFT背板树脂层1上形成阳极3和辅助电极2,在辅助电极2上形成气体产生层4,通过成膜、曝光、显影、干燥等工艺在树脂层1上形成同时具备像素(Pixel)区和辅助电极区22的PDL(例如呈堤(Bank)状)结构5(参见图2)。例如,PDL结构5的制作可以在辅助 电极2形成之后,也可以在辅助电极2形成之前形成。
例如,PDL结构5的制作方法可以包括如下步骤。
首先,形成用于PDL结构的PDL膜。
例如,在含有阳极的基板表面形成一层光刻胶薄膜,常用的成膜方式有旋涂(spin coating)、狭缝(slit)等方式;PDL的高度可以为0.1μm-100μm,优选1-5μm;PDL材料可以是树脂、聚酰亚胺、有机硅、SiO2等材料。
然后进行曝光/显影。
为了实现像素区和辅助电极区不同的PDL结构,可使用半曝光技术(Half-Tone)实现。
例如,参考图3a、3b,本实施例还可以包括:在气体产生层上形成有机电致发光层6的同时,在阳极和PDL界定结构上形成有机电致发光层6。例如,典型的OLED发光层6包括空穴注入层、空穴传输层、发光层、空穴阻挡层、电子阻挡层、电子传输层、电子注入层等其中的一层或多层。或者是多个上述OLED层单元的串联白光结构。
由于精细Mask在制作大尺寸OLED面板的困难,顶发射OLED器件一般采取WOLED(White Organic Light-Emitting Diodes,白色有机发光二极管)器件结构,也即在PDL层上用开口掩膜蒸镀OLED层。
在形成辅助电极2、阳极3以及PDL界定结构5之前,还可以包括以下步骤:在玻璃基板上形成栅极层、栅绝缘层、有源层、刻蚀阻挡层、钝化层以及树脂层。
例如,通过在玻璃基板上多次重复成膜、曝光、刻蚀、显影工艺来形成厚度为1μm-100μm的TFT图案,常见的成膜工艺包括溅射、增强型化学气相沉积(PECVD)、蒸镀、旋涂、刮涂、印刷、喷墨打印等。
例如,本实施例还可以包括:在辅助电极2上形成阴极7的同时,在有机电致发光层上形成阴极7。
在OLED层上沉积阴极7,参见图5,阴极7为透明电极,优选导电性好的透明金属及其氧化物。可推荐的透明电极有ITO、薄金属、石墨烯等或者以上组合。
由于精细掩膜在制作大尺寸OLED面板存在困难,顶发射OLED器件一般采取WOLED器件结构,也即在OLED层上用开口掩膜蒸镀阴极 (Cathode),从而形成面阴极的结构。
由于采用的是开口掩膜,除了像素区沉积了OLED层和阴极金属外,辅助电极区同样也沉积了OLED层和阴极金属。辅助电极区也可以不沉积阴极金属。
然后,剥离辅助电极区OLED层。
如图4所示,在OLED层之上放置合适的受体基板12,然后用激光A扫描辅助电极区,气体产生层4在激光A的照射下发生分解,释放出气体13,从而实现辅助电极区OLED层转移到受体基板12上。
例如,如图6所示,本实施例还可以包括:在玻璃基板11上通过曝光显影工艺形成黑矩阵10、彩膜(彩色像素单元)层(Color-filter,CF)9(例如包括R/G/B像素单元)以及平坦层(Overcoat)8,然后在平坦层8上方形成辅助电极,之后CF基板和OLED基板精确对位后真空贴合。
根据本发明的第二实施例提供一种有机电致发光器件,有机电致发光器件通过前述任一种方法制得。
根据本发明的第三实施例提供一种显示装置,其包括前述任一有机电致发光器件。
该显示装置包括但不限于液晶显示器、液晶电视、液晶显示屏等设备,还可以为数码相框、电子纸、手机、手表、平板电脑、笔记本电脑、导航仪等需要显示模组的显示装置。
本发明的实施例通过新的顶发射OLED器件辅助电极制作工艺可以有效降低辅助电极同阴极的接触不良,避免激光烧结有机材料或阴极后融化的残渣在后续的工艺中转移到像素区内所导致的像素缺陷,从而提高发光器件显示的品质,提高成品率。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本专利申请要求于2014年9月15日递交的中国专利申请第201410469986.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (17)

  1. 一种有机电致发光器件的制备方法,包括:
    在有机电致发光基板的树脂层上形成辅助电极;
    在所述辅助电极上形成气体产生层;
    在所述气体产生层上形成有机电致发光层;
    在所述有机电致发光层上放置受体基板,采用激光扫描辅助电极区,使得所述气体产生层在激光照射下发生分解,释放出气体,从而将所述辅助电极区的有机电致发光层转移到所述受体基板上;
    移除所述受体基板;
    在所述辅助电极上形成阴极。
  2. 根据权利要求1所述的方法,其中,所述气体产生层采用在激光激发下能释放气体的材料。
  3. 根据权利要求2所述的方法,其中,所述能释放气体的材料为氮化镓、氮化铝、季戊四醇四硝酸酯或者三硝基甲苯。
  4. 根据权利要求1-3任一项所述的方法,其中,所述气体产生层的厚度为10nm-100μm。
  5. 根据权利要求4所述的方法,其中,所述气体产生层的厚度为200-500nm。
  6. 根据权利要求1所述的方法,还包括在所述辅助电极与所述气体产生层之间形成光热转换层。
  7. 根据权利要求6所述的方法,其中,所述光热转换层由光吸收材料组成。
  8. 根据权利要求7所述的方法,其中,所述光吸收材料为有机膜、金属氧化物、金属硫化物及其复合物。
  9. 根据权利要求1-8任一项所述的方法,还包括:
    在所述气体产生层与所述有机电致发光层之间形成缓冲层,所述缓冲层用于控制所述气体产生层与所述有机电致发光层之间的粘附力。
  10. 根据权利要求9所述的方法,其中,所述缓冲层由有机物或金属氧化物组成。
  11. 根据权利要求1-10任一项所述的方法,还包括:
    在所述树脂层上形成阳极以及形成具备像素区和辅助电极区的像素界定层结构。
  12. 根据权利要求11所述的方法,其中,
    在形成所述辅助电极之前形成所述像素界定层结构,或者,在形成所述辅助电极之后形成所述像素界定层结构。
  13. 根据权利要求11或12所述的方法,还包括:
    在所述气体产生层上形成有机电致发光层的同时,在所述阳极和所述像素界定层结构上形成所述有机电致发光层。
  14. 根据权利要求11-13任一项所述的方法,在形成所述辅助电极、所述阳极以及所述像素界定层结构之前,还包括:
    在玻璃基板上形成栅极、栅绝缘层、有源层、刻蚀阻挡层、钝化层、以及树脂层。
  15. 根据权利要求1-14任一项所述的方法,还包括:
    在所述辅助电极上形成阴极的同时,在所述有机电致发光层上形成所述阴极。
  16. 一种有机电致发光器件,其通过权利要求1-15中任一项所述的方法制得。
  17. 一种显示装置,其包括权利要求16所述的有机电致发光器件。
PCT/CN2014/094078 2014-09-15 2014-12-17 有机电致发光器件及其制备方法、显示装置 WO2016041280A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/768,524 US9508933B2 (en) 2014-09-15 2014-12-17 Organic light-emitting diode (OLED) device, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410469986.7A CN104269494B (zh) 2014-09-15 2014-09-15 有机电致发光器件及其制备方法、显示装置
CN201410469986.7 2014-09-15

Publications (1)

Publication Number Publication Date
WO2016041280A1 true WO2016041280A1 (zh) 2016-03-24

Family

ID=52161000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094078 WO2016041280A1 (zh) 2014-09-15 2014-12-17 有机电致发光器件及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US9508933B2 (zh)
CN (1) CN104269494B (zh)
WO (1) WO2016041280A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151855A1 (ja) * 2014-03-31 2015-10-08 コニカミノルタ株式会社 有機エレクトロルミネッセンスモジュール及び情報機器
CN104393188A (zh) * 2014-11-28 2015-03-04 京东方科技集团股份有限公司 一种有机发光二极管显示基板及其制作方法、显示装置
US10326076B2 (en) * 2015-04-13 2019-06-18 Boe Technology Group Co., Ltd. Method of manufacturing display substrate, display substrate and display device
CN104779200B (zh) * 2015-04-13 2016-09-07 京东方科技集团股份有限公司 显示基板的制备方法、显示基板半成品以及显示装置
CN104882463A (zh) * 2015-05-06 2015-09-02 深圳市华星光电技术有限公司 Oled背板结构
JP2018142442A (ja) * 2017-02-27 2018-09-13 株式会社ジャパンディスプレイ 有機el表示装置の製造方法及び有機el表示装置
CN107331788B (zh) * 2017-06-26 2019-01-25 京东方科技集团股份有限公司 Oled器件、oled显示装置及oled器件的制备方法
CN107579102B (zh) * 2017-08-31 2020-07-07 上海天马微电子有限公司 显示面板及显示装置
CN107731883A (zh) * 2017-11-17 2018-02-23 深圳市华星光电半导体显示技术有限公司 Oled显示器及其制作方法
CN108075048B (zh) * 2017-12-12 2020-05-22 合肥鑫晟光电科技有限公司 Oled面板及其制作方法、显示装置
CN108511489B (zh) * 2018-03-07 2020-11-03 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
US11727859B2 (en) 2018-10-25 2023-08-15 Boe Technology Group Co., Ltd. Display panel and display device
CN109192136B (zh) * 2018-10-25 2020-12-22 京东方科技集团股份有限公司 显示基板、光场显示装置及其驱动方法
CN109449186B (zh) * 2018-11-02 2021-09-21 京东方科技集团股份有限公司 Oled显示基板母板及其制作方法、和oled显示装置
CN109411522A (zh) * 2018-11-06 2019-03-01 京东方科技集团股份有限公司 一种透明显示面板及其制备方法、显示装置
CN111326608B (zh) * 2018-12-14 2021-05-25 成都辰显光电有限公司 发光器件、发光器件的制作方法及显示装置
CN109950427B (zh) * 2019-04-17 2021-11-05 京东方科技集团股份有限公司 真空烧结装置以及有机层烧结工艺
CN110350008A (zh) * 2019-07-02 2019-10-18 深圳市华星光电半导体显示技术有限公司 发光面板的制备方法、发光面板及显示装置
CN110620133B (zh) * 2019-09-25 2022-09-09 京东方科技集团股份有限公司 一种透明显示面板及其制备方法和显示装置
CN112968049A (zh) * 2021-02-22 2021-06-15 合肥鑫晟光电科技有限公司 一种有机发光显示面板、其制作方法及显示装置
CN113097257A (zh) * 2021-03-22 2021-07-09 深圳市华星光电半导体显示技术有限公司 显示面板
CN118511275A (zh) * 2022-12-16 2024-08-16 厦门市芯颖显示科技有限公司 转移载板、转移组件及微器件转移方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628492A (zh) * 2002-02-15 2005-06-15 朴炳柱 有机半导体器件及其制造方法
US20120099615A1 (en) * 2010-10-22 2012-04-26 Samsung Mobile Display Co., Ltd. Laser induced thermal imaging mask, laser irradiation apparatus including the same, and method of manufacturing organic light emitting device by using the same
US20140099738A1 (en) * 2012-10-09 2014-04-10 Samsung Display Co., Ltd. Laser irradiation apparatus and method of manufacturing organic light-emitting display apparatus using the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126733A (ja) * 1997-07-03 1999-01-29 Seiko Epson Corp 薄膜デバイスの転写方法、薄膜デバイス、薄膜集積回路装置,アクティブマトリクス基板、液晶表示装置および電子機器
JP3804349B2 (ja) * 1999-08-06 2006-08-02 セイコーエプソン株式会社 薄膜デバイス装置の製造方法、アクティブマトリクス基板の製造方法、および電気光学装置
JP4593019B2 (ja) * 2001-06-25 2010-12-08 株式会社半導体エネルギー研究所 発光装置の作製方法
WO2003067918A1 (en) 2002-02-05 2003-08-14 Qualcomm Incorporated Method and apparatus for efficient selection and acquisition of a wireless communications system
US7579771B2 (en) * 2002-04-23 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP4165478B2 (ja) * 2003-11-07 2008-10-15 セイコーエプソン株式会社 発光装置及び電子機器
KR100573132B1 (ko) * 2004-02-14 2006-04-24 삼성에스디아이 주식회사 유기 전계 발광 표시장치 및 그 제조 방법
KR100623694B1 (ko) * 2004-08-30 2006-09-19 삼성에스디아이 주식회사 레이저 전사용 도너 기판 및 그 기판을 사용하여 제조되는유기 전계 발광 소자의 제조 방법
EP1857521B2 (en) * 2005-02-21 2021-12-22 Mitsubishi Chemical Corporation Organic electric field light emitting element and production therefor
US7396631B2 (en) * 2005-10-07 2008-07-08 3M Innovative Properties Company Radiation curable thermal transfer elements
JP4438782B2 (ja) * 2006-08-23 2010-03-24 ソニー株式会社 表示装置の製造方法および表示装置
CN101968948B (zh) 2010-09-20 2012-05-30 四川虹视显示技术有限公司 用于oled照明面板的辅助电极结构
CN102769109B (zh) * 2012-07-05 2015-05-13 青岛海信电器股份有限公司 柔性显示器的制作方法以及制作柔性显示器的基板
CN202917543U (zh) 2012-10-31 2013-05-01 四川虹视显示技术有限公司 一种oled阴极与辅助电极连接结构
CN103700662B (zh) * 2013-12-09 2017-02-15 京东方科技集团股份有限公司 一种承载基板和柔性显示器件制作方法
KR20150102180A (ko) * 2014-02-27 2015-09-07 삼성디스플레이 주식회사 레이저 빔 조사 장치 및 이를 이용한 유기 발광 디스플레이 장치의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628492A (zh) * 2002-02-15 2005-06-15 朴炳柱 有机半导体器件及其制造方法
US20120099615A1 (en) * 2010-10-22 2012-04-26 Samsung Mobile Display Co., Ltd. Laser induced thermal imaging mask, laser irradiation apparatus including the same, and method of manufacturing organic light emitting device by using the same
US20140099738A1 (en) * 2012-10-09 2014-04-10 Samsung Display Co., Ltd. Laser irradiation apparatus and method of manufacturing organic light-emitting display apparatus using the same

Also Published As

Publication number Publication date
CN104269494B (zh) 2017-05-03
US20160254455A1 (en) 2016-09-01
US9508933B2 (en) 2016-11-29
CN104269494A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
WO2016041280A1 (zh) 有机电致发光器件及其制备方法、显示装置
US11114514B2 (en) Organic electroluminescent display panel, manufacturing method thereof, and display device
KR102416742B1 (ko) 투명 표시 장치
TWI674689B (zh) 顯示裝置及其製造方法
US9054345B2 (en) Pixel defining layer, preparation method thereof, organic light-emitting diode substrate and display
WO2018120365A1 (zh) Oled背板及其制作方法
US20180261792A1 (en) Organic light-emitting display apparatus and method of manufacturing the same
US9403396B2 (en) Donor substrates and methods of manufacturing organic light emitting display devices using donor substrates
KR20150002037A (ko) 유기전계 발광소자의 제조 방법 및 그 방법에 의해 제조된 유기전계 발광소자
TW200833164A (en) Organic electroluminescent display device and method for fabricating thereof
US20200194732A1 (en) Oled display substrate and method for preparing the same, and display device
KR102185577B1 (ko) Oled 기판 및 그 제조 방법
US9905797B2 (en) OLED display device and fabrication method thereof
JP2008108482A (ja) 有機el表示装置
CN109166889A (zh) 显示基板及其制造方法、显示装置
TWI239790B (en) Organic light-emitting device and fabrication method thereof
CN106926559A (zh) 转印基板及其制作方法、oled器件制作方法
US7686052B2 (en) Lamination apparatus and laser-induced thermal imaging method using the same
US10270054B2 (en) Organic light-emitting diode components including an insulating layer and an auxiliary electrode layer positioned above the insulating layer, manufacturing methods for organic light-emitting diode components, display panels including organic light-emitting diode components, and display devices
TWI559380B (zh) 用於有機發光顯示器之畫素結構之製造方法
TW201423978A (zh) 顯示裝置及其製造方法
US9337428B2 (en) Donor mask and method of manufacturing organic light emitting display apparatus using the same
WO2020233485A1 (zh) 发光器件及其制造方法、掩膜板、显示装置
CN109148381B (zh) 阵列基板及其制作方法、显示面板、显示装置
CN109103235B (zh) 有机发光二极管显示面板及其制作方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14768524

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14902262

Country of ref document: EP

Kind code of ref document: A1