WO2016039385A1 - 有機ハイドライド用脱水素触媒及びその製造方法 - Google Patents
有機ハイドライド用脱水素触媒及びその製造方法 Download PDFInfo
- Publication number
- WO2016039385A1 WO2016039385A1 PCT/JP2015/075625 JP2015075625W WO2016039385A1 WO 2016039385 A1 WO2016039385 A1 WO 2016039385A1 JP 2015075625 W JP2015075625 W JP 2015075625W WO 2016039385 A1 WO2016039385 A1 WO 2016039385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- platinum
- carrier
- dehydrogenation
- reaction
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/656—Manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/22—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
- C01B3/24—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
- C01B3/26—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a dehydrogenation catalyst for organic hydride and a production method thereof.
- the present invention also relates to a hydrogen generator including a catalyst including a dehydrogenation catalyst for organic hydride, and a method for recovering hydrogen from the organic hydride.
- Patent Documents 1 to 3 In order to efficiently store and transport hydrogen, methods using an organic hydride dehydrogenation reaction have been studied (for example, Patent Documents 1 to 3).
- a main object of the present invention is to provide a dehydrogenation catalyst that can maintain a high activity for a long time when used as a catalyst for a dehydrogenation reaction of an organic hydride.
- a catalyst including a combination of platinum and anatase-type titanium oxide exhibits specifically high durability when used as a catalyst for dehydration reaction of organic hydride.
- the headline, the present invention has been completed.
- one aspect of the present invention relates to an organic hydride dehydrogenation catalyst comprising a support containing anatase-type titanium oxide and a catalyst metal containing platinum supported on the support.
- the dehydrogenation catalyst according to the present invention has high catalytic activity and can maintain high activity for a long time in the dehydrogenation reaction of organic hydride.
- the catalytic activity is reduced due to the adsorption of toluene produced by the dehydrogenation reaction to the catalyst.
- the catalyst according to the present invention between the titanium oxide and the methylcyclohexane. Therefore, it is considered that the decrease in activity due to the adsorption of toluene is suppressed.
- the catalyst metal may contain platinum and at least one additive metal selected from the group consisting of rhenium, rhodium, iridium, palladium, and ruthenium.
- the mass ratio of the additive metal to the platinum may be 0.7 or less.
- the present invention relates to a method for producing a dehydrogenation catalyst for organic hydride.
- the method of the present invention may comprise a step of supporting platinum on a carrier containing anatase-type titanium oxide.
- the step of supporting platinum on the carrier containing titanium oxide is performed by bringing an acidic solution containing platinum anion (for example, hexachloroplatinum (IV) acid ion) and water into contact with the carrier. And firing the carrier on which the anion is adhered to support platinum on the carrier.
- platinum anion for example, hexachloroplatinum (IV) acid ion
- an anion containing an added metal and an aqueous solution containing water are brought into contact with the support to adsorb the anion on the support, and then the support is calcined to form a support.
- the step of supporting the added metal and an acidic solution containing platinum containing anions and water are brought into contact with the support to adsorb the anions on the support, and then the support is baked to support the support with platinum. And a step of causing.
- a catalyst in which platinum and an additive metal are highly dispersed as fine particles can be obtained, and the resulting catalyst can have further excellent catalytic activity and durability.
- the order of the process of supporting rhenium and the process of supporting platinum is arbitrary, and either may be performed first or simultaneously.
- the present invention provides a hydrogen generator having a catalyst layer containing the above-described organic hydride dehydrogenation catalyst, and generates hydrogen by dehydrogenation of the organic hydride in the presence of the organic hydride dehydrogenation catalyst. And a method for recovering hydrogen from an organic hydride. According to this apparatus or method, hydrogen can be recovered from organic hydride stably for a long time with high efficiency.
- the dehydrogenation catalyst according to the present invention has high catalytic activity and can maintain high activity for a long time in the dehydrogenation reaction of organic hydride.
- the dehydrogenation catalyst which concerns on this invention can express the especially outstanding effect regarding the dehydrogenation reaction of methylcyclohexane among organic hydrides.
- the dehydrogenation catalyst according to the present invention can maintain a relatively high catalytic activity even at a low temperature.
- FIG. 5 is a view showing a VV line end face of FIG. 4. It is a graph showing the relationship between the conversion rate of methylcyclohexane and reaction time. It is a transmission electron micrograph of a Pt / TiO 2 catalyst. It is a transmission electron micrograph of a Pt / TiO 2 catalyst.
- the dehydrogenation catalyst (catalyst particles) according to this embodiment includes a support containing titanium oxide (TiO 2 ) and platinum (Pt) as a catalyst metal supported on the support, and methylcyclohexane (MCH). It is used as a catalyst for the dehydrogenation reaction of organic hydrides such as In the present specification, the catalyst may be referred to as “Pt / TiO 2 catalyst”.
- the support containing titanium oxide can be a porous body composed of a large number of aggregated primary particles.
- the particle size (secondary particle size) of the support or catalyst particles may be 100 to 1000 ⁇ m.
- the specific surface area of the support may be 100 m 2 / g or more, 200 m 2 / g or more, or 300 m 2 / g or more from the viewpoint of catalytic activity at a low temperature.
- the upper limit of the specific surface area of the carrier is not particularly limited, but may be, for example, 500 m 2 / g or less.
- the specific surface area can be measured by a gas adsorption method or the like.
- the shape of the support and the catalyst is not particularly limited, and may be, for example, porous particles or a film formed on a substrate.
- the carrier often contains trace components such as metal oxides other than titanium oxide, but usually 80% by mass or 90% by mass or more of the total mass of the carrier is titanium oxide.
- the titanium oxide constituting the carrier may be anatase type titanium oxide.
- Anatase-type titanium oxide can exhibit a more remarkable effect with respect to high catalytic activity and its durability when used in a dehydrogenation reaction of an organic hydride such as methylcyclohexane.
- methylcyclohexane which is a hydrogen adduct of toluene, is considered particularly promising because it is easy to handle.
- the catalyst metal containing platinum is usually dispersed in the support in the form of particles.
- the ratio (supported amount) of platinum in the catalyst may be 0.1% by mass or more, 0.5% by mass or more, or 1.0% by mass or more based on the mass of the support (100% by mass), It may be 2.5% by mass or less, or 2.0% by mass or less.
- a suitable catalytic activity is particularly easily obtained.
- the catalyst metal may contain platinum and at least one additive metal selected from the group consisting of rhenium, rhodium, iridium, palladium, and ruthenium. From the viewpoint of the effect of improving the catalyst activity, the additive metal may be rhenium and / or rhodium, or rhenium.
- the ratio of the catalyst metal (total of platinum and added metal) in the dehydrogenation catalyst may be 0.1 to 10% by mass based on the mass of the support.
- the mass ratio of the additive metal to platinum (the mass of the additive metal / the mass of platinum) may be 0.7 or less. Thereby, compared with the case where a catalyst metal contains only platinum, a catalyst activity and durability improve especially notably. From the same viewpoint, the mass ratio of the added metal may be 0.65 or less, or 0.6 or less, and is 0.01 or more, 0.1 or more, 0.15 or more, or 0.2 or more. May be.
- FIG. 1 is a diagram showing an embodiment of a method for producing a catalyst (Pt / TiO 2 catalyst) according to this embodiment.
- the method shown in FIG. 1 includes a step S1 for preparing a carrier dispersion, a step S2 for mixing the carrier dispersion and an aqueous hexachloroplatinum, a step S3 for stirring the carrier dispersion, and a step for taking out the carrier from the carrier dispersion. S4, a step S5 for drying the taken-out carrier, and a step S5 for calcining the carrier to obtain a catalyst.
- this method may be referred to as an “ion adsorption method”.
- platinum as a dehydrogenation catalyst can be uniformly dispersed on the catalyst carrier in the form of an extremely fine particle size. Therefore, a particularly efficient dehydrogenation reaction is possible.
- step S1 the particulate carrier is dispersed in a dispersion medium.
- Water can be used as a dispersion medium.
- the ratio of the carrier and the dispersion medium is appropriately adjusted so that the dispersion is appropriately stirred.
- the platinum chloride aqueous solution contains hexachloroplatinum (IV) acid ions, which are anions containing platinum, and water, and is acidic.
- the acidic platinum chloride aqueous solution can be prepared by dissolving hexachloroplatinic (IV) acid in water.
- the concentration of hexachloroplatinate (IV) ion in the aqueous platinum chloride solution may be, for example, 2.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 ⁇ 2 mol / L based on the volume of the solvent (water). .
- the pH of the aqueous platinum chloride solution may be, for example, 2.0 to 4.0.
- a carrier dispersion containing hexachloroplatinic (IV) acid ions may be prepared by directly adding a carrier to an aqueous platinum chloride solution.
- step S3 The prepared carrier dispersion containing hexachloroplatinum (IV) acid ions is stirred (step S3).
- step S2 and step S3 an acidic solution containing hexachloroplatinum (IV) acid ions and water is brought into contact with the carrier.
- hexachloroplatinum (IV) ion [PtCl 6 ] 2 ⁇ ) is adsorbed by electrostatic interaction to the carrier surface to which a positive charge is imparted by protons. Stirring is performed, for example, at room temperature for 10 to 30 hours.
- the carrier is taken out from the dispersion, and the water adhering to the carrier is removed. That is, the carrier is dried (step S5).
- platinum derived from hexachloroplatinum (IV) acid ions adhering to the carrier is supported on the carrier (step S6).
- the firing temperature may be any temperature at which platinum supported on the carrier is generated, and may be 400 to 600 ° C., for example.
- a platinum salt aqueous solution containing a platinum (II) salt is brought into contact with the carrier, and then, if necessary, water is removed from the platinum salt aqueous solution adhering to the carrier to dry the carrier.
- a method including supporting platinum on a carrier by subsequent firing This method is sometimes referred to herein as the “evaporation to dryness method”.
- platinum salts that can be used include tetraammineplatinum (II) nitrate and hexachloroplatinum (IV) acid salt.
- a dehydrogenation catalyst (catalyst particles) containing an additive metal as a catalyst metal, for example, adsorbs an anion on the carrier by bringing an acidic solution containing an anion containing the additive metal and water into contact with the carrier, and then calcines the carrier. Then, the support is loaded with the added metal, and an acidic solution containing an anion containing platinum and water is brought into contact with the support to adsorb the anion on the support.
- the order of metal loading is arbitrary, and a solution containing a plurality of types of metals may be prepared, and a plurality of types of metals may be supported on the carrier at the same time. A particularly remarkable activity improvement effect can be obtained by loading the support in the order of the added metal and platinum.
- the support is dispersed or immersed in a solution containing an added metal or platinum-containing anion and water, and the water adhering to the support taken out from the solution is removed, thereby including the metal.
- Anions can be adsorbed on the support.
- An anion containing platinum or an added metal is considered to be adsorbed by electrostatic interaction to the support surface to which a positive charge is imparted by protons.
- the carrier is dispersed or immersed in the solution, for example, at room temperature for 10 to 30 hours.
- the concentration of the anion in the solution may be, for example, 2.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 ⁇ 2 mol / L based on the volume of the solvent (water).
- the pH of the solution may be, for example, 2.0 to 4.0.
- anion containing the additive metal examples include hexachlororhenium (IV) ion, perrhenium (VII) ion, tetrachloropalladium (II) ion, hexachloroiridium oxalate (IV) ion, hexachlororhodium (III) ion, hexachloro It is selected from ruthenium (III) acid ions.
- An acidic solution containing hexachlororhenium (IV) ion can be prepared, for example, by dissolving hexarhenium (IV) acid salt (potassium salt or the like) in water.
- the carrier removed from the solution is usually baked after removing the adhering water.
- the firing temperature may be any temperature at which platinum or an additional metal supported on the carrier is generated, and may be, for example, 300 to 600 ° C.
- the metal salt aqueous solution containing the metal salt containing the catalyst metal is brought into contact with the support, and then water is removed from the metal salt aqueous solution adhering to the support. Then, a method may be included which includes drying the support to solidify and supporting the metal as a dehydrogenation catalyst on the support by subsequent calcination.
- FIG. 2 is a schematic diagram showing an embodiment of the hydrogen generator.
- the hydrogen generator 10 shown in FIG. 2 can be used to recover hydrogen from the organic hydride by generating hydrogen by dehydrogenation of the organic hydride (for example, MCH).
- the hydrogen generator 10 includes a cylindrical reaction tube 20, a catalyst layer 1 (dehydrogenation catalyst layer 1) provided inside the reaction tube 20, and a cylindrical shape as a heating device provided around the reaction tube 20.
- the body 30 is mainly composed. Both sides of the catalyst layer 1 are packed with a fixing material 40 (for example, quartz wool) for fixing the position of the catalyst layer 1.
- a fluid inlet 18 a and a fluid outlet 18 b are provided at both ends of the reaction tube 20.
- the fluid inlet 18a is connected to the liquid feed pump 21, the nitrogen gas cylinder 22, and the hydrogen gas cylinder 23 through a flow path.
- the catalyst layer 1 can include the Pt / TiO 2 catalyst according to the above-described embodiment.
- the catalyst layer 1 may contain a powder or granular material (quartz sand or the like) other than the catalyst.
- the catalyst layer 1 may contain 50 to 100% by mass of catalyst based on the mass of the catalyst layer 1.
- Organic hydride is supplied from the liquid feed pump 21.
- Nitrogen gas used as carrier gas is supplied from the nitrogen gas cylinder 22.
- Hydrogen gas for reducing the catalyst layer 1 is supplied from the hydrogen gas cylinder 23.
- a heating apparatus is not specifically limited, For example, the electric furnace of PID control may be sufficient.
- reaction fluid (exhaust gas) 25 discharged from the fluid outlet 18b of the reaction tube 20 contains hydrogen and toluene. Hydrogen can be recovered from the exhaust gas 25 using ordinary means such as a cold trap.
- FIG. 3 is also a schematic diagram showing an embodiment of the hydrogen generator.
- the hydrogen generator 10 shown in FIG. 3 includes a cylindrical body 30 and a reaction tube 20 arranged inside the cylindrical body 30.
- a catalyst structure 50 (catalyst body 50) is inserted into each reaction tube 20.
- the number of reaction tubes 20 provided inside the cylindrical body 30 is not particularly limited, but may be 1 to 200, for example.
- the number of catalyst structures 50 accommodated in one reaction tube 20 is not particularly limited, but is, for example, 1 to 50. When a plurality of catalyst structures 50 are accommodated in one reaction tube 20, they are usually arranged at intervals or at intervals along the longitudinal direction of the reaction tube 20.
- the cylindrical body 30 has a fluid inlet 31 provided at one end in the longitudinal direction and a fluid outlet 32 provided at the other end, and these flow through the inside of the cylindrical body 30. As communicating with each other.
- a reaction tube 20 is disposed in the flow path.
- the length of the cylindrical body 30 may be, for example, 100 to 5000 mm.
- the outer diameter of the cylindrical tubular body 30 may be 100 to 500 mm, for example.
- a reaction fluid 25 containing methylcyclohexane as an organic hydride is introduced from one end of the reaction tube 20.
- the reaction fluid 25 may contain an organic hydride other than methylcyclohexane.
- the organic hydride may be a hydride of an aromatic hydrocarbon capable of repeating the hydrogenation and dehydrogenation processes.
- the reaction fluid 25 flowing in the reaction tube 20 is usually a gas.
- the reaction fluid 25 may be vaporized inside the reaction tube 20 or may be vaporized in advance.
- the flow rate of the organic hydride in the reaction tube 20 is not particularly limited, but may be, for example, 0.1 to 10.0 g / hour.
- the reaction fluid 25 may contain an inert gas such as nitrogen gas along with the organic hydride.
- the reaction tube 20 of this embodiment is cylindrical. By using a cylindrical reaction tube, it is easy to maintain sufficient airtightness inside the reaction tube at a high temperature. From the viewpoint of ease of insertion and removal of the catalyst structure 50 and the like, as shown in the figure, one reaction tube 20 has a cylindrical body at both ends (or one end) along the longitudinal direction of the cylindrical body 30. It may extend so that it may go out of 30. Thereby, the catalyst structure 50 can be easily inserted into and removed from the reaction tube 20.
- the length of the reaction tube 20 may be, for example, 100 mm or more or 1000 mm or more, or 3000 mm or less or 5000 mm or less.
- the inner diameter of the cylindrical tubular body 30 may be, for example, 100 mm or more or 200 mm or more, or 300 mm or less or 500 mm or less.
- the organic hydride flowing through the reaction tube 20 comes into contact with the catalyst layer of the catalyst structure 50 and is dehydrogenated by the action of the dehydrogenation catalyst in the catalyst layer. Hydrogen produced by the dehydrogenation reaction is discharged from the other end of the reaction tube 20 together with the aromatic hydrocarbon (for example, toluene). Thereby, hydrogen is recovered from the organic hydride.
- Aromatic hydrocarbons can be reused as organic hydrides by hydrogenation.
- the catalyst structure 50 and the reaction fluid 25 may be heated. Therefore, the reaction tube 20 can be heated.
- the heating temperature may be 300 ° C. or higher, 350 ° C. or higher, or 370 ° C. or higher, or 400 ° C. or lower, 380 ° C. or lower, or 360 ° C. or lower from the viewpoint of the rate of dehydrogenation and the durability of the catalyst. May be.
- the fluid 35 for heating is supplied from the fluid inlet 31.
- the fluid 35 flows through the flow path inside the cylindrical body 30 while contacting the outer peripheral surface of the reaction tube 20, and is discharged from the fluid outlet 32.
- the reaction tube 20 may be heated by the heat of the fluid 35 itself.
- a combustion catalyst layer may be provided on the outer peripheral surface of the reaction tube 20
- a fuel fluid may be used as the fluid 35
- the reaction tube 20 may be heated by heat generated by the combustion reaction of the combustion fluid.
- the combustion fluid for example, a highly flammable substance can be used.
- the means for heating the reaction tube 20 is not limited to these, and any heating method can be adopted.
- the catalyst layer 1 may be heated in an atmosphere containing oxygen before the dehydrogenation reaction.
- an atmosphere containing oxygen usually, a catalyst containing platinum is often subjected to a reduction treatment before being used, but in the case of the catalyst according to the present embodiment, a higher durability can be obtained through a pretreatment in an atmosphere containing oxygen. It can be expressed.
- the oxygen concentration of the atmosphere containing oxygen may be, for example, 5 to 40% by volume based on the total volume of the atmosphere. Alternatively, heating can be performed in an air atmosphere.
- FIG. 4 is a schematic view showing an embodiment of the catalyst structure
- FIG. 5 is an end view taken along the line VV of FIG.
- the catalyst structure 50 shown in FIGS. 4 and 5 has a base material 5 extending along a certain axis X, and a catalyst layer 1 covering the surface S of the base material 5.
- the catalyst layer 1 can include the Pt / TiO 2 catalyst according to the above-described embodiment.
- the axis X is also the center line of the base material 5.
- the catalyst layer 1 may not cover the entire surface of the substrate 5.
- the base material 5 as a whole is composed of a plate-like portion that extends along the axis X while twisting in the direction of rotation about the axis X. Since the catalyst structure 50 has such a shape, the catalyst structure 50 can function as a static mixer.
- the catalyst structure 50 is inserted into the reaction tube 20 with the axis X being parallel to the longitudinal direction of the reaction tube 20.
- the length L in the direction along the axis X of the substrate 5 (plate portion), the maximum width W in the direction perpendicular to the axis X, and the thickness T of the plate portion depend on the shape, size, etc. of the reaction tube. Set as appropriate.
- the length L may be, for example, 20 mm or more or 40 mm or more, and may be 1000 mm or less or 500 mm or less.
- the length L is often larger than the maximum width W, but may be smaller than the maximum width W.
- the maximum width W of the base material 5 (plate portion) is set so that the catalyst structure 50 can be inserted into the reaction tube 20.
- the ratio of the maximum width W of the base material 5 to the inner diameter of the reaction tube 20 may be 0.85 or more or 0.90 or more, or 1.0 or less or 0.95 or less. Also good.
- the maximum width W may be, for example, 3 mm or more or 6 mm or more, or 30 mm or less or 20 mm or less.
- the plate-like portion of the substrate is twisted in one direction around the axis X, but the shape of the substrate (plate-like portion) is not limited to this. Any suitable modification is possible.
- the base material (plate-like portion) includes a portion twisted in the clockwise direction and a portion twisted in the counterclockwise direction when the base material is viewed from the direction along the axis X. May be. The period of torsion does not need to be constant and may vary. From the viewpoint of efficient mixing, the base material (plate-like portion) may be a static mixer element.
- a substrate including a twisted plate-like body can be obtained by processing a molded body by a usual method.
- the base material 5 may be a metal molded body.
- the metal which comprises a molded object can be selected from aluminum, titanium, and a zirconium, for example. These metals are easy to mold, and when the oxides of these metals carry a dehydrogenation catalyst, the dehydrogenation reaction can proceed particularly efficiently.
- the base material is a molded product of titanium, and a titanium oxide film as a carrier may be formed by oxidizing the surface by a technique such as anodic oxidation.
- the surface S of the substrate 5 may be a surface roughened in advance. By roughening the surface S, the catalyst layer 1 can be easily formed by disposing catalyst particles described later on the surface S. Moreover, it is easy to ensure a high specific surface area of the catalyst layer 1.
- the roughening of the surface S can be performed by a usual method.
- the surface S is roughened by, for example, a method selected from chemical or electrochemical etching and mechanical etching.
- the chemical etching is, for example, alkaline etching with an alkaline aqueous solution such as a sodium hydroxide aqueous solution. By these methods, the surface S can be easily roughened.
- the catalyst layer 1 is a layer containing a dehydrogenation catalyst, and may be an aggregate of catalyst particles as one form of the dehydrogenation catalyst disposed on the surface S of the substrate 5, for example.
- the thickness of the catalyst layer 1 is not particularly limited, but may be, for example, 2 to 200 ⁇ m.
- the ratio of the catalyst layer 1 in the catalyst structure 50 can be set so as to obtain a desired catalyst activity.
- the ratio is 10 to 90% by mass based on the mass of the catalyst structure 50 (100% by mass). Also good.
- the catalyst structure 50 forms the catalyst layer 1 by, for example, roughening the surface S of the base material 5 (plate-shaped portion) and disposing the catalyst particles on the roughened surface S. It can manufacture by the method including a process.
- the surface S can be roughened by the method described above.
- the surface S of the substrate 5 (plate-shaped portion) that is twisted may be roughened, or may be molded so that the substrate 5 (plate-shaped portion) is twisted after the surface S is roughened.
- the catalyst layer 1 adheres to the surface S of the base material 5 and adheres to the surface S of the base material 5, for example, the dispersion liquid containing the catalyst particles and the dispersion medium in which the catalyst particles are dispersed.
- the catalyst particles can be formed on the surface S by a method including removing the dispersion medium from the dispersion. Adhesion of the dispersion and removal of the dispersion medium can be performed by conventional methods, and can be repeated until a desired amount of catalyst particles is disposed on the surface S.
- the dispersion medium for dispersing the catalyst particles may be alcohol and / or water.
- the alcohol is for example selected from 2-propanol, butanol, ethanol and methanol.
- the concentration of the catalyst particles in the dispersion may be 0.025 to 2.5 g / mL based on the volume of the dispersion medium.
- an aqueous solution obtained by dissolving 0.010 g of tetraammineplatinum nitrate in distilled water was put into the flask, and further stirred for 2 hours under atmospheric pressure.
- the titanium oxide particle dispersion was heated on a hot stirrer kept at 80 ° C., and water was removed by evaporation to dryness while stirring.
- the glass rod was continuously stirred while evaporating and drying. After evaporation to dryness, the obtained solid was calcined in a calcining furnace at a temperature of 500 ° C.
- the obtained catalyst was classified using a sieve so that the particle diameter was 250 to 500 ⁇ m.
- the ratio of platinum in the catalyst is 1.0% by mass based on the mass of the titanium oxide particles.
- rutile-type titanium oxide particles instead of anatase-type titanium oxide particles, rutile-type titanium oxide particles (specific surface area 100 m 2 / g, JRC-TIO-6, manufactured by Sakai Chemical Industry Co., Ltd.), aluminum oxide (Al 2 O 3 ) particles (JRC-ALO) -8), respectively, except that aluminum oxide particles, zirconium oxide (ZrO 2 ) particles, cerium oxide (CeO 2 ) particles, or magnesium oxide (MgO) particles by a sol-gel method were used.
- ZrO 2 zirconium oxide
- CeO 2 cerium oxide
- MgO magnesium oxide
- the nitrogen gas and the hydrogen gas supplied from the nitrogen gas cylinder 22 and the hydrogen gas cylinder 23 are circulated in the reaction tube 20 under the conditions described in Table 1 below.
- a reduction treatment was performed as a treatment.
- MCH methylcyclohexane
- Table 2 methylcyclohexane
- LHSV liquid space velocity
- the exhaust gas 25 discharged from the reaction tube contains toluene as a product and unreacted MCH, and these were collected using a cold trap. After introducing xylene as a standard substance into the collected sample solution, the sample solution was analyzed by a glass chromatograph. The reaction gas that passed through the cold trap was also sampled by 0.1 mL every 30 minutes and analyzed by a TCD gas chromatograph.
- FIG. 6 is a graph showing the relationship between the conversion rate of MCH and the reaction time. According to the catalyst using titanium oxide particles as a support, it was confirmed that high catalytic activity was maintained for a long time. When the support was rutile-type titanium oxide or other metal oxide such as aluminum oxide, the tendency of the catalyst activity to clearly decrease with the passage of time was observed.
- the titanium oxide particles were baked by heating at 500 ° C. for 5 hours to obtain a catalyst (Pt / TiO 2 catalyst) containing titanium oxide particles and platinum supported thereon.
- the obtained catalyst was classified using a sieve so that the particle diameter was 250 to 500 ⁇ m.
- the ratio of platinum in the catalyst is 1.0% by mass based on the mass of the titanium oxide particles.
- 7 and 8 are transmission electron micrographs of the obtained Pt / TiO 2 catalyst. Only TiO 2 particles were confirmed, and platinum particles were not observed. It is suggested that platinum is highly dispersed while forming extremely fine particles that cannot be captured with an electron microscope.
- FIG. 9 is a graph showing the relationship between MCH conversion rate and toluene selectivity (TL selectivity) and reaction temperature.
- “Equilibrium” indicates the MCH conversion rate in an equilibrium state in the absence of a catalyst for the dehydrogenation reaction of MCH. The same applies to other graphs.
- the Pt / TiO 2 catalyst maintained a relatively high dehydrogenation activity even at low temperatures.
- the Pt / TiO 2 catalyst by the ion adsorption method shows a higher dehydrogenation activity than that by the evaporation to dryness method.
- FIG. 10 is a graph showing the relationship between MCH conversion rate and toluene selectivity (TL selectivity) and reaction temperature.
- the rutile type Pt / TiO 2 catalyst and the Pt / Al 2 O 3 catalyst showed a tendency for the activity to decrease with time.
- the anatase-type Pt / TiO 2 catalyst showed almost 100% MCH conversion, and no reduction in MCH conversion was observed until the reaction time of 24 hours was reached.
- FIG. 11 is a graph showing the results of an activity evaluation over a longer period of time for an anatase-type Pt / TiO 2 catalyst by the ion adsorption method.
- the reaction temperature was set to 350 ° C. from the start of the reaction to 100 hours, 360 ° C. from 100 hours to 160 ° C., and 370 ° C. from 160 hours to 208 hours.
- the decrease in activity was sufficiently suppressed up to 208 hours, and it was confirmed that this catalyst has very excellent durability. It was done.
- the activity of the Pt / TiO 2 catalyst having JRC-TIO-7 and JRC-TIO-8 as supports was evaluated in the same manner as in “Examination 1”. However, the dehydrogenation reaction was carried out under the conditions shown in Table 4 above, while the reaction temperature was started at 350 ° C. and decreased by 10 ° C. every 1.5 hours.
- any Pt / TiO 2 catalyst maintained a relatively high dehydrogenation activity even at a low temperature.
- a catalyst using titanium oxide particles (TIO-8) having a higher specific surface area showed a very high dehydrogenation activity even at a low temperature.
- Hexachlororhenium (so that the proportion of rhenium in the final catalyst particles is 0.2, 0.4, 0.5, 0.6, 0.8 or 1.0% by mass based on the mass of the catalyst particles. IV) A plurality of types of catalyst particles having different rhenium loadings were prepared by changing the concentration of potassium acid. In addition, as catalyst particles for comparison, catalyst particles containing 1.0% by mass of platinum and containing no rhenium and catalyst particles containing 0.5% by mass of rhenium and containing no platinum are produced in the same procedure. did.
- MCH methylcyclohexane
- LHSV liquid space velocity
- FIG. 13 is a graph showing the relationship between MCH conversion rate, toluene selectivity and reaction time. All catalyst particles maintained high conversion and selectivity. According to the catalyst particles having a mass ratio of rhenium to platinum of 0.7 or less, it was confirmed that higher catalytic activity can be obtained as compared with catalyst particles supporting only platinum.
- FIG. 14 is a graph showing the relationship between MCH conversion rate and toluene selectivity and reaction time. Even when the loading order was changed, it was confirmed that the catalyst particles to which rhenium was added can obtain higher catalytic activity than the catalyst particles on which only platinum is supported.
- Example 7 Catalyst particles having a platinum ratio of 1.0% by mass and a rhenium ratio of 0.2, 0.4, 0.5, or 0.6% by mass were prepared in the same procedure as in “Study 5”. Using these catalyst particles, a 20-hour dehydrogenation test was performed in the same manner as in “Examination 5”.
- FIG. 15 is a graph showing the relationship between the conversion rate of MCH and the reaction time. All catalyst particles carrying rhenium showed higher catalytic activity than platinum-only catalyst particles. It was confirmed that the catalyst particles having a rhenium to platinum mass ratio of 0.7 or less (or 0.4 to 0.6) are particularly excellent in terms of durability.
- Example 8 Catalyst particles having a platinum ratio of 1.0% by mass and a rhenium ratio of 0.5% by mass were prepared in the same procedure as in “Study 5”. Using this catalyst particle, a 200-hour dehydrogenation test was conducted in the same manner as in “Examination 5” except that the amount of the catalyst particle was changed to 200 mg and the LHSV of MCH was changed to 4 h ⁇ 1 .
- FIG. 16 is a graph showing the relationship between MCH conversion rate and toluene selectivity and reaction time. Until the reaction time of 200 hours was reached, almost no decrease in the catalyst activity was observed, confirming that the catalyst particles had high durability.
- Example 9 Catalyst particles having a platinum ratio of 1.0% by mass and a rhenium ratio of 0% by mass or 0.5% by mass were prepared in the same procedure as in “Examination 5”. A 50-hour dehydrogenation test was conducted in the same manner as in “Examination 5” except that the amount of each catalyst particle was changed to 50 mg. For the catalyst particles having a rhenium content of 0.5% by mass, a 200-hour dehydrogenation test was performed in which the MCH LHSV was changed to 4h- 1 .
- FIG. 17 shows the results of thermogravimetric analysis before and after the dehydrogenation reaction of catalyst particles containing no rhenium (Pt / TiO 2 ).
- FIG. 18 shows the results of thermogravimetric analysis before and after the dehydrogenation reaction of catalyst particles (Pt—Re (0.5) / TiO 2 ) having a rhenium ratio of 0.5 mass%.
- Pt / TiO 2 after the dehydrogenation reaction showed a large weight loss at high temperature. This suggests that carbon was deposited on the catalyst or the product was adsorbed during the dehydrogenation reaction.
- Pt—Re (0.5) / TiO 2 no significant reduction was observed after the dehydrogenation reaction, and the addition of rhenium suppresses carbon deposition and product adsorption. was confirmed.
- SYMBOLS 1 ... Catalyst layer, 10 ... Hydrogen generator, 18a ... Fluid inlet, 18b ... Fluid outlet, 20 ... Reaction tube, 21 ... Liquid feed pump, 22 ... Nitrogen gas cylinder, 23 ... Hydrogen gas cylinder, 25 ... Reaction fluid or exhaust gas, DESCRIPTION OF SYMBOLS 30 ... Cylindrical body, 31 ... Fluid inlet, 32 ... Fluid outlet, 35 ... Fluid, 50 ... Catalyst body.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
アナターゼ型酸化チタンを含む担体と、該担体に担持された白金を含む触媒金属と、を含む、有機ハイドライド用脱水素触媒が開示される。
Description
本発明は、有機ハイドライド用脱水素触媒及びその製造方法に関する。本発明はまた、有機ハイドライド用脱水素触媒を含む触媒を備える水素発生装置、及び有機ハイドライドから水素を回収する方法に関する。
水素の効率的な貯蔵及び輸送のために、有機ハイドライドの脱水素反応を利用する方法が検討されている(例えば、特許文献1~3。)。
しかし、有機ハイドライドの脱水素に用いられてきた従来の触媒は、活性が十分に高くないか、初期の活性が高くても比較的短時間で劣化するといった問題を有していた。
そこで、本発明の主な目的は、有機ハイドライドの脱水素反応の触媒として用いられたときに、高い活性を長時間維持できる脱水素触媒を提供することにある。
本発明者らは、鋭意検討の結果、白金とアナターゼ型酸化チタンとの組み合わせを含む触媒が、有機ハイドライドの脱水素反応の触媒として用いられたときに特異的に高い耐久性を発揮することを見出し、本発明の完成に至った。
すなわち、本発明の一側面は、アナターゼ型酸化チタンを含む担体と、該担体に担持された白金を含む触媒金属と、を含む、有機ハイドライド用脱水素触媒に関する。
本発明に係る脱水素触媒は、有機ハイドライドの脱水素反応において、高い触媒活性を有するとともに、長時間、高い活性を維持することができる。例えばメチルシクロヘキサンの脱水素反応の場合、脱水素反応によって生じたトルエンが触媒に吸着することにより、触媒活性が低下すると考えられるが、本発明に係る触媒の場合、酸化チタンとメチルシクロヘキサンとの間に特異的な相互作用があるために、トルエンの吸着による活性低下が抑制されると考えられる。
前記触媒金属は、白金と、レニウム、ロジウム、イリジウム、パラジウム、及びルテニウムからなる群より選ばれる少なくとも1種の添加金属とを含んでいてもよい。前記添加金属の前記白金に対する質量割合は、0.7以下であってもよい。本発明者らは、鋭意検討の結果、白金及び特定の添加金属と、酸化チタンとの組み合わせを含む触媒が、有機ハイドライドの脱水素反応の触媒として用いられたときに特異的に高い耐久性を発揮することを見出した。有機ハイドライドの脱水素反応の場合、脱水素反応によって生じたトルエン等の芳香族炭化水素が触媒に吸着することにより、触媒活性が低下すると考えられるが、酸化チタン上の白金と有機ハイドライドとの間、さらにはレニウム等の添加金属とトルエンとの間に特異的な相互作用があるために、トルエンの吸着による活性低下がより一層顕著に抑制されると考えられる。
別の側面において、本発明は、有機ハイドライド用脱水素触媒を製造する方法に関する。本発明の方法は、アナターゼ型酸化チタンを含む担体に白金を担持させる工程を備えていてもよい。
酸化チタンを含む前記担体に白金を担持させる工程は、白金を含むアニオン(例えば、ヘキサクロロ白金(IV)酸イオン)及び水を含む酸性の溶液を前記担体と接触させることにより、前記担体に前記アニオンを付着させることと、前記アニオンが付着している前記担体を焼成して、前記担体に白金を担持させることとを含んでもよい。この方法によれば、白金が微細な粒子として高度に分散している触媒を得ることができ、得られる触媒は、より一層優れた触媒活性及び耐久性を有することができる。
本発明の一側面に係る方法は、添加金属を含むアニオン及び水を含有する、酸性の溶液を、担体と接触させることにより、担体にアニオンを吸着させ、その後、担体を焼成して、担体に添加金属を担持させる工程と、白金を含むアニオン及び水を含有する、酸性の溶液を、担体と接触させることにより、担体にアニオンを吸着させ、その後、担体を焼成して、担体に白金を担持させる工程と、を備える。この方法によれば、白金及び添加金属が微細な粒子として高度に分散している触媒を得ることができ、得られる触媒は、より一層優れた触媒活性及び耐久性を有することができる。レニウムを担持させる工程、及び白金を担持させる工程の順序は任意であり、いずれを先に行ってもよいし同時に行ってもよい。
更に別の側面において、本発明は、上記有機ハイドライド用脱水素触媒を含む触媒層を備える水素発生装置、及び、上記有機ハイドライド用脱水素触媒の存在下で、有機ハイドライドの脱水素により水素を生成させる工程を備える、有機ハイドライドから水素を回収する方法に関する。この装置又は方法によれば、長時間にわたって安定して高い効率で有機ハイドライドから水素を回収することができる。
本発明に係る脱水素触媒は、有機ハイドライドの脱水素反応において、高い触媒活性を有するとともに、長時間、高い活性を維持することができる。本発明に係る脱水素触媒は、有機ハイドライドの中でもメチルシクロヘキサンの脱水素反応に関して、特に優れた効果を発現し得る。また、本発明に係る脱水素触媒は、低温でも比較的高い触媒活性を維持することができる。
以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
本実施形態に係る脱水素触媒(触媒粒子)は、酸化チタン(TiO2)を含む担体と、該担体に担持された触媒金属としての白金(Pt)とを含んでおり、メチルシクロヘキサン(MCH)等の有機ハイドライドの脱水素反応の触媒として用いられる。本明細書において、当該触媒を「Pt/TiO2触媒」と称することがある。
酸化チタンを含む担体は、凝集した多数の一次粒子から構成される多孔質体であり得る。担体又は触媒粒子の粒径(二次粒径)は、100~1000μmであってもよい。特に低温での触媒活性等の観点から、担体の比表面積は、100m2/g以上、200m2/g以上、又は300m2/g以上であってもよい。担体の比表面積の上限は、特に制限されないが、例えば500m2/g以下であってもよい。比表面積は、ガス吸着法などで測定することができる。
担体及び触媒の形状は特に限定されず、例えば多孔質粒子であってもよいし、基材上に形成された膜であってもよい。
担体は、酸化チタン以外の金属酸化物等の微量成分を含むことが多いが、通常、担体の全質量のうち80質量%以上又は90質量%以上が酸化チタンである。
担体を構成する酸化チタンは、アナターゼ型酸化チタンであってもよい。アナターゼ型酸化チタンは、メチルシクロヘキサンのような有機ハイドライドの脱水素反応に用いられたときに、高い触媒活性及びその耐久性に関してより一層顕著な効果を発現できる。
有機ハイドライドの中でも、トルエンの水素付加体であるメチルシクロヘキサンは、その取り扱いが容易な点などの理由から、特に有望であると考えられる。
しかし、有機ハイドライドの脱水素に用いられてきた従来の触媒は、メチルシクロヘキサンの脱水素反応に用いられたときに、活性が十分に高くないか、初期の活性が高くても比較的短時間で劣化するといった問題を有していた。本実施形態に係る脱水素触媒は、メチルシクロヘキサンの脱水素反応の触媒として用いられたときであっても、高い活性を長時間維持できる。
白金を含む触媒金属は、通常、粒子状の形態で担体中に分散している。触媒における白金の割合(担持量)は、担体の質量を基準(100質量%)として、0.1質量%以上、0.5質量%以上、又は1.0質量%以上であってもよく、2.5質量%以下、又は2.0質量%以下であってもよい。触媒がこのような量の白金を含んでいると、適切な触媒活性が特に得られ易い。
触媒金属は、白金と、レニウム、ロジウム、イリジウム、パラジウム、及びルテニウムからなる群より選ばれる少なくとも1種の添加金属とを含んでいてもよい。触媒活性向上の効果の観点から、添加金属は、レニウム及び/又はロジウムであってもよく、レニウムであってもよい。脱水素触媒における触媒金属(白金と添加金属の合計)の割合は、担体の質量を基準として、0.1~10質量%であってもよい。
添加金属の白金に対する質量割合(添加金属の質量/白金の質量)は、0.7以下であってもよい。これにより、触媒金属が白金のみを含む場合と比較して、触媒活性及び耐久性が特に顕著に向上する。同様の観点から、添加金属の質量割合は、0.65以下、又は0.6以下であってもよく、0.01以上、0.1以上、0.15以上、又は0.2以上であってもよい。
図1は、本実施形態に係る触媒(Pt/TiO2触媒)の製造方法の一実施形態を示す図である。図1に示す方法は、担体分散液を調製する工程S1と、担体分散液とヘキサクロロ白金水溶液とを混合する工程S2と、担体分散液を攪拌する工程S3と、担体分散液から担体を取り出す工程S4と、取り出された担体を乾燥する工程S5と、担体を焼成して触媒を得る工程S5とを含む。本明細書において、この方法を「イオン吸着法」と称することがある。イオン吸着法によれば、脱水素触媒としての白金を、極めて微小な粒径の形態で触媒担体に均一に分散させることができる。そのため、特に効率的な脱水素反応が可能となる。
工程S1では、粒子状の担体が分散媒中に分散される。分散媒として水を用いることができる。担体と分散媒との割合は、分散液が適切に攪拌されるように、適宜調整される。
次いで、分散液に塩化白金水溶液が添加される(工程S2)。塩化白金水溶液は、白金を含むアニオンであるヘキサクロロ白金(IV)酸イオン及び水を含んでおり、酸性である。酸性の塩化白金水溶液は、ヘキサクロロ白金(IV)酸を水に溶解させて、調製することができる。塩化白金水溶液におけるヘキサクロロ白金(IV)酸イオンの濃度は、例えば、溶媒(水)の体積を基準として、2.0×10-3~1.0×10-2モル/Lであってもよい。塩化白金水溶液のpHは、例えば2.0~4.0であってもよい。塩化白金水溶液に直接担体を加えて、ヘキサクロロ白金(IV)酸イオンを含む担体分散液を調製してもよい。
調製されたヘキサクロロ白金(IV)酸イオンを含む担体分散液が、攪拌される(工程S3)。工程S2及び工程S3において、ヘキサクロロ白金(IV)酸イオン及び水を含む酸性の溶液が担体と接触する。このとき、ヘキサクロロ白金(IV)酸イオン([PtCl6]2-)が、プロトンにより正電荷が付与された担体表面に対して、静電的な相互作用により吸着されると考えられる。攪拌は、例えば室温で10~30時間、行われる。
その後、分散液から担体を取り出し、担体に付着している水が除去される。すなわち、担体を乾燥させる(工程S5)。乾燥後の担体を焼成することにより、担体に付着していたヘキサクロロ白金(IV)酸イオンに由来する白金が、担体に担持される(工程S6)。焼成の温度は、担体に担持される白金が生成する温度であればよく、例えば400~600℃であってもよい。
あるいは、担体に白金を担持させる方法は、白金(II)塩を含む白金塩水溶液を担体と接触させ、次いで必要により担体に付着している白金塩水溶液から水を除去して担体を乾固させることと、その後の焼成により担体に白金を担持させることとを含む方法であってもよい。この方法は、本明細書において「蒸発乾固法」と称されることがある。白金塩としては、例えば、テトラアンミン白金(II)硝酸塩、ヘキサクロロ白金(IV)酸塩を用いることができる。
添加金属を触媒金属として含む脱水素触媒(触媒粒子)は、例えば、添加金属を含むアニオン及び水を含有する酸性の溶液を担体と接触させることにより担体にアニオンを吸着させ、その後、担体を焼成して、担体に添加金属を担持させる工程と、白金を含むアニオン及び水を含有する酸性の溶液を担体と接触させることにより担体にアニオンを吸着させ、その後、担体を焼成して、担体に白金を担持させる工程と、を備える方法により、得ることができる。金属の担持の順序は任意であり、複数種の金属を含有する溶液を準備して、複数種の金属を同時に担体に担持させてもよい。添加金属、白金の順で担体に担持させることで、特に顕著な活性向上効果を得ることができる。
イオン吸着法の場合、例えば、担体を、添加金属又は白金を含むアニオン及び水を含有する溶液に分散又は浸漬し、溶液から取り出した担体に付着している水を除去することにより、金属を含むアニオンを担体に吸着させることができる。白金又は添加金属を含むアニオンが、プロトンにより正電荷が付与された担体表面に対して、静電的な相互作用により吸着されると考えられる。担体は、例えば室温で10~30時間、溶液に分散又は浸漬される。溶液における上記アニオンの濃度は、例えば、溶媒(水)の体積を基準として、2.0×10-3~1.0×10-2モル/Lであってもよい。溶液のpHは、例えば2.0~4.0であってもよい。
添加金属を含むアニオンは、例えば、ヘキサクロロレニウム(IV)酸イオン、過レニウム(VII)酸イオン、テトラクロロパラジウム(II)イオン、ヘキサクロロイリジウム (IV)酸イオン、ヘキサクロロロジウム(III)酸イオン、ヘキサクロロルテニウム(III)酸イオンから選ばれる。ヘキサクロロレニウム(IV)酸イオンを含有する酸性の溶液は、例えば、ヘキサレニウム(IV)酸塩(カリウム塩等)を水に溶解させて、調製することができる。
溶液から取り出された担体を、通常は付着している水を除去してから、焼成する。焼成の温度は、担体に担持される白金又は添加金属が生成する温度であればよく、例えば300~600℃であってもよい。
あるいは、担体に白金及び添加金属を含む触媒金属を担持させる方法は、触媒金属を含む金属塩を含有する金属塩水溶液を担体と接触させ、次いで担体に付着している金属塩水溶液から水を除去して担体を乾固させることと、その後の焼成により担体に脱水素触媒として金属を担持させることとを含む方法であってもよい。
図2は、水素発生装置の一実施形態を示す模式図である。図2に示す水素発生装置10は、有機ハイドライド(例えばMCH)の脱水素により水素を生成させて、有機ハイドライドから水素を回収するために用いることができる。水素発生装置10は、円筒形の反応管20と、反応管20の内側に設けられた触媒層1(脱水素触媒層1)と、反応管20の周囲に設けられた加熱装置としての筒状体30とから主として構成される。触媒層1の両側には、触媒層1の位置を固定するための固定材40(例えば石英ウール)が詰められている。反応管20の両端には、流体入口18a及び流体出口18bが設けられている。流体入口18aは、送液ポンプ21、窒素ガスボンベ22及び水素ガスボンベ23と流路を介して連結されている。
触媒層1は、上述の実施形態に係るPt/TiO2触媒を含むことができる。触媒層1は、触媒以外の粉体又は粒状体(石英砂等)を含んでいてもよい。触媒層1は、触媒層1の質量を基準として、50~100質量%の触媒を含んでいてもよい。
送液ポンプ21から有機ハイドライドが供給される。窒素ガスボンベ22から、キャリアガスとして用いられる窒素ガスが供給される。水素ガスボンベ23から、触媒層1を還元処理するための水素ガスが供給される。加熱装置は、特に限定されないが、例えばPID制御の電気炉であってもよい。
有機ハイドライドの脱水素反応後、反応管20の流体出口18bから排出される反応流体(排出ガス)25は水素及びトルエンを含んでいる。排出ガス25から、コールドトラップ等の通常の手段を用いて水素を回収することができる。
図3も、水素発生装置の一実施形態を示す模式図である。図3に示す水素発生装置10は、筒状体30と、筒状体30の内部に配列された反応管20とを備える。それぞれの反応管20に触媒構造体50(触媒体50)が挿入されている。筒状体30の内部に設けられる反応管20の数は、特に制限されないが、例えば1~200本であってもよい。1本の反応管20に収容される触媒構造体50の数は、特に制限されないが、例えば1~50本である。1本の反応管20内に複数の触媒構造体50が収容されるとき、通常、それらは反応管20の長手方向に沿って間隔を空けて又は間隔を詰めて配置される。
筒状体30は、その長手方向における一方の端部に設けられた流体入口31及び他方の端部に設けられた流体出口32を有しており、これらは筒状体30の内部を流路として互いに連通している。この流路内に反応管20が配置されている。筒状体30の長さは、例えば100~5000mmであってもよい。円筒形の筒状体30の外径は、例えば100~500mmであってもよい。
反応管20の一方の端部から、有機ハイドライドとしてのメチルシクロヘキサンを含む反応流体25が導入される。反応流体25は、メチルシクロヘキサン以外の有機ハイドライドを含んでいてもよい。有機ハイドライドは、水素化及び脱水素のプロセスを繰り返すことが可能な芳香族炭化水素の水素化物であればよい。反応管20内を流れる反応流体25は、通常、気体である。反応流体25は、反応管20の内部で気化されてもよいし、予め気化されていてもよい。反応管20内における有機ハイドライドの流量は、特に制限されないが、例えば0.1~10.0g/時間であってもよい。反応流体25は、有機ハイドライドとともに、窒素ガス等の不活性ガスを含んでいてもよい。
本実施形態の反応管20は、円筒形である。円筒形の反応管を用いることで、高温での反応管内部の十分な気密性を維持し易い。触媒構造体50の挿入と取り出しの容易性等の観点から、図示されるように、一本の反応管20が、筒状体30の長手方向に沿って、両端(又は片端)が筒状体30の外部に出るように延在していてもよい。これにより、触媒構造体50の反応管20への挿入及び反応管20からの取り出しを容易に行うことができる。
反応管20の長さは、例えば100mm以上又は1000mm以上であってもよく、3000mm以下又は5000mm以下であってもよい。円筒形の筒状体30の内径は、例えば100mm以上又は200mm以上であってもよく、300mm以下又は500mm以下であってもよい。
反応管20を流れる有機ハイドライドは、触媒構造体50が有する触媒層と接触し、触媒層中の脱水素触媒の作用により、脱水素される。反応管20の他方の端部から、脱水素反応により生成した水素が、芳香族炭化水素(例えばトルエン)とともに排出される。これにより、有機ハイドライドから水素が回収される。芳香族炭化水素は、水素化することで有機ハイドライドとして再利用することができる。
吸熱反応である脱水素反応を促進するために、触媒構造体50及び反応流体25を加熱してもよい。そのために、反応管20を加熱することができる。加熱の温度は、脱水素反応の速度、触媒の耐久性の観点から、300℃以上、350℃以上又は370℃以上であってもよいし、400℃以下、380℃以下又は360℃以下であってもよい。
図3の装置の場合、加熱のための流体35が流体入口31から供給される。流体35は反応管20の外周面と接触しながら筒状体30の内部の流路を流れ、流体出口32から排出される。流体35自体の熱により反応管20を加熱してもよい。あるいは、反応管20の外周面上に燃焼触媒層を設け、流体35として燃料流体を用い、燃焼流体の燃焼反応で生じる熱によって反応管20を加熱してもよい。燃焼流体としては、例えば、可燃性の高い物質を用いることができる。反応管20を加熱する手段はこれらに限られず、任意の加熱方法を採用することができる。
触媒層1は、脱水素反応の前に、酸素を含む雰囲気下で加熱してもよい。通常、白金を含む触媒は、使用される前に還元処理されることが多いが、本実施形態に係る触媒の場合、酸素を含む雰囲気下での前処理を経ることで、さらに高い耐久性が発現し得る。酸素を含む雰囲気の酸素濃度は、雰囲気の全体積を基準として、例えば5~40体積%であってもよい。あるいは、大気雰囲気下で加熱を行うこともできる。
図4は、触媒構造体の一実施形態を示す模式図であり、図5は図4のV-V線端面図である。図4及び図5に示す触媒構造体50は、一定の軸線Xに沿って延在する基材5と、基材5の表面Sを覆う触媒層1とを有する。触媒層1は、上述の実施形態に係るPt/TiO2触媒を含むことができる。基材5において、軸線Xは基材5の中心線でもある。触媒層1は、基材5の表面全体を覆っていなくてもよい。基材5は、全体として、軸線Xを中心として回転する方向にねじれながら軸線Xに沿って延在する板状部から構成される。触媒構造体50がこのような形状を有していることにより、触媒構造体50がスタティックミキサーとして機能することができる。図3の水素発生装置10において、触媒構造体50は、軸線Xが反応管20の長手方向に平行になる向きで反応管20に挿入される。
基材5(板状部)の軸線Xに沿う方向における長さL、軸線Xに垂直な方向における最大幅W、及び板状部の厚みTは、反応管の形状、サイズ等に応じて、適宜設定される。長さLは、例えば20mm以上又は40mm以上であってもよく、1000mm以下又は500mm以下であってもよい。長さLは、最大幅Wよりも大きいことが多いが、最大幅Wよりも小さくてもよい。
基材5(板状部)の最大幅Wは、触媒構造体50を反応管20に挿入できるように設定される。最大幅Wが反応管の内径に近いと、装置のコンパクト化の点で有利であるとともに、反応管からの伝熱の効率が高められ得る。具体的には、基材5の最大幅Wの反応管20の内径に対する比が、0.85以上又は0.90以上であってもよいし、1.0以下又は0.95以下であってもよい。最大幅Wは、例えば3mm以上又は6mm以上であってもよく、30mm以下又は20mm以下であってもよい。
図4に示す実施形態に係る触媒構造体の場合、基材の板状部は、軸線Xの周りに一方向にねじれているが、基材(板状部)の形状はこれに限定されず、適宜変形が可能である。例えば、基材(板状部)が、軸線Xに沿う方向から基材を見たときに、時計周りの方向にねじれている部分と、反時計周りの方向にねじれている部分とを含んでいてもよい。ねじれの周期は一定である必要はなく、変化していてもよい。効率的な混合の観点から、基材(板状部)がスタティックミキサーエレメントであってもよい。ねじれている板状体を含む基材は、当業者には理解されるように、成形体を通常の方法により加工して得ることができる。
基材5は金属の成形体であってもよい。成形体を構成する金属は、例えば、アルミニウム、チタン及びジルコニウムから選ぶことができる。これらの金属は成形が容易であるとともに、これら金属の酸化物が脱水素触媒を担持すると、特に高い効率で脱水素反応を進行させることができる。基材がチタンの成形品であり、その表面を陽極酸化等の手法で酸化することによって、担体としての酸化チタン膜が形成されていてもよい。
基材5の表面Sは、予め粗面化された表面であってもよい。表面Sが粗面化されていることにより、触媒層1を、後述の触媒粒子を表面S上に配置することで容易に形成することができる。また、触媒層1の高い比表面積を確保し易い。
表面Sの粗面化は、通常の方法により行うことができる。表面Sは、例えば、化学的若しくは電気化学的エッチング、機械的エッチングから選ばれる方法により、粗面化されている。化学的エッチングは、例えば、水酸化ナトリウム水溶液等のアルカリ水溶液によるアルカリエッチングである。これらの方法によって、容易に表面Sを粗面化することができる。
触媒層1は、脱水素触媒を含む層であり、例えば、基材5の表面S上に配置された、脱水素触媒の一形態としての触媒粒子の集合体であってもよい。触媒層1の厚さは、特に制限されないが、例えば2~200μmであってもよい。
触媒構造体50における触媒層1の割合は、所望の触媒活性が得られるように設定できるが、例えば、触媒構造体50の質量を基準(100質量%)として、10~90質量%であってもよい。
触媒構造体50は、例えば、基材5(板状部)の表面Sを粗面化する工程と、粗面化された表面S上に触媒粒子を配置することで、触媒層1を形成する工程と、を含む方法により、製造することができる。表面Sは、上述の方法により粗面化することができる。ねじれている基材5(板状部)の表面Sを粗面化してもよいし、表面Sを粗面化してから基材5(板状部)をねじれるように成形してもよい。
触媒層1は、例えば、触媒粒子と該触媒粒子が分散している分散媒とを含有する分散液を、基材5の表面Sに付着させることと、基材5の表面Sに付着している分散液から分散媒を除去することと、を含む方法により、触媒粒子を表面S上に配置して形成することができる。分散液の付着及び分散媒の除去は、通常の方法によって行うことができ、所望の量の触媒粒子が表面S上に配置されるまで、繰り返すことができる。
触媒粒子を分散するための分散媒は、アルコール及び/又は水であってもよい。アルコールは、例えば2-プロパノール、ブタノール、エタノール及びメタノールから選ばれる。分散液における触媒粒子の濃度は、分散媒の体積を基準として、0.025~2.5g/mLであってもよい。
以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
(検討1)
(1)触媒の作製(蒸発乾固法)
(酸化チタン)
酸化チタン(TiO2)粒子(アナターゼ型、比表面積270m2/g、JRC-TIO-7、堺化学工業(株)製)を0.500g秤量し、これを50.0mLの蒸留水と共にフラスコ内へ投入した。アスピレーターで減圧しながら、フラスコ内の酸化チタン粒子分散液を12時間の間撹拌した。その後、0.010gの硝酸テトラアンミン白金を蒸留水に溶解させて得た水溶液をフラスコ内に投入し、さらに2時間の間大気圧下で撹拌を行った。次いで、酸化チタン粒子分散液を80℃に保温されたホットスターラー上で加熱し、撹拌しつつ蒸発乾固法によって水を除去した。このとき、酸化チタン粒子を均一に乾燥させるために、蒸発乾固を行なっている間はガラス棒で均一に撹拌し続けた。蒸発乾固の後、得られた固形物を焼成炉で温度500℃、5時間の条件で焼成して、担体としての酸化チタン粒子及びこれに担持された白金を含む触媒(Pt/TiO2触媒)を得た。得られた触媒を、ふるいを使用して粒子径が250~500μmとなるように分級した。触媒における白金の割合は、酸化チタン粒子の質量を基準として1.0質量%である。
(1)触媒の作製(蒸発乾固法)
(酸化チタン)
酸化チタン(TiO2)粒子(アナターゼ型、比表面積270m2/g、JRC-TIO-7、堺化学工業(株)製)を0.500g秤量し、これを50.0mLの蒸留水と共にフラスコ内へ投入した。アスピレーターで減圧しながら、フラスコ内の酸化チタン粒子分散液を12時間の間撹拌した。その後、0.010gの硝酸テトラアンミン白金を蒸留水に溶解させて得た水溶液をフラスコ内に投入し、さらに2時間の間大気圧下で撹拌を行った。次いで、酸化チタン粒子分散液を80℃に保温されたホットスターラー上で加熱し、撹拌しつつ蒸発乾固法によって水を除去した。このとき、酸化チタン粒子を均一に乾燥させるために、蒸発乾固を行なっている間はガラス棒で均一に撹拌し続けた。蒸発乾固の後、得られた固形物を焼成炉で温度500℃、5時間の条件で焼成して、担体としての酸化チタン粒子及びこれに担持された白金を含む触媒(Pt/TiO2触媒)を得た。得られた触媒を、ふるいを使用して粒子径が250~500μmとなるように分級した。触媒における白金の割合は、酸化チタン粒子の質量を基準として1.0質量%である。
(その他の金属酸化物)
アナターゼ型酸化チタン粒子に代えて、ルチル型酸化チタン粒子(比表面積100m2/g、JRC-TIO-6、堺化学工業(株)製)、酸化アルミニウム(Al2O3)粒子(JRC-ALO-8)、ゾル-ゲル法による酸化アルミニウム粒子、酸化ジルコニウム(ZrO2)粒子、酸化セリウム(CeO2)粒子、又は酸化マグネシウム(MgO)粒子を用いたことの他は上記と同様にして、それぞれの金属酸化物粒子に白金が担持されている触媒を得た。得られた触媒を、ふるいを使用して粒子径が250~500μmとなるように分級した。各触媒における白金の割合は、金属酸化物粒子の質量を基準として1.0質量%である。
アナターゼ型酸化チタン粒子に代えて、ルチル型酸化チタン粒子(比表面積100m2/g、JRC-TIO-6、堺化学工業(株)製)、酸化アルミニウム(Al2O3)粒子(JRC-ALO-8)、ゾル-ゲル法による酸化アルミニウム粒子、酸化ジルコニウム(ZrO2)粒子、酸化セリウム(CeO2)粒子、又は酸化マグネシウム(MgO)粒子を用いたことの他は上記と同様にして、それぞれの金属酸化物粒子に白金が担持されている触媒を得た。得られた触媒を、ふるいを使用して粒子径が250~500μmとなるように分級した。各触媒における白金の割合は、金属酸化物粒子の質量を基準として1.0質量%である。
(2)脱水素特性
図2の装置と同様の構成を有する固定床流通式反応器を使用した。50mgの触媒を、0.5cm3の石英砂(粒子径:250~500μm)と混合した。得られた混合粉末を、反応管20としての石英管(内径8mm)に充填し、厚さ10mmの触媒層1を形成させた。触媒層1の両側に石英ウール(固定材40)を詰めて、触媒層1の位置を固定した。次いで、用意できた反応管20をPID制御の電気炉(筒状体30)内に設置し、電気炉を350℃まで昇温した。反応管20の温度が350℃に到達した後、窒素ガスボンベ22、水素ガスボンベ23から供給された窒素ガスと水素ガスを下記表1に記載された条件で反応管20内に流通させ、触媒の前処理として還元処理を行った。
図2の装置と同様の構成を有する固定床流通式反応器を使用した。50mgの触媒を、0.5cm3の石英砂(粒子径:250~500μm)と混合した。得られた混合粉末を、反応管20としての石英管(内径8mm)に充填し、厚さ10mmの触媒層1を形成させた。触媒層1の両側に石英ウール(固定材40)を詰めて、触媒層1の位置を固定した。次いで、用意できた反応管20をPID制御の電気炉(筒状体30)内に設置し、電気炉を350℃まで昇温した。反応管20の温度が350℃に到達した後、窒素ガスボンベ22、水素ガスボンベ23から供給された窒素ガスと水素ガスを下記表1に記載された条件で反応管20内に流通させ、触媒の前処理として還元処理を行った。
還元処理後、送液ポンプ21からメチルシクロヘキサン(MCH)を供給し、下記表2に示す条件でMCHの脱水素反応を行なった。表中、LHSVは液空間速度を意味する。反応管から排出される排出ガス25中には、生成物であるトルエンと未反応のMCHが含まれており、コールドトラップを使用してこれらを捕集した。回収されたサンプル溶液に標準物質であるキシレンを投入してから、サンプル溶液はガラスクロマトグラフにより分析された。コールドトラップを通過した反応ガスも、30分ごとに0.1mLサンプリングされ、TCDガスクロマトグラフで分析された。
図6は、MCHの転化率と反応時間との関係を示すグラフである。担体として酸化チタン粒子を用いた触媒によれば、長時間にわたって高い触媒活性が維持されることが確認された。担体が、ルチル型酸化チタン、又は酸化アルミニウム等の他の金属酸化物である場合、時間の経過とともに触媒活性が明らかに低下する傾向が認められた。
(検討2)
(1)触媒の作製
(イオン吸着法)
20.0mLの純水中に0.013gのヘキサクロロ白金(IV)酸を投入し、24時間撹拌を行なって、塩化白金水溶液を得た。この塩化白金水溶液のpHは2.4であった。塩化白金水溶液に0.500gの酸化チタン粒子(アナターゼ型、JRC-TIO-7、堺化学工業(株)製)を投入し、さらに24時間の間攪拌を行なった。その後、塩化白金水溶液中の酸化チタン粒子を吸引ろ過によって取り出し、室温で24時間、自然乾燥させた。続いて、酸化チタン粒子を500℃、5時間の加熱により焼成して、酸化チタン粒子及びこれに担持された白金を含む触媒(Pt/TiO2触媒)を得た。得られた触媒を、ふるいを使用して粒子径が250~500μmとなるように分級した。触媒における白金の割合は、酸化チタン粒子の質量を基準として1.0質量%である。
図7及び図8は、得られたPt/TiO2触媒の透過型電子顕微鏡写真である。TiO2粒子のみが確認され、白金粒子は観測されなかった。白金が、電子顕微鏡で捉えられない極めて微細な粒子を形成しながら高度に分散していることが示唆される。
(1)触媒の作製
(イオン吸着法)
20.0mLの純水中に0.013gのヘキサクロロ白金(IV)酸を投入し、24時間撹拌を行なって、塩化白金水溶液を得た。この塩化白金水溶液のpHは2.4であった。塩化白金水溶液に0.500gの酸化チタン粒子(アナターゼ型、JRC-TIO-7、堺化学工業(株)製)を投入し、さらに24時間の間攪拌を行なった。その後、塩化白金水溶液中の酸化チタン粒子を吸引ろ過によって取り出し、室温で24時間、自然乾燥させた。続いて、酸化チタン粒子を500℃、5時間の加熱により焼成して、酸化チタン粒子及びこれに担持された白金を含む触媒(Pt/TiO2触媒)を得た。得られた触媒を、ふるいを使用して粒子径が250~500μmとなるように分級した。触媒における白金の割合は、酸化チタン粒子の質量を基準として1.0質量%である。
図7及び図8は、得られたPt/TiO2触媒の透過型電子顕微鏡写真である。TiO2粒子のみが確認され、白金粒子は観測されなかった。白金が、電子顕微鏡で捉えられない極めて微細な粒子を形成しながら高度に分散していることが示唆される。
(蒸発乾固法)
「検討1」において準備した蒸発乾固法によるPt/TiO2触媒が用いられた。
「検討1」において準備した蒸発乾固法によるPt/TiO2触媒が用いられた。
(2)脱水素特性
「検討1」と同様にして、担持法の異なる2種の触媒の活性を評価した。ただし、脱水素反応は下記表3の条件で行い、温度を300~350℃の間で変化させて、各温度での活性を評価した。
「検討1」と同様にして、担持法の異なる2種の触媒の活性を評価した。ただし、脱水素反応は下記表3の条件で行い、温度を300~350℃の間で変化させて、各温度での活性を評価した。
図9は、MCH転化率及びトルエン選択性(TL selectivity)と反応温度との関係を示すグラフである。図中、「Equilibrium」は、MCHの脱水素反応の無触媒下での平衡状態におけるMCH転化率を示す。他のグラフでも同様である。Pt/TiO2触媒は低温でも比較的高い脱水素活性を維持した。特にイオン吸着法によるPt/TiO2触媒は、蒸発乾固法によるものと比較して更に高い脱水素活性を示すことが確認された。
(検討3)
ルチル型酸化チタン粒子(JRC-TIO-6)又は酸化アルミニウム粒子(JRC-ALO-8)に、上述のイオン吸着法と同様の操作により白金を担持させて、Pt/Al2O3触媒(Pt担持量:1.0質量%)を作製した。これらと、「検討2」と同様にしてアナターゼ型酸化チタン粒子(JRC-TLO-7)を用いて準備したイオン吸着法によるPt/TiO2触媒に関して、「検討1」と同様にして活性を評価した。ただし、脱水素反応は、下記表4の条件で24時間行われた。
ルチル型酸化チタン粒子(JRC-TIO-6)又は酸化アルミニウム粒子(JRC-ALO-8)に、上述のイオン吸着法と同様の操作により白金を担持させて、Pt/Al2O3触媒(Pt担持量:1.0質量%)を作製した。これらと、「検討2」と同様にしてアナターゼ型酸化チタン粒子(JRC-TLO-7)を用いて準備したイオン吸着法によるPt/TiO2触媒に関して、「検討1」と同様にして活性を評価した。ただし、脱水素反応は、下記表4の条件で24時間行われた。
図10は、MCH転化率及びトルエン選択性(TL selectivity)と反応温度との関係を示すグラフである。ルチル型のPt/TiO2触媒及びPt/Al2O3触媒は、時間の経過とともに活性が低下する傾向を示した。これに対して、アナターゼ型のPt/TiO2触媒は、ほぼ100%のMCH転化率を示し、24時間の反応時間に至るまでMCH転化率の低下が認められなかった。
図11は、イオン吸着法によるアナターゼ型のPt/TiO2触媒に関して、さらに長時間にわたる活性評価を行った結果を示すグラフである。反応温度は、反応開始から100時間までの間は350℃、100時間から160℃までの間は360℃、160時間から208時間の間は370℃に設定された。図11に示す結果のとおり、アナターゼ型のPt/TiO2触媒によれば、208時間に至るまで活性の低下が十分に抑制されており、この触媒が非常に優れた耐久性を有することが確認された。
(検討4)
酸化チタン粒子として、JRC-TIO-7(比表面積270m2/g)に代えてJRC-TIO-8(アナターゼ型、比表面積338m2/g、堺化学工業(株)製)を用いたことの他は「検討2」と同様にして、イオン吸着法によるPt/TiO2触媒を作製した。
酸化チタン粒子として、JRC-TIO-7(比表面積270m2/g)に代えてJRC-TIO-8(アナターゼ型、比表面積338m2/g、堺化学工業(株)製)を用いたことの他は「検討2」と同様にして、イオン吸着法によるPt/TiO2触媒を作製した。
JRC-TIO-7、JRC-TIO-8をそれぞれ担体として有するPt/TiO2触媒に関して、「検討1」と同様にして活性を評価した。ただし、脱水素反応は、反応温度を350℃から開始して1.5時間ごとに10℃ずつ低下させながら、他は上記表4の条件で行われた。
図12に示されるように、いずれのPt/TiO2触媒も、低温であっても比較的高い脱水素活性を維持した。特に、より高い比表面積の酸化チタン粒子(TIO-8)を用いた触媒は、低温でも非常に高い脱水素活性を示した。
(検討5)
(1)触媒粒子(脱水素触媒)の作製
40mLの蒸留水中に所定量のヘキサクロロレニウム(IV)酸カリウムを投入し、2時間撹拌を行なって、塩化レニウム水溶液(pH3~5)を得た。そこに、2.0gの酸化チタン粒子(アナターゼ型、JRC-TIO-8、石原産業(株)製、比表面積338m2/g)を投入し、さらに24時間の攪拌を行った。その後、酸化チタン粒子を吸引ろ過によって塩化レニウム水溶液から取り出した。取り出した酸化チタン粒子を、80℃で5時間、乾燥させた。続いて、酸化チタン粒子を500℃、5時間の加熱により焼成して、酸化チタン粒子と、これに担持されたレニウムとを含む触媒粒子を得た。
(1)触媒粒子(脱水素触媒)の作製
40mLの蒸留水中に所定量のヘキサクロロレニウム(IV)酸カリウムを投入し、2時間撹拌を行なって、塩化レニウム水溶液(pH3~5)を得た。そこに、2.0gの酸化チタン粒子(アナターゼ型、JRC-TIO-8、石原産業(株)製、比表面積338m2/g)を投入し、さらに24時間の攪拌を行った。その後、酸化チタン粒子を吸引ろ過によって塩化レニウム水溶液から取り出した。取り出した酸化チタン粒子を、80℃で5時間、乾燥させた。続いて、酸化チタン粒子を500℃、5時間の加熱により焼成して、酸化チタン粒子と、これに担持されたレニウムとを含む触媒粒子を得た。
40mLの蒸留中に0.05gのヘキサクロロ白金(IV)酸六水和物を投入し、2時間撹拌を行なって、塩化白金水溶液(pH2~3)を得た。この塩化白金水溶液にレニウムが担持された上記触媒粒子1.8gを投入し、さらに24時間の間攪拌を行なった。その後、塩化白金水溶液中の酸化チタン粒子を吸引ろ過によって取り出した。取り出した酸化チタン粒子を、80℃で5時間、乾燥させた。続いて、酸化チタン粒子を500℃、5時間の加熱により焼成して、酸化チタン粒子と、これに担持された白金及びレニウムとを含む触媒粒子を得た。得られた触媒粒子における白金の割合は、触媒粒子の質量を基準として1.0質量%である。
最終的な触媒粒子におけるレニウムの割合が、触媒粒子の質量を基準として0.2、0.4、0.5、0.6、0.8又は1.0質量%となるようにヘキサクロロレニウム(IV)酸カリウムの濃度を変化させて、レニウムの担持量が異なる複数種の触媒粒子を作製した。また、比較用の触媒粒子として、1.0質量%の白金を含み、レニウムを含まない触媒粒子、及び、0.5質量%のレニウムを含み、白金を含まない触媒粒子を同様の手順で作製した。
(2)脱水素試験
各触媒粒子50mgを、0.5cm3の石英砂(粒子径:250~500μm)と混合した。得られた混合粉末を、石英管(内径8mm)に充填し、触媒層を形成させた。触媒層の両側に石英ウールを詰めて、触媒層の位置を固定した。次いで、石英管をPID制御の電気炉内に設置し、電気炉を350℃まで昇温した。反応管の温度が350℃に到達した後、窒素ガスと水素ガスを石英管内に流通させ、触媒粒子を還元処理した。
その後、石英管を350℃に加熱しながら、石英管にメチルシクロヘキサン(MCH、液空間速度(LHSV):35h-1)を供給して、脱水素反応を5時間行った。石英管から流出するガスにおけるMCHの残存量及び生成したトルエンの量を定量することにより、MCHの転化率及びトルエン選択性を求めた。
各触媒粒子50mgを、0.5cm3の石英砂(粒子径:250~500μm)と混合した。得られた混合粉末を、石英管(内径8mm)に充填し、触媒層を形成させた。触媒層の両側に石英ウールを詰めて、触媒層の位置を固定した。次いで、石英管をPID制御の電気炉内に設置し、電気炉を350℃まで昇温した。反応管の温度が350℃に到達した後、窒素ガスと水素ガスを石英管内に流通させ、触媒粒子を還元処理した。
その後、石英管を350℃に加熱しながら、石英管にメチルシクロヘキサン(MCH、液空間速度(LHSV):35h-1)を供給して、脱水素反応を5時間行った。石英管から流出するガスにおけるMCHの残存量及び生成したトルエンの量を定量することにより、MCHの転化率及びトルエン選択性を求めた。
(3)結果
図13は、MCHの転化率及びトルエン選択性と反応時間との関係を示すグラフである。いずれの触媒粒子も、高い転化率及び選択性を維持した。レニウムの白金に対する質量割合が0.7以下である触媒粒子によれば、白金のみが担持された触媒粒子と比較して更に高い触媒活性が得られることが確認された。
図13は、MCHの転化率及びトルエン選択性と反応時間との関係を示すグラフである。いずれの触媒粒子も、高い転化率及び選択性を維持した。レニウムの白金に対する質量割合が0.7以下である触媒粒子によれば、白金のみが担持された触媒粒子と比較して更に高い触媒活性が得られることが確認された。
(検討6)
酸化チタン粒子に白金、レニウムの順で担持させたこと以外は、「検討5」と同様の手順によって、白金の割合が1.0質量%で、レニウムの割合が0.2又は0.5質量%である触媒粒子を作製した。得られた触媒粒子を用いて、「検討5」と同様の脱水素試験を行った。
図14は、MCHの転化率及びトルエン選択性と反応時間との関係を示すグラフである。担持の順序を変えた場合でも、レニウムが添加された触媒粒子によれば、白金のみが担持された触媒粒子と比較して更に高い触媒活性が得られることが確認された。
酸化チタン粒子に白金、レニウムの順で担持させたこと以外は、「検討5」と同様の手順によって、白金の割合が1.0質量%で、レニウムの割合が0.2又は0.5質量%である触媒粒子を作製した。得られた触媒粒子を用いて、「検討5」と同様の脱水素試験を行った。
図14は、MCHの転化率及びトルエン選択性と反応時間との関係を示すグラフである。担持の順序を変えた場合でも、レニウムが添加された触媒粒子によれば、白金のみが担持された触媒粒子と比較して更に高い触媒活性が得られることが確認された。
(検討7)
白金の割合が1.0質量%で、レニウムの割合が0.2、0.4、0.5又は0.6質量%である触媒粒子を「検討5」と同様の手順で準備した。これら触媒粒子を用いて、「検討5」と同様の方法で、20時間の脱水素試験を行った。
図15は、MCHの転化率と反応時間との関係を示すグラフである。レニウムが担持されているいずれの触媒粒子も、白金のみ触媒粒子と比較して高い触媒活性を示した。白金に対するレニウムの質量割合が0.7以下(又は0.4~0.6)である触媒粒子が、耐久性の点でも特に優れていることが認められた。
白金の割合が1.0質量%で、レニウムの割合が0.2、0.4、0.5又は0.6質量%である触媒粒子を「検討5」と同様の手順で準備した。これら触媒粒子を用いて、「検討5」と同様の方法で、20時間の脱水素試験を行った。
図15は、MCHの転化率と反応時間との関係を示すグラフである。レニウムが担持されているいずれの触媒粒子も、白金のみ触媒粒子と比較して高い触媒活性を示した。白金に対するレニウムの質量割合が0.7以下(又は0.4~0.6)である触媒粒子が、耐久性の点でも特に優れていることが認められた。
(検討8)
白金の割合が1.0質量%で、レニウムの割合が0.5質量%である触媒粒子を「検討5」と同様の手順で準備した。この触媒粒子を用いて、触媒粒子の量を200mgに変更し、MCHのLHSVを4h-1に変更したこと以外は「検討5」と同様にして、200時間の脱水素試験を行った。
図16は、MCHの転化率及びトルエン選択性と反応時間との関係を示すグラフである。200時間の反応時間に至るまで触媒活性の低下はほとんど認められず、触媒粒子が高い耐久性を有していることが確認された。
白金の割合が1.0質量%で、レニウムの割合が0.5質量%である触媒粒子を「検討5」と同様の手順で準備した。この触媒粒子を用いて、触媒粒子の量を200mgに変更し、MCHのLHSVを4h-1に変更したこと以外は「検討5」と同様にして、200時間の脱水素試験を行った。
図16は、MCHの転化率及びトルエン選択性と反応時間との関係を示すグラフである。200時間の反応時間に至るまで触媒活性の低下はほとんど認められず、触媒粒子が高い耐久性を有していることが確認された。
(検討9)
白金の割合が1.0質量%で、レニウムの割合が0質量%又は0.5質量%である触媒粒子を「検討5」と同様の手順で準備した。各触媒粒子の量を50mgに変更したこと以外は「検討5」と同様にして、50時間の脱水素試験を行った。レニウムの割合が0.5質量%である触媒粒子に関しては、MCHのLHSVを4h-1に変更した200時間の脱水素試験も行った。
白金の割合が1.0質量%で、レニウムの割合が0質量%又は0.5質量%である触媒粒子を「検討5」と同様の手順で準備した。各触媒粒子の量を50mgに変更したこと以外は「検討5」と同様にして、50時間の脱水素試験を行った。レニウムの割合が0.5質量%である触媒粒子に関しては、MCHのLHSVを4h-1に変更した200時間の脱水素試験も行った。
図17は、レニウムを含まない触媒粒子(Pt/TiO2)の脱水素反応前後における熱重量分析結果を示す。図18は、レニウムの割合が0.5質量%である触媒粒子(Pt-Re(0.5)/TiO2)の脱水素反応前後における熱重量分析結果を示す。脱水素反応後のPt/TiO2は高温での大きな重量減少を示した。これは、脱水素反応の間に触媒上に、炭素が析出したこと、又は生成物が吸着したことを示唆する。これに対して、Pt-Re(0.5)/TiO2の場合、脱水素反応後も大きな重症減少が認められず、レニウムの添加によって、炭素の析出及び生成物の吸着が抑制されることが確認された。
1…触媒層、10…水素発生装置、18a…流体入口、18b…流体出口、20…反応管、21…送液ポンプ、22…窒素ガスボンベ、23…水素ガスボンベ、25…反応流体又は排出ガス、30…筒状体、31…流体入口、32…流体出口、35…流体、50…触媒体。
Claims (9)
- アナターゼ型酸化チタンを含む担体と、該担体に担持された白金を含む触媒金属と、を含む、有機ハイドライド用脱水素触媒。
- 前記触媒金属が、レニウム、ロジウム、イリジウム、パラジウム、及びルテニウムからなる群より選ばれる少なくとも1種の添加金属を更に含む、請求項1に記載の有機ハイドライド用脱水素触媒。
- 前記添加金属の前記白金に対する質量割合が0.7以下である、請求項2に記載の有機ハイドライド用脱水素触媒。
- アナターゼ型酸化チタンを含む担体に白金を担持させる工程を備える、請求項1に記載の有機ハイドライド用脱水素触媒を製造する方法。
- アナターゼ型酸化チタンを含む前記担体に白金を担持させる前記工程が、
白金を含むアニオン及び水を含む酸性の溶液を前記担体と接触させることにより、前記アニオンを前記担体に付着させることと、
前記アニオンが付着している前記担体を焼成して、前記担体に白金を担持させることとを含む、
請求項4に記載の方法。 - 前記添加金属を含むアニオン及び水を含有する、酸性の溶液を、前記担体と接触させることにより、前記担体に前記アニオンを吸着させ、その後、前記担体を焼成して、前記担体に前記添加金属を担持させる工程と、
白金を含むアニオン及び水を含有する、酸性の溶液を、前記担体と接触させることにより、前記担体に前記アニオンを吸着させ、その後、前記担体を焼成して、前記担体に白金を担持させる工程と、
を備える、請求項2又は3に記載の有機ハイドライド用脱水触媒を製造する方法。 - 白金を含む前記アニオンがヘキサクロロ白金(IV)酸イオンである、請求項5又は6に記載の方法。
- 請求項1~3のいずれか一項に記載の有機ハイドライド用脱水素触媒を含む触媒層を備える、水素発生装置。
- 請求項1~3のいずれか一項に記載の有機ハイドライド用脱水素触媒の存在下で、有機ハイドライドの脱水素により水素を生成させる工程を備える、有機ハイドライドから水素を回収する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016547479A JP6583735B2 (ja) | 2014-09-09 | 2015-09-09 | 有機ハイドライド用脱水素触媒及びその製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-183398 | 2014-09-09 | ||
JP2014183398 | 2014-09-09 | ||
JP2015-042436 | 2015-03-04 | ||
JP2015042436 | 2015-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039385A1 true WO2016039385A1 (ja) | 2016-03-17 |
Family
ID=55459129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/075625 WO2016039385A1 (ja) | 2014-09-09 | 2015-09-09 | 有機ハイドライド用脱水素触媒及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6583735B2 (ja) |
WO (1) | WO2016039385A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019537544A (ja) * | 2016-11-16 | 2019-12-26 | ハイドロジーニアス テクノロジーズ ゲーエムベーハー | 水素ガスを提供するための方法、脱水素反応器、及び、搬送コンテナ |
WO2020094921A1 (en) * | 2018-11-06 | 2020-05-14 | Teknologian Tutkimuskeskus Vtt Oy | Catalyst for dehydrogenation, method for preparing the catalyst and use |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005131471A (ja) * | 2003-10-28 | 2005-05-26 | Kansai Coke & Chem Co Ltd | Co変成触媒およびその製造方法 |
JP2008297160A (ja) * | 2007-05-31 | 2008-12-11 | Petroleum Energy Center | 水素製造方法および水素製造用反応管 |
JP2010279876A (ja) * | 2009-06-03 | 2010-12-16 | Jx Nippon Oil & Energy Corp | 有機ハイドライドの脱水素システム |
-
2015
- 2015-09-09 JP JP2016547479A patent/JP6583735B2/ja active Active
- 2015-09-09 WO PCT/JP2015/075625 patent/WO2016039385A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005131471A (ja) * | 2003-10-28 | 2005-05-26 | Kansai Coke & Chem Co Ltd | Co変成触媒およびその製造方法 |
JP2008297160A (ja) * | 2007-05-31 | 2008-12-11 | Petroleum Energy Center | 水素製造方法および水素製造用反応管 |
JP2010279876A (ja) * | 2009-06-03 | 2010-12-16 | Jx Nippon Oil & Energy Corp | 有機ハイドライドの脱水素システム |
Non-Patent Citations (7)
Title |
---|
M.A.VICERICH ET AL.: "Influence of iridium content on the behavior of Pt-Ir/Al2O3 and Pt-Ir/TiO2 catalysts for selective ring opening of naphthenes", APPLIED CATALYSIS A: GENERAL, vol. 453, 26 February 2013 (2013-02-26), pages 167 - 174, XP028976069, ISSN: 0926-860X, DOI: doi:10.1016/j.apcata.2012.12.015 * |
M.BIDAOUI ET AL.: "Citral hydrogenation on high surface area mesoporous TiO2-SiO2 supported Pt nanocomposites: Effect of titanium loading and reduction temperature on the catalytic performances", APPLIED CATALYSIS A: GENERAL, vol. 445, no. 446, 28 November 2012 (2012-11-28), pages 14 - 25, ISSN: 0926-860X * |
S.N.DELGADO ET AL.: "Influence of the nature of the support on the catalytic properties of Pt- based catalysts for hydrogenolysis of glycerol", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 367, February 2013 (2013-02-01), pages 89 - 98, ISSN: 1381-1169 * |
SATOSHI NAGATAKE ET AL.: "Pt/Ti02 ni yoru Methylcyclohexane no Datsusuiso", DAI 113 KAI CATSJ MEETING KOEN YOKOSHU, vol. 113 th, 10 March 2014 (2014-03-10), pages 179, ISSN: 2187-5928 * |
SATOSHI NAGATAKE ET AL.: "Pt/Ti02 Shokubai ni yoru Methylcyclohexane no Datsusuiso", DAI 114 KAI CATSJ MEETING TORONKAI A YOKOSHU, vol. 114 th, 18 September 2014 (2014-09-18), pages 404, ISSN: 1343-9936 * |
T.EKOU ET AL.: "Selective hydrogenation of citral to unsaturated alcohols over mesoporous Pt/Ti-Al2O3 catalysts. Effect of the reduction temperature and of the Ge addition", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 353, no. 354, February 2012 (2012-02-01), pages 148 - 155, XP028357210, ISSN: 1381-1169, DOI: doi:10.1016/j.molcata.2011.11.018 * |
T.LOPEZ ET AL.: "Effect of pH on the incorporation of platinum into the lattice of sol-gel titania phases", MATERIALS LETTERS, vol. 40, no. 2, July 1999 (1999-07-01), pages 59 - 65, XP004256210, ISSN: 0167-577X, DOI: doi:10.1016/S0167-577X(99)00049-X * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019537544A (ja) * | 2016-11-16 | 2019-12-26 | ハイドロジーニアス テクノロジーズ ゲーエムベーハー | 水素ガスを提供するための方法、脱水素反応器、及び、搬送コンテナ |
WO2020094921A1 (en) * | 2018-11-06 | 2020-05-14 | Teknologian Tutkimuskeskus Vtt Oy | Catalyst for dehydrogenation, method for preparing the catalyst and use |
Also Published As
Publication number | Publication date |
---|---|
JP6583735B2 (ja) | 2019-10-02 |
JPWO2016039385A1 (ja) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006137358A1 (ja) | 均一型高分散金属触媒及びその製造方法 | |
JP5628225B2 (ja) | 金属含有コロイド粒子担持担体およびその製造方法 | |
JP6126145B2 (ja) | 排ガス浄化触媒及びその製造方法 | |
WO2002102511A1 (en) | Textured catalysts comprising catalyst metal and metal oxide on carbon support, methods of making textured catalysts, and use in hydrogenation reactions conducted in hydrothermal conditions | |
CN110639567B (zh) | 一种碳负载磷化二钌纳米团簇双功能催化剂及其制备方法和应用 | |
JP4296908B2 (ja) | 触媒体およびその製造方法 | |
JP6583735B2 (ja) | 有機ハイドライド用脱水素触媒及びその製造方法 | |
JP5624343B2 (ja) | 水素製造方法 | |
JP5865110B2 (ja) | メタン酸化触媒およびその製造方法 | |
JP5515635B2 (ja) | 貴金属担持炭化ケイ素粒子とその製造方法及びそれを含有する触媒並びにその製造方法 | |
WO2023063353A1 (ja) | 触媒 | |
JP4714873B2 (ja) | 光触媒用助触媒および光触媒材料 | |
WO2017213093A1 (ja) | マグネシア系触媒担体及びその製造方法 | |
JP6719363B2 (ja) | メタン酸化除去用触媒の製造方法およびメタン酸化除去用触媒 | |
JP2009078203A (ja) | 排ガス浄化用触媒材、同触媒材の製造方法、及び同触媒材を用いた触媒 | |
JP2008238106A (ja) | 排ガス処理用触媒および排ガス処理方法 | |
TWI413548B (zh) | 處理含有機酸之排放廢氣用觸媒,及含有機酸之排放廢氣的處理方法 | |
JP6197052B2 (ja) | 燃料改質触媒 | |
JP6376494B2 (ja) | Co選択メタン化反応器 | |
JP4250971B2 (ja) | 無機材料およびこれを用いたシフト触媒 | |
JP2009078202A (ja) | 触媒金属担持酸素吸蔵材、同材の製造方法、及び同材を用いた触媒 | |
Heimann et al. | Co3O4/BiVO4 Heterostructures for Photochemical Water Oxidation: The Role of Synthesis Parameters and Preparation Route for the Physico-Chemical Properties and the Catalytic Activity | |
WO2023063354A1 (ja) | 担持触媒の作製方法 | |
JP2016159265A (ja) | 有機ハイドライド用脱水素触媒の製造方法 | |
JP2012240939A (ja) | 新規多核錯体およびそれを用いる担持触媒の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15840375 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016547479 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15840375 Country of ref document: EP Kind code of ref document: A1 |