WO2016038892A1 - 生体軟組織固定用デバイスおよびその作製方法 - Google Patents
生体軟組織固定用デバイスおよびその作製方法 Download PDFInfo
- Publication number
- WO2016038892A1 WO2016038892A1 PCT/JP2015/004596 JP2015004596W WO2016038892A1 WO 2016038892 A1 WO2016038892 A1 WO 2016038892A1 JP 2015004596 W JP2015004596 W JP 2015004596W WO 2016038892 A1 WO2016038892 A1 WO 2016038892A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy material
- soft tissue
- atomic
- clip
- biological soft
- Prior art date
Links
- 210000004872 soft tissue Anatomy 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000956 alloy Substances 0.000 claims abstract description 87
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 72
- 239000013078 crystal Substances 0.000 claims abstract description 71
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 34
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 33
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims description 45
- 238000001192 hot extrusion Methods 0.000 claims description 34
- 238000002513 implantation Methods 0.000 claims description 25
- 238000011282 treatment Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000006065 biodegradation reaction Methods 0.000 claims description 15
- 238000000465 moulding Methods 0.000 claims description 8
- 239000006104 solid solution Substances 0.000 claims description 7
- 238000000265 homogenisation Methods 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 claims description 3
- 238000006731 degradation reaction Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims 2
- 239000011777 magnesium Substances 0.000 abstract description 39
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 25
- 229910052749 magnesium Inorganic materials 0.000 abstract description 25
- 210000001519 tissue Anatomy 0.000 abstract description 20
- 238000001727 in vivo Methods 0.000 abstract description 14
- 230000035876 healing Effects 0.000 abstract description 6
- 238000001356 surgical procedure Methods 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000011701 zinc Substances 0.000 description 59
- 230000000052 comparative effect Effects 0.000 description 33
- 239000011575 calcium Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 19
- 241000699666 Mus <mouse, genus> Species 0.000 description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 241000700159 Rattus Species 0.000 description 9
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000001887 electron backscatter diffraction Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 210000001015 abdomen Anatomy 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 230000003872 anastomosis Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 229910001425 magnesium ion Inorganic materials 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 210000000013 bile duct Anatomy 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000013081 microcrystal Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 2
- 239000004137 magnesium phosphate Substances 0.000 description 2
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 2
- 229960002261 magnesium phosphate Drugs 0.000 description 2
- 235000010994 magnesium phosphates Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- WZUVPPKBWHMQCE-XJKSGUPXSA-N (+)-haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@]2(O)[C@H]1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-XJKSGUPXSA-N 0.000 description 1
- 238000001134 F-test Methods 0.000 description 1
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Natural products C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 238000001790 Welch's t-test Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/002—Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention relates to a biological soft tissue fixing device using a magnesium-based alloy material.
- a material stable in vivo such as a titanium material has been used.
- the device using titanium material is not only necessary after healing and healing of the incised tissue, but also remains in the body semi-permanently. This may cause artifacts (the phenomenon that artificial noise is added to the captured image when a high-absorbance material such as a metal that strongly absorbs X-rays is absorbed in the object to be measured) and hinder prognosis. There is a problem of coming.
- magnesium which is an essential element for living organisms, is attracting attention as a structural material because it has high specific strength due to its light weight, and has excellent biocompatibility and biodegradability. Application as a material is expected.
- the ductility of pure magnesium is low, and there is a concern that the device may break during soft tissue fixation.
- various magnesium-based alloy materials have been developed as materials for devices that can be decomposed in vivo, but the deformation performance is insufficient for use as biological soft tissue fixation devices such as surgical clips and staplers. There is a problem that.
- Mg containing Zn and a rare earth element one or more of RE: Gd, Tb, Tm
- Mg—Zn—RE Mg having a long-period stacked structure is used as a conventionally known magnesium-based alloy material.
- Alloy materials are known (see Patent Document 1).
- rare earth elements are expensive as materials, and there is a problem that deformation performance for use as a biological soft tissue fixing device is insufficient.
- Patent Document 2 As a conventionally known magnesium-based alloy material, there is known a Mg—Ca—Zn ternary Mg alloy material made of an element that does not use a rare earth element, is inexpensive, and has no problem of biotoxicity (patent document) 2), there is a concern that the decomposition rate in the living body is high because the amount of element addition is large.
- the magnesium-based alloy material disclosed in Patent Document 2 is intended to increase the strength of magnesium, does not place importance on deformability, and has a periodic structure that is a unique strengthened structure unless the average particle size is 1 ⁇ m or less. Is not formed.
- FIG. 24 shows a characteristic graph of a compression true stress-true strain relationship for a material which is subjected to only hot extrusion processing at 250 ° C. and which is not annealed.
- the compression true stress-true strain relationship corresponds to the compression strength-deformation amount.
- Mg alloy materials As comparative examples, and the contents (atomic%) of Ca and Zn in the Mg alloy material are shown in the graph of FIG.
- FIG. 24 (2) shows an image of the Mg alloy material of Comparative Example 4 observed with a transmission electron microscope. From FIG. 24 (2), it can be confirmed that the crystal grain size of the Mg alloy material of Comparative Example 4 is 1 ⁇ m or less.
- FIG. 25 shows a characteristic graph of a compression true stress-true strain relationship for a material which is subjected to only hot extrusion processing at 300 ° C. and which is not annealed.
- the compression true stress-true strain relationship corresponds to the compression strength-deformation amount.
- the content (atomic%) of Ca and Zn in the Mg alloy material is the same as that in the graph of FIG. In the case of the Mg alloy materials of Comparative Examples 5 to 8, since all the alloys were broken at a true strain of 0.15 or less, it was confirmed that the deformation performance was low.
- the monometallic element of the second component to be added to Mg is selected only from the elements having low biotoxicity, the concentration of the element as the second component is not increased more than necessary, and between the precipitate and the metal A material that does not contain a compound and ensures a function as a magnesium-based biodegradable metal material is known (see Patent Document 3).
- the toxicity of the elemental compound to the living body depends on the concentration (amount) in the living body, and the smaller the amount of element added, the lower the possibility that the toxicity will appear. Therefore, with respect to the remaining elements excluding elements that are clearly biotoxic, the maximum concentration of the second component is set to about 1/3 of the solid solution limit concentration in magnesium.
- JP 2009-221579 A International publication pamphlet WO2013 / 069638 Japanese Patent No. 5333886
- the present invention is a device made of a magnesium-based alloy material, and has a strength for use as a device for fastening biological soft tissue (organ, blood vessel, etc.) cut or separated by incision or the like during surgery.
- Another object of the present invention is to provide a biological soft tissue fixation device that has a deformability and is completely decomposed and discharged in vivo after soft tissue healing or incision tissue healing.
- the present inventors have determined that a ternary system of Mg—Ca—Zn with a specific composition is used. It was found that a device made of Mg alloy material is useful as a biological soft tissue fixing device.
- the biological soft tissue fixing device of the present invention is composed of an equiaxed crystal grain structure with an average crystal grain size of 20 to 250 ⁇ m by annealing, and can improve not only strength but also deformation performance.
- the average crystal grain size is measured by a linear intercept method from an image of the crystal grain structure.
- the biological soft tissue fixing device of the present invention is composed of an equiaxed crystal grain structure having an average crystal grain size of 20 to 250 ⁇ m by annealing, and can improve not only strength but also deformation performance.
- the average crystal grain size may be measured by a linear intercept method from an image of a crystal grain structure, for example.
- the biological soft tissue fixing device of the present invention is required to have high bend formability. Therefore, it is an interface that divides a crystal grain structure in the middle of deformation, and a crystal grain interface having a crystal orientation difference of 15 ° or more, or a crystal orientation difference of 3 It is good to be comprised with the material in which the subcrystal grain interface of (degrees) and 15 degrees is formed.
- a crystal grain interface having a crystal orientation difference of 15 ° or more is an interface called a large tilt grain boundary, and a crystal grain structure is clearly divided during deformation.
- the crystal orientation difference is less than 15 °
- the crystal grain structure is divided during deformation if it is a sub-crystal grain interface.
- the lower limit of the crystal orientation difference at the subgrain boundary is set to 3 °.
- the lower limit is defined as the limit value of the crystal orientation difference that can be confirmed by structure observation, and combined with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- EBSD Electro Back Scatter Diffraction Patterns
- the residual rate of biodegradation is 50 to 92% in 4 weeks after implantation, and the amount of gas generated by degradation is 2 of the volume of voids formed at the time of implantation. There is a feature that it is not more than doubled.
- the biological soft tissue fixing device of the present invention is characterized in that the biodegradation rate can be controlled using the Ca and Zn contents as parameters.
- the device for manufacturing a soft tissue fixing device is a device made of a Mg—Ca—Zn ternary Mg alloy material, and the following steps 1) to 7) are sequentially performed.
- Step 2 Preparation of Mg alloy material by adding Ca and Zn to Mg within the solid solution limit Step 2) Ingot preparation step of melting and casting Mg alloy material to produce ingot Step 3) Homogenizing heat treatment of ingot Homogenization heat treatment step 4) Hot extrusion processing step in which hot extrusion processing is performed at least once in a temperature range of 250 to 450 ° C. 5) Annealing processing step in which annealing processing in a temperature range of 350 to 450 ° C. is performed 6) Desired device Molding step for molding into shape 7) Surface removal step for removing impurities including oxide on device surface
- the ingot is exposed to a high temperature state for several tens of seconds immediately after extrusion by increasing the hot extrusion temperature and slowing the hot extrusion speed in the hot extrusion step. But you can.
- an equiaxed crystal grain structure having a grain size of submicron order to about 10 ⁇ m can be formed.
- an annealing treatment in a temperature range of 350 to 450 ° C., an equiaxed grain structure having a crystal grain size of 20 to 250 ⁇ m after the annealing treatment can be formed.
- the annealing treatment is a heat treatment that removes internal strain due to work hardening, grows the crystal grain structure, and improves the ductility, and is performed to obtain sufficient strength and ductility to be used as a clip. For example, after heating to a temperature of 400 ° C. and holding it for a certain time of about 1 to 8 hours, it is left to cool in the atmosphere.
- the crystal grain size is measured from the image of the crystal grain structure by the linear intercept method, but other known measurement methods may be used.
- a temperature range of 250 to 400 ° C instead of performing a hot extrusion step of performing a hot extrusion process in a temperature range of 250 to 450 ° C. and an annealing process step of performing an annealing process in a temperature range of 350 to 450 ° C., a temperature range of 250 to 400 ° C.
- a hot extrusion step may be performed. This is because the same effect as the annealing treatment can be obtained by the second hot extrusion step performed at a higher temperature.
- the first hot extrusion step and the second hot extrusion step are not two steps, and there may be more multi-stage hot extrusion steps.
- the processing is performed at a temperature higher than the temperature of the previous hot extrusion step.
- the biodegradation rate can be controlled using Ca and Zn contents as parameters.
- the biological soft tissue fixing device of the present invention since it is composed only of essential biological elements containing magnesium as a main component and calcium and zinc as additive elements, safety is ensured even after decomposition in vivo. Further, it has strength and deformation performance for fixing the living soft tissue, and has an effect that the degradation rate can be appropriately controlled.
- Example 3 Results of peripheral cell tissue observation (Example 3) Results of crystal orientation analysis by EBSD method (Example 4) Reconstructed image 1 of X-ray CT cross-sectional image of rat (Example 4) Reconstructed image 2 of rat X-ray CT cross-sectional image (Example 4) Graph showing the true strain characteristics of annealed clips (4) Graph (5) showing the true strain characteristics of annealed clips Graph (6) showing the true strain characteristics of annealed clips Explanatory drawing of conventional fine grain material (1) Explanatory drawing of conventional conventional fine crystal grain material (2) Graph showing the true stress-true strain relationship of pure magnesium used in the finite element calculation of the clip of this example
- FIG. 1 is a graph showing the contents of Ca and Zn in a Mg—Ca—Zn ternary Mg alloy material. The results of evaluating the usefulness of the five samples (Mg alloy materials No. 1 to No. 5) shown in FIG. 1 as biological soft tissue fixing devices will be described below. The five samples (Mg alloy materials No. 1 to No. 5) are shown in Table 1 below.
- Mg alloy materials No. 1 to No. 5 The production of five samples (Mg alloy materials No. 1 to No. 5) and a method for producing a biological soft tissue fixing device using these Mg alloy materials will be described with reference to FIG.
- the content of Ca and Zn with respect to Mg is an atomic ratio.
- An amount shown in 1 to 5 is added to prepare an Mg alloy material (S01: Mg alloy material preparation step). Then, the Mg alloy material is melted and cast to produce an ingot (S02: ingot producing step).
- FIG. 3 is an equivalent plastic strain distribution diagram of the clip 10.
- the strain distribution diagram shown in FIG. 3 is a result of using a finite element analysis method based on material data of pure magnesium (average crystal grain size: 47 ⁇ m).
- a graph of the true stress-true strain relationship of pure magnesium used for the finite element calculation of the clip 10 is shown in FIG.
- the dotted line in the graph of FIG. 26 is a plot that assumes that the material does not break and remains constant after the stress reaches the maximum value.
- FIG. 3 shows a V-shaped clip (a mesh model before deformation, an open state before sandwiching), and the right diagram shows a closed state of the clip.
- the portions 11 to 15 in FIG. 3 indicate portions having different shades on the clip image.
- the bent portion 11 with the clip closed is the portion with the largest strain, and the strain decreases in the order of 12, 13, and 14.
- the shaded portion of reference numeral 15 is a portion with almost no distortion.
- the maximum value of the equivalent plastic strain was 0.357. This 0.357 value varies depending on the material and shape of the clip. However, it does not change depending on the size of the clip.
- the tissue 11 can be fixed without breaking at the portion 11 having the largest strain.
- an experimental result showing that the magnesium alloy produced in this example is a material that does not break with a true strain of 0.357 due to compression was obtained. From this, it is understood that the soft tissue can be fixed using the clip made of the Mg—Ca—Zn ternary Mg alloy material shown in this example.
- FIG. 4 shows the true strain characteristics of a clip that has been annealed at 350 ° C., 400 ° C., and 450 ° C. for 1 hour or 8 hours with respect to Mg alloy material No. 1 (Example A).
- the graph is shown.
- the horizontal axis represents true strain and the vertical axis represents true stress. From the graph of FIG. 4, it is assumed that the clip made of Mg alloy material No. 1 (Example A) has a strain of 0.357 or more except in the case of 350 ° C. for 1 hour and 450 ° C. for 8 hours. It can be seen that no breakage occurs.
- the annealing temperature when the annealing temperature is as low as 350 ° C., the crystal grain coarsening is insufficient with the heat treatment for 1 hour, and it is necessary to perform the heat treatment for 8 hours.
- the annealing temperature is as high as 450 ° C., a heat treatment for 1 hour is sufficient, and a crystal structure that clears the strain of the required value of 0.357 or more can be obtained.
- the strain of the required value of 0.357 or more cannot be cleared. This suggested the existence of the optimum annealing temperature range and holding time range.
- FIG. 5 is a graph showing the true strain characteristics of a clip that has been annealed at 350 ° C., 400 ° C., and 450 ° C. for 1 hour or 8 hours with respect to Mg alloy material No. 5 (comparative example). Is shown. From the graph of FIG. 5, it can be seen that the clip made of Mg alloy material No. 5 (comparative example) has no data reproducibility that clears the strain of the required value of 0.357 or more.
- FIG. 6 is a clip made of Mg alloy material No. 1 (Example A), and the true strain (True strain) of the clip subjected to four annealing treatments at 400 ° C. for 1 hour, 2 hours, 4 hours, and 8 hours.
- the graph which shows the characteristic of) is shown. From the graph of FIG. 6, the clip made of Mg alloy material No. 1 (Example A) has a case where the true strain characteristic is improved and a case where the annealing process is 8 hours. Since the material of Mg alloy material No.
- the annealing time when the annealing time is set to 8 hours, the pinning effect of the crystal grain boundary by the solute atoms is reduced, and the partial It is considered that the crystal structure tends to be coarsened. This suggests that if the solute atom concentration is low, the required value may not be satisfied if the annealing time is long. This suggested the existence of an optimum holding time range for the annealing treatment.
- main solute atoms such as calcium and zinc
- FIGS. 13 (1) to (3) show that annealing treatment was performed on Mg alloy material No. 1 (Example A) at a temperature of 350 ° C. for 8 hours, at 400 ° C. for 2 hours, and at 450 ° C. for 1 hour.
- the crystal grain structure photograph of the clip is shown. Clips that have been annealed at 350 ° C. for 8 hours, 400 ° C. for 2 hours, and 450 ° C. for 1 hour, as shown in FIGS. 4 and 6, do not break even if a strain of 0.357 or more occurs. (See FIG. 4 for 8 hours at 350 ° C., see FIG.
- the crystal grain size of the annealed clip is about 20 ⁇ m for the small and about 250 ⁇ m for the large.
- FIG. 21 is a clip made of Mg alloy material No. 2 (Example B), and the true strain (True strain) of the clip subjected to four annealing treatments at 400 ° C. for 1 hour, 2 hours, 4 hours, and 8 hours.
- the graph which shows the characteristic of) is shown. From the graph of FIG. 21, in the clip made of Mg alloy material No. 2 (Example B), when the annealing treatment for 4 hours or 8 hours was performed, the true strain characteristics were improved and decreased. However, it was confirmed that the characteristics of true strain improved after annealing for 1 hour or 2 hours. This suggests that there is an optimum holding time range for the annealing treatment in the clip made of Mg alloy material No. 2 (Example B).
- FIG. 22 is a clip made of Mg alloy material No. 3 (Example C), and the true strain (True strain) of the clip subjected to four annealing treatments at 400 ° C. for 1 hour, 2 hours, 4 hours, and 8 hours.
- the graph which shows the characteristic of) is shown. From the graph of FIG. 22, when the clip made of Mg alloy material No. 3 (Example C) was subjected to annealing for 4 hours and 8 hours, the true strain characteristics were improved and decreased. However, it was confirmed that the characteristics of true strain improved after annealing for 1 hour or 2 hours. This suggests that there is an optimum holding time range for the annealing treatment in the clip made of Mg alloy material No. 3 (Example C).
- FIG. 23 is a clip made of Mg alloy material No. 4 (Example D), and the true strain of the clip subjected to five annealing treatments at 400 ° C. for 1 hour, 2 hours, 3 hours, 4 hours, and 8 hours.
- strain) is shown. From the graph of FIG. 23, it was confirmed that the clip made of Mg alloy material No. 4 (Example D) was subjected to the annealing treatment for 3 hours to improve the true strain characteristics. In addition, it was confirmed that when the annealing treatment for 4 hours was performed, the true strain characteristics were improved and the characteristics were lowered.
- FIGS. 7A and 7B show the crystal orientation analysis results of the cylindrical test pieces that have been annealed.
- FIG. 7 (1) shows the structure of the grain structure inside the compression test piece recovered by unloading and recovering the Mg alloy material (No1: Example A) to a true strain of 0.123. Shows the grain structure of the internal portion of the compressed specimen that was recovered by compressing a cylindrical specimen made of Mg alloy material (No. 1: Example A) to a true strain of 0.193 and then removing the load.
- the strain value of the grain structure is calculated from the "Nominal stress ( ⁇ n )-Nominal strain (Nominal stress: ⁇ n )" from the “Load-displacement relationship (curve)” obtained by the compression test of the cylindrical specimen in each state.
- the nominal stress is the load
- the initial strain is divided by the initial cross-sectional area, and the nominal strain is (the initial height of the test piece minus the height after deformation) divided by the initial height of the test piece.
- FIG. 8 is a graph showing the biodegradability of a clip that has been annealed. This is an in vitro test result of immersion in a solution simulating body fluid (E-MEM: 10% FBS, CO 2 concentration: 5%, 37 ° C.) for a certain period of time.
- E-MEM 10% FBS, CO 2 concentration: 5%, 37 ° C.
- the left side of the graph of FIG. 8 shows the volume residual rate of the clip after four weeks have passed in the environment in which the environment similar to that in the living body was constructed for Mg alloy materials No. 1 to No. 3
- the Mg alloy materials No. 1 and No. 2 an environment similar to that in the living body was constructed, and the produced clip was allowed to stand in the above-mentioned solution slowly refluxed for 4 weeks. It shows the remaining rate of the clip after being left for 4 weeks in the circulation environment.
- the volume residual ratio was determined as a ratio obtained by dividing the residual volume of the magnesium alloy calculated from the CT observation image by the volume before immersion
- the volume residual rate of the clip after 4 weeks in the stationary environment is 90% or more, and the clip residual rate after 4 weeks in the circulating environment is 85% or more, It can be seen that the biodegradation rate as a biological soft tissue fixation device is appropriate.
- Mg alloy material No. 1 Example A
- No. 2 Example B
- No. 3 Example
- the biodegradation rate decreases in this order.
- the biodegradation rate can be adjusted by the Ca and Zn concentrations.
- devices using Mg alloy materials No. 1 to No. 3 are useful as biological soft tissue fixing devices.
- Example 2 since the biodegradability and safety of the produced biological soft tissue fixing device were confirmed, it will be described below.
- 9 and 10 show X-ray CT cross-sectional images after a U-shaped soft tissue fixing device that has been subjected to the same manufacturing method as in Example 1, that is, annealed, is implanted into the living body of a mouse. ing. It was confirmed from an X-ray CT cross-sectional image that the biological soft tissue fixing device maintained a U-shaped shape even after 7 days, 14 days, and 28 days had elapsed after implantation.
- FIG. 9 (1) is an image after 7 days have elapsed since implantation into the mouse.
- FIG. 9 (2) is an image after 14 days have elapsed after implantation in the mouse. In any case, since the volume of the voids is little changed from immediately after implantation, the amount of gas generated is extremely small, and it is understood that rapid gas generation is not recognized.
- FIG. 10 (1) is a reconstructed image of the X-ray CT cross-sectional image immediately after implantation into the mouse.
- FIG. 10 (2) is a reconstructed image of an X-ray CT cross-sectional image after 28 days have elapsed after implantation into the mouse. From the reconfigured device shape, it can be seen that after 28 days, the U-shaped shape is maintained, although volume reduction due to uniform decomposition is observed. Thereby, it turns out that the fastening performance during a period is maintained, without a device missing partially. In addition, it was confirmed by X-ray CT and visual observation of surrounding tissue at the time of excision that no lesion was seen.
- FIG. 11 shows an X-ray CT cross-sectional image of the titanium device (Comparative Example 1) after implantation in vivo.
- FIG. 12 shows an X-ray CT cross-sectional image after in vivo implantation of a device having a Zn content of 6 atomic% (Comparative Example 2).
- the device made of titanium it can be seen that after being implanted in the mouse, the shape remains undegraded after 28 days (see FIG. 11).
- the influence of artifacts in the X-ray CT cross-sectional image is large, and it can be said that observation of living tissue is difficult.
- FIG. 12 (1) shows an X-ray CT cross-sectional image 7 days after the implantation into the mouse.
- FIG. 12 (1) there is a black space region showing a trace of a gas pool after the device disappears, and there is a bright portion around the edge of the space region, and the metal structure and bone that are the remaining clips can be confirmed.
- FIG. 12 (2) shows an X-ray CT cross-sectional image 14 days after the implantation into the mouse. Since the corrosion product has a lower contrast than bone, it is buried in soft tissue and difficult to understand. However, in FIG. 12 (2), the portion of the corrosion product (calcium phosphate, magnesium phosphate, magnesium carbonate, calcium carbonate) can be confirmed. It was.
- the biological soft tissue fixing device of the present invention Compared with the time-dependent changes in the materials of the two types of Comparative Examples 1 and 2, the biological soft tissue fixing device of the present invention has the effect of avoiding the delay in tissue recovery associated with the generation of a large amount of gas, and the appropriate period in vivo. It can be seen that the holding and holding performance is low and harmful to the living body.
- FIG. 14 is a graph showing an embedding period and a volume remaining rate for the clip of this example.
- the graph plots the average value of 3 mice used in the study.
- the volume of the clip of this Example decreases with time in the mouse body, but 70% at 1 month after implantation (after 4 weeks), 3 months after implantation (after 12 weeks). It was 50%.
- FIGS. 15 (a) to 15 (e) show the X of the clip of this example after 1 week, 2 weeks, 3 weeks, 4 weeks, and 12 weeks after implantation in the mouse, respectively.
- the reconstruction image of a line CT cross-sectional image is shown. From FIG. 15, it was confirmed that the clip of the present example retained the shape of the clip at the time of implantation when 12 weeks had elapsed.
- Table 2 shows the objects to be measured.
- statistical analysis was performed on serum test data. Statistical analysis assumes that the data is normally distributed, and the dispersibility is judged by F-test. After that, the student's t-test is used for those with equal variance, and for those with unequal variance. Analysis was performed using Welch's t-test, and the significance level was set as p ⁇ 0.05 in all analyses.
- FIG. 16 shows a graph of measurement results such as the in-vivo blood Mg ion concentration until 12 weeks after implantation.
- Each graph of FIGS. 16 (1) to 16 (5) shows the produced clip (this example), the titanium clip (Comparative Example 1), and the Zn-rich clip (Comparative Example 2) after one week.
- the numerical values of Mg, CRE, AST, ALP and ALT after 2 weeks, 3 weeks, 4 weeks and 12 weeks have been shown.
- the bar graph the data after the elapse of a predetermined time shows three bars arranged from left to right in the order of Comparative Example 1, Comparative Example 2, and the present example.
- burr at the right end of each graph shows the numerical value after 4 weeks, using as a control a normal mouse that does not open and nothing is implanted.
- the graph data is the average value of the data of three mice. From the result of measuring the blood Mg ion concentration until 12 weeks after implantation, since a significant increase in concentration is not recognized, it can be confirmed that the eluted ions are excreted from the body.
- FIG. 17 shows the results of observation of the surrounding tissue after 2 weeks from the implantation.
- FIGS. 17 (1) to 17 (3) show the peripheral cell tissue in which each of the produced clip (this example), the titanium clip (Comparative Example 1), and the clip rich in Zn (Comparative Example 2) is embedded.
- the results of SR staining with haematoxylin / eosin staining (HE staining) and Sirius red are shown (left image is HE staining, right image is SR staining).
- Example 4 unlike the clip manufacturing methods of Example 2 and Example 3, in the hot extrusion step, the hot extrusion temperature is increased and the hot extrusion speed is decreased, so that The clip produced by exposing the ingot to a high temperature state for 2 seconds and performing the annealing treatment step immediately after the hot extrusion step was confirmed for biodegradability and safety, and will be described below.
- the clip of Example 4 is No. in the above-mentioned Table 1 shown in Example 1.
- the content of Zn and Ca in one Mg alloy material More specifically, with respect to 99.69 atomic% of Mg, 0.1 atomic% of Ca and 0.21 atomic% of Zn are added, and melted and cast to produce an ingot, and the ingot is homogenized. Heat treated.
- the ingot after the heat treatment was subjected to a first-stage hot extrusion at 350 ° C., and an ingot having a diameter of 90 mm was processed to a diameter of 22 mm.
- a diameter of 22 mm was cut to a diameter of 20 mm, and a second hot extrusion process was performed at 410 ° C. to form a V-shaped cross section.
- annealing was performed by exposing to 400 to 410 ° C. for several tens of seconds. Thereafter, impurities including oxides on the clip surface were removed.
- FIG. 18 shows the results of crystal orientation analysis using the EBSD method that can measure the micro crystal orientation and the crystal system by manipulating an electron beam in combination with a scanning electron microscope (SEM). From the crystal orientation analysis results shown in FIG. 18, it was confirmed that the crystal structure of the produced clip was an equiaxed crystal grain structure. Further, when the average crystal grain size of the crystal structure of the clip produced using the section method was measured, the vicinity of the V-shaped valley portion of the clip was 28.8 ( ⁇ m), and the vicinity of the V-shaped mountain portion was 31.5 ( ⁇ m). Met. The produced clip was confirmed to have an equiaxed grain structure with an average crystal grain size of about 30 ( ⁇ m). In the state where the V-shape of the clip is closed, as described with reference to FIG. 7, an interface having a misorientation of several degrees appears every few ⁇ m in the crystal grains (subgrains are formed), and accumulated with deformation. Strain is eliminated and crack formation due to stress concentration is avoided (relaxation of stress concentration).
- SEM
- FIG. 19 shows reconstructed images of X-ray CT cross-sectional images of the rat chest after one week and four weeks (one month) after the excision.
- (1) shows a reconstructed image after one week has elapsed after excision
- (2) shows a reconstructed image after four weeks (one month) after excision.
- 19 (1) and 19 (2) (a) shows an anastomosis with the clip of this example, and (b) shows an anastomosis with the clip of Comparative Example 1.
- the rat As shown in FIG. 19, after liver resection, that is, after cutting of blood vessels and bile ducts, the rat is still alive after 4 weeks, and there is no large amount of gas generation by X-ray CT and the opening of the clip Therefore, it can be inferred that the expected clip fastening performance is maintained. Further, it is expected that the clip is uniformly decomposed in the living body of the rat, and after maintaining the fastening performance for a certain period, it is finally decomposed and discharged. This confirmed the possibility of realizing a biodegradable clip having safety.
- FIG. 20 shows an X-ray CT cross-sectional image of a rat. 20, (1) is an X-ray CT cross-sectional image after one week has elapsed after excision, and (2) is an X-ray CT cross-sectional image after four weeks (one month) after excision.
- FIGS. 20 (1) and 20 (2) show a case where anastomosis is performed with the clip of this embodiment.
- the clip of this example it is found that metal artifacts at the time of X-ray CT imaging when a conventional titanium clip is used hardly occur, and the living tissue can be clearly observed without image correction.
- the biological soft tissue fixing device of the present invention can hold and hold tissues for a period of 2 to 8 weeks when the biological soft tissues are fused, and is completely disassembled after about one year. It is useful for such as.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Forging (AREA)
Abstract
Description
最近の研究においても、生体内で分解されるデバイス用素材として種々のマグネシウム系合金材料が開発されているが、外科手術用クリップ、ステープラなど生体軟組織固定用デバイスとして用いるための変形性能が不十分であるという問題がある。
しかし、Mgに添加する第二成分が生体必須元素であるZnやCaの場合に、その含有量をマグネシウムへの固溶限界濃度の1/3程度とする必要はない。それに加え、特許文献3では、Mg-Ca-Znの3元系のMg合金材料について何ら言及していない。
かかる構成によれば、生体軟組織固定用デバイスとしての強度および変形性能を備え、かつ、軟組織の癒合後もしくは切開部組織の治癒後に生体内で完全分解される。
生体軟組織が癒合する2~8週の期間、組織を結合保持し、1年程度以内に完全分解するような生体内分解速度とするのが最も好ましく、そのためにはZnの含有量を0.2原子%以上0.4原子%以下とし、Ca:Zn=1:x(但し、xは2~3)の関係であるのが良い。
本発明の生体軟組織固定用デバイスは、焼鈍処理を行うことにより、平均結晶粒径が20~250μmの等軸結晶粒組織で構成され、強度のみならず変形性能を向上できる。平均結晶粒径は、例えば、結晶粒組織の画像からリニアインターセプト法により測定するとよい。
また、Mg合金材料の結晶粒内には、焼鈍処理後の平均結晶粒径が20~250μmの等軸結晶粒組織が確認されるよう熱処理にて制御するのが良い。これにより、応力集中に起因する破壊の防止につながり、常温での曲げ成形性を高くすることが可能となる。さらに、成形後は結晶組織が微細化されたことにより、強度が増加する利点を有する。
また、本発明の生体軟組織固定用デバイスは、CaおよびZnの含有量をパラメータとして、生体内分解速度が制御できるという特徴がある。
生体軟組織固定用デバイスの作製方法は、Mg-Ca-Znの3元系のMg合金材料から成るデバイスの作製方法であって、下記1)~7)のステップを順番に施す。
1)Mgに対してZnの含有量が0.5原子%以下、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは1~3)の関係が成立するように、MgにCaおよびZnを固溶限度内で添加してMg合金材料を調製するステップ
2)Mg合金材料を溶解および鋳造してインゴットを作製するインゴット作製ステップ
3)インゴットを均質化熱処理する均質化熱処理ステップ
4)250~450℃の温度範囲で熱間押出加工を少なくとも1回施す熱間押出加工ステップ
5)350~450℃の温度範囲の焼鈍処理を行う焼鈍処理ステップ
6)所望のデバイス形状に成型する成型加工ステップ
7)デバイス表面の酸化物を含む不純物を除去する表面除去ステップ
また、上記5)の焼鈍処理ステップは、Mg合金材料において、Mgに対してZnの含有量が0.2原子%以上0.4原子%以下、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは2~3)の関係が成立する場合、400℃近傍の温度で1~8時間、焼鈍処理を施すのが好ましい。
また、350~450℃の温度範囲の焼鈍処理を行うことで、焼鈍処理後の結晶粒径が20~250μmの等軸結晶粒組織を形成できる。
焼鈍処理は、加工硬化による内部のひずみを取り除き、結晶粒組織を成長させ、展延性を向上させる熱処理であり、クリップとして用いるのに十分な強度と延性を得るために行う。例えば、400℃の温度に加熱して、1~8時間程度の一定時間保持した後に、大気中に放置して冷却する。結晶粒径は、結晶粒組織の画像からリニアインターセプト法により測定するが、他の公知の測定法を用いてもよい。
本発明の生体軟組織固定用デバイスの作製方法では、CaおよびZnの含有量をパラメータとして、生体内分解速度を制御することができる。
先ず、Mgに対してCaおよびZnの含有量が原子比で、上記表1のNo.1~5に示す量を添加してMg合金材料を調製する(S01:Mg合金材料調製ステップ)。そして、Mg合金材料を溶融し鋳造してインゴットを作製する(S02:インゴット作製ステップ)。
そして、所望のクリップの形状に成型し(S06:成型加工ステップ)、クリップの表面の酸化物を含む不純物を除去する(S07:表面除去ステップ)。
図3は、クリップ10の相当塑性ひずみ分布図である。図3に示すひずみ分布図は、純マグネシウム(平均結晶粒径:47μm)の材料データに基づく有限要素解析法を用いた結果である。ここで、クリップ10の有限要素計算に用いた純マグネシウムの真応力-真ひずみ関係のグラフを図26に示す。図26のグラフ中の点線は、応力が最大値に到達した後も材料は破断せず、一定値となることを仮定したプロットである。図3の左図は、V字状のクリップ(変形前のメッシュモデルであり、挟む前の開いた状態)を示しており、右図はクリップが閉じた状態を示している。図3の符号11~15の箇所は、クリップの画像上で濃淡が異なる部分をそれぞれ示している。クリップが閉じた状態の折り曲げ部分11が最もひずみが大きな部位であり、12,13,14の順にひずみが小さくなっている。符号15の濃淡の部分は殆どひずみがない部分である。計算の結果、相当塑性ひずみの最大値は0.357であった。この0.357の値は、クリップの材料および形状により変化する。但し、クリップのサイズによっては不変である。純マグネシウムの材料パラメータと実施例で設定し作製したクリップのメッシュモデル形状について有限要素解析を行い、図3の右図の形状へ変形させた場合に、クリップモデル中での相当塑性ひずみの最大値をもって、変形に必要となる限界ひずみを0.357と決定した。すなわち、0.357の値は、一つの目標指標として、設定されたものである。従って、実施例で使用した材料が変われば、変形中のひずみ分布も変化するため、ひずみの最大値、すなわち目標指標とする限界値も変化する。本発明では、クリップの形状やサイズは限定されないので、実施例で用いるメッシュモデル形状のクリップのひずみの最大値をベンチマークとしている。
図7(1)(2)は、焼鈍処理を施した円柱試験片の結晶方位解析結果を示す。図7(1)はMg合金材料(No1:実施例A)を真ひずみ0.123まで圧縮した後に荷重を除荷し、回収した圧縮試験片内部の結晶粒組織構造を、図7(2)はMg合金材料(No1:実施例A)からなる円柱試験片を真ひずみ0.193まで圧縮した後に荷重を除荷し、回収した圧縮試験片の内部の結晶粒組織構造を示している。結晶粒組織構造のひずみの値は、それぞれの状態の円柱試験片の圧縮試験により得られた“荷重-変位の関係(曲線)”から、“公称応力(Nominal stress:σn)-公称ひずみ(Nominal strain:εn)の関係(曲線)”を求め、“真応力(True stress:
σt=σn(1-εn))-真ひずみ(True strain:εt=-ln(1-εn))の関係(曲線)”より算出した。ここで、公称応力は、荷重を初期断面積で割ったものであり、公称ひずみは、(試験片の初期高さ-変形後の高さ)を試験片の初期高さで割ったものである。
図7(2)に示すクリップを閉じた状態、すなわち、変形途中のMg合金材料の結晶粒内には、数μmごとに数度の方位差を有する界面が確認される。このことから、サブグレイン(亜結晶粒)形成により、変形にともない蓄積されるひずみが消失し、いわゆる動的回復が起こることで応力集中によるクラック(微視的亀裂)の形成が回避され、延性の向上に寄与していることがわかる。
図8のグラフの左側は、Mg合金材料No.1~No.3に関して、生体内と同様の環境を構築し、作製したクリップを静置環境で4週間経過後のクリップの体積残存率を示すものであり、グラフの右側は、Mg合金材料No.1およびNo.2に関して、生体内と同様の環境を構築し、作製したクリップを、ゆっくりと還流させた上記溶液中に4週間放置、すなわち循環環境で4週間放置した後のクリップの残存率を示すものである。ここで、体積残存率は、CT観察画像より算出したマグネシウム合金の残存体積を、浸漬前の体積で除した結果、求まる比率とした。
以上述べたように、Mg合金材料No.1~No.3を用いるデバイスは、生体軟組織固定用デバイスとして有用であることが明らかとなった。
図9および図10は、実施例1と同様の作製方法、すなわち焼鈍処理を施したU字状の生体軟組織固定用デバイスを、マウスの生体内へ埋入した後のX線CT断面画像を示している。
生体軟組織固定用デバイスは、埋入後、7日、14日、28日経過した後も、U字状の形状を維持していることをX線CT断面画像から確認した。
図9(1)は、マウスへ埋入した後、7日経過後の画像である。図9(2)は、マウスへ埋入した後、14日経過後の画像である。いずれの場合も、空隙の体積は埋入直後からの変化は僅かであるため、ガスが発生した量は極微少であり、急速なガス発生は認められないことがわかる。
図11は、チタン製デバイス(比較例1)の生体内埋入後のX線CT断面画像を示している。また、図12は、Znの含有量が6原子%のデバイス(比較例2)の生体内埋入後のX線CT断面画像を示している。
チタン製デバイス(比較例1)の場合、マウスへ埋入した後、28日経過後も分解されないままの形状を維持していることがわかる(図11を参照)。なお、図示しないが、チタン製デバイス(比較例1)の場合、X線CT断面画像におけるアーティファクトの影響が大きく、生体組織の観察は困難と言える。
先ず、実施例2と同じ方法で作製したクリップ(以下、本実施例のクリップという)をマウス腹部皮下へ埋入した実験の結果を説明する。比較例として、チタン製クリップ(比較例1)とZnの含有量が6原子%のクリップ(比較例2)についても同様に、マウス腹部皮下へ埋入して実験を行った。
外観観察したところ、埋入して1週間経過後、本実施例のクリップとチタン製のクリップ(比較例1)では、ガス発生による空隙の成長は見受けられなかったが、Znの含有量が多い比較例2のクリップは、大きな空隙の成長が見られた。これは、Znの含有量が多い比較例2のクリップでは、生体内分解速度が速いため1週間経過後に生体内分解に伴う多量のガス(水素)が発生したためと考えられる。
図15(a)~(e)は、それぞれ、マウスに埋入後1週間経過後、2週間経過後、3週間経過後、4週間経過後、12週間経過後の本実施例のクリップのX線CT断面画像の再構成画像を示す。図15から、本実施例のクリップは、12週間経過時点で、埋入時のクリップの形状を留めていることを確認した。
埋入後12週経過後までの血中Mgイオン濃度を測定した結果から、有意性の有る濃度増加は認められないため、溶出イオンは体外排出されていることが確認できる。
作製したクリップ(本実施例)を埋入した周辺の細胞組織およびチタン製クリップ(比較例1)を埋入した周辺の細胞組織の細胞観察からは、炎症反応が見られず、周辺細胞組織は正常であり、本実施例のクリップの生体安全性が確認された。一方、Znが多いクリップ(比較例2)を埋入した周辺の細胞組織観察では、線維状の形態が見られず、細胞間基質(細胞壁)が壊れており、細胞中の核が形成されておらず、組織が壊死している様子が確認された。
実施例4では、実施例2および実施例3のクリップの作製方法とは異なり、熱間押出加工ステップにおいて、熱間押出温度を高くし熱間押出速度を遅くすることにより、押出直後の数10秒間、インゴットを高温状態に晒して、熱間押出加工ステップの直後に焼鈍処理ステップを行って作製したクリップについて、生体内分解性および安全性について確認したので、以下説明する。
作製したクリップは、平均結晶粒径が凡そ30(μm)で等軸結晶粒組織であることが確認された。このクリップのV字を閉じた状態では、図7で説明したように、結晶粒内に数μmごとに数度の方位差を有する界面が現れ(サブグレインが形成され)、変形にともない蓄積されるひずみが消失し、応力集中によるクラックの形成が回避されるので(応力集中の緩和)、優れた変形性能を有する。
切除後の1週経過後と4週(1ヵ月)経過後におけるラットの胸部のX線CT断面画像の再構成画像を図19に示す。図19において、(1)は切除後の1週経過後、(2)は切除後の4週(1ヵ月)経過後の再構成画像を示している。図19(1)(2)において、(a)は本実施例のクリップで吻合したもの、(b)は比較例1のクリップで吻合したものである。
また、クリップは、ラットの生体内にて均一に分解が進み、一定期間は締結性能を維持したのち、最終的には分解されて排出されることが予想される。これにより、安全性を有する生体内分解性クリップを実現できる可能性が確認された。
Claims (9)
- Mg-Ca-Znの3元系のMg合金材料から成るデバイスであって、
前記Mg合金材料は、
Mgに対してCaおよびZnが固溶限度内で含有され、残部がMgおよび不可避的不純物から成り、Znの含有量が0.5原子%以下であり、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは1~3)の関係にあり、
平均結晶粒径が20~250μmの等軸結晶粒組織であることを特徴とする生体軟組織固定用デバイス。 - Mg-Ca-Znの3元系のMg合金材料から成るデバイスであって、
前記Mg合金材料は、
Mgに対してCaおよびZnが固溶限度内で含有され、残部がMgおよび不可避的不純物から成り、Znの含有量が0.2原子%以上0.4原子%以下であり、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは2~3)の関係にあり、
平均結晶粒径が20~250μmの等軸結晶粒組織であることを特徴とする生体軟組織固定用デバイス。 - 変形途中に前記結晶粒組織を分割する界面であって、結晶方位差15°以上の結晶粒界面、もしくは、結晶方位差3°以上15°未満の亜結晶粒界面が形成されることを特徴とする請求項1又は2に記載の生体軟組織固定用デバイス。
- 生体内分解の残存率が埋入後4週間で50~92%であり、分解に伴うガスの発生量が生体埋入時に形成される空隙の体積の2倍以上とならないことを特徴とする請求項1~3の何れかに記載の生体軟組織固定用デバイス。
- 前記CaおよびZnの含有量をパラメータとして、生体内分解速度が制御されたことを特徴とする請求項1~4の何れかに記載の生体軟組織固定用デバイス。
- Mg-Ca-Znの3元系のMg合金材料から成るデバイスの作製方法であって、
Mgに対してZnの含有量が0.5原子%以下、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは1~3)の関係が成立するように、MgにCaおよびZnを固溶限度内で添加してMg合金材料を調製するステップと、
Mg合金材料を溶解および鋳造してインゴットを作製するインゴット作製ステップと、
インゴットを均質化熱処理する均質化熱処理ステップと、
250~450℃の温度範囲で熱間押出加工を少なくとも1回施す熱間押出加工ステップと、
350~450℃の温度範囲の焼鈍処理を行う焼鈍処理ステップと、
所望のデバイス形状に成型する成型加工ステップと、
デバイス表面の酸化物を含む不純物を除去する表面除去ステップ、
を備えたことを特徴とする生体軟組織固定用デバイスの作製方法。 - Mg-Ca-Znの3元系のMg合金材料から成るデバイスの作製方法であって、
Mgに対してZnの含有量が0.5原子%以下、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは1~3)の関係が成立するように、MgにCaおよびZnを固溶限度内で添加してMg合金材料を調製するステップと、
Mg合金材料を溶解および鋳造してインゴットを作製するインゴット作製ステップと、
インゴットを均質化熱処理する均質化熱処理ステップと、
250~400℃の温度範囲で熱間押出加工を施す第1の熱間押出加工ステップと、
第1の熱間押出加工ステップにおける温度より高温で、かつ、350~450℃の温度範囲で熱間押出加工を施す第2の熱間押出加工ステップと、
所望のデバイス形状に成型する成型加工ステップと、
デバイス表面の酸化物を含む不純物を除去する表面除去ステップ、
を備えたことを特徴とする生体軟組織固定用デバイスの作製方法。 - 前記CaおよびZnの含有量をパラメータとして、生体内分解速度を制御することを特徴とする請求項6又は7に記載の生体軟組織固定用デバイスの作製方法。
- 前記Mg合金材料において、Mgに対してZnの含有量が0.2原子%以上0.4原子%以下、CaおよびZnの含有量が原子比で、Ca:Zn=1:x(但し、xは2~3)の関係が成立する場合、
前記焼鈍処理ステップは、400℃近傍の温度で1~8時間、焼鈍処理を施すことを特徴とする請求項6に記載の生体軟組織固定用デバイスの作製方法。
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201701814TA SG11201701814TA (en) | 2014-09-09 | 2015-09-09 | Device for fixing biological soft tissue, and method for producing same |
CA2960612A CA2960612C (en) | 2014-09-09 | 2015-09-09 | Device for fixing biological soft tissue, and method for producing same |
MYPI2017700798A MY183300A (en) | 2014-09-09 | 2015-09-09 | Device for fixing biological soft tissue, and method for producing same |
US15/510,106 US10994056B2 (en) | 2014-09-09 | 2015-09-09 | Device for fixing biological soft tissue, and method for producing same |
KR1020177007997A KR102227158B1 (ko) | 2014-09-09 | 2015-09-09 | 생체 연조직 고정용 디바이스 및 그 제작방법 |
JP2016546858A JP6164675B2 (ja) | 2014-09-09 | 2015-09-09 | 生体軟組織固定用デバイスおよびその作製方法 |
CN201580048143.2A CN106715737B (zh) | 2014-09-09 | 2015-09-09 | 生物体软组织固定用器件及其制作方法 |
RU2017111570A RU2688064C2 (ru) | 2014-09-09 | 2015-09-09 | Устройство для фиксации мягкой биологической ткани и способ его производства |
PL15839699T PL3192886T3 (pl) | 2014-09-09 | 2015-09-09 | Urządzenie do mocowania biologicznych tkanek miękkich i sposób jego wytwarzania |
AU2015313647A AU2015313647B2 (en) | 2014-09-09 | 2015-09-09 | Device for fixing biological soft tissue, and method for producing same |
ES15839699T ES2706890T3 (es) | 2014-09-09 | 2015-09-09 | Dispositivo para fijar tejido blando biológico, y método para producirlo |
EP15839699.4A EP3192886B1 (en) | 2014-09-09 | 2015-09-09 | Device for fixing biological soft tissue, and method for producing same |
AU2020204559A AU2020204559A1 (en) | 2014-09-09 | 2020-07-08 | Device for fixing biological soft tissue, and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-183716 | 2014-09-09 | ||
JP2014183716 | 2014-09-09 | ||
JP2015050101 | 2015-03-12 | ||
JP2015-050101 | 2015-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016038892A1 true WO2016038892A1 (ja) | 2016-03-17 |
Family
ID=55458661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/004596 WO2016038892A1 (ja) | 2014-09-09 | 2015-09-09 | 生体軟組織固定用デバイスおよびその作製方法 |
Country Status (13)
Country | Link |
---|---|
US (1) | US10994056B2 (ja) |
EP (1) | EP3192886B1 (ja) |
JP (2) | JP6164675B2 (ja) |
KR (1) | KR102227158B1 (ja) |
CN (1) | CN106715737B (ja) |
AU (2) | AU2015313647B2 (ja) |
CA (1) | CA2960612C (ja) |
ES (1) | ES2706890T3 (ja) |
MY (1) | MY183300A (ja) |
PL (1) | PL3192886T3 (ja) |
RU (1) | RU2688064C2 (ja) |
SG (1) | SG11201701814TA (ja) |
WO (1) | WO2016038892A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017197846A (ja) * | 2014-09-09 | 2017-11-02 | 国立大学法人神戸大学 | 生体軟組織固定用デバイスおよびその作製方法 |
JP2017210651A (ja) * | 2016-05-25 | 2017-11-30 | 権田金属工業株式会社 | マグネシウム合金の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108330368B (zh) * | 2018-03-30 | 2024-06-18 | 西安卓恰医疗器械有限公司 | 生物体植入物、其成分及制备方法 |
WO2020111854A1 (ko) * | 2018-11-30 | 2020-06-04 | 유앤아이 주식회사 | 생체분해성 금속 합금 |
EP3741880B1 (en) * | 2019-05-20 | 2023-06-28 | Volkswagen AG | Sheet metal product with high bendability and manufacturing thereof |
KR102095813B1 (ko) * | 2019-11-28 | 2020-04-03 | 유앤아이 주식회사 | 생체분해성 금속합금 제조방법 |
AU2021230640B2 (en) * | 2020-03-03 | 2023-12-14 | Hejie Li | Methods for improving mechanical property and biological stability of magnesium alloy and for manufacturing material and applications |
CN111534769A (zh) * | 2020-03-03 | 2020-08-14 | 李贺杰 | 提高镁合金力学性能及生物功能稳定性的热处理方法 |
KR102674799B1 (ko) * | 2020-11-04 | 2024-06-17 | 한국재료연구원 | 고강도 고내식 생분해성 마그네슘 합금 및 이를 이용하는 임플란트 |
EP4215222A1 (en) * | 2020-11-04 | 2023-07-26 | Korea Institute Of Materials Science | High-strength, high-anticorrosive, biodegradable magnesium alloy and implant using same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013052791A2 (en) * | 2011-10-06 | 2013-04-11 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Biodegradable metal alloys |
WO2013069638A1 (ja) * | 2011-11-07 | 2013-05-16 | トヨタ自動車株式会社 | 高強度Mg合金およびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3461513A (en) | 1967-02-20 | 1969-08-19 | American Velcro Inc | Separable fastening device |
JPH07138689A (ja) * | 1993-11-09 | 1995-05-30 | Shiyoutarou Morozumi | 高温強度のすぐれたMg合金 |
WO2007058276A1 (ja) | 2005-11-16 | 2007-05-24 | National Institute For Materials Science | マグネシウム系生分解性金属材料 |
PL2000551T3 (pl) * | 2007-05-28 | 2011-02-28 | Acrostak Corp Bvi | Stopy oparte na magnezie |
JP5196543B2 (ja) | 2008-03-18 | 2013-05-15 | 株式会社神戸製鋼所 | マグネシウム合金材およびその製造方法 |
RU2640700C2 (ru) | 2012-06-26 | 2018-01-11 | Биотроник Аг | Магниевый сплав, способ его производства и использования |
CN104284992B (zh) | 2012-06-26 | 2018-10-16 | 百多力股份公司 | 镁合金、其生产方法及其用途 |
JPWO2015044997A1 (ja) * | 2013-09-24 | 2017-03-02 | オリンパス株式会社 | インプラントとその製造方法 |
EP3192886B1 (en) * | 2014-09-09 | 2018-10-17 | National University Corporation Kobe University | Device for fixing biological soft tissue, and method for producing same |
CN104328318B (zh) * | 2014-10-20 | 2016-04-20 | 东北大学 | 一种高耐蚀性生物可降解镁合金的制备方法 |
CN104498790B (zh) * | 2014-12-01 | 2017-04-26 | 中国兵器科学研究院宁波分院 | 一种可降解镁合金生物植入材料及其制备方法 |
CN104451303A (zh) * | 2014-12-03 | 2015-03-25 | 东南大学 | 一种生物医用镁合金及其丝材的制备方法和应用 |
-
2015
- 2015-09-09 EP EP15839699.4A patent/EP3192886B1/en active Active
- 2015-09-09 WO PCT/JP2015/004596 patent/WO2016038892A1/ja active Application Filing
- 2015-09-09 JP JP2016546858A patent/JP6164675B2/ja active Active
- 2015-09-09 KR KR1020177007997A patent/KR102227158B1/ko active IP Right Grant
- 2015-09-09 CN CN201580048143.2A patent/CN106715737B/zh active Active
- 2015-09-09 RU RU2017111570A patent/RU2688064C2/ru active
- 2015-09-09 MY MYPI2017700798A patent/MY183300A/en unknown
- 2015-09-09 ES ES15839699T patent/ES2706890T3/es active Active
- 2015-09-09 SG SG11201701814TA patent/SG11201701814TA/en unknown
- 2015-09-09 CA CA2960612A patent/CA2960612C/en active Active
- 2015-09-09 US US15/510,106 patent/US10994056B2/en active Active
- 2015-09-09 PL PL15839699T patent/PL3192886T3/pl unknown
- 2015-09-09 AU AU2015313647A patent/AU2015313647B2/en active Active
-
2017
- 2017-06-14 JP JP2017116430A patent/JP2017197846A/ja active Pending
-
2020
- 2020-07-08 AU AU2020204559A patent/AU2020204559A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013052791A2 (en) * | 2011-10-06 | 2013-04-11 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Biodegradable metal alloys |
WO2013069638A1 (ja) * | 2011-11-07 | 2013-05-16 | トヨタ自動車株式会社 | 高強度Mg合金およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3192886A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017197846A (ja) * | 2014-09-09 | 2017-11-02 | 国立大学法人神戸大学 | 生体軟組織固定用デバイスおよびその作製方法 |
JP2017210651A (ja) * | 2016-05-25 | 2017-11-30 | 権田金属工業株式会社 | マグネシウム合金の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2688064C2 (ru) | 2019-05-17 |
EP3192886A1 (en) | 2017-07-19 |
JP2017197846A (ja) | 2017-11-02 |
CN106715737B (zh) | 2018-12-04 |
PL3192886T3 (pl) | 2019-05-31 |
RU2017111570A (ru) | 2018-10-11 |
US10994056B2 (en) | 2021-05-04 |
JP6164675B2 (ja) | 2017-07-19 |
ES2706890T3 (es) | 2019-04-01 |
CA2960612A1 (en) | 2016-03-17 |
CA2960612C (en) | 2020-10-27 |
US20170258968A1 (en) | 2017-09-14 |
EP3192886A4 (en) | 2017-08-30 |
MY183300A (en) | 2021-02-18 |
SG11201701814TA (en) | 2017-04-27 |
RU2017111570A3 (ja) | 2019-03-26 |
KR20170053640A (ko) | 2017-05-16 |
KR102227158B1 (ko) | 2021-03-11 |
AU2015313647B2 (en) | 2020-04-09 |
CN106715737A (zh) | 2017-05-24 |
EP3192886B1 (en) | 2018-10-17 |
AU2020204559A1 (en) | 2020-07-30 |
AU2015313647A1 (en) | 2017-03-23 |
JPWO2016038892A1 (ja) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6164675B2 (ja) | 生体軟組織固定用デバイスおよびその作製方法 | |
RU2647951C2 (ru) | Магниевый сплав, способ его производства и использования | |
KR102246887B1 (ko) | 마그네슘-알루미늄-아연 합금, 이의 제조방법 및 이의 용도 | |
EP2172233B1 (de) | Implantat mit einem Grundkörper aus einer biokorrodierbaren Manganlegierung | |
EP2087915B1 (de) | Implantat mit einem Grundkörper aus einer biokorrodierbaren Eisenlegierung | |
JP2018197396A (ja) | マグネシウム合金、その製造方法およびその使用 | |
CN105143483B (zh) | 具有可调节降解率的镁合金 | |
US11696976B2 (en) | Degradable magnesium-based implant devices for bone fixation | |
EP2224032A1 (en) | Process for manufacturing magnesium alloy based products | |
Ikeo et al. | Fabrication of a magnesium alloy with excellent ductility for biodegradable clips | |
WO2014197781A2 (en) | Biodegradable wire for medical devices | |
US20220275477A1 (en) | Magnesium alloy based objects and methods of making and use thereof | |
US20200399742A1 (en) | Properties and parameters of novel biodegradable metallic alloys | |
JP2018075159A (ja) | 超高純度マグネシウムを用いる医療用インプラント材、及び医療用インプラントの製造方法 | |
Hänzi | Development of biodegradable magnesium alloys for cardiovascular stent applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15839699 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016546858 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2960612 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15510106 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177007997 Country of ref document: KR Kind code of ref document: A Ref document number: 2015313647 Country of ref document: AU Date of ref document: 20150909 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015839699 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015839699 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017111570 Country of ref document: RU Kind code of ref document: A |