WO2016038707A1 - 車載器および異常判定方法 - Google Patents

車載器および異常判定方法 Download PDF

Info

Publication number
WO2016038707A1
WO2016038707A1 PCT/JP2014/073989 JP2014073989W WO2016038707A1 WO 2016038707 A1 WO2016038707 A1 WO 2016038707A1 JP 2014073989 W JP2014073989 W JP 2014073989W WO 2016038707 A1 WO2016038707 A1 WO 2016038707A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
mounted device
state information
information
acquisition unit
Prior art date
Application number
PCT/JP2014/073989
Other languages
English (en)
French (fr)
Inventor
哲也 安達
日浦 亮太
武 深瀬
拓馬 岡▲崎▼
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to SG11201701923PA priority Critical patent/SG11201701923PA/en
Priority to KR1020177006155A priority patent/KR101955836B1/ko
Priority to JP2016547309A priority patent/JP6319701B2/ja
Priority to PCT/JP2014/073989 priority patent/WO2016038707A1/ja
Priority to MYPI2017700808A priority patent/MY184368A/en
Priority to US15/510,141 priority patent/US10126922B2/en
Priority to GB1704040.3A priority patent/GB2544444B/en
Publication of WO2016038707A1 publication Critical patent/WO2016038707A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0025Measuring of vehicle parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • G06F11/0736Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in functional embedded systems, i.e. in a data processing system designed as a combination of hardware and software dedicated to performing a certain function
    • G06F11/0739Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment in functional embedded systems, i.e. in a data processing system designed as a combination of hardware and software dedicated to performing a certain function in a data processing system embedded in automotive or aircraft systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • G07B15/063Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN

Definitions

  • the present invention relates to a vehicle-mounted device and an abnormality determination method.
  • the vehicle-mounted device stores information on a vehicle to which the vehicle-mounted device itself is attached and performs processing using the information.
  • the on-board device of the road billing system stores the vehicle type information of the vehicle to which the on-vehicle device itself is attached. Automatic billing according to the vehicle type becomes possible.
  • the processing may not be performed correctly.
  • the road billing system mistakenly recognizes the regular vehicle as a motorcycle when charging on a toll road, There is a possibility of charging for a motorcycle. From this, it is desirable to be able to detect that the vehicle-mounted device storing the vehicle information is used in another vehicle.
  • a monitoring device for unauthorized traffic vehicles described in Patent Document 1 includes a base station antenna for mobile communication, a camera that captures an image of a passing vehicle, and a license plate of the vehicle from an image captured by the camera. And an image processing device for identifying vehicle type information, and vehicle traffic obtained by communicating with the vehicle via the base station antenna and a vehicle license plate and vehicle type information identified by the image processing device are detected to detect unauthorized traffic. An antenna processing device is provided.
  • exchange of onboard equipment is prevented with respect to the vehicle which uses a toll road with the monitoring apparatus of the said unauthorized traffic vehicle.
  • the present invention provides an on-vehicle device and an abnormality determination method that can easily detect that an on-vehicle device that stores vehicle information is being used by another vehicle.
  • the vehicle-mounted device (100, 200, 300, 400) is an on-vehicle device that is attached to a vehicle, stores information on the vehicle, and performs processing using the information on the vehicle.
  • the state information acquisition unit (141, 241, 341, 441) for acquiring the state information indicating the state of the onboard device and the state information when the onboard device is turned off are stored in the storage unit (130). It is determined whether or not the storage unit management unit (142) to be stored matches the state information when the power of the vehicle-mounted device is turned on and the state information stored in the storage unit. And an abnormality determination unit (143, 243, 343, 443) that determines that an abnormality has occurred. In this way, the vehicle-mounted device detects that it has been transferred to another vehicle based on the state information. Therefore, the vehicle-mounted device can easily detect that it is used in another vehicle.
  • the vehicle-mounted device includes an acceleration sensor, and the state information acquisition unit displays information indicating an angle with respect to a vertical direction of a reference direction set in the vehicle-mounted device based on the acceleration detected by the acceleration sensor. You may make it acquire as information. In this way, the vehicle-mounted device detects that it has been replaced with another vehicle based on the acceleration detected by the acceleration sensor. Thereby, onboard equipment can detect easily that it is used for other vehicles.
  • the state information acquisition unit may acquire position information of the vehicle-mounted device in the horizontal direction as the state information. In this way, the vehicle-mounted device detects that it has been transferred to another vehicle based on the position information of the vehicle-mounted device in the horizontal direction. Thereby, onboard equipment can detect easily that it is used for other vehicles.
  • the state information acquisition unit may acquire information indicating the height of the position of the vehicle-mounted device as the state information.
  • the vehicle-mounted device detects that it has been transferred to another vehicle based on information indicating the height of the position of the vehicle-mounted device.
  • onboard equipment can detect easily that it is used for other vehicles.
  • the state information acquisition unit may acquire information indicating a voltage supplied from a power source to the vehicle-mounted device as the state information.
  • the vehicle-mounted device may include an acceleration sensor, and the state information acquisition unit may acquire information indicating vibration detected by the acceleration sensor as the state information. Thereby, the replacement of the vehicle-mounted device from the gasoline vehicle to the electric vehicle and the replacement of the vehicle-mounted device from the electric vehicle to the gasoline vehicle can be detected.
  • the on-vehicle device may be attached to a windshield of the vehicle.
  • the inclination of the windshield differs depending on the type of vehicle. For example, the inclination of the windshield is larger in large cars than in ordinary cars. Therefore, when the vehicle-mounted device is attached to the windshield, the accuracy with which it is possible to detect the transfer to another vehicle increases.
  • the abnormality determination method is an abnormality determination method for an in-vehicle device that is attached to a vehicle, stores information on the vehicle, and performs processing using the information on the vehicle.
  • the abnormality determination method it is detected based on the state information that the vehicle-mounted device itself has been replaced with another vehicle. Therefore, the vehicle-mounted device can easily detect that it is used in another vehicle.
  • the on-vehicle device and the abnormality determination method described above it can be easily detected that the on-vehicle device storing the vehicle information is being used by another vehicle.
  • FIG. 1 is a schematic block diagram showing a functional configuration of the vehicle-mounted device according to the first embodiment of the present invention.
  • the vehicle-mounted device 100 includes an acceleration sensor 110, a stop signal acquisition unit 120, a storage unit 130, and a control unit 140.
  • the control unit 140 includes a state information acquisition unit 141, a storage unit management unit 142, and an abnormality determination unit 143.
  • the vehicle-mounted device 100 is a vehicle-mounted device that stores information on a vehicle to which the vehicle-mounted device 100 is attached and performs processing using the information.
  • information on a vehicle to which the vehicle is attached can be stored, and a vehicle-mounted device that performs toll road charging processing based on the information can be exemplified, but the present invention is not limited thereto.
  • a vehicle to which the vehicle-mounted device is attached is referred to as “vehicle-mounted device-equipped vehicle”.
  • the acceleration sensor 110 detects its own acceleration as an acceleration in the vehicle-mounted device 100. In a state where the vehicle-mounted device installation vehicle is stopped (a state where the vehicle-mounted device installation vehicle is not running), the acceleration sensor 110 detects the gravitational acceleration. The gravitational acceleration detected by the acceleration sensor 110 is used as information indicating the attitude of the vehicle-mounted device 100.
  • position of the onboard equipment 100 here is the inclination degree of the onboard equipment 100.
  • the in-vehicle device corrects the GNSS information.
  • An acceleration sensor is often provided.
  • the acceleration sensor can be used as the acceleration sensor 110, and the acceleration for determining whether the vehicle-mounted device 100 is replaced or not is determined. There is no need to provide a separate sensor.
  • FIG. 2 is an explanatory diagram illustrating an example of the reference posture of the vehicle-mounted device 100.
  • the external shape of the onboard equipment 100 is described by a rectangular parallelepiped, the external shape of the onboard equipment 100 is not restricted to this.
  • FIG. 2 shows an example in which the acceleration sensor 110 is a triaxial acceleration sensor, and the acceleration sensor 110 detects acceleration in each of the x-axis, y-axis, and z-axis directions shown in FIG.
  • the x axis and the y axis are set in the long side direction and the short side direction of the bottom surface of the vehicle-mounted device 100, respectively.
  • the z axis is set in the height direction of the vehicle-mounted device 100.
  • the bottom surface of the vehicle-mounted device 100 is in a horizontal orientation.
  • the acceleration sensor 110 detects an acceleration of ⁇ g (g indicates gravitational acceleration) in the z-axis direction. Since the upward direction of the z axis is positive, the acceleration is negative.
  • FIG. 3 is an explanatory diagram illustrating an example of gravitational acceleration detected by the acceleration sensor 110 in a state where the vehicle-mounted device 100 is tilted with respect to the reference posture.
  • the onboard equipment 100 has shown the example of the state rotated angle (theta) centering on the y-axis from the reference attitude.
  • the acceleration sensor 110 detects acceleration of g ⁇ sin ⁇ in the x-axis direction and g ⁇ cos ⁇ in the z-axis direction while the vehicle mounted with the vehicle is stopped.
  • the attitude of the vehicle-mounted device 100 changes, the acceleration detected by the acceleration sensor 110 changes. Therefore, it can be determined whether the attitude
  • the stop signal acquisition unit 120 functions as an interface between the vehicle-mounted device 100 and the vehicle-mounted device-equipped vehicle, and exchanges various signals.
  • the stop signal acquisition unit 120 acquires a signal indicating that the power of the vehicle-mounted device 100 is turned off.
  • a signal indicating that the power of the vehicle-mounted device 100 is turned off is referred to as a “power-off signal”.
  • the vehicle-mounted device when an operation to turn off the electric system of the vehicle-mounted device is performed, the vehicle-mounted device outputs a power-off signal to the vehicle-mounted device 100 and stops supplying power to the vehicle-mounted device 100 after a certain time has elapsed. .
  • the stop signal acquisition unit 120 acquires the power-off signal and outputs it to the control unit 140.
  • the operation of turning off the electric system of the vehicle-mounted device installation vehicle is performed, for example, as an operation of turning off the ignition switch by the driver of the vehicle-mounted device installation vehicle.
  • the storage unit 130 is configured using a storage device included in the vehicle-mounted device 100 and stores various types of information. Especially the memory
  • FIG. In the present embodiment, the posture information of the vehicle-mounted device 100 is used as the state information, but is not limited thereto. For example, in an embodiment described later, position information of the vehicle-mounted device 100 and information indicating a voltage supplied from the power source to the vehicle-mounted device 100 are used as the state information.
  • the control unit 140 executes various functions by controlling each unit of the vehicle-mounted device 100.
  • the control unit 140 is realized by, for example, a CPU (Central Processing Unit) provided in the vehicle-mounted device 100 reading out a program from the storage unit 130 and executing the program.
  • the state information acquisition unit 141 acquires state information.
  • the status information acquisition unit 141 acquires status information when the stop signal acquisition unit 120 acquires a power-off signal, and stores the status information in the storage unit 130 via the storage unit management unit 142.
  • the state information acquisition unit 141 acquires the state information when the vehicle-mounted device 100 is turned on from the power-off state (that is, upon resumption of power supply), and the state information is abnormal.
  • the data is output to the determination unit 143.
  • the state information acquisition unit 141 acquires the posture information of the vehicle-mounted device 100 as the state information. For example, the state information acquisition unit 141 calculates the angle of inclination of the vehicle-mounted device 100 from the information indicating the acceleration detected by the acceleration sensor 110 and uses it as the state information. Further, for example, the state information acquisition unit 141 calculates an angle of inclination in the height direction of the vehicle-mounted device 100 with respect to the vertical direction, and uses it as state information.
  • the height direction of the onboard equipment 100 here is an example of the reference
  • the angle of inclination in the height direction (z direction) of the vehicle-mounted device 100 with respect to the vertical direction (direction 1 g) is exemplified by an angle ⁇ in FIG.
  • the state information acquisition unit 141 may use a three-dimensional vector indicating the acceleration detected by the acceleration sensor 110 as the state information as it is.
  • the three-dimensional vector indicating the acceleration detected by the acceleration sensor 110 indicates a deviation between the reference direction set in the vehicle-mounted device and the vertical direction, and the reference direction and the vertical direction set in the vehicle-mounted device are This corresponds to an example of information indicating the angle.
  • the storage unit management unit 142 writes information to the storage unit 130 and reads information from the storage unit 130.
  • the storage management unit 142 causes the storage unit 130 to store (write) the state information acquired by the state information acquisition unit 141 when the stop signal acquisition unit 120 acquires the power-off signal.
  • the storage unit management unit 142 reads the state information from the storage unit 130 and outputs the state information to the abnormality determination unit 143.
  • the abnormality determination unit 143 determines whether there is an abnormality based on the state information acquired by the state information acquisition unit 141.
  • the abnormality here is that the vehicle-mounted device 100 is replaced with another vehicle. More specifically, the abnormality determination unit 143 acquires the state information acquired by the state information acquisition unit 141 when the stop signal acquisition unit 120 acquires the power-off signal, and the state information acquisition when the vehicle-mounted device 100 is activated. It is determined whether the state information acquired by the unit 141 matches.
  • the abnormality determination unit 143 determines whether or not the magnitude of the change in the angle is greater than a predetermined threshold value. When it is determined that the value is larger than the threshold value, it is determined that there is an abnormality.
  • the state information acquisition unit 141 acquires a three-dimensional vector indicating the acceleration detected by the acceleration sensor 110 as the state information
  • the abnormality determination unit 143 is based on the magnitude of change of each component of the three-dimensional vector. Determine if there is an abnormality.
  • the state information acquisition unit 141 determines whether or not the total value of the magnitudes of changes of each component is greater than a predetermined threshold, and determines that there is an abnormality when it is determined that the sum is greater than the threshold. Or you may make it the state information acquisition part 141 determine whether there exists a thing which shows the change larger than a predetermined threshold among the magnitude
  • FIG. 4 is an explanatory diagram illustrating an example of a change in posture of the vehicle-mounted device 100 when the vehicle-mounted device 100 is replaced with another vehicle.
  • a schematic shape of a wagon type vehicle A and a schematic shape of a one-box type vehicle B are shown.
  • the vehicle A is a vehicle to which the vehicle-mounted device 100 is attached before the replacement, and the storage unit 130 stores information on the vehicle A.
  • the vehicle B is a vehicle on which the vehicle-mounted device 100 is replaced.
  • the onboard equipment 100 is attached to the windshield of the vehicle. Since the inclination of the windshield is different between the vehicle A and the vehicle B, the posture of the vehicle-mounted device 100 is different.
  • the acceleration sensor 110 detects different gravitational accelerations before and after the replacement.
  • the abnormality determination unit 143 detects that the vehicle-mounted device 100 has been transferred to another vehicle by detecting a change in the posture of the vehicle-mounted device 100 based on the gravitational acceleration.
  • the abnormality determination unit 143 is mounted on the basis of vibration detected by the acceleration sensor 110 when the vehicle mounted with the vehicle-mounted device is not running. It may be detected that the container 100 has been replaced. For example, a gasoline car vibrates when idling, whereas an electric car does not vibrate. Therefore, the abnormality determination unit 143 can detect a change in vibration to detect the replacement of the vehicle-mounted device 100 from the gasoline vehicle to the electric vehicle or the replacement of the vehicle-mounted device 100 from the electric vehicle to the gasoline vehicle.
  • the abnormality determination unit 143 determines the difference between the acceleration detection value by the acceleration sensor 110 when the stop signal acquisition unit 120 acquires the power-off signal and the acceleration detection value by the acceleration sensor 110 when the vehicle-mounted device 100 is activated. Is less than or equal to a predetermined threshold.
  • the vibration information detected by the acceleration sensor 110 the vibration frequency, the magnitude of vibration, or a combination thereof can be used.
  • FIG. 5 is a flowchart illustrating a procedure of processing performed by the vehicle-mounted device 100 when power supply to the vehicle-mounted device 100 is stopped.
  • the onboard equipment 100 starts the process of the figure, if the stop signal acquisition part 120 acquires a power-off signal.
  • the state information acquisition unit 141 acquires state information (step S111).
  • the state information acquisition unit 141 calculates the angle of inclination of the vehicle-mounted device 100 based on the acceleration detected by the acceleration sensor 110.
  • the storage unit management unit 142 causes the storage unit 130 to store the state information acquired by the state information acquisition unit 141 in step S111 (step S112).
  • the storage unit management unit 142 causes the storage unit 130 to store angle information indicating the inclination of the vehicle-mounted device 100. If the storage unit 130 has already stored the state information, the storage unit management unit 142 overwrites the state information. That is, the storage unit 130 need only store the state information written last, and does not need to store a history of state information.
  • FIG. 6 is a flowchart illustrating a procedure of processing performed by the vehicle-mounted device 100 when power supply to the vehicle-mounted device 100 is resumed.
  • the in-vehicle device 100 starts the process of FIG. 5 when the in-vehicle device 100 is activated upon receiving the restart of power supply from the power-off state.
  • step S121 is the same as step S111 (FIG. 5).
  • the storage management unit 142 reads the state information from the storage unit 130 (step S122).
  • the storage management unit 142 reads angle information indicating the inclination of the vehicle-mounted device 100 from the storage unit 130. Note that the order of execution of step S121 and step S122 is arbitrary. Step S122 may be executed prior to step S121, or step S121 and step S122 may be executed in parallel.
  • the abnormality determining unit 143 determines whether or not the state information obtained in step S121 matches the state information obtained in step S122 (step S123).
  • the abnormality determination unit 143 calculates the difference between the angle obtained in step S121 and the angle obtained in step S122, and determines whether the obtained difference is equal to or less than a predetermined threshold value. When it is determined that the difference is equal to or smaller than the threshold value, the abnormality determination unit 143 determines that the state information matches. On the other hand, when it is determined that the difference is greater than the threshold, the abnormality determination unit 143 determines that the state information does not match.
  • step S123 If it is determined that the state information matches (step S123: YES), the vehicle-mounted device 100 performs a process in the case where there is no replacement (step S124). For example, the vehicle-mounted device 100 starts an operation at a normal time. After step S124, the process of FIG.
  • the vehicle-mounted device 100 performs a process when there is a replacement (step S125).
  • the processing in the case where there is a replacement can be various processing.
  • the vehicle-mounted device 100 may communicate with the billing server device to notify that the replacement has been detected.
  • the vehicle-mounted device 100 may communicate with the roadside device to prompt photographing of the vehicle-mounted device installation vehicle.
  • the onboard equipment 100 may perform the process in the case where there is a replacement in step S125. After step S125, the process of FIG. 6 ends.
  • the storage unit management unit 142 causes the storage unit 130 to store state information when the power of the vehicle-mounted device 100 is turned off.
  • the abnormality determination part 143 determines whether the state information when the power supply of the onboard equipment 100 was turned on and the state information memorize
  • the on-vehicle device 100 detects that the on-vehicle device 100 itself has been transferred to another vehicle (a vehicle other than the vehicle in which the on-vehicle device 100 stores information) based on the state information. Therefore, the vehicle-mounted device 100 can easily detect that it is used in another vehicle.
  • the abnormality determination unit 143 compares the state information when the power of the vehicle-mounted device 100 is turned off with the state information when the power of the vehicle-mounted device 100 is turned on. Thereby, the abnormality determination part 143 detects the replacement of the onboard equipment 100 performed while the power supply of the onboard equipment 100 is turned off.
  • the replacement of the vehicle-mounted device 100 is normally performed with the power supply of the vehicle-mounted device 100 turned off. In this respect, according to the vehicle-mounted device 100, the possibility of detecting and leaking the replacement of the vehicle-mounted device 100 is low.
  • the monitoring device is equipped with a camera to photograph the vehicle and determines the presence or absence of fraud based on the obtained image.
  • this method increases the manufacturing cost and the operating cost in that the monitoring device needs to include a camera.
  • fraud cannot be detected for a vehicle traveling in a place where no camera is installed.
  • the vehicle-mounted device 100 fraud can be detected without requiring a camera. In this respect, according to the vehicle-mounted device 100, the manufacturing cost and the operation cost can be relatively reduced, and fraud can be detected even in a place where no camera is installed.
  • the state information acquisition part 141 acquires the information which shows the angle with respect to the vertical direction of the reference
  • the abnormality determination part 143 determines whether the angle of inclination of the onboard equipment 100 corresponds by the time when the power supply of the onboard equipment 100 is turned off and the power supply of the onboard equipment 100 is turned on. Thus, it is determined whether or not the vehicle-mounted device 100 has been replaced.
  • the vehicle-mounted device 100 includes an acceleration sensor for a predetermined application such as correction of GNSS information
  • the acceleration sensor can be used as the acceleration sensor 110, and the acceleration for determining whether the vehicle-mounted device 100 is replaced or not is determined. There is no need to provide a separate sensor. In this respect, the configuration of the vehicle-mounted device 100 can be simplified, and the vehicle-mounted device 100 can be downsized and the manufacturing cost can be reduced.
  • the on / off of the on-vehicle device is generally linked to the on / off of the electric system of the vehicle to which the on-vehicle device is attached, and the on-vehicle device is turned off.
  • the vehicle is expected not to travel. Therefore, if the vehicle-mounted device 100 remains attached to the vehicle, it is expected that the inclination of the vehicle-mounted device 100 does not change while the power of the vehicle-mounted device 100 is off.
  • the vehicle-mounted device 100 there is a low possibility that the vehicle-mounted device 100 is erroneously detected as being performed even though the vehicle-mounted device 100 is not replaced.
  • the on-vehicle device stores a reference value of the inclination of the on-vehicle device itself attached to the vehicle, and the reference value and the measured value of the inclination It is conceivable to determine whether or not the two match.
  • the vehicle-mounted device changes due to a reason other than the vehicle-mounted device replacement, such as when the vehicle is stopped on a slope, the vehicle-mounted device is not replaced. It will be falsely detected that it was done.
  • the in-vehicle device 100 as described above, there is a low possibility of erroneous detection that the on-vehicle device 100 has been performed even though the on-vehicle device 100 has not been replaced.
  • FIG. 7 is a schematic block diagram showing a functional configuration of the vehicle-mounted device according to the second embodiment of the present invention.
  • the vehicle-mounted device 200 includes a position information acquisition unit 210, a stop signal acquisition unit 120, a storage unit 130, and a control unit 240.
  • the control unit 240 includes a state information acquisition unit 241, a storage unit management unit 142, and an abnormality determination unit 243.
  • parts having the same functions corresponding to the respective parts in FIG. 1 are denoted by the same reference numerals (120, 130, 142), and description thereof is omitted.
  • the vehicle-mounted device 200 is a vehicle-mounted device that stores information on a vehicle to which the vehicle is attached and performs processing using the information, as with the vehicle-mounted device 100 (FIG. 1).
  • the vehicle-mounted device 200 is different from the vehicle-mounted device 100 in that it determines whether or not the vehicle-mounted device 200 is replaced based on the position of the vehicle to which the vehicle-mounted device 200 is attached. Information indicating the position is referred to as “position information”.
  • the position information acquisition unit 210 acquires position information of the vehicle-mounted device installation vehicle.
  • the position information acquisition unit 210 functions as a GNSS receiver and calculates the position information of the vehicle-mounted device 200 as the position information of the vehicle-mounted device installed vehicle.
  • the position information acquisition unit 210 may function as an interface with a GNSS receiver installed outside the vehicle-mounted device 200 to acquire position information calculated by the GNSS receiver.
  • the vehicle-mounted device has a GNSS function for charging processing or obtains position information from a GNSS receiver.
  • the vehicle-mounted device 200 acquires position information for a predetermined application such as for billing processing, the position information can be used for determining whether or not the vehicle-mounted device 200 is replaced. Therefore, the vehicle-mounted device 200 does not need to include a separate GNSS receiver for determining whether or not the vehicle-mounted device 200 is replaced.
  • the status information acquisition unit 241 acquires status information in the same manner as the status information acquisition unit 141 (FIG. 1). In particular, the status information acquisition unit 241 acquires status information when the stop signal acquisition unit 120 acquires a power-off signal, and stores the status information in the storage unit 130 via the storage unit management unit 142. In addition, the state information acquisition unit 241 acquires state information when the vehicle-mounted device 200 is activated upon restart of power supply from a power-off state, and outputs the state information to the abnormality determination unit 243. On the other hand, the state information acquisition unit 241 is different from the state information acquisition unit 141 in that it acquires position information of the vehicle-mounted device vehicle as the state information.
  • the abnormality determination unit 243 determines whether there is an abnormality based on the state information acquired by the state information acquisition unit 241. Similar to the abnormality determination unit 143, the abnormality determination unit 243 determines whether or not the state information when the stop signal acquisition unit 120 acquires the power-off signal and the state information when the vehicle-mounted device 200 is activated match. To do. On the other hand, the abnormality determination unit 243 is different from the abnormality determination unit 143 in that the position information of the vehicle-mounted device vehicle is used as the state information.
  • FIG. 8 is an explanatory diagram illustrating an example of a change in the position of the vehicle-mounted device installation vehicle when the vehicle-mounted device 200 is replaced with another vehicle.
  • a vehicle C is a vehicle to which the vehicle-mounted device 200 is attached before the replacement, and the storage unit 130 stores information on the vehicle C.
  • the vehicle D is a vehicle in which the vehicle-mounted device 200 is replaced.
  • the position of the on-vehicle device-equipped vehicle changes.
  • the horizontal position (for example, latitude and longitude) of the vehicle mounted with the vehicle-mounted device 200 was (X1, Y1) before the vehicle-mounted device 200 was replaced. Y2).
  • the abnormality determination unit 243 detects that the on-board device 200 has been replaced by detecting a change in the position of the on-vehicle device-equipped vehicle. For example, the abnormality determination unit 243 matches the horizontal position of the vehicle-mounted device when the stop signal acquisition unit 120 acquires the power-off signal and the horizontal position of the vehicle-mounted device when the vehicle-mounted device 200 is activated. It is determined whether or not.
  • the abnormality determination part 243 detect that the mounting of the onboard equipment 200 was performed based on the positional information on a vertical direction in addition to or instead of the positional information on a horizontal direction.
  • the position information acquisition unit 210 functions as a GNSS receiver and calculates the height from the ground based on a signal from a GNSS satellite. This height is considered to indicate the height of the vehicle-mounted device 200 or the GNSS antenna from the ground. Then, the abnormality determination unit 243 determines whether or not the vehicle-mounted device 200 has been replaced based on the change in height calculated by the position information acquisition unit 210.
  • the abnormality determination unit 243 can detect that the vehicle-mounted device 200 has been replaced by detecting the change in the height. For example, the abnormality determination unit 243 determines whether the difference between the height of the vehicle-mounted device 200 when the stop signal acquisition unit 120 acquires the power-off signal and the height of the vehicle-mounted device 200 when the vehicle-mounted device 200 is activated is equal to or less than a predetermined threshold value. Determine whether or not.
  • step S111 the state information acquisition unit 241 acquires the position information calculated by the GNSS receiver via the position information acquisition unit 210 as the state information.
  • step S112 the storage unit management unit 142 causes the storage unit 130 to store the position information acquired by the state information acquisition unit 241 in step S111.
  • step S122 the storage management unit 142 reads the position information.
  • step S123 the abnormality determination unit 243 calculates the distance between the position obtained in step S121 and the position obtained in step S122, and determines whether the obtained distance is equal to or less than a predetermined threshold. When it is determined that the distance is equal to or less than the threshold, the abnormality determination unit 243 determines that the state information matches. On the other hand, when it is determined that the distance is greater than the threshold, the abnormality determination unit 243 determines that the state information does not match.
  • the state information acquisition unit 241 acquires the position information of the vehicle-mounted device in the horizontal direction as the state information. Then, the abnormality determination unit 243 determines whether the position indicated by the position information matches between when the power of the vehicle-mounted device 200 is turned off and when the power of the vehicle-mounted device 200 is turned on. Then, it is determined whether or not the on-vehicle device 200 has been replaced.
  • the vehicle-mounted device 200 acquires position information for a predetermined application such as for billing processing, the position information can be used for determining whether or not the vehicle-mounted device 200 is replaced. Therefore, the vehicle-mounted device 200 does not need to include a separate GNSS receiver for determining whether or not the vehicle-mounted device 200 is replaced. In this respect, the configuration of the vehicle-mounted device 200 can be simplified, and the vehicle-mounted device 200 can be downsized and the manufacturing cost can be reduced.
  • a state information acquisition part acquires the information which shows the height of the position of the onboard equipment 200 as state information. Then, the abnormality determination unit 243 determines whether the heights match when the power of the vehicle-mounted device 200 is turned off and when the power of the vehicle-mounted device 20 is turned on. It is determined whether or not 200 transpositions have been performed.
  • the vehicle-mounted device 200 acquires position information for a predetermined application such as for billing processing, the position information can be used for determining whether or not the vehicle-mounted device 200 is replaced. Therefore, the vehicle-mounted device 200 does not need to include a separate GNSS receiver for determining whether or not the vehicle-mounted device 200 is replaced. In this respect, the configuration of the vehicle-mounted device 200 can be simplified, and the vehicle-mounted device 200 can be downsized and the manufacturing cost can be reduced.
  • FIG. 9 is a schematic block diagram showing a functional configuration of the vehicle-mounted device according to the third embodiment of the present invention.
  • the vehicle-mounted device 300 includes a voltmeter 310, a stop signal acquisition unit 120, a storage unit 130, and a control unit 340.
  • the control unit 340 includes a state information acquisition unit 341, a storage unit management unit 142, and an abnormality determination unit 343.
  • parts having the same functions corresponding to the respective parts in FIG. 1 are denoted by the same reference numerals (120, 130, 142), and description thereof is omitted.
  • the vehicle-mounted device 300 is a vehicle-mounted device that stores information on a vehicle to which the vehicle is attached and performs processing using the information, as with the vehicle-mounted device 100 (FIG. 1).
  • the vehicle-mounted device 300 is different from the vehicle-mounted device 100 in that it determines whether or not the vehicle-mounted device 300 is replaced based on a voltage supplied to the vehicle-mounted device 300 from a power source (a power source external to the vehicle-mounted device 300).
  • the voltmeter 310 measures a voltage supplied from the power source to the vehicle-mounted device 300.
  • the voltmeter 310 measures the voltage at the power receiving terminal where the vehicle-mounted device 300 is supplied with power from the outside.
  • the status information acquisition unit 341 acquires status information in the same manner as the status information acquisition unit 141 (FIG. 1). In particular, the status information acquisition unit 341 acquires status information when the stop signal acquisition unit 120 acquires a power-off signal, and stores the status information in the storage unit 130 via the storage unit management unit 142. In addition, the state information acquisition unit 341 acquires state information when the vehicle-mounted device 300 is activated in response to resumption of power supply from a power-off state, and outputs the state information to the abnormality determination unit 343. On the other hand, the state information acquisition unit 341 differs from the state information acquisition unit 141 in that it acquires voltage information indicating the voltage supplied from the power source to the vehicle-mounted device 300 as the state information.
  • the abnormality determination unit 343 determines whether there is an abnormality based on the state information acquired by the state information acquisition unit 341. Similar to the abnormality determination unit 143, the abnormality determination unit 343 determines whether or not the state information when the stop signal acquisition unit 120 acquires the power-off signal matches the state information when the vehicle-mounted device 300 is activated. To do. On the other hand, the abnormality determination unit 343 is different from the abnormality determination unit 143 in that voltage information indicating a voltage supplied from the power source to the vehicle-mounted device 300 is used as the state information.
  • a motorcycle may use a 6-volt (V) or 12-volt power supply
  • a normal passenger vehicle may use a 12-volt or 24-volt power supply
  • the power supply voltage may differ depending on the vehicle type.
  • the abnormality determination unit 343 can detect that the on-vehicle device 300 has been replaced by detecting a change in the voltage supplied from the power source to the on-vehicle device 300. Specifically, the abnormality determination unit 343 receives the voltage supplied from the power source to the vehicle-mounted device 300 when the stop signal acquisition unit 120 acquires the power-off signal and the vehicle-mounted from the power source when the vehicle-mounted device 200 is activated. It is determined whether the voltage value matches the voltage supplied to the device 300.
  • step S111 the state information acquisition unit 341 acquires voltage information indicating the voltage supplied from the power source to the vehicle-mounted device 300, which is measured by the voltmeter 310, as the state information.
  • step S112 the storage management unit 142 causes the storage unit 130 to store the voltage information acquired by the state information acquisition unit 341 in step S111.
  • step S122 the storage unit management unit 142 reads voltage information.
  • step S123 the abnormality determination unit 343 calculates a difference between the voltage value obtained in step S121 and the voltage value obtained in step S122, and determines whether the obtained difference is equal to or less than a predetermined threshold value. When it is determined that the difference is equal to or less than the threshold, the abnormality determination unit 343 determines that the state information matches. On the other hand, when it is determined that the difference is greater than the threshold, the abnormality determination unit 343 determines that the state information does not match.
  • the state information acquisition unit 341 acquires voltage information indicating the voltage supplied from the power source to the vehicle-mounted device 300 as the state information. Then, the abnormality determination unit 243 determines whether or not the voltages indicated by the voltage information match when the on-vehicle device 300 is turned off and when the on-vehicle device 300 is turned on. Then, it is determined whether or not the vehicle-mounted device 300 has been replaced.
  • the structure of the onboard equipment 300 can be made into a comparatively simple structure provided with a voltmeter, and the size reduction of the onboard equipment 300 and the reduction of manufacturing cost can be aimed at.
  • FIG. 10 is a schematic block diagram illustrating a functional configuration of the vehicle-mounted device according to the fourth embodiment of the present invention.
  • the vehicle-mounted device 400 includes an acceleration sensor 110, a position information acquisition unit 210, a voltmeter 310, a stop signal acquisition unit 120, a storage unit 130, and a control unit 440.
  • the control unit 440 includes a state information acquisition unit 441, a storage unit management unit 142, and an abnormality determination unit 443.
  • parts having the same functions corresponding to the parts in FIG. 1, FIG. 7 or FIG. 9 are denoted by the same reference numerals (110, 120, 130, 142, 210, 310), and description thereof is omitted. .
  • the vehicle-mounted device 400 is a vehicle-mounted device that stores information on a vehicle to which the vehicle is attached and performs processing using the information, as with the vehicle-mounted device 100 (FIG. 1). On the other hand, the vehicle-mounted device 400 determines whether or not the vehicle-mounted device 300 is replaced based on the attitude of the vehicle-mounted device 400, the position of the vehicle to which the vehicle-mounted device 400 is attached, and the voltage supplied from the power source to the vehicle-mounted device 400. It differs from the onboard equipment 100 by the point to determine.
  • the status information acquisition unit 441 acquires status information in the same manner as the status information acquisition unit 141 (FIG. 1). In particular, the status information acquisition unit 441 acquires status information when the stop signal acquisition unit 120 acquires a power-off signal, and stores the status information in the storage unit 130 via the storage unit management unit 142. In addition, the state information acquisition unit 441 acquires state information when the vehicle-mounted device 200 is activated upon restart of power supply from a power-off state, and outputs the state information to the abnormality determination unit 443.
  • the state information acquisition unit 441 includes, as state information, attitude information of the vehicle-mounted device 400, position information of a vehicle to which the vehicle-mounted device 400 is attached, and voltage information indicating a voltage supplied from the power source to the vehicle-mounted device 400. Is different from the state information acquisition unit 141 in that it is acquired.
  • the abnormality determination unit 443 determines whether there is an abnormality based on the state information acquired by the state information acquisition unit 441. Similar to the abnormality determination unit 143, the abnormality determination unit 443 determines whether or not the state information when the stop signal acquisition unit 120 acquires the power-off signal and the state information when the vehicle-mounted device 400 is activated match. To do. On the other hand, the abnormality determination unit 443 includes, as state information, attitude information of the vehicle-mounted device 400, position information of the vehicle to which the vehicle-mounted device 400 is attached, and voltage information indicating a voltage supplied from the power source to the vehicle-mounted device 400. It differs from the abnormality determination unit 143 in that it is used.
  • FIG. 11 is a flowchart illustrating a procedure of processing performed by the vehicle-mounted device 400 when power supply to the vehicle-mounted device 400 is stopped.
  • the stop signal acquisition unit 120 acquires the power-off signal
  • the vehicle-mounted device 400 starts the process illustrated in FIG.
  • the processing in steps S211 to S212 is the same as the processing in steps S111 to S112 (FIG. 5) in the first embodiment.
  • the processing in steps S213 to S214 is the same as the processing in steps S111 to S112 in the second embodiment.
  • the processing in steps S215 to S216 is the same as the processing in steps S111 to S112 in the third embodiment. After step S216, the process in FIG. 11 is terminated.
  • steps S211 to S212, steps S213 to S214, and steps S215 to S216 are arbitrary.
  • steps S213 to S214 and steps S215 to S216 may be executed prior to steps S211 to S212.
  • steps S211 to S212, steps S213 to S214, and steps S215 to S216 may be executed in parallel.
  • FIG. 12 is a flowchart illustrating a procedure of processing performed by the vehicle-mounted device 400 when power supply to the vehicle-mounted device 400 is resumed.
  • the vehicle-mounted device 400 When the vehicle-mounted device 400 is activated upon receiving the restart of power supply from the power-off state, the vehicle-mounted device 400 starts the process of FIG.
  • the processing of steps S221 to S222 is the same as the processing of steps S121 to S122 (FIG. 6) in the first embodiment.
  • the processing in steps S223 to S224 is the same as the processing in steps S121 to S122 in the second embodiment.
  • the processing of steps S225 to S226 is the same as the processing of steps S121 to S122 in the third embodiment.
  • steps S221, S212, S223, S224, S225, and S226 are arbitrary.
  • steps S222, S223, S224, S225, and S226 may be executed prior to step S221.
  • steps S221, S222, S223, S224, S225, and S226 may be executed in parallel.
  • step S227 is the same as the process of step S123 (FIG. 6) in the first embodiment. If it is determined in step S227 that the angle obtained in step S221 matches the angle obtained in step S222 (the difference is equal to or smaller than the threshold value) (step S227: YES), the process proceeds to step S228. On the other hand, if it is determined in step S227 that the angles do not match (the difference is greater than the threshold value) (step S227: NO), the process proceeds to step S231.
  • step S228 is the same as the process of step S123 in the second embodiment. If it is determined in step S228 that the position obtained in step S223 matches the position obtained in step S224 (the difference in distance is equal to or less than the threshold value) (step S228: YES), the process proceeds to step S229. On the other hand, if it is determined in step S228 that the positions do not match (the difference in distance is greater than the threshold value) (step S228: NO), the process proceeds to step S231.
  • the process of step S229 is the same as the process of step S123 in the third embodiment.
  • step S229 If it is determined in step S229 that the voltage value obtained in step S225 matches the voltage value obtained in step S226 (the difference is equal to or smaller than the threshold value) (step S229: YES), the process proceeds to step S230. On the other hand, if it is determined in step S229 that the voltage values do not match (the difference is greater than the threshold value) (step S229: NO), the process proceeds to step S231.
  • step S230 is the same as the process of step S124 (FIG. 6).
  • step S231 is the same as the process of step S125 (FIG. 6).
  • step S231 the process of FIG. Note that the execution order of steps S227, S228, and S229 is arbitrary. When it is determined that the state information matches in any of steps S227, S228, and S229, the process of step S230 is executed, and when it is determined that the state information does not match in any step, the process of step S231 is executed. I just need it.
  • the abnormality determination unit 443 performs a combination of a plurality of determinations, thereby reducing the possibility of a detection omission that determines that the vehicle-mounted device has not been replaced but has not been replaced. it can. For example, when the difference between the inclination angle of the vehicle-mounted device 400 before replacement and the inclination angle of the vehicle-mounted device 400 after replacement is small, the determination using only the posture information of the vehicle-mounted device 400 is performed. There is a possibility of omission of detection that it is determined that the replacement has been performed but not performed. Therefore, the abnormality determination unit 443 further performs determination using position information of the vehicle to which the vehicle-mounted device 400 is attached and determination using voltage information indicating the voltage supplied from the power source to the vehicle-mounted device 400. The possibility of detection omission can be reduced.
  • the present invention is an on-vehicle device that is attached to a vehicle, stores information on the vehicle, and performs processing using the information on the vehicle, and a state information acquisition unit that acquires state information indicating a state of the on-vehicle device;
  • a storage unit management unit for storing the state information when the power of the on-vehicle device is turned off in a storage unit, a state information when the power of the on-vehicle device is turned on, and a state information stored in the storage unit It is related with an onboard equipment provided with an abnormal judgment part which judges whether it is in agreement, and judges as abnormal when it judges with not being in agreement. According to the on-vehicle device described above, it can be detected without a camera that the on-vehicle device storing the vehicle information is used in another vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Debugging And Monitoring (AREA)

Abstract

 この車載器は、車両に取り付けられ、当該車両の情報を記憶し当該車両の情報を用いて処理を行う車載器であって、前記車載器の状態を示す状態情報を取得する状態情報取得部と、前記車載器の電源がオフになるときの前記状態情報を記憶部に記憶させる記憶部管理部と、前記車載器の電源がオンになったときの状態情報と、記憶部に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する異常判定部と、を備える。

Description

車載器および異常判定方法
 本発明は、車載器および異常判定方法に関する。
 車載器が、車載器自らが取り付けられる車両の情報を記憶しておき、当該情報を用いて処理を行う場合がある。例えば、有料道路の料金が、大型自動車、普通自動車、二輪車などの車種別に設定されている場合、道路課金システムの車載器が、車載器自らが取り付けられる車両の車種情報を記憶しておくことで、車種に応じた自動課金が可能になる。
 車両の情報を記憶している車載器が、他の車両に使用されると、処理が正しく行われない場合がある。例えば、二輪車の情報を記憶している車載器が、二輪車から普通自動車に載せ替えて使用された場合、有料道路における課金の際に道路課金システムが、当該普通自動車を二輪車と誤って認識し、二輪車の料金を課金してしまう可能性がある。
 このことから、車両の情報を記憶している車載器が他の車両に使用されていることを検出できることが望まれる。
 車載器に関連する不正を検出するための幾つかの技術が提案されている。例えば、特許文献1に記載の、不正通行車両の監視装置は、移動体通信用の基地局アンテナと、通行する車両の画像撮影を行うカメラと、カメラで撮影された画像から前記車両のナンバープレート及び車種情報を識別する画像処理装置と、基地局アンテナを介して車両と通信して得られた車両データと画像処理装置で識別された車両のナンバープレート及び車種情報の不一致から不正通行車両を検出するアンテナ処理装置を備える。
 特許文献1では、当該不正通行車両の監視装置により、有料道路を利用する車両に対して、車載器の載せ替えによる不正利用を防止する、とされている。
特開2009-116480号公報
 車載器に関する不正については、簡易な方式により検出できることが望ましい。
 本発明は、車両の情報を記憶している車載器が他の車両に使用されていることを簡易に検出できる車載器および異常判定方法を提供する。
 本発明の第1の態様によれば、車載器(100、200、300、400)は、車両に取り付けられ、当該車両の情報を記憶し当該車両の情報を用いて処理を行う車載器であって、前記車載器の状態を示す状態情報を取得する状態情報取得部(141、241、341、441)と、前記車載器の電源がオフになるときの前記状態情報を記憶部(130)に記憶させる記憶部管理部(142)と、前記車載器の電源がオンになったときの状態情報と、記憶部に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する異常判定部(143、243、343、443)と、を備える。
 このように、車載器は、自らが他の車両に載せ替えられたことを、状態情報に基づいて検出する。従って、車載器は、他の車両に使用されていることを、簡易に検出できる。
 前記車載器は、加速度センサを備え、前記状態情報取得部は、前記加速度センサが検出した加速度に基づいて、前記車載器に設定されている基準方向の鉛直方向に対する角度を示す情報を、前記状態情報として取得するようにしてもよい。
 このように、車載器は、自らが他の車両に載せ替えられたことを、加速度センサが検出した加速度に基づいて検出する。これにより、車載器は、他の車両に使用されていることを、簡易に検出できる。
 前記状態情報取得部は、水平方向についての前記車載器の位置情報を前記状態情報として取得するようにしてもよい。
 このように、車載器は、自らが他の車両に載せ替えられたことを、水平方向についての車載器の位置情報に基づいて検出する。これにより、車載器は、他の車両に使用されていることを、簡易に検出できる。
 前記状態情報取得部は、前記車載器の位置の高さを示す情報を前記状態情報として取得するようにしてもよい。
 このように、車載器は、自らが他の車両に載せ替えられたことを、車載器の位置の高さを示す情報に基づいて検出する。これにより、車載器は、他の車両に使用されていることを、簡易に検出できる。
 前記状態情報取得部は、電源から前記車載器に供給される電圧を示す情報を前記状態情報として取得するようにしてもよい。
 これにより、車載器の構成を、電圧を測定可能な機器または回路を備える比較的簡単な構成とすることができる。
 前記車載器は、加速度センサを備え、前記状態情報取得部は、前記加速度センサが検出した振動を示す情報を前記状態情報として取得するようにしてもよい。
 これにより、ガソリン車から電気自動車への車載器の載せ替えや、電気自動車からガソリン車への車載器の載せ替えを検出し得る。
 前記車載器は、前記車両のフロントガラスに取り付けられるようにしてもよい。
 大型車のほうが普通車よりもフロントガラスの傾きが急であるなど、フロントガラスの傾きは車種によって異なるケースが多い。従って、車載器がフロントガラスに取り付けられることで、他の車両への載せ替えを検出できる精度が高まる。
 本発明の第2の態様によれば、異常判定方法は、車両に取り付けられ、当該車両の情報を記憶し当該車両の情報を用いて処理を行う車載器の異常判定方法であって、前記車載器の電源がオフになるときの、前記車載器の状態を示す状態情報を記憶部に記憶させる書込ステップと、前記車載器の電源がオンになったときに得られた状態情報と、記憶部に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する異常判定ステップと、を有する。
 このように、異常判定方法において、車載器自らが他の車両に載せ替えられたことを、状態情報に基づいて検出する。従って、車載器は、他の車両に使用されていることを、簡易に検出できる。
 上記した車載器および異常判定方法によれば、車両の情報を記憶している車載器が他の車両に使用されていることを、簡易に検出できる。
本発明の第1の実施形態における車載器の機能構成を示す概略ブロック図である。 同実施形態における車載器の基準姿勢の例を示す説明図である。 同実施形態において、車載器が基準姿勢に対して傾いた状態で加速度センサが検出する重力加速度の例を示す説明図である。 同実施形態において、車載器を他の車両に載せ替えた際の車載器の姿勢の変化の例を示す説明図である。 同実施形態において、車載器への電力供給が中止される際に車載器が行う処理の手順を示すフローチャートである。 同実施形態において、車載器への電力供給が再開された際に車載器が行う処理の手順を示すフローチャートである。 本発明の第2の実施形態における車載器の機能構成を示す概略ブロック図である。 同実施形態において、車載器を他の車両に載せ替えた際の車載器設置車両の位置の変化の例を示す説明図である。 本発明の第3の実施形態における車載器の機能構成を示す概略ブロック図である。 本発明の第4の実施形態における車載器の機能構成を示す概略ブロック図である。 同実施形態において、車載器への電力供給が中止される際に車載器が行う処理の手順を示すフローチャートである。 同実施形態において、車載器への電力供給が再開された際に車載器が行う処理の手順を示すフローチャートである。
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<第1の実施形態>
 図1は、本発明の第1の実施形態における車載器の機能構成を示す概略ブロック図である。同図において、車載器100は、加速度センサ110と、停止信号取得部120と、記憶部130と、制御部140とを備える。制御部140は、状態情報取得部141と、記憶部管理部142と、異常判定部143とを備える。
 車載器100は、自らが取り付けられる車両の情報を記憶しておき、当該情報を用いて処理を行う車載器である。車載器100の例として、自らが取り付けられる車両の情報を記憶しておき、当該情報に基づいて有料道路の課金処理を行う車載器を挙げることができるが、これに限らない。
 なお、車載器が取り付けられている車両を「車載器設置車両」と称する。
 加速度センサ110は、自らにおける加速度を車載器100における加速度として検出する。車載器設置車両が停止している状態(車載器設置車両が走行していない状態)では、加速度センサ110は、重力加速度を検出する。加速度センサ110が検出する重力加速度は、車載器100の姿勢を示す情報として用いられる。ここでいう車載器100の姿勢とは、車載器100の傾き度合いである。
 なお、姿勢を示す情報を「姿勢情報」と表記する。
 なお、車載器がGNSS(Global Navigation Satellite System;全地球航法衛星システム)情報を取得して位置に応じた課金処理を行う方式(自律課金方式)では、車載器が、GNSS情報を修正するために加速度センサを備えることが多い。車載器100が、GNSS情報の修正など所定の用途のために加速度センサを備えている場合、当該加速度センサを加速度センサ110として用いることができ、車載器100の載せ替えの有無の判定用に加速度センサを別途備える必要はない。
 図2は、車載器100の基準姿勢の例を示す説明図である。以下では、車載器100の外形を直方体で記載するが、車載器100の外形はこれに限らない。
 図2では、加速度センサ110が3軸の加速度センサである場合の例を示しており、加速度センサ110は、同図に示すx軸、y軸、z軸それぞれの方向について加速度を検出する。x軸、y軸は、それぞれ、車載器100の底面の長辺方向、短辺方向に設定されている。また、z軸は車載器100の高さ方向に設定されている。
 図2に示される基準姿勢では、車載器100の底面が水平の向きとなっている。この基準姿勢では、加速度センサ110は、z軸方向に-g(gは重力加速度を示す)の加速度を検出する。z軸の上向きを正としているため負の加速度となっている。
 図3は、車載器100が基準姿勢に対して傾いた状態で加速度センサ110が検出する重力加速度の例を示す説明図である。
 同図では、車載器100が、基準姿勢からy軸を中心に角度θ回転した状態の例を示している。この場合、車載器設置車両が停止している状態で加速度センサ110は、x軸方向にg・sinθ、z軸方向にg・cosθの加速度を検出する。このように、車載器100の姿勢が変化すると、加速度センサ110が検出する加速度が変化する。従って、車載器設置車両が停止している状態において加速度センサ110が検出する加速度が一致するか否かを判定することで、車載器100の姿勢が同じか否かを判定することができる。
 停止信号取得部120は、車載器100と車載器設置車両とのインターフェース(Interface)として機能し、各種信号の受け渡しを行う。特に、停止信号取得部120は、車載器100の電源がオフ(off)になることを示す信号を取得する。なお、車載器100の電源がオフになることを示す信号を、「電源断信号」と称する。
 例えば、車載器設置車両の電気系統をオフにする操作が行われると、車載器設置車両は、車載器100へ電源断信号を出力し、一定時間経過後に車載器100への電力供給を中止する。停止信号取得部120は、当該電源断信号を取得して制御部140へ出力する。
 車載器設置車両の電気系統をオフにする操作は、例えば、車載器設置車両の運転者がイグニッションスイッチをオフにする操作として行われる。
 記憶部130は、車載器100の備える記憶デバイスを用いて構成され、各種情報を記憶する。特に、記憶部130は、車載器100が取り付けられる車両の情報や、車載器100の状態を示す状態情報を記憶する。本実施形態では、状態情報として車載器100の姿勢情報が用いられるが、これに限らない。例えば、後述する実施形態では、状態情報として、車載器100の位置情報や、電源から車載器100に供給される電圧を示す情報が用いられる。
 制御部140は、車載器100の各部を制御して各種機能を実行する。制御部140は、例えば、車載器100の備えるCPU(Central Processing Unit、中央処理装置)が、記憶部130からプログラムを読み出して実行することで実現される。
 状態情報取得部141は、状態情報を取得する。特に、状態情報取得部141は、停止信号取得部120が電源断信号を取得すると状態情報を取得し、当該状態情報を、記憶部管理部142を介して記憶部130に記憶させる。また、状態情報取得部141は、車載器100が電源オフの状態から電源オン(on)となって(すなわち、電力供給の再開を受けて)起動すると状態情報を取得し、当該状態情報を異常判定部143へ出力する。
 本実施形態では、状態情報取得部141は、状態情報として車載器100の姿勢情報を取得する。例えば、状態情報取得部141は、加速度センサ110が検出した加速度を示す情報から、車載器100の傾きの角度を算出し、状態情報として用いる。さらに例えば、状態情報取得部141は、鉛直方向に対する車載器100の高さ方向の傾きの角度を算出し、状態情報として用いる。ここでの車載器100の高さ方向は、車載器100に設定されている基準方向の例であるが、これに限らない。また、鉛直方向(方向1g)に対する車載器100の高さ方向(z方向)の傾きの角度は、図3において角度θにて例示されている。
 あるいは、状態情報取得部141が、加速度センサ110が検出した加速度を示す3次元ベクトルを状態情報としてそのまま用いるようにしてもよい。この場合、加速度センサ110が検出する加速度を示す3次元ベクトルは、車載器に設定されている基準方向と鉛直方向とのずれを示しており、車載器に設定されている基準方向と鉛直方向との角度を示す情報の例に該当する。
 記憶部管理部142は、記憶部130への情報の書込や記憶部130からの情報の読出を行う。特に、記憶部管理部142は、停止信号取得部120が電源断信号を取得したときに状態情報取得部141が取得した状態情報を、記憶部130に記憶させる(書き込む)。また、記憶部管理部142は、車載器100が電源オフの状態から電力供給の再開を受けて起動すると、状態情報を記憶部130から読み出し、当該状態情報を異常判定部143へ出力する。
 異常判定部143は、状態情報取得部141が取得する状態情報に基づいて異常の有無を判定する。ここでの異常は、車載器100が他の車両に載せ替えられたことである。より具体的には、異常判定部143は、停止信号取得部120が電源断信号を取得したときに状態情報取得部141が取得した状態情報と、車載器100が起動したときに、状態情報取得部141が取得した状態情報とが一致するか否かを判定する。
 例えば、状態情報取得部141が、状態情報として車載器100の傾きの角度を算出する場合、異常判定部143は、当該角度の変化の大きさが所定の閾値より大きいか否かを判定し、閾値より大きいと判定した場合に異常有りと判定する。
 あるいは、状態情報取得部141が、加速度センサ110が検出する加速度を示す3次元ベクトルを状態情報として取得する場合、異常判定部143は、当該3次元ベクトルの各成分の変化の大きさに基づいて、異常の有無を判定する。例えば、状態情報取得部141は、各成分の変化の大きさの合計値が所定の閾値より大きいか否かを判定し、閾値より大きいと判定した場合に異常有りと判定する。あるいは、状態情報取得部141が、3次元ベクトルの各成分の変化の大きさのうち、所定の閾値より大きい変化を示すものがあるか否かを判定するようにしてもよい。
 図4は、車載器100を他の車両に載せ替えた際の車載器100の姿勢の変化の例を示す説明図である。同図において、ワゴン型の車両Aの概略形状とワンボックス型の車両Bの概略形状とが示されている。車両Aは、載せ替え前に車載器100が取り付けられていた車両であり、記憶部130は、車両Aの情報を記憶している。車両Bは、車載器100が載せ替えられた車両である。
 また、同図の例では、車載器100が車両のフロントガラスに取り付けられている。車両Aと車両Bとではフロントガラスの傾きが異なるため、車載器100の姿勢が異なっている。従って、加速度センサ110は、載せ替え前と載せ替え後とで異なった重力加速度を検出する。異常判定部143は、この重力加速度に基づいて車載器100の姿勢の変化を検出することで、車載器100が他の車両に載せ替えられたことを検出する。
 あるいは、異常判定部143が、加速度センサ110が検出する車載器100の姿勢に加えて、あるいは代えて、車載器設置車両が走行していない状態で加速度センサ110が検出する振動に基づいて、車載器100の載せ替えが行われたことを検出するようにしてもよい。例えば、ガソリン車がアイドリング時に振動するのに対し、電気自動車は振動しない。そこで、異常判定部143が振動の変化を検出することで、ガソリン車から電気自動車への車載器100の載せ替えや、電気自動車からガソリン車への車載器100の載せ替えを検出し得る。
 例えば、異常判定部143は、停止信号取得部120が電源断信号を取得したときの、加速度センサ110による加速度検出値と、車載器100が起動したときの加速度センサ110による加速度検出値との差が所定の閾値以下か否かを判定する。加速度センサ110が検出する振動の情報として、振動周波数または振動の大きさ、あるいはこれらの組み合わせを用いることができる。
 次に、図5および図6を参照して、車載器100の動作について説明する。
 図5は、車載器100への電力供給が中止される際に車載器100が行う処理の手順を示すフローチャートである。車載器100は、停止信号取得部120が電源断信号を取得すると、同図の処理を開始する。
 図5の処理において、状態情報取得部141は、状態情報を取得する(ステップS111)。本実施形態では、状態情報取得部141は、加速度センサ110が検出した加速度に基づいて、車載器100の傾きの角度を算出する。
 次に、記憶部管理部142は、ステップS111で状態情報取得部141が取得した状態情報を記憶部130に記憶させる(ステップS112)。本実施形態では、記憶部管理部142は、車載器100の傾きを示す角度情報を記憶部130に記憶させる。
 なお、記憶部130が状態情報を既に記憶している場合、記憶部管理部142は、状態情報を上書きする。すなわち、記憶部130は、最後に書き込まれた状態情報のみを記憶しておけばよく、状態情報の履歴を記憶しておく必要はない。
 ステップS112の後、図5の処理を終了する。
 図6は、車載器100への電力供給が再開された際に車載器100が行う処理の手順を示すフローチャートである。車載器100は、車載器100が電源オフの状態から電力供給の再開を受けて起動すると、同図の処理を開始する。
 図6の処理において、ステップS121は、ステップS111(図5)と同様である。
 また、記憶部管理部142は、状態情報を記憶部130から読み出す(ステップS122)。本実施形態では、記憶部管理部142は、車載器100の傾きを示す角度情報を記憶部130から読み出す。
 なお、ステップS121とステップS122との実行の順序は任意である。ステップS121よりも先にステップS122が実行されてもよいし、ステップS121とステップS122とが並列実行されてもよい。
 次に、異常判定部143は、ステップS121で得られた状態情報とステップS122で得られた状態情報とが一致するか否かを判定する(ステップS123)。本実施形態では、異常判定部143は、ステップS121で得られた角度とステップS122で得られた角度との差を算出し、得られた差が所定の閾値以下か否かを判定する。差が閾値以下であると判定した場合、異常判定部143は、状態情報が一致すると判定する。一方、差が閾値より大きいと判定した場合、異常判定部143は、状態情報が一致しないと判定する。
 状態情報が一致すると判定した場合(ステップS123:YES)、車載器100は、載せ替えなしの場合の処理を行う(ステップS124)。例えば、車載器100は、正常時の動作を開始する。
 ステップS124の後、図6の処理を終了する。
 一方、状態情報が一致しないと判定した場合(ステップS123:NO)、車載器100は、載せ替えありの場合の処理を行う(ステップS125)。載せ替えありの場合の処理は、様々な処理とすることができる。例えば、車載器100が、課金サーバ装置と通信を行って、載せ替えを検出したことを通知するようにしてもよい。あるいは、車載器設置車両が路側機設置箇所を通過する際に、車載器100が、路側機と通信を行って車載器設置車両の撮影を促すようにしてもよい。
 なお、車載器100の載せ替えが行われていないのに行われたと判定する誤判定を低減させるため、異常判定部143が、ステップS123での角度の不一致を複数回検出した場合に、車載器100が、ステップS125における載せ替えありの場合の処理を行うようにしてもよい。
 ステップS125の後、図6の処理を終了する。
 以上のように、記憶部管理部142は、車載器100の電源がオフになるときの状態情報を記憶部130に記憶させる。そして、異常判定部143は、車載器100の電源がオンになったときの状態情報と、記憶部130に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する。
 このように、車載器100は、車載器100自らが他の車両(車載器100が情報を記憶している車両以外の車両)に載せ替えられたことを、状態情報に基づいて検出する。従って、車載器100は、他の車両に使用されていることを、簡易に検出できる。
 特に、異常判定部143は、車載器100の電源がオフになるときの状態情報と、車載器100の電源がオンになったときの状態情報とを比較する。これにより、異常判定部143は、車載器100の電源がオフになっている間に行われる車載器100の載せ替えを検出する。ここで、車載器100の載せ替えは、通常、車載器100の電源をオフにして行われると考えられる。この点において、車載器100によれば、車載器100の載せ替えを検出し漏らす可能性が低い。
 ここで、不正通行車両の監視方法の一つとして、監視装置がカメラを備えて車両を撮影し、得られた画像に基づいて不正の有無を判定する方法がある。しかしながら、この方法では、監視装置がカメラを備える必要が有る点で、製造コストや運用コストが高くなる。また、この方法では、カメラの設置されていない場所を走行する車両について不正を検出することはできない。これに対し、車載器100によれば、カメラを必要とせずに不正を検出できる。この点において、車載器100によれば、製造コストや運用コストを比較的安くすることができ、また、カメラの設置されていない場所でも不正を検出できる。
 また、状態情報取得部141は、加速度センサ110が検出した加速度に基づいて、車載器100に設定されている基準方向の鉛直方向に対する角度を示す情報を、状態情報として取得する。そして、異常判定部143は、車載器100の電源がオフになるときと、車載器100の電源がオンになったときとで、車載器100の傾きの角度が一致するか否かを判定することで、車載器100の載せ替えが行われたか否かを判定する。
 車載器100が、GNSS情報の修正など所定の用途のために加速度センサを備えている場合、当該加速度センサを加速度センサ110として用いることができ、車載器100の載せ替えの有無の判定用に加速度センサを別途備える必要がない。この点において、車載器100の構成を簡単にすることができ、車載器100の小型化や製造コストの低減を図ることができる。
 また、車載器の電源のオン、オフは、当該車載器が取り付けられている車両の電気系統のオン、オフと連動していることが一般的であり、車載器の電源がオフになっている間は、車両は走行しないことが期待される。従って、車載器100が車両に取り付けられたままの状態であれば、車載器100の電源がオフになっている間、車載器100の傾きが変化しないことが期待される。この点において、車載器100によれば、車載器100の載せ替えが行われていないにもかかわらず行われたと誤検出する可能性が低い。
 ここで、車載器が、車載器自らの載せ替えを検出する方法として、車両に取り付けられた状態での車載器自らの傾きの基準値を記憶しておき、当該基準値と傾きの測定値とが一致するか否かを判定する方法が考えられる。しかしながら、この方法では、車両が坂道に停車している場合など、車載器の載せ替え以外の原因で車載器の傾きが変化した場合に、車載器の載せ替えが行われていないにもかかわらず行われたと誤検出してしまう。
 これに対して、車載器100では、上記のように、車載器100の載せ替えが行われていないにもかかわらず行われたと誤検出する可能性が低い。
<第2の実施形態>
 図7は、本発明の第2の実施形態における車載器の機能構成を示す概略ブロック図である。同図において、車載器200は、位置情報取得部210と、停止信号取得部120と、記憶部130と、制御部240とを備える。制御部240は、状態情報取得部241と、記憶部管理部142と、異常判定部243とを備える。同図において、図1の各部に対応して同様の機能を有する部分には同一の符号(120、130、142)を付して説明を省略する。
 車載器200は、車載器100(図1)と同様、自らが取り付けられる車両の情報を記憶しておき、当該情報を用いて処理を行う車載器である。一方、車載器200は、車載器200が取り付けられている車両の位置に基づいて車載器200の載せ替えの有無を判定する点で、車載器100と異なる。
 なお、位置を示す情報を「位置情報」と称する。
 位置情報取得部210は、車載器設置車両の位置情報を取得する。例えば、位置情報取得部210は、GNSS受信機として機能し、車載器設置車両の位置情報として、車載器200の位置情報を算出する。あるいは、位置情報取得部210が、車載器200の外部に設置されたGNSS受信機とのインターフェースとして機能し、GNSS受信機が算出する位置情報を取得するようにしてもよい。
 なお、自律課金方式では、車載器が課金処理用にGNSS機能を有するか、あるいは、GNSS受信機から位置情報を取得することが一般的である。車載器200が課金処理用など所定の用途のために位置情報を取得する場合、当該位置情報を車載器200の載せ替えの有無の判定に用いることができる。従って、車載器200は、車載器200の載せ替えの有無の判定用にGNSS受信機を別途備える必要はない。
 状態情報取得部241は、状態情報取得部141(図1)と同様、状態情報を取得する。特に、状態情報取得部241は、停止信号取得部120が電源断信号を取得すると状態情報を取得し、当該状態情報を、記憶部管理部142を介して記憶部130に記憶させる。また、状態情報取得部241は、車載器200が電源オフの状態から電力供給の再開を受けて起動すると状態情報を取得し、当該状態情報を異常判定部243へ出力する。一方、状態情報取得部241は、状態情報として車載器設置車両の位置情報を取得する点で、状態情報取得部141と異なる。
 異常判定部243は、状態情報取得部241が取得する状態情報に基づいて異常の有無を判定する。異常判定部243は、異常判定部143と同様、停止信号取得部120が電源断信号を取得したときの状態情報と、車載器200が起動したときの状態情報とが一致するか否かを判定する。一方、異常判定部243は、状態情報として車載器設置車両の位置情報を用いる点で、異常判定部143と異なる。
 図8は、車載器200を他の車両に載せ替えた際の車載器設置車両の位置の変化の例を示す説明図である。同図において、車両Cは、載せ替え前に車載器200が取り付けられていた車両であり、記憶部130は、車両Cの情報を記憶している。車両Dは、車載器200が載せ替えられた車両である。
 車載器200の載せ替えが行われることで、車載器設置車両の位置が変化する。図8の例では、車載器200の載せ替え前は、車載器設置車両の水平位置(例えば、緯度および経度)が(X1,Y1)であったのに対し、載せ替え後は、(X2,Y2)になっている。
 異常判定部243は、車載器設置車両の位置の変化を検出することで、車載器200の載せ替えが行われたことを検出する。例えば、異常判定部243は、停止信号取得部120が電源断信号を取得したときの車載器設置車両の水平位置と、車載器200が起動したときの車載器設置車両の水平位置とが一致するか否かを判定する。
 あるいは、異常判定部243が、水平方向の位置情報に加えて、あるいは代えて、鉛直方向の位置情報に基づいて、車載器200の載せ替えが行われたことを検出するようにしてもよい。例えば、位置情報取得部210がGNSS受信機として機能して、GNSS衛星からの信号に基づいて地面からの高さを算出する。この高さは、車載器200またはGNSSアンテナの、地面からの高さを示すと考えられる。そして、異常判定部243は、位置情報取得部210が算出する高さの変化に基づいて、車載器200の載せ替えが行われたか否かを判定する。
 例えば、車載器200が普通乗用車からトラックなどの大型車両に載せ替えられた場合、車載器200が取り付けられる位置の地面からの高さが異なることが考えられる。そこで、異常判定部243が、当該高さの変化を検出することで、車載器200の載せ替えが行われたことを検出し得る。例えば、異常判定部243は、停止信号取得部120が電源断信号を取得したときの車載器200高さと、車載器200が起動したときの車載器200の高さとの差が所定の閾値以下か否かを判定する。
 次に、車載器200の動作について説明する。
 車載器200への電力供給が中止される際、車載器200は、図5に示される処理を行う。
 ステップS111において状態情報取得部241は、状態情報として、GNSS受信機が算出した位置情報を、位置情報取得部210を介して取得する。
 ステップS112において記憶部管理部142は、ステップS111で状態情報取得部241が取得した位置情報を記憶部130に記憶させる。
 車載器200への電力供給が再開された際、車載器200は、図6に示される処理を行う。
 ステップS122において記憶部管理部142は、位置情報を読み出す。
 ステップS123において異常判定部243は、ステップS121で得られた位置とステップS122で得られた位置との距離を算出し、得られた距離が所定の閾値以下か否かを判定する。距離が閾値以下であると判定した場合、異常判定部243は、状態情報が一致すると判定する。一方、距離が閾値より大きいと判定した場合、異常判定部243は、状態情報が一致しないと判定する。
 以上のように、状態情報取得部241は、水平方向についての車載器の位置情報を状態情報として取得する。そして、異常判定部243は、車載器200の電源がオフになるときと、車載器200の電源がオンになったときとで、位置情報の示す位置が一致するか否かを判定することで、車載器200の載せ替えが行われたか否かを判定する。
 車載器200が課金処理用など所定の用途のために位置情報を取得する場合、当該位置情報を車載器200の載せ替えの有無の判定に用いることができる。従って、車載器200は、車載器200の載せ替えの有無の判定用にGNSS受信機を別途備える必要はない。この点において、車載器200の構成を簡単にすることができ、車載器200の小型化や製造コストの低減を図ることができる。
 また、状態情報取得部は、車載器200の位置の高さを示す情報を状態情報として取得する。そして、異常判定部243は、車載器200の電源がオフになるときと、車載器20の電源がオンになったときとで、高さが一致するか否かを判定することで、車載器200の載せ替えが行われたか否かを判定する。
 車載器200が課金処理用など所定の用途のために位置情報を取得する場合、当該位置情報を車載器200の載せ替えの有無の判定に用いることができる。従って、車載器200は、車載器200の載せ替えの有無の判定用にGNSS受信機を別途備える必要はない。この点において、車載器200の構成を簡単にすることができ、車載器200の小型化や製造コストの低減を図ることができる。
<第3の実施形態>
 図9は、本発明の第3の実施形態における車載器の機能構成を示す概略ブロック図である。同図において、車載器300は、電圧計310と、停止信号取得部120と、記憶部130と、制御部340とを備える。制御部340は、状態情報取得部341と、記憶部管理部142と、異常判定部343とを備える。同図において、図1の各部に対応して同様の機能を有する部分には同一の符号(120、130、142)を付して説明を省略する。
 車載器300は、車載器100(図1)と同様、自らが取り付けられる車両の情報を記憶しておき、当該情報を用いて処理を行う車載器である。一方、車載器300は、電源(車載器300の外部の電源)から車載器300に供給される電圧に基づいて車載器300の載せ替えの有無を判定する点で、車載器100と異なる。
 電圧計310は、電源から車載器300に供給される電圧を測定する。例えば、電圧計310は、車載器300が外部から電力の供給を受ける受電端子における電圧を測定する。
 状態情報取得部341は、状態情報取得部141(図1)と同様、状態情報を取得する。特に、状態情報取得部341は、停止信号取得部120が電源断信号を取得すると状態情報を取得し、当該状態情報を、記憶部管理部142を介して記憶部130に記憶させる。また、状態情報取得部341は、車載器300が電源オフの状態から電力供給の再開を受けて起動すると状態情報を取得し、当該状態情報を異常判定部343へ出力する。一方、状態情報取得部341は、状態情報として、電源から車載器300に供給される電圧を示す電圧情報を取得する点で、状態情報取得部141と異なる。
 異常判定部343は、状態情報取得部341が取得する状態情報に基づいて異常の有無を判定する。異常判定部343は、異常判定部143と同様、停止信号取得部120が電源断信号を取得したときの状態情報と、車載器300が起動したときの状態情報とが一致するか否かを判定する。一方、異常判定部343は、状態情報として、電源から車載器300に供給される電圧を示す電圧情報を用いる点で、異常判定部143と異なる。
 ここで、例えば二輪車は6ボルト(V)または12ボルトの電源を使用し、普通乗用車は12ボルトまたは24ボルトの電源を使用するなど、車種によって電源電圧が異なる場合がある。そこで、異常判定部343が、電源から車載器300に供給される電圧の変化を検出することで、車載器300の載せ替えが行われたことを検出し得る。具体的には、異常判定部343は、停止信号取得部120が電源断信号を取得したときの、電源から車載器300に供給される電圧と、車載器200が起動したときの、電源から車載器300に供給される電圧との、電圧値が一致するか否かを判定する。
 次に、車載器300の動作について説明する。
 車載器300への電力供給が中止される際、車載器300は、図5に示される処理を行う。
 ステップS111において状態情報取得部341は、状態情報として、電圧計310が測定する、電源から車載器300に供給される電圧を示す電圧情報を取得する。
 ステップS112において記憶部管理部142は、ステップS111で状態情報取得部341が取得した電圧情報を記憶部130に記憶させる。
 車載器300への電力供給が再開された際、車載器300は、図6に示される処理を行う。
 ステップS122において記憶部管理部142は、電圧情報を読み出す。
 ステップS123において異常判定部343は、ステップS121で得られた電圧値とステップS122で得られた電圧値との差を算出し、得られた差が所定の閾値以下か否かを判定する。差が閾値以下であると判定した場合、異常判定部343は、状態情報が一致すると判定する。一方、差が閾値より大きいと判定した場合、異常判定部343は、状態情報が一致しないと判定する。
 以上のように、状態情報取得部341は、電源から車載器300に供給される電圧を示す電圧情報を状態情報として取得する。そして、異常判定部243は、車載器300の電源がオフになるときと、車載器300の電源がオンになったときとで、電圧情報の示す電圧が一致するか否かを判定することで、車載器300の載せ替えが行われたか否かを判定する。
 これにより、車載器300の構成を、電圧計を備える比較的簡単な構成とすることができ、車載器300の小型化や製造コストの低減を図ることができる。
<第4の実施形態>
 図10は、本発明の第4の実施形態における車載器の機能構成を示す概略ブロック図である。同図において、車載器400は、加速度センサ110と、位置情報取得部210と、電圧計310と、停止信号取得部120と、記憶部130と、制御部440とを備える。制御部440は、状態情報取得部441と、記憶部管理部142と、異常判定部443とを備える。同図において、図1、図7または図9の各部に対応して同様の機能を有する部分には同一の符号(110、120、130、142、210、310)を付して説明を省略する。
 車載器400は、車載器100(図1)と同様、自らが取り付けられる車両の情報を記憶しておき、当該情報を用いて処理を行う車載器である。一方、車載器400は、車載器400の姿勢と、車載器400が取り付けられている車両の位置と、電源から車載器400に供給される電圧とに基づいて車載器300の載せ替えの有無を判定する点で、車載器100と異なる。
 状態情報取得部441は、状態情報取得部141(図1)と同様、状態情報を取得する。特に、状態情報取得部441は、停止信号取得部120が電源断信号を取得すると状態情報を取得し、当該状態情報を、記憶部管理部142を介して記憶部130に記憶させる。また、状態情報取得部441は、車載器200が電源オフの状態から電力供給の再開を受けて起動すると状態情報を取得し、当該状態情報を異常判定部443へ出力する。一方、状態情報取得部441は、状態情報として、車載器400の姿勢情報と、車載器400が取り付けられている車両の位置情報と、電源から車載器400に供給される電圧を示す電圧情報とを取得する点で、状態情報取得部141と異なる。
 異常判定部443は、状態情報取得部441が取得する状態情報に基づいて異常の有無を判定する。異常判定部443は、異常判定部143と同様、停止信号取得部120が電源断信号を取得したときの状態情報と、車載器400が起動したときの状態情報とが一致するか否かを判定する。一方、異常判定部443は、状態情報として、車載器400の姿勢情報と、車載器400が取り付けられている車両の位置情報と、電源から車載器400に供給される電圧を示す電圧情報とを用いる点で、異常判定部143と異なる。
 次に、図11および図12を参照して、車載器400の動作について説明する。
 図11は、車載器400への電力供給が中止される際に車載器400が行う処理の手順を示すフローチャートである。車載器400は、停止信号取得部120が電源断信号を取得すると、同図の処理を開始する。
 ステップS211~S212の処理は、第1の実施形態におけるステップS111~S112(図5)の処理と同様である。ステップS213~S214の処理は、第2の実施形態におけるステップS111~S112の処理と同様である。ステップS215~S216の処理は、第3の実施形態におけるステップS111~S112の処理と同様である。
 ステップS216の後、図11の処理を終了する。
 なお、ステップS211~S212と、ステップS213~S214と、ステップS215~S216との実行の順序は任意である。例えば、ステップS211~S212よりも先にステップS213~S214や、ステップS215~S216が実行されてもよい。また、ステップS211~S212と、ステップS213~S214と、ステップS215~S216とが並列実行されてもよい。
 図12は、車載器400への電力供給が再開された際に車載器400が行う処理の手順を示すフローチャートである。車載器400は、車載器400が電源オフの状態から電力供給の再開を受けて起動すると、同図の処理を開始する。
 ステップS221~S222の処理は、第1の実施形態におけるステップS121~S122(図6)の処理と同様である。ステップS223~S224の処理は、第2の実施形態におけるステップS121~S122の処理と同様である。ステップS225~S226の処理は、第3の実施形態におけるステップS121~S122の処理と同様である。
 なお、ステップS221と、S212と、S223と、S224と、S225と、S226との実行の順序は任意である。例えば、ステップS221よりも先にステップS222やS223やS224やS225やS226が実行されてもよい。また、ステップS221と、S222と、S223と、S224と、S225と、S226とが並列実行されてもよい。
 ステップS227の処理は、第1の実施形態におけるステップS123(図6)の処理と同様である。ステップS227において、ステップS221で得られた角度とステップS222で得られた角度とが一致する(差が閾値以下である)と判定した場合(ステップS227:YES)、ステップS228へ進む。一方、ステップS227において、角度が一致しない(差が閾値よりも大きい)と判定した場合(ステップS227:NO)、ステップS231へ進む。
 ステップS228の処理は、第2の実施形態におけるステップS123の処理と同様である。ステップS228において、ステップS223で得られた位置とステップS224で得られた位置とが一致する(距離の差が閾値以下である)と判定した場合(ステップS228:YES)、ステップS229へ進む。一方、ステップS228において、位置が一致しない(距離の差が閾値よりも大きい)と判定した場合(ステップS228:NO)、ステップS231へ進む。
 ステップS229の処理は、第3の実施形態におけるステップS123の処理と同様である。ステップS229において、ステップS225で得られた電圧値とステップS226で得られた電圧値とが一致する(差が閾値以下である)と判定した場合(ステップS229:YES)、ステップS230へ進む。一方、ステップS229において、電圧値が一致しない(差が閾値よりも大きい)と判定した場合(ステップS229:NO)、ステップS231へ進む。
 ステップS230の処理は、ステップS124(図6)の処理と同様である。ステップS230の後、図12の処理を終了する。
 ステップS231の処理は、ステップS125(図6)の処理と同様である。ステップS231の後、図12の処理を終了する。
 なおステップS227と、S228と、S229との実行順序は任意である。ステップS227、S228、S229の何れでも状態情報が一致すると判定した場合にステップS230の処理を実行し、何れかのステップで状態情報が一致しないと判定した場合にステップS231の処理を実行するものであればよい。
 以上のように、異常判定部443が、複数の判定を組み合わせて実行することで、車載器の載せ替えが行われたのに行われていないと判定する検出漏れの可能性を低減させることができる。例えば、載せ替え前の車載器400の傾きの角度と、載せ替え後の車載器400の傾きの角度との差が小さい場合、車載器400の姿勢情報のみを用いた判定では、車載器の載せ替えが行われたのに行われていないと判定する検出漏れの可能性がある。そこで、異常判定部443が、車載器400が取り付けられている車両の位置情報を用いた判定や、電源から車載器400に供給される電圧を示す電圧情報を用いた判定をさらに行うことで、検出漏れの可能性を低減させることができる。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明は、車両に取り付けられ、当該車両の情報を記憶し当該車両の情報を用いて処理を行う車載器であって、前記車載器の状態を示す状態情報を取得する状態情報取得部と、前記車載器の電源がオフになるときの前記状態情報を記憶部に記憶させる記憶部管理部と、前記車載器の電源がオンになったときの状態情報と、記憶部に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する異常判定部と、を備える車載器に関する。
 上記した車載器によれば、車両の情報を記憶している車載器が他の車両に使用されていることを、カメラ無しで検出できる。
100、200、300、400 車載器
110 加速度センサ
120 停止信号取得部
130 記憶部
140、240、340、440 制御部
141、241、341、441 状態情報取得部
142 記憶部管理部
143、243、343、443 異常判定部
210 位置情報取得部
310 電圧計

Claims (8)

  1.  車両に取り付けられ、当該車両の情報を記憶し当該車両の情報を用いて処理を行う車載器であって、
     前記車載器の状態を示す状態情報を取得する状態情報取得部と、
     前記車載器の電源がオフになるときの前記状態情報を記憶部に記憶させる記憶部管理部と、
     前記車載器の電源がオンになったときの状態情報と、前記記憶部に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する異常判定部と、
     を備える車載器。
  2.  前記車載器は、加速度センサを備え、
     前記状態情報取得部は、前記加速度センサが検出した加速度に基づいて、前記車載器に設定されている基準方向の鉛直方向に対する角度を示す情報を、前記状態情報として取得する、
     請求項1に記載の車載器。
  3.  前記状態情報取得部は、水平方向についての前記車載器の位置情報を前記状態情報として取得する、
     請求項1に記載の車載器。
  4.  前記状態情報取得部は、前記車載器の位置の高さを示す情報を前記状態情報として取得する、
     請求項1に記載の車載器。
  5.  前記状態情報取得部は、電源から前記車載器に供給される電圧を示す情報を前記状態情報として取得する、
     請求項1に記載の車載器。
  6.  前記車載器は、加速度センサを備え、
     前記状態情報取得部は、前記加速度センサが検出した振動を示す情報を前記状態情報として取得する、
     請求項1に記載の車載器。
  7.  前記車載器は、前記車両のフロントガラスに取り付けられる、請求項1に記載の車載器。
  8.  車両に取り付けられ、当該車両の情報を記憶し当該車両の情報を用いて処理を行う車載器の異常判定方法であって、
     前記車載器の電源がオフになるときの、前記車載器の状態を示す状態情報を記憶部に記憶させる書込ステップと、
     前記車載器の電源がオンになったときに得られた状態情報と、記憶部に記憶された状態情報とが一致するか否かを判定し、一致しないと判定した場合に異常と判定する異常判定ステップと、
     を有する異常判定方法。
PCT/JP2014/073989 2014-09-10 2014-09-10 車載器および異常判定方法 WO2016038707A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11201701923PA SG11201701923PA (en) 2014-09-10 2014-09-10 On-board unit and fault determination method
KR1020177006155A KR101955836B1 (ko) 2014-09-10 2014-09-10 차량 탑재 기기 및 이상 판정 방법
JP2016547309A JP6319701B2 (ja) 2014-09-10 2014-09-10 車載器および異常判定方法
PCT/JP2014/073989 WO2016038707A1 (ja) 2014-09-10 2014-09-10 車載器および異常判定方法
MYPI2017700808A MY184368A (en) 2014-09-10 2014-09-10 On-board unit and fault determination method
US15/510,141 US10126922B2 (en) 2014-09-10 2014-09-10 On-board unit and fault determination method
GB1704040.3A GB2544444B (en) 2014-09-10 2014-09-10 On-board unit and fault determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073989 WO2016038707A1 (ja) 2014-09-10 2014-09-10 車載器および異常判定方法

Publications (1)

Publication Number Publication Date
WO2016038707A1 true WO2016038707A1 (ja) 2016-03-17

Family

ID=55458495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073989 WO2016038707A1 (ja) 2014-09-10 2014-09-10 車載器および異常判定方法

Country Status (7)

Country Link
US (1) US10126922B2 (ja)
JP (1) JP6319701B2 (ja)
KR (1) KR101955836B1 (ja)
GB (1) GB2544444B (ja)
MY (1) MY184368A (ja)
SG (1) SG11201701923PA (ja)
WO (1) WO2016038707A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512097B1 (ko) * 2021-02-17 2023-03-17 에스케이텔링크 주식회사 차량용 사물인터넷 장치 전원부와 내부 센서를 활용한 부정방지 시스템 및 그 동작 방법, 이를 저장하는 컴퓨터로 판독 가능한 기록매체

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000076503A (ja) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd Etc車載機
JP2008033738A (ja) * 2006-07-31 2008-02-14 Pioneer Electronic Corp ナビゲーション装置の盗難検出装置、方法及びプログラム
JP2012094076A (ja) * 2010-10-28 2012-05-17 Jvc Kenwood Corp 車載器制御装置、車載器制御方法、及び、プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098659B2 (ja) * 2003-04-14 2008-06-11 三菱電機株式会社 狭域通信車載器
JP2009116480A (ja) 2007-11-05 2009-05-28 Hitachi Ltd 不正通行車両の監視装置
EP2404792B1 (en) 2009-03-06 2013-12-25 Honda Motor Co., Ltd. Abnormality detection and vehicle tracking device
JP5419496B2 (ja) 2009-03-06 2014-02-19 本田技研工業株式会社 異常検知および車両追跡装置
US9317111B2 (en) * 2011-03-30 2016-04-19 Elwha, Llc Providing greater access to one or more items in response to verifying device transfer
WO2014020647A1 (ja) 2012-08-01 2014-02-06 三菱電機株式会社 傾斜角検出装置および車載機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000076503A (ja) * 1998-09-01 2000-03-14 Matsushita Electric Ind Co Ltd Etc車載機
JP2008033738A (ja) * 2006-07-31 2008-02-14 Pioneer Electronic Corp ナビゲーション装置の盗難検出装置、方法及びプログラム
JP2012094076A (ja) * 2010-10-28 2012-05-17 Jvc Kenwood Corp 車載器制御装置、車載器制御方法、及び、プログラム

Also Published As

Publication number Publication date
KR20170039290A (ko) 2017-04-10
GB201704040D0 (en) 2017-04-26
GB2544444B (en) 2021-07-21
SG11201701923PA (en) 2017-04-27
GB2544444A (en) 2017-05-17
KR101955836B1 (ko) 2019-03-07
JP6319701B2 (ja) 2018-05-09
US20170277375A1 (en) 2017-09-28
JPWO2016038707A1 (ja) 2017-04-27
US10126922B2 (en) 2018-11-13
MY184368A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US9070293B2 (en) Device and method for traffic sign recognition
CN107111935B (zh) 车载设备、车载设备诊断系统
CN101256713B (zh) 驾驶支援系统及车载装置
US8140266B2 (en) Vehicle positioning information updating system
JP4780155B2 (ja) 車載装置
US10275043B2 (en) Detection of lane conditions in adaptive cruise control systems
EP3336488B1 (en) Method of verification of the installation of an apparatus mounted on board a vehicle, and related system
US20200247404A1 (en) Information processing device, information processing system, information processing method, and program
CN106558123A (zh) 一种行车记录安全控制系统
CN110753648A (zh) 车辆偏移的预警方法、系统、车辆及存储介质
JP6319701B2 (ja) 車載器および異常判定方法
EP3913531A1 (en) Compute system with wear detection mechanism and method of operation thereof
CN111572553A (zh) 车辆系统
US11772631B2 (en) Home position estimation system and home position estimation method
KR101311112B1 (ko) 차량 사고 판단 장치 및 그 방법
WO2021210251A1 (ja) 道路状況特定装置および車両システム
TW201815602A (zh) 不當防止裝置及不當防止單元
JP6664491B2 (ja) ポジション決定のための方法、電子制御装置及びシステム
JP2007069712A (ja) 車両用盗難防止装置
JP2021039651A (ja) ソフトウェア更新装置、ソフトウェア更新方法、およびプログラム
US20230267773A1 (en) Verifying mobile telematics with vehicle information
JP2011169838A (ja) 異常検出装置、異常検出システム、異常検出方法
JP2023006936A (ja) 管理装置および運用管理システム
WO2020070803A1 (ja) 車載装置、車両、切断検知方法、及びプログラム
JP2021143885A (ja) 車両試験装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547309

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177006155

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15510141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201704040

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140910

122 Ep: pct application non-entry in european phase

Ref document number: 14901493

Country of ref document: EP

Kind code of ref document: A1