WO2016035174A1 - 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法 - Google Patents

水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法 Download PDF

Info

Publication number
WO2016035174A1
WO2016035174A1 PCT/JP2014/073236 JP2014073236W WO2016035174A1 WO 2016035174 A1 WO2016035174 A1 WO 2016035174A1 JP 2014073236 W JP2014073236 W JP 2014073236W WO 2016035174 A1 WO2016035174 A1 WO 2016035174A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
water
separation membrane
permeate
flow rate
Prior art date
Application number
PCT/JP2014/073236
Other languages
English (en)
French (fr)
Inventor
櫻井 秀明
英夫 鈴木
裕 中小路
茂 吉岡
進 沖野
範明 仙波
茂広 杉山
昌之 江田
飛太 阿部
龍 上戸
鵜飼 展行
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2014/073236 priority Critical patent/WO2016035174A1/ja
Priority to CN201480081417.3A priority patent/CN106659980A/zh
Priority to US15/505,697 priority patent/US20170275189A1/en
Priority to CA2958803A priority patent/CA2958803A1/en
Priority to JP2016546249A priority patent/JP6395844B2/ja
Publication of WO2016035174A1 publication Critical patent/WO2016035174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/20Operation control schemes defined by a periodically repeated sequence comprising filtration cycles combined with cleaning or gas supply, e.g. aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/447Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by membrane distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • the present invention relates to a deposit monitor for a water treatment apparatus, a water treatment apparatus and a method for operating the same, and a cleaning method for the water treatment apparatus.
  • mine wastewater contains pyrite (FeS 2 ), and this pyrite is oxidized to produce SO 4 2 ⁇ .
  • Inexpensive Ca (OH) 2 is used to neutralize mine wastewater. For this reason, the mine wastewater is rich in Ca 2+ and SO 4 2- .
  • the water containing a large amount of these ions is subjected to desalting treatment.
  • a concentrating device for performing a desalting treatment for example, a reverse osmosis membrane device, a nanofiltration membrane device, an ion exchange membrane device and the like are known.
  • Patent Document 1 proposes a method of monitoring the reverse osmosis membrane, for example, by using a cell for monitoring the reverse osmosis membrane of the reverse osmosis membrane device.
  • Patent Document 2 proposes a proposal to monitor the deposition on the film surface.
  • Patent Document 2 it is monitored in advance that the deposits are deposited on the membrane surface of the filtration membrane as the raw water (seawater) is concentrated, and it is efficient that the deposits are deposited on the membrane surface of the filtration membrane of the desalination device. Is suppressed.
  • Patent Document 2 there is a proposal to supply an alkaline agent to the concentrated water supplied from the monitoring separation membrane in order to further promote the deposition of deposits.
  • the reverse osmosis membrane of the desalination apparatus stores, for example, a plurality of (for example, 5 to 8) spiral membranes in units of 1 m to constitute one filtration membrane vessel.
  • the downsizing of the monitoring device contributes to the downsizing of the desalination equipment. Yes.
  • an adhesive component for example, calcium carbonate, magnesium hydroxide, etc.
  • an adhesive component for example, calcium carbonate, magnesium hydroxide, etc.
  • pH for example, gypsum ( CaSO 4 ), calcium fluoride (CaF 2 ) and the like are not effective and cannot be applied.
  • the present invention provides a water treatment apparatus deposit monitoring apparatus capable of predicting not only the reverse osmosis membrane of a reverse osmosis membrane apparatus but also the deposits of a separation membrane of a separation membrane apparatus with a compact apparatus. It is an object of the present invention to provide a water treatment apparatus, a method for operating the same, and a method for cleaning the water treatment apparatus.
  • the first invention of the present invention for solving the above-described problem is a non-concentrated composition in which a dissolved component and a dispersed component are concentrated from a separation membrane device that obtains permeated water by concentrating the dissolved component and dispersed component from the water to be treated by a separation membrane.
  • a non-permeate water line for discharging permeate and a non-permeate water branch line branched from the non-permeate water line a part of the branched non-permeate water is used as a detection liquid, and the detection liquid is used as a permeate for detection.
  • a first adhering matter detection unit having a first detection separation membrane that separates into a detection non-permeate water, an adhering condition changing device that changes adhering conditions of the adhering matter to the first detection separation membrane, A first detection separation liquid flow rate measuring device for measuring the flow rate of one or both of the detection permeated water and the detection non-permeated water separated by the first detection separation membrane. Located in the equipment adhering monitoring device.
  • a treated water supply line for supplying treated water to a separation membrane device for concentrating dissolved components and dispersed components by a separation membrane to obtain permeated water
  • a branch line branched from the treated water supply line
  • a second adhering matter detection unit having a second detection separation membrane that separates the detection liquid into detection permeate water and detection non-permeate water.
  • an attachment condition changing device for changing the attachment condition of the deposit on the second detection separation membrane, and either one of the detection permeate water or the detection non-permeate water separated by the second detection separation membrane, or And a second detection separation liquid flow rate measuring device that measures both flow rates.
  • the attachment condition changing device is a pressure adjusting device that changes the supply pressure of the branched detection liquid. It is in.
  • the attachment condition changing device is a flow rate adjusting device that changes a supply flow rate of the branched detection liquid. It is in.
  • a separation membrane device having a separation membrane for concentrating dissolved components and dispersed components from water to be treated to obtain permeated water, and non-permeated water from which the dissolved components and dispersed components are concentrated are discharged from the separation membrane device.
  • a non-permeate water branch line branched from the non-permeate water line. A part of the branched non-permeate water is used as a detection liquid, and the detection liquid is used as a detection permeate and a non-detection water.
  • a first adhering matter detection unit having a first detection separation membrane that separates into permeate, an adhering condition changing device that changes adhering conditions of the adhering matter to the first detection separation membrane, and the first detection purpose.
  • a first detection separation liquid flow rate measuring device that measures the flow rate of one or both of the detection permeate water and the detection non-permeate water separated by the separation membrane; and the measurement of the first detection separation liquid flow rate measurement device.
  • a sixth invention includes a separation membrane device having a separation membrane that concentrates dissolved components and dispersion components from the treated water to obtain permeated water, and a treated water supply line that supplies the treated water to the separation membrane device.
  • a for-treatment water branch line branched from the to-be-treated water supply line, a part of the branched to-be-treated water is used as a detection liquid, and the detection liquid is separated into detection permeated water and detection non-permeated water.
  • the second adhering matter detection unit having the second detecting separation membrane, the adhering condition changing device for changing the adhering condition of the adhering matter to the second detecting separation membrane, and the second detecting separation membrane
  • the separation membrane Execution of cleaning process on the separation membrane of the apparatus, or the separation membrane apparatus It is in the water treatment device according to claim and a control unit for performing either or both of the changes of the deposited not operating conditions deposits to the separation membrane.
  • the 7th invention discharges the non-permeated water which concentrated the dissolved component and the dispersed component from the to-be-processed water, and has the separation membrane apparatus which has permeated water, and concentrated the dissolved component and the dispersed component from the said separated membrane apparatus And a non-permeate water branch line branched from the non-permeate water line.
  • a part of the branched non-permeate water is used as a detection liquid, and the detection liquid is used as a detection permeate and a non-detection water.
  • a first adhering matter detection unit having a first detection separation membrane that separates into permeate, an adhering condition changing device that changes adhering conditions of the adhering matter to the first detection separation membrane, and the first detection purpose.
  • a first detection separation liquid flow rate measuring device for measuring the flow rate of one or both of the detection permeated water and the detection non-permeated water separated by the separation membrane; and a target for supplying the treated water to the separation membrane device.
  • a second detection separation membrane is provided in the water to be treated branch line, and has a second detection separation membrane for separating a part of the branched water to be treated as a detection liquid and separating the detection liquid into a detection permeate and a detection non-permeate.
  • the separation membrane A control device that performs one or both of executing a cleaning process on the separation membrane of the device and / or changing operating conditions that do not allow the deposits of the separation membrane device to adhere to the separation membrane.
  • An eighth invention is the water treatment apparatus according to any one of the fifth to seventh inventions, further comprising an evaporator for evaporating moisture of the non-permeated water from the separation membrane device.
  • a ninth aspect of the present invention is the first detection separation liquid flow rate measuring apparatus using the water treatment apparatus deposit monitoring apparatus of the first aspect of the invention, and the detection permeated water or the detection water separated by the first detection separation membrane.
  • the separation A water treatment apparatus characterized by performing either or both of performing a washing process on the separation membrane of the membrane apparatus and / or changing to an operation condition that does not allow the deposits of the separation membrane apparatus to adhere to the separation membrane. It is in the driving method.
  • a tenth aspect of the invention is the ninth aspect of the invention, wherein the change of the attachment condition of the deposit is a case where the supply pressure of the branched non-permeate water is changed, and the supply pressure is a predetermined threshold value or less.
  • the operation method of the water treatment device is the ninth aspect of the invention, wherein the change of the attachment condition of the deposit is a case where the supply pressure of the branched non-permeate water is changed, and the supply pressure is a predetermined threshold value or less.
  • An eleventh aspect of the invention is that in the ninth aspect of the invention, the change of the attachment condition of the deposit is a case of changing the supply flow rate of the branched non-permeate water, and the supply flow rate is a predetermined threshold value or more.
  • the operation method of the water treatment device is that in the ninth aspect of the invention, the change of the attachment condition of the deposit is a case of changing the supply flow rate of the branched non-permeate water, and the supply flow rate is a predetermined threshold value or more.
  • a twelfth aspect of the present invention is the second detection separation liquid flow rate measurement apparatus using the water treatment apparatus deposit monitoring apparatus of the second aspect of the invention, and the detection permeate separated by the second detection separation membrane or for detection.
  • the separation A water treatment apparatus characterized by performing either or both of performing a washing process on the separation membrane of the membrane apparatus and / or changing to an operation condition that does not allow the deposits of the separation membrane apparatus to adhere to the separation membrane. It is in the driving method.
  • the change in the depositing condition of the deposit is when the supply pressure of the branched water to be treated is changed, and the supply pressure is a predetermined threshold value or less.
  • the change in the depositing condition of the deposit is a case where the supply flow rate of the branched water to be treated is changed, and the supply flow rate is a predetermined threshold value or more.
  • the operation method of the water treatment device is a case where the supply flow rate of the branched water to be treated is changed, and the supply flow rate is a predetermined threshold value or more.
  • a fifteenth aspect of the present invention is the first detection separation liquid flow rate measuring device using the water treatment apparatus deposit monitoring device of the first aspect of the invention, and the detection permeate separated by the first detection separation membrane or for detection.
  • the attachment condition of the deposit on the first detection separation membrane is changed, and when the flow rate of the detection permeate water or the detection non-permeate water maintains a predetermined amount, the separation membrane
  • the operation method of the water treatment apparatus is characterized in that the operation conditions of the apparatus are changed.
  • the attachment condition of the deposit is a case where the supply pressure of the branched non-permeated water is changed, and the supply pressure is equal to or higher than a predetermined threshold value. It is in the operation method of a processing apparatus.
  • the attachment condition of the deposit is when the supply flow rate of the branched non-permeate water is changed, and the supply flow rate is equal to or less than a predetermined threshold value. It is in the operation method of a water treatment device.
  • An eighteenth aspect of the present invention is the second detection separation liquid flow rate measuring apparatus using the water treatment apparatus deposit monitoring apparatus of the second aspect of the invention, and the detection permeate separated by the second detection separation membrane or for detection.
  • the attachment condition of the deposit on the second detection separation membrane is changed, and when the flow rate of the detection permeate water or the detection non-permeate water maintains a predetermined amount, the separation membrane
  • the operation method of the water treatment apparatus is characterized in that the operation conditions of the apparatus are changed.
  • a nineteenth aspect of the invention is the water treatment apparatus according to the eighteenth aspect of the invention, wherein the depositing condition is such that when the supply pressure of the branched water to be treated is changed, the supply pressure is a predetermined threshold value or more. Is in the driving method.
  • the attachment condition of the deposit is a case where the supply flow rate of the branched water to be treated is changed, and the supply flow rate is a predetermined threshold value or less. It is in the operation method of a water treatment device.
  • the cleaning method for a water treatment apparatus is characterized in that a cleaning liquid corresponding to the attached deposit is selected and the selected cleaning liquid is supplied to the separation membrane device.
  • the cleaning method of the water treatment apparatus is characterized in that the cleaning liquid corresponding to the deposit is selected and the selected cleaning liquid is supplied to the separation membrane apparatus.
  • 23rd invention is the operating method of the water treatment apparatus characterized by evaporating the moisture of the non-permeated water from the separation membrane device in the 9th or 12th invention.
  • the adhesion of the deposit to the separation membrane is predicted in advance. Can do.
  • FIG. 1 is a schematic view of a desalting apparatus including a deposit monitoring apparatus for a desalting apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of a first attached matter detection unit according to the first embodiment.
  • FIG. 3 is a perspective view of the first attached matter detection unit of FIG.
  • FIG. 4 is a partially cutaway perspective view when a spiral type reverse osmosis membrane is used for the first adhering matter detection unit.
  • FIG. 5 is a partially cutaway schematic view of a vessel of a spiral type reverse osmosis membrane device.
  • FIG. 6 is a perspective view of two connected vessels.
  • FIG. 7 is a partially exploded schematic view of the element.
  • FIG. 1 is a schematic view of a desalting apparatus including a deposit monitoring apparatus for a desalting apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of a first attached matter detection unit according to the first embodiment.
  • FIG. 3 is a perspective view of the first attached
  • FIG. 8 is a diagram showing the behavior of flux due to a change in supply pressure when the gypsum supersaturation degree of the supply liquid to the detection reverse osmosis membrane is constant and the membrane length of the detection reverse osmosis membrane is 16 mm. is there.
  • FIG. 9 is a diagram showing the behavior of the flux due to a change in supply pressure when the gypsum supersaturation degree of the liquid supplied to the detection reverse osmosis membrane is constant and the membrane length of the detection reverse osmosis membrane is 1000 mm. is there.
  • FIG. 10 is a diagram showing the relationship when only the supply pressure is changed for the detection liquids having different degrees of gypsum supersaturation.
  • FIG. 10 is a diagram showing the relationship when only the supply pressure is changed for the detection liquids having different degrees of gypsum supersaturation.
  • FIG. 11 is a diagram showing the behavior of the flux due to the change in the supply flow rate when the gypsum supersaturation degree of the supply liquid to the detection reverse osmosis membrane is constant and the membrane length of the detection reverse osmosis membrane is 16 mm. is there.
  • FIG. 12A is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 12-2 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 13 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 14 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 12A is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 12-2 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 13 is a diagram illustrating an example of controlling the
  • FIG. 15 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 16 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 17 is a diagram illustrating an example of controlling the supply pressure of the detection liquid in the present embodiment.
  • FIG. 18 is a diagram illustrating an example in which three adhering matter detection units are provided in the non-permeate water branch line.
  • FIG. 19 is a diagram illustrating an example of controlling the supply flow rate of the detection liquid in the present embodiment.
  • FIG. 20 is a diagram illustrating an example of controlling the supply flow rate of the detection liquid in the present embodiment.
  • FIG. 21 is a diagram illustrating an example of controlling the supply flow rate of the detection liquid in the present embodiment.
  • FIG. 22 is a diagram illustrating an example of controlling the supply flow rate of the detection liquid in the present embodiment.
  • FIG. 23 is a diagram illustrating an example of controlling the supply flow rate of the detection liquid in the present embodiment.
  • FIG. 24 is a diagram illustrating an example of controlling the supply flow rate of the detection liquid in the present embodiment.
  • FIG. 25 is a schematic diagram illustrating an example of operation condition change of the desalination apparatus according to the first embodiment.
  • FIG. 26 is a schematic diagram of a desalting apparatus including a deposit monitoring apparatus for a desalting apparatus according to a second embodiment.
  • FIG. 27 is a schematic diagram of a desalting apparatus including a deposit monitoring apparatus for a desalting apparatus according to a third embodiment.
  • FIG. 28 is a schematic diagram illustrating an example of a change in operating conditions of the desalting apparatus according to the third embodiment.
  • FIG. 29 is a schematic diagram of a desalting apparatus including a deposit monitoring apparatus for a desalting apparatus according to a fourth embodiment.
  • FIG. 30 is a schematic diagram of a desalting apparatus according to the fifth embodiment.
  • FIG. 1 is a schematic view of a desalting apparatus including a deposit monitoring apparatus for a desalting apparatus according to a first embodiment.
  • FIG. 2 is a schematic diagram of the deposit monitoring apparatus of the desalting apparatus according to the first embodiment.
  • a reverse osmosis membrane device which is a separation membrane device using a reverse osmosis membrane as a separation membrane, will be described as an example, and for example, a desalination treatment device for desalinating dissolved components such as salt will be described.
  • the present invention is not limited to this as long as it is a water treatment apparatus that uses and treats water. As shown in FIG.
  • the desalting apparatus 10 ⁇ / b> A concentrates dissolved components (also referred to as “adhesive components”) containing ions and organic substances from the water to be treated 11 to obtain permeated water 13.
  • a reverse osmosis membrane device 14 which is a desalination treatment device having a membrane, and a non-permeate water branch line L 12 branched from a non-permeate water line L 11 which discharges non-permeate water 15 in which dissolved components including ions and organic substances are concentrated.
  • a first adhering matter detection unit 24A having a first detection reverse osmosis membrane 21A for separating the detection liquid 15a branched from the non-permeate water 15 into a detection permeate 22 and a detection non-permeate 23; Either the attachment condition changing device for changing the attachment condition of the deposit on the first detection reverse osmosis membrane 21A, and the detection permeated water 22 or the detection non-permeate water 23 separated by the first detection reverse osmosis membrane 21A First test to measure either or both flow rates The first detection permeate flow meter 41A, the first detection non-permeate flow meter 41B, and the first detection separation liquid flow meter (first detection permeate flow rate).
  • the reverse osmosis membrane device 14 is subjected to a cleaning process on the reverse osmosis membrane, or the operating conditions in which the deposits of the reverse osmosis membrane device 14 are not adhered. And a control device 45 that performs any one or both of changes (for example, operating conditions such as pressure, flow rate, and concentration of the deposit prevention agent).
  • reference numeral 16 denotes a high-pressure pump that supplies the treated water 11 to the reverse osmosis membrane device 14
  • L 1 denotes a treated water introduction line
  • L 2 denotes a permeated water discharge line.
  • the reverse osmosis membrane device 14 is a device that produces the permeated water 13 from the water to be treated 11, it may be hereinafter referred to as a “permanent reverse osmosis membrane device”.
  • the reverse osmosis membrane device of this installation 14 is installed, and the determination device 40 determines that the adhesion of the deposits to the reverse osmosis membrane is predicted.
  • the control device 45 performs a cleaning process on the reverse osmosis membrane of the reverse osmosis membrane device 14 or operating conditions (for example, pressure, flow rate, and deposits) that do not attach the deposit to the reverse osmosis membrane of the reverse osmosis membrane device 14.
  • operating conditions for example, pressure, flow rate, and deposits
  • the separation liquid separated by the first detection reverse osmosis membrane 21A includes detection permeated water 22 that passes through the first detection reverse osmosis membrane 21A and detection that does not pass through the first detection reverse osmosis membrane 21A. There is non-permeated water 23.
  • the first detecting the separated liquid flow rate measuring device and provided with a first detecting permeate side flowmeter 41A for measuring the flow rate of the detection permeate 22 in detection permeate discharge line L 13, is provided with a first detecting non-permeate water side flowmeters 41B for measuring a flow rate of the detection non-permeate 23 in detecting non-permeate discharge line L 14.
  • the flow rate may be directly measured by a flow meter, or may be indirectly measured by, for example, weight measurement using an electronic balance.
  • a flow meter is used as the flow measuring device.
  • the flow rate of either one or both of the detection permeate 22 and the detection non-permeate 23 is measured by the first detection permeate flow meter 41A and the first detection non-permeate flow meter 41B.
  • the sum of the flow rates of the detection permeated water 22 and the detection non-permeate water 23 is the flow rate of the detection liquid 15a supplied to the first adhering matter detection unit 24A. You may make it obtain
  • the case where the flow rate of the detection permeate 22 is measured by the first detection permeate flow meter 41A will be mainly described.
  • the judgment condition for judging that the adhesion of the adhering substance to the reverse osmosis membrane of the reverse osmosis membrane device 14 of this embodiment is predicted is the supply pressure or the supply flow rate for changing the supply condition of the detection liquid 15a. Judgment is made based on the predetermined threshold and the rate of change in the permeate flow rate for detection at the predetermined threshold. As a “predetermined threshold value” for this determination, when the change in the attachment condition of the attached matter is “controlled by the supply pressure” of the detection liquid 15a, the attached matter adheres to the first detection reverse osmosis membrane 21A in advance. Then, the set “pressure value” is set as a “predetermined threshold value” (details will be described later).
  • the “flow rate value” that is set that the deposit adheres to the first detection reverse osmosis membrane 21A is the “predetermined threshold”. (Details will be described later).
  • the supply pressure is controlled by an adhesion condition changing device described later.
  • the treated water 11 is, for example, deposits of ions such as organic matter, microorganisms, mineral salts, etc., such as mine wastewater, blowdown water for power plant cooling towers, accompanying water at the time of oil / gas production, brine, and factory wastewater. Or the component which produces
  • a separation membrane for separating a dissolved component such as salt from the water 11 to be treated in addition to a reverse osmosis membrane (RO), for example, a nanofilter (NF), a forward osmosis membrane (FO: Forward) Osmosis Membrane) can be exemplified.
  • RO reverse osmosis membrane
  • NF nanofilter
  • FO forward osmosis membrane
  • the separation membrane is changed to a membrane other than the reverse osmosis membrane, the detection separation membrane is also changed to perform detection.
  • the treated water 11 is operated by operating a high pressure pump 16 provided in the treated water supply line L 1 and a regulating valve 44B for adjusting the flow rate provided in the non-permeated water discharge line L 11 from the reverse osmosis membrane device 14.
  • the pressure is increased to a predetermined pressure and introduced into the reverse osmosis membrane device 14 provided with the reverse osmosis membrane.
  • Examples of the deposits attached to the reverse osmosis membrane include inorganic deposits such as calcium carbonate, magnesium hydroxide, calcium sulfate, and silicate, organic deposits derived from natural organic matter and microorganisms, and colloidal components such as silica. Although there are dispersed components including an emulsion such as oil, the material is not limited to these as long as it causes adhesion to the film.
  • the treated water 11 is desalted by the reverse osmosis membrane of the reverse osmosis membrane device 14 to obtain the permeated water 13. Further, the non-permeated water 15 in which dissolved components including ions and organic substances are concentrated in the reverse osmosis membrane is appropriately disposed and treated as waste, or is used for recovering valuable materials in the non-permeated water. .
  • a non-permeate water branch line L 12 that branches a part from the non-permeate water line L 11 that discharges the non-permeate water 15 is provided. Then, this non-permeate branch line L 12, the first deposit detection unit having a first detecting reverse osmosis membrane 21A that separates the branched sensing solution 15a in the detection permeate 22 and detecting non-permeate 23 24A is installed.
  • An adjustment valve 44A for adjusting the flow rate is provided, and the high pressure pump 16a and the adjustment valve 44A are operated to adjust the flow rate of the permeated water 22 for detection from the first adhering matter detection unit 24A.
  • the supply pressure and the supply flow rate of the branched detection liquid 15a are set so that the desalting conditions of the first adhering matter detection unit 24A are the same as the vicinity of the outlet of the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation. It is adjusting.
  • a pressure gauge 42C is provided in the non-permeate water discharge line L 14 for discharging the non-permeate water 23 for detection, and a regulating valve 44B is provided in the non-permeate water line L 11 of the non-permeate water 15, respectively.
  • FIG. 3 is a perspective view of the first attached matter detection unit of FIG.
  • the first adhering matter detection unit 24A introduces the detection liquid 15a branched from the inlet 24b side of the detection unit main body 24a, and includes a spacer (non-permeate water side) 24c, a spacer ( The first detection reverse osmosis membrane 21A is sandwiched by the permeated water side) 24d. Then, the introduced detection liquid 15a flows along the first detection reverse osmosis membrane 21A (X direction).
  • the detection liquid 15a moves in the direction (Z direction) orthogonal to the detection liquid flow direction (X direction), passes through the first reverse osmosis membrane 21A, and is desalted and detected permeated water. 22 is obtained.
  • the permeated detection water 22 that has permeated becomes a permeate flow (X direction) along the first detection reverse osmosis membrane 21A, and is discharged from the permeate outlet 24e as the detection permeate 22.
  • the length (L) in the flow direction (X direction) of the detection liquid 15a is the length of the flow path of the first attached matter detection unit 24A, and the depth of the first attached matter detection unit 24 in FIG.
  • the length in the direction is W.
  • FIG. 4 is a partially cutaway perspective view when a spiral type reverse osmosis membrane is used for the first deposit detection part.
  • FIG. 4 it is a case where it is set as the spiral-type 1st reverse osmosis membrane 21A for a detection as a detection film
  • the first reverse osmosis membrane 21A for detection is moved in the direction (Z direction) perpendicular to the flow direction of the detection liquid 15a, passes through the membrane, and is desalted to become detection permeated water 22.
  • the permeated water 22 for detection flows toward the central water collecting pipe (Y direction).
  • the spiral reverse osmosis membrane 21 is cut open by the notch, and the internal spacer (permeate water side) 24 d is confirmed.
  • the first adhering matter detection unit 24A in order to secure a flow path that forms a uniform flow (detected liquid flow direction (X direction)) from the inlet 24b to the non-permeated water outlet 24f, for example, resin A spacer (non-permeate water side) 24c is provided. Similarly, on the permeate side, for example, a resin spacer (permeate) is used to secure a flow path that forms a uniform flow (permeate flow direction (X direction)) over the permeate outlet 24e. Water side) 24d is provided.
  • the member is not limited to the spacer as long as it can ensure a uniform flow.
  • the length (L) of the flow path of the first adhering matter detection unit 24A is 1 of the total length of the reverse osmosis membrane device 14 used in the reverse osmosis membrane device 14 in the flow direction of the supply liquid.
  • the length is about / 10 or less, more preferably 1/50 or less, and even more preferably 1/100 or less.
  • the first adhering matter detection unit 24A used in the test example was 16 mm or 1000 mm in length (L) of the flow path.
  • the elements (length, for example, 1 m) of the reverse osmosis membrane device 14 of the permanently installed reverse osmosis membrane device 14 are connected to form one vessel.
  • the membrane length in the flow direction of the supply liquid used in the reverse osmosis membrane device 14 is 16 m, and the channel length is 1000 mm.
  • the permeable membrane is used as the detection membrane
  • the flow path length of the first attached matter detection unit 24A is 1/16 (1/10 or less).
  • the flow path length of the first adhering matter detection unit 24A is 0.016 / 16 (1/100 or less).
  • the first detection reverse osmosis membrane 21A of the first adhering matter detection unit 24A is a membrane that exhibits a reverse osmosis action, and is the same type or a type similar to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • a separation membrane that exhibits desalting performance is used.
  • the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present invention is constructed by storing a plurality of reverse osmosis membrane elements each having a spiral type reverse osmosis membrane in a pressure vessel.
  • FIG. 5 is a partially cutaway schematic view of a vessel of a spiral type reverse osmosis membrane device.
  • FIG. 6 is a perspective view of the connection of two vessels of FIG.
  • FIG. 7 is a partially exploded schematic view of a spiral type reverse osmosis membrane element.
  • the spiral reverse osmosis membrane element shown in FIG. 7 is an example disclosed in Japanese Patent Application Laid-Open No. 2001-137672, and is not limited thereto.
  • the vessel 100 of the reverse osmosis membrane device is hereinafter referred to as the vessel 100
  • the spiral type reverse osmosis membrane element 101 is hereinafter referred to as the element 101.
  • the vessel 100 is configured by connecting a plurality (for example, 5 to 8) of elements 101 in series and storing them in a cylindrical container body (hereinafter referred to as “container body”) 102.
  • the treated water 11 is introduced as raw water from the raw water supply port 103 on one end side of the container body 102, and the permeated water 13 is taken out from the permeated water outlet 104 on the other end side and the non-permeated water 15 is taken out from the non-permeated water outlet 105.
  • the permeate outlet 104 on the treated water 11 introduction side is closed.
  • Each element 101 in the container main body 102 spirals a bag-like reverse osmosis membrane 12 containing a flow path material 112 around a water collecting pipe 111 by a flow path material (for example, mesh spacer) 114 as shown in FIG. And has a structure in which a brine seal 115 is provided at one end thereof.
  • Each element 101 sequentially guides water to be treated (raw water) 11 having a predetermined pressure supplied from the front brine seal 115 side between the bag-like reverse osmosis membranes 12 by a flow path material (for example, mesh spacer) 114, The permeated water 13 that has permeated through the reverse osmosis membrane 12 by the osmotic action is taken out by the water collecting pipe 111.
  • non-permeated water 15 is also taken out from the rear seal 118 side.
  • the film length in the moving direction of the water to be treated 11 is L.
  • the configuration of the element 101 shown in FIG. 7 is the same as the configuration of the spiral first attached matter detection unit 24A shown in FIG.
  • a collection of a plurality of pressure vessels (for example, 50 to 100) is used as one unit.
  • the number of units is adjusted, and desalination treatment is performed according to the supply amount of the water to be treated 11 to be produced. I am trying to manufacture.
  • the reverse osmosis membrane device In the operation of the reverse osmosis membrane device, it is assumed that there are dissolved components including predetermined ions and organic substances in the water to be treated 11 and the deposits caused by the dissolved components including ions and organic substances in the reverse osmosis membrane It is designed as an operating condition that does not adhere. However, due to fluctuations in the water quality of the treated water 11 to be supplied, the concentration of dissolved components including ions and organic substances becomes higher than the design conditions, and it may become a situation where deposits easily adhere to the reverse osmosis membrane.
  • the permeate flow rate of the permeate 13 from the reverse osmosis membrane device 14 is confirmed with a flow meter, and the reverse osmosis membrane is washed with a threshold when the flow rate of the permeate 13 is reduced to a predetermined ratio.
  • deposits have already been attached to the reverse osmosis membrane over a wide area, making it difficult to clean the reverse osmosis membrane.
  • non-permeated water 15 obtained by concentrating dissolved components including ions and organic substances from reverse osmosis membrane device 14 obtained by filtering permeated water 13 from treated water 11 through a reverse osmosis membrane.
  • the non-permeate water line L 11 to be discharged, and the non-permeate water branch line L 12 branched from the non-permeate water line L 11, and the branched detection liquid 15a are detected as permeate water 22 for detection and non-permeate water 23 for detection.
  • a first monitoring permeate flow meter 41A for measuring the flow rate of the water 22 is provided with a deposit monitoring device for a desalting apparatus.
  • the attachment condition changing device that changes the attachment condition of the deposit on the first detection reverse osmosis membrane 21A, the supersaturation of the deposit component (for example, gypsum) on the membrane surface on the first detection reverse osmosis membrane 21A is performed.
  • the degree is changed.
  • the attachment condition changing device is not particularly limited as long as it is a device that changes the conditions for attaching the attached matter to the first osmosis reverse osmosis membrane 21A.
  • an attachment condition changing device for decelerating the adherence of attachments There are devices, for example, an attachment condition changing device for decelerating the adherence of attachments. In the following, for example, an attachment condition changing device that accelerates attachment adhesion will be described as an example.
  • the desalting condition in the first attached matter detection unit 24A is further changed from the reference condition of the first permanent reverse osmosis membrane device 14, and the supplied non-permeate water 15 A part of the detection liquid 15a is adjusted by pressure adjustment or flow rate adjustment.
  • the adhesion condition changing device is a pressure adjusting device that changes the supply pressure of the branched detection liquid 15a.
  • the adhesion condition changing device detects from the first adhering matter detection unit 24A. operating the control valve 44A in which a use non permeate 23 in detecting non-permeate discharge line L 14 to discharge.
  • the supply pressure of the detection liquid 15a is changed (for example, the supply pressure of the detection liquid 15a is increased by adjusting the adjustment valve 44A) without changing the concentration of the dissolved component containing the ions in the branched detection liquid 15a.
  • the permeated water amount of the detection permeated water 22 of the first detection reverse osmosis membrane 21A it is determined whether or not the first detection reverse osmosis membrane 21A has adhered matter. Determination of the presence or absence of deposits deposition is carried out by the measurement result of the flow rate of the first detecting permeate side flowmeter 41A provided on the sensing permeate discharge line L 13 of the detection permeate 22.
  • the supply pressure of the detection liquid 15a supplied to the first detection reverse osmosis membrane 21A of the first adhering matter detection unit 24A is increased by the adjustment valve 44A, thereby attaching to the first detection reverse osmosis membrane 21A.
  • the adhering matter to be increased is accelerated and the flow rate of the detection liquid 15a is adjusted by the high-pressure pump 16a.
  • FIG. 8 shows the change in supply pressure when the length of the first detection reverse osmosis membrane 21A is 16 mm under the condition that the gypsum supersaturation degree of the supply liquid to the detection reverse osmosis membrane is constant at 4.7. It is a figure which shows the behavior of a flux.
  • the left vertical axis represents flux (m 3 / h / m 2 )
  • the right vertical axis represents supply pressure (MPa)
  • the horizontal axis represents operating time (hours).
  • gypsum was used as the deposit.
  • the evaluation value is indicated by flux (flow rate of permeate per unit membrane area) (m 3 / h / m 2 ).
  • the gypsum supersaturation degree of the detection liquid 15a and the detection non-permeated water 23 as the supply liquid was 4.7.
  • the degree of supersaturation of gypsum in the detection liquid 15a was made constant, and only the supply pressure of the detection liquid 15a was changed to check the presence or absence of gypsum deposits.
  • FIG. 9 shows the behavior of the flux due to the change in supply pressure when the length of the first detection reverse osmosis membrane is 1000 mm under the condition that the gypsum supersaturation degree of the supply liquid to the first detection reverse osmosis membrane is constant.
  • FIG. 9 shows the behavior of the flux due to the change in supply pressure when the length of the first detection reverse osmosis membrane is 1000 mm under the condition that the gypsum supersaturation degree of the supply liquid to the first detection reverse osmosis membrane is constant.
  • FIG. 9 shows the behavior of the flux due to the change in supply pressure when the length of the first detection reverse osmosis membrane is 1000 mm under the condition that the gypsum supersaturation degree of the supply liquid to the first detection reverse osmosis membrane is constant.
  • FIG. 9 shows the behavior of the flux due to the change in supply pressure when the length of the first detection reverse osmosis membrane is 1000 mm under the condition that the gypsum supersatur
  • FIG. 10 is a diagram showing the relationship when only the supply pressure is changed for the detection liquids having different degrees of gypsum supersaturation.
  • the detection liquid 15 a has a gypsum supersaturation degree of 4.7.
  • the gypsum supersaturation degree is 6.
  • the gypsum supersaturation degree of the detection liquid 15a is 5.5 or 6.0
  • the gypsum supersaturation degree of the detection non-permeate water 23 is 5.5 or 6.0 in each case. Met.
  • the supersaturation degree is a ratio of gypsum concentration when gypsum is taken as an example, and the state in which gypsum is saturated and dissolved under a certain condition (saturation concentration of gypsum) is “1”.
  • the degree of supersaturation “5” indicates that the concentration is five times higher than the gypsum saturation concentration.
  • a confirmation test of whether or not the permeate flow rate can be recovered by washing the first detection reverse osmosis membrane 21A was performed. Specifically, gypsum was forcibly deposited on the first reverse osmosis membrane for detection 21A, and it was confirmed whether the flow returned to the permeated water flow before deposit deposition after washing. As the gypsum deposition conditions for deposits, the permeated water flow rate was reduced by 10% using the first permeate flow meter 41A for detection. Table 1 shows the operating conditions. Note that a NaCl evaluation solution (NaCl: 2000 mg / L) was used as the supply solution.
  • the driving operation was performed as follows. 1) First, the permeated water amount was 24 ml / h when the pressure condition was 1.18 MPa and the NaCl evaluation liquid was used as the supply liquid. 2) Thereafter, the supply pressure condition is increased to 2.0 MPa, the supply solution is changed from the NaCl evaluation solution to the gypsum supersaturation solution, the scale is forcibly deposited on the membrane, and the permeate flow rate is reduced by 10% in 10 minutes. It was confirmed. 3) Thereafter, the supply liquid was changed from gypsum supersaturated liquid to ion exchange water for washing. 4) After washing, the feed solution was changed from ion-exchanged water to NaCl evaluation solution and operated under the operation conditions of 1) (pressure condition: 1.18 MPa). As a result, the permeated water amount was 24 ml / h.
  • the gypsum deposit can be washed by water washing, and the permeate flow rate before deposit deposition is restored by washing. It was confirmed.
  • FIG. 11 is a diagram showing the behavior of the flux due to the change in the supply flow rate when the gypsum supersaturation degree of the supply liquid to the detection reverse osmosis membrane is constant and the membrane length of the detection reverse osmosis membrane is 16 mm. is there.
  • the left vertical axis represents each flux (m 3 / h / m 2 )
  • the right vertical axis represents the supply liquid flow rate (L / h) of the detection liquid
  • the horizontal axis represents the operation time (hours).
  • the reverse osmosis membrane device 14 of this installation is operating as designed, and when there is no change in the water quality of the water to be treated 11, deposits on the reverse osmosis membrane of the reverse osmosis membrane device 14 for a predetermined time. There is no adhesion. However, when the water quality of the water to be treated 11 changes, deposits may adhere to the reverse osmosis membrane of the reverse osmosis membrane device 14. In this embodiment, the adhesion of deposits to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation due to such water quality fluctuations is predicted.
  • the tolerance until the deposit adheres to the reverse osmosis membrane of the reverse osmosis membrane device 14 is determined from the detection result in the first deposit detection unit 24A, and the optimum reverse osmosis membrane is determined based on this tolerance.
  • the operation of the device 14 is controlled to prevent the deposits from adhering to the reverse osmosis membrane.
  • the first adhering matter detection unit 24A when the non-permeated water 15 discharged from the reverse osmosis membrane device 14 is branched and the branched detection liquid 15a is supplied, the pressure of the supply liquid is increased to increase the first adhering water detection unit 24A. It is supposed that the adhesion of the deposit on the reverse osmosis membrane 21A for 1 detection is accelerated.
  • a deposit adhesion margin is calculated from the pressure increase rate of the detection liquid 15a until the deposit adheres to the first detection reverse osmosis membrane 21A, and the reverse osmosis membrane device 14 according to the present invention is calculated according to this margin. In order to prevent the deposits from adhering to the reverse osmosis membrane.
  • the deposit adhesion margin is obtained from the pressure increase rate of the detection liquid 15a until the deposit adheres to the first detection reverse osmosis membrane 21A.
  • the adhesion of the adhering matter to the first detection reverse osmosis membrane 21A is performed by measuring the flow rate of the detection permeate 22 from the first adhering matter detection unit 24A using the first detection permeate-side flow meter 41A, and reducing the flow rate. By this, the adhesion of the deposit is indirectly detected.
  • the flow rate of the detection permeate 22 from the first adhering matter detector 24A is measured by the first permeate flow meter 41A for detection.
  • the supply pressure of the detection liquid 15a is increased stepwise by the adjustment valve 44A until a decrease in the flow rate of the detection permeated water 22 is measured.
  • the deposit adhesion tolerance is obtained from the difference between the supply pressure of the detection liquid 15a when the decrease in the flow rate of the detection permeated water 22 is measured and the supply pressure in the step 1). And based on the result of this deposit
  • FIGS. 12-1 to 17 are diagrams showing an example of controlling the supply pressure of the detection liquid in this embodiment.
  • the evaluation value (vertical axis) is described as the detection permeate flow rate.
  • the evaluation value is a value that can be arithmetically calculated based on the permeate flow rate (for example, flux, membrane). It is also possible to use a coefficient (A value) representing the permeation performance of the solution at (1), a standardized permeate flow rate, etc.
  • FIGS. 12-1 to 14 show a case where the supply pressure of the detection liquid 15a is changed stepwise by using one first adhering matter detection unit 24A and the flow rate of the detection permeated water 22 is confirmed. .
  • FIG. 18 is a diagram showing an example in which three first adhering matter detectors 24A-1, 24A-2, and 24A-3 are provided on three non-permeate water branch lines L 12-1 to L 12-3 . .
  • the non-permeate water branch line L 12 is further branched into three to form non-permeate water branch lines L 12-1 to L 12-3, and the first adhering substance is added to each line.
  • the detection units 24A-1 to 24A-3 are provided, and the flow rate of the detection permeate 22 is measured by the first detection permeate flow meters 41A-1 to 41A-3, respectively.
  • the non-permeate water branch line L 12 is further branched into three.
  • three non-permeate water branch lines branching directly from the non-permeate water line L 11 are provided, and each line is provided.
  • the first attached matter detection units 24A-1 to 24A-3 may be provided.
  • the supply pressure of the detection liquid 15a is gradually changed from the conditions (1) to (3), and the change in the permeate flow rate of the detection permeate 22 is represented by the first detection permeate flow rate.
  • the case confirmed by a total of 41A is shown.
  • the supply pressure condition of the liquid 15a is the condition (3).
  • this supply pressure condition (condition (3)) is set as a predetermined threshold value.
  • the determination of the adhering matter is determined that the adhering matter has adhered to the first detection reverse osmosis membrane 21 ⁇ / b> A when the permeated water flow rate changes by a predetermined rate within a predetermined time at the predetermined threshold. Therefore, when the change in the permeate flow rate is less than a predetermined ratio in a predetermined time, it is determined that no deposit is attached to the first detection reverse osmosis membrane 21A, and the change in the permeate flow rate is predetermined in the predetermined time. If the ratio is greater than or equal to the ratio, it is determined that the deposit has adhered to the first detection reverse osmosis membrane 21A.
  • the conditions (predetermined time, predetermined change rate of the permeated water flow rate) for determining that the attached matter has been attached are appropriately changed depending on the quality of the water to be treated and the temperature.
  • the condition of the supply pressure (1) of the detection liquid 15a is, for example, 1.0 MPa
  • the condition of the supply pressure (2) of the detection liquid 15a is, for example, 1.5 MPa
  • the supply pressure (3) of the detection liquid 15a is, for example, 2.0 MPa.
  • the predetermined threshold value is set to 2.0 MPa
  • the determination of the adhesion of the adhering matter is set to 10 minutes
  • the predetermined change rate of the permeate flow rate is set to 10%.
  • control by the control device 45 executes, for example, any one of the following control (1) to control (3).
  • Control (1) The operation of maintaining the current state is performed without changing the operation condition of the reverse osmosis membrane device 14 of the present installation.
  • Control (2) Increase the supply pressure of the operating conditions for the reverse osmosis membrane device 14 of this installation.
  • Control (3) The addition amount of the deposit prevention agent 47 to the to-be-processed water 11 from the deposit prevention agent supply part 46 shown in FIG. 1 is reduced. Note that any of these determinations is automatically determined according to the operator or a predetermined criterion.
  • control (1) since the operation is as it is, there is no change in the production amount of the permeated water 13, but the supply pressure of the operating condition of the reverse osmosis membrane device 14 in the control (2) is changed.
  • the production amount of the permeated water 13 can be increased.
  • the condition of the supply pressure (1) of the detection liquid 15a is, for example, 1.0 MPa
  • the condition of the supply pressure (2) of the detection liquid 15a is, for example, 1.5 MPa
  • the supply pressure (3) of the detection liquid 15a is, for example, 2.0 MPa.
  • Control (4) The addition amount of the deposit prevention agent 47 to the to-be-processed water 11 from the deposit prevention agent supply part 46 shown in FIG. 1 is increased.
  • Control (5) The reverse osmosis membrane of the reverse osmosis membrane device 14 is washed.
  • Control (6) The supply pressure of the treated water 11 of the reverse osmosis membrane device 14 is lowered.
  • Control (7) The supply amount of the treated water 11 is increased. Note that any of these determinations is automatically determined according to the operator or a predetermined criterion.
  • cleaning method of the control (5) cleaning for example, flushing cleaning, suck back cleaning and the like can be used.
  • the lifetime of the reverse osmosis membrane of the reverse osmosis membrane apparatus 14 of this installation can be achieved.
  • part of the permeated water 13 can be used.
  • FIG. 25 is a schematic diagram illustrating an example of operation condition change of the desalination apparatus according to the first embodiment.
  • the cleaning liquid 51 is supplied from the cleaning liquid supply unit 52 to perform the cleaning.
  • a part 13 a of the permeated water 13 can be used as the cleaning liquid 51.
  • a part 13a of the permeate discharge line L 2 permeate supply line branching from L 3 permeate 13 which is produced by feeding the cleaning liquid supply section 52 may be cleaning by supplying a cleaning liquid 51.
  • medical agent can be avoided.
  • an acid or alkali pH adjuster 58 supplied to the pH adjuster 57 on the downstream side of the coagulation filtration unit 54 is used as an acid. Or it supplies from the alkali supply part 59.
  • FIG. By adjusting the pH to the alkali side, for example, precipitation of scale components such as silica and boron is prevented. Moreover, precipitation of scale components, such as calcium carbonate, is prevented by adjusting pH to the acidic side. Further, when adjusting the pH of the water to be treated 11 on the upstream side of the coagulation filtration unit 54, an acid or alkali pH adjusting agent 58 is supplied to the pH adjusting unit 65.
  • the scale component in the water to be treated 11 is precipitated as, for example, magnesium hydroxide, calcium carbonate, etc., and solid-liquid is separated by a solid-liquid separation unit (not shown). Separation prevents scale components from precipitating.
  • the condition of the supply pressure (1) of the detection liquid 15a is, for example, 1.0 MPa
  • the condition of the supply pressure (2) of the detection liquid 15a is, for example, 1.5 MPa
  • the supply pressure (3) of the detection liquid 15a is, for example, 2.0 MPa.
  • the concentration of the scale component in the water to be treated 11 is lower than the design condition, and it can be determined that the deposit is less likely to adhere than in the case of FIG.
  • control by the control device 45 can be changed to an operation condition in which the adhesion tolerance is lowered, and the following control (2), control (3 )
  • Control (2) For example, the supply pressure of the operating conditions for the reverse osmosis membrane device 14 is increased to increase the production amount of the permeated water 13.
  • Control (3) The addition amount of the deposit prevention agent 47 to the to-be-processed water 11 from the deposit prevention agent supply part 46 shown in FIG. 1 is reduced. Note that any of these determinations is automatically determined according to the operator or a predetermined criterion.
  • control (2) when raising the operation load by raising the supply pressure of the operation conditions of the reverse osmosis membrane apparatus 14 of this installation, the production amount of the permeated water 13 can be increased. Further, by reducing the addition amount of the deposit prevention agent 47 in the control (3), it is possible to reduce the drug cost. This can prevent excessive addition of the deposit prevention agent 47 to the reverse osmosis membrane device 14 of the present installation.
  • the adhering condition of the adhering matter to the first detection reverse osmosis membrane 21A is adhered.
  • whether or not the flow rate of the detection permeated water 22 has changed from a predetermined condition (a predetermined rate change of the flow rate at a predetermined time) with a predetermined threshold value is determined.
  • the flow rate is measured with a total of 41A.
  • the tolerance of the operating conditions of the reverse osmosis membrane device 14 is determined. And based on the result of tolerance judgment, the washing
  • the detection permeated water 22 is measured as the flow rate measurement of the separation liquid of the first detection reverse osmosis membrane 21A, it is determined whether or not the first detection detection liquid is lower than a predetermined condition. The presence or absence of adhesion to the reverse osmosis membrane 21A will be determined.
  • control (1) to control (7) of the operating conditions for the reverse osmosis membrane device 14 is performed, and the reverse osmosis membrane device 14 of the permanent reverse osmosis membrane device 14 is connected to the reverse osmosis membrane. Adhesion of deposits can be suppressed in advance.
  • FIGS. 15 to 17 use three first adhering matter detectors 24A-1 to 24A-3 as shown in FIG. 18, and set the supply pressures of the different detection liquids 15a to the permeate flow rate. Although it is a case where a change is confirmed, since it is judged and controlled similarly to the case where the pressure is changed stepwise using one first adhering matter detection unit 24A and the permeate flow rate is confirmed, the description thereof will be given. Is omitted. 15 corresponds to FIG. 12-1, the setting of FIG. 16 corresponds to FIG. 13, and the setting of FIG. 17 corresponds to FIG.
  • the first adhering matter detection unit 24A-1 has a supply pressure (1) of the detection liquid 15a
  • the second adhering matter detection unit 24A-2 has a supply pressure (2) of the detection liquid 15a
  • the adhering matter detection unit 24A-3 is the supply pressure (3) of the detection liquid 15a.
  • the flow rate of the detection permeate 22 from the first adhering matter detector 24A is measured by the first permeate flow meter 41A for detection.
  • the supply flow rate of the detection liquid 15a is lowered stepwise by the high pressure pump 16a until a decrease in the flow rate of the detection permeate 22 is measured.
  • the adhesion deposit tolerance is obtained from the difference between the supply flow rate of the detection liquid 15a when the decrease in the flow rate of the detection permeate 22 is measured and the supply flow rate in the step 1). And based on this deposit
  • FIG. 19 to 24 are diagrams illustrating an example of controlling the supply flow rate of the detection liquid 15a in the present embodiment.
  • FIG. 19 to FIG. 21 show a case where the supply flow rate of the detection liquid 15a is changed stepwise using one first adhering matter detection unit 24A to check the change in the permeate flow rate for detection.
  • FIG. 22 to FIG. 24 show the case where each of the three first adhering matter detection units 24A-1 to 24A-3 is set to a different supply flow rate of the detection liquid 15a and the permeate flow rate is confirmed. .
  • the supply flow rate of the detection liquid 15a is gradually changed from the condition (1) to (3), and the change in the permeate flow rate is confirmed by the first permeate flow meter 41A for detection.
  • the flow rate condition of the detection liquid 15a to which deposits adhere is the condition (3) under the normal operation conditions.
  • this supply flow rate condition (condition (3)) is set as a predetermined threshold value.
  • the condition of the supply flow rate (1) of the detection liquid 15a is, for example, 13.5 L / h
  • the condition of the supply flow rate (2) of the detection liquid 15a is, for example, 6.8 L / h
  • the supply of the detection liquid 15a is, for example, 3.7 L / h.
  • Control (1) The operation of maintaining the current state is performed without changing the operation condition of the reverse osmosis membrane device 14 of the present installation.
  • Control (2) Increase the supply pressure of the operating conditions for the reverse osmosis membrane device 14 of this installation.
  • Control (3) The addition amount of the deposit prevention agent 47 to the to-be-processed water 11 from the deposit prevention agent supply part 46 shown in FIG. 1 is reduced. Note that any of these determinations is automatically determined according to the operator or a predetermined criterion.
  • control (1) since the operation is as it is, there is no change in the production amount of the permeated water 13, but the supply pressure of the operating condition of the reverse osmosis membrane device 14 in the control (2) is changed.
  • the production amount of the permeated water 13 can be increased.
  • the condition of the supply flow rate (1) of the detection liquid 15a is, for example, 13.5 L / h
  • the condition of the supply flow rate (2) of the detection liquid 15a is, for example, 6.8 L / h
  • the supply of the detection liquid 15a The condition of the flow rate (3) is, for example, 3.7 L / h. 20 is considered to be caused by water quality fluctuations of the treated water 11 supplied to the reverse osmosis membrane device 14. As a result, it is determined that the adhesion margin is lower than that in the case of FIG.
  • Control (4) The addition amount of the deposit prevention agent 47 to the to-be-processed water 11 from the deposit prevention agent supply part 46 shown in FIG. 1 is increased.
  • Control (5) The reverse osmosis membrane of the reverse osmosis membrane device 14 is washed.
  • Control (6) The supply pressure of the treated water 11 of the reverse osmosis membrane device 14 is lowered.
  • Control (7) The supply amount of the treated water 11 is increased. Note that any of these determinations is automatically determined according to the operator or a predetermined criterion.
  • cleaning method of the control (5) cleaning for example, flushing cleaning, suck back cleaning and the like can be used.
  • the lifetime of the reverse osmosis membrane of the reverse osmosis membrane apparatus 14 of this installation can be achieved.
  • part of the permeated water 13 can be used.
  • the condition of the supply flow rate (1) of the detection liquid 15a is, for example, 13.5 L / h
  • the condition of the supply flow rate (2) of the detection liquid 15a is, for example, 6.8 L / h
  • the supply of the detection liquid 15a is, for example, 3.7 L / h.
  • control by the control device 45 can be changed to an operation condition in which the adhesion tolerance is lowered, and the following control (2), control (3 )
  • Control (2) Increase the supply pressure of the operating conditions for the reverse osmosis membrane device 14.
  • Control (3) The addition amount of the deposit prevention agent 47 to the to-be-processed water 11 from the deposit prevention agent supply part 46 shown in FIG. 1 is reduced. Note that any of these determinations is automatically determined according to the operator or a predetermined criterion.
  • control (2) when the operating pressure is increased by increasing the supply pressure under the operating conditions of the reverse osmosis membrane device 14, the production amount of the permeated water 13 can be increased.
  • FIGS. 22 to 24 show that the three first adhering matter detection units 24A-1 to 24A-3 as shown in FIG. 18 are set to different supply flow rates of the detection liquid 15a, and the permeate flow rate is set. Although it is a case where a change is confirmed, since the flow rate is changed stepwise using one first adhering matter detection unit 24A, the determination and control are performed in the same manner as in the case of confirming the permeate flow rate. Is omitted. 22 corresponds to FIG. 19, the setting of FIG. 23 corresponds to FIG. 20, and the setting of FIG. 24 corresponds to FIG.
  • the first adhering matter detection unit 24A-1 has a supply flow rate (1) of the detection liquid 15a
  • the second adhering matter detection unit 24A-2 has a supply flow rate (2) of the detection liquid 15a
  • the adhering matter detection unit 24A-3 has a supply flow rate (3) of the detection liquid 15a.
  • the adhesion of the deposits to the first detection reverse osmosis membrane 21A is accelerated by the deposition condition changing device, and the deposit of the deposits is predicted.
  • the first adhering matter detection unit 24A adjusts the supply pressure and the supply flow rate so that the desalting condition of the first adhering matter detection unit 24A is the same as the vicinity of the reverse osmosis membrane outlet of the reverse osmosis membrane device 14 installed.
  • the separation liquid from the part 24A is measured by a separation liquid flow meter (first detection permeated water side flow meter 41A, first detection non-permeate water flow meter 41B).
  • the determination device 40 may determine that the adhering matter adheres to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • the desalting condition of the first deposit detection unit 24A is in the vicinity of the outlet of the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present invention.
  • the supply pressure and the supply flow rate of the detection liquid 15a so as to be the same as the above, in the first detection reverse osmosis membrane 21A, the vicinity of the outlet end of the reverse osmosis membrane in the reverse osmosis membrane device 14 of this installation The same desalting conditions are reproduced.
  • the state of detecting the adhering state of the adhering substance using the first detecting reverse osmosis membrane 21A of the first adhering substance detecting unit 24A is the last of the reverse osmosis membrane device 14 (spiral type reverse osmosis).
  • the state of the last element (L) of the eighth element 101-8 of the elements 101-1 to 101-8 is simulated, and the first detection reverse The state of adhesion of the deposit component (for example, gypsum) to the osmotic membrane 21A will be simulated.
  • the membrane length L of the first detection reverse osmosis membrane 21A of the first adhering matter detector 24A is set to 16 mm, for example, the state of 16 mm at the final tail portion can be simulated.
  • the flow rate of the detection permeate 22 is measured by the first detection permeate flow meter 41A.
  • the flow rate of the detection non-permeate 23 is set to the first detection non-permeate side.
  • the flow rate of the non-permeated water for detection 23 increases if there is an adhering substance. Therefore, the adhering condition of the adhering substance to the first detection reverse osmosis membrane 21A is changed and detected.
  • the reverse osmosis membrane It is determined that “attachment is predicted” of the attached matter. Thereby, it can be predicted that the adhesion to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the permanent installation due to the water quality fluctuation of the water to be treated 11 occurs.
  • the permeate flow rate (or flux) decreases.
  • the detection permeate flow rate (or flux) is equal to or lower than the threshold value, it is determined that the adhering matter has adhered to the detection reverse osmosis membrane.
  • the permeated water flow rate (or flux) is constant, if deposits adhere to the reverse osmosis membrane, it is necessary to increase the supply pressure of the supply liquid (increase the flux).
  • the supply pressure of the supply liquid is controlled so that the flow rate of the detection separation liquid (detection permeate or detection non-permeate) is constant, and the supply pressure exceeds the threshold, It can also be judged that there was an adherent to the osmotic membrane.
  • FIG. 26 is a schematic view of a desalting apparatus according to the second embodiment.
  • the desalting apparatus 10B analyzes the adhering component adhering to the first detection reverse osmosis membrane 21A of the first adhering matter detection unit 24A, and according to the adhering matter. Cleaning is performed.
  • the first detection reverse osmosis membrane 21A is attached to the first adhering matter detection unit 24A in advance by a pressure change (or flow rate change). A kimono is attached, and the attached deposit is analyzed separately.
  • an optimal one of the three types of cleaning liquids 51 (first to third cleaning liquids 51A to 51C) selected in advance is selected and used as a cleaning liquid for the reverse osmosis membrane device 14 of this installation.
  • the first to third cleaning liquid supply parts 52 (52A to 52C) are used.
  • Various cleaning liquids 51 are respectively supplied to the first detection reverse osmosis membrane 21A to which the adhering matter has adhered, and the detection permeate flow rate of the first detection reverse osmosis membrane 21A is measured by the first detection permeate-side flow meter 41A. By measuring, the cleaning effect of the deposit on the first detection reverse osmosis membrane 21A is confirmed.
  • the actual attached matter before the attached matter adheres to the reverse osmosis membrane of the reverse osmosis membrane device 14 according to the first detection reverse osmosis membrane 21A. Therefore, it is possible to evaluate the cleaning performance with various cleaning liquids in advance. By reflecting the result of this evaluation on the reverse osmosis membrane of the reverse osmosis membrane device 14 according to the present invention, it is possible to perform appropriate cleaning.
  • the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present invention can be effectively cleaned, and the cleaning time can be shortened and the amount of the cleaning liquid 51 used can be reduced.
  • calcium carbonate, magnesium hydroxide, iron hydroxide and the like can be cleaned by using an acidic aqueous solution using hydrochloric acid or the like as a cleaning solution.
  • Silica, organic substances, etc. can be cleaned by using an alkaline cleaning liquid using sodium hydroxide or the like.
  • FIG. 27 is a schematic diagram of a desalting apparatus according to the third embodiment.
  • symbol is attached
  • the desalting apparatus 10A of Example 1 the non-permeated water 15 from the reverse osmosis membrane apparatus 14 was used, and the adhesion of the deposit due to the scale component in the non-permeated water 15 was predicted.
  • the introduction (supply) side of the treated water 11 to be supplied to the reverse osmosis membrane device 14 biofouling caused by deposits or microorganisms due to organic components contained in the treated water 11.
  • the initial attachment stage of the ring is predicted.
  • the description is abbreviate
  • the desalination treatment apparatus 10 ⁇ / b> C concentrates the dissolved components including ions and organic substances from the water to be treated 11 to obtain the permeated water 13.
  • the treated water branch line L 21 branched from the treated water introduction line L 1 for supplying the treated water 11 is a part of the branched treated water 11 as a detection liquid 11a, and the detection liquid 11a is used as the detection liquid 11a.
  • a second adhering matter detection unit 24B having a second detection reverse osmosis membrane 21B that separates into detection permeate water 22 and detection non-permeate water 23, and adhesion of adhering matter to the second detection reverse osmosis membrane 21B
  • Adhesion condition changing device for changing conditions and second detection separation liquid flow measurement for measuring the flow rate of the separation liquid (detection permeate 22 and detection non-permeate 23) separated by the second detection reverse osmosis membrane 21B.
  • a reverse osmosis membrane Either the execution of the cleaning process on the reverse osmosis membrane of the device 14 or the change of operating conditions (for example, operating conditions such as pressure, flow rate, concentration of the anti-fouling agent, etc.) for preventing the deposits of the reverse osmosis membrane device 14 from adhering. Or the control apparatus 45 which performs both.
  • a second permeate-side flow meter 41C for measuring the flow rate of the permeate for detection 22 is provided in the permeate discharge line L 22 for detection, and the flow rate of the non-permeate for detection 23 is measured. It is provided with a second detecting non-permeate water side flowmeters 41D in detecting non-permeate discharge line L 23.
  • the reverse osmosis membrane device of the present installation is obtained as a result of measurement by the second detection separation liquid flow rate measuring device (second detection permeate flow meter 41C, second detection non-permeate flow meter 41D).
  • the determination device 40 determines that the adhesion of the deposits to the reverse osmosis membrane is predicted.
  • the control device 45 performs the cleaning process on the reverse osmosis membrane device 14 by the control device 45, or the operating conditions (for example, pressure, flow rate, concentration of the deposit inhibitor) to prevent the deposits of the reverse osmosis membrane device 14 from attaching.
  • the determination device 40 may be installed as necessary.
  • the second adhering matter detection unit 24B having the second reverse osmosis membrane 21B for detection is provided in the to-be-treated water branch line L 21 branched from the to-be-treated water introduction line L 1.
  • the judgment condition for judging that the adhesion of the adhering substance to the reverse osmosis membrane of the present reverse osmosis membrane device 14 in this embodiment is predicted is the same as in the first embodiment, and the supply condition of the detection liquid 11a is changed. Judgment is made based on the predetermined threshold value of the supply pressure or the supply flow rate and the rate of change in the permeate flow rate for detection at the predetermined threshold value.
  • the predetermined threshold value for this determination, when the change in the attachment condition of the attached matter is “controlled by the supply pressure” of the detection liquid 11a, the attached matter is attached to the second reverse osmosis membrane 21B in advance. Then, the set “pressure value” is set as the “predetermined threshold value”.
  • the “flow rate value” that is set to deposit the deposit on the second detection reverse osmosis membrane 21B is the “predetermined threshold”. It is said.
  • the supply pressure is changed by an adhesion condition changing device.
  • the second detection reverse osmosis membrane 21B may be the same material as the first detection reverse osmosis membrane 21A of the first embodiment, or may be a different material.
  • the permeate flow rate of the permeate detection water 22 is measured, and a decrease in the permeate flow rate is detected by the second permeate flow meter 41C for detection. Accordingly, it is possible to predict the initial stage of biofouling caused by adhesion of organic components and microorganisms on the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • the cleaning process of the reverse osmosis membrane device 14 to the reverse osmosis membrane or the desalination treatment device By performing either one or both of the change of the operating conditions that do not allow the adhered matter to adhere, it is possible to prevent the organic component adhesion of the reverse osmosis membrane device 14 and biofouling caused by microorganisms.
  • the reverse osmosis membrane device 14 is expected to adhere to the reverse osmosis membrane, and the reverse osmosis membrane device 14 performs a cleaning process on the reverse osmosis membrane or does not adhere the deposits of the desalination treatment device. By performing one or both of the change of conditions, it is possible to prevent organic fouling due to organic components of the reverse osmosis membrane device 14 and biofouling caused by microorganisms.
  • deposits due to organic components and biofouling derived from microorganisms can be cleaned by using, for example, a cleaning solution obtained by adding a surfactant to an aqueous sodium hydroxide solution.
  • the operating conditions may be changed to a condition in which deposits do not adhere to the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation.
  • these operations may be performed simultaneously with the cleaning, or may be sequentially changed.
  • An operation is performed to reduce the addition amount of a bactericide (chlorine bactericide (for example, chloramine, etc.) and an agent having oxidation performance such as hydrogen peroxide).
  • An operation for increasing the amount of the organic flocculant added is performed.
  • Change the flow path to pass the organic matter adsorption tower sand filtration, activated carbon adsorption tower, pressurized flotation device (DAF), sterilization filter, etc.).
  • An operation for raising the pH of the water to be treated 11 supplied to the reverse osmosis membrane device 14 is performed.
  • An operation for adding a cleaning solution for organic substances is performed.
  • a stable desalting treatment can be carried out by changing the operating conditions to prevent such deposits from adhering.
  • FIG. 28 is a schematic diagram illustrating an example of a change in operating conditions of the desalting apparatus according to the third embodiment.
  • the determination device At 40 it is determined that there is adhesion to the film. As a result of this determination, when cleaning is performed, cleaning is performed by supplying the organic cleaning liquid 51D from the organic cleaning liquid supply unit 52D.
  • the organic substance coagulant 53 is supplied from the organic substance coagulant supply part 55 to the coagulation filtration part 54.
  • the organic matter is removed by supplying the organic matter flocculant 53.
  • the sterilizing agent 56 is supplied from the sterilizing agent supply unit 57 on the downstream side of the coagulation filtration unit 54.
  • the sterilizing agent 56 By reducing the addition amount of the bactericide 56, organic substances derived from microorganisms are reduced.
  • an acid or alkali pH adjuster 58 supplied to the pH adjuster 57 on the downstream side of the coagulation filtration unit 54 is used as an acid.
  • the microorganisms are killed by supplying from the alkali supply unit 59 and adjusting the pH. Further, by increasing the pH, dissolution / adhesion of organic substances is suppressed.
  • the switching units 61 and 62 that branch the flow path from the treated water introduction line L 1 are operated to bypass the bypass passage.
  • the treated water 11 is passed through the organic matter adsorption tower 63 interposed in L 31 so that the organic matter in the treated water 11 is removed by adsorption.
  • a cartridge filter 64 is installed on the upstream side of the reverse osmosis membrane device 14 to further filter impurities in the water 11 to be treated. By changing the above operating conditions, microorganism-derived biofouling can be prevented.
  • reference numeral 65 denotes a pH adjuster, which adjusts the pH of the water 11 to be treated, which is raw water, with a pH adjuster (acid or alkali) 58.
  • FIG. 29 is a schematic diagram of a desalting apparatus according to the fourth embodiment.
  • symbol is attached
  • the desalting apparatus 10D of this embodiment uses non-permeated water 15 from the reverse osmosis membrane apparatus 14 of the desalting apparatus 10A of Example 1, and this non-permeating apparatus.
  • Prediction of deposits due to scale components in the water 15 and the treated water 11 before being supplied to the reverse osmosis membrane device 14 of the desalination treatment apparatus 10C of the third embodiment, and the organic matter in the treated water 11 It prevents biofouling caused by adhering substances or microorganisms due to dissolved components.
  • the first adhering matter detection unit 24A of the present embodiment is used to measure the permeate flow rate of the detection permeate 22 and the decrease in the permeate flow rate is measured by the first permeate flow meter 41A for detection.
  • the adhesion of the deposit on the outlet side of the reverse osmosis membrane such as inorganic scale components in the reverse osmosis membrane of the reverse osmosis membrane device 14 of the present installation is predicted, and the second deposit detection unit 24B is used.
  • the reverse osmosis membrane of the reverse osmosis membrane device 14 of this installation is used.
  • the adhesion of the deposit on the inlet side of the reverse osmosis membrane such as the deposit due to the organic component or the biofouling caused by the microorganism is predicted. 29 shows an example of addition of the flocculant 53 and the bactericidal agent 56 in the operation control shown in FIG. 28, but other operation control as shown in FIG. 28 is performed. Also good.
  • FIG. 30 is a schematic diagram of a desalting apparatus according to the fifth embodiment.
  • the desalting apparatus 10E of this embodiment is an evaporator that further concentrates the non-permeated water 15 from the reverse osmosis membrane apparatus 14 of the desalting apparatus 10A of Embodiment 1. have established 71 non-transparent water line L 11.
  • the evaporator 71 can remove the water in the non-permeated water 15 and can also recover the solid contained in the non-treated water 15.
  • limit concentration of the reverse osmosis membrane of the reverse osmosis membrane device 14 can be performed. High volume reduction of the non-permeate water 15 can be achieved.
  • the deposit adhesion margin is obtained, and the operation control of the reverse osmosis membrane device 14 is performed based on the deposit adhesion margin, and the operation condition of the marginal margin at which the deposit does not adhere is determined.
  • the processing efficiency of the reverse osmosis membrane device 14 of the present installation is improved and the processing cost is reduced, and the volume of the non-permeated water 15 is reduced, so that the processing cost related to the evaporator is reduced. I try to figure it out.
  • the evaporator 71 for example, an evaporator for evaporating water, a distillation apparatus, a crystallization apparatus, a non-drainage apparatus, and the like can be exemplified.

Abstract

 被処理水11から分離膜により溶解成分や分散成分を濃縮して透過水を得る分離膜装置から溶解成分や分散成分を濃縮した非透過水15を排出する非透過水ラインL11と、非透過水ラインL11から分岐した非透過水分岐ラインL12に設けられ、分岐した非透過水の一部を検知液15aとし、該検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用分離膜21Aを有する第1付着物検知部24Aと、第1検知用分離膜21Aへの付着物の付着条件を変更させる付着条件変更装置と、第1検知用分離膜21Aで分離した検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、を備える。

Description

水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法
 本発明は、水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法に関するものである。
 例えば鉱山廃水にはパイライト(FeS2)が含まれており、このパイライトが酸化されてSO4 2-を生成する。鉱山廃水を中和するために安価なCa(OH)2が用いられる。このため、鉱山廃水にはCa2+及びSO4 2-が豊富に含まれている。
 また、かん水、下水、工場廃水にもCa2+及びSO4 2-が豊富に含まれていることが知られている。また、冷却塔においては、ボイラ等から排出された高温の排ガスと冷却水との間で熱交換が行われる。この熱交換により冷却水の一部が蒸気となるため、冷却水中のイオンが濃縮される。従って、冷却塔から排出された冷却水(ブローダウン水)は、Ca2+及びSO4 2-等のイオン濃度が高い状態となっている。
 これらのイオンを多量に含む水は、脱塩処理が施される。脱塩処理を実施する濃縮装置としては、例えば逆浸透膜装置、ナノろ過膜装置、イオン交換膜装置等が知られている。
 しかし、これらの装置を用いて脱塩処理する間において、高濃度の陽イオン(例えばカルシウムイオン(Ca2+))と陰イオン(例えば硫酸イオン(SO4 2-))が、その淡水を得る際に、これらのイオンが膜表面で濃縮すると、難溶性鉱物塩である硫酸カルシウム(石膏(CaSO4))の溶解限度を超える場合があり、膜表面に付着物として析出し、淡水の透過流束(フラックス)が低下する、という問題がある。
 このため、従来においては、逆浸透膜を監視する方法として、例えば逆浸透膜装置の逆浸透膜を監視するセルを用いて、目視で判断することで、鉱物塩の結晶生成を検出することの提案がある(特許文献1)。
 また、淡水化装置からの濃縮水の少なくとも一部を、監視用分離膜に透過させ、この監視用分離膜の前後に設けた圧力計によって、濃縮水に含まれる付着物が監視用分離膜の膜面に析出するのを監視することの提案がある(特許文献2)。この提案により、原水(海水)が濃縮されることでろ過膜の膜面に付着物が析出することを予め監視し、淡水化装置のろ過膜の膜面に付着物が析出するのを効率的に抑制している。
 また、特許文献2においては、さらに付着物析出を助長させるために、監視用分離膜の供給する濃縮水にアルカリ性薬剤を供給することの提案がある。
特表2009-524521号公報 特願2010-282469号公報
 しかしながら、特許文献1の提案による監視方法は、監視用セルに鉱物塩の結晶の析出があったことを判断するので、逆浸透膜も同様に鉱物塩が析出しているので、結晶析出の兆候を事前に監視することができない、という問題がある。
 また、特許文献2の提案では、監視用セルの前後における差圧を検出する必要があるので、流路が付着物で塞がれ、差圧に変化が生じる程度付着物が析出した後でないと判断できないという問題がある。また、付着物の検知にはある程度の大きさ、例えば原水の淡水化装置のろ過膜程度の大きさが必要となり、監視装置が大がかりとなるという問題がある。
 すなわち、淡水化装置の逆浸透膜は例えば1m単位の1本のスパイラル膜を複数本(例えば5~8本)格納して、一つのろ過膜用ベッセルを構成しており、このベッセルを数100本以上連結して原水のろ過を行う場合、監視装置のコンパクト化は、淡水化設備のコンパクト化に寄与するので、可能な限りのコンパクト化を図る付着物を監視する装置の出現が切望されている。
 また、アルカリ性薬剤を供給する場合においては、アルカリ性薬剤を供給することにより析出しやすくなる付着成分(例えば炭酸カルシウム、水酸化マグネシウム等)には有効であるが、pHに依存しない成分(例えば石膏(CaSO4)、フッ化カルシウム(CaF2)等)には効果がなく、適用することができない、という問題がある。
 本発明は、前記問題に鑑み、逆浸透膜装置の逆浸透膜のみならず、分離膜装置の分離膜の付着物の付着予測をコンパクトな装置で行うことができる水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、被処理水から分離膜により溶解成分や分散成分を濃縮して透過水を得る分離膜装置から溶解成分や分散成分を濃縮した非透過水を排出する非透過水ラインと、前記非透過水ラインから分岐した非透過水分岐ラインに設けられ、前記分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、を備えることを特徴とする水処理装置の付着物監視装置にある。
 第2の発明は、分離膜により溶解成分や分散成分を濃縮して透過水を得る分離膜装置へ被処理水を供給する被処理水供給ラインと、前記被処理水供給ラインから分岐した分岐ラインに設けられ、前記分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、を備えることを特徴とする水処理装置の付着物監視装置にある。
 第3の発明は、第1又は2の発明において、前記付着条件変更装置は、分岐した前記検知液の供給圧力を変化させる圧力調整装置であることを特徴とする水処理装置の付着物監視装置にある。
 第4の発明は、第1又は2の発明において、前記付着条件変更装置は、分岐した前記検知液の供給流量を変化する流量調整装置であることを特徴とする水処理装置の付着物監視装置にある。
 第5の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、前記分離膜装置から溶解成分や分散成分を濃縮した非透過水を排出する非透過水ラインと、前記非透過水ラインから分岐した非透過水分岐ラインに設けられ、前記分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、前記第1検知用分離液流量計測装置の計測の結果、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件の変更のいずれか一方又は両方を行う制御装置と、を備えることを特徴とする水処理装置にある。
 第6の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、前記分離膜装置に前記被処理水を供給する被処理水供給ラインと、前記被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、前記分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、前記第2検知用分離液流量計測装置の計測の結果、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件の変更のいずれか一方又は両方を行う制御装置と、を備えることを特徴とする水処理装置にある。
 第7の発明は、被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、前記分離膜装置から溶解成分や分散成分を濃縮した非透過水を排出する非透過水ラインと、前記非透過水ラインから分岐した非透過水分岐ラインに設けられ、前記分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、前記第1検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、前記分離膜装置に前記被処理水を供給する被処理水供給ラインと、前記被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、前記分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、前記第2検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件の変更のいずれか一方又は両方を行う制御装置と、を備えることを特徴とする水処理装置にある。
 第8の発明は、第5乃至7のいずれか一つの発明において、前記分離膜装置からの前記非透過水の水分を蒸発させる蒸発器を備えることを特徴とする水処理装置にある。
 第9の発明は、第1の発明の水処理装置の付着物監視装置を用い、第1検知用分離液流量計測装置で、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、前記第1検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量よりも変化する場合、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件へ変更のいずれか一方又は両方を行うことを特徴とする水処理装置の運転方法にある。
 第10の発明は、第9の発明において、前記付着物の付着条件の変更は、分岐した前記非透過水の供給圧力を変更する場合であり、供給圧力が所定閾値以下であることを特徴とする水処理装置の運転方法にある。
 第11の発明は、第9の発明において、前記付着物の付着条件の変更は、分岐した前記非透過水の供給流量を変更する場合であり、供給流量が所定閾値以上であることを特徴とする水処理装置の運転方法にある。
 第12の発明は、第2の発明の水処理装置の付着物監視装置を用い、第2検知用分離液流量計測装置で、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、前記第2検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量よりも変化する場合、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件へ変更のいずれか一方又は両方を行うことを特徴とする水処理装置の運転方法にある。
 第13の発明は、第12の発明において、前記付着物の付着条件の変更は、分岐した前記被処理水の供給圧力を変更する場合であり、供給圧力が所定閾値以下であることを特徴とする水処理装置の運転方法にある。
 第14の発明は、第12の発明において、前記付着物の付着条件の変更は、分岐した前記被処理水の供給流量を変更する場合であり、供給流量が所定閾値以上であることを特徴とする水処理装置の運転方法にある。
 第15の発明は、第1の発明の水処理装置の付着物監視装置を用い、第1検知用分離液流量計測装置で、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、前記第1検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量を維持する場合、前記分離膜装置の運転条件の変更を行うことを特徴とする水処理装置の運転方法にある。
 第16の発明は、第15の発明において、前記付着物の付着条件は、分岐した前記非透過水の供給圧力を変更する場合であり、供給圧力が所定閾値以上であることを特徴とする水処理装置の運転方法にある。
 第17の発明は、第15の発明において、前記付着物の付着条件は、分岐した前記非透過水の供給流量を変更する場合であり、前記供給流量が所定閾値以下であることを特徴とする水処理装置の運転方法にある。
 第18の発明は、第2の発明の水処理装置の付着物監視装置を用い、第2検知用分離液流量計測装置で、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、前記第2検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量を維持する場合、前記分離膜装置の運転条件の変更を行うことを特徴とする水処理装置の運転方法にある。
 第19の発明は、第18の発明において、前記付着物の付着条件は、分岐した前記被処理水の供給圧力を変更する場合、供給圧力が所定閾値以上であることを特徴とする水処理装置の運転方法にある。
 第20の発明は、第18の発明において、前記付着物の付着条件は、分岐した前記被処理水の供給流量を変更する場合であり、前記供給流量が所定閾値以下であることを特徴とする水処理装置の運転方法にある。
 第21の発明は、第1の発明の水処理装置の付着物監視装置を用い、前記第1検知用分離液流量計測装置で、前記第1検知用分離膜で分離した前記検知用透過水又は前記検知用非透過水を計測する際、前記検知用透過水又は前記検知用非透過水の流量が所定量よりも変化する際の前記第1付着物検知部の前記第1検知用分離膜に付着している付着物に対応する洗浄液を選定し、前記分離膜装置に選定した洗浄液の供給を行うことを特徴とする水処理装置の洗浄方法にある。
 第22の発明は、第2の水処理装置の付着物監視装置を用い、前記第2検知用分離液流量計測装置で、前記第2検知用分離膜で分離した前記検知用透過水又は前記検知用非透過水を計測する際、前記検知用透過水又は前記検知用非透過水の流量が所定量よりも変化する際の前記第2付着物検知部の前記第2検知用分離膜に付着している付着物に対応する洗浄液を選定し、前記分離膜装置に選定した洗浄液の供給を行うことを特徴とする水処理装置の洗浄方法にある。
 第23の発明は、第9又は第12の発明において、前記分離膜装置からの前記非透過水の水分を蒸発させることを特徴とする水処理装置の運転方法にある。
 本発明によれば、水処理装置の付着物監視装置を用いることにより、分離膜による分離膜装置を用いて被処理水を処理する場合、分離膜への付着物の付着を事前に予測することができる。
図1は、実施例1に係る脱塩処理装置の付着物監視装置を備えた脱塩処理装置の概略図である。 図2は、実施例1に係る第1付着物検知部の概略図である。 図3は、図2の第1付着物検知部の斜視図である。 図4は、第1付着物検知部にスパイラル型逆浸透膜を用いた場合の一部切欠き斜視図である。 図5は、スパイラル型の逆浸透膜装置のベッセルの一部切欠き概略図である。 図6は、ベッセルを2つ繋いだものの斜視図である。 図7は、エレメントの一部分解概略図である。 図8は、検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、検知用逆浸透膜の膜長さを16mmとした場合の供給圧力変化によるフラックスの挙動を示す図である。 図9は、検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、検知用逆浸透膜の膜長さを1000mmとした場合の供給圧力変化によるフラックスの挙動を示す図である。 図10は、石膏過飽和度の異なる検知液に対してそれぞれ供給圧力のみを変化させた場合の関係を示す図である。 図11は、検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、検知用逆浸透膜の膜長さを16mmとした場合の供給流量変化によるフラックスの挙動を示す図である。 図12-1は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図12-2は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図13は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図14は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図15は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図16は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図17は、本実施例における検知液の供給圧力を制御する一例を示す図である。 図18は、非透過水分岐ラインに付着物検知部を3台設けた一例を示す図である。 図19は、本実施例における検知液の供給流量を制御する一例を示す図である。 図20は、本実施例における検知液の供給流量を制御する一例を示す図である。 図21は、本実施例における検知液の供給流量を制御する一例を示す図である。 図22は、本実施例における検知液の供給流量を制御する一例を示す図である。 図23は、本実施例における検知液の供給流量を制御する一例を示す図である。 図24は、本実施例における検知液の供給流量を制御する一例を示す図である。 図25は、実施例1に係る脱塩処理装置の運転条件変更の一例を示す概略図である。 図26は、実施例2に係る脱塩処理装置の付着物監視装置を備えた脱塩処理装置の概略図である。 図27は、実施例3に係る脱塩処理装置の付着物監視装置を備えた脱塩処理装置の概略図である。 図28は、実施例3に係る脱塩処理装置の運転条件変更の一例を示す概略図である。 図29は、実施例4に係る脱塩処理装置の付着物監視装置を備えた脱塩処理装置の概略図である。 図30は、実施例5に係る脱塩処理装置の概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、実施例1に係る脱塩処理装置の付着物監視装置を備えた脱塩処理装置の概略図である。図2は、実施例1に係る脱塩処理装置の付着物監視装置の概略図である。以下の実施例では、分離膜として逆浸透膜を用いた分離膜装置である逆浸透膜装置を例にし、例えば塩分等の溶解成分を脱塩処理する脱塩処理装置について説明するが分離膜を用いて水処理する水処理装置であれば、本発明はこれに限定されるものではない。
 図1に示すように、本実施例に係る脱塩処理装置10Aは、被処理水11からイオンや有機物を含む溶解成分(「付着成分」ともいう)を濃縮し、透過水13を得る逆浸透膜を有する脱塩処理装置である逆浸透膜装置14と、イオンや有機物を含む溶解成分が濃縮された非透過水15を排出する非透過水ラインL11から分岐した非透過水分岐ラインL12に設けられ、非透過水15から分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aと、該第1検知用逆浸透膜21Aへの付着物の付着条件を変更させる付着条件変更装置と、第1検知用逆浸透膜21Aで分離した検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置である第1検知用透過水側流量計41A、第1検知用非透過水側流量計41Bと、第1検知用分離液流量計測装置(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)の計測の結果、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は逆浸透膜装置14の付着物を付着させない運転条件(例えば圧力、流量、付着物防止剤の濃度等の運転条件)の変更のいずれか一方又は両方を行う制御装置45と、を備えるものである。なお、図1中、符号16は被処理水11を逆浸透膜装置14へ供給する高圧ポンプ、L1は被処理水導入ライン、L2は透過水排出ラインを各々図示する。
 ここで、逆浸透膜装置14は被処理水11から透過水13を生産する装置であるので、以下「本設の逆浸透膜装置」という場合もある。
 本実施例では、第1検知用分離液流量計測装置(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)の計測の結果、本設の逆浸透膜装置14の逆浸透膜への付着物付着が予測されると判断する判定装置40を設置し、この判定装置40での判断により、逆浸透膜装置の逆浸透膜への付着物の付着が予測される際、制御装置45により、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は逆浸透膜装置14の逆浸透膜に付着物を付着させない運転条件(例えば圧力、流量、付着物防止剤の濃度等の運転条件)への変更のいずれか一方又は両方を行うようにしているが、この判定装置40は必要に応じて設置するようにすればよい。
 ここで、第1検知用逆浸透膜21Aで分離した分離液としては、第1検知用逆浸透膜21Aを透過する検知用透過水22と、第1検知用逆浸透膜21Aを透過しない検知用非透過水23とがある。本実施例では、第1検知用分離液流量計測装置として、検知用透過水22の流量を計測する第1検知用透過水側流量計41Aを検知用透過水排出ラインL13に設けており、検知用非透過水23の流量を計測する第1検知用非透過水側流量計41Bを検知用非透過水排出ラインL14に設けている。
 なお、流量計測装置による流量計測方法としては、流量計により流量を直接的に流量計測してもよいし、例えば電子天秤による重量計測等により間接的に流量を計測するようにしてもよい。以下の実施例については、流量計測装置として流量計を用いた例として説明する。
 そして、第1検知用透過水側流量計41A、第1検知用非透過水側流量計41Bにより、検知用透過水22又は検知用非透過水23のいずれか一方又は両方の流量を計測している。
 ここで、検知用透過水22と検知用非透過水23との流量の総和は、第1付着物検知部24Aへ供給する検知液15aの流量であるので、検知用透過水22の流量を、検知用非透過水23により間接的に求めるようにしてもよい。以下の説明では、検知用透過水22の流量を第1検知用透過水側流量計41Aで計測する場合について、主に説明する。
 ここで、本実施例における本設の逆浸透膜装置14の逆浸透膜への付着物付着が予測されると判断する判断条件は、検知液15aの供給条件を変更する供給圧力又は供給流量の所定閾値と、その所定閾値における検知用透過水流量の変化率に基づき判断する。
 そしてこの判断の「所定閾値」として、付着物の付着条件の変更を、検知液15aの「供給圧力により制御」する場合には、事前に、第1検知用逆浸透膜21Aに付着物が付着すると設定した「圧力値」を「所定閾値」としている(詳細は後述する)。また、付着物の付着条件の変更を、例えば検知液15aの供給流量により制御する場合には、第1検知用逆浸透膜21Aに付着物が付着すると設定した「流量値」を「所定閾値」としている(詳細は後述する)。ここで、供給圧力の制御は後述する付着条件変更装置により行う。
 ここで、被処理水11は、例えば鉱山廃水、発電プラント冷却塔のブローダウン水、オイル・ガス拙作時の随伴水、かん水、工場廃水等の例えば有機物、微生物、鉱物塩等のイオンの付着物若しくは付着物を生成する成分を含むものである。また、被処理水11として海水を用い、海水淡水化に適用するようにしてもよい。
 この被処理水11から例えば塩分等の溶解成分を分離する分離膜としては、逆浸透膜(RO:Reverse Osmosis Membrane)以外に、例えばナノフィルタ(NF:Nanofiltration Membrane)、正浸透膜(FO:Forward Osmosis Membrane)を例示することができる。
 ここで、分離膜が逆浸透膜以外の他の膜に変更する場合には、検知用の分離膜も同様に変更して検知を行うようにする。
 この被処理水11は、被処理水供給ラインL1に設けた高圧ポンプ16と、逆浸透膜装置14からの非透過水排出ラインL11に設けた流量を調節する調整弁44Bとを操作して、所定圧力まで昇圧され、逆浸透膜を備えた逆浸透膜装置14に導入される。
 また、逆浸透膜に付着する付着物としては、例えば炭酸カルシウム、水酸化マグネシウム、硫酸カルシウム、珪酸塩等の無機系付着物や、天然有機物及び微生物由来の有機系付着物、シリカなどのコロイダル成分、オイル等のエマルションを含む分散成分があるが、膜への付着を生じるものであれば、これらに限定されるものではない。
 この逆浸透膜装置14では、被処理水11は逆浸透膜装置14の逆浸透膜で脱塩され、透過水13を得る。また、この逆浸透膜でイオンや有機物を含む溶解成分が濃縮された非透過水15は、廃棄物として適切に廃棄・処理されるか、非透過水中の有価物を回収するために使用される。
 本実施例では、この非透過水15を排出する非透過水ラインL11からその一部を分岐する非透過水分岐ラインL12を設けている。
 そして、この非透過水分岐ラインL12に、分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aを設置している。
 この非透過水分岐ラインL12には、第1付着物検知部24Aの前流側に、高圧ポンプ16aを設けると共に、第1付着物検知部24Aからの検知用非透過水排出ラインL14に、流量を調節する調整弁44Aを設け、これらの高圧ポンプ16aと調整弁44Aとを操作して、第1付着物検知部24Aからの検知用透過水22の流量を調整するようにしている。そして、この第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、分岐した検知液15aの供給圧力及び供給流量を調整している。この所定圧力及び流量の確認は、圧力計42A、42B及び流量計43A、43Bにより監視している。
 さらに、調整弁44A又は高圧ポンプ16aのいずれかにより、第1付着物検知部24Aからの検知用透過水22の流量を調整するようにしてもよい。
 なお、検知用非透過水23を排出する検知用非透過水排出ラインL14には圧力計42Cが、非透過水15の非透過水ラインL11には調整弁44Bが各々設けられている。
 図3は、図2の第1付着物検知部の斜視図である。
 図2及び図3に示すように、第1付着物検知部24Aは、検知部本体24aの入口24b側から分岐した検知液15aを導入するもので、スペーサ(非透過水側)24c、スペーサ(透過水側)24dによって、第1検知用逆浸透膜21Aが挟まれている。そして、この第1検知用逆浸透膜21Aに沿って、導入された検知液15aが流れる(X方向)。また、この検知液15aは、検知液流れ方向(X方向)と直交する方向(Z方向)に移動することで、第1検知用逆浸透膜21Aを通過して、脱塩され検知用透過水22が得られる。透過した検知用透過水22は第1検知用逆浸透膜21Aに沿った透過水流れ(X方向)となり、透過水出口24eから検知用透過水22として、排出される。図3において、検知液15aの流れ方向(X方向)の長さ(L)が、第1付着物検知部24Aの流路の長さであり、第1付着物検知部24の図2の奥行方向の長さがWとなる。
 図4は、第1付着物検知部にスパイラル型逆浸透膜を用いた場合の一部切欠き斜視図である。図4に示すように、第1付着物検知部24Aの検知用膜としてスパイラル型の第1検知用逆浸透膜21Aとした場合であり、第1検知用逆浸透膜21Aの両面から検知液15aが供給され、第1検知用逆浸透膜21Aを検知液15aの流れ方向と直交する方向(Z方向)に移動し、膜を通過して脱塩され検知用透過水22となる。また、スパイラル型の逆浸透膜であるので、検知用透過水22は中心の集水管に向けて流れる(Y方向)。なお、図4中、切欠部によって、スパイラル型の逆浸透膜21を切り開いた状態を示し、内部のスペーサ(透過水側)24dが確認される。
 この第1付着物検知部24Aにおいては、入口24bから非透過水出口24fに亙って一様な流れ(検知液流れ方向(X方向))を形成する流路を確保するために、例えば樹脂製のスペーサ(非透過水側)24cを設けている。また、透過水側においても同様に、透過水出口24eに亙って一様な流れ(透過水流れ方向(X方向))を形成する流路を確保するために、例えば樹脂製のスペーサ(透過水側)24dを設けている。ここで、一様な流れを確保することができる部材であれば、スペーサに限定されるものではない。
 また、第1付着物検知部24Aの流路の長さ(L)は、本設の逆浸透膜装置14で用いる逆浸透膜装置14の逆浸透膜の供給液の流れ方向の総長さの1/10以下程度の長さ、より好ましくは1/50以下の長さ、さらに好ましくは1/100以下の長さとするのがよい。なお、試験例で用いた第1付着物検知部24Aは、その流路の長さ(L)として16mm、1000mmのものを用いた。
 ここで、後述するように、本設の逆浸透膜装置14の逆浸透膜のエレメント(長さ例えば1m)は、8本を繋いで、1本のベッセルとしている。例えばエレメント8本/1ベッセルの場合で、2本のベッセルを直列に繋いだ際には、逆浸透膜装置14で用いる供給液流れ方向の膜長さは16mとなり、流路長さ1000mmの逆浸透膜を検知膜として用いた場合、第1付着物検知部24Aの流路長さは1/16(1/10以下)となる。
 同様に、16mmの逆浸透膜を検知膜として用いた場合、第1付着物検知部24Aの流路長さは0.016/16(1/100以下)となる。
 また、第1付着物検知部24Aの検知膜である第1検知用逆浸透膜21Aの奥行方向の長さW(供給水流れに垂直な方向)を一定とすると、膜長さ(L)が短い程、膜面積は小さくなる。そして、「付着物の付着により膜表面の10%が閉塞=10%の透過水流量低下」となり、膜面積が小さいほど、付着による膜閉塞が早く起こるので、付着による透過水流量の低下を高感度、且つ迅速に検知することが可能となる。
 ここで、第1付着物検知部24Aの第1検知用逆浸透膜21Aとしては、逆浸透作用を奏する膜であり、本設の逆浸透膜装置14の逆浸透膜と同一種類又は類似する種類で脱塩性能を奏する分離膜を用いている。
 本実施例では、本設の逆浸透膜装置14の逆浸透膜は、スパイラル型の逆浸透膜を備えた逆浸透膜エレメントを複数個、圧力容器内に格納したものである。
 ここで、スパイラル状の逆浸透膜の一例を説明する。図5は、スパイラル型の逆浸透膜装置のベッセルの一部切欠き概略図である。図6は、図5のベッセルを2つ繋いだものの斜視図である。図7は、スパイラル型の逆浸透膜エレメントの一部分解概略図である。図7に示すスパイラル型の逆浸透膜エレメントは、特開2001-137672号公報に開示する一例であり、これに限定されるものではない。ここで、逆浸透膜装置のベッセル100は、以下ベッセル100といい、スパイラル型の逆浸透膜エレメント101は、以下エレメント101という。
 図5に示すように、ベッセル100は、複数(例えば5~8)のエレメント101を直列に接続して円筒状の容器本体(以下「容器本体」という)102内に収納して構成される。容器本体102の一端側の原水供給口103から被処理水11が原水として導入され、他端側の透過水取出口104から透過水13、非透過水取出口105から非透過水15が取り出される。なお、図5においては、被処理水11導入側の透過水取出口104は閉塞状態としている。
 図6は、このベッセル100を2本直列に繋いだ場合である。例えばエレメント101の1本を1mとした場合、8本で1ベッセルを構成すると、総流路長(供給液の流れ方向の総長さ)は、8×2=16mの長さとなる。
 容器本体102内の各エレメント101は、例えば図7に示すように集水管111の周囲に、流路材112を内包した袋状の逆浸透膜12を流路材(例えばメッシュスペーサ)114によりスパイラル状に巻回し、その一端にブラインシール115を設けた構造を有する。そして各エレメント101は、前方のブラインシール115側から供給される所定圧力の被処理水(原水)11を流路材(例えばメッシュスペーサ)114により袋状の逆浸透膜12間に順に導き、逆浸透作用により逆浸透膜12を透過した透過水13を集水管111により取り出すものとなっている。また、非透過水15も後方シール118側から取り出すものとなっている。なお、被処理水11の移動方向の膜長さがLである。ここで、図7で示したエレメント101の構成は、図4で示したスパイラル型の第1付着物検知部24Aの構成においても同様である。
 この圧力容器を複数本(例えば50~100本)集合させたものを1ユニットとしており、このユニット数を調整し、処理する被処理水11の供給量に応じて、脱塩処理して生産水を製造するようにしている。
 従来においては、本設の逆浸透膜装置14からの非透過水の少なくとも一部を、監視用分離膜に透過させ、この監視用分離膜の前後に設けた圧力計の差圧によって、非透過水に含まれる付着物が監視用分離膜の膜面に析出するのを監視していた。しかしながら、差圧で確認する場合には、流路が付着物で塞がれ、差圧に変化が生じる程度に付着物が析出した後でないと判断できない、という問題がある。
 また、この差圧で計測する場合は、監視用分離膜の長さが長くないと、精度よく検知できない、という問題がある。
 通常、逆浸透膜装置の運転においては、被処理水11中に所定のイオンや有機物を含む溶解成分等があると想定し、逆浸透膜にイオンや有機物を含む溶解成分等に起因する付着物が付着しない条件を運転条件として設計している。しかしながら、供給する被処理水11の水質変動等により、設計条件よりもイオンや有機物を含む溶解成分濃度が高くなり、逆浸透膜に付着物が付着し易い状況となるようなことがある。このような場合、逆浸透膜装置14からの透過水13の透過水流量を流量計で確認し、透過水13の流量が所定割合まで低下した時点を閾値として、逆浸透膜の洗浄を実施していたが、この時点では、すでに逆浸透膜へ広範囲に付着物が付着しており、逆浸透膜の洗浄が困難となっていた。
 そこで、本実施例では、図1に示すように、被処理水11から逆浸透膜により透過水13をろ過した逆浸透膜装置14からイオンや有機物を含む溶解成分を濃縮した非透過水15を排出する非透過水ラインL11と、この非透過水ラインL11から分岐した非透過水分岐ラインL12に設けられ、分岐した検知液15aを検知用透過水22と検知用非透過水23とに分離する第1検知用逆浸透膜21Aを有する第1付着物検知部24Aと、該第1検知用逆浸透膜21Aへの付着物の付着条件を変更させる付着条件変更装置と、検知用透過水22の流量を計測する第1検知用透過水側流量計41Aと、を備えた脱塩処理装置の付着物監視装置を設置するようにしている。
 そして、第1検知用逆浸透膜21Aへの付着物の付着条件を変更させる付着条件変更装置を用いて、第1検知用逆浸透膜21Aへの膜表面の付着物成分(例えば石膏)の過飽和度を変更するようにしている。ここで、付着条件変更装置としては、第1検知用逆浸透膜21Aへ付着物が付着する条件を変更装置であれば、特に限定されるものではなく、例えば付着物付着を加速させる付着条件変更装置や、例えば付着物付着を減速させる付着条件変更装置等がある。以下は、例えば付着物付着を加速させる付着条件変更装置を例にして説明する。
 この付着条件変更装置としては、第1付着物検知部24Aでの脱塩条件を、第1本設の逆浸透膜装置14の基準条件からさらに変化させるものであり、供給する非透過水15の一部である検知液15aに対して圧力調整又は流量調整により行うようにしている。
 例えば圧力調整により付着条件を変更する場合には、付着条件変更装置は、分岐した検知液15aの供給圧力を変化する圧力調整装置であり、具体的には、第1付着物検知部24Aから検知用非透過水23を排出する検知用非透過水排出ラインL14に設けた調整弁44Aを操作する。また、調整弁44Aと高圧ポンプ16aとを操作して、検知液15aの圧力を変更させるようにしてもよい。
 また、調整弁44Aと高圧ポンプ16aとを用いて圧力調整を行う以外としては、例えば非透過水15を排出する非透過水ラインL11で非透過水分岐ラインL12の分岐部の後流側に、例えばオリフィス等を設け、非透過水分岐ラインL12に導入される分岐した検知液15aの圧力調整を同様に行うようにしてもよい。
 そして、分岐した検知液15a中のイオンを含む溶解成分濃度を変化させることなく、検知液15aの供給圧力を変化(例えば調整弁44Aの調整により、検知液15aの供給圧力を増加)させ、第1検知用逆浸透膜21Aの検知用透過水22の透過水量を計測することで、該第1検知用逆浸透膜21Aの付着物付着の有無を判断する。
 付着物付着の有無の判断は、検知用透過水22の検知用透過水排出ラインL13に設けた第1検知用透過水側流量計41Aの流量の計測結果によって行う。
 本実施例では、第1付着物検知部24Aの第1検知用逆浸透膜21Aに供給する検知液15aの供給圧力を調整弁44Aで増加させることで、第1検知用逆浸透膜21Aに付着する付着物を加速度的に増加させており、検知液15aの流量については、高圧ポンプ16aで調整するようにしている。
 次に、圧力調整によりスケール成分の付着条件を変更する場合について、供給圧力と透過水流量との関係について説明する。
 図8は、検知用逆浸透膜への供給液の石膏過飽和度を4.7で一定とした条件で、第1検知用逆浸透膜21Aの膜長さを16mmとした場合の供給圧力変化によるフラックスの挙動を示す図である。図8中左縦軸はフラックス(m3/h/m2)であり、右縦軸は供給圧力(MPa)、横軸は運転時間(時間)を示す。本試験例では、付着物として、石膏を用いた。なお、評価値はフラックス(単位膜面積あたりの透過水流量)(m3/h/m2)で示している。なお、本試験例において、供給液である検知液15a及び検知用非透過水23の石膏過飽和度は4.7であった。
 ここで、第1付着物検知部24Aにおいては、検知液15a中の石膏の過飽和度を一定とし、検知液15aの供給圧力のみを変動させて、石膏析出物の有無を確認した。
 図8に示すように、供給圧力0.7MPa、1.5MPaの場合は、フラックスは変化なく、石膏付着物は生成していない。これに対し、供給圧力を2.0MPaまで上げた場合には、フラックスが低下しており、石膏付着物の生成が確認された。
 図9は、第1検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、第1検知用逆浸透膜の膜長さを1000mmとした場合の供給圧力変化によるフラックスの挙動を示す図である。
 図9に示すように、供給圧力0.7MPa、1.5MPaの場合は、フラックスは変化なく、石膏付着物は生成していない。これに対し、供給圧力を2.0MPaまで上げた場合には、フラックスが低下しており、石膏付着物の生成が確認された。
 図10は、石膏過飽和度の異なる検知液に対してそれぞれ供給圧力のみを変化させた場合の関係を示す図である。
 図8に示す試験例では、検知液15aの石膏過飽和度が4.7で行ったが、図10に示すように、検知液15aの石膏過飽和度が5.5の場合、石膏過飽和度が6.0の場合でも同様に供給圧力が高くなると、石膏析出が確認された。
 なお、本試験例においても、検知液15aの石膏過飽和度が5.5の場合、6.0の場合、それぞれの場合において検知用非透過水23の石膏過飽和度は5.5、6.0であった。
 ここで、過飽和度とは、例えば石膏を例とすると、ある条件で石膏が飽和溶解している状態(石膏の飽和濃度)を「1」とした場合の、石膏濃度の割合であり、例えば、過飽和度「5」とは、石膏飽和濃度の5倍濃い濃度であることを示している。
 次に、第1検知用逆浸透膜21Aへの洗浄による透過水流量の回復可否の確認試験を行った。
 具体的には、第1検知用逆浸透膜21Aへ強制的に石膏を析出させ、洗浄後、付着物析出前の透過水流量に戻るかを確認した。
 付着物である石膏析出条件としては、第1検知用透過水側流量計41Aを用いて透過水流量が10%低下するときの条件とした。
 表1に運転条件を示す。なお、供給液としては、NaCl評価液(NaCl:2000mg/L)を用いた。
Figure JPOXMLDOC01-appb-T000001
 運転操作は以下のように行った。
1)先ず、圧力条件を1.18MPaとし、供給液としてNaCl評価液を用いた場合の透過水量は24ml/hであった。
2)その後、供給圧力条件を2.0MPaまで増加させると共に、供給液をNaCl評価液から石膏過飽和液に変更し、膜に強制的にスケールを析出させ、10分間で透過水流量10%の低下を確認した。
3)その後、供給液を石膏過飽和液からイオン交換水に変更して洗浄を行った。
4)洗浄後、供給液をイオン交換水からNaCl評価液に変更し、1)の操作条件(圧力条件を1.18MPa)で運転をしたところ、透過水量は24ml/hであった。
 この結果、第1検知用逆浸透膜21Aへの石膏の析出の初期段階においては、水洗浄により石膏付着物の洗浄が可能であり、洗浄を行うことで付着物析出前の透過水流量に戻ることが確認された。
 石膏を洗浄する場合には、純水を用いて洗浄することができることも確認した。よって、本設の逆浸透膜装置14の洗浄においても、透過水13を用いての洗浄が可能となる。これにより洗浄工程におけるコスト低減、及び膜へのダメージ低減が可能となる。
 図11は、検知用逆浸透膜への供給液の石膏過飽和度を一定とした条件で、検知用逆浸透膜の膜長さを16mmとした場合の供給流量変化によるフラックスの挙動を示す図である。図11中、左縦軸は各々のフラックス(m3/h/m2)であり、右縦軸は検知液の供給液流量(L/h)、横軸は運転時間(時間)を示す。
 図11に示すように、本試験では、検知液の供給圧力を1.5MPaに固定した状態で、供給液流量が13.5L/h及び6.8L/hの場合には、石膏の析出が無いが、供給液流量を3.7L/hと遅くすると、石膏が析出することが確認された。この結果、検知液15aの供給液流量(以下、単に「供給流量」ともいう。)が少なくなる程、石膏が析出し易くなることが確認された。
 次に、この第1付着物検知部24Aを用いて、逆浸透膜装置14の逆浸透膜への付着物付着予測について、説明する。
 通常は、本設の逆浸透膜装置14は、設計値通り運転を行っており、被処理水11の水質変動が無い場合には、所定時間逆浸透膜装置14の逆浸透膜への付着物の付着はみられない。しかしながら、被処理水11の水質変動が起こった場合には、逆浸透膜装置14の逆浸透膜への付着物の付着が生じる場合がある。
 本実施例では、このような水質変動等による本設の逆浸透膜装置14の逆浸透膜への付着物の付着を予測するものである。
 本実施例では、逆浸透膜装置14の逆浸透膜に付着物が付着するまでの裕度を第1付着物検知部24Aでの検知結果から判断し、この裕度によって、最適な逆浸透膜装置14の運転制御を行い、逆浸透膜への付着物の付着を防止するようにしている。
 この第1付着物検知部24Aでは、逆浸透膜装置14から排出された非透過水15を分岐して、この分岐した検知液15aを供給する際、供給液の圧力を増加させる事により、第1検知用逆浸透膜21Aでの付着物付着を加速させることとしている。
 そして、第1検知用逆浸透膜21Aに付着物が付着するまでの検知液15aの圧力増加割合から、付着物付着裕度を算出し、この裕度に応じて本設の逆浸透膜装置14の運転制御を行い、逆浸透膜への付着物の付着を防止するようにしている。
 更には、第1検知用逆浸透膜21Aに付着物が付着するまでの検知液15aの圧力増加割合から、付着物付着裕度を求め、この付着物付着裕度によって、逆浸透膜装置14の運転制御を行い、付着物が付着しない限界の裕度の運転条件とする事で、本設の逆浸透膜装置14の処理効率向上や、処理コストの低廉化を図るようにしている。
 第1検知用逆浸透膜21Aへの付着物付着は、第1付着物検知部24Aからの検知用透過水22の流量を第1検知用透過水側流量計41Aにより計測し、この流量の低下により付着物付着を間接的に検知するものである。
 次に、検知液15aの供給圧力を変更する際の付着物付着裕度の判断工程について説明する。
1)先ず、本設の逆浸透膜装置14で被処理水11を処理する際、この逆浸透膜装置14から排出される非透過水15の一部の検知液15aを第1付着物検知部24Aに供給する。この時、第1検知用逆浸透膜21Aの脱塩条件が、本設の逆浸透膜装置14の非透過水15の出口近傍の脱塩条件と同じとなるように、検知液15aの供給圧力、供給流量を調整する。
2)次に、第1付着物検知部24Aからの検知用透過水22の流量を第1検知用透過水側流量計41Aにより計測する。
3)そして、この検知用透過水22の流量の低下が計測されるまで、検知液15aの供給圧力を調整弁44Aにより段階的に上昇させる。
4)検知用透過水22の流量の低下が計測された時の検知液15aの供給圧力と、前記工程1)での供給圧力との差により付着物付着裕度を求める。
 そして、この付着物検出裕度の結果に基づき、本設の逆浸透膜装置14の逆浸透膜を洗浄処理する運転条件へ変更する。または、本設の逆浸透膜装置14の逆浸透膜への付着物を付着させない運転条件への変更を行うようにしてもよい。
 次に、付着物付着裕度を求める検知液15aの供給圧力の制御の一例を示す。
 図12-1乃至図17は、本実施例における検知液の供給圧力を制御する一例を示す図である。なお、図12-1乃至図17では、評価値(縦軸)が検知用透過水流量で記載しているが、評価値としては、透過水流量を元に算術計算できる値(例えばFlux、膜における溶液の透過性能を表す係数(A値)、標準化透過水流量等)でも可能である。
 図12-1乃至図14は、1台の第1付着物検知部24Aを用いて、検知液15aの供給圧力を段階的に変化させ、検知用透過水22の流量の確認をする場合である。
 なお、図15乃至図17は、図18に示すように、3台の第1付着物検知部24A-1、24A-2、24A-3を用いて、各々において検知液15aの供給圧力を異なる圧力(圧力条件(1)~(3))に設定し、透過水流量の確認をする場合である。
 図18は、3本の非透過水分岐ラインL12-1~L12-3に第1付着物検知部24A-1、24A-2、24A-3を3台設けた一例を示す図である。
 図1に示す脱塩処理装置10Aにおいて、非透過水分岐ラインL12をさらに3本に分岐して非透過水分岐ラインL12-1~L12-3とし、それぞれのラインに第1付着物検知部24A-1~24A-3を設けると共に、その検知用透過水22の流量を各々第1検知用透過水側流量計41A-1~41A-3により計測している。なお、本例では、非透過水分岐ラインL12をさらに3本に分岐しているが、非透過水ラインL11から直接分岐する3本の非透過水分岐ラインを各々設け、それぞれのラインに第1付着物検知部24A-1~24A-3を設けるようにしてもよい。
 図12-1~図14では、検知液15aの供給圧力を条件(1)から(3)に徐々に変更させ、検知用透過水22の透過水流量の変化を第1検知用透過水側流量計41Aで確認した場合を示す。
 ここで、通常運転の運転条件(本設の逆浸透膜装置14の設計値での運転条件)において、第1検知用逆浸透膜21Aへの付着物が付着(透過水流量が低下)する検知液15aの供給圧力条件は条件(3)となることを事前に確認しておく。
 本実施例では、この供給圧力条件(条件(3))を所定閾値とする。
 この検知液15aの供給圧力が条件(3)となった際には、フラックスが低下することで、第1検知用逆浸透膜21Aへの付着物の付着があるとしている。
 すなわち、付着物付着の判断は、上記の所定閾値において、所定時間で透過水流量が所定割合変化した場合に、第1検知用逆浸透膜21Aに付着物が付着したと判断する。したがって、所定時間で、透過水流量の変化が所定割合未満の場合は、第1検知用逆浸透膜21Aに付着物は付着していないと判断し、所定時間で、透過水流量の変化が所定割合以上の場合は、第1検知用逆浸透膜21Aに付着物が付着したと判断する。
 なお、この付着物が付着したと判断する条件(所定時間、透過水流量の所定変化率)は、被処理水の水質や温度などにより適宜変更される。
 そして、第1付着物検知部24Aに供給する検知液15aの供給圧力を変化させた結果、図12-1に示すようになった場合、例えば、「付着物付着裕度2」と判断し、以下の制御を行う。
 ここで、検知液15aの供給圧力(1)の条件は例えば1.0MPaであり、検知液15aの供給圧力(2)の条件は例えば1.5MPaであり、検知液15aの供給圧力(3)の条件は、例えば2.0MPaである。
 図12-2に示す場合では、例えば所定閾値を2.0MPaとし、付着物の付着の判断として、所定時間(t)を10分間、透過水流量の所定変化割合を10%とした場合を示しており、透過水流量が10%以上低下した場合には、第1検知用逆浸透膜21Aに付着物が付着したと判断している。
 図12-1における「付着物付着裕度2」との判断の結果、制御装置45での制御は、例えば下記の制御(1)~制御(3)のいずれかを実行する。
 制御(1):本設の逆浸透膜装置14の運転条件を変更しない現状維持の運転を行う。
 制御(2):本設の逆浸透膜装置14に対する運転条件の供給圧力を上げる。
 制御(3):図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
 なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
 これにより、制御(1)では、現状通りの運転であるので、透過水13の生産量には変化がないが、制御(2)の本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
 また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
 次に、第1付着物検知部24Aに供給する検知液15aの供給圧力を変化させた結果、図13に示すようになった場合、例えば、「付着物付着裕度1」と判断し、以下の制御を行う。
 ここで、検知液15aの供給圧力(1)の条件は例えば1.0MPaであり、検知液15aの供給圧力(2)の条件は例えば1.5MPaであり、検知液15aの供給圧力(3)の条件は、例えば2.0MPaである。
 なお、図13のようになるのは、逆浸透膜装置14へ供給する被処理水11の水質変動などが原因と考えられる。
 この結果、前述した図12-1の場合よりも付着裕度が低いと判断する。
 図13における「付着物付着裕度1」との判断の結果、制御装置45での制御は、例えば下記の制御(4)~制御(7)のいずれかを実行する。
 制御(4):図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を増大する。
 制御(5):逆浸透膜装置14の逆浸透膜の洗浄を実行する。
 制御(6):逆浸透膜装置14の被処理水11の供給圧力を下げる。
 制御(7):被処理水11の供給量を増加する。
 なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
 これらの制御により、本設の逆浸透膜装置14の逆浸透膜への付着物の付着裕度を上げることができる。また、洗浄により、本設の逆浸透膜装置14の逆浸透膜への付着物付着の未然防止を図ることができる。
 また、制御(5)の洗浄の洗浄方法としては、例えばフラッシング洗浄、サックバック洗浄等を用いることができる。これにより、本設の逆浸透膜装置14の逆浸透膜の長寿命化を図ることができる。なお、この洗浄においても、透過水13の一部を使用することができる。
 図25は、実施例1に係る脱塩処理装置の運転条件変更の一例を示す概略図である。
 図25に示すように、前述した判断の結果、洗浄を実施する場合には、洗浄液供給部52から洗浄液51を供給して洗浄を行う。ここで、洗浄液51として、透過水13の一部13aを用いることができる。例えば透過水排出ラインL2から分岐した透過水供給ラインL3により生産された透過水13の一部13aを洗浄液供給部52へ送り、洗浄液51を供給して洗浄処理するようにしてもよい。これにより、薬品による洗浄を回避することができる。
 また、逆浸透膜装置14に導入する被処理水11へのpHを調整する場合には、凝集ろ過部54の下流側のpH調整部57に供給する酸又はアルカリのpH調整剤58を、酸又はアルカリ供給部59から供給する。
 アルカリ側にpHを調整することで、例えばシリカ、ホウ素等のスケール成分の析出を防止する。
 また、酸性側にpHを調整することで、例えば炭酸カルシウム等のスケール成分の析出を防止する。
 さらに、凝集ろ過部54の上流側の被処理水11へのpHを調整する場合には、酸又はアルカリのpH調整剤58を、pH調整部65に供給する。このpH調整部65において、例えばアルカリ側にpHを調整する際、被処理水11中のスケール成分を例えば水酸化マグネシウム、炭酸カルシウム等として析出させ、固液分離部(図示せず)により固液分離することでスケール成分の析出を防止する。
 次に、第1付着物検知部24Aに供給する検知液15aの供給圧力を変化させた結果、図14に示すようになった場合、例えば「付着物付着裕度3又は3以上」とする。
 ここで、検知液15aの供給圧力(1)の条件は例えば1.0MPaであり、検知液15aの供給圧力(2)の条件は例えば1.5MPaであり、検知液15aの供給圧力(3)の条件は、例えば2.0MPaである。
 この結果、前述した図12-1の場合よりも付着裕度が高いと判断する。
 この場合には、逆浸透膜装置14では、設計条件よりも被処理水11中のスケール成分濃度が低く、図12-1の場合よりも、付着物が付着し難い状態であると判断できる。
 図14における「付着物付着裕度3又は3以上」との判断の結果、制御装置45での制御は、付着裕度を下げた運転条件に変更でき、以下の制御(2)、制御(3)のいずれかを実行する。
 制御(2):例えば逆浸透膜装置14に対する運転条件の供給圧力を上げて、透過水13の生産量を増加する。
 制御(3):図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
 なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
 これにより、制御(2)のように、本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
 また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
 以上により、脱塩処理装置の付着物監視装置を用いて、被処理水11を処理する逆浸透膜装置14の膜への付着物の付着を防止することを予測することが可能となる。
 このように、第1付着物検知部24Aの第1検知用逆浸透膜21Aで分離した検知用透過水22を計測する際、第1検知用逆浸透膜21Aへの付着物の付着条件を付着条件変更装置で変更する場合において、所定閾値で、検知用透過水22の流量が所定条件(所定時間での、流量の所定割合変化)よりも変化したかどうかを、第1検知用分離液流量計41Aでの流量計測で行い、計測の結果、本設の逆浸透膜装置14の運転条件の裕度を判断する。
 そして、裕度判断の結果に基づき、本設の逆浸透膜装置14の洗浄・運転条件の変更を行う。
 ここで、本実施例では、第1検知用逆浸透膜21Aの分離液の流量計測として、検知用透過水22を計測する場合であるので、所定条件よりも低下したかどうかで第1検知用逆浸透膜21Aへの付着の有無を判断する事となる。
 そして、その裕度の判断に基づいて、本設の逆浸透膜装置14への運転条件の制御(1)~制御(7)を行い、本設の逆浸透膜装置14の逆浸透膜への付着物の付着を事前に抑制することができる。
 ここで、第1付着物検知部24Aの第1検知用逆浸透膜21Aに対して付着物が付着した場合には、洗浄により再利用する事が可能となる。これは、前述した試験例の表1に示すように、第1検知用逆浸透膜21Aへの石膏の析出の初期段階においては、水洗浄により石膏付着物の洗浄が可能であり、洗浄を行うことで付着物の除去が可能となるからである。
 図15乃至図17は、図18に示すような3台の第1付着物検知部24A-1~24A-3を用いて、各々を異なる検知液15aの供給圧力に設定し、透過水流量の変化確認をする場合であるが、1台の第1付着物検知部24Aを用いて、圧力を段階的に変化させ、透過水流量の確認をする場合と同様に判断及び制御するので、その説明は省略する。ここで、図15の設定は図12-1と対応し、図16の設定は図13と対応し、図17の設定は図14と対応する。
 なお、第1付着物検知部24A-1は、検知液15aの供給圧力(1)であり、第2付着物検知部24A-2は、検知液15aの供給圧力(2)であり、第1付着物検知部24A-3は、検知液15aの供給圧力(3)である。
 次に、検知液15aの供給流量を変更する際の付着物付着裕度の判断工程について説明する。
1)先ず、本設の逆浸透膜装置14で被処理水11を処理する際、この逆浸透膜装置14から排出される非透過水15の一部の検知液15aを第1付着物検知部24Aに供給する。この時、第1検知用逆浸透膜21Aの脱塩条件が、本設の逆浸透膜装置14の非透過水15の出口近傍の脱塩条件と同じとなるように、検知液15aの供給圧力、供給流量を調整する。
2)次に、第1付着物検知部24Aからの検知用透過水22の流量を第1検知用透過水側流量計41Aにより計測する。
3)そして、この検知用透過水22の流量の低下が計測されるまで、検知液15aの供給流量を高圧ポンプ16aにより段階的に降下させる。
4)検知用透過水22の流量の低下が計測された時の検知液15aの供給流量と、前記工程1)での供給流量との差により付着物付着裕度を求める。
 そして、この付着物付着裕度に基づき、逆浸透膜装置14の逆浸透膜を洗浄処理する運転条件へ変更する。または、逆浸透膜装置14の逆浸透膜への付着物を付着させない運転条件への変更を行うようにしてもよい。
 次に、付着物付着裕度を求める検知液15aの供給流量の制御の一例を示す。
 図19乃至図24は、本実施例における検知液15aの供給流量を制御する一例を示す図である。
 図19乃至図21は、1台の第1付着物検知部24Aを用いて、検知液15aの供給流量を段階的に変化させ、検知用透過水流量の変化を確認する場合である。
 図22乃至図24は、3台の第1付着物検知部24A-1~24A-3を用いて、各々を異なる検知液15aの供給流量に設定し、透過水流量の確認をする場合である。
 図19乃至図21では、検知液15aの供給流量を条件(1)から(3)に徐々に変更させ、透過水流量の変化を第1検知用透過水側流量計41Aで確認する。
 ここで、通常運転の運転条件では、付着物が付着(透過水流量が低下)する検知液15aの流量条件は条件(3)となることを事前に確認しておく。
 本実施例では、この供給流量条件(条件(3))を所定閾値とする。
 この検知液15aの供給流量が条件(3)となった際には、フラックスが低下することで、第1検知用逆浸透膜21Aへの付着物の付着があるとしている。
 そして、第1付着物検知部24Aに供給する検知液15aの供給流量を変化させた結果、図19に示すようになった場合、例えば、「付着物付着裕度2」と判断し、以下の制御を行う。
 ここで、検知液15aの供給流量(1)の条件は例えば13.5L/hであり、検知液15aの供給流量(2)の条件は例えば6.8L/hであり、検知液15aの供給流量(3)の条件は例えば3.7L/hである。
 図19における「付着物付着裕度2」との判断の結果、制御装置45での制御は、例えば下記の制御(1)~制御(3)のいずれかを実行する。
 制御(1):本設の逆浸透膜装置14の運転条件を変更しない現状維持の運転を行う。
 制御(2):本設の逆浸透膜装置14に対する運転条件の供給圧力を上げる。
 制御(3):図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
 なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
 これにより、制御(1)では、現状通りの運転であるので、透過水13の生産量には変化がないが、制御(2)の本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
 また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
 次に、第1付着物検知部24Aに供給する検知液15aの供給流量を変化させた結果、図20に示すようになった場合、例えば、「付着物付着裕度1」と判断し、以下の制御を行う。
 ここで、検知液15aの供給流量(1)の条件は例えば13.5L/hであり、検知液15aの供給流量(2)の条件は例えば6.8L/hであり、検知液15aの供給流量(3)の条件は例えば3.7L/hである。
 なお、図20のようになるのは、逆浸透膜装置14へ供給する被処理水11の水質変動などが原因と考えられる。
 この結果、前述した図19の場合よりも付着裕度が低いと判断する。
 図20における「付着物付着裕度1」との判断の結果、制御装置45での制御は、例えば下記の制御(4)~制御(7)のいずれかを実行する。
 制御(4):図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を増大する。
 制御(5):逆浸透膜装置14の逆浸透膜の洗浄を実行する。
 制御(6):逆浸透膜装置14の被処理水11の供給圧力を下げる。
 制御(7):被処理水11の供給量を増加する。
 なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
 これらの制御により、本設の逆浸透膜装置14の逆浸透膜への付着物の付着裕度を上げることができる。また、洗浄により、本設の逆浸透膜装置14の逆浸透膜への付着物付着の未然防止を図ることができる。
 また、制御(5)の洗浄の洗浄方法としては、例えばフラッシング洗浄、サックバック洗浄等を用いることができる。これにより、本設の逆浸透膜装置14の逆浸透膜の長寿命化を図ることができる。なお、この洗浄においても、透過水13の一部を使用することができる。
 次に、第1付着物検知部24Aに供給する検知液15aの供給流量を変化させた結果、図21に示すようになった場合、例えば「付着物付着裕度3又は3以上」とする。
 ここで、検知液15aの供給流量(1)の条件は例えば13.5L/hであり、検知液15aの供給流量(2)の条件は例えば6.8L/hであり、検知液15aの供給流量(3)の条件は例えば3.7L/hである。
 この結果、図19の場合よりも付着裕度が高いと判断できる。
 図21における「付着物付着裕度3又は3以上」との判断の結果、制御装置45での制御は、付着裕度を下げた運転条件に変更でき、以下の制御(2)、制御(3)のいずれかを実行する。
 制御(2):逆浸透膜装置14に対する運転条件の供給圧力を上げる。
 制御(3):図1に示す付着物防止剤供給部46からの被処理水11への付着物防止剤47の添加量を低減する。
 なお、これらの制御とすることのいずれかの判断は、運転員又は予め定めた判断基準に沿って自動判断する。
 これにより、制御(2)のように、本設の逆浸透膜装置14の運転条件の供給圧力を上昇させて運転負荷を上げる場合には、透過水13の生産量を増量することができる。
 また、制御(3)の付着物防止剤47の添加量を低減することで、薬剤コストの低廉化を図ることができる。これは、本設の逆浸透膜装置14に対する付着物防止剤47の過剰添加を防止することができる。
 以上により、脱塩処理装置の第1付着物検知部24Aを用いて、被処理水11を処理する逆浸透膜装置14の逆浸透膜への付着物の付着を防止することを予測することが可能となる。
 図22乃至図24は、図18に示すような3台の第1付着物検知部24A-1~24A-3を用いて、各々を異なる検知液15aの供給流量に設定し、透過水流量の変化確認をする場合であるが、1台の第1付着物検知部24Aを用いて、流量を段階的に変化させ、透過水流量の確認をする場合と同様に判断及び制御するので、その説明は省略する。ここで、図22の設定は図19と対応し、図23の設定は図20と対応し、図24の設定は図21と対応する。
 なお、第1付着物検知部24A-1は、検知液15aの供給流量(1)であり、第2付着物検知部24A-2は、検知液15aの供給流量(2)であり、第1付着物検知部24A-3は、検知液15aの供給流量(3)である。
 本実施例では、第1検知用逆浸透膜21Aへの付着物付着を付着条件変更装置により、加速させて、付着物の付着を予測していたが、付着条件変更装置を作動させず、この第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、供給圧力と供給流量を調整して、第1付着物検知部24Aからの分離液を分離液流量計(第1検知用透過水側流量計41A、第1検知用非透過水側流量計41B)で、計測し、この計測の結果、計測流量が所定閾値に対して変化した場合に、本設の逆浸透膜装置14の逆浸透膜への付着物付着の開始と判定装置40で判断するようにしてもよい。
 具体的には、調整弁44A、高圧ポンプ16aのいずれか一方又は両方を用いて、第1付着物検知部24Aの脱塩条件が、本設の逆浸透膜装置14の逆浸透膜の出口近傍と同一となるように、検知液15aの供給圧力と供給流量を調整することで、第1検知用逆浸透膜21Aでは、本設の逆浸透膜装置14内の逆浸透膜の出口末端近傍と同じ脱塩条件を再現するようにしている。
 これは、第1付着物検知部24Aの第1検知用逆浸透膜21Aを用いて付着物の付着状態を検知する状況は、本設の逆浸透膜装置14の最後尾(スパイラル型の逆浸透膜エレメント101が8本直列に連結している場合には、エレメント101-1~101-8の8本目のエレメント101-8最終後尾部分(L))の状態を模擬し、第1検知用逆浸透膜21Aへの付着物成分(例えば石膏)の付着の状況を模擬することとなる。第1付着物検知部24Aの第1検知用逆浸透膜21Aの膜長さLを例えば16mmとする場合には、最終後尾部分の16mmの状態が模擬できることとなる。
 以上の説明では、検知用透過水22の流量を第1検知用透過水側流量計41Aで計測する場合について、説明したが、検知用非透過水23の流量を第1検知用非透過水側流量計41Bで計測する場合には、付着物の付着があると検知用非透過水23の流量は増加するので、第1検知用逆浸透膜21Aへの付着物の付着条件を変更し、検知用非透過水23の流量が所定量(=第1検知用逆浸透膜21Aに付着物が付着したと判断する非透過水流量の変化(増加)率)よりも変化する場合、逆浸透膜への付着物の「付着が予測される」と判断する。
 これにより、被処理水11の水質変動等による本設の逆浸透膜装置14の逆浸透膜へ付着が生じることを予測することができる。
 この予測の結果、本設の逆浸透膜装置14の運転条件を変更することで、本設の逆浸透膜装置14の逆浸透膜への付着物の付着の無い安定した運転を継続することができる。
 以上の実施例においては、供給液の供給圧力、供給液流量を一定とした場合、逆浸透膜に付着物が付着すると、透過水流量(又はフラックス)が低下する事から、検知液の供給圧力、供給流量を所定の値とし、検知用透過水流量(またはフラックス)が閾値以下となった場合に、検知用逆浸透膜へ付着物の付着があったと判断している。
 これに対して、透過水流量(又はフラックス)を一定とする場合、逆浸透膜に付着物が付着すると、供給液の供給圧力を上げる(フラックスを上げる)必要がある。
 よって、検知用分離液(検知用透過水、又は検知用非透過水)の流量が一定となるように供給液の供給圧力を制御し、供給圧力が閾値以上となった場合に、検知用逆浸透膜へ付着物の付着があったと判断する事もできる。
 図26は、実施例2に係る脱塩処理装置の概略図である。図26に示すように、本実施例に係る脱塩処理装置10Bは、第1付着物検知部24Aの第1検知用逆浸透膜21Aに付着した付着物成分を分析して、付着物に応じて、洗浄を実施するものである。
 すなわち、本設の逆浸透膜装置14を通常運転で運転している際、予め第1付着物検知部24Aに対して圧力変化(又は流量変化)により、第1検知用逆浸透膜21Aへ付着物を付着させ、この付着した付着物を別途分析している。
 そして、分析の結果、予め選定しておいた例えば3種類の洗浄液51(第1~第3洗浄液51A~51C)のうち、最適なものを選定し、本設の逆浸透膜装置14の洗浄液として、第1~第3洗浄液供給部52(52A~52C)から行うようにしている。
 付着物が付着した第1検知用逆浸透膜21Aに対して各種洗浄液51を各々供給し、第1検知用逆浸透膜21Aの検知用透過水流量を第1検知用透過水側流量計41Aにより計測する事により、第1検知用逆浸透膜21Aの付着物の洗浄効果を確認する。
 検知用透過水流量の計測により、第1検知用逆浸透膜21Aの付着物に対して最も効果のある洗浄条件(洗浄液、温度等)を選定することができる。この選定の結果を本設の逆浸透膜装置14の逆浸透膜に対しての洗浄条件として設定することができる。
 従来では、付着物に対して推奨される洗浄条件(洗浄液、洗浄手順)が定められていたとしても、実際の逆浸透膜への付着物の特定は困難であり、被処理水11の水質からの予測を元に、付着物を想定し、洗浄液を選定したので、適切な洗浄ができない場合があった。
 これに対し、本実施例によれば、第1検知用逆浸透膜21Aに対して、本設の逆浸透膜装置14の逆浸透膜に対して付着物が付着する前に、実際の付着物に対して事前に各種洗浄液による洗浄性能の評価が可能となる。この評価の結果を本設の逆浸透膜装置14の逆浸透膜に対して反映することで、適切な洗浄を行うことが可能となる。
 この結果、実際に本設の逆浸透膜装置14の逆浸透膜に付着すると予測される付着物に対して、最も効果的な洗浄液51を簡便に選定する事が可能となる。
 また、本設の逆浸透膜装置14の逆浸透膜の効果的な洗浄が可能となり、洗浄時間の短縮、洗浄液51の使用量の削減を図ることができる。
 ここで、付着物として、例えば、炭酸カルシウム、水酸化マグネシウム、水酸化鉄等は、洗浄液として塩酸等を用いた酸性水溶液を用いる事で洗浄可能となる。また、シリカ、有機物等は、水酸化ナトリウム等を用いたアルカリ性の洗浄液を用いる事で洗浄可能となる。
 図27は、実施例3に係る脱塩処理装置の概略図である。なお、実施例1と同一部材については、同一符号を付して重複する説明は省略する。
 実施例1の脱塩処理装置10Aの場合では、逆浸透膜装置14からの非透過水15を用い、この非透過水15中のスケール成分による付着物の付着を予測していたが、本実施例では、図27に示すように、逆浸透膜装置14に供給する被処理水11の導入(供給)側において、被処理水11中に含まれる有機成分による付着物又は微生物に起因するバイオファウリングの初期付着段階を予測するようにしている。なお、実施例1の第1付着物検知部24Aと本実施例の第2付着物検知部24Bの構成は同一であるので、その説明は省略する。
 図27に示すように、本実施例に係る脱塩処理装置10Cは、被処理水11からイオンや有機物を含む溶解成分を濃縮し、透過水13を得る逆浸透膜を有する逆浸透膜装置14と、被処理水11を供給する被処理水導入ラインL1から分岐した被処理水分岐ラインL21に設けられ、分岐した被処理水11の一部を検知液11aとし、該検知液11aを検知用透過水22と検知用非透過水23とに分離する第2検知用逆浸透膜21Bを有する第2付着物検知部24Bと、該第2検知用逆浸透膜21Bへの付着物の付着条件を変更させる付着条件変更装置と、第2検知用逆浸透膜21Bで分離した分離液(検知用透過水22、検知用非透過水23)の流量を計測する第2検知用分離液流量計測装置(第2検知用透過水側流量計41C、第2検知用非透過水側流量計41D)と、第2検知用分離液流量計測装置(第2検知用透過水側流量計41C、第2検知用非透過水側流量計41D)の計測の結果、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は逆浸透膜装置14の付着物を付着させない運転条件(例えば圧力、流量、付着物防止剤の濃度等の運転条件)の変更のいずれか一方又は両方を行う制御装置45と、を備えるものである。本実施例では、検知用透過水22の流量を計測する第2検知用透過水側流量計41Cを検知用透過水排出ラインL22に設けており、検知用非透過水23の流量を計測する第2検知用非透過水側流量計41Dを検知用非透過水排出ラインL23に設けている。
 本実施例では、第2検知用分離液流量計測装置(第2検知用透過水側流量計41C、第2検知用非透過水側流量計41D)の計測の結果、本設の逆浸透膜装置14の逆浸透膜への付着物付着が予測されると判断する判定装置40を設置し、この判定装置40での判断により、逆浸透膜装置の逆浸透膜への付着物の付着が予測される際、制御装置45により、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は逆浸透膜装置14の付着物を付着させない運転条件(例えば圧力、流量、付着物防止剤の濃度等の運転条件)の変更のいずれか一方又は両方を行うようにしているが、この判定装置40は必要に応じて設置するようにすればよい。
 有機成分の付着や微生物に起因するバイオファウリングは、逆浸透膜装置14の逆浸透膜の被処理水11の供給側において発生する。
 よって、被処理水導入ラインL1から分岐した被処理水分岐ラインL21に、第2検知用逆浸透膜21Bを有する第2付着物検知部24Bを設け、実施例1と同様に、付着条件を加速させることで、逆浸透膜装置14の膜エレメントの先頭部分における付着物の付着を予測することができる。
 ここで、本実施例における本設の逆浸透膜装置14の逆浸透膜への付着物付着が予測されると判断する判断条件は、実施例1と同様に、検知液11aの供給条件を変更する供給圧力又は供給流量の所定閾値と、その所定閾値における検知用透過水流量の変化率に基づき判断する。
 そしてこの判断の「所定閾値」として、付着物の付着条件の変更を、検知液11aの「供給圧力により制御」する場合には、事前に、第2検知用逆浸透膜21Bに付着物が付着すると設定した「圧力値」を「所定閾値」としている。また、付着物の付着条件の変更を、例えば検知液11aの供給流量により制御する場合には、第2検知用逆浸透膜21Bに付着物が付着すると設定した「流量値」を「所定閾値」としている。ここで、供給圧力の変更は付着条件変更装置により行う。
 なお、第2検知用逆浸透膜21Bは、実施例1の第1検知用逆浸透膜21Aと同じ材質の膜であっても良いし、異なる材質の膜としても良い。
 そして、本実施例の第2付着物検知部24Bを用いて、検知用透過水22の透過水流量を計測し、透過水流量の低下を第2検知用透過水側流量計41Cにより検知する事により、本設の逆浸透膜装置14の逆浸透膜での有機成分の付着や微生物に起因するバイオファウリングの初期段階を予測することができる。
 そして、第2付着物検知部24Bからの検知用透過水22の透過水流量を第2検知用透過水側流量計41Cにより検知し、計測流量が所定閾値に対して所定量以下に変化した場合に、逆浸透膜装置14の逆浸透膜への付着物の付着が予測されると判断される場合、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は前記脱塩処理装置の付着物を付着させない運転条件の変更のいずれか一方又は両方を行う事により、本設の逆浸透膜装置14の有機成分の付着や微生物に起因するバイオファウリングを防止することができる。
 また、第2付着物検知部24Bからの検知用非透過水23の非透過水流量を第2非透過水流量計41Dにより検知し、所定閾値に対して所定量以上に変化した場合に、本設の逆浸透膜装置14の逆浸透膜への付着が予測されると判断し、逆浸透膜装置14の逆浸透膜への洗浄処理の実行、又は脱塩処理装置の付着物を付着させない運転条件の変更のいずれか一方又は両方を行う事により、本設の逆浸透膜装置14の有機成分の付着や微生物に起因するバイオファウリングを防止することができる。
 ここで、有機成分による付着物、微生物由来のバイオファウリングに対しては、例えば水酸化ナトリウム水溶液に界面活性剤を添加した洗浄液を用いることで、洗浄可能となる。
 この洗浄の作業と共に、更に本設の逆浸透膜装置14の逆浸透膜に対して、付着物が付着しない条件へ運転条件を変更するようにしてもよい。なお、これらの操作は、洗浄と同時に行っても良いし、順次変更するようにしてもよい。
1)殺菌剤(塩素系殺菌剤(例えばクロラミン等)、および過酸化水素等の酸化性能をもつ薬剤)の添加量を減らす運転を行う。
2)有機物用凝集剤の添加量を増加する運転を行う。
3)有機物吸着塔(砂ろ過、活性炭吸着塔、加圧浮上装置(DAF)、除菌フィルタ等)を通すように流路を変更する。
4)逆浸透膜装置14へ供給する被処理水11のpHを上げる運転を行う。
5)有機物用洗浄液を添加する運転を行う。
 このような付着物を付着させない運転条件に変更することで、安定した脱塩処理を実施することができる。
 図28は、実施例3に係る脱塩処理装置の運転条件変更の一例を示す概略図である。
 図28では、第2付着物検知部24Bからの検知用透過水22の透過水流量を第2検知用透過水側流量計41Cにより検知し、透過水流量の低下を検知した時点で、判定装置40で膜への付着があると判断する。この判断の結果、洗浄を実施する場合には、有機物洗浄液供給部52Dから有機物用の洗浄液51Dを供給して洗浄を行うようにしている。
 また、被処理水11への有機物用凝集剤53の添加量を調整する場合には、凝集ろ過部54に対して、有機物用凝集剤供給部55から、有機物用凝集剤53を供給するようにし、有機物用凝集剤53の供給により有機物を除去するようにしている。
 また、被処理水11への殺菌剤56の添加量を調整する場合には、凝集ろ過部54の下流側で、殺菌剤供給部57から殺菌剤56を供給するようにしている。殺菌剤56の添加量を減らすことで、微生物に由来する有機物を減らすようにしている。
 また、逆浸透膜装置14に導入する被処理水11へのpHを調整する場合には、凝集ろ過部54の下流側のpH調整部57に供給する酸又はアルカリのpH調整剤58を、酸又はアルカリ供給部59から供給するようにし、pHを調整することで、微生物を死滅させるようにしている。また、pHを高くすることで、有機物の溶解・付着を抑制するようにしている。
 また、被処理水11中の有機物をさらに除去する場合には、pH調整部57の下流側において、被処理水導入ラインL1から流路を分岐する切替部61、62を操作し、バイパス通路L31に介装した有機物吸着塔63に被処理水11を通過させ、被処理水11中の有機物を吸着除去するようにしている。
 また、カートリッジフィルタ64を逆浸透膜装置14の上流側に設置し、被処理水11中の不純物を更にろ過するようにしている。
 以上の運転条件を変更することで、微生物由来のバイオファウリングを防止することができる。なお、図28中、符号65はpH調整部であり、原水である被処理水11のpHをpH調整剤(酸又はアルカリ)58により調整している。
 図29は、実施例4に係る脱塩処理装置の概略図である。なお、実施例1及び実施例2及び実施例3と同一部材については、同一符号を付して重複する説明は省略する。
 本実施例では、図29に示すように、本実施例の脱塩処理装置10Dは、実施例1の脱塩処理装置10Aの逆浸透膜装置14からの非透過水15を用い、この非透過水15中のスケール成分による付着物の付着の予測と、実施例3の脱塩処理装置10Cの逆浸透膜装置14に供給する前の被処理水11を用い、この被処理水11中の有機物を含む溶解成分による付着物又は微生物に起因するバイオファウリングを防止するものである。
 本実施例では、本実施例の第1付着物検知部24Aを用いて、検知用透過水22の透過水流量を計測し、透過水流量の低下を第1検知用透過水側流量計41Aにより検知する事により、本設の逆浸透膜装置14の逆浸透膜での無機スケール成分等の逆浸透膜の出口側での付着物の付着を予測すると共に、第2付着物検知部24Bを用いて、検知用透過水22の透過水流量を計測し、透過水流量の低下を第2検知用透過水側流量計41Cにより検知する事により、本設の逆浸透膜装置14の逆浸透膜での有機成分による付着物又は微生物に起因するバイオファウリング等の逆浸透膜の入口側での付着物の付着を予測するようにしている。
 なお、図29においては、図28に示した運転制御のうち、凝集剤53及び殺菌剤56の添加の例を示しているが、図28に示すような他の運転制御を実施するようにしてもよい。
 そして、本設の逆浸透膜装置14の逆浸透膜への付着物の付着が予測される際、本設の逆浸透膜装置14の前記逆浸透膜への洗浄処理の実行、又は前記脱塩処理装置の付着物を付着させない運転条件の変更のいずれか一方又は両方を制御装置45により行う。これにより、本設の逆浸透膜装置14の逆浸透膜への付着物の付着が無い、安定した運転を行うことができる。
 図30は、実施例5に係る脱塩処理装置の概略図である。なお、実施例1と同一部材については、同一符号を付して重複する説明は省略する。
 本実施例では、図30に示すように、本実施例の脱塩処理装置10Eは、実施例1の脱塩処理装置10Aの逆浸透膜装置14からの非透過水15を更に濃縮する蒸発器71を非透過水ラインL11に設置している。
 この蒸発器71により、非透過水15中の水分を除去することが可能であり、更には非処理水15中に含まれる固体を回収することもできるようにしている。
 本実施例では、第1検知用逆浸透膜21Aを有する第1付着物検知部24Aを用いて、運転制御する際、逆浸透膜装置14の逆浸透膜の限界濃縮を行うことができるので、非透過水15の高減容化を図ることができる。
 すなわち、実施例1において説明したように、付着物付着裕度を求め、この付着物付着裕度によって、逆浸透膜装置14の運転制御を行い、付着物が付着しない限界の裕度の運転条件とする事で、本設の逆浸透膜装置14の処理効率向上や、処理コストの低廉化を図ると共に、非透過水15が減容化されるので、蒸発器にかかわる処理コストの低廉化を図るようにしている。
 ここで、蒸発器71としては、例えば水分を蒸発させる蒸発装置、蒸留装置、結晶化装置、無排水化装置等を例示することができる。
 10A~10E 脱塩処理装置
 11 被処理水
 13 透過水
 14 逆浸透膜装置
 15 非透過水
 L11 非透過水ライン
 L12 非透過水分岐ライン
 L21 被処理水分岐ライン
 21A 第1検知用逆浸透膜
 21B 第2検知用逆浸透膜
 22 検知用透過水
 23 検知用非透過水
 24A 第1付着物検知部
 24B 第2付着物検知部
 40 判定装置
 41A 第1検知用透過水側流量計
 41B 第1検知用非透過水側流量計
 41C 第2検知用透過水側流量計
 41D 第2検知用非透過水側流量計
 45 制御装置

Claims (23)

  1.  被処理水から分離膜により溶解成分や分散成分を濃縮して透過水を得る分離膜装置から溶解成分や分散成分を濃縮した非透過水を排出する非透過水ラインと、
     前記非透過水ラインから分岐した非透過水分岐ラインに設けられ、前記分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、
     前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、を備えることを特徴とする水処理装置の付着物監視装置。
  2.  分離膜により溶解成分や分散成分を濃縮して透過水を得る分離膜装置へ被処理水を供給する被処理水供給ラインと、
     前記被処理水供給ラインから分岐した分岐ラインに設けられ、前記分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、
     前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、を備えることを特徴とする水処理装置の付着物監視装置。
  3.  請求項1又は2において、
     前記付着条件変更装置は、分岐した前記検知液の供給圧力を変化させる圧力調整装置であることを特徴とする水処理装置の付着物監視装置。
  4.  請求項1又は2において、
     前記付着条件変更装置は、分岐した前記検知液の供給流量を変化する流量調整装置であることを特徴とする水処理装置の付着物監視装置。
  5.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     前記分離膜装置から溶解成分や分散成分を濃縮した非透過水を排出する非透過水ラインと、
     前記非透過水ラインから分岐した非透過水分岐ラインに設けられ、前記分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、
     前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、
     前記第1検知用分離液流量計測装置の計測の結果、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件の変更のいずれか一方又は両方を行う制御装置と、を備えることを特徴とする水処理装置。
  6.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     前記分離膜装置に前記被処理水を供給する被処理水供給ラインと、
     前記被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、前記分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、
     前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、
     前記第2検知用分離液流量計測装置の計測の結果、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件の変更のいずれか一方又は両方を行う制御装置と、を備えることを特徴とする水処理装置。
  7.  被処理水から溶解成分や分散成分を濃縮し、透過水を得る分離膜を有する分離膜装置と、
     前記分離膜装置から溶解成分や分散成分を濃縮した非透過水を排出する非透過水ラインと、
     前記非透過水ラインから分岐した非透過水分岐ラインに設けられ、前記分岐した非透過水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第1検知用分離膜を有する第1付着物検知部と、
     前記第1検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、
     前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第1検知用分離液流量計測装置と、
     前記分離膜装置に前記被処理水を供給する被処理水供給ラインと、
     前記被処理水供給ラインから分岐した被処理水分岐ラインに設けられ、前記分岐した被処理水の一部を検知液とし、該検知液を検知用透過水と検知用非透過水とに分離する第2検知用分離膜を有する第2付着物検知部と、
     前記第2検知用分離膜への付着物の付着条件を変更させる付着条件変更装置と、
     前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水のいずれか一方又は両方の流量を計測する第2検知用分離液流量計測装置と、
     前記第1検知用分離液流量計測装置又は第2検知用分離液流量計測装置の計測の結果、前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件の変更のいずれか一方又は両方を行う制御装置と、を備えることを特徴とする水処理装置。
  8.  請求項5乃至7のいずれか一つにおいて、
     前記分離膜装置からの前記非透過水の水分を蒸発させる蒸発器を備えることを特徴とする水処理装置。
  9.  請求項1の水処理装置の付着物監視装置を用い、
     第1検知用分離液流量計測装置で、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、
     前記第1検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量よりも変化する場合、
     前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件へ変更のいずれか一方又は両方を行うことを特徴とする水処理装置の運転方法。
  10.  請求項9において、
     前記付着物の付着条件の変更は、分岐した前記非透過水の供給圧力を変更する場合であり、供給圧力が所定閾値以下であることを特徴とする水処理装置の運転方法。
  11.  請求項9において、
     前記付着物の付着条件の変更は、分岐した前記非透過水の供給流量を変更する場合であり、供給流量が所定閾値以上であることを特徴とする水処理装置の運転方法。
  12.  請求項2の水処理装置の付着物監視装置を用い、
     第2検知用分離液流量計測装置で、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、
     前記第2検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量よりも変化する場合、
     前記分離膜装置の前記分離膜への洗浄処理の実行、又は前記分離膜装置の前記分離膜への付着物を付着させない運転条件へ変更のいずれか一方又は両方を行うことを特徴とする水処理装置の運転方法。
  13.  請求項12において、
     前記付着物の付着条件の変更は、分岐した前記被処理水の供給圧力を変更する場合であり、供給圧力が所定閾値以下であることを特徴とする水処理装置の運転方法。
  14.  請求項12において、
     前記付着物の付着条件の変更は、分岐した前記被処理水の供給流量を変更する場合であり、供給流量が所定閾値以上であることを特徴とする水処理装置の運転方法。
  15.  請求項1の水処理装置の付着物監視装置を用い、
     第1検知用分離液流量計測装置で、前記第1検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、
     前記第1検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量を維持する場合、
     前記分離膜装置の運転条件の変更を行うことを特徴とする水処理装置の運転方法。
  16.  請求項15において、
     前記付着物の付着条件は、分岐した前記非透過水の供給圧力を変更する場合であり、供給圧力が所定閾値以上であることを特徴とする水処理装置の運転方法。
  17.  請求項15において、
     前記付着物の付着条件は、分岐した前記非透過水の供給流量を変更する場合であり、
     前記供給流量が所定閾値以下であることを特徴とする水処理装置の運転方法。
  18.  請求項2の水処理装置の付着物監視装置を用い、
     第2検知用分離液流量計測装置で、前記第2検知用分離膜で分離した検知用透過水又は検知用非透過水を計測する際、
     前記第2検知用分離膜への付着物の付着条件を変更し、前記検知用透過水又は検知用非透過水の流量が所定量を維持する場合、
     前記分離膜装置の運転条件の変更を行うことを特徴とする水処理装置の運転方法。
  19.  請求項18において、
     前記付着物の付着条件は、分岐した前記被処理水の供給圧力を変更する場合、供給圧力が所定閾値以上であることを特徴とする水処理装置の運転方法。
  20.  請求項18において、
     前記付着物の付着条件は、分岐した前記被処理水の供給流量を変更する場合であり、
     前記供給流量が所定閾値以下であることを特徴とする水処理装置の運転方法。
  21.  請求項1の水処理装置の付着物監視装置を用い、
     前記第1検知用分離液流量計測装置で、前記第1検知用分離膜で分離した前記検知用透過水又は前記検知用非透過水を計測する際、
     前記検知用透過水又は前記検知用非透過水の流量が所定量よりも変化する際の前記第1付着物検知部の前記第1検知用分離膜に付着している付着物に対応する洗浄液を選定し、前記分離膜装置に選定した洗浄液の供給を行うことを特徴とする水処理装置の洗浄方法。
  22.  請求項2の水処理装置の付着物監視装置を用い、
     前記第2検知用分離液流量計測装置で、前記第2検知用分離膜で分離した前記検知用透過水又は前記検知用非透過水を計測する際、
     前記検知用透過水又は前記検知用非透過水の流量が所定量よりも変化する際の前記第2付着物検知部の前記第2検知用分離膜に付着している付着物に対応する洗浄液を選定し、前記分離膜装置に選定した洗浄液の供給を行うことを特徴とする水処理装置の洗浄方法。
  23.  請求項9又は12において、
     前記分離膜装置からの前記非透過水の水分を蒸発させることを特徴とする水処理装置の運転方法。
     
PCT/JP2014/073236 2014-09-03 2014-09-03 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法 WO2016035174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/073236 WO2016035174A1 (ja) 2014-09-03 2014-09-03 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法
CN201480081417.3A CN106659980A (zh) 2014-09-03 2014-09-03 水处理装置的附着物监控装置、水处理装置及其运行方法以及水处理装置的清洗方法
US15/505,697 US20170275189A1 (en) 2014-09-03 2014-09-03 Deposit monitoring device for water treatment device, water treatment device, operating method for same, and washing method for water treatment device
CA2958803A CA2958803A1 (en) 2014-09-03 2014-09-03 Deposit monitoring device for water treatment device, water treatment device, operating method for same, and washing method for water treatment device
JP2016546249A JP6395844B2 (ja) 2014-09-03 2014-09-03 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073236 WO2016035174A1 (ja) 2014-09-03 2014-09-03 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法

Publications (1)

Publication Number Publication Date
WO2016035174A1 true WO2016035174A1 (ja) 2016-03-10

Family

ID=55439275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073236 WO2016035174A1 (ja) 2014-09-03 2014-09-03 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法

Country Status (5)

Country Link
US (1) US20170275189A1 (ja)
JP (1) JP6395844B2 (ja)
CN (1) CN106659980A (ja)
CA (1) CA2958803A1 (ja)
WO (1) WO2016035174A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162308B1 (ja) * 2016-10-27 2017-07-12 日中東北物産有限会社 塩類製造システム
WO2017175333A1 (ja) * 2016-04-06 2017-10-12 三菱重工業株式会社 水処理装置の性能評価方法、及び水処理装置
JP2018144015A (ja) * 2017-03-09 2018-09-20 株式会社ウェルシィ 逆浸透膜ろ過方法
CN110090559A (zh) * 2019-03-05 2019-08-06 枣庄河源水处理科技有限公司 一种针对硫酸盐垢的反渗透阻垢剂
JP2021513083A (ja) * 2018-04-23 2021-05-20 ノリア ウォーター テクノロジーズ,インコーポレイテッド リアルタイム膜表面監視方法及び装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109071273A (zh) * 2016-04-06 2018-12-21 三菱重工工程株式会社 水处理系统、水处理方法
CN109289538B (zh) * 2017-07-25 2022-04-05 中国石油化工股份有限公司 一种在线化学清洗反渗透膜的方法
CN112752605B (zh) * 2018-10-02 2023-03-24 三菱电机株式会社 过滤膜处理装置、膜过滤装置及过滤膜处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286445A (ja) * 1997-04-17 1998-10-27 Kurita Water Ind Ltd 膜分離装置
JP2008253953A (ja) * 2007-04-09 2008-10-23 Nitto Denko Corp 膜分離方法および膜分離装置
JP2009524521A (ja) * 2006-01-24 2009-07-02 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 逆浸透膜を監視する方法およびシステム
JP2010082546A (ja) * 2008-09-30 2010-04-15 Japan Organo Co Ltd 水処理装置および水処理方法
JP2012130823A (ja) * 2010-12-18 2012-07-12 Mitsubishi Heavy Ind Ltd 淡水化装置、膜の監視方法および淡水化装置の運転方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10286445A (ja) * 1997-04-17 1998-10-27 Kurita Water Ind Ltd 膜分離装置
JP2009524521A (ja) * 2006-01-24 2009-07-02 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア 逆浸透膜を監視する方法およびシステム
JP2008253953A (ja) * 2007-04-09 2008-10-23 Nitto Denko Corp 膜分離方法および膜分離装置
JP2010082546A (ja) * 2008-09-30 2010-04-15 Japan Organo Co Ltd 水処理装置および水処理方法
JP2012130823A (ja) * 2010-12-18 2012-07-12 Mitsubishi Heavy Ind Ltd 淡水化装置、膜の監視方法および淡水化装置の運転方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175333A1 (ja) * 2016-04-06 2017-10-12 三菱重工業株式会社 水処理装置の性能評価方法、及び水処理装置
JP6162308B1 (ja) * 2016-10-27 2017-07-12 日中東北物産有限会社 塩類製造システム
JP2018070402A (ja) * 2016-10-27 2018-05-10 日中東北物産有限会社 塩類製造システム
JP2018144015A (ja) * 2017-03-09 2018-09-20 株式会社ウェルシィ 逆浸透膜ろ過方法
JP2021513083A (ja) * 2018-04-23 2021-05-20 ノリア ウォーター テクノロジーズ,インコーポレイテッド リアルタイム膜表面監視方法及び装置
CN110090559A (zh) * 2019-03-05 2019-08-06 枣庄河源水处理科技有限公司 一种针对硫酸盐垢的反渗透阻垢剂

Also Published As

Publication number Publication date
US20170275189A1 (en) 2017-09-28
JPWO2016035174A1 (ja) 2017-04-27
CA2958803A1 (en) 2016-03-10
JP6395844B2 (ja) 2018-09-26
CN106659980A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6395844B2 (ja) 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法
Gabelich et al. High-recovery reverse osmosis desalination using intermediate chemical demineralization
EP1691915B1 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
JP6189205B2 (ja) 濃縮装置のスケール検知装置及び方法、水の再生処理システム
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
TWI699235B (zh) 水處理方法及裝置
JP2015042385A (ja) 淡水化システム
JP2008229418A (ja) 工業用水の処理方法および処理装置
JP5757109B2 (ja) 水処理方法及び水処理システム
WO2016035175A1 (ja) 水処理装置及び水処理装置の運転方法
JP5961916B2 (ja) 水処理装置
JP2012192363A (ja) 水処理方法及び水処理システム
WO2014129383A1 (ja) 水処理システム
JP6468384B1 (ja) 水処理装置
WO2019000160A1 (en) METHOD FOR CLEANING A FILTRATION MEMBRANE CONTAINED IN A WATER TREATMENT SYSTEM AND WATER TREATMENT SYSTEM
CN212504126U (zh) 浓缩系统
AU2004294839B2 (en) Method and system for increasing recovery and preventing precipitation fouling in pressure-driven membrane processes
WO2008024828A1 (en) Method and apparatus for use of chlorine dioxide to prevent bio-fouling of membranes used in treatment of water
IL176044A (en) Method and system for increasing recovery and preventing precipitation fouling in pressure driven membrane processes
MXPA06006504A (es) Metodo y sistema para incrementar la recuperacion y evitar las incrustaciones por la recipitacion en procesos de membrana por gradiente de presion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546249

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2958803

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15505697

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901061

Country of ref document: EP

Kind code of ref document: A1