WO2019000160A1 - Method for cleaning filtration membrane contained in water treatment system and water treatment system - Google Patents

Method for cleaning filtration membrane contained in water treatment system and water treatment system Download PDF

Info

Publication number
WO2019000160A1
WO2019000160A1 PCT/CN2017/089978 CN2017089978W WO2019000160A1 WO 2019000160 A1 WO2019000160 A1 WO 2019000160A1 CN 2017089978 W CN2017089978 W CN 2017089978W WO 2019000160 A1 WO2019000160 A1 WO 2019000160A1
Authority
WO
WIPO (PCT)
Prior art keywords
water stream
cleaning
membrane
cleaning solution
solution
Prior art date
Application number
PCT/CN2017/089978
Other languages
French (fr)
Inventor
Bo Yan
Zijun Xia
Hua Wang
Asal AMIRI
Jose Luis PLASENCIA CABANILLAS
Marcelo ANDREOTTI
Lei Cao
Wujun Rong
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to PCT/CN2017/089978 priority Critical patent/WO2019000160A1/en
Publication of WO2019000160A1 publication Critical patent/WO2019000160A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/4619Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only cathodic or alkaline water, e.g. for reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present disclosure generally relates to a method for cleaning a filtration membrane contained in a water treatment system and the water treatment system.
  • Membrane separation is a technology which selectively separates (fractionates) materials via pores and/or minute gaps in the molecular arrangement of a continuous structure.
  • Membrane separations are classified by pore size and by the separation driving force. These classifications are: microfiltration (MF) , ultrafiltration (UF) , nanofiltration (NF) , and reverse Osmosis (RO) .
  • membrane separation has been widely used in water treatment, food, biotechnology, and pharmaceutical industries.
  • membrane technology is becoming increasingly important.
  • MF and UF it is possible to remove particles, colloids and macromolecules, so that water can be disinfected in this way.
  • NF and RO it is possible to remove nano size molecules and ions to further purified the water and realize desalination.
  • the membrane is gradually contaminated by the contaminates in the water, causing a significant deterioration in permeation performance of the membrane. Therefore, there exists a need for various methods for cleaning contaminated membrane in different manners.
  • a conventional chemical cleaning of a filtration membrane is performed periodically, such as cleaning-in-place (CIP) .
  • the cleaning solution used comprises an acid solution, such as hydrochloric acid (HCl) , citric acid or the like, and/or a alkaline solution, such as sodium hydroxide (NaOH) , EDTA-Na, or the like.
  • the conventional chemical cleaning method is performed during a temporary stoppage of the filtration membrane.
  • the water production efficiency is reduced due to the membrane cleaning.
  • a series of stops may happen in downstream of the water filtration where the product water is needed in a continuous mode.
  • the conventional membrane cleaning process which needs to stop the water production, may need significant capital investment since all the devices need high pressure sealing.
  • One aspect of the present disclosure provides a method for cleaning a filtration membrane contained in a water treatment system.
  • the method comprises performing a first cleaning mode.
  • Performing the first cleaning mode comprises: adding a first cleaning solution to a feed water stream; pre-filtering the feed water stream containing the first cleaning solution to obtain a first pre-treated water stream; filtering the first pre-treated water stream with the filtration membrane to obtain a first product water stream; and neutralizing the first product water stream to obtain a first neutralized product water stream.
  • the water treatment system comprises: a pre-filtration unit having an inlet for receiving a feed water stream and an outlet for discharging a pre-treated water stream; a filtration unit comprising a filtration membrane, an inlet for receiving the pre-treated water stream and an outlet for discharging a product water stream; a cleaning solution source comprising a first cleaning solution and a second cleaning solution; and a cleaning solution supply unit configured to supply the first cleaning solution to the feed water stream and supply the second cleaning solution to the product water stream to obtain a first neutralized product water stream.
  • the present disclosure provides a continuous cleaning method for a filtration membrane contained in a water treatment system. With this method, the contaminated filtration membrane could be cleaned during its normal operation, so it is not necessary to stop the water production with the filtration membrane.
  • a pre-filtration is performed before the filtration to remove particles and precipitates resulted from chemical reactions of the first or the second cleaning solution, as well as matters contained in the feed water stream. Therefore, the fouling or scaling of the filtration membrane during the cleaning process may be prevented.
  • Fig. 1 is a block diagram of a water treatment system in accordance with one embodiment of the present disclosure
  • Fig. 2 is a block diagram of a water treatment system in accordance with another embodiment of the present disclosure.
  • Fig. 3 is flow chart of a method for cleaning a filtration membrane in accordance with one embodiment of the present disclosure
  • Fig. 4 is a flow chart of a method for cleaning a filtration membrane in accordance with another embodiment of the present disclosure
  • Fig. 5 is a diagram of an experiment result in accordance with Example 1 of the present disclosure.
  • Fig. 6 is a diagram of another experiment result in accordance with Example 2 of the present disclosure.
  • Fig. 7 is a bar chart of a relationship between the turbidity and the pH in accordance with Example 3 of the present disclosure.
  • Embodiments of the present disclosure relate to a method for cleaning a filtration membrane contained in a water treatment system and the water treatment system.
  • the present invention is not limited by the embodiments.
  • the approximating language may correspond to the precision of an instrument for measuring the value.
  • range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
  • suffix “ (s) ” as used herein is usually intended to include both the singular and the plural of the term that it modifies, thereby including one or more of that term.
  • any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value.
  • the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification.
  • one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate.
  • Fig. 1 is a block diagram of a water treatment system 100 according to one embodiment of the present disclosure.
  • the water treatment system 100 comprises a pre-filtration unit 101, a filtration unit 103 comprising a filtration membrane 104, a cleaning solution source 105, and a cleaning solution supply unit.
  • the pre-filtration unit 101 has an inlet for receiving a feed water stream 110 and an outlet for discharging a pre-treated water stream 111.
  • the pre-filtration unit 101 may comprise a coarse filter, a MF membrane, a UF membrane, or a combination thereof. With the pre-filtration unit 101 placed upstream the filtration unit 103, large particles in the feed water stream 110 including some precipitates generated during cleaning process may be removed, so that the fouling or scaling of the filtration membrane 104 to be cleaned can be prevented.
  • the filtration unit 103 has an inlet for receiving the pre-treated water stream 111, a first outlet for discharging a product water stream 113 and a second outlet for discharging a concentrate water stream 114.
  • the filtration membrane 104 contained in the filtration unit 103 may be a RO membrane, a NF membrane or a UF membrane.
  • the pre-filtration unit 101 and the filtration unit 103 in the water treatment system 100 are respectively coarse filter and UF, UF and NF, or UF and RO.
  • the cleaning solution source 105 comprises an acid solution 121 and an alkaline solution 123, which are stored separately in the cleaning solution source 105.
  • the acid solution 121 may comprise HCl, citric acid or the like
  • the alkaline solution 123 may comprise NaOH, EDTA-Na, or the like.
  • the cleaning solution supply unit in the water treatment system 100 comprises a set of conduits for supplying the acid solution 121 and/or the alkaline solution 123 for cleaning purpose.
  • the cleaning solution supply unit may comprise conduits 131, 133 for supplying the acid solution 121 to the feed water stream 110 and conduits 135, 137 for supplying the alkaline solution 123 to the product water stream 113 to neutralize a residue of the acid solution 121 in the product water stream 113, to obtain a neutralized product water stream 115.
  • the cleaning solution supply unit may comprise conduits 132, 133 for supplying the alkaline solution 123 to the feed water stream 110 and conduits 136, 137 for supplying the acid solution 121 to the product water stream 113 to neutralize a residue of the alkaline solution 123 in the product water stream 113, to obtain a neutralized product water stream 115.
  • Each of the conduits 131, 132, 135, 136 may comprise a valve (not shown in Fig. 1) configured to open and close its corresponding conduit.
  • the cleaning solution supply unit may further comprise a control unit (not shown in Fig. 1) to control the valves in the conduits 131, 132, 135, 136, so that the switch of the acid cleaning mode and the alkaline cleaning mode can be controlled by the control unit.
  • the pH value of the feed water stream 110 can be controlled.
  • the pH of the feed water stream 110 containing the acid solution 121 is controlled in a range of 1.0 to 5.0.
  • the pH of the feed water stream containing the alkaline solution 123 is controlled in a range of 9.0 to 10.4.
  • an acid cleaning mode or an alkaline cleaning mode may be performed.
  • the acid cleaning mode and the alkaline cleaning mode may be carried out alternately, to remove both acid soluble contaminates and alkali soluble contaminates from the filtration membrane 104.
  • a whole cleaning process may last a couple of hours including several cycles of acid cleaning mode and alkaline cleaning mode.
  • the cleaning process end up with the acid cleaning mode. Since the water production is continuous during membrane cleaning, the cleaning method of the present disclosure is called a continuous cleaning method.
  • Fig. 2 shows a block diagram of a water treatment system 200 according to another embodiment of the present disclosure.
  • the water treatment system 200 comprises: a pre-filtration unit (e.g. UF unit) 201, a filtration unit (e.g. NF unit) 203 comprising a filtration membrane (e.g. NF membrane) 204, and a bipolar membrane electro-dialyzer (BPED) unit 205.
  • the UF unit 201 receives a feed water stream 210 and discharges a pre-treated water stream 211.
  • the pre-treated water stream 211 is introduced to the NF unit 203 to obtain a product water stream 213 and a NF concentrate stream 214.
  • the water treatment system 200 may further comprise a boosting pump 202 to increase the pressure of the pre-treated water stream 211.
  • the BPED unit 205 is configured to receive a salt water stream 217 and produce an acid solution 221 and an alkaline solution 223.
  • Electrodialysis (ED) is an electrochemical process mainly used in industry for solution demineralization.
  • the BPED unit 205 employs a new type of membrane, the bipolar membrane, to allow the electrodissociation of water. So the BPED unit 205 could recover acids and alkali from a salt water stream.
  • the salt water stream 217 may comprise an aqueous solution containing soluble salts, such as sodium chloride (NaCl) , sodium sulfate (Na 2 SO 4 ) .
  • the salt water stream 217 may be seawater, a wastewater stream produced from an industrial process, a reverse osmosis (RO) concentrate stream, or an underground brine.
  • the salt water stream 217 comprises at least part of a neutralized product water stream 215 discharged from the NF unit 203.
  • the neutralized product water stream 215 may contain NaCl.
  • the acid solution 221 and the alkaline solution 223 comprise HCl and NaOH respectively.
  • the normal water production of the water treatment system 200 can be kept and an acid cleaning mode or an alkaline cleaning mode is then opened.
  • the acid cleaning mode (as shown in dotted lines in Fig. 2)
  • the acid solution 221 is introduced to the feed water stream 210 through a conduit 231.
  • the feed water stream 210 containing the acid solution 221 is filtered by the UF unit 201 and the NF unit 203, to produce the product water stream 213.
  • the alkaline solution 223 is introduced to the product water stream 213 through a conduit 233, to neutralize a residual of the acid solution 221 to obtain the neutralized product water stream 215.
  • the alkaline cleaning mode (as shown in dashed lines in Fig.
  • the alkaline solution 223 is introduced to the feed water stream 210 through a conduit 232, and the acid solution 221 is introduced to the product water stream 213 through a conduit 234 to neutralize a residual of the alkaline solution 223 to obtain the neutralized product water stream 215.
  • Each of the conduits 231, 232, 233, 234 may comprise a valve (not shown in Fig. 2) to control the supply of the acid solution 221 and/or the alkaline solution 223.
  • Embodiments of the present disclosure also provide a method for cleaning a filtration membrane contained in a water treatment system.
  • Fig. 3 shows a method 300 for cleaning a filtration membrane according to one embodiment of the present disclosure.
  • the method 300 comprises a first cleaning mode, and during performing the first cleaning mode, the method 300 may include the steps as follows.
  • a first cleaning solution is added to a feed water stream.
  • the first cleaning solution in step 301 may comprise an acid solution or an alkaline solution.
  • step 303 the feed water stream containing the first cleaning solution is pre-filtered to obtain a first pre-treated water stream.
  • step 305 the first pre-treated water stream is filtered with the filtration membrane to obtain a first product water stream.
  • step 307 the first product water stream is neutralized to obtain a first neutralized product water stream.
  • the feed water stream in step 301 may be an aqueous solution containing soluble salts (both inorganic salts and organic salts are included) , such as NaCl and Na 2 SO 4 .
  • the feed water stream may be seawater, a produced water from oil and gas recovery process (both on shore and subsea are included) , a wastewater stream produced from an industrial process, an underground brine, a seawater desalination waste brine, a RO concentrate stream, or a NF permeate stream.
  • Fig. 4 shows a flow chart of a method 400 for cleaning a filtration membrane contained in a water treatment system according to another embodiment of the present disclosure.
  • the method 400 comprises an acid cleaning mode and an alkaline cleaning mode which are performed alternately.
  • the method 400 may include the steps as follows.
  • an indicator identifies that the filtration membrane needs to be cleaned.
  • the indicator may include a flux drop through the filtration membrane, such as 30%drop of an original flux of the filtration membrane.
  • step 403 an acid cleaning mode is performed.
  • step 405 the flux of the filtration membrane is compared to the predetermined threshold value. If the flux of the filtration membrane is larger than or equal to the predetermined threshold value, the execution continues to a final step 410 where the cleaning ends. If the flux of the filtration membrane is less than the predetermined threshold value, the step 407 will start.
  • step 407 an alkaline cleaning mode is performed.
  • step 409 the flux of the filtration membrane is compared to the predetermined threshold value again. If the flux of the filtration membrane is larger than or equal to the predetermined threshold value, the execution continues to a final step 410 where the cleaning ends. If the flux of the filtration membrane is less than the predetermined threshold value, the step 403 will start again.
  • the acid cleaning mode and the alkaline cleaning mode are carried out alternately, until the flux of the filtration membrane is larger than or equal to the predetermined threshold value.
  • the cleaning method 400 is started with the acid cleaning mode. While in some other embodiments, the cleaning method may start with the alkaline cleaning mode.
  • the indicator that triggers the cleaning process 400 and judging criteria for whether to stop the cleaning or not may be not limited to the flux of the filtration membrane, but may also include other characteristics of the filtration membrane, such as pressure drop, quality of a product water stream.
  • the filtration membrane could be cleaned during normal working of the water treatment system without stopping the membrane filtration.
  • the production amount and properties of the product water stream are unchanged, for example, the product water stream is always kept neutral.
  • the first example was carried out with a lab scale NF system.
  • the feed water stream of the NF system was set as synthetic seawater (conductivity 43 mS/cm) at 4 °C to mimic a feed water stream under deep sea.
  • the lab scale NF system comprised a 30.48 cm long NF membrane module.
  • the test on the NF system comprised: membrane stabilization, a first scaling formation, a first acid cleaning, a second scaling formation, and a second acid cleaning.
  • the NF membrane module was stabilized and then operated in a high hardness (2000 ppm) and high alkalinity (1280 ppm) environment containing CaCO 3 until the permeate flux dropped by over 30%. Then a first acid cleaning of the NF module was performed. During the first acid cleaning, a HCl solution was added to the feed water stream to adjust its pH between 2-2.5 and further supplemented when the HCl acid was consumed in the system. After 1-hour acid cleaning, a performance test was performed to check the cleaning efficiency, followed by a first 2-hour acid cleaning to further remove CaCO 3 scales on the NF membrane as indicated by a further flux increase. After the first 2-hour acid cleaning, the flux of the NF membrane module was recovered back to initial performance. Next, a second cycle of scaling forming and a second 2-hour acid cleaning was performed as a repeat and reached to the same result as the first testing cycle.
  • the flow velocity on the membrane surface was set at 6.4 cm/s, which equaled to the surface velocity at the outlet of the membrane skid in real subsea application.
  • the surface velocity in the continuous acid cleaning process was critically different from conventional process. It was about half of the velocity at inlet since 50%of the feed water stream was changed into product water stream during continuous cleaning.
  • the second example was also carried out with a lab scale NF system.
  • the lab scale NF system comprised a 12-inch long NF membrane module.
  • the test on the NF system comprised: membrane stabilization, membrane scaling formation, continuous cleaning with two cycles of alkaline cleaning and acid cleaning.
  • the membrane was firstly stabilized and then fouled until the membrane flux decreased by 20%.
  • the continuous cleaning process started with flushing membrane with an alkaline solution to adjust the pH of the feed water stream to 9.6.
  • the pH of the cleaning solution was critically controlled to minimize mass precipitation in the seawater application.
  • the membrane was tested and switched into an acid cleaning mode. After a certain period of the acid cleaning, the membrane performance was checked to verify the performance recovery. Since the membrane flux did not reach the targeted performance (95%of initial flux in this example) , a second cycle of alkaline/acid cleaning was carried out.
  • the NF membrane was operated at a normal production pressure to continuously generate a permeate water.
  • the surface velocity during the continuous cleaning was controlled to be at 6.4 cm/sto mimic the velocity at outlet of the membrane skid in subsea application.
  • the membrane flux was cleaned back to 97%of the initial flux after two cycles of continuous alkaline/acid cleaning.
  • the feeding water stream contains significant amounts of Mg 2+ and Ca 2+ , which may generate Mg (OH) 2 and CaCO 3 in high pH solution.
  • Those precipitates will cause blocking of downstream filtration assets, such as UF membranes, NF membranes. Therefore, the pH of alkaline cleaning mode should be controlled to avoid mass formation of those precipitates.
  • a lab test was performed to verify the pH upper limit of the alkaline cleaning mode.
  • a series of synthetic seawater samples were prepared according to the recipe shown in Table 1. The solutions were adjusted to pH 9.48-10.89 and cooled down to 3-4 °C through ice bath. The precipitation of the solution was measured through turbidity test which indicated the transparency of the sample. Higher turbidity was a result from greater amount of particles precipitated in solution.
  • pH of the solution raised above 9.9
  • turbidity of the solution increased to 0.6 Nephelometric Turbidity Unit (NTU) which was higher than the turbidity of the prepared synthetic seawater samples (around 0.3 NTU) .
  • NTU Nephelometric Turbidity Unit
  • the pH of the alkaline solution would be controlled to less than 10.5 or more stringently less than 10.
  • the water treatment system 200 shown in Fig. 2 was employed in Example 4.
  • Seawater 210 was introduced to the UF unit 201 as a feed water stream to remove fine particles (50 ⁇ 100 nm in diameter) therein.
  • the pre-filtered seawater 211 was boosted by the boost pump 202 and fed into the NF unit 203 to produce the product water stream 213 and the concentrate stream 214.
  • the concentrate stream 214 with rich amount of divalent ions (such as Ca, Mg, SO 4 2- etc. ) was discharged at an assigned brine region.
  • One part of the product water stream 213 was sent to an injection pump (not shown in Fig. 2) for downstream application.
  • the other part of the product water stream 213 was introduced into the BPED unit 205 to generate the acid solution 221 and the alkaline solution 223.
  • the alkaline solution 223 from the BPED unit 205 was introduced to the seawater 210 and the pH of the seawater 210 was controlled at 9.5 ⁇ 9.8 to minimize the precipitation of ions contained in seawater 210.
  • the UF unit 201 was deployed to block any potential existing fine particles to secure the downside NF unit.
  • the acid solution 221 from the BPED unit 205 was introduced to the product water stream 213 from the NF unit 203 to neutralize the product water stream 213. In this case no significant impact was generated with the usage of NF permeate water in downstream application (e.g. subsea injection) .
  • the above described first cleaning mode is an alkaline cleaning mode.
  • the cleaning was switched to a second cleaning mode: acid cleaning mode.
  • acid cleaning mode the acid solution 221 from the BPED unit 205 was introduced to the seawater 210, and the alkaline solution 223 from the BPED unit 205 was introduced to the product water stream 213 for neutralization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a method for cleaning a filtration membrane contained in a water treatment system and the water treatment system. The method comprises a first cleaning mode. The first cleaning mode comprises: adding a first cleaning solution to the feed water stream; pre-filtering the feed water stream containing the first cleaning solution to obtain a first pre-treated water stream; filtering the first pre-treated water stream with the filtration membrane to obtain a first product water stream; and neutralizing the first product water stream to obtain a first neutralized product water.

Description

METHOD FOR CLEANING FILTRATION MEMBRANE CONTAINED IN WATER TREATMENT SYSTEM AND WATER TREATMENT SYSTEM BACKGROUND
The present disclosure generally relates to a method for cleaning a filtration membrane contained in a water treatment system and the water treatment system.
Membrane separation is a technology which selectively separates (fractionates) materials via pores and/or minute gaps in the molecular arrangement of a continuous structure. Membrane separations are classified by pore size and by the separation driving force. These classifications are: microfiltration (MF) , ultrafiltration (UF) , nanofiltration (NF) , and reverse Osmosis (RO) .
Nowadays, membrane separation has been widely used in water treatment, food, biotechnology, and pharmaceutical industries. In water treatment, membrane technology is becoming increasingly important. For example, with the help of MF and UF, it is possible to remove particles, colloids and macromolecules, so that water can be disinfected in this way. With the help of NF and RO, it is possible to remove nano size molecules and ions to further purified the water and realize desalination. However, during membrane separation operation, the membrane is gradually contaminated by the contaminates in the water, causing a significant deterioration in permeation performance of the membrane. Therefore, there exists a need for various methods for cleaning contaminated membrane in different manners. Usually, a conventional chemical cleaning of a filtration membrane is performed periodically, such as cleaning-in-place (CIP) . The cleaning solution used comprises an acid solution, such as hydrochloric acid (HCl) , citric acid or the like, and/or a alkaline solution, such as sodium hydroxide (NaOH) , EDTA-Na, or the like. However, the conventional chemical cleaning method is performed during a temporary stoppage of the filtration membrane. Thus, in the water treatment, the water production efficiency is reduced due to the membrane cleaning. And when the water filtration using the filtration membrane is stopped, a series of stops may happen in downstream of the  water filtration where the product water is needed in a continuous mode. Moreover, in some operation environments, such as underwater, the conventional membrane cleaning process which needs to stop the water production, may need significant capital investment since all the devices need high pressure sealing.
Therefore, a continuous cleaning method for filtration membrane which will not affect the normal operation of the membrane filtration is -desired for water treatment systems.
BRIEF DESCRIPTION
One aspect of the present disclosure provides a method for cleaning a filtration membrane contained in a water treatment system. The method comprises performing a first cleaning mode. Performing the first cleaning mode comprises: adding a first cleaning solution to a feed water stream; pre-filtering the feed water stream containing the first cleaning solution to obtain a first pre-treated water stream; filtering the first pre-treated water stream with the filtration membrane to obtain a first product water stream; and neutralizing the first product water stream to obtain a first neutralized product water stream.
Another aspect of the present disclosure provides a water treatment system. The water treatment system comprises: a pre-filtration unit having an inlet for receiving a feed water stream and an outlet for discharging a pre-treated water stream; a filtration unit comprising a filtration membrane, an inlet for receiving the pre-treated water stream and an outlet for discharging a product water stream; a cleaning solution source comprising a first cleaning solution and a second cleaning solution; and a cleaning solution supply unit configured to supply the first cleaning solution to the feed water stream and supply the second cleaning solution to the product water stream to obtain a first neutralized product water stream.
The present disclosure provides a continuous cleaning method for a filtration membrane contained in a water treatment system. With this method, the  contaminated filtration membrane could be cleaned during its normal operation, so it is not necessary to stop the water production with the filtration membrane.
Furthermore, during the cleaning process a pre-filtration is performed before the filtration to remove particles and precipitates resulted from chemical reactions of the first or the second cleaning solution, as well as matters contained in the feed water stream. Therefore, the fouling or scaling of the filtration membrane during the cleaning process may be prevented.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the subsequent detailed description when taken in conjunction with the accompanying drawings in which:
Fig. 1 is a block diagram of a water treatment system in accordance with one embodiment of the present disclosure;
Fig. 2 is a block diagram of a water treatment system in accordance with another embodiment of the present disclosure;
Fig. 3 is flow chart of a method for cleaning a filtration membrane in accordance with one embodiment of the present disclosure;
Fig. 4 is a flow chart of a method for cleaning a filtration membrane in accordance with another embodiment of the present disclosure;
Fig. 5 is a diagram of an experiment result in accordance with Example 1 of the present disclosure;
Fig. 6 is a diagram of another experiment result in accordance with Example 2 of the present disclosure; and
Fig. 7 is a bar chart of a relationship between the turbidity and the pH in accordance with Example 3 of the present disclosure.
DETAILED DESCRIPTION
Embodiments of the present disclosure relate to a method for cleaning a filtration membrane contained in a water treatment system and the water treatment system. The present invention is not limited by the embodiments.
Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. The terms “a” and “an” do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the alkaline function to which it is related. Accordingly, a value modified by a term or terms, such as “about” and “substantially” , are not to be limited to the precise value specified. Additionally, when using an expression of “about a first value -a second value, ” the about is intended to modify both values. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here, and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. Moreover, the suffix “ (s) ” as used herein is usually intended to include both the singular and the plural of the term that it modifies, thereby including one or more of that term.
Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As an example, if it is stated that the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of  what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
Fig. 1 is a block diagram of a water treatment system 100 according to one embodiment of the present disclosure. As shown in Fig. 1, the water treatment system 100 comprises a pre-filtration unit 101, a filtration unit 103 comprising a filtration membrane 104, a cleaning solution source 105, and a cleaning solution supply unit.
The pre-filtration unit 101 has an inlet for receiving a feed water stream 110 and an outlet for discharging a pre-treated water stream 111. The pre-filtration unit 101 may comprise a coarse filter, a MF membrane, a UF membrane, or a combination thereof. With the pre-filtration unit 101 placed upstream the filtration unit 103, large particles in the feed water stream 110 including some precipitates generated during cleaning process may be removed, so that the fouling or scaling of the filtration membrane 104 to be cleaned can be prevented.
The filtration unit 103 has an inlet for receiving the pre-treated water stream 111, a first outlet for discharging a product water stream 113 and a second outlet for discharging a concentrate water stream 114. The filtration membrane 104 contained in the filtration unit 103 may be a RO membrane, a NF membrane or a UF membrane. In some embodiments, the pre-filtration unit 101 and the filtration unit 103 in the water treatment system 100 are respectively coarse filter and UF, UF and NF, or UF and RO.
The cleaning solution source 105 comprises an acid solution 121 and an alkaline solution 123, which are stored separately in the cleaning solution source 105. Specifically, the acid solution 121 may comprise HCl, citric acid or the like, and the alkaline solution 123 may comprise NaOH, EDTA-Na, or the like.
The cleaning solution supply unit in the water treatment system 100 comprises a set of conduits for supplying the acid solution 121 and/or the alkaline solution 123 for cleaning purpose. Specifically, during an acid cleaning mode, the cleaning solution supply unit may comprise conduits 131, 133 for supplying the acid  solution 121 to the feed water stream 110 and  conduits  135, 137 for supplying the alkaline solution 123 to the product water stream 113 to neutralize a residue of the acid solution 121 in the product water stream 113, to obtain a neutralized product water stream 115. While during an alkaline cleaning mode, the cleaning solution supply unit may comprise  conduits  132, 133 for supplying the alkaline solution 123 to the feed water stream 110 and  conduits  136, 137 for supplying the acid solution 121 to the product water stream 113 to neutralize a residue of the alkaline solution 123 in the product water stream 113, to obtain a neutralized product water stream 115. Each of the  conduits  131, 132, 135, 136 may comprise a valve (not shown in Fig. 1) configured to open and close its corresponding conduit. The cleaning solution supply unit may further comprise a control unit (not shown in Fig. 1) to control the valves in the  conduits  131, 132, 135, 136, so that the switch of the acid cleaning mode and the alkaline cleaning mode can be controlled by the control unit.
To achieve better cleaning performance and avoid large-scale precipitation, the pH value of the feed water stream 110 can be controlled. During the acid cleaning mode, the pH of the feed water stream 110 containing the acid solution 121 is controlled in a range of 1.0 to 5.0. During the alkaline cleaning mode, the pH of the feed water stream containing the alkaline solution 123 is controlled in a range of 9.0 to 10.4.
During water production with the filtration unit 103, when an indicator, such as flux drop, pressure drop, quality of the  product water stream  113 or 115, shows that the filtration membrane 104 needs to be cleaned, an acid cleaning mode or an alkaline cleaning mode may be performed. In some embodiments, the acid cleaning mode and the alkaline cleaning mode may be carried out alternately, to remove both acid soluble contaminates and alkali soluble contaminates from the filtration membrane 104. A whole cleaning process may last a couple of hours including several cycles of acid cleaning mode and alkaline cleaning mode. Preferably, the cleaning process end up with the acid cleaning mode. Since the water production is continuous during membrane cleaning, the cleaning method of the present disclosure is called a continuous cleaning method.
Fig. 2 shows a block diagram of a water treatment system 200 according to another embodiment of the present disclosure. As shown in Fig. 2, the water treatment system 200 comprises: a pre-filtration unit (e.g. UF unit) 201, a filtration unit (e.g. NF unit) 203 comprising a filtration membrane (e.g. NF membrane) 204, and a bipolar membrane electro-dialyzer (BPED) unit 205. During normal operation of the water treatment system 200, the UF unit 201 receives a feed water stream 210 and discharges a pre-treated water stream 211. The pre-treated water stream 211 is introduced to the NF unit 203 to obtain a product water stream 213 and a NF concentrate stream 214. The water treatment system 200 may further comprise a boosting pump 202 to increase the pressure of the pre-treated water stream 211.
The BPED unit 205 is configured to receive a salt water stream 217 and produce an acid solution 221 and an alkaline solution 223. Electrodialysis (ED) is an electrochemical process mainly used in industry for solution demineralization. The BPED unit 205 employs a new type of membrane, the bipolar membrane, to allow the electrodissociation of water. So the BPED unit 205 could recover acids and alkali from a salt water stream. In the water treatment system 200, the salt water stream 217 may comprise an aqueous solution containing soluble salts, such as sodium chloride (NaCl) , sodium sulfate (Na2SO4) . For example, the salt water stream 217 may be seawater, a wastewater stream produced from an industrial process, a reverse osmosis (RO) concentrate stream, or an underground brine. In some embodiments, the salt water stream 217 comprises at least part of a neutralized product water stream 215 discharged from the NF unit 203. Usually the neutralized product water stream 215 may contain NaCl. When the salt water stream 217 containing NaCl is introduced to the BPED unit 205, the acid solution 221 and the alkaline solution 223 comprise HCl and NaOH respectively.
When the NF membrane 204 of the NF unit 203 needs to be cleaned, the normal water production of the water treatment system 200 can be kept and an acid cleaning mode or an alkaline cleaning mode is then opened. In the acid cleaning mode (as shown in dotted lines in Fig. 2) , the acid solution 221 is introduced to the feed water stream 210 through a conduit 231. The feed water stream 210 containing the  acid solution 221 is filtered by the UF unit 201 and the NF unit 203, to produce the product water stream 213. The alkaline solution 223 is introduced to the product water stream 213 through a conduit 233, to neutralize a residual of the acid solution 221 to obtain the neutralized product water stream 215. In the alkaline cleaning mode (as shown in dashed lines in Fig. 2) , the alkaline solution 223 is introduced to the feed water stream 210 through a conduit 232, and the acid solution 221 is introduced to the product water stream 213 through a conduit 234 to neutralize a residual of the alkaline solution 223 to obtain the neutralized product water stream 215. Each of the  conduits  231, 232, 233, 234 may comprise a valve (not shown in Fig. 2) to control the supply of the acid solution 221 and/or the alkaline solution 223.
Embodiments of the present disclosure also provide a method for cleaning a filtration membrane contained in a water treatment system. Fig. 3 shows a method 300 for cleaning a filtration membrane according to one embodiment of the present disclosure. The method 300 comprises a first cleaning mode, and during performing the first cleaning mode, the method 300 may include the steps as follows.
As shown in Fig. 3, in step 301, a first cleaning solution is added to a feed water stream. The first cleaning solution in step 301 may comprise an acid solution or an alkaline solution.
In step 303, the feed water stream containing the first cleaning solution is pre-filtered to obtain a first pre-treated water stream.
In step 305, the first pre-treated water stream is filtered with the filtration membrane to obtain a first product water stream.
In step 307, the first product water stream is neutralized to obtain a first neutralized product water stream.
The feed water stream in step 301 may be an aqueous solution containing soluble salts (both inorganic salts and organic salts are included) , such as NaCl and Na2SO4. For example, the feed water stream may be seawater, a produced water from oil and gas recovery process (both on shore and subsea are included) , a wastewater  stream produced from an industrial process, an underground brine, a seawater desalination waste brine, a RO concentrate stream, or a NF permeate stream.
Fig. 4 shows a flow chart of a method 400 for cleaning a filtration membrane contained in a water treatment system according to another embodiment of the present disclosure. The method 400 comprises an acid cleaning mode and an alkaline cleaning mode which are performed alternately. The method 400 may include the steps as follows.
In step 401, an indicator identifies that the filtration membrane needs to be cleaned. For example, the indicator may include a flux drop through the filtration membrane, such as 30%drop of an original flux of the filtration membrane.
In step 403, an acid cleaning mode is performed.
In step 405, the flux of the filtration membrane is compared to the predetermined threshold value. If the flux of the filtration membrane is larger than or equal to the predetermined threshold value, the execution continues to a final step 410 where the cleaning ends. If the flux of the filtration membrane is less than the predetermined threshold value, the step 407 will start.
In step 407, an alkaline cleaning mode is performed.
In step 409, the flux of the filtration membrane is compared to the predetermined threshold value again. If the flux of the filtration membrane is larger than or equal to the predetermined threshold value, the execution continues to a final step 410 where the cleaning ends. If the flux of the filtration membrane is less than the predetermined threshold value, the step 403 will start again.
With the method 400, the acid cleaning mode and the alkaline cleaning mode are carried out alternately, until the flux of the filtration membrane is larger than or equal to the predetermined threshold value. As shown in Fig. 4, the cleaning method 400 is started with the acid cleaning mode. While in some other embodiments, the cleaning method may start with the alkaline cleaning mode.
In addition, the indicator that triggers the cleaning process 400 and judging criteria for whether to stop the cleaning or not may be not limited to the flux of the filtration membrane, but may also include other characteristics of the filtration membrane, such as pressure drop, quality of a product water stream.
With the method of the present disclosure, the filtration membrane could be cleaned during normal working of the water treatment system without stopping the membrane filtration. The production amount and properties of the product water stream are unchanged, for example, the product water stream is always kept neutral.
Example 1
The first example was carried out with a lab scale NF system. The feed water stream of the NF system was set as synthetic seawater (conductivity 43 mS/cm) at 4 ℃ to mimic a feed water stream under deep sea. The lab scale NF system comprised a 30.48 cm long NF membrane module. As shown in Fig. 5, the test on the NF system comprised: membrane stabilization, a first scaling formation, a first acid cleaning, a second scaling formation, and a second acid cleaning.
At first, the NF membrane module was stabilized and then operated in a high hardness (2000 ppm) and high alkalinity (1280 ppm) environment containing CaCO3 until the permeate flux dropped by over 30%. Then a first acid cleaning of the NF module was performed. During the first acid cleaning, a HCl solution was added to the feed water stream to adjust its pH between 2-2.5 and further supplemented when the HCl acid was consumed in the system. After 1-hour acid cleaning, a performance test was performed to check the cleaning efficiency, followed by a first 2-hour acid cleaning to further remove CaCO3 scales on the NF membrane as indicated by a further flux increase. After the first 2-hour acid cleaning, the flux of the NF membrane module was recovered back to initial performance. Next, a second cycle of scaling forming and a second 2-hour acid cleaning was performed as a repeat and reached to the same result as the first testing cycle.
The flow velocity on the membrane surface was set at 6.4 cm/s, which equaled to the surface velocity at the outlet of the membrane skid in real subsea application. The surface velocity in the continuous acid cleaning process was critically different from conventional process. It was about half of the velocity at inlet since 50%of the feed water stream was changed into product water stream during continuous cleaning.
Example 2
The second example was also carried out with a lab scale NF system. The lab scale NF system comprised a 12-inch long NF membrane module. As shown in Fig. 6, the test on the NF system comprised: membrane stabilization, membrane scaling formation, continuous cleaning with two cycles of alkaline cleaning and acid cleaning.
In this test, the membrane was firstly stabilized and then fouled until the membrane flux decreased by 20%. The continuous cleaning process started with flushing membrane with an alkaline solution to adjust the pH of the feed water stream to 9.6. The pH of the cleaning solution was critically controlled to minimize mass precipitation in the seawater application. After an 8-hour alkaline cleaning, the membrane was tested and switched into an acid cleaning mode. After a certain period of the acid cleaning, the membrane performance was checked to verify the performance recovery. Since the membrane flux did not reach the targeted performance (95%of initial flux in this example) , a second cycle of alkaline/acid cleaning was carried out.
In the whole cleaning process, the NF membrane was operated at a normal production pressure to continuously generate a permeate water. The surface velocity during the continuous cleaning was controlled to be at 6.4 cm/sto mimic the velocity at outlet of the membrane skid in subsea application. The membrane flux was cleaned back to 97%of the initial flux after two cycles of continuous alkaline/acid cleaning.
Example 3
As for seawater application, the feeding water stream contains significant amounts of Mg2+ and Ca2+, which may generate Mg (OH) 2 and CaCO3 in high pH solution. Those precipitates will cause blocking of downstream filtration assets, such as UF membranes, NF membranes. Therefore, the pH of alkaline cleaning mode should be controlled to avoid mass formation of those precipitates.
A lab test was performed to verify the pH upper limit of the alkaline cleaning mode. A series of synthetic seawater samples were prepared according to the recipe shown in Table 1. The solutions were adjusted to pH 9.48-10.89 and cooled down to 3-4 ℃ through ice bath. The precipitation of the solution was measured through turbidity test which indicated the transparency of the sample. Higher turbidity was a result from greater amount of particles precipitated in solution. With pH of the solution raised above 9.9, turbidity of the solution increased to 0.6 Nephelometric Turbidity Unit (NTU) which was higher than the turbidity of the prepared synthetic seawater samples (around 0.3 NTU) . As shown in Fig. 7, when pH was increased above 10.4, turbidity raised over 1 NTU and continued to increase To avoid accumulation of fine particles during long term operation, the pH of the alkaline solution would be controlled to less than 10.5 or more stringently less than 10.
Table 1
Ions Concentration (mg/L)
Calcium 408.00
Magnesium 1298.00
Sodium 10768.00
Potassium 396.00
Sulfate 2702.00
Chloride 19363.90
Bicarbonate 145.40
Example 4
The water treatment system 200 shown in Fig. 2 was employed in Example 4. Seawater 210 was introduced to the UF unit 201 as a feed water stream to remove fine particles (50~100 nm in diameter) therein. The pre-filtered seawater 211 was  boosted by the boost pump 202 and fed into the NF unit 203 to produce the product water stream 213 and the concentrate stream 214. The concentrate stream 214 with rich amount of divalent ions (such as Ca, Mg, SO4 2-etc. ) was discharged at an assigned brine region. One part of the product water stream 213 was sent to an injection pump (not shown in Fig. 2) for downstream application. The other part of the product water stream 213 was introduced into the BPED unit 205 to generate the acid solution 221 and the alkaline solution 223.
During a first cleaning mode, the alkaline solution 223 from the BPED unit 205 was introduced to the seawater 210 and the pH of the seawater 210 was controlled at 9.5~9.8 to minimize the precipitation of ions contained in seawater 210. The UF unit 201 was deployed to block any potential existing fine particles to secure the downside NF unit. The acid solution 221 from the BPED unit 205 was introduced to the product water stream 213 from the NF unit 203 to neutralize the product water stream 213. In this case no significant impact was generated with the usage of NF permeate water in downstream application (e.g. subsea injection) . The above described first cleaning mode is an alkaline cleaning mode.
Once the NF membrane 204 was cleaned at high pH for a certain period to have the productivity recovered, the cleaning was switched to a second cleaning mode: acid cleaning mode. In the acid cleaning mode, the acid solution 221 from the BPED unit 205 was introduced to the seawater 210, and the alkaline solution 223 from the BPED unit 205 was introduced to the product water stream 213 for neutralization.
Considering the acid or alkaline residual could be in the backwash stream of the UF membranes and concentrate stream 214 of the NF unit 203, additional neutralization stream was sent from the BPED unit 205 to mix with those solutions. Overall the BPED generated relatively equal amount of acid and alkaline solutions, and both chemicals were discharged to neutral or seawater pH (~8) when checking at a system level.
As a calculation, about 58.5 ppm (1mM) of additional NaCl was introduced from the acid/alkaline neutralization. This amount of salt was added into the final  permeate water for injection. Compared to the averagely 3.5% (35000 ppm) total dissolved solids (TDS) in seawater, this increase in product water TDS was negligible. 
This written description uses examples to describe the disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (18)

  1. A method for cleaning a filtration membrane contained in a water treatment system, comprising performing a first cleaning mode, wherein performing the first cleaning mode comprises:
    adding a first cleaning solution to a feed water stream;
    pre-filtering the feed water stream containing the first cleaning solution to obtain a first pre-treated water stream;
    filtering the first pre-treated water stream with the filtration membrane to obtain a first product water stream; and
    neutralizing the first product water stream to obtain a first neutralized product water stream.
  2. The method of claim 1, wherein the filtration membrane comprises a reverse osmosis membrane, a nanofiltration membrane or an ultrafiltration membrane.
  3. The method of claim 1, wherein the pre-filtering comprises using a coarse filter, a microfiltration membrane, an ultrafiltration membrane, or a combination thereof for pre-filtering.
  4. The method of claim 1, wherein the first cleaning solution is an acid solution.
  5. The method of claim 4, wherein the acid solution comprises hydrochloric acid.
  6. The method of claim 4, wherein the pH of the feed water stream containing the first cleaning solution is controlled in a range of 1.0 to 5.0.
  7. The method of claim 1, wherein the first cleaning solution is an alkaline solution.
  8. The method of claim 7, wherein the alkaline solution comprises sodium hydroxide.
  9. The method of claim 7, wherein the pH of the feed water stream containing the first cleaning solution is controlled in a range of 9.0 to 10.4.
  10. The method of claim 1, further comprising performing a second cleaning mode, wherein the first cleaning mode and the second cleaning mode are performed alternately, and performing the second cleaning mode comprises:
    adding a second cleaning solution to the feed water stream;
    pre-filtering the feed water stream containing the second cleaning solution to obtain a second pre-treated water stream;
    filtering the second pre-treated water stream with the filtration membrane to obtain a second product water stream; and
    neutralizing the second product water stream to obtain a second neutralized product water stream.
  11. The method of claim 1, further comprising generating the first cleaning solution using a bipolar electro-dialyzer.
  12. The method of claim 11, further comprising introducing at least part of the first neutralized product water to the bipolar electro-dialyzer.
  13. A water treatment system comprising:
    a pre-filtration unit having an inlet for receiving a feed water stream and an outlet for discharging a pre-treated water stream;
    a filtration unit comprising a filtration membrane, an inlet for receiving the pre-treated water stream and an outlet for discharging a product water stream;
    a cleaning solution source comprising a first cleaning solution and a second cleaning solution; and
    a cleaning solution supply unit configured to supply the first cleaning solution to the feed water stream and supply the second cleaning solution to the product water stream to obtain a first neutralized product water stream.
  14. The system of claim 13, wherein the filtration membrane comprises a reverse osmosis membrane, a nanofiltration membrane or an ultrafiltration membrane.
  15. The system of claim 13, wherein the pre-filtration unit comprises a coarse filter, a microfiltration membrane, an ultrafiltration membrane, or a combination thereof.
  16. The system of claim 13, wherein the cleaning solution supply unit is also configured to supply the second cleaning solution to the feed water stream and supply  the first cleaning solution to the product water stream to obtain a second neutralized product water stream.
  17. The system of claim 13, wherein the cleaning solution source comprises a bipolar electro-dialyzer configured to generate the first cleaning solution and the second cleaning solution.
  18. The system of claim 16, wherein the bipolar electro-dialyzer has an inlet connected to the outlet of the filtration unit and is configured for receiving at least part of the product water stream.
PCT/CN2017/089978 2017-06-26 2017-06-26 Method for cleaning filtration membrane contained in water treatment system and water treatment system WO2019000160A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/089978 WO2019000160A1 (en) 2017-06-26 2017-06-26 Method for cleaning filtration membrane contained in water treatment system and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/089978 WO2019000160A1 (en) 2017-06-26 2017-06-26 Method for cleaning filtration membrane contained in water treatment system and water treatment system

Publications (1)

Publication Number Publication Date
WO2019000160A1 true WO2019000160A1 (en) 2019-01-03

Family

ID=64742739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089978 WO2019000160A1 (en) 2017-06-26 2017-06-26 Method for cleaning filtration membrane contained in water treatment system and water treatment system

Country Status (1)

Country Link
WO (1) WO2019000160A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451223A (en) * 2020-04-29 2020-07-28 中电华创(苏州)电力技术研究有限公司 Online cleaning device and method for water vapor sampling system
CN112354370A (en) * 2020-11-12 2021-02-12 浙江天行健水务有限公司 Ceramic membrane chemical cleaning waste liquid treatment process

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304803B2 (en) * 1999-12-28 2009-07-29 Jfeエンジニアリング株式会社 Water treatment apparatus cleaning method and water treatment apparatus
JP5188454B2 (en) * 2009-05-25 2013-04-24 株式会社アストム Method for producing organic acid
CN103638819A (en) * 2013-12-19 2014-03-19 北京林业大学 Method for cleaning external tubular membrane for deeply treating waste incineration leachate
CN103663771A (en) * 2012-09-21 2014-03-26 中国石油化工股份有限公司 Medication method and medication system of water treatment device
US20150231533A1 (en) * 2012-09-20 2015-08-20 Total Sa Underwater water treatment unit and method for cleaning said unit
CN106103349A (en) * 2013-12-02 2016-11-09 东丽株式会社 Method for treating water
WO2017039859A1 (en) * 2015-08-31 2017-03-09 General Electric Company Subsea equipment cleaning system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304803B2 (en) * 1999-12-28 2009-07-29 Jfeエンジニアリング株式会社 Water treatment apparatus cleaning method and water treatment apparatus
JP5188454B2 (en) * 2009-05-25 2013-04-24 株式会社アストム Method for producing organic acid
US20150231533A1 (en) * 2012-09-20 2015-08-20 Total Sa Underwater water treatment unit and method for cleaning said unit
CN103663771A (en) * 2012-09-21 2014-03-26 中国石油化工股份有限公司 Medication method and medication system of water treatment device
CN106103349A (en) * 2013-12-02 2016-11-09 东丽株式会社 Method for treating water
CN103638819A (en) * 2013-12-19 2014-03-19 北京林业大学 Method for cleaning external tubular membrane for deeply treating waste incineration leachate
WO2017039859A1 (en) * 2015-08-31 2017-03-09 General Electric Company Subsea equipment cleaning system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451223A (en) * 2020-04-29 2020-07-28 中电华创(苏州)电力技术研究有限公司 Online cleaning device and method for water vapor sampling system
CN112354370A (en) * 2020-11-12 2021-02-12 浙江天行健水务有限公司 Ceramic membrane chemical cleaning waste liquid treatment process

Similar Documents

Publication Publication Date Title
EP1140705B1 (en) Method and apparatus for microfiltration
CN106564990B (en) Low energy reverse osmosis process
AU2010359039B2 (en) Process and facility to treat contaminated process water
JP5549589B2 (en) Fresh water system
US20100032375A1 (en) Reverse osmosis enhanced recovery hybrid process
WO2016035174A1 (en) Deposit monitoring device for water treatment device, water treatment device, operating method for same, and washing method for water treatment device
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
WO2019000160A1 (en) Method for cleaning filtration membrane contained in water treatment system and water treatment system
Rychlewska et al. The use of polymeric and ceramic ultrafiltration in biologically treated coke oven wastewater polishing
KR20110054243A (en) A reverse osmosis water treatment system with backwash
Belkacem et al. Water produce for pharmaceutical industry: role of reverse osmosis stage
Tang et al. Treatment of flue gas desulfurization wastewater by a coupled precipitation-ultrafiltration process
JP2006122787A (en) Seawater desalting method
KR20150005008A (en) Maintenance chemical cleaning method of separation membrane and Maintenance chemical cleaning system thereof
Yan Membrane Desalination Technologies
KR20170125172A (en) maintenance cleaning system using saturated solution of carbon dioxide in RO filtration process and maintenance cleaning system using the same
JP6524752B2 (en) Method of treating calcium ion and inorganic carbon containing water
KR20180040550A (en) maintenance cleaning system using saturated solution of carbon dioxide in RO filtration process and maintenance cleaning system using the same
Girardi Wastewater treatment and reuse in the oil & petrochem industry–a case study
WO2020212980A1 (en) A system and method for treating water
WO2016193855A1 (en) Reverse osmosis based potable water system with improved yield
Nam et al. Evaluation on membrane fouling by hydrophobic and hydrophilic substances through permeation coefficient and concentration polarization factor in SWRO processes
Kaliappan et al. Recovery and reuse of water from effluents of cooling tower
CN116903176A (en) Use tubular microfiltration membrane's system of removing hard silicon that removes
Alnajjar Carbon Dioxide Nucleation as a Novel Cleaning Method for Sodium Alginate Fouling Removal from Reverse Osmosis Membranes desalination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915971

Country of ref document: EP

Kind code of ref document: A1