WO2016032221A1 - 이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법 - Google Patents

이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법 Download PDF

Info

Publication number
WO2016032221A1
WO2016032221A1 PCT/KR2015/008913 KR2015008913W WO2016032221A1 WO 2016032221 A1 WO2016032221 A1 WO 2016032221A1 KR 2015008913 W KR2015008913 W KR 2015008913W WO 2016032221 A1 WO2016032221 A1 WO 2016032221A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
doped
precursor
flue
carbon dioxide
Prior art date
Application number
PCT/KR2015/008913
Other languages
English (en)
French (fr)
Inventor
이재우
변아영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2016032221A1 publication Critical patent/WO2016032221A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for producing a heterogeneous doped carbon material from a flue gas containing carbon dioxide, and more particularly, the activity of the oxygen reduction reaction and the electrical energy storage capacity from the flue gas containing carbon dioxide without pre-treatment or separation of carbon dioxide. It relates to a method for producing a carbon material doped with these excellent heterogeneous elements.
  • Carbon dioxide is the main culprit of greenhouse gases that have a significant impact on climate change, and occurs mostly in industries, cars, and homes that use fossil fuels. Recently, commercial researches to separate and capture carbon dioxide have been actively conducted as a realistic alternative to coping with climate change. However, separation and capture alone presently make it difficult to process more than 20 GT (gigaton) of carbon dioxide in the world annually. If carbon dioxide is collected in the ocean, there is a risk that the pH of the ocean may change and be destroyed in the marine ecosystem, and even if stored on the ocean floor, there is a risk that the carbon dioxide stored by the earthquake or tsunami is ejected. In addition, there is always a risk of leakage, even if stored in soil or tunnels.
  • a sustainable and most economical method for treating carbon dioxide is to develop a high value-added manufacturing process using carbon dioxide as a raw material, and at the same time, the production process using the carbon dioxide as a raw material generates carbon dioxide due to the use of energy compared to the existing process. It is essential that this less process be.
  • Carbon dioxide is an economical, rich and nontoxic carbon source.
  • Approaches have been made that include converting carbon dioxide to carbon nanotubes, porous carbon and even graphene. However, this approach requires high energy costs and also uses pure carbon dioxide.
  • the process of producing carbonaceous material with high added value using carbon dioxide as a raw material generally uses a supercritical process of high temperature / high pressure.
  • a method of synthesizing porous carbon from carbon dioxide using a pure alkali metal (Li, Na) at a pressure of 500 ° C. or more and at least 300 atm has been reported (J. Am. Ceram. Soc., 94: 3078, 2011).
  • a process for converting carbon dioxide to diamond at 440 ° C. and 800 atm using pure sodium has been published (J. Am. Chem. Soc., 125: 9302, 2003).
  • the high temperature / high pressure supercritical process as described above has the disadvantage of high energy.
  • Porous carbon obtained from carbon dioxide can also be used as a catalyst of a polymer electrolyte fuel cell (PEMFC), an electrode of a supercapacitor, a carrier of a catalyst, or a gas separation medium.
  • PEMFC polymer electrolyte fuel cell
  • An electrode of a supercapacitor a supercapacitor
  • a carrier of a catalyst or a gas separation medium.
  • the high cost and low durability of platinum catalysts have significantly delayed the commercialization of fuel cells.
  • Carbon materials synthesized from carbon dioxide can be used in the electrodes of fuel cells and cathodes where most of the oxygen reduction reactions occur.
  • a precursor containing nitrogen or boron is post-treated after the carbon material is manufactured, and thus there is a problem in that the process and energy costs are increased.
  • the present invention provides a method for doping heterogeneous elements to a carbon material which can increase the catalytic activity and electrical energy storage capacity at the same time as carbon production from carbon dioxide.
  • the present invention is to provide a carbon material doped with different elements using the exhaust gas containing carbon dioxide without pretreatment.
  • the present invention is to provide a carbon material doped with a hetero element from carbon dioxide using a boron hydride reducing agent in a moderate pressure condition.
  • the present invention relates to a carbon material manufacturing method comprising the step of reacting a flue gas containing carbon dioxide with a boron hydride reducing agent at 300 to 400 °C or more.
  • the present invention comprises the step of heat-treating the solid product formed in the reaction step from 700 °C to 1500 °C in an inert gas atmosphere.
  • the present invention comprises the steps of treating the solid product formed in the reaction step with a basic solution; And drying the solution to remove the solvent and then heat treating the residual solid product at 700 ° C. to 1500 ° C. in an inert gas atmosphere.
  • the present invention relates to a porous boron doped carbon material prepared by the above method, wherein the component comprises B 4 C (BC bond) or BC 3 .
  • the present invention relates to a porous boron doped carbon material whose components comprise BCO 2 or BC 2 O (OBC bonds).
  • the present invention relates to a porous boron, nitrogen, or boron nitrogen-doped carbon material having both micropores ( ⁇ 2nm), mesopores (2-50nm), and macropores (> 50nm). do.
  • the present invention relates to a method for producing hetero-doped carbon material comprising dispersing and drying a solid product and a precursor material prepared by the above method in a solvent.
  • the present invention relates to a carbon material doped with a hetero element in which a metal is dispersed on a porous boron doped carbon material surface.
  • the method of the present invention can produce a carbon material having excellent redox reaction ability directly from exhaust gas without pretreatment or separation of carbon dioxide.
  • the present invention is an economical process that can save energy than the conventional manufacturing process by synthesizing a carbon material from carbon dioxide under moderate conditions of normal pressure.
  • the carbon material produced by the present invention is doped with a plurality of hetero elements having excellent redox reaction activity, and thus may be used as a catalyst of a fuel cell.
  • the carbon material prepared by the present invention has a high surface area and bulky pores, and thus can be used for energy storage such as a supercapacitor or a hydrogen storage device.
  • the manufacturing method of the present invention is economical and environmentally friendly as it can not only produce a high value-added carbon material using a flue gas containing carbon dioxide, but also prevent carbon dioxide from being released into the atmosphere.
  • 1 is a graph of the reduction reaction using a mixed exhaust gas of nitrogen and carbon dioxide and analyzed by a mass spectrometer.
  • FIG. 2 is an XRD pattern of samples obtained in Example 1.
  • FIG. 3 is an SEM photograph of the samples obtained in Example 1.
  • Figure 4 shows the XPS B1 spectra in Flue B-PC, Flue 850, Flue 1050.
  • FIG. 9 shows data obtained by evaluating electrochemical charge and discharge performance of the samples of Example 1 in 6 mol / L aqueous KOH solution.
  • FIG. 10 shows the pore size distribution for the samples of Example 1.
  • Fig. 11 shows the preparation of Flue CoBNPC (porous carbon doped with boron nitrogen cobalt).
  • FIG. 13 shows the preparation of Flue NiBNPC (porous carbon doped with boron nitrogen).
  • FIG. 16 shows the Flue H 2 O BPC-1050 preparation in an exhaust gas containing moisture (1,050 ° C. heat treatment).
  • Figure 17 shows the oxygen reduction electrochemical catalyst characteristics of Flue H2O BPC.
  • the present invention provides a method for producing a carbon material doped with a heterogeneous element using the exhaust gas.
  • the present invention includes a step (reduction reaction) of reacting a flue gas containing carbon dioxide with a boron hydride reducing agent.
  • Carbon dioxide used in the present invention may use a flue gas diluted with carbon dioxide emitted from factories, power plants and automobiles.
  • the boron hydride reducing agent used in the present invention is lithium boron hydride (LiBH4), sodium boron hydride (NaBH4), potassium boron hydride (KBH4), magnesium boron hydride (Mg (BH4) 2), calcium boron hydride (Ca (BH 4) 2), strontium boron hydride (Sr (BH 4) 2) and ammonia borane (NH 3 BH 3).
  • the reduction reaction is preferably made to react at 300 to 400 °C or more, preferably 400 °C or more.
  • the present invention comprises the steps of placing the boron hydride reducing agent in a heating furnace; And a reaction step of maintaining the temperature for 2 to 3 hours after raising the temperature of the heating furnace to 500 ° C.
  • the reaction step includes injecting the flue gas containing carbon dioxide into a heating furnace.
  • the reduction reaction may produce carbon doped with boron in the form of B 4 C or BC 3, and may produce NaBO 2 and Na 2 CO 3 as by-products.
  • the temperature at which the reduction reaction can occur is expected to be 300 to 400 degrees, preferably 400 degrees or more, and a temperature of 500 ° C. or more is required to completely convert carbon dioxide to carbon.
  • the actual flue gas injected into the reduction reaction includes carbon dioxide, oxygen, nitrogen, or water. However, carbon dioxide is involved in the reduction reaction, and nitrogen does not affect the reduction reaction.
  • FIG. 1 is a graph of the reduction reaction using a mixed exhaust gas of nitrogen and carbon dioxide and analyzed by a mass spectrometer. Referring to FIG. 1, it can be seen that the amount of nitrogen (N 2, N) is maintained and the ion flow of CO 2 is drastically reduced during the reduction reaction, which shows that the boron hydride reducing agent selectively reduces only carbon dioxide.
  • the present invention may include recovering nitrogen in the exhaust gas after the reduction reaction step. That is, since the carbon dioxide in the exhaust gas is reduced to solid carbon when the reduction reaction is completed, the exhaust gas occupies most of nitrogen (the hydrogen generated during the reduction reaction in the exhaust gas has a small amount).
  • the exhaust gas may be used as a nitrogen replacement gas or nitrogen in the exhaust gas may be recovered.
  • the reduction reaction is carried out at 1 to 100 atm, preferably at atmospheric pressure.
  • the method may comprise separating and then washing and drying the solid product formed in the reaction step.
  • the solid product is a boron doped porous carbon material produced by the reduction reaction.
  • the porous carbon material is a boron-carbon bond (BC bond), which is B 4 C or BC 3 .
  • the washing may be performed by repeating the procedure of removing the upper portion after stirring the solid product in distilled water.
  • the solid product may be washed with an acidic solution or hot water. Materials such as Na 2 CO 3, NaBO 2, and the like contained in the carbon material obtained by the washing may be removed.
  • the acidic solution is selected from the group consisting of HCl, H2SO4, HNO3 and HClO4, HCl is most preferably used because Cl ions react with impurities of the carbon material to form salts and are easily removed by water.
  • the step of treating with hot water is preferably carried out at 40 °C to 90 °C.
  • the drying of the boron doped carbon material is preferably performed in an oven at 110 ° C. to 130 ° C. for 1 to 2 days.
  • the method recovers nitrogen which does not participate in the reaction in the reduction reaction and reuses it as a heat treatment inert gas or recovers to more purified nitrogen through an additional separation process.
  • the present invention may include a heat treatment step after the reduction reaction step.
  • the heat treatment treats the boron doped carbon solid product at 700 ° C. to 1500 ° C. in an inert gas atmosphere.
  • the inert gas may be used exhaust gas, nitrogen, carbon dioxide and the like already used.
  • the heat treatment can increase the catalytic activity of the resulting carbon solid product.
  • the catalytic activity (redox reaction activity) of the carbon solid product is proportional to the temperature increase.
  • the heat treatment can transfer the major constituents of the carbon solid product from B 4 C (BC bond) to BCO 2 or BC 2 O (OBC bond).
  • BCO2 or BC2O (OBC bond) structure can be formed at 1000 degrees, preferably at least 1050 degrees.
  • the present invention may include treating the solid product formed in the reduction step with a basic solution.
  • the method may be heat treated after treating the solid product with the basic solution.
  • the step of treating the solid product formed in the reaction step with a basic solution And drying the solution to remove the solvent and then heat treating the residual solid product to 700 ° C. to 1500 ° C. in an inert gas atmosphere.
  • the basic material may be selected from the group consisting of potassium hydroxide (KOH), sodium hydroxide (NaOH) and lithium hydroxide (LiOH).
  • Treatment of the basic material results in an increase in the surface area of the boron doped carbon material.
  • Treatment of the basic material can form a plurality of micro pores and mesopores of less than 4nm.
  • the boron-doped carbon material treated with the basic material may include all of micro pores ( ⁇ 2nm), mesopores (2-50nm), and macropores (> 50nm). Therefore, the boron-doped carbon material treated with the basic material has a high surface area and a large pore volume due to the pore distribution of three regions, and thus can be used as an energy storage material such as a supercapacitor or natural gas or hydrogen storage device.
  • the present invention includes the step of further doping the hetero element to the boron doped carbon material formed in the reduction step.
  • the doping method includes dispersing and heat-treating a solid product and a precursor material formed in the reduction reaction in a solvent.
  • the dispersion may disperse the mixture in solution by ultrasound.
  • the heat treatment step may include the heat treatment of the solid product at 700 °C to 1500 °C in an inert gas atmosphere.
  • the heat treatment may refer to the above-described heat treatment method.
  • the mixture may be dried at 100-200 ° C., preferably 100-150 ° C., before the heat treatment step.
  • the solid product formed in the reduction reaction is the boron doped carbon material described above.
  • the precursor material may be a nitrogen precursor or a metal precursor, and preferably, a nitrogen precursor and a metal precursor may be used together.
  • the metal precursor may be any metal precursor that can be used as a catalytically active site of the oxygen reduction reaction, and preferably may be an iron precursor, cobalt precursor, manganese precursor or nickel precursor.
  • the nitrogen precursor material is polypyrrole ((C4H2NH) n), polyaniline (polyaniline), melamine (C3H6N6), PDI (N, N'-bis (2,6-diisopropyphenyl) -3,4,9,10-perylenetetracarboxylicdiimide ), Polyacrylonitrile (PAN), urea (CO (NH 2) 2), ammonia (NH 3), hydrazine (N 2 H 4) and ammonia borane (NH 3 BH 3).
  • the cobalt precursor may be Co (NO3) .6H2O, CoCl2.6H2O, CoCl2, CoSO4.7H2O, Co (NO3) 2.6H2O or Co (C2H3O2) 2.4H2O, C32H16CoN8 (Cobalt phthalocyanine).
  • the manganese precursor may be Mn (NO 3) 2 .xH 2 O, MnCl 2 .4H 2 O, MnCl 2, MnSO 4 .xH 2 O, MnCO 3 or MnC 2 H 3 O 2 .4H 2 O, C32H 16 MnN 8 (Manganese phthalocyanine).
  • the nickel precursor may be Ni (CH3COO) 2, Ni (CH3COO) 2.4H2O, Ni (NO3) 2.6H2O, NiSO4.6H2O, C32H16N8Ni (Nickel phthalocyanine), NiCl2 or NiCl2.6H2O.
  • the iron precursor material is C32H16N8Fe (Iron phthalocyanine), FeCl3, FeCl2, FeSO4 ⁇ 6H2O, Fe (SO4) 2 ⁇ 6H2O, Fe (COO) 2 ⁇ 2H2O, FeC2O4 ⁇ 2H2O, FeC6H8O7 ⁇ nH2O, (NH4) 2Fe (SO4) 2Fe (SO4) 2Fe It may be one or more selected from 2 ⁇ 6H 2 O, Fe 3 (PO 4). 8H 2 O, and salts thereof.
  • the solid product and precursor material may be dispersed in the solvent at 1: 0.01-6, preferably 1: 0.1-6, more preferably 0.1-4.
  • the content ratio of the solid product, the nitrogen precursor and the metal precursor is 1: 0.1 to 6: 0.001 to 0.6, preferably 1: 0.1 to 5: 0.01 to 0.5. Can be.
  • the metal precursor content relative to the solid product of the reduction reaction may be mixed in a weight ratio of 0.1 to 60%, preferably 0.1 to 30%.
  • the present invention may further comprise a hetero element capable of increasing the catalytic activity on the boron doped carbon material by the above method.
  • the heteromaterial-doped carbon material of the present invention may be doped or dispersed with a metal that may be a catalytically active site of an oxygen reduction reaction on its surface.
  • the metal may be iron, cobalt, manganese or nickel particles.
  • the metal particles may have a metal-N-C bonding structure, for example, iron may be present in the carbon material in the form of Fe-N-C bonding.
  • the nitrogen-carbon (N-C) bond is present in the form of pyridinic N, pyrrolic N, and graphitic N, for example.
  • the oxygen reduction activity of the hetero-doped carbon material is dependent on the amount of pyridinic N, which appears to be due to the binding of pyridinic N with iron particles as catalytically active sites.
  • NaBH4 was placed in an alumina crucible vessel and the crucible vessel was placed into a horizontal quartz tube mounted in a furnace (GSL1100X). The quartz tube was heated to 500 degrees within 100 minutes at room temperature and maintained at that temperature for 3 hours. The nitrogen to 57cm 3 into the /min(0.1MPa while heating), CO2 10cm was poured into 3 / min.
  • the solid product obtained in the reduction reaction was transferred to a glass bottle, heated with 80 cm 3 of distilled water, and stirred for 4 hours at 260 rpm. When the fine particle suspension was produced, the clear supernatant was removed, and 80 cm 3 of distilled water was added again, and the above procedure was repeated four times. The solid product was filtered and washed with water and ethanol. The resulting solid cake was kept at room temperature for several hours and then dried in an oven at 120 degrees.
  • the solid product produced in the furnace experiment was placed in an alumina crucible vessel and the crucible vessel was placed into a horizontal quartz tube mounted in a furnace (GSL1100X).
  • the quartz tube was heated to 850 and 1050 degrees at room temperature at a rate of 5 ° C./min, respectively, and maintained at 850 degrees for 2 hours and at 1050 degrees for 1 hour, respectively.
  • solid products After cooling to room temperature under nitrogen 50 cm 3 / min (0.1 MPa) solid products (Flue 850, 1050) were stored in a glass bottle.
  • the solid product was stored in a glass jar and then added to 10 cm 3 of 5M HCl. The glass bottle was closed and stirred. Once the precipitated black particles were produced, the washing procedure was repeated four times, removing the top layer and adding 10 cm 3 of distilled water. The assay particles were kept at room temperature for several hours and then dried in an oven at 120 ° C. to obtain Flue K 700, 850, 1000 carbon materials.
  • Flue FeBNPC was synthesized in the same manner and then iron was removed with 5M HCl solution to prepare Flue BNPC without iron. Washing with distilled water raised the pH to 7 and dried.
  • FIG. 2 is an XRD pattern of samples obtained in Example 1.
  • FIG. 2 Referring to FIG. 2, all samples show a broad peak at 22-25 °, which shows the amorphousness of the resulting carbon material.
  • the KOH treated samples compared to Flue 850, 1050 samples not treated with KOH, the KOH treated samples shifted the diffraction peaks of the (002) plane from 22 to 25 ° to a lower value, which is the distance between the graphene layers. Indicates an increase. That is, it can be understood that the element K was inserted into the graphite intermediate layer (between the graphene layers) during the reaction of KOH and porous carbon (Flue-B-PC).
  • FIG. 3 is an SEM photograph of the samples of Example 1.
  • FIG. 3 pores of 10-20 nm were generated in the Flue K 700 sample, but there are few pores of larger size.
  • Flue K 850 and Flue K 1000 samples have pores of 100-500 nm size, and these pores are interconnected. At high temperatures, KOH activity proceeds faster to form larger size pores.
  • Flue-B-PC also has micropores of 150nm, but micropores and mesopores are hard to find. In contrast, Flue K 850 and Flue K 1000 samples have micro or mesopores as well as macropores ranging from 100 nm to 500 nm.
  • Figure 4 shows the XPS B1 spectra in Flue B-PC, Flue 850, Flue 1050.
  • the main B1 peak in Flue B-PC is B4C
  • the main peaks in Flue 1050 are BCO2 and BC2O.
  • Samples of Flue 1050 have better catalytic activity than Flue B-PC because O-B-C structures (BCO2, BC2O) are more advantageous for oxygen reduction reactions than B-C structures (B4C).
  • BCO2, BC2O O-B-C structures
  • B4C B-C structures
  • Flue FeBNPC x is iron content (FeCl 3 content compared to Flue B-PC).
  • iron particles are dispersed in a carbon material in Flue FeBNPC (5), Flue FeBNPC (15), Flue FeBNPC (33), and Flue FeBNPC (45), but the Flue BNPC or Flue FeBNPC (33) is washed. There are no iron particles in the sample. In addition, locally aggregated iron particles occurred on the surface of the Flue FeBNPC (45) sample.
  • Flue FeBNPC 33 shows an XPS N1s graph of the Flue FeBNPC 33.
  • Flue FeBNPC 33
  • Flue FeBNPC 5, 15, 45
  • pyridine or Fe-Nx 398eV
  • pyrrolic 399eV
  • graphitic 400eV
  • pyridinic oxide 402-405eV
  • Nitrogen in the form of is present on the synthesized carbon material.
  • pyridine or Fe-Nx (398eV) shows the highest peak.
  • FIG. 9 is a galvanostatic charge / discharge voltage value (a), and b is a CV value.
  • a galvanostatic charge / discharge voltage value
  • b a CV value.
  • the capacitance (capacitance) value of the KOH treated sample was significantly increased. Also, with KOH treatment, the capacitance increases with increasing temperature. This increase in capacitance coincides with an increase in capacitance determined by the inner area of the CV curve of FIG. 9B.
  • FIG. 10 shows the pore size distribution for the samples of Example 1.
  • FIG. 10 Referring to FIG. 10, no micropores were found in the heat treated Flue 850 sample not treated with KOH.
  • KOH treated Flue K 700, Flue K 850, and Flue K 1000 samples showed peaks indicating the presence of multiple micropores (near 2 nm), mesopores (near 10 nm) and macropores (greater than 100 nm).
  • the Flue K 850 and Flue K 1000 samples had smaller pore sizes corresponding to the micropores, while the pore sizes of the mesopores and macropores were increased. That is, it can be seen that a large number of macropores or mesopores are formed by KOH treatment, thereby increasing the surface area of the carbon material, and also converting small pores into larger pores by heat treatment.
  • Carbon material prepared by the above method is doped with a plurality of hetero elements (iron, nitrogen) excellent in the redox reaction activity can be used as a catalyst of a fuel cell. That is, the carbon material has high surface area and bulky pores, and thus can be used for energy storage such as a supercapacitor or a hydrogen storage device.
  • a plurality of hetero elements iron, nitrogen
  • the carbon material has high surface area and bulky pores, and thus can be used for energy storage such as a supercapacitor or a hydrogen storage device.
  • Example -2 CoBNPC ( Boron nitrogen cobalt Doped Porous carbon Recipe and Electrochemical Characterization
  • Flue B-PC produced above was dispersed in distilled water.
  • the manufacturing method is described in FIG. 0.1703 g of Flue B-PC 4 times urea and 0.0839 g of Co (C 2 H 3 O 2 ) 2 H 2 O was added, and the mixed solution was sonicated for 15 minutes.
  • the solution was placed in an alumina crucible vessel and dried at 120 ° C.
  • the dried carbon material was heat-treated at 850 degrees in a nitrogen atmosphere of 50 sccm. After heat treatment, the residual carbon was treated with hot distilled water. Then, the solid residue (Flue CoBNPC) was obtained by stirring and washing in the same manner as in solid product treatment of Flue B-PC.
  • Figure 12 shows the electrochemical catalyst properties of Flue CoBNPC.
  • the peak potential value is -0.195 V compared to the Ag / AgCl reference electrode and the current density value is -0.8 V vs.
  • the value of 2 mA / cm 2 in Ag / AgCl is shown.
  • Example - 3 NiBNPC ( Boron Nitrogen Nickel Doped Porous carbon Recipe and Electrochemical Characterization
  • Figure 13 shows a detailed NiBNPC production.
  • Flue B-PC produced above was dispersed in distilled water. 0.1685g of Flue B-PC 4 times urea and 0.0862g of NiCl 2 4H 2 O were added, and the mixed solution was sonicated for 15 minutes. The solution was placed in an alumina crucible vessel and dried at 120 ° C. The dried carbon material was heat-treated at 850 degrees in a nitrogen atmosphere of 50 sccm. After heat treatment, the residual carbon was treated with hot distilled water. Then, the solid residue (Flue NiBNPC) was obtained by stirring and washing in the same manner as in solid product treatment of Flue B-PC.
  • NaBH4 was placed in an alumina crucible vessel and the crucible vessel was placed into a horizontal quartz tube mounted in a furnace (GSL1100X). The quartz tube was heated to 500 degrees within 100 minutes at room temperature and maintained at that temperature for 3 hours. Mixed gas was injected at a rate of 67 cm 3 / min with 15% CO 2, 80% N 2, and 5% O 2. At this time, 1.08 ml of water was added. Thereafter, the resulting solid product was stored in a glass bottle.
  • the solid product obtained in the reduction reaction was transferred to a glass bottle, heated with 80 cm 3 of distilled water, and stirred for 4 hours at 260 rpm. When the fine particle suspension was produced, the clear supernatant was removed, and 80 cm 3 of distilled water was added again, and the above procedure was repeated four times. The solid product was filtered and washed with water and ethanol. The resulting solid cake was kept at room temperature for several hours and then dried in an oven at 120 degrees. The detailed procedure is shown in FIG.
  • the solid product produced in the furnace experiment was placed in an alumina crucible vessel and the crucible vessel was placed into a horizontal quartz tube mounted in a furnace (GSL1100X).
  • the quartz tubes were each heated to 1050 degrees at room temperature at a rate of 5 ° C./min and held at 1050 degrees for 1 hour respectively.
  • Solid product Flue H2O BPC after cooling to room temperature under nitrogen 50 cm3 / min (0.1 MPa) 1050 was stored in a glass bottle.
  • the preparation for this Flue H2O BPC 1050 is shown in FIG.
  • the peak potential of the Flue H 2 O BPC has a value of ⁇ 0.33 V to ⁇ 0.36 V compared to the reference electrode Ag / AgCl.
  • Flue H2O 1050 heat-treated with Flue H2O BPC at 1050 degrees has a peak potential of -0.2139 V vs. It is shown in Fig. 18 that the electrochemical properties are increased after the heat treatment as Ag / AgCl.
  • the heterogeneous doped carbon material can be confirmed that it can be used as a catalyst of the fuel cell because of excellent electrochemical properties.
  • the present invention can produce a carbon material excellent in the redox reaction ability directly from the exhaust gas without pre-treatment or separation of carbon dioxide, and can save energy than the conventional manufacturing process by synthesizing the carbon material from carbon dioxide under moderate conditions of normal pressure It is an economical process.
  • the carbon material produced by the present invention is doped with a plurality of hetero elements having excellent redox reaction activity, and thus may be used as a catalyst of a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 이산화탄소의 전처리나 분리 없이 이산화탄소를 포함하는 배가스로부터 산소 환원 반응 의 활성과 전기에너지 저장능력이 우수한 이종원소들이 도핑된 탄소소재를 제조하는 방법에 관한 것이다. 본 발명의 방법은 이산화탄소의 전처리나 분리없이 배가스로부터 직접 산화환원 반응 능력이 우수한 탄소 소재를 제조할 수 있다. 또한, 본 발명은 상압의 온건한 조건에서 이산화탄소로부터 탄소소재를 합성함으로써 기존의 제조공정보다 에너지를 절감할 수 있는 경제적인 공정이다. 본 발명에 의해 제조된 탄소소재는 산화 환원 반응 활성이 우수한 복수개의 이종원소가 도핑되어 있어 연료전지의 촉매로 사용될 수 있다. 또한, 본 발명에 의해 제조된 탄소소재는 높은 표면적과 부피가 큰 기공들을 가지고 있어 Supercapacitor(슈퍼커패시터)나 수소 저장 장치와 같은 에너지 저장용에 사용될 수 있다. 또한, 본 발명의 제조방법은 이산화탄소를 포함하는 배가스(flue gas)를 사용하여 고부가가치의 탄소 소재를 생산할 수 있을 뿐만 아니라 이산화탄소의 대기방출을 막을 수 있어 경제적이며 친환경적이다.

Description

[규칙 제26조에 의한 보정 08.09.2015] 이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법
본 발명은 이산화탄소를 포함하는 배가스로부터 이종 원소 도핑된 탄소소재를 제조하는 방법에 관한 것으로서, 보다 상세하게는, 이산화탄소의 전처리나 분리 없이 이산화탄소를 포함하는 배가스로부터 산소 환원 반응의 활성과 전기에너지 저장능력이 우수한 이종원소들이 도핑된 탄소소재를 제조하는 방법에 관한 것이다.
이산화탄소는 기후변화에 중요한 영향을 미치는 온실가스의 주범으로 대부분 화석연료를 이용하고 있는 산업, 자동차 및 가정에서 발생한다. 최근 전 세계적으로 기후변화대응을 위한 현실적인 대안으로 이산화탄소를 분리하여 포집하는 상업적인 연구가 활발히 진행되고 있다. 하지만, 분리와 포집만으로는 현재 전세계에서 년간 20 GT(gigaton)이상의 이산화탄소를 처리하기가 어려운 상태이다. 이산화탄소를 해양에 포집할 경우, 해양의 pH가 변하여 해양생태계에 파괴될 수 있는 우려가 있으며, 해저에 저장한다 해도 지진이나 해일에 의해 저장되어있던 이산화탄소가 분출되는 위험성을 갖고 있다. 또한, 토양이나 터널에 저장된다 하더라도 누출의 위험성을 항상 있다. 따라서, 이산화탄소를 처리하기 위한 지속가능하고 가장 경제적인 방법은 이산화탄소를 원료로 하여 부가가치가 높은 제조공정을 개발하는 것과 동시에 그 이산화탄소를 원료로 이용하는 제조공정이 기존의 공정에 비하여 에너지 사용으로 인한 이산화탄소 발생이 적은 공정이어야 하는 것이 필수적이다.
이산화탄소를 화학 물리적 방법으로 흡수할 수 있다면 지구 온난화 현상은 상당히 감소될 수 있을 것이다. 이산화탄소는 경제적이고, 풍부하고 비독성의 카본 소스이다. 이산화탄소를 탄소 나노튜브, 다공성 탄소, 심지어 그라핀으로 전환하는 방법들을 포함하는 접근이 이루어지고 있다. 하지만, 이러한 시도는 높은 에너지 비용이 필요하며, 또한, 순수 이산화탄소를 사용한다.
하지만, 처리되어야 할 이산화탄소의 60%가 산업 현장에서 배출되는 배가스(flue)이다. 석탄을 사용하는 화력발전소에서 배가스 혼합물은 14.9%의 이산화탄소, 4,25%의 산소, 80.85%의 질소를 포함한다. 종래 방법으로는 이산화탄소 활용을 위해서 이산화탄소를 정화시키고 분리하는 공정이 필요하였다. 이것 역시 에너지 비용이 요구된다. 따라서, 산업현장에서 배출되는 배가스로부터 직접 이산화탄소를 처리하거나 에너지 소스로 활용하는 방안이 절실히 요구된다.
한편, 이산화탄소를 원료로 하여 부가가치가 높은 탄소소재를 생산하는 공정은 일반적으로 고온/고압의 초임계공정을 이용한다. 순수한 알카리족 금속(Li, Na)을 이용하여 500 ℃, 300 기압 이상의 압력으로 이산화탄소로부터 다공성 탄소를 합성하는 방법이 보고되었다(J. Am. Ceram. Soc., 94:3078, 2011). 또한, 순수 나트륨을 이용하여 440 ℃, 800 기압에서 이산화탄소를 다이아몬드로 전환하는 공정이 발표되었다(J. Am. Chem. Soc., 125:9302, 2003). 하지만, 상기와 같은 고온/고압의 초임계 공정은 에너지가 많이 드는 단점이 있다.
이산화탄소로부터 얻어진 다공성 탄소는 고분자 전해질 연료전지(PEMFC)의 촉매, Supercapacitor의 전극이나 촉매의 담체 혹은 가스분리 매체로도 사용될 수 있다. 백금 촉매의 고비용과 낮은 내구성으로 인해 연료전지 상업화가 상당히 지연되고 있다. 이산화탄소로부터 합성된 탄소소재는 연료전지의 전극, 대부분의 산소환원반응이 일어나는 양전극(Cathode)에 사용될 수 있어 백금 촉매를 대체할 수 물질 중 하나이다. 하지만, 현재, 탄소소재에 산화 환원 반응 촉매 활성을 높이기 위해 질소나 보론을 함유하는 전구체를 탄소 물질 제조 후에 후처리하고 있어 공정 및 에너지 비용이 증가되는 문제가 있다.
본 발명은 이산화탄소로부터 탄소 제조와 동시에 촉매 활성과 전기에너지 저장능력을 높일 수 있는 이종원소들을 탄소 소재에 도핑할 수 있는 방법을 제공하는 것이다.
본 발명은 이산화탄소를 포함하는 배가스를 전처리 없이 사용하여 이종원소가 도핑된 탄소소재를 제공하는 것이다.
본 발명은 상압의 온건한 조건에서 붕소 하이드라이드 환원제를 이용하여 이산화탄소로부터 이종원소가 도핑된 탄소소재를 제공하는 것이다.
하나의 양상에서 본 발명은 이산화탄소를 포함하는 배가스(flue gas)를 보론 하이드라이드(boron hydride) 환원제로 300 내지 400℃ 이상에서 반응시키는 단계를 포함하는 탄소소재 제조방법에 관계한다.
본 발명은 반응 단계에서 형성된 고체 생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함한다.
본 발명은 반응 단계에서 형성된 고체 생성물을 염기성 용액으로 처리하는 단계 ; 및 상기 용액을 건조시켜 용매를 제거한 후 잔류 고체생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함한다.
다른 양상에서 본 발명은 상기 방법에 의해 제조되고, 구성 성분이 B4C(B-C 결합)혹은 BC3 를 포함하는 다공성의 보론 도핑된 탄소 소재에 관계한다.
본 발명은 구성 성분이 BCO2 또는 BC2O(O-B-C 결합)를 포함하는 다공성의 보론 도핑된 탄소 소재에 관계한다.
다른 양상에서 본 발명은 마이크로 기공(<2nm), 메조 기공(2~50nm), 및 매크로 기공(>50nm) 영역을 모두 구비하는 다공성의 보론이나 질소가 혹은 보론질소가 동시에 도핑된 탄소 소재에 관계한다.
또 다른 양상에서 본 발명은 상기 방법으로 제조된 고체 생성물과 전구체 물질을 용매에 넣어 분산시키고 건조시키는 단계를 포함하는 이종원소가 도핑된 탄소소재 제조방법에 관계한다.
본 발명은 다공성의 보론 도핑된 카본 물질 표면에 금속이 분산된 이종원소가 도핑된 탄소소재에 관계한다.
본 발명의 방법은 이산화탄소의 전처리나 분리없이 배가스로부터 직접 산화환원 반응 능력이 우수한 탄소 소재를 제조할 수 있다. 또한, 본 발명은 상압의 온건한 조건에서 이산화탄소로부터 탄소소재를 합성함으로써 기존의 제조공정보다 에너지를 절감할 수 있는 경제적인 공정이다.
본 발명에 의해 제조된 탄소소재는 산화 환원 반응 활성이 우수한 복수개의 이종원소가 도핑되어 있어 연료전지의 촉매로 사용될 수 있다.
또한, 본 발명에 의해 제조된 탄소소재는 높은 표면적과 부피가 큰 기공들을 가지고 있어 Supercapacitor(슈퍼커패시터)나 수소 저장 장치와 같은 에너지 저장용에 사용될 수 있다.
또한, 본 발명의 제조방법은 이산화탄소를 포함하는 배가스(flue gas)를 사용하여 고부가가치의 탄소 소재를 생산할 수 있을 뿐만 아니라 이산화탄소의 대기방출을 막을 수 있어 경제적이며 친환경적이다.
도 1은 질소와 이산화탄소의 혼합 배가스를 사용하여 상기 환원반응을 수행하고 이를 질량 분석기로 분석한 그래프이다.
도 2는 실시예 1에서 수득한 샘플들의 XRD 패턴이다.
도 3은 실시예 1에서 수득한 샘플들의 SEM 사진이다.
도 4는 Flue B-PC, Flue 850, Flue 1050에서의 XPS B1 스펙트럼을 나타낸다.
도 5는 Flue B-PC, Flue 850, Flue 1050 샘플들에 대한 순환전압전류법(CV, Cyclic Voltammographs)과 RDE 커브를 나타낸다.
도 6은 Flue FeBNPC(x)의 SEM 사진을 나타낸다.
도 7은 Flue FeBNPC(33)의 XPS N1s 그래프를 나타낸다.
도 8은 Flue FeBNPC의 전기 화학 촉매 특성에 나타낸 것이다
도 9는 6mol/L의 KOH 수용액에 상기 실시예 1의 샘플들을 넣어 전기화학 충방전 성능 평가를 수행한 데이터이다.
도 10은 실시예 1의 샘플들에 대한 기공 사이즈 분포를 나타낸다.
도 11은 Flue CoBNPC (보론질소코발트가 도핑된 다공성탄소)의 제법을 나타낸다.
도 12은 Flue CoBNPC (보론질소코발트가 도핑된 다공성탄소)의 산소환원반응 전기화학촉매 특성을 나타낸다.
도 13은 Flue NiBNPC (보론질소니켈이 도핑된 다공성탄소)의 제법을 나타낸다.
도 14은 Flue NiBNPC (보론질소니켈이 도핑된 다공성탄소)의 산소환원반응 전기화학촉매 특성을 나타낸다.
도 15은 수분이 포함된 배기가스에서 Flue H2O BPC 제법을 나타낸다.
도 16은 수분이 포함된 배기가스에서 Flue H2O BPC-1050 제법을 나타낸다 (1,050 ℃ 열처리).
도 17은 Flue H2O BPC의 산소환원반응 전기화학촉매 특성을 나타낸다.
도 18은 Flue H2O BPC-1050의 산소환원반응 전기화학촉매 특성을 나타낸다.
본 발명은 배가스를 이용하여 이종원소가 도핑된 탄소소재를 제조하는 방법을 제공한다.
환원반응
본 발명은 이산화탄소를 포함하는 배가스(flue gas)를 보론 하이드라이드(boron hydride) 환원제로 반응시키는 단계(환원반응)를 포함한다.
본 발명에 사용되는 이산화탄소는 공장, 발전소 및 자동차 등에서 배출되는 이산화탄소가 희석된 배가스(flue gas)를 사용할 수 있다.
본 발명에 사용되는 보론 하이드라이드 환원제는 리튬 보론하이드라이드(LiBH4), 나트륨 보론 하이드라이드(NaBH4), 칼륨 보론하이드라이드(KBH4),마그네슘 보론 하이드라이드(Mg(BH4)2), 칼슘 보론하이드라이드(Ca(BH4)2),스트론튬 보론하이드라이드(Sr(BH4)2) 및 암모니아보레인(NH3BH3)로 이루어진 군에서 선택될 수 있다.
상기 환원반응은 300 내지 400℃ 이상, 바람직하게는 400℃ 이상에서 반응시키는 것이 바람직하다.
본 발명은 상기 보론 하이드라이드 환원제를 가열로에 위치시키는 단계 ; 및 상기 가열로의 온도를 500℃까지 상승시킨 후 2~3시간 동안 상기 온도를 유지시키는 반응 단계를 포함한다.
상기 반응단계는 이산화탄소를 포함하는 상기 배가스(flue gas)를 가열로에 주입하는 단계를 포함한다.
상기 환원반응에 의해 B4C나 BC3형태의 보론이 도핑된 탄소가 생성되고, 부산물로 NaBO2, Na2CO3가 생성될 수 있다.
상기 환원반응이 일어날 수 있는 온도는 300도 내지 400도, 바람직하게는 400도 이상인 것으로 예측되며, 이산화탄소가 카본으로 완전히 전환되기 위해서는 500℃ 이상의 온도가 필요하다.
상기 환원반응에 주입되는 실제 배가스는 이산화탄소, 산소, 질소, 또는 물을 포함한다. 하지만, 환원반응에 관여하는 것은 이산화탄소이며, 질소는 환원반응에 영향을 미치지 않는다.
도 1은 질소와 이산화탄소의 혼합 배가스를 사용하여 상기 환원반응을 수행하고 이를 질량 분석기로 분석한 그래프이다. 도 1을 참고하면, 환원반응 동안 질소(N2, N)의 양은 유지되고 CO2 의 이온 흐름이 급격히 감소됨을 알 수 있으며, 이것은 보론 하이드라이드 환원제가 선택적으로 이산화탄소만을 환원시킴을 보여준다.
본 발명은 상기 환원 반응 단계 이후에 배가스 중의 질소를 회수하는 단계를 포함할 수 있다. 즉, 상기 환원 반응이 종료되면 배가스 중의 이산화탄소가 고체인 탄소로 환원되므로, 배가스에는 질소가 대부분을 차지한다(배가스 중에 환원 반응 중 발생한 수소 등이 소량 있음).
본 발명에서는 상기 환원반응 이후에 상기 배가스를 질소 대체 가스로 사용하거나 배가스 중 질소를 회수할 수 있다.
상기 환원반응은 1 내지 100 기압에서 수행되고, 바람직하게는 상압에서 수행할 수 있다.
상기 방법은 상기 반응 단계에서 형성된 고체 생성물을 분리한 후 세척 및 건조시키는 단계를 포함할 수 있다.
상기 고체생성물은 상기 환원반응에 의해 생성된 보론 도핑된 다공성의 탄소 물질(material)이다.
상기 다공성 탄소 물질은 보론-탄소 결합 (B-C 결합)으로서, B4C 또는 BC3이다.
상기 세척은 상기 고체 생성물을 증류수에 넣어 교반한 후 상층부를 제거하는 절차를 수회 반복하여 수행할 수 있다.
또한, 산성용액 또는 온수로 상기 고체 생성물을 세척할 수 있다. 상기 세척에 의해 수득된 탄소 소재에 포함된 Na2CO3, NaBO2등과 같은 물질을 제거할 수 있다.
상기 산성용액은 HCl, H2SO4, HNO3 및 HClO4로 이루어진 군에서 선택되고, Cl이온이 탄소재료의 불순물과 반응하여 염을 만들어 물에 의해 쉽게 제거되기 때문에 HCl을 사용하는 것이 가장 바람직하다.
또한, 온수로 처리하는 단계는 40 ℃ 내지 90 ℃에서 수행하는 것이 바람직하다. 상기 붕소 도핑 탄소 물질을 건조하는 단계는 110 ℃ 내지 130 ℃의 오븐에서 1~2일 건조하는 것이 바람직하다.
상기 방법은 상기 환원반응 반응에서 반응에 참여하지 않는 질소를 회수하여 열처리 비활성가스로 재사용하거나 부가적인 분리공정을 거쳐 보다 정제된 질소로 회수할 수 있다.
열처리 단계
본 발명은 상기 환원반응 단계 이후에 열처리 단계를 포함할 수 있다.
상기 열처리는 보론 도핑된 탄소 고체 생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 처리한다.
상기 비활성 가스는 이미 사용된 배가스, 질소, 이산화탄소 등을 사용할 수 있다.
상기 열처리에 의해 생기 탄소 고체 생성물의 촉매 활성이 증가할 수 있다. 상기 탄소 고체 생성물의 촉매 활성(산화 환원 반응 활성)은 온도 증가에 비례한다.
상기 열처리에 의해 상기 탄소 고체 생성물의 주요 구성 성분이 B4C(B-C 결합)에서 BCO2 또는 BC2O(O-B-C 결합)로 전이될 수 있다. BCO2 또는 BC2O(O-B-C 결합) 구조는 1000도, 바람직하게는 1050도 이상일 경우에 형성될 수 있다.
염기성 처리
본 발명은 상기 환원 반응 단계에서 형성된 고체 생성물을 염기성 용액으로 처리하는 단계를 포함할 수 있다.
또한 상기 방법은 상기 염기성 용액으로 고체생성물을 처리한 후 열처리할 수 있다.
좀 더 구체적으로는, 상기 반응 단계에서 형성된 고체 생성물을 염기성 용액으로 처리하는 단계 ; 및 상기 용액을 건조시켜 용매를 제거한 후 잔류 고체생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함할 수 있다.
상기 염기성 물질은 수산화칼륨(KOH), 수산화나트륨(NaOH) 및 수산화리튬(LiOH)로 이루어진 군에서 선택될 수 있다.
상기 염기성 물질의 처리로 보론 도핑된 탄소 물질은 표면적인 증가한다. 상기 염기성 물질의 처리로 다수의 마이크로 기공과 4nm 이하의 메조 포어 기공이 형성될 수 있다.
상기 염기성 물질로 처리된 보론 도핑된 탄소 물질은 마이크로 기공(<2nm), 메조 기공(2~50nm), 및 매크로 기공(>50nm) 영역을 모두 구비할 수 있다. 따라서, 상기 염기성 물질로 처리된 보론 도핑된 탄소 물질은 3개 영역의 기공 분포로 인해 높은 표면적과 큰 기공부피를 가지므로 슈퍼커패시터나 천연가스나 수소 저장 장치와 같은 에너지 저장 소재로 사용될 수 있다.
이종원소를 추가로 도핑하는 방법
본 발명은 상기 환원단계에서 형성된 보론 도핑된 탄소물질에 이종원소를 추가로 도핑하는 단계를 포함한다.
상기 도핑방법은 상기 환원반응에서 형성된 고체 생성물과 전구체 물질을 용매에 넣어 분산시키고 열처리하는 단계를 포함한다.
상기 분산은 초음파로 상기 혼합물을 용액에 분산시킬 수 있다.
상기 열처리 단계는 상기 고체생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함할 수 있다. 상기 열처리는 앞에서 상술한 열처리 방법을 참고할 수 있다.
열처리 단계 전에 100~200℃, 바람직하게는 100~150℃에서 혼합물을 건조시킬 수 있다.
상기 환원반응에서 형성된 고체 생성물은 앞에서 상술한 보론 도핑된 탄소 물질이다.
상기 전구체 물질은 질소 전구체 또는 금속 전구체일 수 있으며, 바람직하게는 질소전구체와 금속전구체를 함께 사용할 수 있다.
상기 금속 전구체는 산소 환원 반응의 촉매 활성 사이트로 사용될 수 있는 금속 전구체를 제한 없이 사용할 수 있으며, 바람직하게는 철 전구체, 코발트 전구체, 망간 전구체 또는 니켈 전구체일 수 있다.
상기 질소 전구체 물질은 폴리파이롤((C4H2NH)n), 폴리아닐린 (polyaniline), 멜라민(C3H6N6), PDI(N,N’-bis(2,6-diisopropyphenyl)-3,4,9,10-perylenetetracarboxylicdiimide), Polyacrylonitrile(PAN), 요소(CO(NH2)2), 암모니아(NH3), 하이드라진(N2H4) 및 암모니아보레인(NH3BH3)로 이루어진 군에서 선택되는 하나 이상일 수 있다.
상기 코발트 전구체는 Co(NO3)·6H2O, CoCl2·6H2O, CoCl2, CoSO4·7H2O, Co(NO3)2·6H2O 또는 Co(C2H3O2)2·4H2O, C32H16CoN8 (Cobalt phthalocyanine) 일 수 있다.
상기 망간 전구체는 Mn(NO3)2·xH2O, MnCl2·4H2O, MnCl2, MnSO4·xH2O, MnCO3 또는 MnC2H3O2·4H2O, C32H16MnN8 (Manganese phthalocyanine) 일 수 있다.
상기 니켈 전구체로는 Ni(CH3COO)2, Ni(CH3COO)2·4H2O, Ni(NO3)2·6H2O, NiSO4·6H2O, C32H16N8Ni (Nickel phthalocyanine), NiCl2 또는 NiCl2·6H2O 일 수 있다.
상기 철 전구체 물질은 C32H16N8Fe (Iron phthalocyanine),FeCl3, FeCl2, FeSO4ㆍ6H2O, Fe(SO4)2ㆍ6H2O, Fe(COO)2ㆍ2H2O, FeC2O4ㆍ2H2O, FeC6H8O7ㆍnH2O, (NH4)2Fe(SO4)2ㆍ6H2O, Fe3(PO4)ㆍ8H2O 및 이들의 염으로부터 선택되는 하나 이상인 것일 수 있다.
상기 고체 생성물과 전구체 물질은 1 : 0.01~6, 바람직하게는 1 : 0.1~6, 더욱 바람직하게는 0.1~4로 용매에 분산시킬 수 있다.
상기 고체생성물에 질소전구체와 금속전구체를 용매에 분산시키는 경우, 고체 생성물, 질소전구체 및 금속전구체의 함량비는 1 : 0.1~6 : 0.001~0.6, 바람직하게는 1 : 0.1~5 : 0.01~0.5일 수 있다.
예를 들면, 상기 환원반응의 고체 생성물 대비 금속 전구체 함량이 중량비로 0.1~60%, 바람직하게는 0.1~30%로 혼합할 수 있다.
본 발명은 상기 방법에 의해 보론 도핑된 탄소 물질에 촉매 활성을 높일 수 있는 이종원소를 추가로 포함할 수 있다.
좀 더 구체적으로는 본원발명의 이종원소가 도핑된 탄소 물질은 그 표면에 산소 환원 반응의 촉매 활성 사이트가 될 수 있는 금속이 도핑되거나 분산될 수 있다. 상기 금속은 철, 코발트, 망간 또는 니켈 입자일 수 있다.
상기 금속 입자는 금속-N-C 본딩 구조일 수 있으며, 예를 들면, 철의 경우에는 Fe-N-C 본딩 형태로 탄소 물질에 존재할 수 있다.
상기 질소-탄소(N-C) 결합은, 예를 들면, pyridinic N, pyrrolic N, and graphitic N의 형태로 존재한다.
상기 이종 도핑된 탄소 물질의 산소 환원 반응 활성이 피리딘(pyridinic) N의 양에 의존하는데, 이것은 피리딘(pyridinic) N이 촉매 활성 사이트로인 철 입자와 결합하기 때문인 것으로 보인다.
이하 본 발명을 다음의 실시 예에 의해 좀더 상세하게 설명하겠으나, 하기 실시예는 본 발명을 예시하기 위한 것이며 본 발명의 범위를 한정하는 것은 아니다.
실시예 1
환원반응
알루미나 도가니 용기에 NaBH4를 넣고, 로(GSL1100X) 내에 장착된 수평 석영 튜브 내로 상기 도가니 용기를 넣었다. 석영 튜브를 상온에서 100분 내에 500도까지 가열하고, 상기 온도를 3시간 동안 유지시켰다. 가열동안 상기 로 내부로 질소 57cm3/min(0.1MPa), CO2 10cm3/min로 흘려주었다.
한편, 15% CO2, 80%의 N2, 5%의 O2로 혼합가스를 70cm3/min의 속도로 주입하였다. 이 후, 생성된 고체 생성물을 유리병에 저장하였다 반응로에서 CO2 전환을 질량 분석기로 관찰하여 도 1에 나타내었다.
고체 생성물 처리(Flue B-PC의 제조)
상기 환원 반응에서 수득한 고체 생성물을 유리병으로 옮긴 다음 증류수 80㎤를 넣어 가열하고, 260rpm 4시간 동안 교반하였다. 미세 입자 서스펜션이 생성되면, 맑은 상층부 액을 제거한 다음 증류수 80㎤를 다시 넣어주어 상기 과정을 네 번 반복한 후 고체 생성물을 물과 에탄올로 여과, 세척하였다. 생성된 고체 케이크를 상온에서 수 시간 동안 유지시킨 후 120도 오븐에서 건조시켰다.
Flue B-PC의 열처리 (Flue 850, 1050의 제조)
상기 로 실험에서 생성된 고체 생성물을 알루미나 도가니 용기에 넣고, 로(GSL1100X) 내에 장착된 수평 석영 튜브 내로 상기 도가니 용기를 넣었다. 석영 튜브를 상온에서 5℃/분의 속도로 850와 1050도까지 각각 가열하고, 850도에서 2시간, 1050도에서 1시간 동안 각각 유지시켰다. 질소 50 ㎤/min(0.1MPa)의 조건에서 상온까지 냉각시킨 후 고체 생성물(Flue 850, 1050)을 유리병에 저장하였다.
Flue B-PC의 KOH 처리(Flue K 700, 850, 1000의 제조)
앞에서 생성한 Flue B-PC 0.2g을 KOH(99%, 0.2g)가 녹아 있는 에탄올에 녹였다. 이어서, 15분 동안 초음파 처리하였다. 상기 용액을 120℃로 밤새 건조시켰다. 생성된 검정색 고체 파우더 생성물을 알루미나 도가니 용기에 장착하였다. 상기 용기를 로(GSL1100X) 내에 장착된 수평 석영 튜브 내로 상기 도가니 용기를 넣었다. 석영 튜브를 상온에서 5℃/분의 속도로 700℃, 850℃, 1000℃까지 가열하고, 2시간 동안 유지시켰다. 이어서, 질소 50㎤/min(0.1MPa)의 조건에서 상온으로 냉각시켰다. 고체 생성물을 유리병에 저장한 후, 5M HCl 10㎤에 첨가하였다. 유리병을 닫고 교반하였다. 침전된 검정색 입자가 생성되면, 상층부를 제거하고 10㎤의 증류수를 첨가하는 세척 절차를 4번 반복하였다. 상기 검정 입자를 상온에서 수 시간 동안 유지시킨 후 120℃ 오븐에서 건조시켜 Flue K 700, 850, 1000 탄소 물질을 수득하였다.
Flue FeBNPC의 형성
앞에서 생성된 Flue B- PC를 증류수에 분산시켰다. Flue B- PC의 4배의 우레아와 FeCl3을 넣고, 혼합용액을 15 분 동안 초음파 처리하였다. 상기 용액을 알루미나 도가니 용기에 넣은 후 120℃도에서 건조시켰다. 건조된 탄소 물질을 질소 50sccm 분위기에서 850도로 열처리 하였다. 열처리후 잔류 탄소를 뜨거운 증류수로 처리하였다. 이어서, Flue B-PC의 고체 생성물 처리에서와 같은 방법으로 교반, 세척하여 고체 잔류물(Flue FeBNPC(x, x=Flue B-PC 대비 FeCl3의 중량비))을 수득하였다.
철 입자의 제거
동일한 방법으로 Flue FeBNPC를 합성 한 후 5M HCl용액으로 철을 제거하여 철이 없는 Flue BNPC를 제조하였다. 증류수로 세척하여 pH를 7까지 올린 다음 건조시켰다.
도 2는 실시예 1에서 수득한 샘플들의 XRD 패턴이다. 도 2를 참고하면, 모든 샘플들은 22~25°에서의 넓은 피크를 나타내는데, 이것은 생성된 탄소 물질의 무정형성을 보여준다. 도 2(a)에서, KOH 처리되지 않은 Flue 850, 1050 샘플과 비교하여, KOH 처리된 샘플들은 22~25°에서 (002)면의 회절피크가 낮은 값으로 이동되며, 이것은 그라핀 층들 사이 간격이 증가하였음을 나타낸다. 즉, KOH와 다공성 카본(Flue-B-PC)의 반응 동안 K 원소가 그라파이트 중간층(그라핀 층 들 사이)에 삽입되었기 때문으로 이해할 수 있다. 또한, 도 2(b)를 참고하면, Flue 850(열처리만 수행)에 비해 KOH 처리한 Flue K 850의 (002)면에서 세기가 감소하고 넓어지는데, 이것은 KOH 처리가 다공성 탄소의 비정형 특성을 증가시킴을 보여준다.
도 3은 실시예 1의 샘플들의 SEM 사진이다. 도 3을 참고하면, Flue K 700 샘플에서 10~20nm의 기공이 생성되었으나, 더 큰 사이즈의 기공(pore)들은 거의 없다. 그러나, Flue K 850, Flue K 1000 샘플들에는 100~500nm 사이즈의 기공이 있으며, 이들 기공들은 서로 연결된다. 고온에서, KOH 활성은 좀 더 빠르게 진행되어 더 큰 사이즈의 기공을 형성한다.
또한, Flue-B-PC도 150nm의 마이크로 기공을 가지지만, 마이크로 포어나 메조 포어는 발견하기 힘들다. 이에 반해, Flue K 850, Flue K 1000 샘플들에는 100~500nm 사이즈의 매크로 포어뿐만 아니라 마이크로나 메조포어도 존재한다.
도 4는 Flue B-PC, Flue 850, Flue 1050에서의 XPS B1 스펙트럼을 나타낸다. 도 4를 참고하면, Flue B-PC에서 메인 B1 피크는 B4C이고, Flue 1050 에서의 메인 피크는 BCO2, BC2O이다. Flue 1050의 샘플이 Flue B-PC 보다 촉매 활성이 우수한데, 이것은 O-B-C 구조(BCO2, BC2O)가 B-C 구조(B4C)보다 산소 환원 반응에 더 유리한 구조이기 때문이다. 도 4를 참고하면, 온도 증가에 따라 생성된 다공성 탄소 물질의 주요 구조가 B4C에서 BCO2나 BC2O로 전이됨을 알 수 있다.
도 5는 Flue B-PC, Flue 850, Flue 1050 샘플들에 대한 순환전압전류법(CV, Cyclic Voltammographs)과 RDE 커브를 나타낸다. 도 5를 참고하면, 열처리한 Flue 850와 Flue 1050의 경우 ORR 피크 전류 밀도와 전위 값이 큰 폭으로 상승하였음을 보여준다.
도 6은 Flue FeBNPC(x)의 SEM 사진을 나타낸다. x는 철의 함량( Flue B-PC 대비한 FeCl3의 함량)이다. 도 6을 참고하면, Flue FeBNPC(5), Flue FeBNPC(15), Flue FeBNPC(33), Flue FeBNPC(45)에는 철 입자들이 탄소 물질 위에 분산되어 있으나 Flue BNPC나 Flue FeBNPC(33)를 세척한 샘플에는 철 입자가 존재하지 않는다. 또한, Flue FeBNPC(45) 샘플 표면에는 철 입자들이 국부적으로 뭉침 현상이 발생하였다.
도 7은 Flue FeBNPC(33)의 XPS N1s 그래프를 나타낸다. Flue FeBNPC(33) 뿐만 아니라 Flue BNPC, Flue FeBNPC(5, 15, 45)의 경우에도 피리딘 또는 Fe-Nx(398eV), pyrrolic(399eV), graphitic(400eV), 및 pyridinic oxide(402-405eV)등의 형태로 질소가 합성된 탄소 물질 상에 존재한다. 특히, 도 7을 참고하면, 피리딘 또는 Fe-Nx(398eV)가 가장 높은 피크를 보여준다.
도 8은 Flue FeBNPC의 전기 화학 촉매 특성에 나타낸 것이다. 도 8을 참고하면, 철 함량이 33%까지 증가할수록 촉매 활성이 증가하였다. 도 8에 의하면, OPR(산소 환원 반응) 활성이 pyridinic N/C의 양에 의존함을 알 수 있다. 도 8 c, d에 의하면, OPR 활성과 pyridinic N/C 비가 Flue FeBNPC(33)에서 최고점인 볼캐노 형상(volcano-shaped)을 나타낸다. OPR 활성의 증가는 pyridinic N이 OPR의 활성 사이트인 철과 더 많이 결합하기 때문이지만, 철 함량이 33%를 초과하는 경우에는 합성공정 중에 pyridinic N/C 함량이 더 이상 증가하지 못하는 보인다.
6mol/L의 KOH 수용액에 상기 실시예 1의 샘플들을 넣어 전기화학적 성능 평가를 수행하고 이를 도 9에 나타내었다. 도 9의 a는 galvanostatic charge/discharge 전압값이고(a), b는 CV값이다. 도 9의 a를 참고하면, KOH 처리된 샘플의 정전용량(커패시턴스)값이 현저히 증가하였다. 또한, KOH 처리하면, 온도가 증가할수록 커패시턴스가 증가한다. 이러한 커패시턴스 값의 증가는 도 9b의 CV 커브의 내부 면적으로 결정되는 커패시턴스값의 증가와 일치한다.
도 10은 실시예 1의 샘플들에 대한 기공 사이즈 분포를 나타낸다. 도 10을 참고하면, KOH 처리하지 않은 열처리 Flue 850 샘플에는 마이크로 포어가 발견되지 않았다. KOH 처리된 Flue K 700, Flue K 850, Flue K 1000 샘플은 다수의 마이크로 포어(2nm 부근), 메조포어(10nm 부근) 및 매크로포어(100nm 이상)의 존재를 나타내는 피크가 관찰된다. Flue K 700 샘플에 비해 Flue K 850, Flue K 1000 샘플들은 마이크로 포어에 해당되는 기공들의 사이즈가 더 작아졌고, 반면, 메조 포어 및 매크로 포어의 기공 사이즈는 오히려 더 증가하였다. 즉, KOH 처리에 의해 마아크로 포어나 메조포어가 다수 형성되어 탄소 소재의 표면적이 증가되었으며, 또한 열처리에 의해 작은 기공들이 좀 더 큰 사이즈의 기공으로 전환됨을 알 수 있다.
상기 방법으로 제조된 탄소소재는 산화 환원 반응 활성이 우수한 복수개의 이종원소(철, 질소)가 도핑되어 있어 연료전지의 촉매로 사용될 수 있다. 즉, 상기 탄소소재는 높은 표면적과 부피가 큰 기공들을 가지고 있어 Supercapacitor(슈퍼캐퍼시터)나 수소 저장 장치와 같은 에너지 저장용에 사용될 수 있다.
실시예 -2: CoBNPC ( 보론질소코발트가 도핑된 다공성탄소 )제법 및 전기화학적특성평가
1) 제조방법
앞에서 생성된 Flue B- PC를 증류수에 분산시켰다. 제조방법은 도 11에 설명되어 있다. 0.1703g의 Flue B- PC의 4배의 우레아와 0.0839g의 Co(C2H3O2)2H2O을 넣고, 혼합용액을 15 분 동안 초음파 처리하였다. 상기 용액을 알루미나 도가니 용기에 넣은 후 120℃에서 건조시켰다. 건조된 탄소 물질을 질소 50sccm 분위기에서 850도로 열처리 하였다. 열처리후 잔류 탄소를 뜨거운 증류수로 처리하였다. 이어서, Flue B-PC의 고체 생성물 처리에서와 같은 방법으로 교반, 세척하여 고체 잔류물(Flue CoBNPC)을 수득하였다.
2)전기화학적 특성평가
도12는 Flue CoBNPC의 전기 화학 촉매 특성에 나타낸 것이다. 피크전위값이 Ag/AgCl 기준 전극 대비 -0.195 V , 전류밀도 값이 -0.8 V vs. Ag/AgCl에서 2 mA/cm2의 값을 나타낸다.
실시예 - 3: NiBNPC ( 보론질소니켈이 도핑된 다공성탄소 )제법 및 전기화학적특성평가
1) 제조방법
도13이 자세한 NiBNPC제조를 보여주고 있다. 앞에서 생성된 Flue B-PC를 증류수에 분산시켰다. 0.1685g의 Flue B-PC의 4배의 우레아와 0.0862g의 NiCl24H2O을 넣고, 혼합용액을 15 분 동안 초음파 처리하였다. 상기 용액을 알루미나 도가니 용기에 넣은 후 120℃에서 건조시켰다. 건조된 탄소 물질을 질소 50sccm 분위기에서 850도로 열처리 하였다. 열처리 후 잔류 탄소를 뜨거운 증류수로 처리하였다. 이어서, Flue B-PC의 고체 생성물 처리에서와 같은 방법으로 교반, 세척하여 고체 잔류물(Flue NiBNPC)을 수득하였다.
2) 전기화학적 특성평가
도 14는 Flue NiBNPC의 전기 화학 촉매 특성에 나타낸 것이다. 피크전위값이 Ag/AgCl 기준전극 대비 -0.217 V , 전류밀도 값이 -0.8 V vs. Ag/AgCl에서 3.2 mA/cm2의 값을 나타낸다.
실시예-4: 실제 수분이 포함된 배기가스를 이용한 탄소환원 반응
이산화탄소 환원반응
알루미나 도가니 용기에 NaBH4를 넣고, 로(GSL1100X) 내에 장착된 수평 석영 튜브 내로 상기 도가니 용기를 넣었다. 석영 튜브를 상온에서 100분 내에 500도까지 가열하고, 상기 온도를 3시간 동안 유지시켰다. 15% CO2, 80%의 N2, 5%의 O2로 혼합가스를 67cm3/min의 속도로 주입하였다. 이 때, 물은 1.08 ml를 넣었다. 이 후, 생성된 고체 생성물을 유리병에 저장하였다.
고체 생성물 처리(Flue B-PC의 제조)
상기 환원 반응에서 수득한 고체 생성물을 유리병으로 옮긴 다음 증류수 80㎤를 넣어 가열하고, 260rpm 4시간 동안 교반하였다. 미세 입자 서스펜션이 생성되면, 맑은 상층부 액을 제거한 다음 증류수 80㎤를 다시 넣어주어 상기 과정을 네 번 반복한 후 고체 생성물을 물과 에탄올로 여과, 세척하였다. 생성된 고체 케이크를 상온에서 수 시간 동안 유지시킨 후 120도 오븐에서 건조시켰다. 자세한 과정은 도 15에 나타나있다.
Flue B-PC의 열처리 (Flue H2O BPC 1050의 제조)
상기 로 실험에서 생성된 고체 생성물을 알루미나 도가니 용기에 넣고, 로(GSL1100X) 내에 장착된 수평 석영 튜브 내로 상기 도가니 용기를 넣었다. 석영 튜브를 상온에서 5℃/분의 속도로 1050도까지 각각 가열하고, 1050도에서 1시간 동안 각각 유지시켰다. 질소 50 ㎤/min(0.1MPa)의 조건에서 상온까지 냉각시킨 후 고체 생성물(Flue H2O BPC 1050)을 유리병에 저장하였다. 본 Flue H2O BPC 1050에 대한 제법은 도16에 나타나있다.
2) 산소환원반응 활성측정
도17에서 보인 바와 같이 Flue H2O BPC의 피크 전위값은 기준전극 Ag/AgCl 대비 -0.33 V~ -0.36V 값을 보인다.
Flue H2O BPC를 1050도에서 열처리한 Flue H2O 1050은 피크 전위값이 -0.2139 V vs. Ag/AgCl로 나타나 열처리한 후 전기화학적 특성이 증대됨을 도18에서 보였다.
물이 함유된 배기가스를 상정하여 실험한 실시예 4의 경우에도 생성된 이종원소가 도핑된 탄소물질은 전기화학적 특성이 우수하므로 연료전지의 촉매로 사용될 수 있음을 확인할 수 있다.
이상에서, 본 발명의 바람직한 구현예에 대하여 상세하게 설명하였으나, 이들은 단지 설명의 목적을 위한 것으로 본 발명의 보호 범위가 이들로 제한되는 것은 아니다.
본 발명은 이산화탄소의 전처리나 분리없이 배가스로부터 직접 산화환원 반응 능력이 우수한 탄소 소재를 제조할 수 있고, 상압의 온건한 조건에서 이산화탄소로부터 탄소소재를 합성함으로써 기존의 제조공정보다 에너지를 절감할 수 있는 경제적인 공정이다. 본 발명에 의해 제조된 탄소소재는 산화 환원 반응 활성이 우수한 복수개의 이종원소가 도핑되어 있어 연료전지의 촉매로 사용될 수 있다.

Claims (26)

  1. 이산화탄소를 포함하는 배가스(flue gas)를 보론 하이드라이드(boron hydride) 환원제로 300 내지 400℃ 이상에서 반응시키는 단계를 포함하는 탄소소재 제조방법.
  2. 제 1항에 있어서, 상기 방법은 1~100atm에서 수행되는 것을 특징으로 하는 탄소소재 제조방법.
  3. 제 1항에 있어서, 상기 방법은
    보론 하이드라이드 환원제를 가열로에 위치시키는 단계 ; 및
    상기 가열로의 온도를 500℃까지 상승시킨 후 2~3시간 이상 동안 상기 온도를 유지시키는 반응 단계를 포함하되, 상기 반응단계는 이산화탄소를 포함하는 상기 배가스(flue gas)를 가열로에 주입하는 단계를 포함하는 것을 특징으로 하는 탄소 소재 제조방법.
  4. 제 1항에 있어서, 상기 보론 하이드라이드는 리튬 보론하이드라이드(LiBH4), 나트륨 보론 하이드라이드(NaBH4), 칼륨 보론하이드라이드(KBH4),마그네슘 보론 하이드라이드(Mg(BH4)2), 칼슘 보론하이드라이드(Ca(BH4)2),스트론튬 보론하이드라이드(Sr(BH4)2)및 암모니아보레인(NH3BH3)로 이루어진 군에서 선택되는 것을 특징으로 하는 탄소소재 제조방법.
  5. 제 1항에 있어서, 상기 방법은 상기 반응 단계 이후에 배가스 중의 질소를 회수하여 열처리 비활성가스로 재사용하거나 부가적인 분리공정을 거쳐 보다 정제된 질소회수 단계를 포함하는 것을 특징으로 하는 탄소소재 제조방법.
  6. 제 1항에 있어서, 상기 방법은 상기 반응 단계에서 형성된 고체 생성물을 분리한 후 세척 및 건조시키는 단계를 포함하는 것을 특징으로 하는 탄소소재 제조방법.
  7. 제 1항에 있어서, 상기 방법은 상기 반응 단계에서 형성된 고체 생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함하는 것을 특징으로 하는 탄소소재 제조방법.
  8. 제 1항에 있어서, 상기 방법은
    상기 반응 단계에서 형성된 고체 생성물을 염기성 용액으로 처리하는 단계 ; 및
    상기 용액을 건조시켜 용매를 제거한 후 잔류 고체생성물을 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함하는 것을 특징으로 하는 탄소소재 제조방법.
  9. 제 8항에 있어서, 상기 염기성 물질은 수산화칼륨(KOH), 수산화나트륨(NaOH) 및 수산화리튬(LiOH)로 이루어진 군에서 선택되는 것을 특징으로 하는 탄소소재 제조방법.
  10. 제 1항 내지 제 6항 중 어느 하나의 방법에 의해 제조되고, 구성 성분이 B4C(B-C 결합) 또는 BC3를 포함하는 것을 특징으로 하는 다공성의 보론 도핑된 탄소 소재.
  11. 제 7항 또는 제 8항의 방법에 의해 제조되고, 주요 구성 성분이 BCO2 또는 BC2O(O-B-C 결합)인 다공성의 보론 도핑된 탄소 소재.
  12. 제 8항의 방법에 의해 제조된 다공성 탄소 소재로서, 상기 탄소 소재는 마이크로 기공(<2nm), 메조 기공(2~50nm), 및 매크로 기공(>50nm) 영역을 모두 구비하는 것을 특징으로 하는 다공성의 보론 도핑된 탄소 소재.
  13. 제 1항 내지 제 8항 중 어느 한 항에 의해 형성된 고체 생성물과 전구체 물질을 용매에 넣어 분산시킨 후 열처리하는 단계를 포함하는 이종원소가 도핑된 탄소소재 제조방법.
  14. 제 13항에 있어서, 상기 열처리는 비활성 가스 분위기에서 700 ℃ 내지 1500 ℃로 열처리하는 단계를 포함하는 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  15. 제 13항에 있어서, 상기 전구체 물질은 질소 전구체 또는 촉매 활성사이트로 사용되는 금속 전구체인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  16. 제 15항에 있어서, 상기 금속 전구체는 철 전구체, 코발트 전구체, 망간전구체 또는 니켈 전구체인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  17. 제 13항에 있어서, 상기 고체 생성물과 전구체 물질은 1 : 0.01~6의 중량비로 용매에 분산시키는 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  18. 제 15항에 있어서, 상기 고체생성물에 질소전구체와 금속전구체를 용매에 분산시키는 경우, 상기 고체 생성물, 상기 질소전구체 및 상기 금속전구체의 함량비는 1 : 0.1~5 : 0.01~0.5인 것을 특징으로 하는 이종원소가 도핑된 탄소 소재 제조방법.
  19. 제 15항에 있어서, 상기 질소 전구체 물질은 폴리파이롤((C4H2NH)n), 폴리아닐린 (polyaniline), 멜라민(C3H6N6), PDI(N,N’-bis(2,6-diisopropyphenyl)-3,4,9,10-perylenetetracarboxylicdiimide), Polyacrylonitrile(PAN), 요소(CO(NH2)2), 암모니아(NH3), 하이드라진(N2H4) 및 암모니아보레인(NH3BH3)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  20. 제 16항에 있어서, 상기 철 전구체 물질은 C32H16N8Fe (Iron phthalocyanine),FeCl3, FeCl2, FeSO4ㆍ6H2O, Fe(SO4)2ㆍ6H2O, Fe(COO)2ㆍ2H2O, FeC2O4ㆍ2H2O, FeC6H8O7ㆍnH2O, (NH4)2Fe(SO4)2ㆍ6H2O, Fe3(PO4)ㆍ8H2O 및 이들의 염으로부터 선택되는 하나 이상인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  21. 제 16항에 있어서, 상기 코발트 전구체는 Co(NO3)·6H2O, CoCl2·6H2O, CoCl2, CoSO4·7H2O, Co(NO3)2·6H2O, Co(C2H3O2)2·4H2O 및 C32H16CoN8 (Cobalt phthalocyanine)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  22. 제 16항에 있어서, 상기 망간 전구체는 Mn(NO3)2·xH2O, MnCl2·4H2O, MnCl2, MnSO4·xH2O, MnCO3, MnC2H3O2·4H2O 및 C32H16MnN8(Manganese phthalocyanine)로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  23. 제 16항에 있어서, 상기 니켈 전구체로는 Ni(CH3COO)2, Ni(CH3COO)2·4H2O, Ni(NO3)2·6H2O, NiSO4·6H2O, C32H16N8Ni(Nickel phthalocyanine), NiCl2 및 NiCl2·6H2O로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 이종원소가 도핑된 탄소소재 제조방법.
  24. 제 13항에 의해 제조된 이종원소가 도핑된 탄소소재로서, 상기 탄소소재는 다공성의 보론 도핑된 카본 물질에 질소 또는 산소 환원 반응의 촉매 활성 사이트가 될 수 있는 금속이 도핑되거나 분산된 것을 특징으로 하는 이종원소가 도핑된 탄소 소재.
  25. 제 24항에 있어서, 상기 금속은 철, 코발트, 망간 또는 니켈인 것을 특징으로 하는 이종원소가 도핑된 탄소 소재.
  26. 제 24항에 있어서, 상기 금속은 금속-N-C 본딩 형태로 카본 물질에 존재하는 것을 특징으로 하는 이종원소가 도핑된 탄소 소재.
PCT/KR2015/008913 2014-08-29 2015-08-26 이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법 WO2016032221A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0114151 2014-08-29
KR1020140114151A KR101630933B1 (ko) 2014-08-29 2014-08-29 이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법

Publications (1)

Publication Number Publication Date
WO2016032221A1 true WO2016032221A1 (ko) 2016-03-03

Family

ID=55400042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008913 WO2016032221A1 (ko) 2014-08-29 2015-08-26 이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법

Country Status (2)

Country Link
KR (1) KR101630933B1 (ko)
WO (1) WO2016032221A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923620A (zh) * 2016-04-25 2016-09-07 辽宁科技大学 一种各向同性中间相炭微球的制备方法
CN109692710A (zh) * 2019-01-24 2019-04-30 东华理工大学 一种泡沫镍原位负载双金属超分子网格材料的制备方法
CN111715297A (zh) * 2020-07-22 2020-09-29 浙江大学 酞菁锰修饰牛角状碳基催化剂的制备及电还原co2方法
CN113955740A (zh) * 2021-12-07 2022-01-21 海城申合科技有限公司 一种煤沥青基氟掺杂多孔炭的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101969970B1 (ko) * 2016-04-21 2019-04-18 한국과학기술원 산화전이금속의 함침을 통한 이산화탄소로부터 붕소가 도핑된 탄소소재의 제조방법
KR102015119B1 (ko) * 2016-10-07 2019-08-27 한국과학기술원 폐커피를 이용한 이종원소 도핑 탄소소재의 제조방법 및 전극물질로의 적용
KR102647488B1 (ko) * 2021-07-15 2024-03-13 인하대학교 산학협력단 니켈 및 질소를 포함하는 상호 연결된 흑연 나노 큐브의 제조방법 및 응용
KR20240053871A (ko) * 2022-10-18 2024-04-25 한국과학기술원 이산화탄소 함유 가스로부터의 보론이 함유된 다공성 탄소소재를 이용한 과산화수소의 전기화학적 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832309B1 (ko) * 2007-11-21 2008-05-26 한국과학기술원 금속 양이온이 도핑된 수소저장용 유기물질 골격구조 물질유도체 및 그의 사용방법
US20120068124A1 (en) * 2010-09-21 2012-03-22 Dickinson Robert W Process for the Production of Carbon Graphenes and other Nanomaterials
KR101340009B1 (ko) * 2013-03-06 2013-12-11 한국과학기술원 이산화탄소로부터 탄소소재를 제조하는 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832309B1 (ko) * 2007-11-21 2008-05-26 한국과학기술원 금속 양이온이 도핑된 수소저장용 유기물질 골격구조 물질유도체 및 그의 사용방법
US20120068124A1 (en) * 2010-09-21 2012-03-22 Dickinson Robert W Process for the Production of Carbon Graphenes and other Nanomaterials
KR101340009B1 (ko) * 2013-03-06 2013-12-11 한국과학기술원 이산화탄소로부터 탄소소재를 제조하는 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, LIFENG ET AL.: "Hydrogen storage properties of B- and N-doped microporous carbon", AICHE JOURNAL, vol. 55, no. 7, 26 May 2009 (2009-05-26), pages 1823 - 1833 *
ZHANG, JUNSHE ET AL.: "Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borobydride at atmospheric pressure", CARBON, vol. 53, 1 November 2012 (2012-11-01), pages 216 - 221 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923620A (zh) * 2016-04-25 2016-09-07 辽宁科技大学 一种各向同性中间相炭微球的制备方法
CN105923620B (zh) * 2016-04-25 2017-12-12 辽宁科技大学 一种各向同性中间相炭微球的制备方法
CN109692710A (zh) * 2019-01-24 2019-04-30 东华理工大学 一种泡沫镍原位负载双金属超分子网格材料的制备方法
CN111715297A (zh) * 2020-07-22 2020-09-29 浙江大学 酞菁锰修饰牛角状碳基催化剂的制备及电还原co2方法
CN111715297B (zh) * 2020-07-22 2021-07-16 浙江大学 酞菁锰修饰牛角状碳基催化剂的制备及电还原co2方法
CN113955740A (zh) * 2021-12-07 2022-01-21 海城申合科技有限公司 一种煤沥青基氟掺杂多孔炭的制备方法
CN113955740B (zh) * 2021-12-07 2024-03-26 海城申合科技有限公司 一种煤沥青基氟掺杂多孔炭的制备方法

Also Published As

Publication number Publication date
KR101630933B1 (ko) 2016-06-16
KR20160027425A (ko) 2016-03-10

Similar Documents

Publication Publication Date Title
WO2016032221A1 (ko) 이산화탄소를 포함하는 배가스로부터 이종원소가 도핑된 탄소소재를 제조하는 방법
Xia et al. Freestanding Co3O4 nanowire array for high performance supercapacitors
WO2012148040A1 (ko) 스피넬형 구조를 갖는 다공성 망간산화물계 리튬 흡착제 및 그 제조방법
KR101946446B1 (ko) 붕소와 질소가 동시에 도핑된 다공성 탄소소재의 제조방법
CN107425180B (zh) 三维石墨烯/硅复合体系、其制备方法及应用
CN113371693B (zh) 一种钴氮共掺杂的三维结构碳材料及其制备方法、应用
US11837734B2 (en) Oxygen reduction catalyst employing graphite of negative electrode of waste battery, and preparation method therefor
US20050221981A1 (en) Process for preparing high surface area carbon
CN111111722B (zh) 一种电解水用金属硫化物/MXene复合物催化剂及其制备方法
KR101340009B1 (ko) 이산화탄소로부터 탄소소재를 제조하는 방법
CN108615904B (zh) 一种钴酸镍空心球/氮化碳量子点复合材料及其制备方法和应用
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
KR20110024856A (ko) 폐 리튬 이차전지의 양극물질로부터 리튬 화합물을 회수하는 방법
KR102389113B1 (ko) 이산화탄소로부터 리튬이온배터리용 탄소기반 음극의 제조방법 및 상기 방법에 의해 제조된 리튬이온배터리용 탄소기반 음극
WO2016163899A1 (en) Activated carbons with a high nitrogen content and a high electric conduction and the method of manufacturing activated carbons, in particular the method of manufacturing electrodes
CN114516635B (zh) 一种氮掺杂多孔碳材料的制备方法
CN115818638A (zh) 一种氮硫掺杂的分级多孔碳及其制备方法
CN109437194B (zh) 一步熔融盐法制备煤基多孔炭与金属氧化物纳米杂化材料的方法
WO2013015531A2 (ko) 스피넬형 구조를 갖는 다공성 망간산화물계 리튬 흡착제 및 그 제조방법
CN115555042B (zh) 碳纳米管催化剂的制备方法、碳纳米管催化剂及其应用
CN114890414B (zh) 一种废旧电池中石墨材料的回收利用方法
CN113003555B (zh) 一种介孔碳氮共掺杂钴基磷酸盐材料及其制备方法与应用
CN112750627B (zh) 一种碳纳米管及其制备方法和应用
CN112838214A (zh) 一种介孔碳原位修饰FeP的锂离子电池负极材料和制备方法
CN113181944A (zh) 一种Ni基非金属掺杂催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835617

Country of ref document: EP

Kind code of ref document: A1