WO2016032115A1 - 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법 - Google Patents

주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법 Download PDF

Info

Publication number
WO2016032115A1
WO2016032115A1 PCT/KR2015/007005 KR2015007005W WO2016032115A1 WO 2016032115 A1 WO2016032115 A1 WO 2016032115A1 KR 2015007005 W KR2015007005 W KR 2015007005W WO 2016032115 A1 WO2016032115 A1 WO 2016032115A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silica nanoparticles
adsorbent
corrugated surface
silica
Prior art date
Application number
PCT/KR2015/007005
Other languages
English (en)
French (fr)
Inventor
이진규
문두식
정동욱
심인근
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2016032115A1 publication Critical patent/WO2016032115A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid

Definitions

  • the present invention relates to an adsorbent comprising silica nanoparticles having a corrugated surface, and a method for preparing the same.
  • Nanoporous materials can serve as adsorbents such as adsorption of contaminants, adsorption of flavors and drug adsorption and desorption.
  • silica nanoparticles are materials of great potential for biomedical use, i.e., drug delivery materials, because silica nanoparticles are robust, have a large surface area, are chemically inert, and can easily modify surfaces. .
  • adsorption using nanoporous materials may be considered as a method of controlling organic or inorganic trace contaminants.
  • One of the processes that are receiving the most attention recently is a combination of adsorption and separation processes.
  • Adsorption process using nano-porous materials can selectively adsorb low molecular weight contaminants by adsorbing various organic and inorganic contaminants in addition to trace contaminants in water, but there is still little research in this field.
  • the present invention uses silica nanoparticles having a corrugated surface having a high surface area, and can easily adsorb organic or inorganic materials, and can selectively adsorb specific materials, control the desorption of a target material and the desorption rate, and It is an object to provide a method for producing the same.
  • the present invention provides an adsorbent comprising silica nanoparticles (WSN) having a corrugated surface.
  • WSN silica nanoparticles
  • the present invention (1) preparing a silica nanoparticles (Wrinkle Silica Nanoparticle, WSN) having a wrinkled surface;
  • It provides a method for producing an adsorbent comprising silica nanoparticles having a corrugated surface of the present invention comprising the step of precipitating and purifying the silica nanoparticles having a corrugated surface modified surface (3).
  • the adsorbent including silica nanoparticles having the corrugated surface of the present invention has a high surface area and can easily adsorb the adsorbent material.
  • the adsorbent of the present invention is excellent in productivity, low production cost and has the advantage of being economically excellent.
  • Figure 2 is a TEM photograph of silica nanoparticles having a wrinkled surface prepared in Preparation Example 1.
  • FIG. 4 is a graph showing the degree of adsorption of aliphatic hydrocarbons of silica nanoparticles having a corrugated surface of Examples 1 and 3 to 5.
  • FIG. 4 is a graph showing the degree of adsorption of aliphatic hydrocarbons of silica nanoparticles having a corrugated surface of Examples 1 and 3 to 5.
  • FIG. 5 is a graph showing the degree of adsorption of aromatic hydrocarbons of silica nanoparticles having a corrugated surface of Examples 1 and 3 to 5.
  • FIG. 6 is a graph showing the degree of adsorption of aldehydes, alcohols and acetate compounds of silica nanoparticles having a corrugated surface of Examples 1 and 3 to 5.
  • FIG. 7 is a graph showing the degree of adsorption of ketones and terpene compounds of silica nanoparticles having a corrugated surface of Examples 1 and 3 to 5.
  • FIG. 7 is a graph showing the degree of adsorption of ketones and terpene compounds of silica nanoparticles having a corrugated surface of Examples 1 and 3 to 5.
  • the present invention relates to an adsorbent comprising silica nanoparticles (WSN) having a corrugated surface.
  • WSN silica nanoparticles
  • Silica nanoparticles having a corrugated surface of the present invention is an adsorbent capable of adsorbing an organic or inorganic adsorbent, and in order to adsorb the adsorbent more easily, the surface of the silica nanoparticles having a corrugated surface is modified with an organic or inorganic material. Due to the interaction between the surface of the silica nanoparticles having the corrugated surface with the modified surface and the adsorption material, the adsorption material can be more effectively adsorbed.
  • the organic or inorganic material for modifying the surface of the silica nanoparticles having the corrugated surface is not particularly limited as long as it is a material capable of interacting with the material to be adsorbed, but preferably an amine group, anthracene group, silane group, A compound containing at least one member selected from the group consisting of an epoxy group, a thiol group, a sulfonic acid group, a carboxyl group, a phenyl group and an aliphatic hydrocarbon group, or a metal complex compound containing at least one member selected from the group as a ligand is used.
  • the metal of the metal complex is not particularly limited, but is preferably platinum (Pt), palladium (Pd), silver (Ag), gold (Au), cobalt (Co), nickel (Ni), iron (Fe) And at least one selected from the group consisting of copper (Cu), cadmium (Cd), zinc (Zn), rubidium (Rb), and europium (Eu).
  • the organic or inorganic material for modifying the surface of the silica nanoparticles having the corrugated surface it is preferable to use a compound containing a silane group which can be covalently bonded with silica, or a metal complex.
  • the wrinkled silica nanoparticles refers to nanoparticles formed by using silicate as precursors and have a wrinkled surface. More specifically, the wrinkles are radially formed from inside the silica nanoparticles.
  • mesoporous nanoparticles have pores formed on spherical silica nanoparticles, whereas the silica nanoparticles have wrinkled surfaces, and void spaces between wrinkles such as pores of mesoporous nanoparticles.
  • specific functional materials that is, catalysts, enzymes, antibodies, fluorescent materials, DNA, proteins, and the like, may be located, and may serve to transport the functional materials.
  • the pores of general mesoporous nanoparticles have a small diameter, the size of the functional material that can be applied is limited.
  • the spacing between the corrugations is difficult to locate in the mesoporous nanoparticles.
  • the functional material can also be located, allowing for transport.
  • the silica nanoparticles having the corrugated surface have a gap of 5 to 80 nm, preferably 10 to 50 nm of wrinkles, more preferably 20 to 50 nm of wrinkles, and a thickness of 5 to 15 nm. Silica nanoparticles.
  • the diameter of the silica nanoparticles having the corrugated surface is preferably 10nm to 100 ⁇ m, more preferably 100 to 400nm.
  • the effective surface area (BET) of the silica nanoparticles having the corrugated surface is preferably 10 to 10,000 m 2 / g.
  • Adsorbents containing silica nanoparticles (Wrinkle Silica Nanoparticle, WSN) having a corrugated surface of the present invention can be used by applying on a substrate, the substrate is not particularly limited in kind, preferably glass or plastic, etc. This is used.
  • Adsorbents comprising silica nanoparticles having a corrugated surface of the present invention can be used for adsorption of organic and / or inorganic substances present in the water system as well as adsorption of organic and / or inorganic substances present in the gas phase.
  • Adsorbents comprising silica nanoparticles having corrugated surfaces of the present invention having inherent geometrical characteristics compared to conventional mesoporous materials having a capillary shape have excellent adsorption efficiency relative to the same level of mass and surface area, and It is possible.
  • the present invention provides a method for producing an adsorbent comprising silica nanoparticles having a corrugated surface of the present invention, and can be prepared by the following steps.
  • the silica nanoparticles having the corrugated surface of step (1) is a form in which the wrinkles are radially formed from inside the silica nanoparticles, and the interval of the wrinkles is 5 to 80 nm, preferably the interval of the wrinkles is 10 to 50 nm, more preferably.
  • the interval of wrinkles is 20 to 50 nm, and the thickness of the wrinkles is silica nanoparticles of 5 to 15 nm.
  • the diameter of the silica nanoparticles having the corrugated surface is preferably 10nm to 100 ⁇ m, more preferably 100 to 400nm.
  • the effective surface area (BET) of the silica nanoparticles having the corrugated surface is preferably 10 to 10,000 m 2 / g.
  • the surface of the silica nanoparticles having the corrugated surface should be modified with an organic or inorganic material.
  • Silica nanoparticles having a corrugated surface with a modified surface have a strong interaction with the material to be adsorbed, so that the adsorbed material can be adsorbed selectively and more efficiently.
  • the organic or inorganic material used for the surface modification is not particularly limited as long as it is a material capable of interacting with the material to be adsorbed, preferably an amine group, anthracene group, silane group, epoxy group thiol group, sulfonic acid group, A compound containing at least one member selected from the group consisting of a carboxyl group, a phenyl group and an aliphatic hydrocarbon group, or a metal complex compound containing at least one member selected from the group as a ligand is used.
  • the metal of the metal complex is not particularly limited, but is preferably platinum (Pt), palladium (Pd), silver (Ag), gold (Au), cobalt (Co), nickel (Ni), iron (Fe) And at least one selected from the group consisting of copper (Cu), cadmium (Cd), zinc (Zn), rubidium (Rb), and europium (Eu).
  • the organic or inorganic material for modifying the surface of the silica nanoparticles having the corrugated surface it is preferable to use a compound containing a silane group which can be covalently bonded with silica, or a metal complex.
  • the organic or inorganic material may be added at a weight of 0.1 to 10 times the total weight of the silica nanoparticles having the wrinkled surface to modify the surface of the silica nanoparticles having the wrinkled surface.
  • step (3) the silica nanoparticles having the corrugated surface having the surface modification completed may be precipitated by centrifugation, and then obtained, purified and dried to finally obtain an adsorbent.
  • step (3) by adding the step of applying the adsorbent prepared in step (3) to the substrate can be prepared the adsorbent of the present invention.
  • the mixed solution was centrifuged to precipitate the nanoparticles, which was purified three times using acetone and distilled water and then dried.
  • the nanoparticles were dispersed in a mixed solution of hydrochloric acid (HCl) and ethanol at a concentration of 1 M at a concentration of 10 mg / mL, the organics were removed at room temperature for 24 hours, purified three times by centrifugation with ethanol, and then dried.
  • Silica nanoparticles having a surface were prepared (FIGS. 1 and 2).
  • Example 1 0.5 g of the silica nanoparticles having the corrugated surface prepared in Example 1 was added to 100 mL of ethanol, and stirred well to disperse.
  • the solution was centrifuged to precipitate the nanoparticles, which was purified three times with ethanol and then dried to prepare silica nanoparticles having a wrinkled surface whose surface was modified with an amine group.
  • thermogravimetric analyzer was used to quantify the amount of the amine group exposed on the surface of the silica nanoparticles having the corrugated surface modified with the amine group, and 9- (chloromethyl) anthracene (9- ( Anthracene solution was prepared by dissolving Chloromethyl) anthracene) in 60 mL of ethanol, 55.5 mg, 1.5 times the amount of the amine group exposed on the surface.
  • reaction temperature was raised to 70 ° C. while refluxing.
  • anthracene solution 1.5 g of silica nanoparticles having a corrugated surface modified with an amine group and the surface synthesized in Example 2 were added and reacted for 24 hours.
  • the solution was centrifuged to precipitate the nanoparticles, purified three times with ethanol, and then dried to prepare silica nanoparticles having a wrinkled surface whose surface was modified with anthracene.
  • Example 3 In the same manner as in Example 3 except that 82.2 mg of 1,2-epoxyoctadecane (1,2-epoxyoctadecane, OCTD) was added instead of 9- (chloromethyl) anthracene of Example 3, the surface thereof was Silica nanoparticles having a corrugated surface modified with this OCTD were prepared.
  • the volatile organic compound standard used was a liquid standard mixture (100 ppm, Janpanese indoor air standards mixture, Supelco).
  • the prepared standard solution was evaporated at 300 ° C. and injected into the adsorber at a rate of 80 mL per minute using high purity nitrogen as a mobile phase.
  • the mobile phase high purity nitrogen was flowed for 4 minutes and 30 seconds to wait until the end of injection and complete adsorption.
  • the tubes adsorbed with 44 volatile organic compounds were gas chromatographs / mass spectrometers (GC / MS, GC-2010, Shimadzu GC-2010, Japan) directly connected to a gas chromatograph with a thermal desorption device (TD: Thermal Desorption, Shimadzu, Japan). The degree of adsorption was measured using the system. High purity helium (99.999%) was used as the gas for instrument analysis.
  • the silica nanoparticles having the corrugated surface of Examples 1 and 3 to 5 of the present invention showed a high adsorption rate, in particular, having the corrugated surface of Examples 3 to 5 with modified surfaces.
  • the degree of adsorption of silica nanoparticles was excellent (FIG. 4).
  • the results of adsorption of aromatic hydrocarbons showed a relatively better degree of adsorption compared to the results of adsorption of aliphatic hydrocarbons (FIG. 5).
  • the adsorption degree of the silica nanoparticles having the corrugated surface of Example 1 in the adsorption of nonanol and the tecanol was higher than that of the silica nanoparticles having the surface modified corrugated surface of Examples 3 to 5. It was superior to the adsorption, and the opposite result was observed for n-butanol and n-butyl acetate (FIG. 6).
  • silica nanoparticles having a corrugated surface modified with the surface of Example 4 in methyl isobutyl ketone were compared to silica nanoparticles having a corrugated surface of Example 1. It showed a very low degree of adsorption, and all other materials showed a higher degree of adsorption on the silica nanoparticles having the modified corrugated surface in Examples 3 to 5 compared to the silica nanoparticles having the corrugated surface of Example 1 (Fig. 7).
  • silica nanoparticles having the corrugated surface of the present invention can adsorb organic and / or inorganic substances very well (FIG. 8).
  • aqueous solutions in which 1 mg of fluorescent dye Rhodamine B was dissolved in 10 mL of distilled water were prepared, and in each aqueous solution, silica nanoparticles, amorphous silica nanoparticles, and mesopores of type MCM-41 having corrugated surfaces prepared in Example 1 were prepared. After dispersing the silica nanoparticles, the mixture was stirred for 10 minutes to allow the fluorescent dye to adsorb onto the particles. After the particles were separated from the solution by centrifugation, the amount of dye adsorbed to each silica nanoparticle was calculated by analyzing the amount of fluorescent dye remaining in the solution, and the results are shown in Table 1 below.
  • the effective surface area (BET) measured by the general nitrogen adsorption and desorption method was higher than that of the silica nanoparticles having the corrugated surface of Example 1 in which mesoporous silica nanoparticles of the conventional MCM-41 type were higher. It was found that the silica nanoparticles having the corrugated surface of Example 1 were more excellent in the adsorption capacity of the phase material (the dye adsorption amount and the adsorption capacity of the particles).
  • the adsorbent containing silica nanoparticles having the corrugated surface of the present invention has excellent adsorption ability not only in the gas phase but also in the aqueous phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법에 관한 것으로, 상기 흡착제는 흡착 물질을 용이하게 흡착시킬 수 있으며, 특정 물질을 선택적으로 흡착할 수 있는 효과를 지니고 있다.

Description

주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법
본 발명은 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법에 관한 것이다.
1992년 모빌사의 연구그룹이 계면활성제를 템플레이트(Template)로 이용하여 균일한 기공크기와 거대 비표면적을 가지는 나노 다공성 실리카 재료의 합성(C.T. Kreage et al., Nature, 710, 359, 1992)을 성공한 이래 나노 다공성 재료는 흡착제, 촉매, 센서, 광에너지 디바이스 등 광범위한 분야에서 그 응용이 기대되고 있다.
나노 다공성 재료는 흡착제로서 오염물질의 흡착, 향료의 흡착 및 약물 흡탈착 등의 역할을 수행할 수 있다. 그 중 실리카 나노 입자는 생물의학적 용도, 즉, 약물 전달 물질로 사용될 잠재력이 큰 물질이며, 이는 실리카 나노 입자가 견고하고, 표면적이 크며, 화학적으로 비활성이고, 표면을 용이하게 개질할 수 있기 때문이다.
또한, 유기 또는 무기 미량 오염물질을 제어하는 방법으로 나노 다공성물질을 사용한 흡착 등이 고려될 수 있다. 그 중 최근 가장 많은 관심을 받고 있는 공정 중의 하나가 흡착과 분리 공정을 조합한 공정이다. 나노 다공성 재료를 사용하는 흡착 공정은 수중 미량 오염물질 외에 다양한 유무기 오염물을 흡착함으로써 저분자량의 오염물을 선택적으로 흡착할 수 있으나, 이 분야에 대해서는 아직 연구가 미흡한 실정이다.
따라서, 다양한 유기 또는 무기 물질을 흡착할 수 있는 물질에 대한 개발이 필요하여, 본 연구진에서는 표면적이 넓으며, 물질 접근성이 용이하여 다양한 물질을 흡착할 수 있는 흡착제에 관하여 연구하고자 하였다.
본 발명은 높은 표면적을 가지는 주름진 표면을 갖는 실리카 나노입자를 사용하여, 유기물 또는 무기물을 용이하게 흡착할 수 있으며, 특정 물질을 선택적으로 흡착, 대상 물질의 탈착 여부 및 탈착 속도를 조절할 수 있는 흡착제 및 이의 제조방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여,
본 발명은 주름진 표면을 갖는 실리카 나노입자(Wrinkle Silica Nanoparticle, WSN)를 포함하는 흡착제를 제공한다.
또한, 본 발명은 (1)주름진 표면을 갖는 실리카 나노입자(Wrinkle Silica Nanoparticle, WSN)를 준비하는 단계;
(2)상기 주름진 표면을 갖는 실리카 나노입자에 유기물 또는 무기물을 첨가하여 표면을 개질하는 단계; 및
(3)상기 표면이 개질된 주름진 표면을 갖는 실리카 나노입자를 침전 및 정제하는 단계;를 포함하는 본 발명의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제 제조방법을 제공한다.
본 발명의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제는 표면적이 높아 흡착 물질을 용이하게 흡착할 수 있다.
또한, 특정 물질을 선택적으로 흡착할 수 있으며, 선택 물질의 재탈착 여부와 탈착 속도를 조절할 수 있는 효과를 지니고 있다.
또한, 본 발명의 흡착제는 생산성이 우수하고, 제조 단가가 저렴하여 경제적으로 우수한 장점이 있다.
도 1은 제조예 1에서 제조한 주름진 표면을 갖는 실리카 나노입자의 SEM 사진이다.
도 2는 제조예 1에서 제조한 주름진 표면을 갖는 실리카 나노입자의 TEM 사진이다.
도 3은 실시예 1 내지 실시예 5의 주름진 표면을 갖는 실리카 나노입자의 TGA 그래프이다.
도 4는 실시예 1 및 실시예 3 내지 5의 주름진 표면을 갖는 실리카 나노입자의 지방족 탄화수소의 흡착 정도를 나타낸 그래프이다.
도 5는 실시예 1 및 실시예 3 내지 5의 주름진 표면을 갖는 실리카 나노입자의 방향족 탄화수소의 흡착 정도를 나타낸 그래프이다.
도 6은 실시예 1 및 실시예 3 내지 5의 주름진 표면을 갖는 실리카 나노입자의 알데하이드, 알코올 및 아세테이트 화합물의 흡착 정도를 나타낸 그래프이다.
도 7은 실시예 1 및 실시예 3 내지 5의 주름진 표면을 갖는 실리카 나노입자의 케톤 및 테르펜 화합물의 흡착 정도를 나타낸 그래프이다.
도 8은 도 4 내지 도 7의 결과를 요약한 그래프이다.
이하, 본 발명을 보다 자세히 설명한다.
본 발명은 주름진 표면을 갖는 실리카 나노 입자(Wrinkle Silica Nanoparticle, WSN)를 포함하는 흡착제에 관한 것이다.
본 발명의 주름진 표면을 갖는 실리카 나노 입자는 유기물 또는 무기물의 흡착 물질을 흡착할 수 있는 흡착제이며, 흡착물질을 보다 용이하게 흡착하기 위하여, 주름진 표면을 갖는 실리카 나노 입자 표면을 유기물 또는 무기물로 개질시켜, 표면이 개질된 주름진 표면을 갖는 실리카 나노 입자 표면과 흡착 물질간의 상호작용으로 인하여 흡착 물질을 보다 효과적으로 흡착할 수 있다.
상기 주름진 표면을 갖는 실리카 나노 입자 표면을 개질하기 위한 유기물 또는 무기물은 흡착하고자 하는 물질과 상호 작용을 일으킬 수 있는 물질이라면 그 종류를 특별히 한정하지 않으나, 바람직하게는 아민기, 안트라센기, 실란기, 에폭시기, 치올기, 설폰산기, 카르복실기, 페닐기 및 지방족 탄화수소기로 이루어진 군으로부터 선택되는 1종을 이상을 포함하는 화합물, 또는 상기 군으로부터 선택되는 1종 이상을 리간드로 포함하는 금속 착화합물을 사용한다. 또한, 상기 금속 착화합물의 금속은 특별히 한정하지는 않으나, 바람직하게는 백금(Pt), 팔라듐(Pd), 은(Ag), 금(Au), 코발트(Co), 니켈(Ni), 철(Fe), 구리(Cu), 카드뮴(Cd), 아연(Zn), 루비듐(Rb) 및 유로퓸(Eu)으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.
상기 주름진 표면을 갖는 실리카 나노 입자 표면 개질을 위한 유기물 또는 무기물로 보다 바람직하게는 실리카와 공유결합 할 수 있는 실란기를 포함하는 화합물, 또는 금속 착화합물을 사용하는 것이 바람직하다.
따라서, 상기 주름진 표면을 갖는 실리카 나노 입자의 표면을, 흡착하고자 하는 물질과 강한 상호작용을 하는 유기물 또는 무기물로 개질함으로써 특정 물질들의 선택적 흡착 및 흡착 효율의 향상 효과를 얻을 수도 있다.
상기 주름진 표면을 갖는 실리카 나노 입자(Wrinkle Silica Nanoparticle; WSN)는 실리케이트를 전구체로 하여 형성된 나노 입자로 주름 형태의 표면을 갖는 것을 말하며, 보다 자세하게는 상기 주름은 실리카 나노 입자 내부로부터 방사형으로 이루어져 있다.
일반적으로 메조기공상(mesoporous) 나노 입자는 구형의 실리카 나노 입자에 기공이 형성된 형태인 반면, 상기 실리카 나노 입자는 표면이 주름 형태를 이루며, 메조기공상 나노 입자의 기공과 같이 주름 사이의 빈 공간이 생겨 특정한 기능성 물질 즉, 촉매, 효소, 항체, 형광물질, DNA 및 단백질 등이 위치할 수 있고, 상기 기능성 물질을 운반하는 역할을 수행할 수 있다. 나아가 일반적인 메조기공상 나노 입자의 기공은 직경이 작아서 적용이 가능한 기능성 물질의 크기가 제한되지만, 상기 주름진 표면을 갖는 실리카 나노 입자의 경우, 주름 간의 간격이 메조기공상 나노 입자에 위치하기 어려운 크기의 기능성 물질까지 위치할 수 있어 이에 대한 운반이 가능하게 된다.
상기 주름진 표면을 갖는 실리카 나노 입자는 주름의 간격이 5 내지 80nm이고, 바람직하게는 주름의 간격이 10 내지 50nm, 더욱 바람직하게는 주름의 간격이 20 내지 50nm이며, 주름의 두께는 5 내지 15nm인 실리카 나노 입자이다.
또한, 상기 주름진 표면을 갖는 실리카 나노 입자의 직경은 10nm 내지 100μm인 것이 바람직하며, 보다 바람직하게는 100 내지 400nm이다. 또한, 상기 주름진 표면을 갖는 실리카 나노 입자의 유효표면적(BET)은 10 내지 10,000 m2/g 인 것이 바람직하다.
본 발명의 주름진 표면을 갖는 실리카 나노입자(Wrinkle Silica Nanoparticle, WSN)를 포함하는 흡착제는 기질 상에 도포하여 사용할 수 있으며, 상기 기질은 그 종류가 특별히 한정되지는 않으나, 바람직하게는 유리 또는 플라스틱 등이 사용된다.
본 발명의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제는 기상에 존재하는 유기 및/또는 무기물의 흡착뿐만 아니라, 수계상에 존재하는 유기 및/또는 무기물의 흡착에도 사용될 수 있다. 모세관 형태를 갖는 기존의 메조기공 물질들에 비하여 고유의 기하학적 특징을 갖는 본 발명의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제는 동일한 수준의 질량 및 표면적 대비 흡착 효율이 뛰어나며, 다양한 물질의 흡착이 가능하다.
또한, 본 발명은 본 발명의 주름진 표면을 갖는 실리카 나노 입자를 포함하는 흡착제의 제조 방법을 제공하며, 하기 단계를 거쳐 본 발명의 흡착제를 제조할 수 있다.
(1)주름진 표면을 갖는 실리카 나노입자(Wrinkle Silica Nanoparticle, WSN)를 준비하는 단계;
(2)상기 주름진 표면을 갖는 실리카 나노입자에 유기물 또는 무기물을 첨가하여 표면을 개질하는 단계; 및
(3)상기 표면이 개질된 주름진 표면을 갖는 실리카 나노입자를 침전 및 정제하는 단계를 통하여 본 발명의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제를 제조한다.
상기 (1)단계의 주름진 표면을 갖는 실리카 나노 입자는 주름이 실리카 나노 입자 내부로부터 방사형으로 이루어져 있는 형태이며, 주름의 간격이 5 내지 80nm이고, 바람직하게는 주름의 간격이 10 내지 50nm, 더욱 바람직하게는 주름의 간격이 20 내지 50nm이며, 주름의 두께는 5 내지 15nm인 실리카 나노 입자이다.
또한, 상기 주름진 표면을 갖는 실리카 나노 입자의 직경은 10nm 내지 100μm인 것이 바람직하며, 보다 바람직하게는 100 내지 400nm이다. 또한, 상기 주름진 표면을 갖는 실리카 나노 입자의 유효표면적(BET)은 10 내지 10,000 m2/g 인 것이 바람직하다.
상기 (2)단계에서는 주름진 표면을 갖는 실리카 나노 입자의 표면을 유기물 또는 무기물로 개질시켜야 한다. 표면이 개질된 주름진 표면을 갖는 실리카 나노 입자는 흡착 하고자 하는 물질과 강한 상호 작용을 일으켜, 선택적이고 보다 효율적으로 흡착 물질을 흡착시킬 수 있다.
상기 표면 개질에 사용되는 유기물 또는 무기물은 흡착하고자 하는 물질과 상호 작용을 일으킬 수 있는 물질이라면 그 종류를 특별히 한정하지 않으나, 바람직하게는 아민기, 안트라센기, 실란기, 에폭시기 치올기, 설폰산기, 카르복실기, 페닐기 및 지방족 탄화수소기로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 화합물, 또는 상기 군으로부터 선택되는 1종 이상을 리간드로 포함하는 금속 착화합물을 사용한다. 또한, 상기 금속 착화합물의 금속은 특별히 한정하지는 않으나, 바람직하게는 백금(Pt), 팔라듐(Pd), 은(Ag), 금(Au), 코발트(Co), 니켈(Ni), 철(Fe), 구리(Cu), 카드뮴(Cd), 아연(Zn), 루비듐(Rb) 및 유로퓸(Eu)으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다.
상기 주름진 표면을 갖는 실리카 나노 입자 표면 개질을 위한 유기물 또는 무기물로 보다 바람직하게는 실리카와 공유결합 할 수 있는 실란기를 포함하는 화합물, 또는 금속 착화합물을 사용하는 것이 바람직하다.
또한, 상기 유기물 또는 무기물은 주름진 표면을 갖는 실리카 나노 입자 총 중량 대비 0.1 내지 10배의 중량으로 첨가되어 주름진 표면을 갖는 실리카 나노 입자의 표면을 개질시킬 수 있다.
상기 (3)단계에서는 표면 개질이 완료된 주름진 표면을 갖는 실리카 나노 입자를 원심분리를 이용하여 침전 시킨 후, 수득하여 정제 및 건조하여 최종적으로 흡착제를 얻을 수 있다.
또한, 상기 (3)단계에서 제조된 흡착제를 기질에 도포하는 단계를 추가하여 본 발명의 흡착제를 제조할 수 있다.
이하, 실시예 및 실험예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예 및 실험예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예 및 실험예에 의하여 한정되는 것은 아니다. 하기의 실시예 및 실험예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.
실시예 1. 주름진 표면을 갖는 실리카 나노 입자 제조
계면활성제로 세틸피리디늄 브로마이드(cetylpyridinium bromide) 28.44g, 염기성 물질로 요소(urea) 18g을 물 900mL에 용해시켰다. 이후 유기용매로 시클로헥산(cyclohexane) 900mL, 조용매로 부탄올(n-butanol) 60mmol을 추가로 첨가한 후, 실리케이트로 테트라에틸오소실리케이트(tetraethylorthosilicate, TEOS) 80.4mL을 첨가하였다. 상기 혼합용액을 25℃에서 30분간 강하게 교반시킨 후 반응온도 70℃에서 24시간 반응시켰다.
이후, 상기 혼합용액을 원심분리하여 나노 입자를 침전시켰고, 아세톤 및 증류수를 사용하여 3회 정제한 뒤 건조시켰다. 1M 농도의 염산(HCl) 및 에탄올의 혼합액에 상기 나노 입자를 10mg/mL의 농도로 분산시키고, 24시간 동안 상온에서 유기물을 제거한 뒤, 에탄올과 원심분리를 통해 3회 정제한 후 건조시켜, 주름진 표면을 갖는 실리카 나노 입자를 제조하였다(도 1 및 도 2).
<표면 개질된 주름진 표면을 갖는 실리카 나노 입자 제조>
실시예 2. 아민기로 표면 개질( WSN - DETAS )
상기 실시예 1에서 제조한 주름진 표면을 갖는 실리카 나노 입자 0.5g을 에탄올 100mL에 넣고 강하게 교반시켜 잘 분산시켰다.
이후, 주름진 표면을 갖는 실리카 나노 입자 무게의 50 중량%에 해당하는(3-트리메톡시실리프로필)디에틸렌트리아민((3-trimethoxysilylpropyl)diethylenetriamine, DETAS) 242.75μL를 첨가하여 상온에서 24시간 동안 반응시켰다.
이후, 상기 용액을 원심분리하여 나노 입자를 침전시키고, 에탄올을 사용하여 3회 정제를 거친 뒤 건조시켜, 표면이 아민기로 개질된 주름진 표면을 갖는 실리카 나노 입자를 제조하였다.
실시예 3. 안트라센으로 표면 개질( WSN - ANTH )
열중량분석기를 이용하여 상기 실시예 2에서 제조한 표면이 아민기로 개질된 주름진 표면을 갖는 실리카 나노 입자의 표면에 노출된 아민기의 양을 정량화하고, 9-(클로로메틸)안트라센(9-(Chloromethyl)anthracene)을 표면에 노출된 아민기 보다 1.5배 많은 양인 55.5mg을 에탄올 60 mL에 넣고 용해시켜 안트라센 용액을 제조하였다.
이후, 환류(reflux)를 하면서 반응온도를 70℃로 상승시켰다. 상기 안트라센 용액에 상기 실시예 2에서 합성된 표면이 아민기로 개질된 주름진 표면을 갖는 실리카 나노 입자 1.5g을 넣고 24시간 동안 반응시켰다.
반응 완료 후, 상기 용액을 원심분리하여 나노 입자를 침전시키고, 에탄올을 사용하여 3회 정제를 거친 뒤 건조시켜, 표면이 안트라센으로 개질된 주름진 표면을 갖는 실리카 나노 입자를 제조하였다.
실시예 4. DIS 로 표면 개질( WSN - DIS )
상기 실시예 3의 9-(클로로메틸)안트라센 대신에, 1,3-비스(3-클로로프로필)테트라키스-(트리메틸실록시)디실록세인(1,3-bis(3-chloropropyl)tetrakis-(trimethylsiloxy)disiloxane, DIS) 138.8μL를 첨가한 것을 제외하고, 상기 실시예 3과 동일하게 실시하여 표면이 DIS로 개질된 주름진 표면을 갖는 실리카 나노 입자를 제조하였다.
실시예 5. OCTD 로 표면 개질( WSN - OCTD )
상기 실시예 3의 9-(클로로메틸)안트라센 대신에, 1,2-에폭시옥타데칸(1,2-epoxyoctadecane, OCTD) 82.2mg를 첨가한 것을 제외하고, 상기 실시예 3과 동일하게 실시하여 표면이 OCTD로 개질된 주름진 표면을 갖는 실리카 나노 입자를 제조하였다.
실험예 1. 표면 개질된 주름진 표면을 갖는 실리카 나노 입자의 흡착 물질 및 흡착 정도 측정
상기 실시예 1에서 제조한 주름진 표면을 갖는 실리카 나노 입자 및 실시예 3 내지 5에서 표면이 개질된 주름진 표면을 갖는 실리카 나노 입자를 각각 100mg을 취하여 Glass tube(1/4"x9cm) 안에 넣고 양 끝단을 glass wool로 막아 흡착관 튜브를 제작하였다.
제작한 튜브의 세척을 위하여 ATC-1200 tube conditioner 장비를 이용하여 고순도 질소(99.999%)를 분당 100mL로 흘려주며, 280℃에서 3시간 동안 잔류 유기물질을 탈착시켰다. 세척이 끝난 튜브들은 양단을 밀봉하고 50mL 바이알에 넣어서 흡착실험 전까지 4℃에서 습기 및 다른 이물질이 내부로 유입되지 않도록 냉장 보관하였다.
흡착실험을 위하여 44종의 휘발성 유기화합물 표준용액을 500ppm으로 제조하였다. 사용된 휘발성 유기화합물 표준물질은 액체상 표준혼합물질(100 ppm, Janpanese indoor air standards mixture, Supelco)을 사용하였다.
제조된 표준 용액은 300℃에서 기화시켜 고순도 질소를 이동상으로 하여 분당 80mL의 속도로 흡착관에 주입시켰다. 주입이 끝나고 흡착이 완전히 끝날 때까지 기다리기 위하여 4분 30초 동안 이동상(고순도 질소)을 흘려주었다.
휘발성 유기화합물 44종이 흡착된 튜브들은 가스크로마토그래프에 열탈착장치(TD : Thermal Desorption, Shimadzu, Japan)가 직접 연결된 가스크로마토그래프/질량분석기 (GC/MS, GC-2010, Shimadzu GC-2010, Japan) 시스템을 사용하여 흡착 정도를 측정하였다. 기기 분석용 가스는 고순도 헬륨(99.999%)을 사용하였다.
지방족 탄화수소의 흡착 결과에서, 본 발명의 실시예 1 및 실시예 3 내지 5의 주름진 표면을 갖는 실리카 나노 입자는 높은 흡착율을 보였으며, 특히, 표면이 개질된 실시예 3 내지 5의 주름진 표면을 갖는 실리카 나노 입자의 흡착 정도가 우수하였다(도 4). 또한, 방향족 탄화수소의 흡착 결과는 지방족 탄화수소의 흡착 결과에 비해 상대적으로 더욱 우수한 흡착 정도를 보였다(도 5).
알데하이드, 알코올 및 아세테이트 화합물의 흡착 결과에서는 노난올과 테칸올의 흡착에서는 실시예 1의 주름진 표면을 갖는 실리카 나노 입자의 흡착 정도가 실시예 3 내지 5의 표면 개질된 주름진 표면을 갖는 실리카 나노 입자의 흡착에 비하여 우수하게 나타났으며, n-부탄올과 n-부틸 아세테이트에서는 반대의 결과가 관찰되었다(도 6). 케톤과 테르펜의 흡착 정도를 관찰한 결과에서는 메틸이소부틸케톤에서만 실시예 4의 표면이 개질된 주름진 표면을 갖는 실리카 나노 입자(WSN-DIS)만 실시예 1의 주름진 표면을 갖는 실리카 나노 입자에 비하여 매우 낮은 흡착 정도를 보였으며, 다른 물질에서는 모두 실시예 1의 주름진 표면을 갖는 실리카 나노 입자에 비하여 실시예 3 내지 5의 표면이 개질된 주름진 표면을 갖는 실리카 나노 입자에서 높은 흡착 정도를 보였다(도 7).
따라서, 본 발명의 주름진 표면을 갖는 실리카 나노 입자는 유기물 및/또는 무기물을 매우 우수하게 흡착할 수 있다는 것을 실험을 통하여 알 수 있었다(도 8).
실험예 2. 주름진 표면을 갖는 실리카 나노 입자의 수계 흡착량 측정
상기 실시예 1에서 제조한 주름진 표면을 갖는 실리카 나노 입자와 기존에 널리 사용되고 있는 비정질 실리카 나노입자 및 MCM-41 유형의 메조기공 실리카 나노 입자를 이용한 수계 흡착량을 비교하고자 하였다.
증류수 10 mL에 형광염료인 Rhodamine B 1 mg을 용해시킨 수용액을 3 개체 준비하고, 각 수용액에 실시예 1에서 제조한 주름진 표면을 갖는 실리카 나노입자, 비정질 실리카 나노입자 및 MCM-41 유형의 메조기공 실리카 나노입자를 각각 분산시킨 뒤, 10분간 교반하여 형광염료가 입자들에 흡착되도록 하였다. 이후 원심분리를 통하여 입자들을 용액에서 분리한 뒤, 용액 내에 잔류한 형광 염료의 양을 분석하여 각 실리카 나노입자들에 흡착된 염료의 양을 계산하였으며, 하기 표 1에 결과 값을 나타내었다.
유효표면적(BET) (m2/g) 염료 흡착량 (mg) 입자의 흡착 용량 (질량%)
실시예 1 573 0.84 8.4
비정질 실리카 나노입자 11 0.058 0.58
MCM-41 메조기공 실리카 나노입자 1074 0.71 7.1
상기 표 1의 결과에서, 일반적인 질소 흡탈착법으로 측정한 유효 표면적(BET)은 통상적인 MCM-41 유형의 메조기공 실리카 나노 입자가 실시예 1의 주름진 표면을 갖는 실리카 나노 입자보다 높았지만, 수계상 물질 흡착 능력(염료 흡착량 및 입자의 흡착 용량)은 실시예 1의 주름진 표면을 갖는 실리카 나노 입자가 더욱 우수한 것을 알 수 있었다.
따라서, 본 발명의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제는 기상뿐만 아니라, 수계상에서도 우수한 흡착 능력을 지니고 있다고 할 수 있다.

Claims (15)

  1. 주름진 표면을 갖는 실리카 나노입자(Wrinkle Silica Nanoparticle, WSN)를 포함하는 흡착제.
  2. 청구항 1에 있어서, 상기 흡착제는 유기물 또는 무기물로 표면 개질된 것을 특징으로 하는 흡착제.
  3. 청구항 2에 있어서, 상기 유기물 또는 무기물은 아민기, 안트라센기, 실란기, 에폭시기, 치올기, 설폰산기, 카르복실기, 페닐기 및 지방족 탄화수소기로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 화합물, 또는 상기 군으로부터 선택되는 1종 이상을 리간드로 포함하는 금속 착화합물인 것을 특징으로 하는 흡착제.
  4. 청구항 3에 있어서, 상기 금속 착화합물의 금속은 백금(Pt), 팔라듐(Pd), 은(Ag), 금(Au), 코발트(Co), 니켈(Ni), 철(Fe), 구리(Cu), 카드뮴(Cd), 아연(Zn), 루비듐(Rb) 및 유로퓸(Eu)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 흡착제.
  5. 청구항 1에 있어서, 상기 흡착제는 기질에 도포하여 사용하는 것을 특징으로 하는 흡착제.
  6. 청구항 1에 있어서, 상기 주름진 표면을 갖는 실리카 나노입자의 주름 간격은 5 내지 80nm인 것을 특징으로 하는 흡착제.
  7. 청구항 1에 있어서, 상기 주름진 표면을 갖는 실리카 나노입자의 주름 두께는 5 내지 15nm인 것을 특징으로 하는 흡착제.
  8. 청구항 1에 있어서, 상기 주름진 표면을 갖는 실리카 나노입자의 직경은 10nm 내지 100μm인 것을 특징으로 하는 흡착제.
  9. 청구항 1에 있어서, 상기 주름진 표면을 갖는 실리카 나노입자의 유효표면적(BET)은 10 내지 10000m2/g인 것을 특징으로 하는 흡착제.
  10. 청구항 1에 있어서, 상기 주름진 표면을 갖는 실리카 나노입자의 주름은 실리카 나노 입자 내부로부터 방사형으로 이루어진 것을 특징으로 하는 흡착제.
  11. (1)주름진 표면을 갖는 실리카 나노입자(Wrinkle Silica Nanoparticle, WSN)를 준비하는 단계;
    (2)상기 주름진 표면을 갖는 실리카 나노입자에 유기물 또는 무기물을 첨가하여 표면을 개질하는 단계; 및
    (3)상기 표면이 개질된 주름진 표면을 갖는 실리카 나노입자를 침전 및 정제하는 단계를 포함하는 청구항 2의 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제 제조방법.
  12. 청구항 11에 있어서, 상기 유기물 또는 무기물은 주름진 표면을 갖는 실리카 나노입자 총 중량 대비 0.1 내지 10배의 중량으로 첨가하는 것을 특징으로 하는 흡착제 제조방법.
  13. 청구항 11에 있어서, 상기 유기물 또는 무기물은 아민기, 안트라센기, 실란기, 에폭시기, 치올기, 설폰산기, 카르복실기, 페닐기 및 지방족 탄화수소기로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 화합물, 또는 상기 군으로부터 선택되는 1종 이상을 리간드로 포함하는 금속 착화합물인 것을 특징으로 하는 흡착제 제조방법.
  14. 청구항 13에 있어서, 상기 금속 착화합물의 금속은 백금(Pt), 팔라듐(Pd), 은(Ag), 금(Au), 코발트(Co), 니켈(Ni), 철(Fe), 구리(Cu), 카드뮴(Cd), 아연(Zn), 루비듐(Rb) 및 유로퓸(Eu)으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 흡착제 제조방법.
  15. 청구항 11에 있어서, 상기 침전 및 정제된 표면이 개질된 주름진 표면을 갖는 실리카 나노입자를 기질에 도포하는 단계를 추가로 포함하는 것을 특징으로 하는 흡착제 제조방법.
PCT/KR2015/007005 2014-08-27 2015-07-07 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법 WO2016032115A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140112478A KR20160025338A (ko) 2014-08-27 2014-08-27 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법
KR10-2014-0112478 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016032115A1 true WO2016032115A1 (ko) 2016-03-03

Family

ID=55399972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007005 WO2016032115A1 (ko) 2014-08-27 2015-07-07 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20160025338A (ko)
WO (1) WO2016032115A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122227A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法、发光薄膜和显示器件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995857B1 (ko) 2018-01-11 2019-07-03 한림대학교 산학협력단 주름이 형성된 실리카 나노입자 코어와 금 레이어 쉘을 포함하는 나노입자, 이의 생산방법 및 응용
KR102246615B1 (ko) 2018-10-30 2021-05-03 한양대학교 에리카산학협력단 돌기 섬유질형 나노실리카 코어 - Zn 기반 배위 고분자 쉘 혹은 돌기 섬유질형 나노실리카/금 나노입자 코어 - Zn 기반 배위 고분자 쉘의 혼성 나노구조체, 이의 생산방법 및 활용
KR102624239B1 (ko) * 2021-04-29 2024-01-15 한양대학교 에리카산학협력단 중공돌기섬유형 나노실리카 및 이의 제조방법
WO2022231241A1 (ko) * 2021-04-29 2022-11-03 한양대학교 에리카산학협력단 중공돌기섬유형 나노실리카 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020059514A (ko) * 2001-01-08 2002-07-13 이종협 저가의 실리카 전구체를 사용한 선택적 중금속 흡착제의제조방법
US20120276290A1 (en) * 2011-04-28 2012-11-01 University Of North Dakota Silica nanoparticles with rough surface
KR20140018822A (ko) * 2013-12-02 2014-02-13 서울대학교산학협력단 색상 변화를 이용한 암모니아 검출장치 및 그 검출방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020059514A (ko) * 2001-01-08 2002-07-13 이종협 저가의 실리카 전구체를 사용한 선택적 중금속 흡착제의제조방법
US20120276290A1 (en) * 2011-04-28 2012-11-01 University Of North Dakota Silica nanoparticles with rough surface
KR20140018822A (ko) * 2013-12-02 2014-02-13 서울대학교산학협력단 색상 변화를 이용한 암모니아 검출장치 및 그 검출방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOON, D. ET AL.: "Tunable Synthesis of Hierarchical Mesoporous Silica Nanoparticles with Radial Wrinkle Structure", LANGMUIR, vol. 28, no. 33, 21 August 2012 (2012-08-21), pages 12341 - 12347 *
POLSHETTIWAR, V. ET AL.: "High-surface-area silica nanospheres (KCC-1) with a fibrous morphology", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 49, no. 50, 10 December 2010 (2010-12-10), pages 9652 - 9656 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122227A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法、发光薄膜和显示器件

Also Published As

Publication number Publication date
KR20160025338A (ko) 2016-03-08

Similar Documents

Publication Publication Date Title
WO2016032115A1 (ko) 주름진 표면을 갖는 실리카 나노입자를 포함하는 흡착제, 및 이의 제조방법
Wang et al. Electrospinning fabrication of covalent organic framework composite nanofibers for pipette tip solid phase extraction of tetracycline antibiotics in grass carp and duck
CN108201878B (zh) 一种碳点改性金属有机骨架吸附材料的制备方法及水体污染物治理应用
Zang et al. Solid phase microextraction of polycyclic aromatic hydrocarbons from water samples by a fiber coated with covalent organic framework modified graphitic carbon nitride
CN107661748B (zh) 有机胺功能化大孔容二氧化硅co2吸附剂及其制备方法
CN104923166B (zh) 一种微孔Fe‑N‑MOF材料及其制备方法和应用
CN101864021B (zh) 一种纳米硅胶表面天麻素分子印迹聚合物的制备方法
CN103268797B (zh) 一种亲水磁性介孔微球及其制备方法与应用
CN110586041B (zh) 一种基于MOFs剥离石墨相碳化氮吸附剂的全氟烷基化合物萃取与分析方法
CN112495346B (zh) 一种基于金属有机骨架的磁性多孔材料的制备及应用
CN107837796B (zh) 一种键合型色谱柱固定相
JP2002502684A (ja) 表面処理キセロゲルを用いたイオン分離
Fu et al. Rhodamine-based fluorescent probe immobilized on mesoporous silica microspheres with perpendicularly aligned mesopore channels for selective detection of trace mercury (II) in water
CN107999019B (zh) 一种两亲性磁性纳米球及其制备方法和吸附应用
Jagan Mohan Reddy et al. Fabrication and deployment of nanodisc ZnO@ ZIF-8, ZnO@ NA and ZnO@ INA core–shell MOFs: enhanced NH 3 and HCHO gas sensing
Yan et al. Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation
CN112007614A (zh) 一种硅烷化试剂修饰的两亲性磁性纳米粒子及其制备方法和应用
Wang et al. Synthesis and characterization of core‐shell magnetic molecularly imprinted polymers for selective extraction of allocryptopine from the wastewater of Macleaya cordata (Willd) R. Br.
CN106543450B (zh) 一种功能化磁性联吡啶类配位聚合物的制备方法及应用
CN113600151A (zh) 一种面向抗生素的三甲基硅基咪唑吸附剂的制备及应用
Saad et al. Dimethoxytriazine-triazole linked mesoporous silica hybrid sorbent for cationic dyes adsorption
KR20120079745A (ko) 수성환경으로부터의 유해약물 제거용 소수성 메조포러스 물질을 포함하는 유기약물용 흡착제
CN111203188A (zh) 一种选择性吸附酯类的MOFs吸附剂及其制备方法与应用
Shi et al. Synthesis of spherical amine-functionalized silica molecular sieve and application as selective adsorbents for aromatic hydrocarbons analysis
US7682564B2 (en) Benzene detecting element and preparation process of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835956

Country of ref document: EP

Kind code of ref document: A1