CN112495346B - 一种基于金属有机骨架的磁性多孔材料的制备及应用 - Google Patents

一种基于金属有机骨架的磁性多孔材料的制备及应用 Download PDF

Info

Publication number
CN112495346B
CN112495346B CN202011517665.1A CN202011517665A CN112495346B CN 112495346 B CN112495346 B CN 112495346B CN 202011517665 A CN202011517665 A CN 202011517665A CN 112495346 B CN112495346 B CN 112495346B
Authority
CN
China
Prior art keywords
mof
magnetic
porous material
metal organic
organic framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011517665.1A
Other languages
English (en)
Other versions
CN112495346A (zh
Inventor
刘红妹
党世豪
叶保桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Jiaotong University
Original Assignee
Lanzhou Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Jiaotong University filed Critical Lanzhou Jiaotong University
Priority to CN202011517665.1A priority Critical patent/CN112495346B/zh
Publication of CN112495346A publication Critical patent/CN112495346A/zh
Application granted granted Critical
Publication of CN112495346B publication Critical patent/CN112495346B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • G01N30/482
    • G01N2030/484

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种基于金属有机骨架的磁性多孔材料的制备方法,将FeCl3·6H2O和有机配体溶于N,N二甲基甲酰胺中,于100~120℃下反应18~20h,离心、纯化、干燥,即得前驱体MOF‑101;将前驱体MOF‑101于250~450℃煅烧20~40min,即得基于金属有机骨架的磁性多孔材料MOF‑D。本发明通过金属有机骨架的一步煅烧制备磁性多孔材料MOF‑D,MOF‑D具有优异铁磁性能和孔结构。本发明将MOF‑D作为磁固相萃取吸附剂首次用于检测水环境样品中的NSAIDs,检测方法简单,快速。MOF‑D表面的羰基官能团可增强其与非甾体抗炎药之间的相互作用,具有回收率高,检测限低,动态线性范围好,使用寿命长,萃取稳定性好等特点,可用于食品、环境、药物及生化等实际样品中的痕量组分富集分析。

Description

一种基于金属有机骨架的磁性多孔材料的制备及应用
技术领域
本发明涉及一种磁性多孔材料的制备方法,尤其涉及一种基于金属有机骨架的磁性多孔材料的制备方法;本发明同时涉及该磁性多孔材料作为磁固相萃取吸附剂用于检测环境水样中的非甾体抗炎药(NSAIDs)。
背景技术
现在用来处理化学样品的SPE技术,所使用纳米材料和介孔材料都具有表面积大的优势,但处理样品时仍需要离心。频繁的离心高速可能导致一些不必要的干扰或损失、共沉淀等。因此在使用时受到极大的限制。磁性固相萃取(MSPE)是近年来发展起来的一种新型的固相萃取技术,它利用磁性或磁性修饰的吸附剂吸附分析物,相对于SPE技术来说具有明显的分离优势。MSPE仅通过施加一个外部磁场即可实现相分离,因此操作简单、省时快速、无需离心过滤等繁琐操作,避免了传统SPE吸附剂需装柱和样品上样等耗时或SPE柱堵塞的问题。但大多数传统的磁性吸附剂,例如AC @ Fe3O4,SiO2 @ Fe3O4,CNT @ Fe3O4和GO @Fe3O4,都是复合材料,主要利用了Fe3O4纳米颗粒的磁性。复合材料的不稳定性引起的有限的吸附能力和繁琐的回收过程已成为磁性固相萃取器发展的瓶颈。因此,开发研究物理化学稳定性高、使用寿命长、吸附容量大、萃取效率高、选择性好的新型磁性纳米材料已成为目前国内外磁分离技术研究的重要课题。
金属有机骨架(MOFs)是一类新兴的多孔材料,由金属离子/金属氧化物簇通过有机连接剂以三维结构保持在一起。由于它们的超高孔隙率,功能多样性,高表面积和良好的纳米通道,它们已在许多领域中使用,例如气体存储,催化,药物输送和环境分析。最近的研究表明,MOF衍生物作为固相萃取的吸附剂具有广阔的应用前景。例如,ZIF-67衍生物用作纤维涂层,以确定蔬菜样品中有机氯农药(OCP)的存在。沸石咪唑酸盐骨架,ZIF-8和ZIF-67的结合形成了一种双金属ZIF衍生物,可用作饮用水和环境水样品中SPME农药的吸附剂。值得注意的是,MOF衍生物具有较高的稳定性,良好的均匀性和较高的孔隙率。此外,某些MOF已过特殊处理,以使MOF衍生物本身具有磁性。因此,这种材料有望成为MSPE中的新型吸附剂。
发明内容
本发明的目的是提供一种基于金属有机骨架的磁性多孔材料的制备方法;
 本发明的另一个目的是提供该磁性多孔材料作为磁固相萃取吸附剂用于检测环境水样中的非甾体抗炎药。
一、基于金属有机骨架的磁性多孔材料的制备
本发明基于金属有机骨架磁性多孔材料的制备方法,是以金属有机骨架为前驱体,采用煅烧金属有机骨架使其在保留部分骨架结构的基础上获得磁性。其具体包括以下步骤:
(1)前驱体的制备:以聚乙烯吡咯烷酮(PVP)为分散剂,将FeCl3·6H2O和有机配体溶于N,N二甲基甲酰胺中,于100~120℃下反应18~20h,离心、纯化、干燥,即得前驱体MOF-101。其中,有机配体为氨基对苯二甲酸、对苯二甲酸、二甲基咪唑中的一种;FeCl3·6H2O与有机配体的摩尔比为1:0.5~1:2;聚乙烯吡咯烷酮与FeCl3·6H2O的质量比为1:1~1:5。
(2)磁固相萃取材料的制备:将前驱体MOF-101于250~450℃煅烧20~40min,即得基于金属有机骨架的磁性多孔材料MOF-D。
二、MOF-D的结构
1、扫描电镜(SEM)分析
图1为MOF-101(a)和MOF-D(b)的SEM图像。MOF-101呈均匀的枣形颗粒形式,由12个面组成,大小约为1100 nm。而且,MOF-101的表面非常光滑。热处理后,材料颗粒的形状和大小发生了显着变化。枣核的原始均匀形态转变为不均匀的颗粒形状,大小也减小到原始的十分之一。此外,结构变化可以有效保留MOF-D的比表面积并提高其萃取性能。
2、比表面积分析
图2为MOF-D的N2吸附-解吸等温线。可以看出MOF-D的N2吸附-解吸等温线为Ⅳ型等温线。低P / P0时N2的吸收表明存在微孔。由于介孔的存在,在接近1.0的P / P0附近,N2的吸附量急剧增加。磁滞回线在相对压力P / P0 = 0.4时显得闭合,表明MOF-D具有小的介孔结构,平均孔径为17.7 nm。这些证实了MOF-D是具有小的介孔和微孔结构的吸附剂,具有多层吸附能力。微孔和介孔有利于对目标物质吸附和传质。
3、FT-IR的分析
图3为MOF-D的FT-IR谱图。在3422 cm-1处的强而宽的吸收对应于O–H拉伸振动。在1396 cm-1和1600 cm-1处的吸收峰归因于羧基的C–O拉伸振动,而在782 cm-1处的吸收峰归因于C–H弯曲振动,这些官能团由MOF-D的有机配体提供。在466 cm-1和550 cm-1处的吸收峰对应于Fe-O键的拉伸振动,这是由于有机配体与中心金属离子Fe3+之间的配位作用引起的。MOF-D具有大量的官能团,为萃取提供了保障。
三、MOF-D作为磁固相萃取吸附剂检测环境水样中的NSAIDs
1、磁性能考察
图4为MOF-D的磁滞回线,MOF-D的磁化饱和度为22.26 emu g-1,MOF-D的磁化强度足以满足与永磁体快速磁分离的要求,证实了MOF-D具有出色的铁磁性能。
2、MOF-D对环境水样中NSAIDs的检测
将0.04 g MOF-D分散到10 mL待测样品溶液中,振摇15分钟,待测样品包括吲哚美辛(INDO)、4-氯苯氧异丁酸(CPIB)、双氯芬酸钠(DIC)和布洛芬(IBU)。随后,使用外部磁体将吸附有目标物质的MOF-D与样品溶液分离,并倾析出上清液,加入1 mL丙酮解析,将解析液通过0.45 nm孔径的过滤膜过滤后,将20 µL注入HPLC系统进行分析,计算待测样品溶液中各NSAIDs的含量。每次MOF-D萃取后,用10 mL超纯水和10 mL甲醇将溶液洗涤3次,以确保没有残留NSAIDs。高效液相色谱条件为:选用GS-120-5-C18-AP色谱柱,其内径为4.6 mm,长度为250 mm;柱温为32℃;进样量为20μL;流动相由甲醇和0.1%乙酸(66:34,V / V)组成,流速为0.9 mL min-1;检测器为紫外/可见检测器,检测波长为220 nm。待测样品中各NSAIDs的测定结果如表1。
Figure 100002_DEST_PATH_IMAGE002
3、化学稳定性
表2为MOF-D在不同条件下浸泡后的萃取效率。通过表2可以看出,萃取材料在酸性水溶液和酸性有机溶剂浸泡后,其萃取性能几乎没有发生变化,由此可以说明本发明制备的固相微萃取涂层具有良好的化学稳定性。
Figure DEST_PATH_IMAGE004
4、使用寿命测试
图5为本发明制备的磁固相萃取材料在不同使用次数下回收率的比较。通过图5可说明所制备的MOF-D吸附剂可以重复使用至少12次,而不会损失其吸附能力。因此,制得的磁性吸附剂具有极好的使用寿命和萃取重复性,可以大大降低实验成本。
综上所述,本发明与现有技术的相比具有的优点:本发明通过金属有机骨架的一步煅烧制备磁性多孔材料MOF-D,MOF-D具有优异铁磁性能和孔结构。本发明将MOF-D作为磁固相萃取吸附剂首次用于检测水环境样品中的NSAIDs,检测方法简单,快速。MOF-D表面的羰基官能团可增强其与NSAIDs之间的相互作用,具有回收率高,检测限低,动态线性范围好,使用寿命长,萃取稳定性好等特点,可用于食品、环境、药物及生化等实际样品中的痕量组分富集分析。
附图说明
图1为MOF-101(a)和MOF-D(b)的SEM图像。
图2为MOF-D的N2吸附/解吸等温线。
图3为MOF-D的FT-IR谱图。
图4 为MOF-D的磁化曲线。
图5为MOF-D在不同使用次数下回收率比较。
具体实施方式
下面通过具体实施例对本发明的磁固相萃取材料的制备方法作进一步说明。
实施例1
(1)将0.54 g(2mmol)的FeCl3·6H2O,0.17 g(1mmol)的H2BDC(对苯二甲酸)和0.15g PVP(分散剂)加入15毫升DMF中,然后将混合物超声处理15分钟。最后,将混合物倒入20毫升铁氟龙衬里的钢制高压釜中,反应温度为110℃,反应时间为20小时。冷却后,通过离心分离深橙色固体产物,分别用DMF和热乙醇(60℃,3h)纯化两次。纯化的产物在70℃干燥24h,获得产物MOF-101。
(2)MOF-101在马弗炉中于350℃加热20分钟,然后自然冷却,获得产物MOF-D。
(3)性能指标:使用寿命12次以上。
实施例2
(1)将0.27 g(1mmol)的FeCl3·6H2O,0.17 g(1mmol)的H2BDC和0.15 g PVP加入15毫升DMF中,然后将混合物超声处理15分钟。最后,将混合物倒入20毫升铁氟龙衬里的钢制高压釜中,反应温度为110℃,反应时间为20小时。冷却后,通过离心分离深橙色固体产物,分别用DMF和热乙醇(60℃,3h)纯化两次。纯化的产物在70℃干燥24h,获得产物MOF-101。
(2)MOF-101在马弗炉中于350℃加热20分钟,然后自然冷却,获得产物MOF-D。
(3)性能指标:使用寿命12次以上。
实施例3
(1)将0.27 g(1mmol)的FeCl3·6H2O,0.34 g(2mmol)的H2BDC和0.15 g PVP加入15毫升DMF中,然后将混合物超声处理15分钟。最后,将混合物倒入20毫升铁氟龙衬里的钢制高压釜中,反应温度为110℃,反应时间为20小时。冷却后,通过离心分离深橙色固体产物,分别用DMF和热乙醇(60℃,3h)纯化两次。纯化的产物在70℃干燥24h,获得产物MOF-101。
(2)MOF-101在马弗炉中于350℃加热20分钟,然后自然冷却,获得产物MOF-D。
(3)性能指标:使用寿命12次以上。

Claims (6)

1.一种基于金属有机骨架的磁性多孔材料作为磁固相萃取吸附剂在检测环境水样中的非甾体抗炎药中的应用,其特征在于:所述非甾体抗炎药包括吲哚美辛、4-氯苯氧乙丁酸、双氯芬酸钠和布洛芬;
所述基于金属有机骨架的磁性多孔材料的制备方法,包括以下步骤:
(1)前驱体的制备:将FeCl3·6H2O和有机配体溶于N,N二甲基甲酰胺中,于100~120℃下反应18~20h,离心、纯化、干燥,即得前驱体MOF-101;有机配体为氨基对苯二甲酸、对苯二甲酸、二甲基咪唑中的一种;
(2)磁固相萃取材料的制备:将前驱体MOF-101于250~450℃煅烧20~40min,即得基于金属有机骨架的磁性多孔材料MOF-D。
2.如权利要求1所述一种基于金属有机骨架的磁性多孔材料作为磁固相萃取吸附剂在检测环境水样中的非甾体抗炎药中的应用,其特征在于:磁性多孔材料的制备步骤(1)中,FeCl3·6H2O与有机配体的摩尔比为1:0.5~1:2。
3.如权利要求1所述一种基于金属有机骨架的磁性多孔材料作为磁固相萃取吸附剂在检测环境水样中的非甾体抗炎药中的应用,其特征在于:磁性多孔材料的制备步骤(1)中,以聚乙烯吡咯烷酮为分散剂,聚乙烯吡咯烷酮与FeCl3·6H2O的质量比为1:1~1:5。
4.如权利要求1所述一种基于金属有机骨架的磁性多孔材料作为磁固相萃取吸附剂在检测环境水样中的非甾体抗炎药中的应用,其特征在于:利用MOF-D磁固相萃取,结合高效液相色谱对水样中的吲哚美辛、4-氯苯氧乙丁酸、双氯芬酸钠和布洛芬进行分析,具体步骤为:将MOF-D分散到待测样品溶液中,振摇萃取10~20min后,在外加磁场下进行磁性分离,除去上清液,加入丙酮进行解析,将解析液过滤后进行高效液相色谱分析。
5.如权利要求4所述一种基于金属有机骨架的磁性多孔材料作为磁固相萃取吸附剂在检测环境水样中的非甾体抗炎药中的应用,其特征在于:高效液相色谱条件为:选用GS-120-5-C18-AP色谱柱,其内径为4.6 mm,长度为250 mm;柱温为32℃;进样量为20μL;流动相由体积比为66:34的甲醇和0.1%乙酸组成,流速为0.9 mL min-1;检测器为紫外/可见检测器,检测波长为220 nm。
6.如权利要求1所述一种基于金属有机骨架的磁性多孔材料作为磁固相萃取吸附剂在检测环境水样中的非甾体抗炎药中的应用,其特征在于:配置不同浓度的四种非甾体抗炎药水溶液,进行高效液相色谱测定,四种非甾体抗炎药吲哚美辛、4-氯苯氧乙丁酸、双氯芬酸钠和布洛芬的工作曲线线性方程,线性范围、相关系数,定量限,检测限如下:
Figure DEST_PATH_IMAGE002
CN202011517665.1A 2020-12-21 2020-12-21 一种基于金属有机骨架的磁性多孔材料的制备及应用 Active CN112495346B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011517665.1A CN112495346B (zh) 2020-12-21 2020-12-21 一种基于金属有机骨架的磁性多孔材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011517665.1A CN112495346B (zh) 2020-12-21 2020-12-21 一种基于金属有机骨架的磁性多孔材料的制备及应用

Publications (2)

Publication Number Publication Date
CN112495346A CN112495346A (zh) 2021-03-16
CN112495346B true CN112495346B (zh) 2022-08-30

Family

ID=74922798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011517665.1A Active CN112495346B (zh) 2020-12-21 2020-12-21 一种基于金属有机骨架的磁性多孔材料的制备及应用

Country Status (1)

Country Link
CN (1) CN112495346B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777184B (zh) * 2021-08-10 2023-06-02 青岛理工大学 一种环境水样中五种非甾体抗炎药的分析检测方法
CN114437365B (zh) * 2022-02-16 2022-12-27 中国农业科学院植物保护研究所 一种农药纳米载药颗粒骨架材料及其制备方法和应用
CN114713196B (zh) * 2022-03-30 2023-07-21 中国科学院兰州化学物理研究所 一种金属有机框架衍生的双金属氧化物磁性碳材料的制备及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421531A (zh) * 2018-02-10 2018-08-21 广东医科大学 一种铜金属有机骨架化合物的制备方法及其应用
CN108745285A (zh) * 2018-06-08 2018-11-06 盐城工学院 一种吸附水体中抗生素的磁性多孔碳吸附材料的制备方法
CN109908866A (zh) * 2019-03-28 2019-06-21 中国科学院兰州化学物理研究所 通过煅烧制备二维磁性多孔碳复合材料的方法及其应用
CN110280285A (zh) * 2019-06-21 2019-09-27 华南理工大学 一种铟基金属有机框架/类石墨相碳化氮纳米片复合材料及其制备方法与应用
CN110918075A (zh) * 2019-12-17 2020-03-27 中国科学院兰州化学物理研究所 一种金属有机框架磁性纳米多孔碳材料的制备和应用
CN110975808A (zh) * 2019-12-11 2020-04-10 吉林化工学院 一种金属有机骨架衍生磁性多孔碳材料的制备方法及应用
CN111359580A (zh) * 2020-02-12 2020-07-03 华东理工大学 一种多孔结构的碳铁复合材料的制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144758A2 (ko) * 2011-04-18 2012-10-26 한국화학연구원 다공성 금속-유기 골격 물질의 기능화 방법, 이를 이용한 고체산 촉매 및 이 고체산 촉매를 이용한 알코올의 탈수 방법
CN103203207A (zh) * 2012-01-12 2013-07-17 安徽大学 一种磁性纳米孔洞金属-有机骨架核-壳材料的制备、功能化设计及应用
CN103087243B (zh) * 2012-12-17 2015-01-28 华中科技大学 一种多孔聚合物空心微囊及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421531A (zh) * 2018-02-10 2018-08-21 广东医科大学 一种铜金属有机骨架化合物的制备方法及其应用
CN108745285A (zh) * 2018-06-08 2018-11-06 盐城工学院 一种吸附水体中抗生素的磁性多孔碳吸附材料的制备方法
CN109908866A (zh) * 2019-03-28 2019-06-21 中国科学院兰州化学物理研究所 通过煅烧制备二维磁性多孔碳复合材料的方法及其应用
CN110280285A (zh) * 2019-06-21 2019-09-27 华南理工大学 一种铟基金属有机框架/类石墨相碳化氮纳米片复合材料及其制备方法与应用
CN110975808A (zh) * 2019-12-11 2020-04-10 吉林化工学院 一种金属有机骨架衍生磁性多孔碳材料的制备方法及应用
CN110918075A (zh) * 2019-12-17 2020-03-27 中国科学院兰州化学物理研究所 一种金属有机框架磁性纳米多孔碳材料的制备和应用
CN111359580A (zh) * 2020-02-12 2020-07-03 华东理工大学 一种多孔结构的碳铁复合材料的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Preparation and applications of metal-organic framework derived porous carbons as novel adsorbents in sample preparation";Huixiao Duo et al.;《Trends in Analytical Chemistry》;20201026;第133卷;文献号116093 *
"基于铁基金属-有机框架的类芬顿体系降解染料及污泥脱水研究";张耀;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20190115(第1期);B027-2522 *
张耀."基于铁基金属-有机框架的类芬顿体系降解染料及污泥脱水研究".《中国优秀硕士学位论文全文数据库 工程科技I辑》.2019,(第1期),B027-2522. *

Also Published As

Publication number Publication date
CN112495346A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112495346B (zh) 一种基于金属有机骨架的磁性多孔材料的制备及应用
Li et al. Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment
Zhang et al. Metal–organic frameworks@ graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins
Molavi et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr)
Zhang et al. A zeolitic imidazolate framework based nanoporous carbon as a novel fiber coating for solid-phase microextraction of pyrethroid pesticides
CN109342613B (zh) 一种用于分析饮料中酚类内分泌干扰物的方法
Zhang et al. A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace Sudan dyes in food samples
Chen et al. Metal–organic framework MIL-53 (Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry
Huo et al. Facile magnetization of metal–organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples
Jia et al. Thermo-responsive polymer tethered metal-organic framework core-shell magnetic microspheres for magnetic solid-phase extraction of alkylphenols from environmental water samples
Wang et al. A magnetic metal-organic framework as a new sorbent for solid-phase extraction of copper (II), and its determination by electrothermal AAS
Hu et al. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples
Huang et al. Hydrothermal synthesis of functionalized magnetic MIL-101 for magnetic enrichment of estrogens in environmental water samples
Cui et al. Facile construction of magnetic hydrophilic molecularly imprinted polymers with enhanced selectivity based on dynamic non-covalent bonds for detecting tetracycline
Duo et al. Synthesis of magnetic metal–organic framework composites, Fe 3 O 4-NH 2@ MOF-235, for the magnetic solid-phase extraction of benzoylurea insecticides from honey, fruit juice and tap water samples
Yuan et al. Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples
Li et al. Preparation of levofloxacin-imprinted nanoparticles using designed deep eutectic solvents for the selective removal of levofloxacin pollutants from environmental waste water
CN110586041B (zh) 一种基于MOFs剥离石墨相碳化氮吸附剂的全氟烷基化合物萃取与分析方法
CN108732273B (zh) 一种用于分析食品和饮用水中痕量磺胺类抗生素的方法
Wu et al. Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil
CN110918075A (zh) 一种金属有机框架磁性纳米多孔碳材料的制备和应用
Sun et al. A restricted access molecularly imprinted polymer coating on metal–organic frameworks for solid-phase extraction of ofloxacin and enrofloxacin from bovine serum
CN109351335B (zh) 一种磁性三叠烯-三嗪共价骨架固相萃取剂及其制备方法和应用
Bagheri et al. Recent advances in the application of covalent organic frameworks in extraction: a review
Wang et al. Bimetallic nitrogen-doped porous graphene for highly efficient magnetic solid phase extraction of 5-nitroimidazoles in environmental water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant