WO2016031876A1 - ガスバリア性積層フィルム及びその製造方法 - Google Patents

ガスバリア性積層フィルム及びその製造方法 Download PDF

Info

Publication number
WO2016031876A1
WO2016031876A1 PCT/JP2015/074076 JP2015074076W WO2016031876A1 WO 2016031876 A1 WO2016031876 A1 WO 2016031876A1 JP 2015074076 W JP2015074076 W JP 2015074076W WO 2016031876 A1 WO2016031876 A1 WO 2016031876A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
thin film
gas barrier
base material
Prior art date
Application number
PCT/JP2015/074076
Other languages
English (en)
French (fr)
Inventor
彰 長谷川
泰雄 篠原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2016031876A1 publication Critical patent/WO2016031876A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a gas barrier laminate film and a method for producing the same, and more specifically, is suitably used for flexible lighting using organic electroluminescence elements (organic EL elements), organic thin film solar cells, liquid crystal displays, pharmaceutical packaging containers, and the like.
  • organic EL elements organic electroluminescence elements
  • the present invention relates to a gas barrier laminate film that can be used and a method for producing the same.
  • Gas barrier films have been suitably used as packaging containers suitable for filling and packaging articles such as foods and drinks, cosmetics, and detergents.
  • a gas barrier film research on a gas barrier laminated film obtained by laminating two films in which a thin film layer of a gas barrier inorganic material is formed on the surface of a base material such as a plastic film has been advanced. Yes.
  • Japanese Patent Laid-Open No. 2005-235743 Patent Document 1 includes a first polymer substrate layer and a second polymer substrate layer, each of which is coated with one or more diffusion prevention barriers.
  • a laminated film obtained by bonding polymer substrate layers coated with such a diffusion prevention barrier so that the diffusion prevention barrier faces each other inside.
  • Patent Document 1 such a laminated film as described in Patent Document 1 is sufficiently usable for uses such as foods and drinks, cosmetics, and detergents, which have no particular problem in use even if the gas barrier property is relatively low.
  • the water vapor permeation preventing performance is not always sufficient.
  • a gas barrier film comprising a base material and at least one thin film layer formed on at least one surface of the base material, At least one of the thin film layers contains silicon, oxygen and carbon, and the distance from the surface of the layer in the thickness direction of the layer and the total amount of silicon atoms, oxygen atoms and carbon atoms Distribution curve showing the relationship between the ratio of the amount of silicon atoms to silicon (the atomic ratio of silicon), the ratio of the amount of oxygen atoms (the atomic ratio of oxygen), and the ratio of the amount of carbon atoms (the atomic ratio of carbon), oxygen
  • a gas barrier film in which a distribution curve and a carbon distribution curve satisfy specific conditions is disclosed.
  • Such a gas barrier film has a sufficiently high gas barrier property, and even when the film is bent, the gas barrier property can be sufficiently suppressed.
  • a plurality of gas barrier films as described above may be bonded together by an adhesive layer.
  • a technique for producing a gas barrier laminated film by pasting a gas barrier film has been studied.
  • a gas barrier laminated film for example, from the viewpoint of being suitably used for applications requiring higher water vapor permeation prevention performance, such as flexible lighting using an organic electroluminescence element (organic EL element),
  • organic EL element organic electroluminescence element
  • the advent of a film capable of more reliably achieving a high level of water vapor permeation prevention performance and higher thermal deterioration prevention performance (heat resistance) has been desired.
  • the present invention has been made in view of the problems of the prior art, and provides a gas barrier laminate film having a higher level of water vapor permeation prevention performance and sufficiently high heat resistance performance, and a method for producing the same. Objective.
  • the inventors of the present invention have made extensive studies to achieve the above object, and first, a gas barrier laminate film having a sufficiently high gas barrier property as described in Patent Document 2 above is bonded and used as a gas barrier laminate film. Tried to do. However, simply bonding two gas barrier films as described in Patent Document 2 is not sufficient in terms of exhibiting water vapor permeation prevention performance and heat resistance at a higher level. There wasn't. Thus, as a result of further earnest research by the present inventors to achieve the above object, the above object can be achieved surprisingly by making the gas barrier laminate film satisfy the following predetermined conditions. As a result, the present invention has been completed.
  • the gas barrier laminate film of the present invention is a gas barrier laminate film comprising a base material layer and a thin film layer having gas barrier properties, It comprises at least two layers of a first base material layer and a second base material layer as the base material layer,
  • the thin film layer comprises at least two layers of a first thin film layer and a second thin film layer, Comprising at least one of the first and second substrate layers between the first and second thin film layers, and
  • the gas barrier laminate film has a moisture absorption performance for absorbing water of 0.1% by mass or more of its own weight. With such a gas barrier laminate film having moisture absorption performance, not only can the water vapor permeation prevention performance of the entire film be of a higher level, but also higher heat resistance performance can be exhibited.
  • the gas barrier laminate film of the present invention preferably further comprises at least one adhesive layer between the first and second thin film layers, and the adhesive layer comprises a desiccant (water It is more preferable to include an absorbent or the like.
  • a gas barrier laminate film having such an adhesive layer is prepared, for example, by preparing a plurality of film members (for example, a member made of a laminate of a base material and a thin film layer) at the time of manufacture, and using the adhesive. Can be easily manufactured by using a bonding process and the like, and can be suitably employed from the viewpoint of productivity.
  • it is set as the structure in which an adhesive bond layer contains a desiccant, it exists in the tendency which can exhibit more advanced moisture absorption performance etc.
  • a first structure comprising the first thin film layer formed on at least one surface of the first base material layer and the first base material layer.
  • a second structural part comprising the second thin film layer formed on at least one surface of the second base material layer and the second base material layer; It is preferable to have.
  • Such a gas barrier laminate film having the first and second structural portions is, for example, a film member (for example, a member comprising a laminate of a base material and a thin film layer) capable of forming the first and second structural portions. Since it can be easily manufactured by using a process of preparing and bonding them, it can be used more suitably from an industrial viewpoint.
  • the thin film layer is formed only on one surface of at least one of the first base material layer and the second base material layer. And it is preferable that the said thin film layer is not formed on the other surface of this base material layer.
  • at least one of the first base material layer and the second base material layer has a structure in which a thin film layer is formed only on one side.
  • a film member for example, a member made of a laminate of a base material and a thin film layer
  • the thin film layer only needs to be formed on one side of the member. It is possible to prepare the member well, and as a result, it tends to be excellent in economic efficiency and productivity.
  • At least one of the first and second thin film layers contains silicon, oxygen and carbon, and The distance from the surface of the layer in the thickness direction of the layer, the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atom ratio of silicon), the ratio of the amount of oxygen atoms (the ratio of oxygen In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve showing the relationship between the atomic ratio) and the ratio of the amount of carbon atoms (carbon atomic ratio), the following conditions (i) to (iii): (I) In a region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more of the film thickness of the layer, the following formula (1): (Atomic ratio of oxygen)> (atomic ratio of silicon)> (atomic ratio of carbon) (1) Satisfying the condition represented by (Ii) the carbon distribution curve has at least one extreme value; (Iii) The absolute value of the difference between
  • the gas barrier laminate film of the present invention is a laminated structure in which a thin film layer, a base material layer, an adhesive layer, a thin film layer, and a base material layer are laminated in this order [in the direction of film thickness.
  • thin film layer / base material layer / adhesive layer / thin film layer / base material layer (here, “/” indicates lamination) ”, or the thin film layer, base A layered structure in which a material layer, an adhesive layer, a base material layer, and a thin film layer are laminated in this order [configuration that becomes “thin film layer / base material layer / adhesive layer / base material layer / thin film layer” in the film thickness direction ( Here, “/” indicates that they are laminated.)]].
  • the gas barrier laminate film having such a laminate structure can be easily obtained by, for example, preparing a film member (for example, a member made of a laminate of a base material and a thin film layer) and bonding them. It can be manufactured, and can be used more suitably from an industrial viewpoint.
  • the first and second base material layers is a layer made of an organic polymer material. More preferably, both of the base material layers are layers made of an organic polymer material. Thus, by using a layer made of an organic polymer material as the base material layer, sufficient flexibility can be imparted to the gas barrier laminate film.
  • the first gas barrier laminate film manufacturing method of the present invention includes a first base layer and a first thin film layer having gas barrier properties formed on at least one surface of the first base layer.
  • a first film member comprising: A second film member comprising a second thin film layer having gas barrier properties formed on at least one surface of the second base material layer and the second base material layer; And drying at least one of the first and second film members; After the drying, between the first and second thin film layers, the film member after drying is exposed to an atmosphere having a weight absolute humidity of 10 g / kg or more for 1 hour or less.
  • the dried first and second film members are bonded together using an adhesive, and the adhesive is used as the adhesive. More preferably includes a desiccant.
  • multilayer film of this invention is the 1st thin film layer which has the gas barrier property formed on the surface of at least one of the 1st base material layer and said 1st base material layer
  • a first film member comprising: A second film member comprising a second thin film layer having gas barrier properties formed on at least one surface of the second base material layer and the second base material layer; Preparing the first and second film members such that at least one of the first and second base material layers is disposed between the first and second thin film layers. It is a method including a step of obtaining a gas barrier laminate film by bonding using an adhesive containing a desiccant.
  • the gas barrier laminate film of the present invention can be efficiently produced.
  • FIG. 1 It is a schematic longitudinal cross-sectional view which shows typically suitable one Embodiment of the gas-barrier laminated film of this invention. It is a schematic longitudinal cross-sectional view which shows typically other suitable embodiment of the gas-barrier laminated film of this invention. It is a schematic diagram which shows one Embodiment of the manufacturing apparatus of a thin film which can be used suitably for manufacturing the layer which consists of a silicon oxide type thin film suitable as a thin film layer concerning this invention.
  • a gas barrier film is industrially formed by roll-to-roll.
  • the film formed by roll-to-roll is normally stored with the roll shape, and is utilized for various products after that.
  • such a film basically absorbs moisture in the air during storage.
  • the gas barrier film as described in Patent Document 2 is studied, such a film is basically formed by roll-to-roll as described in the document, and also absorbs moisture during storage.
  • the gas barrier laminate film of the present invention is a gas barrier laminate film comprising a base material layer and a thin film layer having gas barrier properties, It comprises at least two layers of a first base material layer and a second base material layer as the base material layer,
  • the thin film layer comprises at least two layers of a first thin film layer and a second thin film layer, Comprising at least one of the first and second substrate layers between the first and second thin film layers, and
  • the gas barrier laminate film has a moisture absorption performance for absorbing water of 0.1% by mass or more of its own weight.
  • FIG. 1 is a schematic longitudinal sectional view schematically showing a preferred embodiment of the gas barrier laminate film of the present invention.
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes a first base material layer 1 (a), a second base material layer 1 (b), a first thin film layer 2 (a), and a second base material layer 1 (a). Thin film layer 2 (b) and adhesive layer 3, and two base material layers (first layer) between first thin film layer 2 (a) and second thin film layer 2 (b). It has the structure provided with the one base material layer 1 (a) and the 2nd base material layer 1 (b).
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes a first base material layer 1 (a) and a second base material layer 1 (b). As described above, the gas barrier laminate film of the embodiment shown in FIG. 1 includes two base material layers of the first base material layer 1 (a) and the second base material layer 1 (b). .
  • the base materials forming the base material layer 1 (a) and the base material layer 1 (b) may be the same or different, and form a gas barrier laminate film.
  • a known base material that can be used for the above can be used as appropriate.
  • Such a substrate is preferably made of an organic polymer material from the viewpoints of flexibility (flexibility), transparency, and low cost.
  • At least one of the first base material layer 1 (a) and the second base material layer 1 (b) is organic high.
  • the first base material layer 1 (a) and the second base material layer 1 (b) are both organic high because it is preferably made of a molecular material and higher flexibility (flexibility) is obtained. It is preferably made of a molecular material.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyethylene (PE ), Polypropylene resins such as polypropylene (PP) and cyclic polyolefin; Polyamide resins; Polycarbonate resins; Polystyrene resins; Polyvinyl alcohol resins; Saponified ethylene-vinyl acetate copolymers; Polyacrylonitrile resins; Acetals Resin; Polyimide resin or the like can be suitably used.
  • PET polyethylene terephthalate
  • PEN polyethylene
  • PE Polypropylene resins
  • Polypropylene resins such as polypropylene (PP) and cyclic polyolefin
  • Polyamide resins Polycarbonate resins
  • Polystyrene resins Polyvinyl alcohol resins
  • Saponified ethylene-vinyl acetate copolymers Saponified ethylene-vinyl acetate copolymers
  • Polyacrylonitrile resins Acetal
  • a polymer material made of a polymer containing a hetero atom (oxygen, nitrogen, etc.) other than carbon and hydrogen is preferable.
  • Polymer materials (polyolefins, etc.) consisting of hydrocarbon polymers consisting only of carbon and hydrogen are non-polar polymers, and since there is almost no polarization in the molecule, it is generally difficult to achieve sufficient hydrophilicity.
  • a polymer material made of a polymer containing a heteroatom (oxygen, nitrogen, etc.) is likely to show polarization due to the heteroatom, and is generally sufficiently hydrophilic.
  • the highly hydrophilic polymer material has a high water content under the usage environment (usually at room temperature (about 25 ° C.) and under normal humidity), and the internal moisture is sufficiently removed by drying. Then, hygroscopicity can be efficiently provided. Therefore, it is possible to produce a gas barrier laminate film having higher hygroscopic performance more efficiently by using a polymer material made of a polymer containing a hetero atom other than carbon and hydrogen as the material of the base material. Become.
  • a hetero atom in such a polymer containing a hetero atom other than carbon and hydrogen when the base material is used for a gas barrier laminate film, the film can exhibit a higher level of moisture absorption performance. Therefore, an oxygen atom is preferable.
  • polyesters having an ester bond are preferable.
  • polyesters having a benzene ring for example, for example, from the viewpoint that the transparency of the base material and the processability to the film become more advanced, and the strength and heat resistance are further improved. It is particularly preferable to use PET (polyethylene terephthalate) or PEN (polyethylene naphthalate).
  • the thickness of such a substrate is not particularly limited, but when a thin film layer is directly formed on the substrate, the thickness is appropriately set according to the type of the thin film layer to be formed. Is preferred.
  • the thickness of such a base material is such that when forming a thin film layer on the surface of the base material, the base material can be transported even in a vacuum.
  • the thickness is preferably 5 to 500 ⁇ m because a thin film can be formed.
  • the thickness of the base material is 50 to 50 from the viewpoint that it is possible to adopt a method of forming the thin film layer while discharging through the base material.
  • the thickness is more preferably 200 ⁇ m, and particularly preferably 50 to 100 ⁇ m.
  • the thickness of such a base material particularly affects the bonding depending on the thickness of the base material even when a gas barrier laminate film is manufactured by bonding members having thin film layers formed on the base material. Since it does not have such a property that it does not occur, it can be used without particular limitation as long as it has a thickness capable of forming a thin film layer regardless of the method for producing a gas barrier laminate film. That is, the thickness of such a substrate is not particularly limited as long as it has a thickness that can sufficiently support the thin film layer on the surface of the substrate, and the thickness is not particularly limited. The design can be changed.
  • the thickness of such a substrate is preferably set as appropriate according to the use of the finally obtained gas barrier laminate film.
  • the thickness of the base material is preferably 15 to 500 ⁇ m.
  • the thickness of such a base material is less than the lower limit, a member having a thin film layer (laminated body) formed on the base material is bonded to each other to produce a gas barrier laminate film. In order to have a limited thickness, bonding of the members must be repeated, and productivity tends to decrease.
  • the thickness of such a substrate from the viewpoint of the moisture absorption performance of the obtained gas barrier laminate film, the thickness of the substrate existing between the first and second thin film layers is 15 ⁇ m or more (more preferably 50 ⁇ m or more). ) Is preferable. When the thickness of such a substrate is less than the lower limit, it tends to be difficult to obtain sufficient moisture absorption performance.
  • the upper limit value of the thickness is not particularly limited from the viewpoint of moisture absorption performance, and the upper limit of thickness
  • the value may be set as appropriate according to the use and the film forming conditions of the thin film layer, but is practically 500 ⁇ m or less (for example, from the viewpoint that it can be suitably used for applications requiring higher transparency). It is preferable that
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes a first thin film layer 2 (a) and a second thin film layer 2 (b). As described above, the gas barrier laminate film of the embodiment shown in FIG. 1 includes two layers of the first thin film layer 2 (a) and the second thin film layer 2 (b) as thin film layers.
  • both the first thin film layer 2 (a) and the second thin film layer 2 (b) need to be layers (thin film layers) made of a thin film having gas barrier properties.
  • the “gas barrier property” herein refers to the following conditions (A) to (C): [Condition (A)] “Gas permeability of substrate (unit: mol / (m 2 ⁇ s ⁇ Pa))” measured by a method based on JIS K 7126 (issued in 2006) and “gas of substrate on which thin film layer is formed” Compared with the “permeability (unit: mol / (m 2 ⁇ s ⁇ Pa))”, the “gas permeability of the base material on which the thin film layer is formed” is greater than the “gas permeability of the base material”.
  • the water vapor permeability of the base material on which the thin film layer having gas barrier properties is 10 ⁇ 2 g / m 2 / day or less, the above conditions (B) and (C) are satisfied.
  • the “water vapor permeability of the base material on which the thin film layer is formed” is a value of 10 ⁇ 2 g / m 2 / day or less.
  • the thin film layer having such gas barrier properties those satisfying the above condition (C) are more preferable.
  • the thickness of one layer of such a gas barrier thin film layer is preferably in the range of 5 to 3000 nm, more preferably in the range of 10 to 2000 nm, and particularly preferably in the range of 100 to 1000 nm. preferable.
  • gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties tend to be inferior.
  • the upper limit is exceeded, gas barrier properties tend to be lowered due to bending.
  • the kind of the thin film layer having such a gas barrier property is not particularly limited, and a known thin film having a gas barrier property can be appropriately used. Note that the types of the first thin film layer 2 (a) and the second thin film layer 2 (b) may be the same or different.
  • a thin film layer it is possible to exhibit a higher level of water vapor permeation prevention performance, transparency, flex resistance (flexibility (flexibility)), ease of manufacturing, and low manufacturing cost. Therefore, it is preferably a layer made of a thin film containing at least silicon and oxygen, among them, a layer containing silicon, oxygen and carbon, and The distance from the surface of the layer in the thickness direction of the layer, the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atom ratio of silicon), the ratio of the amount of oxygen atoms (the ratio of oxygen In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve showing the relationship between the atomic ratio) and the ratio of the amount of carbon atoms (carbon atomic ratio), the following conditions (i) to (iii): (I) In a region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more of the film thickness of the layer, the following formula
  • Such a silicon oxide-based thin film layer first has a distance from the surface of the layer in the thickness direction of the layer and a ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (silicon In the silicon distribution curve, the oxygen distribution curve and the carbon distribution curve respectively showing the relationship between the atomic ratio), the oxygen atom ratio (oxygen atomic ratio) and the carbon atom ratio (carbon atomic ratio), i) In a region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more (more preferably 95% or more, particularly preferably 100%) of the thickness of the layer, the following formula (1): (Atomic ratio of oxygen)> (atomic ratio of silicon)> (atomic ratio of carbon) (1) It is necessary to satisfy the condition expressed by When the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon do not satisfy the above conditions, the gas barrier properties of the resulting gas barrier laminate film are insufficient.
  • such a silicon oxide-based thin film layer (ii) requires that the carbon distribution curve has at least one extreme value.
  • the carbon distribution curve more preferably has at least two extreme values, and particularly preferably has at least three extreme values.
  • the carbon distribution curve does not have an extreme value, the gas barrier property when the obtained film of the gas barrier laminate film is bent is insufficient.
  • the absolute value of the difference in distance is preferably 200 nm or less, and more preferably 100 nm or less.
  • the “extreme value” means a maximum value or a minimum value of the atomic ratio of the element to the distance from the surface of the thin film layer in the film thickness direction of the silicon oxide-based thin film layer.
  • the maximum value is a point where the value of the atomic ratio of the element changes from increasing to decreasing when the distance from the surface of the silicon oxide thin film layer is changed, and It means that the value of the atomic ratio of the element at a position where the distance from the surface of the thin film layer in the film thickness direction of the thin film layer is further changed by 20 nm from the point is reduced by 3 at% or more.
  • the minimum value is a point where the value of the atomic ratio of an element changes from a decrease to an increase when the distance from the surface of the silicon oxide thin film layer is changed, and the element of that point It means that the value of the atomic ratio of the element at a position where the distance from the surface of the thin film layer in the film thickness direction of the thin film layer is further changed by 20 nm from the point increases by 3 at% or more.
  • such a silicon oxide-based thin film layer (iii) requires that the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve be 5 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is more preferably 6 at% or more, and particularly preferably 7 at% or more.
  • the absolute value is less than 5 at%, the gas barrier property when the obtained gas barrier laminate film is bent is insufficient.
  • the oxygen distribution curve preferably has at least one extreme value, more preferably at least two extreme values, and at least three extreme values. Particularly preferred.
  • the gas barrier property tends to decrease when the resulting gas barrier laminate film is bent.
  • the absolute value of the difference in distance is preferably 200 nm or less, and more preferably 100 nm or less.
  • the absolute value of the difference between the maximum value and the minimum value of the oxygen atomic ratio in the oxygen distribution curve of the layer is preferably 5 at% or more, and 6 at% or more. More preferably, it is more preferably 7 at% or more. If the absolute value is less than the lower limit, the gas barrier property tends to be lowered when the obtained gas barrier laminate film is bent.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the layer is preferably less than 5 at%, and preferably less than 4 at%. Is more preferable, and it is especially preferable that it is less than 3 at%.
  • the absolute value exceeds the upper limit, the gas barrier properties of the obtained gas barrier laminate film tend to be lowered.
  • the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen carbon distribution curve is less than 5 at%. Preferably, it is less than 4 at%, more preferably less than 3 at%.
  • the absolute value exceeds the upper limit, the gas barrier properties of the obtained gas barrier laminate film tend to be lowered.
  • the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination. It can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface of the thin film layer in the film thickness direction of the thin film layer in the film thickness direction.
  • the distance from the surface of the thin film layer in the film thickness direction of the thin film layer the distance from the surface of the thin film layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement may be adopted. it can.
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • the layer is substantially in the film surface direction (direction parallel to the surface of the thin film layer). Preferably it is uniform.
  • the fact that the silicon oxide thin film layer is substantially uniform in the film surface direction means that the oxygen distribution curve is measured at any two measurement points on the film surface of the thin film layer by XPS depth profile measurement.
  • the carbon distribution curve and the oxygen carbon distribution curve are created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the carbon atoms in the respective carbon distribution curves
  • the absolute value of the difference between the maximum value and the minimum value of the ratio is the same as each other or within 5 at%.
  • the carbon distribution curve of the layer is preferably substantially continuous.
  • the carbon distribution curve being substantially continuous means that the carbon distribution curve does not include a portion in which the atomic ratio of carbon changes discontinuously.
  • the etching rate, the etching time From the relationship between the distance (x, unit: nm) from the surface of the layer in the film thickness direction of at least one of the thin film layers calculated from the above, and the atomic ratio of carbon (C, unit: at%) The following mathematical formula (F1): (DC / dx) ⁇ 0.5 (F1) This means that the condition represented by
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the layer is preferably 25 to 45 at%, More preferably, it is 40 at%.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the silicon oxide-based thin film layer is preferably 33 to 67 at%, and preferably 45 to 67 at%. It is more preferable.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the silicon oxide thin film layer is preferably 3 to 33 at%, and preferably 3 to 25 at%. It is more preferable.
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the layer is preferably 25 to 45 at%, More preferably, it is 40 at%.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the silicon oxide thin film layer is preferably 1 to 33 at%, and preferably 10 to 27 at%. It is more preferable.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the silicon oxide-based thin film layer is preferably 33 to 66 at%, and preferably 40 to 57 at%. It is more preferable.
  • the silicon oxide-based thin film layer is preferably a layer formed by plasma enhanced chemical vapor deposition.
  • a thin film layer formed by such a plasma enhanced chemical vapor deposition method the base material is placed on a pair of film forming rolls, and plasma is generated by generating a plasma by discharging between the pair of film forming rolls.
  • a layer formed by a phase growth method is more preferable.
  • the film forming gas used in such a plasma chemical vapor deposition method preferably contains an organosilicon compound and oxygen, and the content of oxygen in the film forming gas is the organic gas in the film forming gas. It is preferable that the amount is less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the silicon compound.
  • the thin film layer is preferably a layer formed by a continuous film formation process.
  • first thin film layer 2 (a) and the second thin film layer 2 (b) it is possible to exhibit a higher level of water vapor permeation prevention performance. It is preferable that all of them are the above-described silicon oxide-based thin film layers.
  • the plasma chemical vapor deposition method may be a Penning discharge plasma type chemical vapor deposition method.
  • the substrate is disposed on each of the rolls, and plasma is generated by discharging between the pair of film forming rolls.
  • a pair of film forming rolls are used, a base material is disposed on the pair of film forming rolls, and discharge is performed between the pair of film forming rolls.
  • the surface portion of the base material existing on the other film forming roll can be formed at the same time.
  • the film rate can be doubled and a film having the same structure can be formed, the extreme value in the carbon distribution curve can be at least doubled, and a layer that efficiently satisfies all the above conditions (i) to (iii) can be obtained. It becomes possible to form.
  • the thin film layer is preferably formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • An apparatus that can be used when producing a gas barrier laminate film by such a plasma chemical vapor deposition method is not particularly limited, and includes at least a pair of film forming rolls and a plasma power source, and It is preferable that the apparatus has a configuration capable of discharging between a pair of film forming rolls.
  • a manufacturing apparatus as shown in FIG. It is also possible to manufacture in a roll-to-roll manner while using
  • a method similar to that described can be employed.
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes an adhesive layer 3.
  • the gas barrier laminate film of the present invention is preferably provided with such an adhesive layer 3.
  • the adhesive that can be used to form such an adhesive layer 3 includes a thermosetting adhesive and a photocurable adhesive from the viewpoints of not containing a volatile component, small curing shrinkage, and the like.
  • a curable adhesive such as is preferable.
  • thermosetting adhesive is not particularly limited, and a known thermosetting resin adhesive can be appropriately used.
  • thermosetting resin adhesives include epoxy adhesives and acrylate adhesives.
  • examples of such an epoxy adhesive include an adhesive containing an epoxy compound selected from a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a phenoxy resin.
  • examples of the acrylate adhesive include a monomer as a main component selected from acrylic acid, methacrylic acid, ethyl acrylate, butyl acrylate, 2-hexyl acrylate, acrylamide, acrylonitrile, hydroxyl acrylate, and the like.
  • An adhesive containing a copolymerizable monomer can be used.
  • the photocurable adhesive is not particularly limited, and a known photocurable adhesive can be appropriately used.
  • examples thereof include a radical adhesive and a cationic adhesive.
  • examples of such radical adhesives include adhesives containing epoxy acrylate, ester acrylate, ester acrylate, and the like.
  • examples of the cationic adhesive include an adhesive including an epoxy resin and a vinyl ether resin.
  • the adhesive layer 3 may further contain a desiccant (so-called moisture absorbent or hygroscopic agent), bluing agent, ultraviolet absorber, antioxidant, and the like.
  • a desiccant so-called moisture absorbent or hygroscopic agent
  • bluing agent ultraviolet absorber
  • antioxidant antioxidant
  • the laminated film when used as a substrate for an organic EL for illumination, it may contain a dye or a pigment having the same color as the emission color of the organic EL, and the emission color of the organic EL for the purpose of a color mixing effect. It may contain dyes and pigments of different colors.
  • inorganic particles having a refractive index different from that of the adhesive layer may be included.
  • the gas barrier laminate film can exhibit high moisture absorption performance, and the gas barrier laminate film can exhibit high water vapor permeation prevention performance.
  • a desiccant is not particularly limited, and examples thereof include silica gel, zeolite (molecular sieve), metal oxides such as magnesium oxide, calcium oxide, barium oxide, and strontium oxide, and metal water such as dried aluminum hydroxide. An oxide etc. are mentioned.
  • the particle shape is rounded, the particle size can be made sufficiently small, uniform particles with a sufficiently narrow particle size distribution can be used, the light transmittance is sufficiently high, etc. From the viewpoint, dried aluminum hydroxide is particularly preferred.
  • Such a particulate desiccant preferably has an average particle size in the range of 0.01 to 10 ⁇ m (more preferably 0.01 to 5 ⁇ m, still more preferably 0.1 to 5 ⁇ m).
  • the average particle size is less than 0.01 ⁇ m, the primary particles tend to aggregate easily, and not only the large aggregated particles (secondary particles) tend to be formed, but also the hygroscopicity is too strong.
  • the moisture absorption has already ended and the moisture absorption ability tends not to be exhibited.
  • the average particle diameter exceeds 10 ⁇ m, it becomes difficult to form a smooth layer when formed into a film, and sufficient moisture absorption ability tends to be not obtained.
  • the content of such a desiccant is not particularly limited, but it is preferably contained in the adhesive in a proportion of 5 to 50% by mass (more preferably 10 to 30% by mass).
  • the content of the absorbent (desiccant) is in the above range, the effect obtained by adding the desiccant can be sufficiently exhibited, and the desiccant is contained. Since the viscosity of the subsequent adhesive will be more appropriate, it is possible to make the bonding work proceed more efficiently without reducing workability in the application process, etc. when using the adhesive.
  • the distribution of particles in the film is not biased (a non-uniform pattern or the like is not formed), and the distribution of particles in the film obtained after production tends to be more uniform.
  • a bluing agent is contained. It is preferable to make it.
  • a bluing agent is not particularly limited, and a known bluing agent can be appropriately used.
  • Bayer Macrolex Violet B and Macrolex Blue RR, Sand Corp. Triazole blue RLS and the like can be suitably used.
  • Solvent Violet-3, Solvent Blue-94, Solvent Blue-78, Solvent Blue-95, Solvent Violet-13, and the like by color index classification can be used.
  • the thickness of the adhesive layer 3 is not particularly limited, but it is a case where a solid content such as a powder (for example, the above-mentioned drying agent or bluing agent) is added to the adhesive,
  • a solid content such as a powder (for example, the above-mentioned drying agent or bluing agent) is added to the adhesive.
  • the thickness is preferably about the maximum primary particle size of the powder particles. More preferably, the thickness is 20 ⁇ m.
  • the thickness is preferably about the maximum secondary particle diameter of the powder particles. In this case, the thickness is usually 5 to 50 ⁇ m. More preferred.
  • the thickness of the adhesive layer 3 depends on the adhesive strength and workability. From the viewpoint, it is preferably 0.2 to 30 ⁇ m, and more preferably 0.5 to 10 ⁇ m.
  • the thickness of the adhesive layer 3 is preferably 1 to 100 ⁇ m from the viewpoint of processability. More preferably, it is 5 to 50 ⁇ m.
  • the gas barrier laminate film of the embodiment shown in FIG. 1 is laminated in the order of a thin film layer 2 (a), a base material layer 1 (a), an adhesive layer 3, a base material layer 1 (b), and a thin film layer 2 (b).
  • a laminated structure With such a laminated structure, two layers of substrates can be arranged between gas barrier thin film layers, and when using a film, the moisture absorption performance of the gas barrier laminated film based on the water absorption of the substrate can be improved. Can be.
  • the desiccant is contained in the adhesive layer 3, it is possible to exhibit a higher level of moisture absorption performance.
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes the first base material layer 1 (a) between the first thin film layer 2 (a) and the second thin film layer 2 (b). And a second base material layer 1 (b).
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes two base material layers between the first and second thin film layers.
  • the base material layer existing between the thin film layers makes it possible to exhibit a sufficiently high moisture absorption performance.
  • no base material layer is disposed between the first and second thin film layers, there is no base material sandwiched between the gas barrier films, and moisture contained in the outside air. (Water vapor contained in the outside air (atmosphere) under normal humidity conditions) easily comes into contact with the substrate, so that sufficient gas barrier properties cannot be exhibited based on moisture absorption performance.
  • the gas barrier laminate film of the embodiment shown in FIG. 1 includes a first base layer 1 (a) and a first thin film layer 2 (a) formed on one surface of the layer 1 (a). And a second structure comprising a second base layer 1 (b) and a second thin film layer 2 (b) formed on one surface of the layer 1 (b).
  • the portion has a configuration in which the portions are laminated via the adhesive layer 3.
  • the gas barrier laminate film of the embodiment shown in FIG. 1 has the first structural portion and the second structural portion.
  • the gas barrier laminate film having such a structure includes a first film member and a second film member as described in the first and second gas barrier laminate films of the present invention described later. By using it, it is possible to manufacture efficiently.
  • the first base material layer 1 (a) and the second base material layer 1 (b) are each formed with a thin film layer only on one surface.
  • the thin film layer is not formed on the other surface.
  • the first film member and the second film member may be prepared by forming a thin film layer only on one side, respectively. It becomes easy and productivity improves more.
  • such a gas barrier laminate film needs to have a moisture absorption performance for absorbing water of 0.1% by mass or more of its own weight. That is, such a gas barrier laminate film can absorb and hold water having a weight of 0.1% by mass or more of the mass of the gas barrier laminate film itself. If such moisture absorption performance is less than the lower limit, not only the gas barrier laminate film cannot exhibit a sufficiently high moisture permeation prevention performance but also a sufficiently high heat resistance cannot be exhibited. It becomes difficult to suppress deterioration due to heat at a higher level. In addition, as such a gas barrier laminate film, it is possible to exhibit higher performance in terms of moisture permeation prevention performance and heat resistance, and therefore absorbs 0.2% by mass or more of water of its own weight.
  • the moisture absorption performance of the gas barrier laminate film is preferably 5% by mass or less of its own weight from the viewpoints of the load applied to the substrate during drying, the time required for drying, and the decrease in the adhesion of the adhesive layer accompanying the increase in the amount of the moisture absorbent. .
  • the moisture absorption performance is more preferably 3% by mass or less of its own weight, and further preferably 2% by mass or less of its own weight.
  • the moisture absorption performance of such a gas barrier laminate film is measured as follows. That is, first, a gas barrier laminate film (50 mm square) having a vertical and horizontal length of 50 mm (50 mm square) is prepared for measuring the moisture absorption performance of the gas barrier laminate film. Next, a 50 mm square film is cut into strips every 1 mm to prepare strip-shaped samples (50 pieces) having a length of 50 mm and a width of 1 mm. Next, in a constant temperature room, the mass (unit: g) of a strip-shaped sample (50 pieces) having a size of 50 mm in length and 1 mm in width at room temperature (25 ° C.) in the atmosphere is accurately weighed up to 4 digits.
  • the mass at this time be the above-mentioned film's own weight (W1: initial mass before use).
  • W1 initial mass before use
  • the samples (50 pieces) are allowed to stand under a constant temperature and humidity atmosphere (25 ° C., relative humidity 50%, weight absolute humidity 10 g / kg), and the mass of the sample is accurate to 4 decimal places every 24 hours. Weigh. Such weighing is performed until the mass of the sample (50 pieces) becomes constant, and the mass at a constant value is defined as Wn.
  • Such hygroscopic performance is basically a performance exhibited based on the hygroscopicity of the base material layer disposed between the first and second thin film layers having gas barrier properties.
  • the base layer is made of a polymer containing a heteroatom other than hydrogen (more preferably a polyester having an ester bond) so that the base layer disposed between the first and second thin film layers can absorb moisture sufficiently. More preferably, a layer made of a base material made of PET, PEN), and a sufficiently dry base material is arranged between the first and second thin film layers in the production of the gas barrier laminate film. It is preferable to produce a gas barrier laminate film. Therefore, as a method for producing such a gas barrier laminate film, it is possible to arrange a dry base layer between the first and second thin film layers more reliably. It is preferable to employ the manufacturing method of the first and second gas barrier laminate films of the invention.
  • the total thickness is preferably 30 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m. If the thickness of such a film is within the above range, higher strength can be obtained depending on the thickness. Therefore, damage during production (for example, damage to the base material layer portion) can be more efficiently suppressed, and more efficiency can be obtained.
  • a gas barrier laminate film can be produced well, and the obtained gas barrier laminate film can exhibit sufficient flexibility and sufficient optical properties. Furthermore, if the thickness of the film is within the above range, it is not necessary to make the number of times of pasting the film members excessive, and thus production efficiency tends to be higher.
  • the ratio of the total thickness of all substrate layers present in the film to the total thickness of the film is preferably 90% or more, and more preferably 95% or more. When such a ratio is within the range, higher flexibility (flexibility) tends to be obtained, and furthermore, sufficient transparency tends to be obtained.
  • the ratio of the total value of the thickness of all the base material layers existing between the first thin film layer and the second thin film layer with respect to the thickness of all the base material layers present in the gas barrier laminate film of the present invention ( ⁇ [Total value of the thickness of all substrate layers existing between the first thin film layer and the second thin film layer] / [the thickness of all substrate layers present in the gas barrier laminate film] ⁇ ⁇ 100) is preferably 50% or more, and more preferably 90% or more.
  • the ratio of the thickness of the base material layer between the thin film layers is within the above range, a higher level of moisture absorption performance tends to be exhibited.
  • the ratio of the total thickness of all the base material layers existing between the first thin film layer and the second thin film layer with respect to the total thickness of the gas barrier laminate film of the present invention ( ⁇ [first The total thickness of all substrate layers existing between the thin film layer and the second thin film layer] / [total thickness of the gas barrier laminate film] ⁇ ⁇ 100) is 50% or more. In particular, it is more preferably 90% or more. When the ratio of the thickness of the base material layer between such thin film layers is within the range, it is possible to exhibit a higher level of moisture absorption performance.
  • the yellowness YI is preferably lower when it is used for optical applications such as illumination and display as an organic EL device, and is 10 or less. More preferred is 5 or less.
  • Such yellowness YI can be measured by using a spectrophotometer capable of calculating tristimulus values XYZ as a measuring device and complying with JIS K 7373: 2006.
  • the total light transmittance when used for optical applications such as lighting and displays as organic EL devices and photoelectric conversion applications such as organic thin film solar cells, the total light transmittance is more. A high one is preferred. From such a viewpoint, the total light transmittance of the gas barrier laminate film of the present invention is more preferably 80% or more, and still more preferably 85% or more. Such total light transmittance can be measured by using a transmitted light measuring device having an integrating sphere as a measuring device and conforming to JIS K 7375: 2008.
  • the haze is preferably lower, and it is 10% or less. Is more preferable, and it is still more preferable that it is 5% or less.
  • the gas barrier laminate film of the present invention can be used while appropriately changing the characteristics so as to have a suitable design according to the application.
  • the gas barrier laminate film of the present invention has been described above with reference to FIG. 1, but the gas barrier laminate film of the present invention is not limited to the above embodiment.
  • the thin film layer 2 (a), the base material layer 1 (a), the adhesive layer 3, the base material layer 1 (b), and the thin film layer 2 (b) are laminated in this order.
  • the gas barrier laminate film of the present invention comprises at least two layers of a first substrate layer and a second substrate layer as the substrate layer,
  • the thin film layer includes at least two layers of a first thin film layer and a second thin film layer, and the first thin film layer is formed between the first thin film layer and the second thin film layer.
  • the layer structure is not particularly limited as long as it includes at least one layer.
  • the thin film layer 2 (a), the base material layer 1 (a), the adhesive layer 3, and the thin film layer You may employ
  • a gas barrier laminate film shown in another embodiment as shown in FIG. 2 it becomes a layer configuration including one base layer between two thin film layers, and even when such a configuration is adopted, Basically, based on the hygroscopicity of the base material layer 1 (a) disposed between the thin film layer 2 (a) and the thin film layer 2 (b), the gas barrier laminate film can exhibit the hygroscopic performance. is there.
  • the desiccant when the desiccant is further contained in the adhesive layer in such a laminated structure, it is possible to exhibit the hygroscopic performance together with such a desiccant, and it is also possible to exhibit higher performance. It becomes.
  • the gas barrier laminate film having such a laminated structure as shown in FIG. 2 can also be suitably produced by the first and second gas barrier laminate films of the present invention described later, from the viewpoint of industriality and the like. This is a suitable structure.
  • the gas barrier laminate film of the present invention may be configured not to include the adhesive layer.
  • the adhesive layer for example, if two or more members having a thin film layer are prepared on a base material and at least one layer of the base material is included between the thin film layers and then laminated by thermocompression bonding, such an adhesive is used. Even a gas-barrier laminated film that does not have a layer can be easily produced.
  • a hard coat layer in addition to the adhesive layer, on the surface of the base material layer and / or the thin film layer, if necessary, a hard coat layer, a protective film layer, a light scattering layer.
  • a light extraction layer an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, a primer coat layer, a heat-sealable resin layer, and the like may be provided.
  • the embodiment shown in FIG. 1 is provided with only two layers of the first base material layer and the second base material layer as the base material layer, in the gas barrier laminate film of the present invention
  • the number of the base material layers is not particularly limited, and the design is appropriately changed according to the use etc.
  • expressions such as “first”, “second”, and “third” in this specification describe two or more identical or corresponding elements (for example, a base material layer, a thin film layer, a film member, etc.).
  • the numbers and the order of explanations have no special meaning (no superiority or inferiority by numbers), and these elements may be the same or different. May be.
  • each base material layer has a thin film layer only on one surface and no thin film layer is formed on the other surface.
  • An adhesive layer is laminated on the surface), but has a structure in which a thin film layer is formed on both sides of at least one base material layer (for example, a thin film layer, a base material) A layer, an adhesive layer, a thin film layer, a base material layer, a thin film layer, and the like.
  • the gas barrier laminate film of the present invention has a structure having one or more thin film layers (for example, a third thin film layer) in addition to the first thin film layer and the second thin film layer. In that case, it is easy to use a thin film layer on both sides of the base material as one of the film members in the viewpoint that more advanced gas barrier properties can be exhibited, and in the method for producing a gas barrier laminated film described later.
  • the first thin film layer, the first base material layer, the adhesive layer, the second thin film layer, and the second base material layer can be manufactured and are suitable for industrialization.
  • a gas barrier laminate film having a laminate structure in which the third thin film layers are laminated in this order is more preferable.
  • the first to third thin film layers are all formed of the silicon from the viewpoint that higher gas barrier properties can be exhibited.
  • An oxide-based thin film layer is particularly preferable.
  • the gas barrier laminate film of the present invention has been described above. Next, a method for producing the first gas barrier laminate film of the present invention will be described.
  • the first gas barrier laminate film manufacturing method of the present invention includes a first base layer and a first thin film layer having gas barrier properties formed on at least one surface of the first base layer.
  • a second film member comprising a second thin film layer having gas barrier properties formed on at least one surface of the second base material layer and the second base material layer;
  • steps (A) and (B) will be described separately.
  • Step (A) is a step of preparing the first film member and the second film member and drying at least one of the first and second film members.
  • the base film layers (first and second base material layers) and the thin film layers (first and second thin film layers) in the first film member and the second film member are the gas barriers of the present invention. This is the same as that described for the conductive laminated film.
  • the process for preparing such first and second film members is not particularly limited, and a known method can be appropriately employed. For example, it is possible to produce a film member (first and second film members) comprising a base material layer and a thin film layer by forming a thin film layer having a gas barrier property on at least one surface on the base material.
  • the film member (first and second) may be prepared by a film member (laminated body) comprising a commercially available base material layer and a thin film layer having gas barrier properties. The film member) may be prepared.
  • the thin film layer is the silicon oxide-based thin film layer that can be suitably used in the present invention, it is preferable to employ the method described below.
  • FIG. 3 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for forming the silicon oxide-based thin film layer on a substrate.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant descriptions are omitted.
  • the manufacturing apparatus shown in FIG. 3 includes a delivery roll 11, transport rolls 21, 22, 23, 24, film forming rolls 31, 32, a gas supply pipe 41, a plasma generating power supply 51, a film forming roll 31, and 32 includes magnetic field generators 61 and 62 installed inside 32, and a winding roll 71.
  • a manufacturing apparatus at least the film forming rolls 31, 32, the gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61, 62 are arranged in a vacuum chamber (not shown). ing.
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roll has a plasma generation power source so that the pair of film-forming rolls (film-forming roll 31 and film-forming roll 32) can function as a pair of counter electrodes. 51 is connected. Therefore, in such a manufacturing apparatus, it is possible to discharge into the space between the film forming roll 31 and the film forming roll 32 by supplying power from the plasma generating power source 51, thereby forming the film. Plasma can be generated in the space between the roll 31 and the film forming roll 32. In this way, when the film forming roll 31 and the film forming roll 32 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • the pair of film forming rolls (film forming rolls 31 and 32) are arranged so that their central axes are substantially parallel on the same plane.
  • the film forming rate can be doubled and a film having the same structure can be formed. Can be at least doubled.
  • magnetic field generators 61 and 62 fixed so as not to rotate even when the film forming roll rotates are provided, respectively.
  • the film forming roll 31 and the film forming roll 32 known rolls can be appropriately used. As such film forming rolls 31 and 32, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rolls 31 and 32 is preferably in the range of 5 to 100 cm from the viewpoint of discharge conditions, chamber space, and the like.
  • the film 100 is disposed on a pair of film forming rolls (the film forming roll 31 and the film forming roll 32) so that the surfaces of the film 100 face each other.
  • a pair of film forming rolls the film forming roll 31 and the film forming roll 32
  • each of the films 100 existing between the pair of film forming rolls is generated when the plasma is generated by performing discharge between the film forming roll 31 and the film forming roll 32. It becomes possible to form a film on the surface simultaneously. That is, according to such a manufacturing apparatus, the film component can be deposited on the surface of the film 100 on the film forming roll 31 and further the film component can be deposited on the film forming roll 32 by the CVD method. Therefore, the thin film layer can be efficiently formed on the surface of the film 100.
  • the feed roll 11 and the transport rolls 21, 22, 23, 24 used in such a manufacturing apparatus known rolls can be appropriately used.
  • the winding roll 71 is not particularly limited as long as it can wind the film 100 on which the thin film layer is formed, and a known roll can be appropriately used.
  • the gas supply pipe 41 a pipe capable of supplying or discharging the raw material gas at a predetermined speed can be used as appropriate.
  • the plasma generating power source 51 a known power source for a plasma generating apparatus can be used as appropriate.
  • Such a power source 51 for generating plasma supplies power to the film forming roll 31 and the film forming roll 32 connected to the power source 51 and makes it possible to use them as a counter electrode for discharging.
  • As such a plasma generation power source 51 it is possible to more efficiently carry out plasma CVD, so that the polarity of the pair of film forming rolls can be alternately reversed (AC power source or the like). Is preferably used.
  • the applied power can be set to 100 W to 10 kW and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible.
  • the magnetic field generators 61 and 62 known magnetic field generators can be used as appropriate.
  • the film 100 in addition to the base material used in the present invention, a film in which the thin film layer is formed in advance can be used. As described above, by using the film 100 in which the thin film layer is formed in advance, the thickness of the thin film layer can be increased.
  • the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roll, and the film transport speed are adjusted as appropriate.
  • a layer (thin film layer) composed of the silicon oxide thin film can be formed on the surface of the substrate 100. That is, by using the manufacturing apparatus shown in FIG. 3 to generate a discharge between a pair of film forming rolls (film forming rolls 31 and 32) while supplying a film forming gas (such as a raw material gas) into the vacuum chamber.
  • a film forming gas such as a raw material gas
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and the thin film layer is formed on the surface of the film 100 on the film forming roll 31 and on the surface of the film 100 on the film forming roll 32 by the plasma CVD method. Is done.
  • the film 100 is conveyed by the delivery roll 11, the film formation roll 31, and the like, respectively, so that the film 100 is formed on the surface of the film 100 by a roll-to-roll continuous film formation process.
  • a silicon oxide-based thin film layer is formed.
  • the source gas in the film-forming gas used for forming the silicon oxide-based thin film layer can be appropriately selected and used according to the material of the thin film layer to be formed.
  • a source gas for example, an organosilicon compound containing silicon can be used.
  • organosilicon compounds include hexamethyldisiloxane, 1.1.3.3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethyl
  • organosilicon compounds include silane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1.1.3.3-tetramethyldisiloxane are preferred from the viewpoints of handling properties of the compound and gas barrier properties of the resulting thin film layer.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and a nitride are formed. Can be used in combination with the reaction gas for
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon, etc .; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. If the ratio of the reaction gas is excessive, a thin film that satisfies all the above conditions (i) to (iii) cannot be obtained. In this case, excellent barrier properties and bending resistance cannot be obtained depending on the formed thin film layer. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • a gas containing hexamethyldisiloxane organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas and oxygen (O 2 ) as a reaction gas is used.
  • organosilicon compound: HMDSO: (CH 3 ) 6 Si 2 O :) as a source gas
  • oxygen (O 2 ) as a reaction gas.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to form a silicon-oxygen-based material.
  • HMDSO hexamethyldisiloxane
  • O 2 oxygen
  • the film-forming gas (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2 (1) Reaction occurs as described in 1 to produce silicon dioxide. In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol.
  • the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed.
  • the amount of oxygen is stoichiometrically determined with respect to 1 mole of hexamethyldisiloxane so that the reaction of the above formula (1) does not proceed completely.
  • the ratio should be less than 12 moles.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas ( Even if the flow rate is 12 times the molar amount (flow rate) of hexamethyldisiloxane as the raw material, the reaction cannot actually proceed completely. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is the raw material hexamethyldisiloxane.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the transparency of the barrier film decreases, and the barrier film cannot be used for a flexible substrate for a device that requires transparency such as an organic EL device or an organic thin film solar cell.
  • the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane.
  • the amount is more than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum connected to the plasma generating power source 51 (in this embodiment, the film is installed on the film forming rolls 31 and 32).
  • the electric power to be applied can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., and cannot be generally stated, but may be in the range of 0.1 to 10 kW. preferable. If the applied power is less than the lower limit, particles tend to be generated. On the other hand, if the applied power exceeds the upper limit, the amount of heat generated during film formation increases, and the temperature of the substrate surface during film formation increases. Therefore, the substrate loses heat and wrinkles occur during film formation. In severe cases, the film melts due to heat, and a large current discharge occurs between the bare film formation rolls. May cause damage.
  • the conveyance speed (line speed) of the film 100 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. A range of 5 to 20 m / min is more preferable. If the line speed is less than the lower limit, wrinkles due to heat tend to occur in the film. On the other hand, if the upper limit is exceeded, the thickness of the formed thin film layer tends to be thin.
  • the base material layer and the gas barrier property formed on at least one surface of the base material layer are provided.
  • a film member provided with a thin film layer (a silicon oxide-based thin film layer containing carbon) can be preferably produced.
  • the first and second film members may be the same or different, and both the first and second film members are formed as described above. It is good also as a film member which can do. In this case, it becomes possible to produce a gas barrier laminate in which both the first and second thin film layers are silicon oxide thin films, and a gas barrier laminate film having a higher level of water vapor permeation prevention performance. Can be manufactured.
  • the method for drying the first and / or second film member is not particularly limited, and a known method capable of drying such a film member can be appropriately employed. Vacuum drying, heat drying, vacuum heat drying and the like can be appropriately employed. As such a drying method, it is most preferable to employ vacuum heat drying in which vacuum drying and heat drying are combined from the viewpoint of drying efficiency. Moreover, the conditions (heating conditions, pressure conditions, etc.) in the case of drying by such vacuum drying, heat drying, or vacuum heat drying may be appropriately set to conditions that allow the film member to be dried, and are particularly limited. It is not a thing.
  • the heating temperature is preferably set to 50 ° C. or higher, and is set to 100 ° C. or higher. Is particularly preferred.
  • the upper limit of the heating temperature may be appropriately set according to the type of the substrate. Although not particularly limited, it is preferably 200 ° C. or less, more preferably 150 ° C. or less, from the viewpoint of sufficiently preventing deformation of the substrate due to high temperature.
  • the pressure condition is set to a pressure lower than the atmospheric pressure of 760 mmHg (101325 Pa).
  • the pressure is not particularly limited, but is preferably a pressure lower than 76 mmHg (10132.5 Pa), and more preferably a pressure lower than 7.6 mmHg (1013.25 Pa).
  • the “vacuum drying” referred to in the present invention may be drying performed by reducing the pressure to a pressure lower than the atmospheric pressure of 760 mmHg (101325 Pa).
  • the drying time in particular of the 1st and / or 2nd film member is not restrict
  • the implementation time may be appropriately employed.
  • the drying time is preferably 3 hours (180 minutes) or more, and more preferably 6 hours (360 minutes) or more.
  • the drying time is preferably 3 hours (180 minutes) or more, and more preferably 6 hours (360 minutes) or more.
  • what is necessary is just to set such drying time suitably according to the thickness, the kind, etc. of a base material.
  • step (B) In the step (B), while the dried film member is exposed to an atmosphere in which the weight absolute humidity is 10 g / kg or more (total time exposed to the atmosphere) is 1 hour or less.
  • a gas barrier is formed by laminating the first and second film members so that at least one base layer in the dried film member is disposed between the first and second thin film layers. This is a step of obtaining a conductive laminated film.
  • the first and / or second film member (the film member subjected to the drying treatment) after being dried in the step (A) has a weight absolute humidity of 10 g / kg or more.
  • the exposure time is 1 hour (more preferably 0.5 hour (30 minutes), still more preferably 20 minutes, particularly preferably 10 minutes).
  • the film member after drying absorbs moisture, and sufficient moisture absorption performance (preferably Can not obtain a gas barrier laminate film having a hygroscopic property of absorbing water having a weight of 0.1% by mass or more of its own weight.
  • the film member is taken out from a dry condition under a normal air atmosphere (for example, the weight absolute humidity can be 10 g / kg or more, etc.), and the first and second films are removed under the air atmosphere.
  • a normal air atmosphere for example, the weight absolute humidity can be 10 g / kg or more, etc.
  • the members including at least one film member after drying
  • 1 hour more preferably 0.5 hours (30 minutes) after the dried film member is taken out in the air atmosphere.
  • the film member is exposed to the outside air (in the atmosphere) having a normal humidity for 10 hours or more, it absorbs moisture from the outside air and the effect of drying cannot be obtained. It tends to end up.
  • the gas barrier laminate film having sufficient moisture absorption performance is obtained more efficiently by setting the time of exposure to an atmosphere where the weight absolute humidity is 10 g / kg or more to 1 hour or less.
  • the atmosphere to which the film member subjected to the drying treatment is exposed is an atmosphere having a weight absolute humidity of less than 10 g / kg, the exposure time to the atmosphere may exceed 1 hour, From the viewpoint of using a film member held at a higher level, the exposure time is as short as possible even in such an atmosphere (more preferably 1 hour or less, more preferably 0.5 hour (30 minutes), Particularly preferred is 20 minutes, and most preferred is 10 minutes).
  • the weight absolute humidity is 0.1 g / kg in the film member after the drying.
  • the film after drying is to be stored under the following conditions (more preferably, the absolute humidity is 0.01 g / kg or less) (for example, in a desiccator containing a desiccant). Since the dry state of the member can be sufficiently retained, the film member (first and / or second film member after drying) after being dried in step (A) should be used even after long-term storage. You can also.
  • the dried film member (at least one of the first and second film members) has a weight absolute humidity of 10 g /
  • the time (total time) existing in the atmosphere of kg or more is 1 hour or less, moisture absorption of the film member after drying is sufficiently prevented.
  • the first and second film members can be bonded together while sufficiently maintaining the dry state of the base material layer disposed between the first and second thin film layers.
  • a drying step (step (A)) is performed and the low Performing the bonding step (step (B)) using the film member after drying in a humidity environment (for example, installing a vacuum oven and a bonding apparatus in a low humidity environment such as a dry room, It is preferable to carry out a drying step and a bonding step under).
  • the structure of the film after lamination includes at least two layers of the first base material layer and the second base material layer as the base material layer, and the first thin film layer as the thin film layer And at least two layers of the second thin film layer, and at least one of the first and second base material layers between the first and second thin film layers.
  • the atmosphere where a weight absolute humidity will be 10 g / kg or more Since it is sandwiched between thin film layers having a high gas barrier property in a state in which the dry state is sufficiently maintained so that the exposure time is 1 hour or less, the gas barrier laminate film is sufficiently advanced. Not only can hygroscopicity be imparted, it is also possible to sufficiently improve the heat resistance of the laminated film.
  • the method for bonding the first and second film members in this way is not particularly limited, and a known method capable of bonding the film members can be appropriately employed.
  • a method of combining the first and second film members by applying the adhesive to the adhesive surface using an adhesive, an adhesive, and the like can be appropriately used.
  • the temperature conditions that can be employed in these methods are not particularly limited, and optimal conditions may be employed as appropriate depending on the types of the first and second film members.
  • the adhesive agent demonstrated in the gas barrier laminated film of the above-mentioned this invention can be utilized suitably.
  • such an adhesive further contains a desiccant because it can exhibit a higher level of moisture absorption performance.
  • the application method and the application thickness of the adhesive are not particularly limited, and a known application method (in order to be able to produce an adhesive layer as described in the gas barrier laminate film of the present invention described above ( For example, an optimal method and conditions may be appropriately selected from among application methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater.
  • a method of bonding the first and second film members for example, a method using a bonding apparatus having at least one rubber roll can be adopted, and further an adhesive layer depending on the application. It is preferable to employ a method of bonding using an adhesive because various components can be separately contained in the adhesive.
  • the first and second film members it is preferable to bond the first and second film members under a temperature condition of 18 to 80 ° C.
  • a temperature condition 18 to 80 ° C.
  • the first and second thin film layers are formed by bonding the first and second film members in such a manner that at least one base layer is disposed, so that the dry state is sufficiently maintained.
  • a gas barrier laminate film comprising a base material layer and a thin film layer having gas barrier properties, wherein the base material layer includes a first base material layer and a second base material layer.
  • At least two layers of a first thin film layer and a second thin film layer are provided as thin film layers, and at least one of the first and second base material layers is interposed between the first and second thin film layers. It is possible to obtain a gas barrier laminated film having a single layer and having sufficient moisture absorption performance (preferably moisture absorption performance for absorbing water of 0.1% by mass or more of its own weight). Become.
  • a gas barrier laminate film having sufficient moisture absorption performance (preferably moisture absorption performance for absorbing water of 0.1% by mass or more of its own weight) is obtained.
  • the gas barrier laminate film of the present invention can be efficiently produced.
  • an adhesive layer is included in such a manufacturing method of the first gas barrier laminate film of the present invention.
  • the gas barrier laminate film obtained by the present invention and laminated with the substrate in a sufficiently dried state between the thin film layers can also exhibit sufficiently high heat resistance. Become.
  • the gas barrier laminate film is configured such that both the first and second base material layers are disposed between the first and second thin film layers.
  • the first and second films after drying are preferably dried.
  • both the first and second film members are dried, and the dried first and second film members are bonded so that the base material layers face each other while maintaining the dry state sufficiently.
  • the first and second substrate layers in a sufficiently dried state exist between the first and second thin film layers, and the resulting gas barrier laminate film has a higher level of moisture absorption performance. Can be exhibited.
  • the substrate layer 1 (a) should be in a sufficiently dry state to produce a gas barrier laminate film, at least one of the first and second film members was dried. Then, what is necessary is just to bond the 1st and 2nd film member so that the base material of the film member after the drying may be arrange
  • the manufacturing method of the 2nd gas-barrier laminated film of this invention is equipped with the 1st thin film layer which has the gas barrier property formed on the surface of at least one of a 1st base material layer and said 1st base material layer.
  • a second film member comprising a second thin film layer having gas barrier properties formed on at least one surface of the second base material layer and the second base material layer;
  • Preparing the first and second film members such that at least one of the first and second base material layers is disposed between the first and second thin film layers. It is a method including a step of obtaining a gas barrier laminate film by bonding using an adhesive containing a desiccant.
  • the first film member and the second film member used in such a production method are the same as those described in the production method for the first gas barrier laminate film of the present invention.
  • the adhesive and the desiccant are the same as those described in the gas barrier laminate film of the present invention.
  • the first and second film members are arranged such that at least one of the first and second base material layers is disposed between the first and second thin film layers. And using an adhesive containing a desiccant. In such bonding, it is preferable to apply an adhesive to the surface of at least one or both of the first and second film members.
  • the method for applying the adhesive is not particularly limited, and a known coating method (for example, a doctor) is used so that an adhesive layer as described in the gas barrier laminate film of the present invention can be produced.
  • An optimum method and its conditions may be appropriately selected from among coating methods such as blades, wire bars, die coaters, comma coaters, and gravure coaters.
  • the application amount and application thickness of the adhesive when forming the adhesive layer are not particularly limited, for example, according to the type of adhesive, to be the same as the thickness of the adhesive layer described above, The coating amount and coating thickness may be selected as appropriate.
  • a thin film-like sheet of adhesive is prepared, the sheet is placed between the first and second film members, and heated, etc., between the first and second thin film layers. You may bond together using the adhesive agent containing a desiccant so that at least 1 layer of said 1st and 2nd base material layers may be arrange
  • the first and second film members are arranged such that at least one of the first and second base material layers is disposed between the first and second thin film layers.
  • a laminated film having a structure in which at least one base material layer and an adhesive layer are arranged between thin film layers is obtained. It becomes.
  • the adhesive layer containing the desiccant When the adhesive layer containing the desiccant is laminated between the thin film layers in this way, the first and second thin film layers disposed between the first and second thin film layers by the desiccant in the adhesive layer. At least one of the base material layers can be dried. Therefore, in the gas barrier laminate film produced by the second method for producing a gas barrier laminate film of the present invention, since the substrate layer existing between the thin film layers can be dried after the bonding step, such a substrate layer It is possible to exhibit moisture absorption performance. In addition, in the second method for producing a gas barrier laminate film of the present invention, since an adhesive layer containing a desiccant is included between the thin film layers, the desiccant itself in the adhesive layer also exerts moisture absorption performance. It becomes possible.
  • At least 1 layer of said 1st and 2nd base material layers is arrange
  • a gas barrier laminate film comprising a base material layer and a thin film layer having gas barrier properties, wherein the base material layer includes at least two layers of a first base material layer and a second base material layer.
  • the thin film layer includes at least two layers of a first thin film layer and a second thin film layer, and the first and second thin films are interposed between the first and second thin film layers.
  • the gas barrier laminate film is composed of the thin film layer 2 (a) and the substrate layer 1 ( a), an adhesive layer 3, a base material layer 1 (b), and a thin film layer 2 (b) in this order, or a thin film layer 2 (a), a base material layer 1 (a), It is also possible to have a laminated structure in which the adhesive layer 3, the thin film layer 2 (b), and the base material layer 1 (b) are laminated in this order.
  • the gas barrier laminate film obtained by the present invention and having a structure in which a sufficiently dried base material is laminated between thin film layers can also exhibit sufficiently high heat resistance. Become.
  • a film-forming gas mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (which also functions as a discharge gas) as a reactive gas
  • HMDSO hexamethyldisiloxane
  • oxygen gas which also functions as a discharge gas
  • ⁇ Film formation conditions Supply amount of raw material gas: 50 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas: 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Film conveyance speed: 0.5 m / min.
  • the obtained laminate (A) is used as a base material (film 100) and attached to the delivery roll 11, and on the surface of the thin film layer of the laminate (A), the same film formation conditions as described above are applied.
  • a thin film layer was newly formed under the conditions, and a laminate (B) made of a base material on which a thin film layer having a thickness of 0.6 ⁇ m was formed was obtained.
  • the obtained laminate (B) is used as a base material (film 100) and attached to the delivery roll 11, and on the surface of the thin film layer of the laminate (B), the same film formation conditions as described above are applied.
  • a thin film layer was newly formed using the above conditions to obtain a laminate (C) composed of a base material on which a thin film layer having a thickness of 0.9 ⁇ m was formed.
  • the obtained laminate (C) is used as a base material (film 100) and attached to the delivery roll 11, and on the surface of the thin film layer of the laminate (C), the same film formation conditions as described above are applied.
  • a thin film layer was newly formed under the conditions, and a laminate (D) composed of a base material on which a thin film layer having a thickness of 1.2 ⁇ m was formed was obtained.
  • the obtained laminate (D) is used as a base material (film 100) and attached to the delivery roll 11, and the above-described film formation conditions are set on the surface of the thin film layer of the laminate (D).
  • the member formed of a laminate including a thin film layer having a thickness of 1.5 ⁇ m formed on one surface of the substrate was obtained.
  • the film member was formed by repeating the thin film layer forming process adopted at the time of manufacturing the laminate (A) five times on one surface side of the base material using the manufacturing apparatus shown in FIG. It was.
  • XPS depth profile measurement was performed on the thin film layer of such a laminate (E) under the following conditions to obtain a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and an oxygen carbon distribution curve.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the carbon distribution curve thus obtained has a plurality of distinct extreme values, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is 5 at% or more, and silicon
  • the atomic ratio, the oxygen atomic ratio, and the carbon atomic ratio are represented by the formula (1): (Atomic ratio of oxygen)> (atomic ratio of silicon)> (atomic ratio of carbon) (1) It was confirmed that the conditions indicated in were satisfied.
  • the gas barrier property of such a film member was measured by a method based on the calcium corrosion method (method described in JP-A-2005-283561). That is, after drying treatment, metal calcium is vapor-deposited on the film member, sealed with metal aluminum from above, fixed to glass, and sealed with resin. The temperature is 40 ° C. and the humidity is 90% RH.
  • the water vapor permeability was calculated by examining the increase of the corrosion point with time in the image analysis. In calculating the water vapor transmission rate, the corrosion point is photographed with a microscope, the image is taken into a personal computer, the image of the corrosion point is binarized, and the corrosion area is calculated and obtained. The water vapor permeability was calculated.
  • the water vapor permeability of the film member was 7 ⁇ 10 ⁇ 3 g / m 2 / day.
  • the gas barrier property was measured by a method based on the calcium corrosion method (the method described in Japanese Patent Application Laid-Open No. 2005-283561) in the same manner using a sample consisting of only the substrate (PEN film).
  • the gas barrier property was 1.3 g / m 2 / day. From these results, it was confirmed that the “water vapor permeability of the base material on which the thin film layer was formed” showed a value two or more digits smaller than the “water vapor permeability of the base material”.
  • the thin film layer was confirmed to have gas barrier properties.
  • Example 1 Two film members were prepared by employing the same method as employed in Preparation Example 1. Next, the two film members are both introduced into a vacuum oven and heated for 360 minutes at a gauge pressure of ⁇ 0.1 MPa (absolute pressure 1.3 kPa) and 100 ° C. to dry the two film members. (Drying process). Thereafter, the two film members are taken out from the vacuum oven into the atmosphere (temperature: 25 ° C., relative humidity: 50%, weight absolute humidity: 10 g / kg (dry air)), and bisphenol A type epoxy resin is used as an adhesive.
  • a gas barrier laminate film having a structure as shown in FIG. 1 (a gas barrier laminate having a laminate structure of “thin film layer / base material / adhesive layer / base material / thin film layer”) Irumu) was obtained.
  • the time required to take out the two film members from the vacuum oven and start the process of bonding them was 10 minutes, and the time required for bonding was 15 minutes. Thus, it took a total of 25 minutes to take out the two film members after the drying step from the vacuum oven to form the gas barrier laminated film.
  • multilayer film was measured, and the value which pulled the thickness of two film members was made into the thickness of an adhesive bond layer.
  • the thickness of the adhesive layer thus determined was 12 ⁇ m.
  • the gas barrier laminate film thus obtained was measured for the moisture absorption performance of the gas barrier laminate film (the ratio Bn of the moisture absorption amount described above) as described above, and the weight was 0.29% by mass of its own weight. It was confirmed that the water can be absorbed and retained.
  • Example 2 Instead of bonding the two film members after the drying process so that the surfaces on the base material face each other, the surface of the base material of one film member and the thin film layer of the other film member face each other.
  • a gas barrier laminate film (“thin film layer / base material / adhesive layer / thin film” having a structure as shown in FIG.
  • a gas barrier laminate film having a laminate structure of “layer / substrate” was obtained. The thickness of the gas barrier laminate film thus obtained was measured, and the value obtained by subtracting the thicknesses of the two film members was taken as the thickness of the adhesive layer. The thickness of the adhesive layer thus determined was 12 ⁇ m.
  • the gas barrier laminate film thus obtained was measured for the moisture absorption performance of the gas barrier laminate film as described above (the ratio Bn of the moisture absorption amount described above). It was confirmed that the water can be absorbed and retained.
  • the desiccant is added to the main component of the two-component epoxy adhesive at a ratio of 14% by mass with respect to the total amount of the two components (main component and curing agent).
  • Alignment powder manufactured by Sumitomo Chemical Co., Ltd. having a particle size of 0.5 ⁇ m was vacuum-dried for 360 minutes under the conditions of 250 ° C. and gauge pressure of ⁇ 0.1 MPa (absolute pressure 1.3 kPa), and the dew point was ⁇ 50 ° C.
  • Example 2 A method similar to that of Example 1 was adopted except that the product was cooled to room temperature (25 ° C.) in a nitrogen atmosphere and subjected to a defoaming treatment and then used as the main agent of the adhesive.
  • a gas barrier laminate film having a structure as shown in FIG. 1 gas barrier laminate film having a laminate structure of “thin film layer / base material / adhesive layer (containing desiccant) / base material / thin film layer” was obtained.
  • the gas barrier laminate film was prepared in the same manner as in Example 1 except that the desiccant was added to the main component of the two-pack type epoxy adhesive so that the adhesive layer became a layer containing the desiccant.
  • the thickness of the gas barrier laminate film thus obtained was measured, and the value obtained by subtracting the thicknesses of the two film members was taken as the thickness of the adhesive layer.
  • the thickness of the adhesive layer thus determined was 15 ⁇ m.
  • the gas barrier laminate film thus obtained was measured for the moisture absorption performance of the gas barrier laminate film as described above (the ratio Bn of the moisture absorption amount described above), and the weight was 0.78% by weight of its own weight. It was confirmed that the water can be absorbed and retained.
  • Example 4 instead of laminating the film member obtained after the drying step, the same as in Example 3 except that after the two film members were prepared, the drying step was not carried out and the two film members were directly laminated.
  • Gas barrier laminated film having a laminated structure of “thin film layer / base material / adhesive layer (containing desiccant) / base material / thin film layer” having the structure shown in FIG. )
  • the thickness of the gas barrier laminate film thus obtained was measured, and the value obtained by subtracting the thicknesses of the two film members was taken as the thickness of the adhesive layer.
  • the thickness of the adhesive layer thus determined was 15 ⁇ m.
  • the gas barrier laminate film thus obtained was measured for the moisture absorption performance of the gas barrier laminate film as described above (the ratio Bn of the above-mentioned moisture absorption amount). It was confirmed that the water can be absorbed and retained.
  • the film member (thin film layer forming substrate) obtained in Preparation Example 1 was used as it was as a gas barrier laminated film (gas barrier laminated film for comparison having a laminated structure of “thin film layer / substrate”).
  • the gas barrier laminate film thus obtained was measured for the moisture absorption performance of the gas barrier laminate film as described above (the ratio Bn of the moisture absorption amount described above). As a result, Bn was 0.00% by mass and absorbed moisture. It was confirmed that he did not have the ability. Such a result is presumed to be caused by the moisture absorption of water vapor contained in the air since the film member was stored in an air atmosphere after manufacture and the drying process was not particularly performed thereafter.
  • the gas barrier laminated film gas barrier laminated film for comparison having a laminated structure of “thin film layer / substrate”.
  • Example 2 (Comparative Example 2) Instead of laminating the two film members obtained after the drying process, the two film members were prepared at 25 ° C., relative humidity: 50%, weight without carrying out the drying process after preparing two film members.
  • a gas barrier laminate film (“thin film” having a structure as shown in FIG. 1 was used in the same manner as in Example 1 except that the film was allowed to stand for 24 hours in a constant temperature and humidity chamber having an absolute humidity of 10 g / kg.
  • Gas barrier laminate film having a laminate structure of “layer / base material / adhesive layer / base material / thin film layer” was obtained. The thickness of the gas barrier laminate film thus obtained was measured, and the value obtained by subtracting the thicknesses of the two film members was taken as the thickness of the adhesive layer.
  • the thickness of the adhesive layer thus determined was 12 ⁇ m. Further, the gas barrier laminate film thus obtained was measured for the moisture absorption performance of the gas barrier laminate film as described above (the ratio Bn of the aforementioned moisture absorption amount), and Bn was 0.01% by mass. It was confirmed that it did not have sufficient moisture absorption capacity.
  • the water vapor permeability was calculated by examining the increase of the corrosion point with time under RH conditions by image analysis.
  • the water vapor transmission rate is obtained by photographing the corrosion point with a microscope, taking the image into a personal computer, binarizing the corrosion point image, and determining the corrosion area.
  • the water vapor permeability of each gas barrier laminate film is shown in Table 1.
  • the water vapor permeability is a sufficiently low value (a value one or more digits lower), and has a very high water vapor permeation prevention performance. It was confirmed that it was obtained.
  • the laminated structure of these laminated films was “thin film layer / substrate / adhesive layer /
  • the gas barrier film (Example 1) obtained using the dried film member despite being “base material / thin film layer” is stored for a long time under atmospheric exposure conditions (normal humidity conditions).
  • any of the gas barrier laminate films of the present invention can sufficiently exhibit water vapor permeation prevention performance while sufficiently preventing deterioration due to heat. It was.
  • the gas barrier laminate film of the present invention can be suitably used for flexible illumination using organic electroluminescence elements (organic EL elements), organic thin film solar cells, liquid crystal displays, pharmaceutical packaging containers, and the like.
  • organic EL elements organic electroluminescence elements
  • organic thin film solar cells organic thin film solar cells
  • liquid crystal displays liquid crystal displays
  • pharmaceutical packaging containers and the like.

Abstract

 基材層とガスバリア性を有する薄膜層とを備えるガスバリア性積層フィルムであって、前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えており、かつ、前記ガスバリア性積層フィルムが自重の0.1質量%以上の水を吸収する吸湿性能を有する、ガスバリア性積層フィルム。

Description

ガスバリア性積層フィルム及びその製造方法
 本発明は、ガスバリア性積層フィルム並びにその製造方法に関し、より詳しくは、有機エレクトロルミネッセンス素子(有機EL素子)を用いたフレキシブル照明、有機薄膜太陽電池、液晶ディスプレイ、医薬品の包装容器等に好適に利用することが可能なガスバリア性積層フィルム並びにその製造方法に関する。
 ガスバリア性フィルムは、飲食品、化粧品、洗剤といった物品の充填包装に適する包装用容器として好適に利用されてきた。そして、このようなガスバリア性フィルムとしては、プラスチックフィルム等の基材の表面上にガスバリア性の無機物の薄膜層を形成したフィルムを2枚を貼り合せてなるガスバリア性積層フィルムの研究も進められている。例えば、特開2005-235743号公報(特許文献1)には、第一のポリマー基板層と、第二のポリマー基板層とを備え、ポリマー基板層の各々は1以上の拡散防止障壁で被覆されており、かかる拡散防止障壁で被覆されたポリマー基板層同士を、拡散防止障壁が内部で互いに向かい合うように貼り合わせて得られる積層フィルムが開示されている。しかしながら、このような特許文献1に記載のような積層フィルムは、比較的ガスバリア性が低くても使用上特に問題のない、飲食品、化粧品、洗剤等の用途には十分に利用可能ではあるが、有機EL素子や有機薄膜太陽電池等の電子デバイス等の用途に利用する場合には水蒸気透過防止性能の点で必ずしも十分なものではなかった。
 また、特開2011-073430号公報(特許文献2)においては、基材と、前記基材の少なくとも片方の表面上に形成された少なくとも1層の薄膜層とを備えるガスバリア性フィルムであって、前記薄膜層のうちの少なくとも1層が珪素、酸素及び炭素を含有しており、且つ、該層の膜厚方向における該層の表面からの距離と、珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)、酸素原子の量の比率(酸素の原子比)及び炭素原子の量の比率(炭素の原子比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線及び炭素分布曲線が特定の条件を満たすガスバリア性フィルムが開示されている。このようなガスバリア性フィルムは、十分に高度なガスバリア性を有しており、しかもフィルムを屈曲させた場合においてもガスバリア性の低下を十分に抑制することが可能なものであった。なお、特許文献2においては、前述のようなガスバリア性フィルム同士を接着剤層により複数接着させてもよいことが開示されている。
特開2005-235743号公報 特開2011-073430号公報
 上述のように、従来よりガスバリア性フィルムを貼り合せてガスバリア性積層フィルムを製造するといった技術は検討されている。しかしながら、かかるガスバリア性積層フィルムとしては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)を用いたフレキシブル照明等といった、より高い水蒸気透過防止性能が要求される用途により好適に利用するといった観点からは、更に高い水準の水蒸気の透過防止性能や、より高い熱劣化防止性能(耐熱性)をより確実に達成することが可能なフィルムの出現が望まれてきた。
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、より高度な水準の水蒸気透過防止性能と十分に高い耐熱性能とを有するガスバリア性積層フィルム及びその製造方法を提供することを目的とする。
 本発明者らは、前記目的を達成すべく鋭意研究を重ね、先ず、上記特許文献2に記載のような十分に高いガスバリア性を有するガスバリア性積層フィルムを貼り合せて、ガスバリア性積層フィルムとして利用することを試みた。しかしながら、上記特許文献2に記載されているようなガスバリア性フィルムを単純に2枚貼り合せても、より高度な水準で水蒸気透過防止性能や耐熱性を発揮させるといった点では十分なものとはならなかった。そこで、本発明者らが前記目的を達成すべく、更に鋭意研究を重ねた結果、ガスバリア性積層フィルムを下記所定の条件を満たすフィルムとすることで、驚くべきことに、上記目的を達成することが可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明のガスバリア性積層フィルムは、基材層とガスバリア性を有する薄膜層とを備えるガスバリア性積層フィルムであって、
 前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、
 前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、
 前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えており、かつ、
 前記ガスバリア性積層フィルムが自重の0.1質量%以上の水を吸収する吸湿性能を有するものである。このような吸湿性能を有するガスバリア性積層フィルムによって、フィルム全体の水蒸気透過防止性能をより高度な水準のものとできるばかりか、より高度な耐熱性能を発揮させることも可能となる。
 また、上記本発明のガスバリア性積層フィルムにおいては、前記第一及び第二の薄膜層の間に、少なくとも1層の接着剤層を更に備えることが好ましく、かかる接着剤層が乾燥剤(水の吸収剤等)を含むことがより好ましい。このような接着剤層を有する構成のガスバリア性積層フィルムは、例えば、製造時に、複数のフィルム部材(例えば基材と薄膜層の積層体からなる部材)を準備し、これを接着剤を利用して貼合わせる工程等を利用することで容易に製造でき、生産性等の点から好適に採用し得る。また、接着剤層が乾燥剤を含む構成とした場合には、より高度な吸湿性能等を発揮し得る傾向にある。
 また、上記本発明のガスバリア性積層フィルムにおいては、前記第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成された前記第一の薄膜層を備える第一の構造部分と、
 前記第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成された前記第二の薄膜層を備える第二の構造部分と、
を有することが好ましい。このような第一及び第二の構造部分を有するガスバリア性積層フィルムは、例えば、第一及び第二の構造部分を形成し得るフィルム部材(例えば基材と薄膜層の積層体からなる部材)をそれぞれ準備し、これを貼り合せるといった工程を利用する等して容易に製造することが可能であるため、工業性の観点等からより好適に利用し得る。
 さらに、上記本発明のガスバリア性積層フィルムにおいては、前記第一の基材層及び前記第二の基材層のうちの少なくとも1つの基材層の一方の表面上にのみ前記薄膜層が形成され、かつ、該基材層のもう一方の表面上には前記薄膜層が形成されていないことが好ましい。このように、フィルム中において前記第一の基材層及び前記第二の基材層のうちの少なくとも1つの基材層が、片面にのみ薄膜層が形成されているような構成のものとする場合、例えば、製造時にフィルム部材(例えば基材と薄膜層の積層体からなる部材)を利用する場合に、かかる部材を片面にのみ薄膜層が形成されたものとすればよいことから、より効率よく部材を調製することも可能となり、結果として、経済性や生産性に優れたものとなる傾向にある。
 また、上記本発明のガスバリア性積層フィルムにおいては、前記第一及び第二の薄膜層のうちの少なくとも1層が、珪素、酸素及び炭素を含有し、かつ、
 該層の膜厚方向における該層の表面からの距離と、珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)、酸素原子の量の比率(酸素の原子比)及び炭素原子の量の比率(炭素の原子比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線及び炭素分布曲線において、下記条件(i)~(iii):
(i)珪素の原子比、酸素の原子比及び炭素の原子比が、該層の膜厚の90%以上の領域において下記式(1):
(酸素の原子比)>(珪素の原子比)>(炭素の原子比)・・・(1)
で表される条件を満たすこと、
(ii)前記炭素分布曲線が少なくとも1つの極値を有すること、
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が5at%以上であること、
を全て満たす珪素酸化物系の薄膜層であることが好ましく、前記第一及び第二の薄膜層の双方が前記珪素酸化物系の薄膜層であることがより好ましい。このように、前記珪素酸化物系の薄膜からなる層を用いることで、より高度な水蒸気透過防止性能を発揮させることが可能となる。
 また、上記本発明のガスバリア性積層フィルムにおいては、前記ガスバリア性積層フィルムが、薄膜層、基材層、接着剤層、薄膜層、基材層の順に積層された積層構造[膜厚方向に向かって「薄膜層/基材層/接着剤層/薄膜層/基材層」となる構成(ここにおいて「/」は積層されていることを示す。)]を有するか、又は、薄膜層、基材層、接着剤層、基材層、薄膜層の順に積層された積層構造[膜厚方向に向かって「薄膜層/基材層/接着剤層/基材層/薄膜層」となる構成(ここにおいて「/」は積層されていることを示す。)]を有することが好ましい。このような積層構造を有するガスバリア性積層フィルムは、例えば、フィルム部材(例えば基材と薄膜層の積層体からなる部材)をそれぞれ準備し、これを貼り合せるといった工程を利用する等して容易に製造することが可能であり、工業性の観点等から、より好適に利用し得るものである。
 さらに、上記本発明のガスバリア性積層フィルムにおいては、前記第一及び第二の基材層のうちの少なくとも1層が有機高分子材料からなる層であることが好ましく、前記第一及び第二の基材層の双方が有機高分子材料からなる層であることがより好ましい。このように基材層として有機高分子材料からなる層を利用することで、ガスバリア性積層フィルムに十分なフレキシブル性を付与することも可能となる。
 また、本発明の第一のガスバリア性積層フィルムの製造方法は、第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第一の薄膜層を備える第一のフィルム部材と、
 第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第二の薄膜層を備える第二のフィルム部材と、
を準備して、前記第一及び第二のフィルム部材のうちの少なくとも1つを乾燥する工程と、
 前記乾燥後のフィルム部材が、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間以下となるようにしながら、前記第一及び第二の薄膜層の間に前記乾燥後のフィルム部材中の基材層が少なくとも1層配置されるようにして、前記第一及び第二のフィルム部材を貼り合せることによりガスバリア性積層フィルムを得る工程と、
を含む方法である。
 このような本発明の第一のガスバリア性積層フィルムの製造方法においては、前記乾燥後の第一及び第二のフィルム部材を、接着剤を用いて貼り合せることが好ましく、また、前記接着剤としては、乾燥剤を含むものがより好ましい。
 また、本発明の第二のガスバリア性積層フィルムの製造方法は、第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第一の薄膜層を備える第一のフィルム部材と、
 第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第二の薄膜層を備える第二のフィルム部材と、
を準備し、前記第一及び第二のフィルム部材を、前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるように、乾燥剤を含む接着剤を用いて貼り合せることによりガスバリア性積層フィルムを得る工程を含む方法である。
 このような本発明の第一及び第二のガスバリア性積層フィルムの製造方法によれば、上記本発明のガスバリア性積層フィルムを効率よく製造することが可能である。
 本発明によれば、より高度な水準の水蒸気透過防止性能と十分に高い耐熱性能とを有するガスバリア性積層フィルム及びその製造方法を提供することが可能となる。
本発明のガスバリア性積層フィルムの好適な一実施形態を模式的に示す概略縦断面図である。 本発明のガスバリア性積層フィルムの好適な他の実施形態を模式的に示す概略縦断面図である。 本発明にかかる薄膜層として好適な珪素酸化物系薄膜からなる層を製造するのに好適に用いることが可能な、薄膜の製造装置の一実施形態を示す模式図である。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
 [ガスバリア性積層フィルム]
 一般的に、ガスバリア性フィルムは、工業上、ロールツーロールで形成される。このようにしてロールツーロールで形成されたフィルムは、通常、ロール状のまま保管され、その後、各種製品に利用される。一方、このようなフィルムは、基本的に、保管時に空気中の水分を吸収する。上記特許文献2に記載されているようなガスバリア性フィルムについて検討すると、かかるフィルムも該文献の記載にあるように基本的にロールツーロールで形成され、保管時には、やはり水分を吸収していた。そして、このようにフィルムが吸湿して水分がフィルムに保持されると、その水分に起因して、例え上記特許文献2に記載されているような十分に高度なガスバリア性を有するガスバリア性フィルムであっても、そのまま2枚以上を単純に組み合わせた場合には、より高度な水準の水蒸気透過防止性能や耐熱性を発揮させることができないことが分かった。このような知見に基づいて、本発明者らは、ガスバリア性積層フィルムの吸湿性能を厳密にコントロールすることによって、より高度な水準で水蒸気透過防止性能を発揮することが可能となるばかりか、より高度な耐熱性能をも発揮することが可能となることを見出した。
 このような知見のもと、本発明のガスバリア性積層フィルムは、基材層とガスバリア性を有する薄膜層とを備えるガスバリア性積層フィルムであって、
 前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、
 前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、
 前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えており、かつ、
 前記ガスバリア性積層フィルムが自重の0.1質量%以上の水を吸収する吸湿性能を有するものである。以下、本発明のガスバリア性積層フィルムの好適な一実施形態について図面を参照しながら説明する。
 図1は、本発明のガスバリア性積層フィルムの好適な一実施形態を模式的に示す概略縦断面図である。図1に示す実施形態のガスバリア性積層フィルムは、第一の基材層1(a)と、第二の基材層1(b)と、第一の薄膜層2(a)と、第二の薄膜層2(b)と、接着剤層3とを備え、かつ、第一の薄膜層2(a)及び第二の薄膜層2(b)の間に、2層の基材層(第一の基材層1(a)及び第二の基材層1(b))を備えた構成を有する。
 (基材層)
 図1に示す実施形態のガスバリア性積層フィルムは、第一の基材層1(a)と、第二の基材層1(b)とを備える。このように、図1に示す実施形態のガスバリア性積層フィルムは、第一の基材層1(a)及び第二の基材層1(b)の2層の基材層を備えるものである。
 このような基材層1(a)及び基材層1(b)を形成する基材は、それぞれ、同一のものであっても異なるものであってもよく、ガスバリア性積層フィルムを形成するために用いることが可能な公知の基材を適宜利用することができる。このような基材としては、フレキシブル性(可撓性)、透明性、低価格の観点から、有機高分子材料からなるものが好ましい。
 また、フレキシブル性(可撓性)、透明性、低価格の観点からは、第一の基材層1(a)及び第二の基材層1(b)のうちの少なくとも1層が有機高分子材料からなることが好ましく、より高度なフレキシブル性(可撓性)が得られることから、第一の基材層1(a)及び第二の基材層1(b)の双方が有機高分子材料からなることが好ましい。
 このような有機高分子材料としては、無色透明な基材として利用可能であるとの観点からは、例えは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリビニルアルコール系樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル系樹脂;アセタール系樹脂;ポリイミド系樹脂等を好適に利用することができる。
 また、このような有機高分子材料としては、炭素、水素以外のヘテロ原子(酸素、窒素など)を含むポリマーからなる高分子材料が好ましい。炭素と水素のみからなる炭化水素ポリマーからなる高分子材料(ポリオレフィン等)は非極性の高分子であり、分子内において分極がほとんどないことから一般的に親水性を十分に発揮させることが困難であるのに対して、ヘテロ原子(酸素、窒素など)を含むポリマーからなる高分子材料は、そのヘテロ原子に起因して分極が現れ易く、一般的に親水性が十分に高いものとなる。ここで、親水性の高い高分子材料は、使用環境下(通常、室温(25℃程度)でかつ通常の湿度のある条件下)での含水量が高く、乾燥により内部の水分を十分に除去すると効率よく吸湿性を付与することができる。そのため、このような炭素、水素以外のヘテロ原子を含むポリマーからなる高分子材料を基材の材料として用いることにより、より効率よく高度な吸湿性能を有するガスバリア性積層フィルムを製造することが可能となる。なお、このような炭素、水素以外のヘテロ原子を含むポリマー中のヘテロ原子としては、基材をガスバリア性積層フィルムに用いた場合に該フィルムに更に高度な吸湿性能を発揮させることが可能となることから、酸素原子が好ましい。
 さらに、このような有機高分子材料としては、無色透明な基材が得られるとともに、水素以外のヘテロ原子を含むポリマーであってより高度な吸湿性能を発揮させることが可能となるといった観点からは、エステル結合を有するポリエステルが好ましい。また、このようなポリエステルの中でも、基材の透明性やフィルムへの加工性がより高度なものとなるばかりか、強度や耐熱性もより向上するといった観点から、ベンゼン環を有するポリエステル(例えば、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート))を利用することが特に好ましい。
 また、このような基材の厚みとしては特に制限されないが、基材上に直接薄膜層を形成する場合、形成する薄膜層の種類に応じて、その成膜に適した厚みに適宜設定することが好ましい。例えば、このような基材の厚みとしては、基材の表面上に薄膜層を形成する際に、真空中においても基材の搬送が可能であり、真空条件下において、その基材の表面上に薄膜を形成することが可能となることから、5~500μmであることが好ましい。また、プラズマCVD法を採用して薄膜層を形成する場合に、前記基材を通して放電しつつ薄膜層を形成する方法を採用することも可能となるとの観点から、前記基材の厚みは50~200μmであることがより好ましく、50~100μmであることが特に好ましい。
 また、このような基材の厚みは、例えば、基材上に薄膜層を形成した部材同士を貼り合せてガスバリア性積層フィルムを製造する場合においても、その基材の厚みによって貼り合せに特に影響がでるといった性質のものではないため、ガスバリア性積層フィルムの製造方法によらず、薄膜層の成膜が可能な厚みを有するものであれば特に制限なく利用できる。すなわち、このような基材の厚みは、その基材の表面上に薄膜層を十分に支持することが可能な厚みを有しているものであればよく、その厚みは特に制限されず、適宜設計を変更することができる。
 また、このような基材の厚みは、最終的に得られるガスバリア性積層フィルムの用途に応じて適宜設定することが好ましい。例えば、有機ELなどのデバイスを製造するための基板としてガスバリア性積層フィルムを利用する場合には、基材の厚みを15~500μmとすることが好ましい。このような基材の厚さが前記下限未満では、基材上に薄膜層を形成した部材(積層体)同士を貼り合せてガスバリア性積層フィルムを製造する場合に、前記デバイスの基板としての最低限の厚みを有するものとするために、前記部材同士の貼合を繰り返さねばならず、生産性が低下する傾向にある。
 さらに、このような基材の厚みとしては、得られるガスバリア性積層フィルムの吸湿性能の観点からは、第一及び第二の薄膜層間に存在する基材の厚みを15μm以上(より好ましくは50μm以上)とすることが好ましい。このような基材の厚みが前記下限未満では、十分な吸湿性能を得ることが困難となる傾向にある。なお、前記下限以上の厚みを有する基材であれば、基本的に十分な吸湿性能が得られる傾向にあり、また、吸湿性能の観点からは厚みの上限値は特に制限されず、厚みの上限値は用途や薄膜層の成膜条件等に応じて適宜設定すればよいが、実用上(例えば、より高い透明性が要求される用途等にも好適に利用できる等の観点から)、500μm以下とすることが好ましい。
 (薄膜層)
 図1に示す実施形態のガスバリア性積層フィルムにおいては、第一の薄膜層2(a)と、第二の薄膜層2(b)とを備える。このように、図1に示す実施形態のガスバリア性積層フィルムは、薄膜層として第一の薄膜層2(a)及び第二の薄膜層2(b)の2層を備えるものである。
 また、このような第一の薄膜層2(a)及び第二の薄膜層2(b)はいずれもガスバリア性を有する薄膜からなる層(薄膜層)である必要がある。ここにいう「ガスバリア性」とは、下記条件(A)~(C):
[条件(A)]
 JIS K 7126(2006年発行)に準拠した方法で測定された「基材のガス透過度(単位:mol/(m・s・Pa))」と「薄膜層を成膜した基材のガス透過度(単位:mol/(m・s・Pa))」を比較して、「基材のガス透過度」に対して「薄膜層を成膜した基材のガス透過度」の方が2桁以上小さい値(100分の1以下の値)を示すこと。
[条件(B)]
 JIS K 7129(2008年発行)に記載される方法に準拠した方法で測定された「基材の水蒸気透過度(単位:g/m/day)」と「薄膜層を成膜した基材の水蒸気透過度(単位:g/m/day)」を比較して、「基材の水蒸気透過度」に対して「薄膜層を成膜した基材の水蒸気透過度」の方が2桁以上小さい値(100分の1以下の値)を示すこと。
[条件(C)]
 特開2005-283561号公報に記載される方法に準拠した方法で測定された「基材の水蒸気透過度(単位:g/m/day)」と「薄膜層を成膜した基材の水蒸気透過度(単位:g/m/day)」を比較して、「基材の水蒸気透過度」に対して「薄膜層を成膜した基材の水蒸気透過度」の方が2桁以上小さい値(100分の1以下の値)を示すこと。
のうちの少なくとも1つの条件を満たすものであればよい。なお、一般的に、ガスバリア性を有する薄膜層を成膜した基材の水蒸気透過度は10-2g/m/day以下の値を示すことから、上記条件(B)及び(C)を検討する場合に、「薄膜層を成膜した基材の水蒸気透過度」が10-2g/m/day以下の値となっていることが好ましい。また、このようなガスバリア性を有する薄膜層としては、上記条件(C)を満たすものがより好ましい。
 また、このようなガスバリア性を有する薄膜層の1層の厚みは、5~3000nmの範囲であることが好ましく、10~2000nmの範囲であることより好ましく、100~1000nmの範囲であることが特に好ましい。前記薄膜層の厚みが前記下限未満では、酸素ガスバリア性、水蒸気バリア性等のガスバリア性が劣る傾向にあり、他方、前記上限を超えると、屈曲によりガスバリア性が低下し易くなる傾向にある。
 このようなガスバリア性を有する薄膜層の種類は特に制限されず、公知のガスバリア性を有する薄膜を適宜利用することができる。なお、第一の薄膜層2(a)及び第二の薄膜層2(b)の種類はそれぞれ同一のものであっても異なるものであってよい。
 また、このような薄膜層としては、より高度な水蒸気透過防止性能を発揮できるといった観点や、透明性、耐屈曲性(フレキシブル性(可撓性))、製造の容易性、低製造コストといった観点から、少なくとも珪素と酸素とを含む薄膜からなる層であることが好ましく、中でも、珪素、酸素及び炭素を含有する層であり、かつ、
 該層の膜厚方向における該層の表面からの距離と、珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)、酸素原子の量の比率(酸素の原子比)及び炭素原子の量の比率(炭素の原子比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線及び炭素分布曲線において、下記条件(i)~(iii):
(i)珪素の原子比、酸素の原子比及び炭素の原子比が、該層の膜厚の90%以上の領域において下記式(1):
(酸素の原子比)>(珪素の原子比)>(炭素の原子比)・・・(1)
で表される条件を満たすこと、
(ii)前記炭素分布曲線が少なくとも1つの極値を有すること、
(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が5at%以上であること、
を全て満たす珪素酸化物系の薄膜層であることが好ましい。以下、このような本発明にかかる薄膜層に好適に利用される珪素酸化物系の薄膜層について説明する。
 このような珪素酸化物系の薄膜層は、先ず、該層の膜厚方向における該層の表面からの距離と、珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)、酸素原子の量の比率(酸素の原子比)及び炭素原子の量の比率(炭素の原子比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線及び炭素分布曲線において、(i)珪素の原子比、酸素の原子比及び炭素の原子比が、該層の膜厚の90%以上(より好ましくは95%以上、特に好ましくは100%)の領域において下記式(1):
(酸素の原子比)>(珪素の原子比)>(炭素の原子比)・・・(1)
で表される条件を満たすことが必要である。珪素の原子比、酸素の原子比及び炭素の原子比が前記条件を満たさない場合には、得られるガスバリア性積層フィルムのガスバリア性が不十分となる。
 また、このような珪素酸化物系の薄膜層は、(ii)前記炭素分布曲線が少なくとも1つの極値を有することが必要である。このような珪素酸化物系の薄膜層においては、前記炭素分布曲線が少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特に好ましい。前記炭素分布曲線が極値を有さない場合には、得られるガスバリア性積層フィルムのフィルムを屈曲させた場合におけるガスバリア性が不十分となる。また、このように少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する一つの極値及び該極値に隣接する極値における前記薄膜層の膜厚方向における前記薄膜層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。なお、ここにいう「極値」とは、珪素酸化物系の薄膜層の膜厚方向における薄膜層の表面からの距離に対する元素の原子比の極大値又は極小値のことをいう。また、本発明において極大値とは、珪素酸化物系の薄膜層の表面からの距離を変化させた場合に元素の原子比の値が増加から減少に変わる点であって且つその点の元素の原子比の値よりも、該点から薄膜層の膜厚方向における薄膜層の表面からの距離を更に20nm変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。さらに、本発明において極小値とは、珪素酸化物系の薄膜層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点であり、且つその点の元素の原子比の値よりも、該点から薄膜層の膜厚方向における薄膜層の表面からの距離を更に20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。
 また、このような珪素酸化物系の薄膜層は、(iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が5at%以上であることが必要である。また、このような薄膜層においては、炭素の原子比の最大値及び最小値の差の絶対値が6at%以上であることがより好ましく、7at%以上であることが特に好ましい。前記絶対値が5at%未満では、得られるガスバリア性積層フィルムのフィルムを屈曲させた場合におけるガスバリア性が不十分となる。
 また、前記珪素酸化物系の薄膜層においては、前記酸素分布曲線が少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特に好ましい。前記酸素分布曲線が極値を有さない場合には、得られるガスバリア性積層フィルムのフィルムを屈曲させた場合におけるガスバリア性が低下する傾向にある。また、このように少なくとも3つの極値を有する場合においては、前記酸素分布曲線の有する一つの極値及び該極値に隣接する極値における前記薄膜層の膜厚方向における前記薄膜層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。
 また、前記珪素酸化物系の薄膜層においては、該層の前記酸素分布曲線における酸素の原子比の最大値及び最小値の差の絶対値が5at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることが特に好ましい。前記絶対値が前記下限未満では、得られるガスバリア性積層フィルムのフィルムを屈曲させた場合におけるガスバリア性が低下する傾向にある。
 前記珪素酸化物系の薄膜層においては、該層の前記珪素分布曲線における珪素の原子比の最大値及び最小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が前記上限を超えると、得られるガスバリア性積層フィルムのガスバリア性が低下する傾向にある。
 また、前記珪素酸化物系の薄膜層においては、該層の膜厚方向における該層の表面からの距離と珪素原子、酸素原子及び炭素原子の合計量に対する酸素原子及び炭素原子の合計量の比率(酸素及び炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素及び炭素の原子比の合計の最大値及び最小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が前記上限を超えると、得られるガスバリア性積層フィルムのガスバリア性が低下する傾向にある。
 前記珪素分布曲線、前記酸素分布曲線、前記炭素分布曲線及び前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記薄膜層の膜厚方向における前記薄膜層の表面からの距離に概ね相関することから、「薄膜層の膜厚方向における薄膜層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される薄膜層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
 また、膜面全体において均一で且つ優れたガスバリア性を有する前記珪素酸化物系の薄膜層を形成するという観点から、該層が膜面方向(薄膜層の表面に平行な方向)において実質的に一様であることが好ましい。本明細書において、前記珪素酸化物系の薄膜層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により薄膜層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。
 さらに、前記珪素酸化物系の薄膜層においては、該層の前記炭素分布曲線は実質的に連続であることが好ましい。本明細書において、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記薄膜層のうちの少なくとも1層の膜厚方向における該層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(F1):
(dC/dx)≦ 0.5 ・・・(F1)
で表される条件を満たすことをいう。
 また、前記珪素分布曲線、前記酸素分布曲線及び前記炭素分布曲線において、珪素の原子比、酸素の原子比及び炭素の原子比が、該層の膜厚の90%以上の領域において前記式(1)で表される条件を満たす場合には、該層中における珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。また、前記珪素酸化物系の薄膜層中における珪素原子、酸素原子及び炭素原子の合計量に対する酸素原子の含有量の原子比率は、33~67at%であることが好ましく、45~67at%であることがより好ましい。さらに、前記珪素酸化物系の薄膜層中における珪素原子、酸素原子及び炭素原子の合計量に対する炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。
 さらに、前記珪素分布曲線、前記酸素分布曲線及び前記炭素分布曲線において、珪素の原子比、酸素の原子比及び炭素の原子比が、該層の膜厚の90%以上の領域において前記式(2)で表される条件を満たす場合には、該層中における珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。また、前記珪素酸化物系の薄膜層中における珪素原子、酸素原子及び炭素原子の合計量に対する酸素原子の含有量の原子比率は、1~33at%であることが好ましく、10~27at%であることがより好ましい。さらに、前記珪素酸化物系の薄膜層中における珪素原子、酸素原子及び炭素原子の合計量に対する炭素原子の含有量の原子比率は、33~66at%であることが好ましく、40~57at%であることがより好ましい。
 また、前記珪素酸化物系の薄膜層は、プラズマ化学気相成長法により形成される層であることが好ましい。このようなプラズマ化学気相成長法により形成される薄膜層としては、前記基材を一対の成膜ロール上に配置し、前記一対の成膜ロール間に放電してプラズマを発生させるプラズマ化学気相成長法により形成される層であることがより好ましい。また、このようにして一対の成膜ロール間に放電する際には、前記一対の成膜ロールの極性を交互に反転させることが好ましい。更に、このようなプラズマ化学気相成長法に用いる成膜ガスとしては有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。また、前記薄膜層が連続的な成膜プロセスにより形成された層であることが好ましい。
 また、第一の薄膜層2(a)及び第二の薄膜層2(b)としては、より高度な水蒸気透過防止性能を発揮することが可能となることから、少なくとも一方が前記珪素酸化物系の薄膜層であることが好ましく、それらのいずれもが前記珪素酸化物系の薄膜層であることがより好ましい。
 ここで、前記薄膜層を基材上に形成する方法として好適な方法について簡単に説明する。このような方法としては、ガスバリア性の観点から、プラズマ化学気相成長法(プラズマCVD)を採用することが好ましい。なお、前記プラズマ化学気相成長法はペニング放電プラズマ方式のプラズマ化学気相成長法であっても良い。
 また、前記プラズマ化学気相成長法においてプラズマを発生させる際には、複数の成膜ロールの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ロールを用い、その一対の成膜ロールのそれぞれに前記基材を配置して、一対の成膜ロール間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ロールを用い、その一対の成膜ロール上に基材を配置して、かかる一対の成膜ロール間に放電することにより、成膜時に一方の成膜ロール上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ロール上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)~(iii)を全て満たす層を形成することが可能となる。
 また、前記薄膜層は、生産性の観点から、ロールツーロール方式で前記基材の表面上に形成させることが好ましい。また、このようなプラズマ化学気相成長法によりガスバリア性積層フィルムを製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ロールと、プラズマ電源とを備え且つ前記一対の成膜ロール間において放電することが可能な構成となっている装置であることが好ましく、例えば、後述の図3に示すような製造装置を用いた場合には、プラズマ化学気相成長法を利用しながらロールツーロール方式で製造することも可能となる。なお、図3に示すような製造装置を用いて、前記珪素酸化物系の薄膜層を形成する場合の薄膜層の製造方法としては後述の本発明の第一のガスバリア性積層フィルムの製造方法で説明する方法と同様の方法を採用することができる。
 (接着剤層)
 図1に示す実施形態のガスバリア性積層フィルムは、接着剤層3を備える。本発明のガスバリア性積層フィルムとしては、このような接着剤層3を備えるものが好ましい。
 このような接着剤層3を形成するために用いることが可能な接着剤としては、揮発成分を含まないこと、硬化収縮が小さいこと等といった観点から、熱硬化性接着剤及び光硬化性接着剤等の硬化性接着剤が好ましい。
 このような熱硬化性接着剤としては特に制限されず、公知の熱硬化性樹脂接着剤を適宜利用できる。このような熱硬化性樹脂接着剤としては、エポキシ系接着剤及びアクリレート系接着剤等を挙げることができる。このようなエポキシ系接着剤としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂及びフェノキシ樹脂から選ばれるエポキシ化合物を含む接着剤を挙げることができる。また、前記アクリレート系接着剤としては、例えば、アクリル酸、メタクリル酸、エチルアクリレート、ブチルアクリレート、2-ヘキシルアクリレート、アクリルアミド、アクリロニトリル及びヒドロキシルアクリレートなどから選ばれる主成分としてのモノマーと、該主成分と共重合可能なモノマーとを含む接着剤を挙げることができる。
 また、前記光硬化性接着剤としては、特に制限されず、公知の光硬化性接着剤を適宜利用でき、例えば、ラジカル系接着剤や、カチオン系接着剤等を挙げることができる。このようなラジカル系接着剤としては、例えば、エポキシアクリレート、エステルアクリレート、及びエステルアクリレート等を含む接着剤を挙げることができる。また、前記カチオン系接着剤としては、エポキシ系樹脂、ビニルエーテル系樹脂等を含む接着剤を挙げることができる。
 また、このような接着剤層3の中には、さらに、乾燥剤(いわゆる水分吸収剤や吸湿剤)、ブルーイング剤、紫外線吸収剤、酸化防止剤等が含有されていてもよい。また、積層フィルムが照明用有機ELの基板として使用されるときは、有機ELの発光色と同じ色の染料や顔料を含んでいてもよく、また、混色効果を狙って有機ELの発光色と違う色の染料や顔料を含んでいてもよい。さらに、光の散乱効果や光取り出し効果を持たせるために、接着剤層と屈折率の異なる無機粒子などを含んでいてもよい。
 また、このような接着剤層3としては、接着剤が水分を含む場合に、接着剤層中の水分を低減して、接着剤層から発生する水分に基いて性能が低下することを十分に抑制できるとともに、ガスバリア性積層フィルムにより高度な吸湿性能を発揮させることが可能となって、ガスバリア性積層フィルムにより高度な水蒸気透過防止性能を発揮させることが可能となることから、乾燥剤(いわゆる水分吸着剤や水分吸収剤等を含む。)を含有させることが好ましい。このような乾燥剤としては特に限定されず、例えば、シリカゲル、ゼオライト(モレキュラーシーブ)、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化ストロンチウム等の金属酸化物等や、乾燥した水酸化アルミニウム等の金属水酸化物等が挙げられる。このような乾燥剤の中でも、粒子形状に丸味があること、粒径を十分に小さなものにできること、粒度分布が十分に狭い均一な粒子を利用できること、光透過性が十分に高いこと、等といった観点から、乾燥した水酸化アルミニウムが特に好ましい。
 また、このような乾燥剤としては、粒子状のものが好ましい。このような粒子状の乾燥剤としては、平均粒径が0.01~10μm(より好ましくは0.01~5μm、更に好ましくは0.1~5μm)の範囲にあることが好ましい。このような平均粒径が0.01μm未満では、一次粒子が凝集し易くなる傾向にあり、大きな凝集粒子(2次粒子)が形成されてしまう傾向にあるばかりか、吸湿力が強すぎて、接着剤層に入ったときには、既に吸湿が終わって吸湿能力を示さなくなってしまう傾向にある。他方、前記平均粒子径が10μmを超えると、フィルム状にした際に平滑な層とすることが困難となるとともに、十分な吸湿能力が得られなくなる傾向にある。
 さらに、このような乾燥剤の含有量は特に制限されるものではないが、接着剤中に5~50質量%(より好ましくは10~30質量%)の割合で含有することが好ましい。このような吸収剤(乾燥剤)の含有量が前記範囲にある場合には、乾燥剤を添加することにより得られる効果を十分に発揮することが可能となるばかりか、乾燥剤を含有させた後の接着剤の粘度もより適切なものとなるため、接着剤使用時にその塗布工程などにおいて作業性が低下することもなく、貼り合わせ作業をより効率よく進行せしめることが可能であり、更には、フィルム中の粒子の分布に偏りが生じることもなく(不均一な模様等が形成されることもなく)、製造後に得られるフィルム中における粒子の分布がより均一な状態となる傾向にある。
 また、このような接着剤層3においては、ガスバリア性積層フィルムの用途に応じて、例えば、有機EL素子のような発光素子用のガスバリア性積層フィルムとして用いる場合等には、ブルーイング剤を含有させることが好ましい。このようなブルーイング剤としては特に制限されず、公知のブルーイング剤を適宜利用することができ、例えば、バイエル社のマクロレックスバイオレットBおよびマクロレックスブルーRRや、サンド社のテラゾールブルーRLSおよびトリアゾールブルーRLS等を好適に利用することができる。また、例えば、カラーインデックス分類によるソルベントバイオレット-3、ソルベントブルー-94、ソルベントブルー-78、ソルベントブルー-95、ソルベントバイオレット-13等を用いることもできる。
 また、このような接着剤層3の厚さは特に制限されるものではないが、接着剤に粉末などの固形分(例えば、前述の乾燥剤やブルーイング剤等)を入れる場合であって、該粉末を構成する粒子(粉末粒子)に凝集が生じないような場合には、その粉末粒子の1次粒子径の最大径程度の厚みとすることが好ましく、この場合には、通常、1~20μmの厚みとすることがより好ましい。他方、粉末粒子に凝集が生じるような場合には、その粉末粒子の2次粒子径の最大径程度の厚みとすることが好ましく、この場合には、通常、5~50μmの厚みとすることがより好ましい。また、接着剤に粉末等の固形分を入れない場合であって、接着剤を塗布及び乾燥して接着剤層3を形成する場合、接着剤層3の厚さは、接着強度や加工性の観点から、0.2~30μmであることが好ましく、0.5~10μmであることがより好ましい。また、フィルム状の接着剤(接着性フィルム)を使用して、これを接着剤層3とする場合は、加工性の観点から、接着剤層3の厚さは1~100μmであることが好ましく、5~50μmであることがより好ましい。
 (積層フィルムの積層構造等)
 図1に示す実施形態のガスバリア性積層フィルムは、薄膜層2(a)、基材層1(a)、接着剤層3、基材層1(b)、薄膜層2(b)の順に積層された積層構造を有する。このような積層構造により、2層の基材をガスバリア性の薄膜層間に配置することができ、フィルムの使用の際に、基材の吸水性に基づくガスバリア性積層フィルムの吸湿性能をより高度なものとすることが可能である。なお、接着剤層3に乾燥剤を含有させた場合には、更に高度な吸湿性能を発揮させることも可能となる。
 また、図1に示す実施形態のガスバリア性積層フィルムは、第一の薄膜層2(a)と、第二の薄膜層2(b)との間に、第一の基材層1(a)と第二の基材層1(b)とを備える。このように、図1に示す実施形態のガスバリア性積層フィルムは、前記第一及び第二の薄膜層の間に基材層を2層備える。本発明においては、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備える必要があり、かかる構成により、前記第一及び第二の薄膜層の間に存在する基材層により、十分に高度な吸湿性能を発揮させることを可能とする。なお、前記第一及び第二の薄膜層の間に1層も基材層を配置しなかった場合には、ガスバリア性の膜にはさまれた基材が存在せず、外気に含まれる水分(通常の湿度条件において外気(大気)中に含まれる水蒸気)が容易に基材に接触するため、吸湿性能に基づいて、十分なガスバリア性を発揮することができなくなる。
 また、図1に示す実施形態のガスバリア性積層フィルムは、第一の基材層1(a)及び該層1(a)の一方の表面上に形成された第一の薄膜層2(a)を備える第一の構造部分と、第二の基材層1(b)及び該層1(b)の一方の表面上に形成された第二の薄膜層2(b)を備える第二の構造部分とが、接着層3を介して積層された構成を有するものである。
 このように、図1に示す実施形態のガスバリア性積層フィルムは前記第一の構造部分と前記第二の構造部分とを有するものである。また、このような構造のガスバリア性積層フィルムは、後述の本発明の第一及び第二のガスバリア性積層フィルムの製造方法で説明するような、第一のフィルム部材と第二のフィルム部材とを利用することで、効率よく製造することが可能である。
 また、図1に示す実施形態のガスバリア性積層フィルムにおいては、第一の基材層1(a)及び第二の基材層1(b)は、それぞれ一方の表面上にのみ薄膜層が形成され、かつ、もう一方の表面上には薄膜層が形成されていない構成をとる。このように、基材層の片面にのみ薄膜層が形成されている構造単位を有する場合、後述の本発明の第一及び第二のガスバリア性積層フィルムの製造方法で説明するような、第一のフィルム部材と第二のフィルム部材とを利用する場合に、第一のフィルム部材、第二のフィルム部材として、それぞれ片面にのみ薄膜層が形成されたものを用いればよく、その部材の調製が容易となって生産性がより向上する。
 また、このようなガスバリア性積層フィルムは、自重の0.1質量%以上の水を吸収する吸湿性能を有する必要がある。すなわち、このようなガスバリア性積層フィルムは、そのガスバリア性積層フィルム自体の質量の0.1質量%以上の重さの水を吸収して保持することが可能である。このような吸湿性能が前記下限未満では、ガスバリア性積層フィルムに十分に高度な透湿防止性能を発揮させることができなくなるだけではなく、十分に高度な耐熱性を発揮させることができなくなり、使用時の熱による劣化をより高度に抑制することが困難となる。また、このようなガスバリア性積層フィルムとしては、透湿防止性能や耐熱性の点でより高度な性能を発揮させることが可能となることから、自重の0.2質量%以上の水を吸収する吸湿性能を有するものがより好ましく、自重の0.3質量%以上の水を吸収する吸湿性能を有するものが更に好ましい。ガスバリア性積層フィルムの吸湿性能は、乾燥時に基材にかかる負荷、乾燥にかかる時間、吸湿剤増量に伴う接着層の接着性の低下などの観点から、自重の5質量%以下であることが好ましい。この吸湿性能は、より好ましくは自重の3質量%以下であり、さらに好ましくは自重の2質量%以下である。
 なお、このようなガスバリア性積層フィルムの吸湿性能は以下のようにして測定する。すなわち、先ず、ガスバリア性積層フィルムの吸湿性能の測定用に、縦、横の長さがともに50mm(50mm角)のガスバリア性積層フィルム(50mm角のフィルム)を準備する。次に、50mm角のフィルムを1mmごとに短冊状にカットして、縦50mm、横1mmの短冊状の試料(50個)を準備する。次いで、恒温室内において、大気中、室温(25℃)で、縦50mm、横1mmの大きさの短冊状の試料(50個)の質量(単位:g)を小数点4桁まで正確に秤量する。このときの質量を前述のフィルムの自重(W1:使用前の初期質量)とする。次いで、恒温恒湿雰囲気(25℃、相対湿度50%、重量絶対湿度10g/kg)下に該試料(50個)を静置し、24時間ごとに、その試料の質量を小数点4桁まで正確に秤量する。このような秤量を試料(50個)の質量が一定になるまで行い、一定の値となった時の質量をWnとする。このようにして求められたWnとW1との値に基づいて、下記式:
  [吸湿量の割合Bn]={(Wn-W1)/W1}×100
を計算することにより求められる値を、本発明においては、ガスバリア性積層フィルムの吸湿性能として採用する。
 なお、このような吸湿性能は、基本的に、ガスバリア性を有する第一及び第二の薄膜層の間に配置されている基材層の吸湿性に基づいて発揮される性能であるため、第一及び第二の薄膜層の間に配置されている基材層により十分な吸湿が可能となるように、基材層を、水素以外のヘテロ原子を含むポリマー(より好ましくはエステル結合を有するポリエステル、更に好ましくはPET、PEN)からなる基材からなる層とし、且つ、ガスバリア性積層フィルムの製造時に十分に乾燥状態の基材が第一及び第二の薄膜層の間に配置されるようにしてガスバリア性積層フィルムを製造することが好ましい。そのため、このようなガスバリア性積層フィルムの製造方法としては、より確実に、乾燥状態の基材層を第一及び第二の薄膜層の間に配置することが可能となることから、後述の本発明の第一及び第二のガスバリア性積層フィルムの製造方法を採用することが好ましい。
 また、本発明のガスバリア性積層フィルムにおいては、その全体の厚みが30~1000μmであることが好ましく、50~500μmであることがより好ましい。このようなフィルムの厚みが前記範囲内であれば、その厚みによって、より高い強度が得られるため、製造時の破損等(例えば基材層部分の破損等)もより効率よく抑制でき、より効率よくガスバリア性積層フィルムを製造することが可能であるとともに、得られるガスバリア性積層フィルムに、十分なフレキシブル性や十分な光学特性を発揮させることも可能である。更に、フィルムの厚みが前記範囲内であれば、フィルム部材を貼り合せる回数を過度なものとする必要もないため、生産効率もより高くなる傾向にある。
 また、本発明のガスバリア性積層フィルムにおいては、該フィルムの全体の厚さに対する、フィルム中に存在する全基材層の厚さの合計値の割合({[全基材層の厚さの合計値]/[ガスバリア性積層フィルムの全体の厚さ]}×100)は90%以上あることが好ましく、95%以上であることがより好ましい。このような割合が範囲内にある場合には、より高いフレキシブル性(可撓性)が得られる傾向にあり、更には、十分な透明性が得られる傾向にある。
 さらに、本発明のガスバリア性積層フィルム中に存在する全基材層の厚さに対する、第一の薄膜層と第二の薄膜層との間に存在する全基材層の厚みの合計値の割合({[第一の薄膜層と第二の薄膜層との間に存在する全基材層の厚さの合計値]/[ガスバリア性積層フィルム中に存在する全基材層の厚さ]}×100)は、50%以上であることが好ましく、特に90%以上あることがより好ましい。このような薄膜層間の基材層の厚みの割合が前記範囲内にある場合には、より高度な吸湿性能を発揮させることができる傾向にある。
 また、本発明のガスバリア性積層フィルムの全体の厚さに対する、第一の薄膜層と第二の薄膜層との間に存在する全基材層の厚みの合計値の割合({[第一の薄膜層と第二の薄膜層との間に存在する全基材層の厚さの合計値]/[ガスバリア性積層フィルムの全体の厚さ]}×100)は、50%以上であることが好ましく、特に90%以上あることがより好ましい。このような薄膜層間の基材層の厚みの割合が範囲内にある場合には、より高度な吸湿性能を発揮させることが可能となる。
 また、本発明のガスバリア性積層フィルムにおいては、有機ELデバイスとしての照明やディスプレイ等の光学的な用途に利用する場合においては、黄色度YIがより低い値となることが好ましく、10以下であることがより好ましく、5以下であることが更に好ましい。このような黄色度YIは、測定装置として3刺激値XYZを算出できる分光光度計を用いて、JIS K 7373:2006に準拠することにより測定することができる。
 また、本発明のガスバリア性積層フィルムにおいては、有機ELデバイスとしての照明やディスプレイ等の光学的な用途および有機薄膜太陽電池のような光電変換的な用途に利用する場合、全光線透過率がより高いものが好ましい。このような観点からは、本発明のガスバリア性積層フィルムの全光線透過率が80%以上であることがより好ましく、85%以上が更に好ましい。なお、このような全光線透過率は、測定装置として積分球を有する透過光測定装置を用いて、JIS K 7375:2008に準拠することにより測定することができる。
 さらに、本発明のガスバリア性積層フィルムにおいては、これを画像表示装置の基板に用いて、ガスバリア性積層フィルムを介して画像を確認する場合、ヘイズがより低いものが好ましく、10%以下であることがより好ましく、5%以下であることが更に好ましい。一方、照明用の有機EL素子用の基板に使用する場合においては、その用途からヘイズはあまり気にならないばかりか、有機ELの発光面が濃淡や斑が生じるような状態で不均一に発光するような場合にヘイズが高い方が却って不均一な発光をぼかしてくれるため、かかる観点からは、ヘイズが高いものを好適に利用することもできる。このように、本発明のガスバリア性積層フィルムは、用途に応じて、その特性を好適な設計となるように適宜変更しながら使用することができる。
 以上、本発明のガスバリア性積層フィルムの好適な実施形態について図1を参照しながら説明したが、本発明のガスバリア性積層フィルムは上記実施形態に限定されるものではない。例えば、図1に示す実施形態においては、薄膜層2(a)、基材層1(a)、接着剤層3、基材層1(b)、薄膜層2(b)の順に積層された積層構造を有するガスバリア性積層フィルムであったが、本発明のガスバリア性積層フィルムにおいては、前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えていればよく、その積層構成は特に制限されず、例えば、図2に示すような、薄膜層2(a)、基材層1(a)、接着剤層3、薄膜層2(b)、基材層1(b)の順に積層された積層構造を採用してもよい。このような図2に示すような他の実施形態に示すガスバリア性積層フィルムにおいては、2層の薄膜層の間に基材層を1層備える層構成となり、かかる構成を採用した場合においても、基本的に、薄膜層2(a)及び薄膜層2(b)の間に配置された基材層1(a)の吸湿性に基づいてガスバリア性積層フィルムに吸湿性能を発揮させることが可能である。なお、かかる積層構成において接着剤層に更に乾燥剤を含有させた場合には、そのような乾燥剤によっても併せて吸湿性能を発揮させることが可能となり、より高度な性能を発揮させることも可能となる。なお、このような図2に示すような積層構造のガスバリア性積層フィルムも、後述の本発明の第一及び第二のガスバリア性積層フィルムの製造方法により好適に製造でき、工業性等の観点から好適な構造である。
 また、図1に示す実施形態は接着剤層3を備えるものであったが、本発明のガスバリア性積層フィルムにおいては、接着剤層を備えていないような構成としてもよい。例えば、基材上に薄膜層を備える部材を2つ以上準備し、薄膜層間に基材が少なくとも1層含まれるようにして熱圧着して積層する方法等を採用すれば、そのような接着剤層を特に備えていないようなガスバリア性積層フィルムであっても容易に製造することができる。なお、接着剤層に機能性を持たせるために添加物を混合できるという観点や、製造が容易であるという観点からは接着剤層を備えることが好ましい。また、本発明のガスバリア性積層フィルムにおいては、前記接着剤層以外にも、基材層及び/又は薄膜層の表面上に、必要に応じて、更にハードコート層、保護膜層、光散乱層、光取出層、易接着層、易滑層、ブロッキング防止層、プライマーコート層、ヒートシール性樹脂層等を備えていてもよい。
 さらに、図1に示す実施形態は、第一の基材層及び第二の基材層の2層のみを基材層として備えるものであったが、本発明のガスバリア性積層フィルムにおいては、基材層として第一の基材層及び第二の基材層の少なくとも2層を備えていればよく、基材層の数は特に制限されず、用途等に応じて、その設計を適宜変更し、例えば、他に1以上の基材層(例えば第三の基材層等)を有するようなものとしてもよい。なお、本明細書にいう「第一」、「第二」、「第三」等の表現は、2つ以上の同一又は相当する要素(例えば基材層や薄膜層、フィルム部材等)を説明する上で便宜上利用するものであり、その番号や説明の順序には特別な意味はなく(番号による優劣はなく)、これらの要素はそれぞれ同一のものであっても、あるいは、異なるものであってもよい。
 また、図1に示す実施形態においては、第一の薄膜層及び第二の薄膜層の2層のみを薄膜層として備えるものであったが、本発明のガスバリア性積層フィルムにおいては、薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えていればよく、薄膜層の数は特に制限されず、用途等に応じて設計を適宜変更して、例えば、他に1以上の薄膜層(例えば第三の薄膜層等)を有するようなものとしてもよい。この場合、例えば、図1に示す実施形態では、各基材層は一方の表面にのみ薄膜層を備え、もう一方の表面には薄膜層は形成されていない構成(本実施形態ではもう一方の表面には接着剤層が積層されている)となっているが、少なくとも1つの基材層をその両面に薄膜層が形成されていているような構成を有するもの(例えば、薄膜層、基材層、接着剤層、薄膜層、基材層、薄膜層の順に積層された積層構造を有するものなど)としてもよい。また、本発明のガスバリア性積層フィルムとしては、第一の薄膜層及び第二の薄膜層の2層以外に1以上の薄膜層(例えば第三の薄膜層等)を有するような構成のものとする場合、より高度なガスバリア性が発揮できるとの観点や、後述のガスバリア性積層フィルムの製造方法においてフィルム部材の一つを基材の両面に薄膜層が形成されたものとすることで簡便に製造することが可能であり、工業化に適したものであるとの観点等から、第一の薄膜層、第一の基材層、接着剤層、第二の薄膜層、第二の基材層、第三の薄膜層の順に積層された積層構造を有するガスバリア性積層フィルムがより好ましい。また、このような第三の薄膜層を備える積層構造を有するガスバリア性積層フィルムにおいては、更に高度なガスバリア性が発揮できるとの観点から、前記第一~第三の薄膜層がいずれも前記珪素酸化物系の薄膜層であることが特に好ましい。
 以上、本発明のガスバリア性積層フィルムについて説明したが、次に、本発明の第一のガスバリア性積層フィルムの製造方法について説明する。
 [第一のガスバリア性積層フィルムの製造方法]
 本発明の第一のガスバリア性積層フィルムの製造方法は第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第一の薄膜層を備える第一のフィルム部材と、
 第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第二の薄膜層を備える第二のフィルム部材と、
を準備して、前記第一及び第二のフィルム部材のうちの少なくとも1つを乾燥する工程(A)と、
 前記乾燥後のフィルム部材が、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間以下となるようにしながら、前記第一及び第二の薄膜層の間に前記乾燥後のフィルム部材中の基材層が少なくとも1層配置されるようにして、前記第一及び第二のフィルム部材を貼り合せることによりガスバリア性積層フィルムを得る工程(B)と、
を含む方法である。以下、工程(A)及び(B)を分けて説明する。
 (工程(A))
 工程(A)は、前記第一のフィルム部材と、前記第二のフィルム部材とを準備して、前記第一及び第二のフィルム部材のうちの少なくとも1つを乾燥する工程である。
 なお、前記第一のフィルム部材及び前記第二のフィルム部材中の基材層(第一及び第二の基材層)や薄膜層(第一及び第二の薄膜層)は上記本発明のガスバリア性積層フィルムにおいて説明したものと同様のものである。このような第一及び第二のフィルム部材を準備する工程は特に制限されず、公知の方法を適宜採用することができる。例えば、基材上の少なくとも一方の表面上にガスバリア性を有する薄膜層を形成して、基材層と薄膜層とを備えるフィルム部材(第一及び第二のフィルム部材)を製造することが可能な方法を適宜採用して製造することにより準備してもよく、また、市販の基材層とガスバリア性を有する薄膜層とを備えるフィルム部材(積層体)により、フィルム部材(第一及び第二のフィルム部材)を準備してもよい。なお、薄膜層を本発明に好適に利用することが可能な前記珪素酸化物系の薄膜層とする場合には、以下に記載の方法を採用することが好ましい。
 ここで、図3を参照しながら、基材上に前記珪素酸化物系薄膜からなる層(前記珪素酸化物系の薄膜層)を形成して、基材層と該基材層の少なくとも一方の表面上に形成された前記珪素酸化物系の薄膜層とを備えるフィルム部材を製造する方法に好適に利用することが可能な方法について説明する。なお、図3は、前記珪素酸化物系の薄膜層を基材上に形成するために好適に利用することが可能な製造装置の一例を示す模式図である。以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
 図3に示す製造装置は、送り出しロール11と、搬送ロール21、22、23、24と、成膜ロール31、32と、ガス供給管41と、プラズマ発生用電源51と、成膜ロール31及び32の内部に設置された磁場発生装置61、62と、巻取りロール71とを備えている。また、このような製造装置においては、少なくとも成膜ロール31、32と、ガス供給管41と、プラズマ発生用電源51と、磁場発生装置61、62とが図示を省略した真空チャンバー内に配置されている。更に、このような製造装置において前記真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
 このような製造装置においては、一対の成膜ロール(成膜ロール31と成膜ロール32)を一対の対向電極として機能させることが可能となるように、各成膜ロールがそれぞれプラズマ発生用電源51に接続されている。そのため、このような製造装置においては、プラズマ発生用電源51により電力を供給することにより、成膜ロール31と成膜ロール32との間の空間に放電することが可能であり、これにより成膜ロール31と成膜ロール32との間の空間にプラズマを発生させることができる。なお、このように、成膜ロール31と成膜ロール32を電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ロール(成膜ロール31及び32)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ロール(成膜ロール31及び32)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法によりフィルム100の表面上に薄膜層を形成することが可能であり、成膜ロール31上においてフィルム100の表面上に膜成分を堆積させつつ、更に成膜ロール32上においてもフィルム100の表面上に膜成分を堆積させることもできるため、フィルム100の表面上に前記薄膜層を効率よく形成することができる。
 また、成膜ロール31及び成膜ロール32の内部には、成膜ロールが回転しても回転しないようにして固定された磁場発生装置61及び62がそれぞれ設けられている。
 さらに、成膜ロール31及び成膜ロール32としては適宜公知のロールを用いることができる。このような成膜ロール31及び32としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ロール31及び32の直径としては、放電条件、チャンバーのスペース等の観点から、5~100cmの範囲とすることが好ましい。
 また、このような製造装置においては、フィルム100の表面がそれぞれ対向するように、一対の成膜ロール(成膜ロール31と成膜ロール32)上に、フィルム100が配置されている。このようにしてフィルム100を配置することにより、成膜ロール31と成膜ロール32との間に放電を行ってプラズマを発生させる際に、一対の成膜ロール間に存在するフィルム100のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、CVD法により、成膜ロール31上にてフィルム100の表面上に膜成分を堆積させ、更に成膜ロール32上にて膜成分を堆積させることができるため、フィルム100の表面上に前記薄膜層を効率よく形成することが可能となる。
 また、このような製造装置に用いる送り出しロール11及び搬送ロール21、22、23、24としては適宜公知のロールを用いることができる。また、巻取りロール71としても、薄膜層を形成したフィルム100を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のロールを用いることができる。
 また、ガス供給管41としては原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源51としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源51は、これに接続された成膜ロール31と成膜ロール32に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源51としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ロールの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源51としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ且つ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置61、62としては適宜公知の磁場発生装置を用いることができる。さらに、フィルム100としては、前記本発明に用いる基材の他に、前記薄膜層を予め形成させたものを用いることができる。このように、フィルム100として前記薄膜層を予め形成させたものを用いることにより、前記薄膜層の厚みを厚くすることも可能である。
 このような図3に示す製造装置を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ロールの直径、並びに、フィルムの搬送速度を適宜調整することにより、基材100の表面上に前記珪素酸化物系の薄膜からなる層(薄膜層)を形成することができる。すなわち、図3に示す製造装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール31及び32)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ロール31上のフィルム100の表面上並びに成膜ロール32上のフィルム100の表面上に、前記薄膜層がプラズマCVD法により形成される。なお、このような成膜に際しては、フィルム100が送り出しロール11や成膜ロール31等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスによりフィルム100の表面上に前記珪素酸化物系の薄膜層が形成される。
 このような前記珪素酸化物系の薄膜層の形成に用いる前記成膜ガス中の原料ガスとしては、形成する薄膜層の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えばケイ素を含有する有機ケイ素化合物を用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1.1.3.3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られる薄膜層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1.1.3.3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、1種を単独で又は2種以上を組み合わせて使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎてしまうと、上記条件(i)~(iii)を全て満たす薄膜が得られなくなってしまう。この場合には、形成される薄膜層によって、優れたバリア性や耐屈曲性を得ることができなくなる。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物:HMDSO:(CHSiO:)と反応ガスとしての酸素(O)を含有するものを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスの好適な比率等についてより詳細に説明する。
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)とを含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1):
 (CHSiO+12O→6CO+9HO+2SiO   (1)
に記載のような反応が起こり、二酸化ケイ素が製造される。このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまうため、上記条件(i)~(iii)を全て満たす薄膜層を形成することができなくなってしまう。そのため、前記珪素酸化物系の薄膜層を形成する際には、上記(1)式の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくする必要がある。なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素は、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が薄膜層中に取り込まれ、上記条件(i)~(iii)を全て満たす薄膜層を形成することが可能となって、得られるガスバリア性積層フィルムに優れたバリア性及び耐屈曲性を発揮させることが可能となる。なお、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子や水素原子が薄膜層中に過剰に取り込まれるため、この場合はバリア膜の透明性が低下して、バリアフィルムは有機ELデバイスや有機薄膜太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板には利用できなくなってしまう。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
 また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。
 また、このようなプラズマCVD法において、成膜ロール31及び32間に放電するために、プラズマ発生用電源51に接続された電極ドラム(本実施形態においては成膜ロール31及び32に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が前記下限未満ではパーティクルが発生し易くなる傾向にあり、他方、前記上限を超えると成膜時に発生する熱量が多くなり、成膜時の基材表面の温度が上昇してしまい、基材が熱負けして成膜時に皺が発生してしまったり、ひどい場合には熱でフィルムが溶けて、裸の成膜ロール間に大電流の放電が発生して成膜ロール自体を傷めてしまう可能性が生じる。
 フィルム100の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が前記下限未満では、フィルムに熱に起因する皺の発生しやすくなる傾向にあり、他方、前記上限を超えると、形成される薄膜層の厚みが薄くなる傾向にある。
 このようにして、フィルム100上に珪素酸化物系の薄膜からなる層(薄膜層)を形成することで、基材層及び前記基材層の少なくとも一方の表面上に形成されたガスバリア性を有する薄膜層(炭素を含有する珪素酸化物系の薄膜層)を備えるフィルム部材を好適に製造することができる。なお、本発明においては、前記第一及び第二のフィルム部材は同一のものであっても異なるものであってもよく、前記第一及び第二のフィルム部材を、ともに上述のようにして形成することが可能なフィルム部材としてもよい。この場合には、第一および第二の薄膜層がいずれも珪素酸化物系の薄膜層であるガスバリア性積層体を製造することが可能となり、より高度な水蒸気透過防止性能を有するガスバリア性積層フィルムを製造することが可能となる。
 また、工程(A)においては、上述のようにして前記第一及び第二のフィルム部材を準備した後、その第一及び第二のフィルム部材のうちの少なくとも1つを乾燥する。このように、第一及び/又は第二のフィルム部材を乾燥する方法としては特に制限されず、このようなフィルム部材を乾燥させることが可能な公知の方法を適宜採用することができ、例えば、真空乾燥、加熱乾燥、真空加熱乾燥等を適宜採用することができる。このような乾燥方法としては、中でも、乾燥効率の観点から、真空乾燥と加熱乾燥を組み合わせた真空加熱乾燥を採用することが最も好ましい。また、このような真空乾燥、加熱乾燥又は真空加熱乾燥により乾燥する場合の条件(加熱条件や圧力条件等)はフィルム部材を乾燥させることが可能な条件に適宜設定すればよく、特に制限されるものではない。なお、このような乾燥方法が加熱工程を含む場合には、より効率よくフィルム部材を乾燥することが可能となることから、加熱温度を50℃以上とすることが好ましく、100℃以上とすることが特に好ましい。また、このような乾燥方法が加熱しながら乾燥する工程である場合(例えば加熱乾燥又は真空加熱乾燥を採用する場合)において、加熱温度の上限は、基材の種類等に応じて適宜設定すればよく、特に制限されるものではないが、高温による基材の変形をより十分に防止するといった観点から、200℃以下とすることが好ましく、150℃以下とすることがより好ましい。
 また、このような乾燥方法が真空条件下で乾燥する方法である場合(例えば真空乾燥や真空加熱乾燥を採用する場合)においては、その圧力条件は大気圧の760mmHg(101325Pa)より低い圧力にすればよく、特に制限されるものではないが、76mmHg(10132.5Pa)より低い圧力とすることが好ましく、7.6mmHg(1013.25Pa)より低い圧力とすることがより好ましい。このように、本発明にいう「真空乾燥」は、大気圧の760mmHg(101325Pa)より低い圧力に減圧して行う乾燥であればよい。
 また、このような乾燥方法を採用する場合に、第一及び/又は第二のフィルム部材の乾燥時間は特に制限されず、乾燥のために採用する条件に応じて、フィルム部材が十分に乾燥するように、その実施時間(乾燥時間)を適宜採用すればよく、例えば、前述の加熱温度の条件及び圧力条件(真空条件)を採用して乾燥する場合(真空加熱乾燥する場合)には、より十分に乾燥状態とするといった観点から、乾燥時間を3時間(180分)以上とすることが好ましく、6時間(360分)以上とすることがより好ましい。なお、このような乾燥時間は、基材の厚みや種類等におうじて適宜設定すればよい。
 (工程(B))
 工程(B)は、前記乾燥後のフィルム部材が、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間(該雰囲気に晒される合計の時間)が1時間以下となるようにしながら、前記第一及び第二の薄膜層の間に前記乾燥後のフィルム部材中の基材層が少なくとも1層配置されるようにして、前記第一及び第二のフィルム部材を貼り合せることによりガスバリア性積層フィルムを得る工程である。
 このように、工程(B)においては、工程(A)により乾燥した後の第一及び/又は第二のフィルム部材(乾燥処理を施したフィルム部材)が、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間(より好ましくは0.5時間(30分)、更に好ましくは20分、特に好ましくは10分)以下となるようにして利用する。重量絶対湿度が10g/kg以上となるような雰囲気下に1時間を超えて曝すと、乾燥後のフィルム部材(特に該部材中の基材層)が吸湿してしまい、十分な吸湿性能(好ましくは自重の0.1質量%以上の重さの水を吸収する吸湿性能)を有するガスバリア性積層フィルムを得ることができなくなる。そのため、例えば、乾燥条件下から通常の大気雰囲気下(例えば、重量絶対湿度が10g/kg以上の条件等になり得る。)にフィルム部材を取り出して、大気雰囲気下において第一及び第二のフィルム部材(乾燥後のフィルム部材を少なくとも1つ含む。)を貼り合せるような場合には、前記乾燥後のフィルム部材を大気雰囲気下に取り出した後に1時間(より好ましくは0.5時間(30分)、更に好ましくは20分、特に好ましくは10分)以内にフィルム部材を貼り合せることが好ましい。なお、フィルム部材の種類によっても異なるものではあるが、通常の湿度がある外気(大気雰囲気下)に、10時間以上フィルム部材を曝してしまうと、外気から吸湿して乾燥による効果が得られなくなってしまう傾向にある。
 このように、本発明においては、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間を1時間以下とすることで、より効率よく十分に吸湿性能を有するガスバリア性積層フィルムを得ることを可能とする。なお、乾燥処理を施したフィルム部材が晒される雰囲気が、重量絶対湿度が10g/kg未満の雰囲気である場合には、その雰囲気に晒される時間は1時間を超えてもよいが、乾燥状態をより高い水準で保持したフィルム部材を利用するといった観点からは、そのような雰囲気であっても晒す時間はなるべく短い時間(より好ましくは1時間以下、更に好ましくは0.5時間(30分)、特に好ましくは20分、最も好ましくは10分)とすることが好ましい。
 なお、乾燥工程を施した乾燥条件下から、乾燥後の第一及び/又は第二のフィルム部材を取り出す場合であっても、その乾燥後のフィルム部材を、重量絶対湿度が0.1g/kg以下(より好ましくは重量絶対湿度が0.01g/kg以下)となるような条件下で保管する場合(例えば、乾燥剤などが入っているデシケータ内で保管する場合)には、乾燥後のフィルム部材の乾燥状態を十分に保持することができるため、長期保管後においても、工程(A)により乾燥した後のフィルム部材(乾燥後の第一及び/又は第二のフィルム部材)を使用することもできる。このように、前記第一及び第二のフィルム部材を貼り合せる際に、前記乾燥後のフィルム部材(前記第一及び第二のフィルム部材のうちの少なくとも1つ)が、重量絶対湿度が10g/kg以上となる雰囲気下に存在する時間(合計の時間)が1時間以下となるようにして、前記乾燥後のフィルム部材を利用することで、乾燥後のフィルム部材の吸湿を十分に防止して、前記第一及び第二の薄膜層の間に配置する基材層の乾燥状態を十分に維持しながら、第一及び第二のフィルム部材を貼り合せることが可能となる。
 また、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間以下となるようにするとの条件を満たしながら、より効率よくガスバリア性積層フィルムを製造するといった観点からは、ドライルーム等の低湿度環境下(例えば、重量絶対湿度が1g/kg以下(より好ましくは0.1g/kg以下)となる雰囲気下)で、乾燥工程(工程(A))を施し、そのまま前記低湿度環境下で前記乾燥後のフィルム部材を用いて貼合工程(工程(B))を行うこと(例えば、真空オーブンと貼合装置をドライルームなど低湿度環境下に設置して、低湿度環境下で乾燥工程と貼合工程を行うこと)が好ましい。
 また、工程(B)においては、前記第一及び第二の薄膜層の間に前記乾燥後のフィルム部材中の基材層が少なくとも1層配置されるようにして、前記第一及び第二のフィルム部材を貼り合せる。このようにして貼り合せることで、積層後のフィルムの構成が、基材層として第一の基材層及び第二の基材層の少なくとも2層を備え、前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備え、かつ、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備える構成となる。そして、本発明においては、このような第一及び第二の薄膜層の間に存在する基材層が、工程(A)において乾燥された後、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間以下となるようにしてその乾燥状態が十分に維持された状態でガスバリア性の高い薄膜層に挟まれたものとなることから、ガスバリア性積層フィルムに十分に高度な吸湿性を付与できるばかりか、積層フィルムの耐熱性を十分に向上させることも可能となる。
 さらに、このようにして第一及び第二のフィルム部材を貼り合せる方法は特に制限されず、フィルム部材を貼り合せることが可能な公知の方法を適宜採用することができ、例えば、第一及び第二のフィルム部材中の基材層同士を熱溶着させて貼り合せる方法、第一及び第二のフィルム部材の間に融点の低い高分子シートを挟んで積層し、該シートを熱で溶かして貼り合せる方法、接着剤を利用して接着面に接着剤と塗布して第一及び第二のフィルム部材を貼り合せる方法等を適宜利用することができる。なお、これらの方法において採用することが可能な温度条件等についても特に制限されず、第一及び第二のフィルム部材の種類等に応じて適宜最適な条件を採用すればよい。また、接着剤としては、前述の本発明のガスバリア性積層フィルムにおいて説明した接着剤を適宜利用することができる。また、このような接着剤には、より高度な吸湿性能を発揮させることが可能となることから、乾燥剤を更に含有させることが好ましい。なお、接着剤の塗布方法や塗布厚み等も特に制限されず、前述の本発明のガスバリア性積層フィルムにおいて説明したような接着剤層を製造することが可能となるように、公知の塗布方法(例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等の方式の塗布方法)の中から、最適な方法やその条件を適宜採用すればよい。なお、第一及び第二のフィルム部材を貼り合せる方法としては、例えば、少なくとも1本のゴムロールを有する貼合装置を利用する方法を採用することが可能であり、更に用途に応じて接着剤層に各種成分を別途含有させることも可能であることなどから、接着剤を利用して貼り合せる方法を採用することが好ましい。
 なお、このような前記第一及び第二のフィルム部材を貼り合せる工程においては、18~80℃の温度条件下において、前記第一及び第二のフィルム部材を貼り合せることが好ましい。このような温度を前記範囲内とすることで、接着剤の粘着力をより適度なものに調整することが容易となり、貼り合せ工程において、気泡が入り込む(かみ込む)ことをより効率よく抑制することが可能となる。
 このようにして、前記乾燥後の第一及び/又は第二のフィルム部材の乾燥状態を維持するようにしながら(重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間以下となるようにしながら)、第一及び第二のフィルム部材中の前記第一及び第二の薄膜層の間に、前記乾燥後のフィルム部材(第一及び/又は第二のフィルム部材)中の基材層が少なくとも1層配置されるようにして、前記第一及び第二のフィルム部材を貼り合せることで、十分に乾燥状態が維持された基材層が前記第一及び第二の薄膜層の間に存在する積層体が得られ、これにより、基材層とガスバリア性を有する薄膜層とを備えるガスバリア性積層フィルムであって、前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えており、かつ、前記ガスバリア性積層フィルムが十分な吸湿性能(好ましくは自重の0.1質量%以上の水を吸収する吸湿性能)を有するガスバリア性積層フィルムを得ることが可能となる。
 このように、工程(A)及び(B)を実施することで、十分な吸湿性能(好ましくは自重の0.1質量%以上の水を吸収する吸湿性能)を有するガスバリア性積層フィルムを得ることができ、効率よく上記本発明のガスバリア性積層フィルムを製造することが可能となる。なお、このような本発明の第一のガスバリア性積層フィルムの製造方法において、接着剤を利用して貼り合せる場合には、接着剤層を含むものとなるため、ガスバリア性積層フィルムを、薄膜層2(a)、基材層1(a)、接着剤層3、基材層1(b)、薄膜層2(b)の順に積層された積層構造を有するものとしたり、薄膜層2(a)、基材層1(a)、接着剤層3、薄膜層2(b)、基材層1(b)の順に積層された積層構造を有するものとすることも可能であり、更に、接着剤に乾燥剤を含有させた場合には、薄膜層間に存在する乾燥した基材と乾燥剤とにより、より高度な吸湿性能を発揮させることも可能である。このように、本発明により得られ、且つ、薄膜層間に十分に乾燥された状態の基材が積層されているガスバリア性積層フィルムは、十分に高度な耐熱性を発揮することも可能なものとなる。また、ガスバリア性積層フィルムの構成を、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層の双方が配置されるような構成とする場合においては、より高度な吸湿性能を発揮させることが可能となることから、工程(A)において、第一及び第二のフィルム部材の双方を乾燥することが好ましく、このようにして乾燥後の第一及び第二のフィルム部材を用いて工程(B)を施すことが好ましい。例えば、第一及び第二のフィルム部材の双方を乾燥して、その乾燥後の第一及び第二のフィルム部材を、乾燥状態を十分に維持しながら、基材層が向き合うようにして貼り合せることで、前記第一及び第二の薄膜層の間に十分に乾燥した状態の前記第一及び第二の基材層が存在するものとなり、得られるガスバリア性積層フィルムに、より高度な吸湿性能を発揮させることが可能となる。一方、薄膜層2(a)、基材層1(a)、接着剤層3、薄膜層2(b)、基材層1(b)の順に積層された積層構造を有するものである場合には、基材層1(a)が十分に乾燥した状態のものとなるようにして、ガスバリア性積層フィルムを製造すればよいため、第一及び第二のフィルム部材のうちの少なくとも一方を乾燥したのち、その乾燥後のフィルム部材の基材が薄膜層の間に配置されるように第一及び第二のフィルム部材を貼り合せればよい。
 以上、本発明の第一のガスバリア性積層フィルムの製造方法について説明したが、次に、本発明の第二のガスバリア性積層フィルムの製造方法について説明する。
 [第二のガスバリア性積層フィルムの製造方法]
 本発明の第二のガスバリア性積層フィルムの製造方法は、第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第一の薄膜層を備える第一のフィルム部材と、
 第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第二の薄膜層を備える第二のフィルム部材と、
を準備し、前記第一及び第二のフィルム部材を、前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるように、乾燥剤を含む接着剤を用いて貼り合せることによりガスバリア性積層フィルムを得る工程を含む方法である。
 このような製造方法に用いる第一のフィルム部材及び第二のフィルム部材はそれぞれ、前述の本発明の第一のガスバリア性積層フィルムの製造方法において説明したものと同様のものである。また、接着剤、乾燥剤は、前述の本発明のガスバリア性積層フィルムにおいて説明したものと同様のものである。
 本発明においては、前記第一及び第二のフィルム部材を、前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるように、乾燥剤を含む接着剤を用いて貼り合せる。このような貼り合せの際には、前記第一及び第二のフィルム部材の少なくとも一方、または双方のいずれかの表面に接着剤を塗布することが好ましい。なお、接着剤の塗布方法等も特に制限されず、前述の本発明のガスバリア性積層フィルムにおいて説明したような接着剤層を製造することが可能となるように、公知の塗布方法(例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等の方式の塗布方法)の中から、最適な方法やその条件を適宜採用すればよい。このように、接着剤層を形成する際の接着剤の塗布量や塗布厚み等も特に制限されず、例えば、接着剤の種類に応じて前述の接着剤層の厚みと同様になるように、その塗布量や塗布厚みを適宜選択してもよい。なお、接着剤の薄膜状のシートを作成して、前記第一及び第二のフィルム部材の間に該シートを配置し、加熱する等することにより前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるように、乾燥剤を含む接着剤を用いて貼り合せてもよい。
 また、本発明の第二のガスバリア性積層フィルムの製造方法においては、前記第一及び第二のフィルム部材を貼り合せる前に、前記第一及び第二のフィルム部材のうちの少なくとも一方を乾燥する必要は必ずしもない(乾燥工程を含んでいてもよく、あるいは、含んでいなくてもよい)。本発明においては、前記第一及び第二のフィルム部材を、前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるようにして、乾燥剤を含む接着剤を用いて貼り合せるため、基本的に、薄膜層間に、少なくとも1層の基材層が配置されるとともに接着剤層も配置される構成の積層フィルムが得られることとなる。このように薄膜層間に乾燥剤を含む接着剤層が積層されると、その接着剤層中の乾燥剤により、第一及び第二の薄膜層の間に配置された前記第一及び第二の基材層のうちの少なくとも1層を乾燥させることが可能となる。そのため、本発明の第二のガスバリア性積層フィルムの製造方法により製造されるガスバリア性積層フィルムにおいては、薄膜層間に存在する基材層を、接着工程後に乾燥させることができるため、かかる基材層に吸湿性能を発揮させることが可能となる。また、本発明の第二のガスバリア性積層フィルムの製造方法においては、薄膜層間に、乾燥剤を含む接着剤層を含むことから、該接着剤層中の乾燥剤自体によっても吸湿性能を発揮させることが可能となる。
 このように、本発明においては、乾燥剤を含む接着剤を用いて前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるようにして、前記第一及び第二のフィルム部材を貼り合せることから、十分に乾燥された状態の基材層が前記第一及び第二の薄膜層の間に存在する積層体を形成することが可能となり、これにより、基材層とガスバリア性を有する薄膜層とを備えるガスバリア性積層フィルムであって、前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えており、かつ、十分な吸湿性能(好ましくは自重の0.1質量%以上の水を吸収する吸湿性能)を有するガスバリア性積層フィルムを得ることが可能となる。なお、このような本発明の第二のガスバリア性積層フィルムの製造方法によれば、接着剤層を含むものとなるため、ガスバリア性積層フィルムを、薄膜層2(a)、基材層1(a)、接着剤層3、基材層1(b)、薄膜層2(b)の順に積層された積層構造を有するものとしたり、薄膜層2(a)、基材層1(a)、接着剤層3、薄膜層2(b)、基材層1(b)の順に積層された積層構造を有するものとすることも可能である。このように、本発明により得られ、且つ、薄膜層間に十分に乾燥された基材が積層されている構成のガスバリア性積層フィルムは、十分に高度な耐熱性を発揮することも可能なものとなる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (調製例1:フィルム部材の調製)
 前述の図3に示す製造装置を用いてフィルム部材を製造した。すなわち、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚み:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を基材(フィルム100)として用い、これを送り出しロ-ル11に装着した。そして、成膜ロール31と成膜ロール32との間に磁場を印加すると共に、成膜ロール31と成膜ロール32にそれぞれ電力を供給して、成膜ロール31と成膜ロール32との間に放電してプラズマを発生させ、このような放電領域に、成膜ガス(原料ガスとしてのヘキサメチルジシロキサン(HMDSO)と反応ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)を供給して、下記条件にてプラズマ化学気相堆積法(プラズマCVD法:PECVD)による薄膜形成を行い、厚みが0.3μmの薄膜層が形成された基材からなる積層体(A)を得た。
 〈成膜条件〉
原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute)
酸素ガスの供給量:500sccm
真空チャンバー内の真空度:3Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.5m/min。
 次いで、得られた積層体(A)を基材(フィルム100)として用いて送り出しロ-ル11に装着し、積層体(A)の薄膜層の表面上に、上述の成膜条件と同様の条件を採用して新たに薄膜層を形成して、厚みが0.6μmの薄膜層が形成された基材からなる積層体(B)を得た。次に、得られた積層体(B)を基材(フィルム100)として用いて送り出しロ-ル11に装着し、積層体(B)の薄膜層の表面上に、上述の成膜条件と同様の条件を採用して新たに薄膜層を形成して、厚みが0.9μmの薄膜層が形成された基材からなる積層体(C)を得た。次いで、得られた積層体(C)を基材(フィルム100)として用いて送り出しロ-ル11に装着し、積層体(C)の薄膜層の表面上に、上述の成膜条件と同様の条件を採用して新たに薄膜層を形成して、厚みが1.2μmの薄膜層が形成された基材からなる積層体(D)を得た。そして、再度、得られた積層体(D)を基材(フィルム100)として用いて送り出しロ-ル11に装着し、積層体(D)の薄膜層の表面上に、上述の成膜条件と同様の条件を採用して新たに薄膜層を形成して、厚みが1.5μmの薄膜層が形成された基材からなる積層体(E)からなるフィルム部材(基材層と、基材層の一方の表面に形成された厚みが1.5μmの薄膜層とを備える積層体からなる部材)を得た。このように、フィルム部材は、図3に示す製造装置を用いて、積層体(A)の製造時に採用した薄膜層の形成工程を基材の一方の表面側に5回繰り返して形成されたものとした。
 なお、このような積層体(E)の薄膜層に対して、下記条件にてXPSデプスプロファイル測定を行い、珪素分布曲線、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線を得た。
エッチングイオン種:アルゴン(Ar
エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
エッチング間隔(SiO換算値):10nm
X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
照射X線:単結晶分光AlKα
X線のスポット及びそのサイズ:800×400μmの楕円形。
 このようにして得られた炭素分布曲線は、複数の明確な極値を有しており、炭素の原子比の最大値及び最小値の差の絶対値が5at%以上であり、かつ、珪素の原子比、酸素の原子比及び炭素の原子比が、式(1):
  (酸素の原子比)>(珪素の原子比)>(炭素の原子比)・・・(1)
で示された条件を満たしていることが確認された。
 また、このようなフィルム部材のガスバリア性をカルシウム腐食法(特開2005-283561号公報に記載される方法)に準拠した方法で測定した。すなわち、フィルム部材に対して、乾燥処理後、金属カルシウムを蒸着し、その上から金属アルミニウムで封止し、ガラスに固定後、樹脂で封止したサンプルを温度40℃、湿度90%RHの条件での腐食点の経時変化による増加を画像解析で調べて水蒸気透過度を算出した。なお、このような水蒸気透過度の算出に際しては、腐食点をマイクロスコープで撮影し、その画像をパーソナルコンピューターに取り込んで、腐食点の画像を2値化し、腐食面積を算出して求めることにより、水蒸気透過度を算出した。その結果、フィルム部材(表面上に薄膜層を成膜した基材)の水蒸気透過度は、7×10-3g/m/dayであった。なお、基材(PENフィルム)のみからなる試料を用いて、同様にカルシウム腐食法(特開2005-283561号公報に記載される方法)に準拠した方法でガスバリア性を測定したところ、基材のガスバリア性は1.3g/m/dayであった。このような結果から、「基材の水蒸気透過度」に対して「薄膜層を成膜した基材の水蒸気透過度」の方が2桁以上小さい値を示すことが確認され、フィルム部材中の薄膜層はガスバリア性を有するものであることが確認された。
 (実施例1)
 先ず、調製例1で採用した方法と同様の方法を採用してフィルム部材を2枚準備した。次いで、前記2枚のフィルム部材を共に真空オーブン中に導入し、ゲージ圧力-0.1MPa(絶対圧力1.3kPa)、100℃の条件で360分間加熱して、前記2枚のフィルム部材を乾燥させた(乾燥工程)。その後、前記2枚のフィルム部材を真空オーブンから大気中(気温:25℃、相対湿度:50%、重量絶対湿度:10g/kg(乾燥空気))に取り出し、接着剤としてビスフェノールA型エポキシ樹脂からなる主剤と変性ポリアミドからなる硬化剤との混合により室温(25℃)で硬化する2液型エポキシ接着剤を用いて、一方のフィルム部材の基材の表面上に接着剤を塗布した後に、乾燥工程後の2枚のフィルム部材の基材側の面同士が向き合うようにして、ゴム硬度60のシリコンゴムロールの貼合装置(大成ラミネーター株式会社製の商品名「VA-420IVラミネーター」)で貼り合わせて、図1に示すような構造のガスバリア性積層フィルム(「薄膜層/基材/接着剤層/基材/薄膜層」の積層構造を有するガスバリア性積層フィルム)を得た。ここにおいて、前記2枚のフィルム部材を真空オーブンから取り出して、これらを貼り合せる工程を開始するまでに要した時間は10分であり、貼り合せに要した時間は15分であった。このように、乾燥工程後の前記2枚のフィルム部材を真空オーブンから取り出してガスバリア性積層フィルムを形成するまでに合計25分の時間を要した。なお、得られたガスバリア性積層フィルムの厚みを測定し、2枚のフィルム部材の厚みを引いた値を接着剤層の厚みとした。このようにして求められた接着剤層の厚みは12μmであった。このようにして得られたガスバリア性積層フィルムは、上述のようにしてガスバリア性積層フィルムの吸湿性能(前述の吸湿量の割合Bn)を測定したところ、自重の0.29質量%の重さの水を吸収して保持することが可能なものであることが確認された。
 (実施例2)
 乾燥工程後の2枚のフィルム部材の基材側の面同士が向き合うようにして貼り合せる代わりに、一方のフィルム部材の基材の表面と、もう一方のフィルム部材の薄膜層とが向き合うようにして2枚のフィルム部材を貼り合せた以外は、実施例1と同様の方法を採用して、図2に示すような構成のガスバリア性積層フィルム(「薄膜層/基材/接着剤層/薄膜層/基材」の積層構造を有するガスバリア性積層フィルム)を得た。このようにして得られたガスバリア性積層フィルムの厚みを測定し、2枚のフィルム部材の厚みを引いた値を接着剤層の厚みとした。このようにして求められた接着剤層の厚みは12μmであった。このようにして得られたガスバリア性積層フィルムは、上述のようにしてガスバリア性積層フィルムの吸湿性能(前述の吸湿量の割合Bn)を測定したところ、自重の0.15質量%の重さの水を吸収して保持することが可能なものであることが確認された。
 (実施例3)
 前記2液型エポキシ接着剤の主剤をそのまま用いる代わりに、該2液型エポキシ接着剤の主剤に、2液(主剤と硬化剤)の総量に対して14質量%となるような割合で乾燥剤(住友化学株式会社製の粒径0.5μmの水酸化アルミニウム粉末を250℃、ゲージ圧力-0.1MPa(絶対圧力1.3kPa)の条件で360分間真空乾燥した後、露点が-50℃の窒素雰囲気中で室温(25℃)まで冷却したもの)を添加して脱泡する処理を施した後に、これを該接着剤の主剤として用いた以外は、実施例1と同様の方法を採用して、図1に示すような構造のガスバリア性積層フィルム(「薄膜層/基材/接着剤層(乾燥剤含有)/基材/薄膜層」の積層構造を有するガスバリア性積層フィルム)を得た。すなわち、2液型エポキシ接着剤の主剤に前記乾燥剤を添加して、接着剤層が前記乾燥剤を含む層となるようにした以外は、実施例1と同様にして、ガスバリア性積層フィルムを製造した。このようにして得られたガスバリア性積層フィルムの厚みを測定し、2枚のフィルム部材の厚みを引いた値を接着剤層の厚みとした。このようにして求められた接着剤層の厚みは15μmであった。このようにして得られたガスバリア性積層フィルムは、上述のようにしてガスバリア性積層フィルムの吸湿性能(前述の吸湿量の割合Bn)を測定したところ、自重の0.78質量%の重さの水を吸収して保持することが可能なものであることが確認された。
 (実施例4)
 乾燥工程後に得られたフィルム部材を貼り合せる代わりに、フィルム部材を2枚準備した後に乾燥工程を実施せずに、その2枚のフィルム部材をそのまま貼り合せた以外は、実施例3と同様の方法を採用して、図1に示すような構造のガスバリア性積層フィルム(「薄膜層/基材/接着剤層(乾燥剤含有)/基材/薄膜層」の積層構造を有するガスバリア性積層フィルム)を得た。このようにして得られたガスバリア性積層フィルムの厚みを測定し、2枚のフィルム部材の厚みを引いた値を接着剤層の厚みとした。このようにして求められた接着剤層の厚みは15μmであった。また、このようにして得られたガスバリア性積層フィルムは、上述のようにしてガスバリア性積層フィルムの吸湿性能(前述の吸湿量の割合Bn)を測定したところ、自重の0.32質量%の重さの水を吸収して保持することが可能なものであることが確認された。
 (比較例1)
 調製例1で得られたフィルム部材(薄膜層形成基材)を、そのままガスバリア性積層フィルム(「薄膜層/基材」の積層構造を有する比較のためのガスバリア性積層フィルム)とした。このようにして得られたガスバリア性積層フィルムは、上述のようにしてガスバリア性積層フィルムの吸湿性能(前述の吸湿量の割合Bn)を測定したところ、Bnは0.00質量%となり、吸湿する能力を有していないことが確認された。このような結果は、フィルム部材が製造後、大気雰囲気下において保管され、その後、特に乾燥工程が実施されていないため、大気中に含まれる水蒸気を吸湿していたことに起因するものと推察される。
 (比較例2)
 乾燥工程後に得られた2枚のフィルム部材を貼り合せる代わりに、フィルム部材を2枚準備した後に乾燥工程を実施せずに、その2枚のフィルム部材を25℃、相対湿度:50%、重量絶対湿度:10g/kgの条件の恒温恒湿漕中に24時間静置した後に貼り合せた以外は、実施例1と同様にして、図1に示すような構造のガスバリア性積層フィルム(「薄膜層/基材/接着剤層/基材/薄膜層」の積層構造を有するガスバリア性積層フィルム)を得た。このようにして得られたガスバリア性積層フィルムの厚みを測定し、2枚のフィルム部材の厚みを引いた値を接着剤層の厚みとした。このようにして求められた接着剤層の厚みは12μmであった。また、このようにして得られたガスバリア性積層フィルムは、上述のようにしてガスバリア性積層フィルムの吸湿性能(前述の吸湿量の割合Bn)を測定したところ、Bnは0.01質量%となり、十分な吸湿能力を有していないことが確認された。
 [実施例1~4及び比較例1~2で得られたガスバリア性積層フィルムの特性の評価]
 (水蒸気透過度の測定)
 実施例1~4及び比較例1~2で得られたガスバリア性積層フィルムの水蒸気透過度を、温度40℃、湿度90%RHの条件で、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって測定した。すなわち、各ガスバリア性積層フィルムに対して、乾燥処理後、金属カルシウムを蒸着し、その上から金属アルミニウムで封止し、ガラスに固定後、樹脂で封止したサンプルを温度40℃、湿度90%RHの条件での腐食点の経時変化による増加を画像解析で調べて水蒸気透過度を算出した。なお、このような水蒸気透過度の算出に際しては、腐食点をマイクロスコープで撮影し、その画像をパーソナルコンピューターに取り込んで、腐食点の画像を2値化し、腐食面積を求めることにより、水蒸気透過度を算出した。このような測定の結果、各ガスバリア性積層フィルムの水蒸気透過度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 このような結果からも明らかなように、本発明のガスバリア性積層フィルムにおいては、水蒸気透過度が十分に低い値(1桁以上低い値)となっており、非常に高度な水蒸気透過防止性能が得られることが確認された。特に、実施例1で得られたガスバリア性積層フィルムと、比較例2で得られたガスバリア性フィルムとを比較すると、これらの積層フィルムの積層構造はともに「薄膜層/基材/接着剤層/基材/薄膜層」であるにも関わらず、乾燥後のフィルム部材を用いて得られたガスバリア性フィルム(実施例1)においては、大気暴露条件下(通常の湿度条件下)で長期間保存した後のフィルム部材(通常のフィルム部材の使用条件)を模して25℃、相対湿度50%、重量絶対湿度10g/kgの条件の恒温恒湿漕中に長時間静置した後のフィルム部材を用いて得られたガスバリア性フィルム(比較例2)と比較して、非常に高度なガスバリア性が得られていることが分かる。
 (耐熱性の測定試験)
 実施例1~4及び比較例1~2で得られたガスバリア性積層フィルムの耐熱性を、以下のようにして評価した。すなわち、各ガスバリア性積層フィルムに対して200℃で30分間の加熱する処理を施した後に、薄膜層と基材層との間の剥離が生じていないか目視にて確認して、下記基準A及びB:
A:剥離が確認されず、十分な耐熱性を有するガスバリア性積層フィルム
B:剥離が確認され、耐熱性が低いガスバリア性フィルム
に基いて各ガスバリア性積層フィルムの評価を行った。得られた結果を以下に示す。
評価結果がAの積層フィルム: 実施例1~4(全実施例)、比較例1
評価結果がBの積層フィルム: 比較例2。
 このような結果からも明らかなように、本発明のガスバリア性積層フィルム(実施例1~4)はいずれも、剥離が確認されず、十分に高度な耐熱性を有することが確認された。これに対して、大気暴露条件下(通常の湿度条件下)で長期間保存した後のフィルム部材(通常のフィルム部材の使用条件)を模して25℃、相対湿度50%、重量絶対湿度10g/kgの条件の恒温恒湿漕中に長時間静置した後のフィルム部材を用いて得られたガスバリア性フィルム(比較例2)では、吸湿能力が0.00質量%の比較例1の積層フィルムよりも耐熱性が劣る結果となっていた。
 これらの結果からも明らかなように、本発明のガスバリア性積層フィルム(実施例1~4)はいずれも、熱による劣化を十分に防止しながら十分に高度な水蒸気透過防止性能を発揮できることが分かった。
 以上説明したように、本発明によれば、より高度な水準の水蒸気透過防止性能と十分に高い耐熱性能とを有するガスバリア性積層フィルム及びその製造方法を提供することが可能となる。
 したがって、本発明のガスバリア性積層フィルムは、有機エレクトロルミネッセンス素子(有機EL素子)を用いたフレキシブル照明、有機薄膜太陽電池、液晶ディスプレイ、医薬品の包装容器等に好適に用いることができる。
 1(a)及び1(b)…基材層、2(a)及び2(b)…薄膜層、3…接着剤層、11…送り出しロール、21、22、23、24…搬送ロール、31、32…成膜ロール、41…ガス供給管、51…プラズマ発生用電源、61、62…磁場発生装置、71…巻取りロール、100…フィルム(基材)。

Claims (14)

  1.  基材層とガスバリア性を有する薄膜層とを備えるガスバリア性積層フィルムであって、
     前記基材層として第一の基材層及び第二の基材層の少なくとも2層を備えており、
     前記薄膜層として第一の薄膜層及び第二の薄膜層の少なくとも2層を備えており、
     前記第一及び第二の薄膜層の間に、前記第一及び第二の基材層のうちの少なくとも1層を備えており、かつ、
     前記ガスバリア性積層フィルムが自重の0.1質量%以上の水を吸収する吸湿性能を有する、ガスバリア性積層フィルム。
  2.  前記第一及び第二の薄膜層の間に、少なくとも1層の接着剤層を更に備える、請求項1に記載のガスバリア性積層フィルム。
  3.  前記接着剤層が乾燥剤を含む、請求項2に記載のガスバリア性積層フィルム。
  4.  前記第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成された前記第一の薄膜層を備える第一の構造部分と、
     前記第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成された前記第二の薄膜層を備える第二の構造部分と、
    を有する、請求項1~3のうちのいずれか一項に記載のガスバリア性積層フィルム。
  5.  前記第一の基材層及び前記第二の基材層のうちの少なくとも1つの基材層の一方の表面上にのみ前記薄膜層が形成され、かつ、該基材層のもう一方の表面上には前記薄膜層が形成されていない、請求項1~4のうちのいずれか一項に記載のガスバリア性積層フィルム。
  6.  前記第一及び第二の薄膜層のうちの少なくとも1層が、珪素、酸素及び炭素を含有し、かつ、
     該層の膜厚方向における該層の表面からの距離と、珪素原子、酸素原子及び炭素原子の合計量に対する珪素原子の量の比率(珪素の原子比)、酸素原子の量の比率(酸素の原子比)及び炭素原子の量の比率(炭素の原子比)との関係をそれぞれ示す珪素分布曲線、酸素分布曲線及び炭素分布曲線において、下記条件(i)~(iii):
    (i)珪素の原子比、酸素の原子比及び炭素の原子比が、該層の膜厚の90%以上の領域において下記式(1):
    (酸素の原子比)>(珪素の原子比)>(炭素の原子比)・・・(1)
    で表される条件を満たすこと、
    (ii)前記炭素分布曲線が少なくとも1つの極値を有すること、
    (iii)前記炭素分布曲線における炭素の原子比の最大値及び最小値の差の絶対値が5at%以上であること、
    を全て満たす珪素酸化物系の薄膜層である、請求項1~5のうちのいずれか一項に記載のガスバリア性積層フィルム。
  7.  前記第一及び第二の薄膜層の双方が前記珪素酸化物系の薄膜層である、請求項6に記載のガスバリア性積層フィルム。
  8.  前記ガスバリア性積層フィルムが、薄膜層、基材層、接着剤層、薄膜層、基材層の順に積層された積層構造を有する、請求項1~7のうちのいずれか一項に記載のガスバリア性積層フィルム。
  9.  前記ガスバリア性積層フィルムが、薄膜層、基材層、接着剤層、基材層、薄膜層の順に積層された積層構造を有する、請求項1~7のうちのいずれか一項に記載のガスバリア性積層フィルム。
  10.  前記第一及び第二の基材層のうちの少なくとも1層が有機高分子材料からなる層である、請求項1~9のうちのいずれか一項に記載のガスバリア性積層フィルム。
  11.  第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第一の薄膜層を備える第一のフィルム部材と、
     第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第二の薄膜層を備える第二のフィルム部材と、
    を準備して、前記第一及び第二のフィルム部材のうちの少なくとも1つを乾燥する工程と、
     前記乾燥後のフィルム部材が、重量絶対湿度が10g/kg以上となる雰囲気下に曝される時間が1時間以下となるようにしながら、前記第一及び第二の薄膜層の間に前記乾燥後のフィルム部材中の基材層が少なくとも1層配置されるようにして、前記第一及び第二のフィルム部材を貼り合せることによりガスバリア性積層フィルムを得る工程と、
    を含む、ガスバリア性積層フィルムの製造方法。
  12.  前記乾燥後の第一及び第二のフィルム部材を、接着剤を用いて貼り合せる、請求項11に記載のガスバリア性積層フィルムの製造方法。
  13.  前記接着剤が乾燥剤を含むものである、請求項12に記載のガスバリア性積層フィルムの製造方法。
  14.  第一の基材層及び前記第一の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第一の薄膜層を備える第一のフィルム部材と、
     第二の基材層及び前記第二の基材層の少なくとも一方の表面上に形成されたガスバリア性を有する第二の薄膜層を備える第二のフィルム部材と、
    を準備し、前記第一及び第二のフィルム部材を、前記第一及び第二の薄膜層の間に前記第一及び第二の基材層のうちの少なくとも1層が配置されるように、乾燥剤を含む接着剤を用いて貼り合せることによりガスバリア性積層フィルムを得る工程を含む、ガスバリア性積層フィルムの製造方法。
PCT/JP2015/074076 2014-08-29 2015-08-26 ガスバリア性積層フィルム及びその製造方法 WO2016031876A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-175675 2014-08-29
JP2014175675 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031876A1 true WO2016031876A1 (ja) 2016-03-03

Family

ID=55399761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074076 WO2016031876A1 (ja) 2014-08-29 2015-08-26 ガスバリア性積層フィルム及びその製造方法

Country Status (2)

Country Link
TW (1) TW201625412A (ja)
WO (1) WO2016031876A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189880A (ja) * 2016-04-11 2017-10-19 凸版印刷株式会社 発光体保護フィルム、波長変換シート及びバックライトユニット
JP2017226090A (ja) * 2016-06-20 2017-12-28 凸版印刷株式会社 バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2018065328A (ja) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 水蒸気バリア積層体及び有機エレクトロルミネッセンス素子
CN109070539A (zh) * 2016-04-11 2018-12-21 凸版印刷株式会社 阻隔膜层叠体及其制造方法、波长转换片、背光单元、以及电致发光单元
CN109830558A (zh) * 2018-12-24 2019-05-31 汉能移动能源控股集团有限公司 太阳能电池封装板、制备方法及包含其的太阳能电池
US10333100B2 (en) 2014-08-29 2019-06-25 Sumitomo Chemical Company, Limited Organic electroluminescent device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075413A (ja) * 2011-09-30 2013-04-25 Toray Advanced Film Co Ltd 積層ガスバリアフィルム
JP2013211501A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd 光電変換装置
JP2014141056A (ja) * 2012-12-26 2014-08-07 Konica Minolta Inc ガスバリア性フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075413A (ja) * 2011-09-30 2013-04-25 Toray Advanced Film Co Ltd 積層ガスバリアフィルム
JP2013211501A (ja) * 2012-03-30 2013-10-10 Sumitomo Chemical Co Ltd 光電変換装置
JP2014141056A (ja) * 2012-12-26 2014-08-07 Konica Minolta Inc ガスバリア性フィルム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333100B2 (en) 2014-08-29 2019-06-25 Sumitomo Chemical Company, Limited Organic electroluminescent device
JP2017189880A (ja) * 2016-04-11 2017-10-19 凸版印刷株式会社 発光体保護フィルム、波長変換シート及びバックライトユニット
CN109070539A (zh) * 2016-04-11 2018-12-21 凸版印刷株式会社 阻隔膜层叠体及其制造方法、波长转换片、背光单元、以及电致发光单元
US11254097B2 (en) 2016-04-11 2022-02-22 Toppan Printing Co., Ltd. Barrier film laminate, method of producing the same, wavelength conversion sheet, backlight unit, and electroluminescent light-emitting unit
JP2017226090A (ja) * 2016-06-20 2017-12-28 凸版印刷株式会社 バリアフィルム積層体及びその製造方法、波長変換シート、バックライトユニット、並びにエレクトロルミネッセンス発光ユニット
JP2018065328A (ja) * 2016-10-21 2018-04-26 コニカミノルタ株式会社 水蒸気バリア積層体及び有機エレクトロルミネッセンス素子
CN109830558A (zh) * 2018-12-24 2019-05-31 汉能移动能源控股集团有限公司 太阳能电池封装板、制备方法及包含其的太阳能电池

Also Published As

Publication number Publication date
TW201625412A (zh) 2016-07-16

Similar Documents

Publication Publication Date Title
WO2016031876A1 (ja) ガスバリア性積層フィルム及びその製造方法
JP4147008B2 (ja) 有機el素子に用いるフィルム及び有機el素子
JP5673927B2 (ja) 積層フィルム
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
TW201002527A (en) Gas barrier laminated film for organic devices
JP6342776B2 (ja) 積層体の製造方法
CN105451984A (zh) 阻气性膜及其制造方法以及使用该阻气性膜的电子器件
CN103459138A (zh) 阻隔性蒸镀膜
CN104969305A (zh) 透明层叠膜、透明导电性膜和气体阻隔性层叠膜
JP5983454B2 (ja) ガスバリア性フィルム
JP6424671B2 (ja) ガスバリアフィルム積層体とそれを用いた電子部品
JP2016051569A (ja) 有機エレクトロルミネッセンス素子
WO2016039280A1 (ja) 積層フィルムおよびフレキシブル電子デバイス
JP2014141055A (ja) ガスバリア性フィルム
CN111093973B (zh) 阻气膜及阻气膜的制造方法
WO2015190572A1 (ja) ガスバリアフィルム積層体とそれを用いた電子部品
JPWO2014103756A1 (ja) ガスバリア性フィルム
US20160079559A1 (en) Roll of gas-barrier film, and process for producing gas-barrier film
WO2014097997A1 (ja) 電子デバイス
JPWO2015083706A1 (ja) ガスバリア性フィルム及びその製造方法
JP6409258B2 (ja) ガスバリアフィルム積層体とそれを用いた電子部品
JP5895855B2 (ja) ガスバリア性フィルムの製造方法
JP6354302B2 (ja) ガスバリア性フィルム
JP7017041B2 (ja) 積層体
WO2014125877A1 (ja) ガスバリア性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15835524

Country of ref document: EP

Kind code of ref document: A1