WO2016031615A1 - 転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置 - Google Patents

転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置 Download PDF

Info

Publication number
WO2016031615A1
WO2016031615A1 PCT/JP2015/073078 JP2015073078W WO2016031615A1 WO 2016031615 A1 WO2016031615 A1 WO 2016031615A1 JP 2015073078 W JP2015073078 W JP 2015073078W WO 2016031615 A1 WO2016031615 A1 WO 2016031615A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
transparent resin
film
transparent
electrode pattern
Prior art date
Application number
PCT/JP2015/073078
Other languages
English (en)
French (fr)
Inventor
漢那 慎一
吉成 伸一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201580045515.6A priority Critical patent/CN106660334B/zh
Priority to JP2016545447A priority patent/JP6552507B2/ja
Publication of WO2016031615A1 publication Critical patent/WO2016031615A1/ja
Priority to US15/433,623 priority patent/US10207481B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • G03F7/0955Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer one of the photosensitive systems comprising a non-macromolecular photopolymerisable compound having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/04Time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M2205/00Printing methods or features related to printing methods; Location or type of the layers
    • B41M2205/40Cover layers; Layers separated from substrate by imaging layer; Protective layers; Layers applied before imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a transfer film, a method for manufacturing a laminate, a laminate, a capacitance-type input device, and an image display device.
  • a capacitance-type input device that can detect the contact position of a finger as a change in capacitance
  • a laminate that can be used therefor a transfer film that is used to manufacture the laminate
  • a laminate that uses this transfer film The present invention relates to a method for manufacturing a body and an image display device including the capacitive input device as a constituent element.
  • Such input devices include a resistance film type and a capacitance type.
  • the resistance film type input device has a drawback that it has a narrow operating temperature range and is susceptible to changes over time because it has a two-layer structure of film and glass that is shorted by pressing the film.
  • the capacitive input device has an advantage that a light-transmitting conductive film is simply formed on a single substrate.
  • electrode patterns are extended in directions intersecting with each other, and when a finger or the like comes in contact, the capacitance between the electrodes is detected to detect an input position.
  • Patent Document 1 There are types (see, for example, Patent Document 1 below).
  • a transparent film such as a transparent insulating layer and a transparent protective film for covering the electrodes is formed.
  • a tempered glass typified by Corning's gorilla glass is used for the front plate (the surface directly touched by a finger).
  • a part of the above-mentioned front plate is marketed in which an opening for installing a pressure-sensitive (pressing mechanical mechanism, not a capacitance change) switch is formed. Since these tempered glasses have high strength and are difficult to process, generally, the tempering treatment is performed after the opening is formed before the tempering treatment in order to form the aforementioned opening.
  • Patent Document 1 when forming a transparent film such as a transparent insulating layer or a transparent protective film for covering an electrode on a substrate after such a reinforcement treatment having an opening, a transparent film is formed from a transfer film. It is described that by adopting a method of transferring onto the electrode, leakage and protrusion from the opening can be suppressed rather than forming a transparent film such as a transparent insulating layer or a transparent protective film for covering the electrode by a coating method. Has been.
  • the transfer film described in Patent Document 1 includes a temporary support, a first curable transparent resin layer, and a second curable transparent resin layer disposed adjacent to the first curable transparent resin layer.
  • the refractive index of the second curable transparent resin layer is higher than the refractive index of the first curable transparent resin layer, and the refractive index of the second curable transparent resin layer is 1.6 or more
  • the transfer film is preferably provided with a thermoplastic resin layer between the temporary support and the first curable transparent resin layer.
  • Patent Document 1 describes a thermoplastic resin layer. For example, using a transfer film having a thermoplastic resin layer, the first curable transparent resin layer and the second curable transparent resin layer are transferred.
  • thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness on the base surface (including unevenness due to an already formed image, etc.).
  • the layer thickness of a thermoplastic resin layer is less than 3 micrometers, the trackability at the time of lamination is inadequate, and there exists a description that the unevenness
  • Patent Document 2 also describes that the photosensitive film is similar to Patent Document 1 in that a thermoplastic resin layer is preferably provided between the temporary support and the colored photosensitive resin layer (curable transparent resin layer). There is.
  • the transfer film since it is necessary to remove the thermoplastic resin layer by a development process or the like after transfer, the transfer film has a thermoplastic resin layer between the temporary support and the curable transparent resin layer from the viewpoint of process simplification. In practice, it is required that the temporary support and the curable transparent resin layer are in direct contact with each other.
  • the problem to be solved by the present invention is to provide a transfer film in which a temporary support and a curable transparent resin layer are in direct contact with each other and air bubbles can be prevented from being mixed during lamination to a substrate having a step.
  • the present inventor controls the thickness of the temporary support to a specific range, the thickness of the curable transparent resin layer to a specific range, and the melt viscosity measured at 100 ° C. with the composition of the curable transparent resin layer described above.
  • ⁇ c the thickness of the temporary support and the curable transparent resin layer are in direct contact with each other, and bubbles can be prevented from being mixed during lamination to a substrate having a step.
  • the present invention which is a specific means for solving the above problems, is as follows.
  • a temporary support having a thickness of 38 ⁇ m or less, and a curable transparent resin layer disposed in direct contact with the temporary support described above,
  • the thickness of the curable transparent resin layer is 5 ⁇ m or more
  • the aforementioned curable transparent resin layer contains a binder polymer, a polymerizable compound, and a polymerization initiator,
  • the transfer film whose melt viscosity (eta) c measured at 100 degreeC of the above-mentioned curable transparent resin layer is 1.0x10 ⁇ 3 > Pa * s or more.
  • the transfer film according to [1] preferably has a melt viscosity ⁇ c of 1.0 ⁇ 10 3 Pa ⁇ s to 1.0 ⁇ 10 6 Pa ⁇ s measured at 100 ° C. of the curable transparent resin layer. .
  • the transfer film according to [1] or [2] has a melt viscosity ⁇ c of 3.0 ⁇ 10 3 Pa ⁇ s to 1.0 ⁇ 10 6 Pa ⁇ s measured at 100 ° C. of the curable transparent resin layer. Preferably there is.
  • the transfer film according to any one of [1] to [4] further includes a second transparent resin layer on the curable transparent resin layer. It is preferable that the refractive index of the second transparent resin layer is higher than the refractive index of the curable transparent resin layer.
  • the manufacturing method of a laminated body whose thickness of the step which comprises the above-mentioned level
  • step difference is 100 nm or more.
  • the method for manufacturing a laminated body according to [6] includes the above-described curable transparent on the upper part of the step and the lower part of the step that form the step from one direction of the base material that forms the step.
  • the side of the step constituting the step is an inclined structure in which the upper part of the step is narrower than the lower part of the step, It is preferable that the angle formed between the side portion of the step constituting the step and the substrate is 5 to 90 °.
  • the step constituting the step includes a conductive element.
  • the upper part of the step constituting the step is the upper part of the conductive element, and the lower part of the step constituting the step is the base material.
  • the base material having the above-described step includes a transparent electrode pattern, It is preferable to include a step of laminating the aforementioned curable transparent resin layer on the aforementioned transparent electrode pattern.
  • the method for manufacturing a laminate according to [11] includes another conductive element in addition to the transparent electrode pattern described above. It is preferable that the step constituting the step is the other conductive element described above. [13] In the method for manufacturing a laminated body according to [11] or [12], it is preferable that the step constituting the step is the transparent electrode pattern. [14] In the method for producing a laminate according to any one of [11] to [13], the transfer film has a second transparent resin layer on the curable transparent resin layer.
  • the refractive index of the second transparent resin layer is higher than the refractive index of the curable transparent resin layer, It is preferable to include a step of laminating the aforementioned second transparent resin layer and the aforementioned curable transparent resin layer of the aforementioned transfer film in this order on the aforementioned transparent electrode pattern.
  • An image display device comprising the capacitive input device according to [16] as a constituent element.
  • the present invention it is possible to provide a transfer film in which the temporary support and the curable transparent resin layer are in direct contact with each other and air bubbles can be prevented from being mixed during lamination to a substrate having a step.
  • FIG. 1 It is a top view which shows another example of a structure of the electrostatic capacitance type input device of this invention, and is the pattern exposure and the aspect containing the terminal part (terminal part) of the routing wiring which is not covered with the curable transparent resin layer Show.
  • It is the schematic which shows an example of the desired pattern by which the curable transparent resin layer and the 2nd transparent resin layer were hardened.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the transfer film of the present invention has a temporary support having a thickness of 38 ⁇ m or less, and a curable transparent resin layer disposed in direct contact with the temporary support, and the thickness of the curable transparent resin layer described above. Is 5 ⁇ m or more, the curable transparent resin layer described above contains a binder polymer, a polymerizable compound, and a polymerization initiator, and the melt viscosity ⁇ c of the curable transparent resin layer measured at 100 ° C. is 1.0 ⁇ 10 3. Pa ⁇ s or more.
  • the transfer film of this invention can suppress a bubble support at the time of the lamination to the base material which a temporary support body and a curable transparent resin layer contact
  • it has a temporary support in such a thickness range and a curable transparent resin layer disposed in direct contact with the temporary support and having such a thickness, composition and melt viscosity.
  • the curable transparent resin layer of a transfer film can follow a level
  • bubbles can be prevented from being mixed during lamination to a substrate having a step.
  • the transfer film of the present invention preferably has no problem of visually recognizing the transparent electrode pattern and can form a laminate having good patternability.
  • the transfer film of the present invention preferably further has a second transparent resin layer in addition to the curable transparent resin.
  • the refractive index difference between the transparent electrode pattern (preferably ITO) and the second transparent resin layer, and the second transparent resin layer and the curable transparent resin layer described above By making the difference in refractive index small, light reflection is reduced, the transparent electrode pattern becomes difficult to see, and the visibility of the transparent electrode pattern can be improved.
  • one of the first and second transparent resin layers is a water-soluble layer, and the other is a water-insoluble layer, so that the curable transparent resin layer is laminated after the curable transparent resin layer is laminated. Even if the second transparent resin layer is laminated without curing the resin layer, the layer fraction is improved and the transparent electrode pattern visibility can be improved by the above mechanism, and the refractive index from the transfer film. After the adjustment layer (that is, the first and second transparent resin layers) is transferred onto the transparent electrode pattern, it can be developed into a desired pattern by photolithography. Furthermore, the transfer film of the present invention preferably has a good layer fraction.
  • the transfer film of the present invention is preferably for a transparent insulating layer or a transparent protective layer of a capacitive input device. More specifically, the transfer film of the present invention is preferably used as a transfer film for forming a laminated pattern of a refractive index adjusting layer and an overcoat layer (transparent protective layer) on a transparent electrode pattern by a photolithography method. it can.
  • FIG. 12 shows the transfer film 30 of the present invention in which the temporary support 26, the curable transparent resin layer 7, the second transparent resin layer 12, and the protective release layer (protective film) 29 are laminated adjacent to each other in this order.
  • FIG. 16 shows another example of a preferable configuration of the transfer film of the present invention.
  • FIG. 16 is a schematic view of the transfer film 30 of the present invention in which the temporary support 26, the curable transparent resin layer 7, and the protective release layer (protective film) 29 are laminated adjacent to each other in this order.
  • the total thickness of all layers is preferably 18 to 60 ⁇ m, more preferably 21 to 54 ⁇ m, and particularly preferably 24 to 50 ⁇ m. Even if the transfer film of the present invention is a case where the total thickness of all the layers is thin, it is possible to suppress the mixing of bubbles during lamination onto a substrate having a step. For this reason, the transfer film can be made thinner than in the case of providing a thermoplastic resin layer having a certain thickness between the temporary support and the curable transparent resin layer in JP-A-2014-108541.
  • the transfer film of the present invention has a temporary support having a thickness of 38 ⁇ m or less.
  • the thickness of the temporary support is preferably in the range of 5 to 35 ⁇ m, and more preferably in the range of 10 to 30 ⁇ m.
  • the longitudinal elastic modulus (MPa) for expressed by x film thickness (mm) 3/12, by thinning, stiffness decreases. If the bending rigidity is low, the film easily bends. Therefore, in the laminate manufacturing method described later, the followability of the temporary support to the level difference of the base material having a level difference can be increased, and air bubbles can be effectively reduced. it can.
  • Flexural rigidity of the temporary support is preferably 0.5 ⁇ 9x10 -2 (N / mm 2), more preferably 1 ⁇ 8x10 -2 (N / mm 2), 2 ⁇ 5x10 -2 Particularly preferred is (N / mm 2 ).
  • Longitudinal elastic modulus of the temporary support is preferably 1x10 3 ⁇ 7x10 3 MPa, more preferably 2x10 3 ⁇ 6x10 3 MPa, is 3x10 3 ⁇ 6x10 3 MPa It is particularly preferred.
  • the bending rigidity becomes about 2.0 ⁇ 10 ⁇ 2 (N / mm 2 ), and it is easy to bend.
  • the temporary support As a material for the temporary support, a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heat can be used.
  • a temporary support a polyethylene terephthalate film (hereinafter, also referred to as PET), a cellulose triacetate film, a polystyrene film, a polycarbonate film, and among these biaxially stretched polyethylene terephthalate film is a longitudinal modulus 4x10 3 It is particularly preferable from the viewpoint of easy control to ⁇ 6 ⁇ 10 3 (MPa).
  • the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like. Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
  • the transfer film of the present invention has a curable transparent resin layer disposed in direct contact with the temporary support, and the thickness of the curable transparent resin layer is 5 ⁇ m or more.
  • the layer contains a binder polymer, a polymerizable compound, and a polymerization initiator, and the melt viscosity ⁇ c of the aforementioned curable transparent resin layer measured at 100 ° C. is 1.0 ⁇ 10 3 Pa ⁇ s or more.
  • the curable transparent resin layer may be photocurable, thermosetting and photocurable.
  • the curable transparent resin layer is a thermosetting transparent resin layer and a photo-curable transparent resin layer. It is easy to form a film by photo-curing after transfer, and is reliable by heat-curing after film formation. It is preferable from the viewpoint of imparting properties.
  • the curable transparent resin layer of the transfer film of the present invention and the second transparent resin layer described later are transferred onto the transparent electrode pattern, and after these layers are photocured, these layers are photocured.
  • these layers lose their photocurability, they will be referred to as a curable transparent resin layer and a second transparent resin layer, respectively, regardless of whether these layers have thermosetting properties.
  • thermosetting may be performed.
  • the curable transparent resin layer and the second transparent resin are continuously used regardless of whether or not these layers are curable. Call a layer.
  • curable transparent resin layer and the second transparent resin layer of the transfer film of the present invention are transferred onto the transparent electrode pattern, and these layers lose thermosetting properties after being thermally cured. Regardless of whether these layers have photocurability or not, they will be referred to as a curable transparent resin layer and a second transparent resin layer, respectively.
  • the thickness of the above-mentioned curable transparent resin layer is 5 ⁇ m or more, and sufficient surface protection ability is obtained when the transparent protective layer of the capacitive input device is formed using the curable transparent resin layer. From the viewpoint of exhibiting the above, it is more preferably 5 to 16 ⁇ m, particularly preferably 5 to 13 ⁇ m, and particularly preferably 5 to 10 ⁇ m.
  • the ratio of the thickness of the temporary support to the thickness of the curable transparent resin layer is preferably 0.1 to 10 times. It is more preferably 1 to 8 times, and particularly preferably 2 to 5 times.
  • the melt viscosity ⁇ c measured at 100 ° C. of the curable transparent resin layer is 1.0 ⁇ 10 3 Pa ⁇ s or more, and 1.0 ⁇ 10 3 Pa ⁇ s to 1.0 ⁇ 10 6 Pa.
  • S preferably 3.0 ⁇ 10 3 Pa ⁇ s to 1.0 ⁇ 10 6 Pa ⁇ s, more preferably 4.0 ⁇ 10 3 Pa ⁇ s to 1.0 ⁇ 10 5 Pa ⁇ s is particularly preferable.
  • the refractive index of the curable transparent resin layer is preferably 1.50 to 1.53, more preferably 1.50 to 1.52, and more preferably 1.51 to 1.52. Particularly preferred is 1.52.
  • the curable transparent resin layer contains a binder polymer, a polymerizable compound, and a polymerization initiator.
  • the transfer film of the present invention may be a negative type material or a positive type material.
  • the curable transparent resin layer preferably contains metal oxide particles, a binder polymer (preferably an alkali-soluble resin), a polymerizable compound, and a polymerization initiator. Furthermore, an additive etc. are used, but it is not restricted to this.
  • the curable transparent resin layer is a transparent resin layer.
  • the method for controlling the refractive index of the curable transparent resin layer is not particularly limited, but a transparent resin layer using a transparent resin layer having a desired refractive index alone or adding particles such as metal particles or metal oxide particles is used. Or a composite of a metal salt and a polymer can be used.
  • an additive may be used for the above-mentioned curable transparent resin layer.
  • the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. Further, other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706 can be mentioned.
  • the transfer film of the present invention is a negative type material
  • the transfer film of the present invention may be a positive type material.
  • the transfer film of the present invention is a positive type material
  • materials described in JP-A-2005-221726 are used for the curable transparent resin layer, but the present invention is not limited thereto.
  • any polymer component can be used without particular limitation, but from the viewpoint of using it as a transparent protective film of a capacitive input device, the surface hardness and heat resistance are high.
  • alkali-soluble resins are more preferable.
  • known curable siloxane resin materials, acrylic resin materials, and the like are preferably used.
  • the binder polymer contained in the organic solvent-based resin composition used for forming the curable transparent resin layer preferably contains an acrylic resin, and the organic used for forming the curable transparent resin layer.
  • Both the binder polymer contained in the solvent-based resin composition and the resin or binder polymer having an acid group contained in the aqueous resin composition used for forming the second transparent resin layer described later contain an acrylic resin. It is more preferable from the viewpoint of improving interlayer adhesion before and after transferring the curable transparent resin layer and the second transparent resin layer.
  • the preferable range of the above-mentioned binder polymer of the curable transparent resin layer will be specifically described.
  • the resin used for the curable transparent resin layer described above and having a solubility in an organic solvent is not particularly limited as long as it does not violate the gist of the present invention.
  • An alkali-soluble resin can be selected, and the polymer described in paragraph 0025 of JP2011-95716A and paragraphs 0033 to 0052 of JP2010-237589A can be used as the alkali-soluble resin.
  • the curable transparent resin layer may contain a polymer latex.
  • the polymer latex referred to herein is a polymer in which water-insoluble polymer fine particles are dispersed in water.
  • the polymer latex is described, for example, in Soichi Muroi “Chemistry of Polymer Latex (published by Kobunshi Shuppankai (Showa 48))”.
  • Polymer particles that can be used include acrylic, vinyl acetate, rubber (for example, styrene-butadiene, chloroprene), olefin, polyester, polyurethane, polystyrene, and copolymers thereof. Particles are preferred. It is preferable to increase the bonding force between the polymer chains constituting the polymer particles. Examples of means for strengthening the bonding force between polymer chains include a method using a hydrogen bond interaction and a method of generating a covalent bond. As a means for imparting hydrogen bonding strength, it is preferable to introduce a monomer having a polar group in the polymer chain by copolymerization or graft polymerization.
  • polar groups carboxyl groups (containing in acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, crotonic acid, partially esterified maleic acid, etc.), primary, secondary and tertiary amino groups, ammonium base, Examples thereof include a sulfonic acid group (styrene sulfonic acid), and a carboxyl group and a sulfonic acid group are particularly preferable.
  • a preferable range of the copolymerization ratio of the monomers having these polar groups is 5 to 35% by mass, more preferably 5 to 20% by mass, and further preferably 15 to 20% by mass with respect to 100% by mass of the polymer. It is.
  • a hydroxyl group, a carboxyl group, a primary, secondary amino group, an acetoacetyl group, a sulfonic acid, an epoxy compound, a blocked isocyanate, an isocyanate, a vinyl sulfone compound, an aldehyde compound The method of making a methylol compound, a carboxylic acid anhydride, etc. react is mentioned.
  • polyurethane derivatives obtained by the reaction of polyols and polyisocyanate compounds are preferred, polyvalent amines are more preferred as chain extenders, and the above polar groups are introduced into the polymer chain.
  • the ionomer type is particularly preferred.
  • the mass average molecular weight of the polymer is preferably 10,000 or more, more preferably 20,000 to 100,000.
  • Suitable polymers for the present invention include ethylene ionomers and polyurethane ionomers which are copolymers of ethylene and methacrylic acid.
  • the polymer latex that can be used in the present invention may be obtained by emulsion polymerization or may be obtained by emulsification.
  • the method for preparing these polymer latexes is described, for example, in “Emulsion Latex Handbook” (edited by Emulsion Latex Handbook Editorial Committee, published by Taiseisha Co., Ltd. (Showa 50)).
  • Examples of the polymer latex that can be used in the present invention include an aqueous dispersion of polyethylene ionomer (trade name: Chemipearl S120, manufactured by Mitsui Chemicals, Inc., solid content 27%), Chemipearl S100, manufactured by Mitsui Chemicals, Inc.
  • Solid content 35%, Tg-50 ° C) (trade name: Hydran WLS-202 DIC Corporation) (Product name: Hydran WLS-221 manufactured by DIC Corp. Solid content: 35%, Tg-30 ° C) (Product name: Hydran WLS-210 manufactured by DIC Corp.) (Trade name: Hydran WLS-213 manufactured by DIC Corporation.
  • Solid content 35%, Tg-15 ° C) (trade name: Hydran WLI-602 manufactured by DIC Co., Ltd.) (Product name: Hydran WLI-611 manufactured by DIC Corp., solid content: 39.5%, Tg-15 ° C), alkyl acrylate copolymer ammonium (Product name: Jurimer AT-210 made by Nippon Pure Chemical), alkyl acrylate copolymer ammonium (Product name: Jurimer ET-410 made by Nippon Pure Chemical), alkyl acrylate copolymer ammonium (Product name: Jurimer AT-510 made by Nippon Pure Chemical) ), Polyacrylic acid (trade name: Julimer AC-10L, manufactured by Nippon Pure Chemical), neutralized with ammonia and emulsified.
  • the curable transparent resin layer contains a polymerizable compound.
  • the polymerizable compound may be a photopolymerizable compound or a thermally polymerizable compound.
  • the curable transparent resin layer preferably has a photopolymerizable compound. There is no restriction
  • the transfer film of the present invention preferably contains a compound having an ethylenically unsaturated group as the photopolymerizable compound of the curable transparent resin layer, and more preferably contains a compound having a (meth) acryloyl group.
  • the photopolymerizable compound used for the transfer film of the present invention may be used alone or in combination of two or more, but it is possible to use two or more in combination after transfer. This is preferable from the viewpoint of improving the wet heat resistance after the salt water is applied after exposing the curable transparent resin layer.
  • the photopolymerizable compound used in the transfer film of the present invention is a combination of a trifunctional or higher functional photopolymerizable compound and a bifunctional photopolymerizable compound, after exposing the curable transparent resin layer after transfer. From the viewpoint of improving wet heat resistance after application of salt water.
  • the bifunctional photopolymerizable compound is preferably used in the range of 10 to 90% by mass, more preferably in the range of 20 to 85% by mass with respect to all the photopolymerizable compounds, and 30 to 80% by mass. It is particularly preferable to use in the range of%.
  • the trifunctional or higher functional photopolymerizable compound is preferably used in the range of 10 to 90% by mass, more preferably in the range of 15 to 80% by mass, with respect to all the photopolymerizable compounds. It is particularly preferable to use in the range of mass%.
  • the transfer film of the present invention preferably contains at least a compound having two ethylenically unsaturated groups and a compound having at least three ethylenically unsaturated groups as the above-mentioned photopolymerizable compound, and two (meth) acryloyl It is more preferable to include at least a compound having a group and a compound having at least three (meth) acryloyl groups. Moreover, it is preferable that the transfer film of this invention contains a urethane (meth) acrylate compound as said photopolymerizable compound.
  • the mixing amount of the urethane (meth) acrylate compound is preferably 10% by mass or more, and more preferably 20% by mass or more with respect to all the photopolymerizable compounds.
  • the number of functional groups of the photopolymerizable group that is, the number of (meth) acryloyl groups is preferably 3 or more, and more preferably 4 or more.
  • the photopolymerizable compound having a bifunctional ethylenically unsaturated group is not particularly limited as long as it is a compound having two ethylenically unsaturated groups in the molecule, and a commercially available (meth) acrylate compound can be used.
  • tricyclodecane dimethanol diacrylate A-DCP Shin-Nakamura Chemical Co., Ltd.
  • tricyclodecane dimenanol dimethacrylate DCP Shin-Nakamura Chemical Co., Ltd.
  • 1,9-nonanediol di Acrylate A-NOD-N, Shin-Nakamura Chemical Co., Ltd.
  • 1,6-hexanediol diacrylate A-HD-N, Shin-Nakamura Chemical Co., Ltd.
  • the photopolymerizable compound having a trifunctional or higher functional ethylenically unsaturated group is not particularly limited as long as it is a compound having three or more ethylenically unsaturated groups in the molecule.
  • dipentaerythritol (tri / tetra / penta / (Hexa) acrylate, pentaerythritol (tri / tetra) acrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, isocyanuric acid acrylate and other (meth) acrylate compounds can be used, but span between (meth) acrylates Longer lengths are preferred.
  • skeletons such as the aforementioned dipentaerythritol (tri / tetra / penta / hexa) acrylate, pentaerythritol (tri / tetra) acrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, isocyanuric acid acrylate ( Caprolactone-modified compounds of meth) acrylate compounds (Nippon Kayaku KAYARAD DPCA, Shin-Nakamura Chemical A-9300-1CL, etc.), alkylene oxide-modified compounds (Nippon Kayaku KAYARAD RP-1040, Shin-Nakamura Chemical ATM- 35E, A-9300, EBECRYL 135 manufactured by Daicel Ornex, etc.) can be preferably used.
  • a carboxyl group-containing polybasic acid-modified (meth) acrylate monomer (Aronix M-510, M-520 manufactured by Toagosei Co., Ltd.) can be preferably used.
  • Tri- or more functional urethane (meth) acrylates include 8UX-015A (manufactured by Taisei Fine Chemical Co., Ltd.), UA-32P (manufactured by Shin-Nakamura Chemical Co., Ltd.), UA-1100H (manufactured by Shin-Nakamura Chemical Co., Ltd.) And the like can be preferably used.
  • the photopolymerizable compound used in the transfer film of the present invention preferably has an average molecular weight of 200 to 3000, more preferably 250 to 2600, and particularly preferably 280 to 2200.
  • a photopolymerizable compound that is also a thermopolymerizable compound can be preferably used.
  • the ratio of the polymerizable compound to the binder polymer is preferably 0.1 to 2 times. It is more preferably 2 to 1.5 times, and particularly preferably 0.3 to 1 times.
  • the aforementioned curable transparent resin layer contains a polymerization initiator.
  • the polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
  • the curable transparent resin layer preferably has a photopolymerization initiator.
  • the photopolymerization initiator used in the organic solvent-based resin composition the photopolymerization initiators described in paragraphs 0031 to 0042 described in JP 2011-95716 A can be used.
  • the thermal polymerization initiator those described in paragraphs 0193 to 0195 of JP2011-32186A can be preferably used, and the contents of this publication are incorporated herein.
  • the polymerization initiator is preferably contained in an amount of 1% by mass or more, more preferably 2% by mass or more, relative to the curable transparent resin layer.
  • the polymerization initiator is preferably contained in an amount of 10% by mass or less, and preferably 5% by mass or less, based on the curable transparent resin layer. It is more preferable from the viewpoint of improving body patternability and substrate adhesion.
  • the aforementioned curable transparent resin layer may or may not contain particles (preferably metal oxide particles) for the purpose of adjusting the refractive index and light transmittance.
  • metal oxide particles can be included in an arbitrary ratio depending on the type of polymer or polymerizable compound used.
  • the metal oxide particles are preferably contained in an amount of 0 to 35% by mass, more preferably 0 to 10% by mass with respect to the curable transparent resin layer. It is particularly preferred not to be included.
  • the metal oxide particles have high transparency and light transparency, a positive curable resin composition having a high refractive index and excellent transparency can be obtained.
  • the metal oxide particles described above preferably have a refractive index higher than that of a composition made of a material obtained by removing the particles from the curable transparent resin layer.
  • the metal of the metal oxide particles described above includes metalloids such as B, Si, Ge, As, Sb, and Te.
  • the light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb.
  • Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable.
  • Titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / Tin oxide and antimony / tin oxide are more preferable, titanium oxide, titanium composite oxide and zirconium oxide are more preferable, titanium oxide and zirconium oxide are particularly preferable, and titanium dioxide is most preferable. Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
  • the average primary particle diameter of the metal oxide particles is preferably 1 to 200 nm, and particularly preferably 3 to 80 nm.
  • the average primary particle diameter of the particles refers to an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope.
  • the longest side is the diameter.
  • the metal oxide particles described above may be used alone or in combination of two or more.
  • the curable transparent resin layer has at least one of ZrO 2 particles, Nb 2 O 5 particles, and TiO 2 particles, and is refracted within the refractive index range of the curable transparent resin layer described above. From the viewpoint of controlling the rate, ZrO 2 particles and Nb 2 O 5 particles are more preferable.
  • the transfer film of the present invention preferably further has a second transparent resin layer on the curable transparent resin layer, and the second transparent resin is disposed adjacent to the curable transparent resin layer. More preferably, it has a layer.
  • the transfer film of the present invention further has a second transparent resin layer on the curable transparent resin layer, and the refractive index of the second transparent resin layer is the refractive index of the curable transparent resin layer. Preferably it is higher than the rate.
  • the second transparent resin layer may be thermosetting, photocurable, thermosetting and photocurable.
  • the second transparent resin layer is at least a thermosetting transparent resin layer from the viewpoint that the film can be thermoset after transfer to impart film reliability, and the thermosetting transparent resin layer and the photocurable transparent layer are preferable.
  • the resin layer is more preferable from the viewpoint that it is easy to be photocured after transfer to form a film, and can be thermally cured after film formation to impart reliability of the film.
  • the refractive index of the second transparent resin layer is more preferably higher than the refractive index of the curable transparent resin layer. Reduce the refractive index difference between the transparent electrode pattern (preferably ITO) and the second transparent resin layer, and the refractive index difference between the second transparent resin layer and the curable transparent resin layer. Thus, the light reflection is reduced and the transparent electrode pattern becomes difficult to see, and the visibility of the transparent electrode pattern can be improved. In addition, even when the second transparent resin layer is laminated without curing the curable transparent resin layer after the curable transparent resin layer is laminated, the layer fraction is improved and the transparent electrode pattern is visually recognized by the above mechanism.
  • the refractive index adjusting layer (that is, the curable transparent resin layer and the second transparent resin layer) is transferred from the transfer film onto the transparent electrode pattern and then developed into a desired pattern by photolithography. It can.
  • the layer fraction of the curable transparent resin layer and the second transparent resin layer is good, the effect of adjusting the refractive index by the above mechanism is likely to be sufficient, and the improvement of the visibility of the transparent electrode pattern is likely to be sufficient.
  • the refractive index of the second transparent resin layer is preferably 1.60 or more.
  • the refractive index of the second transparent resin layer described above needs to be adjusted by the refractive index of the transparent electrode pattern, and the upper limit of the value is not particularly limited, but is preferably 2.1 or less, It is more preferably 1.78 or less, and may be 1.74 or less.
  • the refractive index of the transparent electrode pattern exceeds 2.0 as in the case of oxides of In and Zn (IZO)
  • the refractive index of the second transparent resin layer is 1.7 or more and 1. It is preferable that it is 85 or less.
  • the film thickness of the second transparent resin layer is preferably 500 nm or less, and more preferably 110 nm or less.
  • the film thickness of the second transparent resin layer is preferably 20 nm or more.
  • the thickness of the second transparent resin layer is particularly preferably 55 to 100 nm, more preferably 60 to 100 nm, and even more preferably 70 to 100 nm.
  • the transfer film of the present invention may be a negative type material or a positive type material.
  • the second transparent resin layer preferably contains metal oxide particles, a binder resin (preferably an alkali-soluble resin), a polymerizable compound, and a polymerization initiator. Furthermore, an additive etc. are used, but it is not restricted to this.
  • the second transparent resin layer preferably contains a binder polymer, a photopolymerizable compound, and a photopolymerization initiator.
  • the second transparent resin layer is a transparent resin layer.
  • an additive may be used for the second transparent resin layer.
  • the additive include surfactants described in paragraph 0017 of Japanese Patent No. 4502784, paragraphs 0060 to 0071 of JP-A-2009-237362, and thermal polymerization described in paragraph 0018 of Japanese Patent No. 4502784. Further, other additives described in paragraphs 0058 to 0071 of JP-A No. 2000-310706 can be mentioned.
  • the transfer film of the present invention is a negative type material
  • the transfer film of the present invention may be a positive type material.
  • the transfer film of the present invention is a positive type material, for example, the material described in JP-A-2005-221726 is used for the second transparent resin layer, but the present invention is not limited thereto.
  • the second transparent resin layer preferably contains an ammonium salt of a monomer having an acid group or an ammonium salt of a resin having an acid group.
  • the ammonium salt of the monomer having an acid group or the ammonium salt of a resin having an acid group is not particularly limited.
  • the ammonium salt of the monomer having an acid group or the ammonium salt of a resin having an acid group in the second transparent resin layer is preferably an acrylic monomer having an acid group or an ammonium salt of an acrylic resin.
  • the monomer having an acid group or the resin having an acid group is preferably a resin having an acid group, and more preferably a resin having a monovalent acid group (such as a carboxyl group).
  • the binder polymer of the second transparent resin layer is particularly preferably a binder polymer having a carboxyl group.
  • an aqueous solvent preferably a mixed solvent of water or a lower alcohol having 1 to 3 carbon atoms and water
  • the resin having an acid group used for the second transparent resin layer is preferably an alkali-soluble resin.
  • the alkali-soluble resin is a linear organic polymer, and is a group that promotes at least one alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain). It can be appropriately selected from alkali-soluble resins having an acid group (for example, a carboxyl group, a phosphoric acid group, a sulfonic acid group, etc.). Of these, more preferred are those which are soluble in an organic solvent and can be developed with a weak alkaline aqueous solution. As the acid group, a carboxyl group is preferable.
  • a known radical polymerization method can be applied.
  • Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by radical polymerization can be easily set by those skilled in the art, and the conditions are determined experimentally. It can also be done.
  • the linear organic polymer the polymer having a carboxylic acid in the side chain is preferable.
  • Acid copolymers such as styrene / maleic acid, partially esterified maleic acid copolymers, etc., and acidic cellulose derivatives having a carboxylic acid in the side chain such as carboxyalkyl cellulose and carboxyalkyl starch, hydroxyl groups
  • a polymer having an acid anhydride added to the polymer having a reactive functional group such as a (meth) acryloyl group in the side chain are also mentioned as preferred.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers composed of benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly suitable.
  • those obtained by copolymerizing 2-hydroxyethyl methacrylate are also useful. This polymer can be used by mixing in an arbitrary amount.
  • 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer 2-hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate described in JP-A-7-140654 Macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer Etc.
  • a copolymer of (meth) acrylic acid and another monomer copolymerizable therewith is particularly suitable.
  • Examples of other monomers copolymerizable with (meth) acrylic acid include alkyl (meth) acrylates, aryl (meth) acrylates, and vinyl compounds.
  • the hydrogen atom of the alkyl group and the aryl group may be substituted with a substituent.
  • alkyl (meth) acrylate and aryl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, pentyl (meth) ) Acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, phenyl (meth) acrylate, benzyl acrylate, tolyl acrylate, naphthyl acrylate, cyclohexyl acrylate and the like.
  • copolymerizable monomers can be used singly or in combination of two or more.
  • Preferred other copolymerizable monomers are selected from CH 2 ⁇ CR 1 R 2 , CH 2 ⁇ C (R 1 ) (COOR 3 ), phenyl (meth) acrylate, benzyl (meth) acrylate and styrene. It is at least one, and particularly preferably CH 2 ⁇ CR 1 R 2 and / or CH 2 ⁇ C (R 1 ) (COOR 3 ).
  • a linear polymer having a substituent capable of reacting with the reactive functional group is reacted with a (meth) acrylic compound having a reactive functional group, cinnamic acid, etc.
  • a (meth) acrylic compound having a reactive functional group examples thereof include resins introduced into linear polymers.
  • the reactive functional group examples include a hydroxyl group, a carboxyl group, and an amino group.
  • the substituent capable of reacting with the reactive functional group include an isocyanate group, an aldehyde group, and an epoxy group.
  • the resin having an acid group is preferably an acrylic resin having an acid group.
  • acrylic resin includes both methacrylic resin and acrylic resin, and (meth) acrylic similarly includes methacrylic and acrylic.
  • acrylic monomers such as (meth) acrylic acid and derivatives thereof, and the following monomers can be preferably used.
  • DPHA hexaacrylate
  • monomers having an acid group described in [0025] to [0030] of JP-A-2004-239842 can be preferably used, and the contents of this publication are incorporated in the present invention.
  • acrylic monomers such as (meth) acrylic acid and derivatives thereof can be used more preferably.
  • the acrylic monomer includes both a methacrylic monomer and an acrylic monomer.
  • binder polymer which does not have an acid group used for a 2nd transparent resin layer
  • the binder polymer used for the organic-solvent type resin composition used for formation of the above-mentioned curable transparent resin layer is used. Can be used.
  • the above-mentioned second transparent resin layer preferably contains a polymerizable compound such as the above-mentioned photopolymerizable compound or thermopolymerizable compound from the viewpoint of curing and increasing the strength of the film. It is more preferable to include other photopolymerizable compounds other than the aforementioned monomer having an acid group.
  • the polymerizable compound used in the second transparent resin layer the polymerizable compounds described in paragraphs 0023 to 0024 of Japanese Patent No. 4098550 can be used.
  • pentaerythritol tetraacrylate, pentaerythritol triacrylate, and tetraacrylate of pentaerythritol ethylene oxide (EO) adduct can be preferably used.
  • These polymerizable compounds may be used alone or in combination.
  • the ratio of pentaerythritol triacrylate is preferably 0 to 80%, more preferably 10 to 60% in terms of mass ratio.
  • a water-soluble polymerizable compound represented by the following structural formula 1 and a pentaerythritol tetraacrylate mixture (NK ester A-TMMT Shin-Nakamura Chemical Co., Ltd.) Manufactured by Co., Ltd., containing about 10% triacrylate as an impurity), a mixture of pentaerythritol tetraacrylate and triacrylate (NK Ester A-TMM3LM-N, Shin-Nakamura Chemical Co., Ltd., triacrylate 37%), pentaerythritol tetra Mixture of acrylate and triacrylate (NK Ester A-TMM-3L, Shin Nakamura Chemical Co., Ltd., triacrylate 55%), Mixture of pentaerythritol tetraacrylate and triacrylate (NK Ester A-TMM3 Shin Nakamura Chemical Co., Ltd.) ), Tri
  • a water-soluble polymerizable compound represented by the following structural formula 1 pentaerythritol Tetraacrylate mixture (NK Ester A-TMMT Shin-Nakamura Chemical Co., Ltd.), pentaerythritol tetraacrylate and triacrylate mixture (NK Ester A-TMM3LM-N Shin-Nakamura Chemical Co., Ltd., triacrylate 37%) Further, a mixture of pentaerythritol tetraacrylate and triacrylate (NK Ester A-TMM-3L, Shin-Nakamura Chemical Co., Ltd., triacrylate 55%) can be preferably used.
  • the other photopolymerizable compound used for the second transparent resin layer has a hydroxyl group as a polymerizable compound that is soluble in water or a mixed solvent of a lower alcohol having 1 to 3 carbon atoms and water. Monomers, ethylene oxide, polypropylene oxide, and monomers having a phosphate group in the molecule can be used.
  • the example of the thermopolymerizable compound used for the second transparent resin layer is the same as the example of the thermopolymerizable compound used for the curable transparent resin layer.
  • the second transparent resin layer preferably contains a polymerization initiator.
  • the polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
  • the second transparent resin layer preferably contains a photopolymerization initiator. IRGACURE 2959 or a photopolymerization initiator having the solubility in water or a mixed solvent of lower alcohol having 1 to 3 carbon atoms and water is used for the second transparent resin layer described above. An initiator can be used. Examples of the thermal polymerization initiator used for the second transparent resin layer are the same as those of the thermal polymerization initiator used for the curable transparent resin layer.
  • the second transparent resin layer described above may or may not contain particles (preferably metal oxide particles) for the purpose of adjusting the refractive index and light transmittance.
  • the inclusion of particles is preferable from the viewpoint of controlling the refractive index of the second transparent resin layer within the above range.
  • the above-mentioned second transparent resin layer can contain metal oxide particles in any proportion depending on the type of polymer or polymerizable compound used.
  • the metal oxide particles are preferably contained in an amount of 40 to 95% by mass, more preferably 55 to 95% by mass, and 62 to 90% by mass with respect to the second transparent resin layer.
  • the metal oxide particles described above are preferably those having a refractive index higher than that of a composition made of a material obtained by removing the particles from the second transparent resin layer.
  • the second transparent resin layer preferably contains particles having a refractive index of 1.50 or more in light having a wavelength of 400 to 750 nm.
  • the refractive index of light having a wavelength of 400 to 750 nm being 1.50 or more means that the average refractive index of light having a wavelength in the above range is 1.50 or more. It is not necessary that the refractive index of all light having a wavelength is 1.50 or more.
  • the average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
  • the metal oxide particles described above may be used alone or in combination of two or more.
  • the second transparent resin layer has at least one of ZrO 2 particles, Nb 2 O 5 particles and TiO 2 particles, and the refractive index range of the second transparent resin layer described above. From the viewpoint of controlling the refractive index, ZrO 2 particles and Nb 2 O 5 particles are more preferable.
  • a third curable transparent resin layer may be further provided on the above-mentioned second transparent resin layer.
  • the third curable transparent resin layer is preferably water-insoluble, and when the second transparent resin layer is water-insoluble, the third curable The transparent resin layer is preferably water-soluble.
  • the refractive index of the third curable transparent resin layer is preferably 1.60 or more.
  • the upper limit of the refractive index of the above-mentioned third curable transparent resin layer is not particularly limited, but is preferably 1.78 or less, and may be 1.74 or less.
  • the film thickness of the third curable transparent resin layer is preferably 500 nm or less, and more preferably 110 nm or less.
  • the thickness of the third curable transparent resin layer is particularly preferably 55 to 100 nm, more preferably 60 to 100 nm, and even more preferably 70 to 100 nm.
  • the above-mentioned third curable transparent resin layer contains the above-described polymerizable compound from the viewpoint of curing and increasing the strength of the film.
  • the above-mentioned third curable transparent resin layer may or may not contain metal oxide particles, but the inclusion of metal oxide particles in the above-mentioned range includes the above-mentioned third curable properties. It is preferable from the viewpoint of controlling the refractive index of the transparent resin layer.
  • the above-mentioned third curable transparent resin layer can contain metal oxide particles in an arbitrary ratio depending on the type of polymer or polymerizable compound used. In the layer, the metal oxide particles are preferably contained in an amount of 40 to 95% by mass, more preferably 55 to 95% by mass, based on the solid content of the third curable transparent resin layer. 82 to 90% by mass is particularly preferable.
  • the transfer film of the present invention preferably further includes a protective film (hereinafter also referred to as “protective release layer”) or the like on the surface of the second transparent resin layer.
  • a protective film hereinafter also referred to as “protective release layer”
  • protective films described in paragraphs 0083 to 0087 and 0093 of JP-A-2006-259138 can be appropriately used.
  • the transfer film of the present invention can be produced according to the method for producing a curable transfer material described in paragraphs 0094 to 0098 of JP-A-2006-259138.
  • the transfer film of the present invention is preferably manufactured by the following transfer film manufacturing method.
  • the method for producing a transfer film includes a step of forming a curable transparent resin layer on a temporary support and a step of forming a second transparent resin layer directly on the curable transparent resin layer.
  • Either one of the transparent resin layer and the second transparent resin layer is coated with a coating solution containing water or a mixed solvent of water having an alcohol content of 1 to 3 carbon atoms and a mass ratio of 58/42 to 100/0.
  • the other is formed by applying a coating solution containing an organic solvent, and the refractive index of the second transparent resin layer is higher than the refractive index of the curable transparent resin layer.
  • the refractive index is preferably 1.6 or more.
  • any one of the first and second transparent resin layers is coated with a coating solution containing water or a mixed solvent of water having an alcohol content of 1 to 3 carbon atoms and a mass ratio of 58/42 to 100/0.
  • the layer fractionation Can improve the visibility of the transparent electrode pattern, and after transferring the refractive index adjusting layer (that is, the first and second transparent resin layers) from the transfer film onto the transparent electrode pattern, photolithography Can be developed into a desired pattern.
  • the method for producing a transfer film preferably includes a step of further forming a thermoplastic resin layer before forming the aforementioned curable transparent resin layer on the aforementioned temporary support.
  • the transfer film manufacturing method preferably includes a step of forming an intermediate layer between the thermoplastic resin layer and the curable transparent resin layer after the step of forming the thermoplastic resin layer.
  • a solution thermoplastic resin coating solution
  • a preparation liquid intermediate layer coating liquid prepared by adding a resin or an additive to a solvent that does not dissolve the thermoplastic resin layer is applied onto the thermoplastic resin layer.
  • the intermediate layer is laminated by drying, and a colored photosensitive resin layer coating solution prepared using a solvent that does not dissolve the intermediate layer is further applied onto the intermediate layer and dried to form a colored photosensitive resin layer.
  • a colored photosensitive resin layer coating solution prepared using a solvent that does not dissolve the intermediate layer is further applied onto the intermediate layer and dried to form a colored photosensitive resin layer.
  • the method for producing a laminate of the present invention includes the above-described curability of the transfer film of the present invention so as to continuously cover at least the upper part of the step and the lower part of the step on the base having a step. Including the step of laminating the transparent resin layer, the thickness of the step constituting the step is 100 nm or more. With such a configuration, the method for producing a laminate of the present invention can suppress air bubbles from being mixed when laminating to a substrate having a step, particularly to a substrate having a step in a region along the step (44 in FIG. 17). It is possible to suppress air bubble mixing during the lamination.
  • the manufacturing method of the laminated body of this invention uses the base material which has a level
  • step difference As a base material that can be used as a base material having a step, a base material described later can be used, and a transparent base material is preferable.
  • a surface treatment can be applied in advance to the non-contact surface of the base material (particularly when the base material is a transparent substrate (front plate)).
  • a surface treatment it is preferable to carry out a surface treatment (silane coupling treatment) using a silane compound.
  • silane coupling agent those having a functional group that interacts with the photosensitive resin are preferable.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane) 0.3 mass% aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 a silane coupling solution
  • a heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
  • step difference which comprises a level
  • the thickness of the step constituting the step is 100 nm or more, preferably 100 nm to 500 nm, and more preferably 100 nm to 300 nm.
  • the upper limit of the thickness of the steps constituting the steps is preferably not more than the above range from the viewpoint of followability to the steps when the transfer film is a dry film containing almost no solvent.
  • step difference used for the manufacturing method of the laminated body of this invention is demonstrated based on drawing.
  • An example of a substrate having a level difference that can be used in the method for producing a laminate of the present invention is shown in FIGS.
  • the substrate 43 having a step shown in FIG. 18 has a step 41 constituting the step on the film substrate 1A.
  • the thickness of the step 41 constituting the step corresponds to the height (distance) of the upper portion 41a of the step constituting the step and the lower portion 41b of the step constituting the step.
  • the thickness of the step 41 constituting the step is described as 100 nm, but the base material having the step used in the method for manufacturing the laminate of the present invention is not limited to such a mode.
  • the lower part of the steps constituting the above-described steps may be other members instead of the substrate (film substrate), but is preferably a substrate.
  • the lower part of the step constituting the step is the film base 1A.
  • the upper part of the steps constituting the step may be a curved surface instead of a flat surface.
  • the side part (41b in FIG. 18) constituting the above-described step has an inclined structure (so-called tapered shape) where the upper part of the step is narrower than the lower part of the step, and the side part of the step constituting the above-mentioned step
  • the angle (41b in FIG. 18) and the lower part 41b of the step constituting the step ( ⁇ in FIG. 18) is preferably 5 to 90 °.
  • the side portion of the step (41b in FIG. 18) constituting the above-described step is an inclined structure (so-called tapered shape) where the upper portion of the step is narrower than the lower portion of the step.
  • the width of the inclined structure (so-called taper shape) of the side part 41b of the step constituting the above-described step is 20 nm, but the base material having the step used in the method for manufacturing a laminate of the present invention is It is not limited to such an aspect.
  • the width of the inclined structure (so-called taper shape) of the side part 41b of the step is preferably 10 nm to 1000 nm, and more preferably 20 nm to 500 nm.
  • the width of the inclined structure (so-called taper shape) of the side part 41b of the step can be obtained by (thickness of the step constituting the step) ⁇ cot ⁇ .
  • the steps constituting the steps described above preferably include a conductive element, and more preferably a conductive element.
  • the conductive element can include a transparent electrode pattern, an electrode pattern, another conductive element, etc., more preferably a transparent electrode pattern or another conductive element, and another conductive element. Particularly preferred.
  • the laminate manufacturing method of the present invention is such that the upper portion (41a in FIG. 18) of the step constituting the step is the upper portion of the conductive element.
  • the lower part of the step (41c in FIG. 18) constituting the step is preferably the substrate.
  • the manufacturing method of the laminated body of this invention contains another electroconductive element other than the above-mentioned transparent electrode pattern, and the step which comprises the above-mentioned level
  • step difference is the above-mentioned transparent electrode pattern in the manufacturing method of the laminated body of this invention.
  • the thickness of a transparent electrode pattern may be less than 100 nm, and it is preferable that the step which comprises a level
  • the substrate 43 having a step has a film substrate 1 ⁇ / b> A, another conductive element 6, and a transparent electrode pattern 3 (first transparent electrode pattern).
  • another conductive element 6 may constitute a step 41 that forms a step by only one piece, and a plurality of adjacently arranged pieces constitute a step 41 that forms a step. (Not shown).
  • the above-mentioned transparent electrode pattern and the above-mentioned another conductive element are the first transparent electrode pattern 3, the second transparent electrode pattern 4 and another conductivity in the description of the capacitive input device of the present invention described later.
  • a method for forming the element 6 or the like a film can be formed on an arbitrary substrate such as a film substrate or a transparent substrate, and a method using a photosensitive film is preferable.
  • the laminate manufacturing method includes a protective film removing step of removing the protective film from the transfer film of the present invention before the step of laminating the curable transparent resin layer. It is preferable to contain.
  • the method for producing a laminate of the present invention includes the above-described curability of the transfer film of the present invention so as to continuously cover at least the upper part of the step and the lower part of the step on the base having a step. Including a step of laminating a transparent resin layer.
  • the curable transparent resin layer is continuously formed on the upper part and the lower part of the step constituting the step from one direction of the base material constituting the step. It is preferable to laminate.
  • the manufacturing method of the laminated body of the present invention is the step of laminating the above-mentioned curable transparent resin layer in this order from the lower part of the step (41c in FIG. 18) to the upper part of the step (41a in FIG. 18).
  • the step raising step is performed when the curable transparent resin layer climbs the step at the step closer to the laminating direction 42 in FIG.
  • the step lowering step is performed when the curable transparent resin layer exceeds the step at the step far from the laminating direction 42 in FIG.
  • the step of laminating the curable transparent resin layer on the stepped substrate is preferably a transfer (bonding) step.
  • a transfer process means that the curable transparent resin layer is laminated
  • a method including a step of removing the temporary support after laminating the curable transparent resin layer of the transfer film of the present invention on a substrate having a step (another conductive element or transparent electrode pattern) is preferable.
  • the above-mentioned curable transparent resin layer (preferably further the above-mentioned second transparent resin layer) is superimposed on the surface of the substrate having a step. It is preferably carried out by pressurizing and heating.
  • a known laminator such as a laminator, a vacuum laminator, and an auto-cut laminator that can increase productivity can be used in the step of laminating the curable transparent resin layer on the substrate having a step.
  • the laminator preferably comprises any heatable roller such as a rubber roller and can be pressurized and heated.
  • the temperature at the time of bonding the curable transparent resin layer and the substrate having a step is preferably 60 to 150 ° C., more preferably 65 to 130 ° C. 70 to 100 ° C. is particularly preferable. It is preferable to apply a linear pressure of 60 to 200 N / cm, and a linear pressure of 70 to 160 N / cm is applied between the curable transparent resin layer and the substrate having a step in the step of laminating the curable transparent resin layer. More preferably, a linear pressure of 80 to 120 N / cm is applied.
  • the conveyance speed of the curable transparent resin layer in the step of laminating the curable transparent resin layer is preferably 2.0 m / min or more, more preferably 3.0 m / min or more, and still more preferably 4.0 m / min or more.
  • the method for producing a laminate of the present invention can suppress air bubbles from being mixed during lamination to a substrate having a step even during such high-speed lamination.
  • FIG. 17 shows a schematic diagram of an example of a step of laminating a curable transparent resin layer in the method for producing a laminate of the present invention.
  • the substrate 43 having a step shown in FIG. 17 has a thickness of 100 nm on the film substrate 1A, and the upper direction of the film substrate 1A (the paper surface of FIG. A conductive element having a rectangular shape with a length of 2 cm and a width of 5 cm when viewed from above is provided as a step 41 constituting a step.
  • the transfer film of the present invention is continuously laminated with a curable transparent resin layer so as to cover all the steps 41 from the laminating direction 42 shown in FIG. 17, and the curable transparent resin layer is laminated on the substrate 43 having the steps. .
  • the curable transparent resin layer is laminated while being conveyed by a laminator (not shown), and is crimped by applying a linear pressure at a high temperature.
  • the method for producing a laminate of the present invention includes the transfer film having the above-mentioned curable transparent resin layer and the above-mentioned second transparent resin layer, the above-described curable transparent resin layer and the above-mentioned second transparent resin layer on the transparent electrode pattern.
  • a method of forming a transparent resin layer is preferred.
  • the manufacturing method of the laminated body of this invention includes the process in which the base material which has the above-mentioned level
  • the transfer film described above further has a second transparent resin layer on the curable transparent resin layer, and the refractive index of the second transparent resin layer is the same as that described above.
  • the refractive index of the curable transparent resin layer is higher, and the second transparent resin layer and the curable transparent resin layer of the transfer film of the present invention are laminated in this order on the transparent electrode pattern. It is more preferable to contain.
  • the second transparent resin layer of the laminate and the above-mentioned curable transparent resin layer can be collectively transferred, and a laminate without a problem of visually recognizing the transparent electrode pattern can be easily produced. It can be manufactured with good performance.
  • the above-mentioned second transparent resin layer in the method for producing a laminate of the present invention is formed on the above-mentioned transparent electrode pattern and on the above-mentioned transparent film in the above-mentioned non-pattern region, or through another layer. To form a film.
  • the method for producing a laminate includes an exposure step of exposing a curable transparent resin layer (preferably the second transparent resin layer described above) transferred onto a stepped substrate, and an exposed curable transparent resin layer. (Preferably further developing step of developing the second transparent resin layer described above).
  • the above-described exposure step is a step of exposing the above-mentioned curable transparent resin layer (preferably the above-mentioned second transparent resin layer) transferred onto the transparent electrode pattern.
  • a predetermined mask is disposed above the curable transparent resin layer (preferably the second transparent resin layer described above) formed on the transparent electrode pattern, and then the mask, temporary
  • a light source for the above-mentioned exposure light (for example, 365 nm, 405 nm, etc.) in a wavelength region capable of curing the above-mentioned curable transparent resin layer (preferably further the above-mentioned second transparent resin layer) can be irradiated.
  • Any material can be appropriately selected and used. Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned.
  • the exposure amount is usually about 5 to 200 mJ / cm 2 , preferably about 10 to 100 mJ / cm 2 .
  • the method for producing a laminate preferably includes a step of simultaneously curing the curable transparent resin layer and the second transparent resin layer, and more preferably includes a step of pattern curing at the same time.
  • the second transparent resin layer is preferably laminated without laminating the curable transparent resin layer after laminating the curable transparent resin layer.
  • the curable transparent resin layer and the second transparent resin layer transferred from the transfer film of the present invention thus obtained can be simultaneously cured. Thereby, after transferring the first and second transparent resin layers from the transfer film of the present invention onto the transparent electrode pattern, it can be developed into a desired pattern by photolithography.
  • the manufacturing method of a laminated body is an uncured part of the curable transparent resin layer and the second transparent resin layer (in the case of photocuring, after the step of simultaneously curing the curable transparent resin layer and the second transparent resin layer, It is more preferable to include a step of developing and removing only the unexposed part or only the exposed part.
  • the development step described above is a step of developing the exposed curable transparent resin layer (preferably further the second transparent resin layer described above).
  • the above-described development step is a development step in a narrow sense in which the pattern-exposed curable transparent resin layer (preferably further the second transparent resin layer described above) is subjected to pattern development with a developer.
  • the development described above can be performed using a developer.
  • the developer is not particularly limited, and a known developer such as the developer described in JP-A-5-72724 can be used.
  • the developing solution is preferably a developing solution in which the photocurable resin layer has a dissolution type developing behavior.
  • the developer in the case where the curable transparent resin layer and the second transparent resin layer itself do not form a pattern is a developer that does not dissolve the non-alkali development type colored composition layer.
  • a developer containing a compound having a pKa of 7 to 13 at a concentration of 0.05 to 5 mol / L is preferable.
  • a small amount of an organic solvent miscible with water may be added to the developer.
  • organic solvents miscible with water examples include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ⁇ -caprolactone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ⁇ -caprolactam, N-methylpyrrolidone, and the like.
  • the concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
  • a known surfactant can be further added to the developer.
  • the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
  • the development method described above may be any of paddle development, shower development, shower & spin development, dip development, and the like.
  • shower development will be described.
  • the uncured portion is removed by spraying a developer onto the curable transparent resin layer (preferably the second transparent resin layer described above) after exposure. be able to. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like.
  • the liquid temperature of the developer is preferably 20 ° C. to 40 ° C.
  • the pH of the developer is preferably 8 to 13.
  • the manufacturing method of a laminated body may have other processes, such as a post exposure process and a post-baking process.
  • a post exposure process e.g., a post-exposh.
  • a post-baking process e.g., a post-exposh.
  • the above-mentioned curable transparent resin layer preferably the above-mentioned second transparent resin layer
  • patterning exposure and whole surface exposure may be performed after peeling the temporary support, or may be performed before peeling the temporary support, and then the temporary support may be peeled off. Exposure through a mask or digital exposure using a laser or the like may be used.
  • the laminate of the present invention has a refractive index of 1.6 to 6.0 on the opposite side of the transparent electrode pattern on which the curable transparent resin layer (preferably further the second transparent resin layer described above) is formed.
  • the transparent film may be formed directly on the transparent electrode pattern or another layer such as the third transparent film.
  • a film is formed.
  • the method for forming the transparent film is not particularly limited, but is preferably formed by transfer or sputtering.
  • the laminate of the present invention is preferably formed by transferring the above-mentioned transparent film onto the above-mentioned transparent substrate by transferring the transparent curable resin film formed on the temporary support.
  • the film is cured later to form a film.
  • a transfer and curing method a photosensitive film in the description of the capacitance-type input device of the present invention to be described later is used, and the curable transparent resin layer (preferably further described above) in the method for producing a laminate of the present invention.
  • a method of laminating, exposing, developing and other steps can be mentioned. In that case, it is preferable to adjust the refractive index of the transparent film in the above range by dispersing the metal oxide particles in the photocurable resin layer in the photosensitive film.
  • the transparent film is an inorganic film
  • it is preferably formed by sputtering. That is, it is also preferable that the above-described transparent film is formed by sputtering.
  • the sputtering method the methods used in JP 2010-86684 A, JP 2010-152809 A, and JP 2010-257492 A can be preferably used.
  • the third transparent film forming method is the same as the method of forming a transparent film having a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm on a transparent substrate.
  • the laminated body of this invention is a laminated body manufactured with the manufacturing method of the laminated body of this invention.
  • the laminate of the present invention includes a transparent electrode pattern, a second transparent resin layer disposed adjacent to the transparent electrode pattern, and a curable transparent resin layer disposed adjacent to the second transparent resin layer.
  • the refractive index of the second transparent resin layer is higher than the refractive index of the curable transparent resin layer, and the refractive index of the second transparent resin layer is 1.6 or more. Is preferred.
  • the laminate of the present invention is well colored, that is, not yellowish.
  • the laminated body of this invention has favorable board
  • the laminate of the present invention has a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm on the opposite side of the transparent electrode pattern on which the second transparent resin layer is formed. It is preferable to further have a transparent film from the viewpoint of further improving the visibility of the transparent electrode pattern.
  • transparent film refers to the above “transparent film having a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm” unless otherwise specified.
  • the laminate of the present invention further includes a transparent substrate on the opposite side of the transparent film having the refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm on which the transparent electrode pattern is formed. It is preferable to have.
  • FIG. 11 shows an example of the configuration of the laminate of the present invention.
  • the transparent substrate 1 has a transparent film 11 having a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm, and further includes a transparent electrode pattern 4, a second transparent resin layer 12, and a curing property.
  • the transparent resin layer 7 has an area 21 in which the transparent resin layer 7 is laminated in this order.
  • the above-described stacked body includes a region in which a transparent substrate 1 and a multilayer film 11 including at least two kinds of transparent thin films having different refractive indexes are stacked in this order (in FIG. 11).
  • the second transparent resin layer 12 and the curable transparent resin layer 7 include a region 22 in which the second transparent resin layer 12 and the curable transparent resin layer 7 are laminated in this order (that is, a non-pattern region 22 where a transparent electrode pattern is not formed).
  • the substrate with a transparent electrode pattern described above includes the transparent substrate 1, the multilayer film 11 including at least two kinds of transparent thin films having different refractive indexes, the transparent electrode pattern 4, the second transparent resin layer 12, and the curable transparent.
  • a region 21 in which the resin layer 7 is laminated in this order is included in the in-plane direction.
  • the in-plane direction means a direction substantially parallel to a plane parallel to the transparent substrate of the laminate.
  • the transparent electrode pattern 4, the second transparent resin layer 12, and the curable transparent resin layer 7 include an area in which the transparent electrode pattern 4, the second transparent resin layer 12, and the curable transparent resin layer 7 are laminated in this order.
  • the transparent electrode pattern has a first transparent electrode pattern and a second transparent electrode in two directions substantially orthogonal to the row direction and the column direction, respectively. It may be provided as an electrode pattern (see, for example, FIG. 3). For example, in the configuration of FIG.
  • the transparent electrode pattern in the laminate of the present invention may be the second transparent electrode pattern 4 or the pad portion 3 a of the first transparent electrode pattern 3.
  • the reference numeral of the transparent electrode pattern may be represented by “4”.
  • the transparent electrode pattern in the laminate of the present invention is the capacitance of the present invention. It is not limited to use for the second transparent electrode pattern 4 in the mold input device, and may be used as the pad portion 3a of the first transparent electrode pattern 3, for example.
  • the laminated body of this invention contains the non-pattern area
  • the non-pattern region means a region where the transparent electrode pattern 4 is not formed.
  • FIG. 11 shows a mode in which the laminate of the present invention includes a non-pattern region 22.
  • the aforementioned transparent substrate, the aforementioned transparent film, and the aforementioned second transparent resin layer are laminated in this order on at least a part of the non-pattern region 22 where the aforementioned transparent electrode pattern is not formed. It is preferable to include an in-plane region.
  • the transparent film and the second transparent resin layer are adjacent to each other in a region where the transparent substrate, the transparent film, and the second transparent resin layer are stacked in this order. It is preferable. However, in the other areas of the non-pattern area 22 described above, other members may be disposed at arbitrary positions as long as they do not contradict the spirit of the present invention.
  • the mask layer 2, the insulating layer 5, another conductive element 6 and the like can be laminated.
  • the transparent substrate and the transparent film are preferably adjacent to each other.
  • FIG. 11 shows a mode in which the above-described transparent film 11 is laminated adjacently on the above-described transparent substrate 1.
  • a third transparent film may be laminated between the above-mentioned transparent substrate and the above-described transparent film as long as it does not contradict the gist of the present invention.
  • the thickness of the transparent film is preferably 55 to 110 nm, more preferably 60 to 110 nm, and particularly preferably 70 to 90 nm.
  • the transparent film described above may have a single layer structure or a laminated structure of two or more layers.
  • the film thickness of the above-mentioned transparent film means the total film thickness of all layers.
  • FIG. 11 shows an aspect in which the transparent electrode pattern 4 is laminated adjacently on a partial region of the transparent film 11.
  • the end of the transparent electrode pattern 4 is not particularly limited in shape, but may have a tapered shape.
  • the surface on the transparent substrate side described above is the above-described surface. It may have a taper shape wider than the surface opposite to the transparent substrate.
  • the angle of the end of the transparent electrode pattern (hereinafter also referred to as a taper angle) is preferably 30 ° or less, 0.1 to 15 More preferably, the angle is more preferably 0.5 to 5 °.
  • the method for measuring the taper angle in this specification can be obtained by taking a photomicrograph of the end of the transparent electrode pattern described above, approximating the taper portion of the photomicrograph to a triangle, and directly measuring the taper angle. .
  • FIG. 10 shows an example in which the end portion of the transparent electrode pattern is tapered.
  • the triangle that approximates the tapered portion in FIG. 10 has a bottom surface of 800 nm and a height (film thickness at the upper base portion substantially parallel to the bottom surface) of 40 nm, and the taper angle ⁇ at this time is about 3 °.
  • the bottom surface of the triangle that approximates the tapered portion is preferably 10 to 3000 nm, more preferably 100 to 1500 nm, and particularly preferably 300 to 1000 nm.
  • the preferable range of the height of the triangle which approximated the taper part is the same as the preferable range of the film thickness of the transparent electrode pattern.
  • the laminate of the present invention preferably includes a region in which the transparent electrode pattern and the second transparent resin layer are adjacent to each other.
  • FIG. 11 in the region 21 in which the above-described transparent electrode pattern, the above-described second transparent resin layer, and the curable transparent resin layer are laminated in this order, the above-described transparent electrode pattern, the above-described second transparent resin layer, and An embodiment in which the curable transparent resin layers are adjacent to each other is shown.
  • both the transparent electrode pattern and the non-pattern region 22 where the transparent electrode pattern is not formed are continuously formed by the transparent film and the second transparent resin layer. It is preferably coated directly or via other layers.
  • “continuously” means that the transparent film and the second transparent resin layer are not a pattern film but a continuous film. That is, it is preferable that the above-described transparent film and the above-described second transparent resin layer have no opening from the viewpoint of making the transparent electrode pattern less visible. Further, it is preferable that the transparent electrode pattern and the non-pattern region 22 are directly covered with the transparent film and the second transparent resin layer, rather than being covered with another layer. .
  • FIG. 11 shows an aspect in which the second transparent resin layer 12 is laminated.
  • the above-mentioned second transparent resin layer 12 is laminated over a region where the transparent electrode pattern 4 on the transparent film 11 is not laminated and a region where the transparent electrode pattern 4 is laminated. .
  • the aforementioned second transparent resin layer 12 is adjacent to the aforementioned transparent film 11, and further, the aforementioned second transparent resin layer 12 is adjacent to the transparent electrode pattern 4. Moreover, when the edge part of the transparent electrode pattern 4 is a taper shape, it is preferable that the above-mentioned 2nd transparent resin layer 12 is laminated
  • FIG. 11 shows a mode in which the curable transparent resin layer 7 is laminated on the surface of the second transparent resin layer 12 opposite to the surface on which the transparent electrode pattern is formed.
  • the base material used for the base material having a step is preferably a film base material or a transparent substrate.
  • the film base material is preferably in the following mode. It is more preferable to use a film substrate that is not optically distorted or that has high transparency.
  • Specific materials include polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate (PC), and triacetyl cellulose. (TAC) and cycloolefin polymer (COP).
  • the above-mentioned transparent substrate is preferably a glass substrate having a refractive index of 1.5 to 1.55.
  • the refractive index of the transparent substrate is particularly preferably 1.5 to 1.52.
  • the transparent substrate described above is composed of a light-transmitting substrate such as a glass substrate, and tempered glass represented by Corning's gorilla glass can be used. Further, as the above-mentioned transparent substrate, materials used in JP 2010-86684 A, JP 2010-152809 A, and JP 2010-257492 A can be preferably used.
  • the laminate of the present invention preferably has a transparent electrode pattern.
  • the refractive index of the transparent electrode pattern is preferably 1.75 to 2.1.
  • the material for the transparent electrode pattern is not particularly limited, and a known material can be used.
  • it can be made of a light-transmitting conductive metal oxide film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • Examples of such a metal film include an ITO film; a metal film such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; and a metal oxide film such as SiO 2 .
  • the film thickness of each element can be set to 10 to 200 nm.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 described later are a photosensitive film having a photocurable resin layer using conductive fibers. It can also be manufactured.
  • the transparent electrode pattern described above is preferably an ITO film.
  • the transparent electrode pattern is preferably an ITO film having a refractive index of 1.75 to 2.1.
  • the laminate of the present invention preferably has a conductive element different from the transparent electrode pattern.
  • Another conductive element is preferably a lead-out wiring (also referred to as lead-out wiring) of the transparent electrode pattern.
  • the material of another conductive element is not particularly limited, and a known material can be used. Conventionally, MAM having a three-layer structure of Mo / Al / Mo has been generally used as a material for another conductive element because of its high conductivity and easy microfabrication.
  • the same material can be preferably used, and Au (gold), Ag (silver), Cu (copper), Al (aluminum), Mo (molybdenum), Pd (palladium), Pt (platinum), C (carbon)
  • a metal such as Fe (iron) can also be used.
  • curable transparent resin layer and second transparent resin layer The preferred ranges of the curable transparent resin layer and the second transparent resin layer contained in the laminate of the present invention are the preferred ranges of the aforementioned curable transparent resin layer and the aforementioned second transparent resin layer in the transfer film of the present invention. It is the same.
  • the refractive index of the transparent film described above is 1.6 to 1.78, and preferably 1.65 to 1.74.
  • the transparent film described above may have a single layer structure or a laminated structure of two or more layers.
  • the refractive index of the aforementioned transparent film means the refractive index of all layers.
  • the material for the transparent film is not particularly limited.
  • the preferred range of the material for the transparent film and the preferred range for the physical properties such as the refractive index are the same as those for the second transparent resin layer.
  • the transparent film is preferably a transparent resin film.
  • the metal oxide particles, resin (binder) and other additives used for the transparent resin film are not particularly limited as long as they do not contradict the gist of the present invention, and the second transparent resin layer described above in the transfer film of the present invention. Resins and other additives used in the above can be preferably used.
  • the transparent film may be an inorganic film. As a material used for the inorganic film, a material used for the above-mentioned second transparent resin layer in the transfer film of the present invention can be preferably used.
  • the refractive index of the third transparent film is preferably 1.5 to 1.55 from the viewpoint of improving the visibility of the transparent electrode pattern because it approaches the refractive index of the transparent substrate. More preferably, it is ⁇ 1.52.
  • the capacitance-type input device of the present invention includes the laminate of the present invention.
  • the electrostatic capacitance type input device includes a second transparent resin layer and a curable transparent resin layer disposed adjacent to the second transparent resin layer from the transfer film of the present invention. It is preferable to be produced by transferring onto a transparent electrode pattern.
  • the capacitance-type input device is preferably formed by simultaneously curing the curable transparent resin layer and the second transparent resin layer transferred from the transfer film of the present invention, and the curable transparent resin layer and the second transparent resin. More preferably, the layers are simultaneously pattern cured.
  • the capacitance-type input device is preferably developed and removed from the uncured portion of the curable transparent resin layer and the second transparent resin layer which are transferred from the transfer film of the present invention and simultaneously pattern-cured. preferable.
  • FIG. 13 shows a capacitance-type input device having the following configuration including a lead wire (another conductive element 6) of a transparent electrode pattern and a terminal portion 31 of the lead wire. Since the curable transparent resin layer (and the second transparent resin layer) on the terminal portion 31 of the routing wiring is an uncured portion (unexposed portion), it is removed by development and the terminal portion 31 of the routing wiring is exposed. is doing. Specific exposure and development modes are shown in FIGS. FIG.
  • FIG. 14 shows a state before the transfer film 30 of the present invention having the first and second transparent resin layers is laminated on the transparent electrode pattern of the capacitive input device and cured by exposure or the like. Show.
  • photolithography that is, when cured by exposure, pattern exposure is performed using a mask on the cured portion (exposed portion) 33 of the curable transparent resin layer and the second transparent resin layer having the shape shown in FIG. And it can obtain by developing an unexposed part. Specifically, in FIG.
  • the opening 34 corresponding to the terminal portion of the routing wiring as the uncured portion of the curable transparent resin layer and the second transparent resin layer, and the outline of the frame portion of the capacitive input device The first and second portions are arranged so as not to cover the end portions (lead-out wiring portions) of the lead-out wiring from which the end portions of the transfer film of the present invention having the first and second transparent resin layers protruding from the outside are removed. A cured portion (desired pattern) of the second transparent resin layer is obtained. Thereby, the flexible wiring produced on the polyimide film can be directly connected to the terminal portion 31 of the routing wiring, and the sensor signal can be sent to the electric circuit.
  • the capacitive input device of the present invention includes a transparent electrode pattern, a second transparent resin layer disposed adjacent to the transparent electrode pattern, and a curing disposed adjacent to the second transparent resin layer.
  • the refractive index of the second transparent resin layer is higher than the refractive index of the curable transparent resin layer, and the refractive index of the second transparent resin layer is 1.6. It is preferable to have a laminate as described above. Hereinafter, the detail of the preferable aspect of the electrostatic capacitance type input device of this invention is demonstrated.
  • the capacitive input device of the present invention includes at least the following (3) to (5) on the front plate (corresponding to the transparent substrate in the laminate of the present invention) and the non-contact surface side of the front plate: It has elements (7) and (8) and preferably has the laminate of the present invention. (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in the first direction via the connection portions; (4) A plurality of second electrode patterns comprising a plurality of pad portions that are electrically insulated from the first transparent electrode pattern and extend in a direction intersecting the first direction.
  • the above-mentioned (7) second transparent resin layer corresponds to the above-mentioned second transparent resin layer in the laminate of the present invention.
  • the above-mentioned (8) curable transparent resin layer corresponds to the above-mentioned curable transparent resin layer in the laminate of the present invention.
  • the curable transparent resin layer described above is preferably a so-called transparent protective layer in a generally known electrostatic capacitance type input device.
  • the above-mentioned (4) second electrode pattern may be a transparent electrode pattern or a transparent electrode pattern, but is preferably a transparent electrode pattern.
  • the capacitance-type input device of the present invention further includes (6) the first transparent electrode described above that is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern described above. It is preferable to have a conductive element different from the pattern and the second electrode pattern described above.
  • the above-mentioned (4) second electrode pattern is not a transparent electrode pattern and does not have the above-mentioned (6) another conductive element
  • the above-mentioned (3) first transparent electrode pattern is This corresponds to a step in the laminate of the present invention.
  • the above-mentioned (4) second electrode pattern is a transparent electrode pattern and does not have the above-mentioned (6) another conductive element
  • the above-mentioned (3) first transparent electrode pattern and the above-mentioned (4 ) At least one of the second electrode patterns corresponds to a step in the laminate of the present invention.
  • the above-mentioned (4) second electrode pattern is not a transparent electrode pattern but has the above-mentioned (6) another conductive element
  • the above-mentioned (3) the first transparent electrode pattern and the above-mentioned (6) another At least one of the conductive elements corresponds to a step in the laminate of the present invention.
  • the above-mentioned (4) second electrode pattern is a transparent electrode pattern and has the above-mentioned (6) another conductive element
  • the above-mentioned (3) first transparent electrode pattern, the above-mentioned (4) first At least one of the two electrode patterns and the above-described another conductive element (6) corresponds to a step in the laminate of the present invention.
  • the capacitance-type input device of the present invention further comprises (2) a transparent film, (3) the first transparent electrode pattern and the front plate, (4) the second electrode pattern and the front surface. It is preferable to have between board
  • the above-mentioned (2) transparent film corresponds to a transparent film having a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm in the laminate of the present invention. This is preferable from the viewpoint of further improving the visibility.
  • the capacitance-type input device of the present invention preferably further has (1) a mask layer and / or a decoration layer as necessary.
  • the mask layer described above is provided as a black frame around the area touched by a finger or a touch pen so that the transparent electrode pattern routing wiring cannot be visually recognized from the contact side or is decorated.
  • the above-mentioned decoration layer is provided for decoration as a frame around the area touched with a finger or a touch pen. For example, it is preferable to provide a white decoration layer.
  • the above-mentioned (1) mask layer and / or decorative layer are the above-mentioned (2) between the transparent film and the above-mentioned front plate, (3) between the above-mentioned (3) first transparent electrode pattern and the above-mentioned front plate, and (4) above-mentioned. It is preferable to have between a 2nd transparent electrode pattern and the above-mentioned front board, or between the above-mentioned (6) another electroconductive element and the above-mentioned front board.
  • the aforementioned (1) mask layer and / or decorative layer is more preferably provided adjacent to the aforementioned front plate.
  • the above-described second transparent resin layer disposed adjacent to the transparent electrode pattern and the above-described second transparent resin layer are disposed.
  • the transparent electrode pattern can be made inconspicuous, and the visibility problem of the transparent electrode pattern can be improved.
  • the transparent electrode pattern is sandwiched between the transparent film having the refractive index of 1.6 to 1.78 and the film thickness of 55 to 110 nm and the second transparent resin layer. By doing so, the problem of the visibility of a transparent electrode pattern can be improved more.
  • FIG. 1A is a cross-sectional view showing a preferred configuration of the capacitive input device of the present invention.
  • a capacitive input device 10 includes a transparent substrate (front plate) 1, a mask layer 2, a transparent film 11 having a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm, It is composed of a first transparent electrode pattern 3, a second transparent electrode pattern 4, an insulating layer 5, a conductive element 6, a second transparent resin layer 12, and a curable transparent resin layer 7. An embodiment is shown. Similarly, FIG.
  • a capacitive input device 10 includes a transparent substrate (front plate) 1, a transparent film 11 having a refractive index of 1.6 to 1.78 and a film thickness of 55 to 110 nm, and a first transparent electrode.
  • the aspect comprised from the pattern 3, the 2nd transparent electrode pattern 4, the 2nd transparent resin layer 12, and the curable transparent resin layer 7 is shown.
  • the transparent substrate (front plate) 1 can use the materials mentioned as the material of the transparent electrode pattern in the laminate of the present invention, and in FIG. This is referred to as the contact surface side.
  • input is performed by bringing a finger or the like into contact with the contact surface (the surface opposite to the non-contact surface) of the front plate 1.
  • a mask layer 2 is provided on the non-contact surface of the front plate 1.
  • the mask layer 2 is a frame-shaped pattern around the display area formed on the non-contact surface side of the front panel of the touch panel, and is formed so as not to show the lead wiring and the like.
  • the capacitive input device 10 of the present invention is provided with a mask layer 2 so as to cover a part of the front plate 1 (a region other than the input surface in FIG. 2). Yes.
  • the front plate 1 can be provided with an opening 8 in part as shown in FIG.
  • a pressing mechanical switch can be installed in the opening 8.
  • a plurality of first transparent electrode patterns 3 formed by extending a plurality of pad portions in the first direction via connection portions;
  • a plurality of second transparent electrode patterns 4 made of a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction, the first transparent electrode pattern 3 and the second An insulating layer 5 that electrically insulates the transparent electrode pattern 4 is formed.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 to be described later those mentioned as the material for the transparent electrode pattern in the laminate of the present invention can be used.
  • An ITO film is preferred.
  • At least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 extends over both the non-contact surface of the front plate 1 and the region of the mask layer 2 opposite to the front plate 1.
  • FIG. 1A a diagram is shown in which the second transparent electrode pattern is installed across both areas of the non-contact surface of the front plate 1 and the surface of the mask layer 2 opposite to the front plate 1. Yes.
  • an expensive film such as a vacuum laminator can be used by using a photosensitive film having a specific layer structure to be described later. Even without the use of equipment, it is possible to perform lamination without generating bubbles at the boundary of the mask portion with a simple process.
  • FIG. 3 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention.
  • the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction via the connection portion 3b.
  • the second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction intersecting the first direction (second direction in FIG. 3). It is constituted by a plurality of pad portions that are formed.
  • the pad portion 3a and the connection portion 3b described above may be manufactured as one body, or only the connection portion 3b is manufactured, and the pad portion 3a and the second portion 3b are formed.
  • the transparent electrode pattern 4 may be integrally formed (patterned).
  • the pad portion 3a and the second transparent electrode pattern 4 are produced (patterned) as a single body (patterning), as shown in FIG. 3, a part of the connection portion 3b and a part of the pad portion 3a are coupled, and an insulating layer Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
  • region in which the 1st transparent electrode pattern 3 in FIG. 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 mentioned later is not formed is equivalent to the non-pattern area
  • a conductive element 6 is provided on the side of the mask layer 2 opposite to the front plate 1.
  • the conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4. Is another element.
  • FIG. 1A a view in which the conductive element 6 is connected to the second transparent electrode pattern 4 is shown.
  • a curable transparent resin layer 7 is provided so as to cover all the components.
  • the curable transparent resin layer 7 may be configured to cover only a part of each component.
  • the insulating layer 5 and the curable transparent resin layer 7 may be the same material or different materials.
  • FIG. 4 is a top view illustrating an example of the tempered glass 11 in which the opening 8 is formed.
  • FIG. 5 is a top view showing an example of the front plate on which the mask layer 2 is formed.
  • FIG. 6 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed.
  • FIG. 7 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed.
  • FIG. 8 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed.
  • each element is arbitrarily formed using the transfer film of the present invention. Further, it can be formed by transferring the aforementioned second transparent resin layer and the aforementioned curable transparent resin layer to the surface of the aforementioned front plate 1.
  • At least one element of the mask layer 2, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, and the conductive element 6 is: It is preferable to form using the above-mentioned photosensitive film which has a temporary support body and a photocurable resin layer in this order.
  • the transfer film of the present invention or the above-described photosensitive film there is no resist component leakage from the opening even on the substrate having the opening (front plate), and particularly up to the boundary line of the front plate.
  • the mask layer that needs to form a light-shielding pattern there is no protrusion of the resist component from the glass edge, so there is no contamination of the back side of the front plate. Can be manufactured.
  • the photosensitive film as a permanent material such as the first transparent electrode pattern, the second transparent electrode pattern and the conductive element when the mask layer, the insulating layer, and the conductive photocurable resin layer are used.
  • the photosensitive film is laminated to the substrate and then exposed in a pattern as necessary. In the case of negative materials, the unexposed portion is exposed, and in the case of positive materials, the exposed portion is developed. The pattern can be obtained by removing them.
  • the thermoplastic resin layer and the photocurable resin layer may be developed and removed with separate liquids, or may be removed with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
  • the above-described photosensitive film other than the transfer film of the present invention which is preferably used when manufacturing the capacitive input device of the present invention, will be described.
  • the aforementioned photosensitive film preferably has a temporary support and a photocurable resin layer, and preferably has a thermoplastic resin layer between the temporary support and the photocurable resin layer.
  • a mask layer or the like is formed using the photosensitive film having the thermoplastic resin layer described above, bubbles are less likely to be generated in the element formed by transferring the photocurable resin layer, and image unevenness or the like is caused in the image display device. It is less likely to occur and excellent display characteristics can be obtained.
  • the aforementioned photosensitive film may be a negative type material or a positive type material.
  • thermoplastic resin layers described in JP-A-2014-108541 [0041] to [0047] can be used.
  • the same method as that described in [0041] to [0047] of JP-A-2014-108541 can be used.
  • the above-mentioned photosensitive film adds an additive to a photocurable resin layer according to the use. That is, when the above-mentioned photosensitive film is used for forming the mask layer, a colorant is contained in the photocurable resin layer. Moreover, when the above-mentioned photosensitive film has an electroconductive photocurable resin layer, electroconductive fiber etc. contain in the above-mentioned photocurable resin layer.
  • the photocurable resin layer preferably contains an alkali-soluble resin, a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, although a conductive fiber, a coloring agent, other additives, etc. are used, it is not restricted to this.
  • alkali-soluble resin, the polymerizable compound, the polymerization initiator or the polymerization initiation system contained in the above-described photosensitive film, the same alkali-soluble resin, polymerizable compound, and polymerization initiation as those used in the transfer film of the present invention are used.
  • An agent or a polymerization initiating system can be used.
  • a solid structure or a hollow structure is preferable.
  • the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowire”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m, and having a hollow structure may be referred to as “nanotube”.
  • the conductive fiber material is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable, and among these, The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
  • the at least 1 sort (s) of metal chosen from the group which consists of a 4th period, a 5th period, and a 6th period of a long periodic table is preferable. More preferably, at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group At least one metal selected from Group 14 is more preferable, and it is particularly preferable to include it as a main component.
  • Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, Examples thereof include lead and alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable. Containing mainly the above-mentioned silver means containing 50 mass% or more, preferably 90 mass% or more of silver in the metal nanowire. Examples of the metal used in the aforementioned alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
  • a shape of the above-mentioned metal nanowire there is no restriction
  • the cross-sectional shape of the aforementioned metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the above-mentioned corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side.
  • “each side of the cross section” is a straight line connecting these adjacent corners.
  • the ratio of the above-mentioned “periphery length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness.
  • the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line.
  • a cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners.
  • the sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, electrons may be localized at this corner and plasmon absorption may increase, or the transparency may deteriorate due to a yellowish color remaining. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise.
  • the lower limit of the sharpness is preferably 30%, more preferably 40%.
  • the average short axis length (sometimes referred to as “average short axis diameter” or “average diameter”) of the metal nanowire is preferably 150 nm or less, more preferably 1 nm to 40 nm, and even more preferably 10 nm to 40 nm. 15 nm to 35 nm is particularly preferable.
  • the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated.
  • the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are things you can't get.
  • the average minor axis length of the above-mentioned metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length of the wire was determined. The short axis length when the short axis of the metal nanowire was not circular was the shortest axis.
  • the average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m. If the average major axis length is less than 1 ⁇ m, it is difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 ⁇ m, the metal nanowires are too long. It may become entangled during production, and aggregates may be produced during the production process.
  • the average major axis length of the above-mentioned metal nanowires is determined by observing 300 metal nanowires using, for example, a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX).
  • the average major axis length of the nanowire was determined.
  • yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
  • the thickness of the conductive photocurable resin layer is preferably from 0.1 to 20 ⁇ m, and preferably from 0.5 to 18 ⁇ m, from the viewpoint of process suitability such as coating solution stability, drying during coating, and development time during patterning. Further preferred is 1 to 15 ⁇ m.
  • the content of the conductive fiber with respect to the total solid content of the conductive photocurable resin layer is preferably 0.01 to 50% by mass from the viewpoint of conductivity and stability of the coating solution, and is preferably 0.05 to 30% by mass is more preferable, and 0.1 to 20% by mass is particularly preferable.
  • a coloring agent can be used for a photocurable resin layer.
  • known colorants organic pigments, inorganic pigments, dyes, etc.
  • a mixture of pigments such as red, blue, and green can be used.
  • the above-mentioned photocurable resin layer is used as a black mask layer, it is preferable to include a black colorant from the viewpoint of optical density.
  • the black colorant include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable.
  • the white pigment described in paragraphs 0015 and 0114 of JP-A-2005-7765 can be used.
  • pigments or dyes described in paragraphs 0183 to 0185 of Japanese Patent No. 4546276 may be mixed and used.
  • pigments and dyes described in paragraphs 0038 to 0054 of JP-A-2005-17716, pigments described in paragraphs 0068 to 0072 of JP-A-2004-361447, paragraphs of JP-A-2005-17521 The colorants described in 0080 to 0088 can be preferably used.
  • the aforementioned colorant (preferably a pigment, more preferably carbon black) is desirably used as a dispersion.
  • This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the aforementioned colorant and pigment dispersant in an organic solvent (or vehicle) described later.
  • the aforementioned vehicle is a portion of the medium in which the pigment is dispersed when the paint is in a liquid state.
  • the liquid is a component (binder) that binds with the pigment and forms a coating film, and dissolves this. Component to dilute (organic solvent).
  • the disperser used for dispersing the pigment is not particularly limited.
  • kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, First Edition, Asakura Shoten, 2000, Item 438.
  • Known dispersers such as a roll mill, an atrider, a super mill, a dissolver, a homomixer, a sand mill, and a bead mill.
  • fine grinding may be performed using frictional force by mechanical grinding described in page 310 of this document.
  • the aforementioned colorant is preferably a colorant having a number average particle size of 0.001 ⁇ m to 0.1 ⁇ m, more preferably 0.01 ⁇ m to 0.08 ⁇ m, from the viewpoint of dispersion stability.
  • the “particle size” as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and the “number average particle size” is the above-mentioned particle size for a large number of particles, Among these, the average value of 100 particle diameters arbitrarily selected is said.
  • the layer thickness of the photocurable resin layer containing the colorant is preferably 0.5 to 10 ⁇ m, more preferably 0.8 to 5 ⁇ m, and particularly preferably 1 to 3 ⁇ m, from the viewpoint of thickness difference from other layers.
  • the content of the colorant in the solid content of the colored photosensitive resin composition is not particularly limited, but is preferably 15 to 70% by mass from the viewpoint of sufficiently shortening the development time, and 20 to The amount is more preferably 60% by mass, and further preferably 25 to 50% by mass.
  • the total solid content as used in this specification means the total mass of the non-volatile component remove
  • the layer thickness of the photocurable resin layer is preferably 0.1 to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m from the viewpoint of maintaining insulation. 0.5 to 2 ⁇ m is particularly preferable.
  • additives may be used for the above-mentioned photocurable resin layer.
  • the same additives as those used for the transfer film of the present invention can be used.
  • the solvent similar to what is used for the transfer film of this invention can be used.
  • the above-described photosensitive film is a negative type material
  • the above-described photosensitive film may be a positive type material.
  • a positive type material for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but is not limited thereto.
  • the mask layer 2 and the insulating layer 5 described above can be formed by transferring the photocurable resin layer to the front plate 1 or the like using the above-described photosensitive film.
  • the above-described black film is used on the surface of the front plate 1 using the above-described photosensitive film having the black photo-curable resin layer as the above-described photo-curable resin layer. It can be formed by transferring the photocurable resin layer.
  • the insulating layer 5 the above-described photosensitive film having an insulating photo-curable resin layer as the above-described photo-curable resin layer is used to form the first transparent electrode pattern described above.
  • the above photosensitive film having a specific layer structure having a thermoplastic resin layer between the photocurable resin layer and the temporary support is used for photosensitivity. It is possible to prevent the generation of bubbles during film lamination and to form a high quality mask layer 2 or the like having no light leakage.
  • first and second transparent electrode patterns and other conductive elements by a photosensitive film Formation of first and second transparent electrode patterns and other conductive elements by a photosensitive film
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the other conductive element 6 are etched using the above-described photosensitive film having an etching process or a conductive photo-curable resin layer, or photosensitive.
  • a film can be formed using the lift-off material.
  • etching pattern Even when the above-described photosensitive film is used as an etching resist (etching pattern), a resist pattern can be obtained in the same manner as described above.
  • etching and resist stripping can be applied by a known method described in paragraphs 0048 to 0054 of JP 2010-152155 A.
  • an etching method there is a commonly performed wet etching method of dipping in an etching solution.
  • an etchant used for wet etching an acid type or alkaline type etchant may be appropriately selected in accordance with an object to be etched.
  • acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done.
  • the acidic component a combination of a plurality of acidic components may be used.
  • alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
  • alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
  • a mixed aqueous solution of a salt such as A combination of a plurality of alkali components may be used as the alkali component.
  • the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower.
  • the resin pattern used as an etching mask (etching pattern) in the present invention is formed by using the above-described photocurable resin layer, so that it is particularly suitable for acidic and alkaline etching solutions in such a temperature range. Excellent resistance. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
  • a cleaning process and a drying process may be performed as necessary to prevent line contamination.
  • the cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
  • the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes.
  • the resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced.
  • the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching step, while the peeling step. In this case, good releasability is exhibited, and both contradictory properties of chemical resistance and releasability can be satisfied.
  • the stripping solution examples include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these.
  • a stripping solution dissolved in a mixed solution of You may peel by the spray method, the shower method, the paddle method etc. using the above-mentioned peeling liquid.
  • the first transparent electrode pattern 3 the second transparent electrode pattern 4 and the other conductive element 6 are formed using the above-described photosensitive film having the conductive photocurable resin layer, It can be formed by transferring the conductive photocurable resin layer described above to the surface of the face plate 1.
  • the resist component can be removed from the opening even on the substrate (front plate) having the opening.
  • the photosensitive film having a specific layer structure having a thermoplastic resin layer between the conductive photocurable resin layer and the temporary support for forming the first transparent electrode pattern 3 and the like. It is possible to prevent the generation of bubbles when laminating the photosensitive film, and to form the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 with excellent conductivity and low resistance.
  • a 1st transparent electrode layer, a 2nd transparent electrode layer, and another electroconductive member can also be formed using the above-mentioned photosensitive film as a lift-off material.
  • a transparent conductive layer is formed on the entire surface of the substrate, and then the above-described photocurable resin layer is dissolved and removed together with the deposited transparent conductive layer to obtain a desired transparent A conductive layer pattern can be obtained (lift-off method).
  • the image display device of the present invention is an image display device including the capacitive input device of the present invention as a constituent element.
  • the electrostatic capacitance type input device of the present invention and an image display device including the electrostatic capacitance type input device as components are “latest touch panel technology” (Techno Times, issued on July 6, 2009), Mitani.
  • the structure disclosed in Yuji's supervision, “Touch Panel Technology and Development”, CMC Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, etc. can be applied. .
  • melt viscosity of the curable transparent resin layer can be measured, for example, as follows. Remove the solvent from the coating solution for the curable transparent resin layer by drying at atmospheric pressure and under reduced pressure to make a measurement sample. Measurement was performed under the conditions of 50 ° C., measurement end temperature of 150 ° C., temperature increase rate of 5 ° C./min, and frequency of 1 Hz / deg, and a measured value of 100 ° C. was used. The obtained results are shown in Table 1 and Table 2 below.
  • a transfer film was produced in which the temporary support, the curable transparent resin layer, and the protective film were integrated.
  • the obtained transfer films were used as transfer films of Examples 1 to 15 and Comparative Examples 1 to 8.
  • the structures of the transfer films of Examples 1 to 15 and Comparative Examples 1 to 8 are shown in FIG.
  • the temporary support 26 and the curable transparent resin layer 7 are in direct contact, and a protective film 29 is further provided.
  • the manufacturing method of a laminated body is demonstrated based on FIG. 17 and FIG.
  • the thickness of the step constituting the step is 100 nm, and when the laminating direction 42 is the vertical direction, the shape becomes a rectangle of 2 cm in length and 5 cm in width when viewed from above the film base.
  • a copper conductive element was formed.
  • the step 41 constituting the step is a copper conductive element
  • the lower portion 41c of the step constituting the step is the film substrate 1A
  • the upper portion 41a of the step constituting the step is made of copper.
  • the side portion 41b of the step constituting the step has an inclined structure (so-called tapered shape) in which the upper portion of the step is narrower than the lower portion of the step,
  • the angle ⁇ formed by the substrate was about 78 °.
  • step difference was 20 nm length when it saw from the upper direction of the film base material.
  • a curable transparent resin layer is continuously formed on the base material having a step obtained by the above method so that the transfer films of Examples 1 to 15 and Comparative Examples 1 to 8 cover all the steps from the laminating direction 42 shown in FIG. Then, a curable transparent resin layer was laminated (rubber roller temperature 100 ° C., linear pressure 100 N / cm, conveyance speed 2.0 m / min).
  • a step rising process in which a curable transparent resin layer is laminated in this order from the lower part of the step constituting the step to the upper part of the step, and the order from the upper part of the step constituting the step to the lower part of the step.
  • the step-lowering step of laminating the curable transparent resin layer is included once each.
  • the region along the step means a portion in contact with the lower end of the side portion of the step constituting the step in a direction perpendicular to the laminating direction of the transfer film.
  • FIG. 17 shows an example of the region 44 along the step, but the region along the step is not limited to the region indicated by reference numeral 44, and exists along the four sides around the step 41 constituting the step in FIG. To do.
  • the transfer film of the present invention was able to suppress the mixing of bubbles during lamination to a base material in which the temporary support and the curable transparent resin layer were in direct contact with each other.
  • the thickness of the temporary support exceeds the upper limit defined in the present invention, and the melt viscosity ⁇ c measured at 100 ° C. of the curable transparent resin layer is the lower limit defined in the present invention. It was found that when a lower transfer film was used, air bubbles were often mixed during lamination onto a substrate having a step. From Comparative Examples 3 and 8, when a transfer film having a melt viscosity ⁇ c measured at 100 ° C.
  • the thickness of the curable transparent resin layer is less than the lower limit specified in the present invention, and the melt viscosity ⁇ c measured at 100 ° C. of the curable transparent resin layer is the lower limit specified in the present invention. It was found that when a lower transfer film was used, air bubbles were often mixed during lamination onto a substrate having a step. From Comparative Examples 6 and 7, it was found that when a transfer film having a thickness of the temporary support exceeding the upper limit specified in the present invention was used, a large amount of bubbles were mixed during lamination onto a substrate having a step.
  • the second coating solution for the transparent resin layer having the formulation described as Material-40 to Material-49 in Table 3 below has a desired film thickness described in Table 4 below. Then, the coating was applied, dried at 80 ° C. for 1 minute, and further dried at 110 ° C. for 1 minute to form a second transparent resin layer.
  • ZrO 2 used for the zirconia dispersion in Table 3 is a particle having a refractive index of 2.2 and an average particle diameter of about 12 nm.
  • a transfer film was produced in which the temporary support, the curable transparent resin layer, the second transparent resin layer, and the protective film were integrated.
  • the obtained transfer films were used as transfer films of Examples 101 to 110.
  • Example 1 A transparent electrode pattern having a height of 100 nm was formed on the film substrate, and a substrate having a step was provided in the same manner as in Example 1.
  • Example 1 in place of the transfer film of Example 1, any one of the transfer films of Examples 101 to 110 was used, and Example 101 was formed on a substrate having a level difference in the same manner as in Example 1.
  • the transfer film was laminated (rubber roller temperature 100 ° C., linear pressure 100 N / cm, conveyance speed 2.0 m / min).
  • Examples 201 to 210 Production of laminate
  • a laminate including a transparent electrode pattern was produced by the following method.
  • a transparent film having a refractive index of 1.60 and a film thickness of 80 nm using T1 shown in Table 1 was formed on a transparent glass substrate (glass substrate) having a refractive index of 1.51 by the following method.
  • thermoplastic resin layer having the following formulation H1 On a 75 ⁇ m-thick polyethylene terephthalate film (temporary support), a slit-shaped nozzle was used to apply a coating solution for a thermoplastic resin layer having the following formulation H1, followed by drying to form a thermoplastic resin layer. Next, on the thermoplastic resin layer, an intermediate layer coating solution having the following formulation P1 was applied and dried to form an intermediate layer. Furthermore, the coating liquid T1 for transparent curable compositions was apply
  • a protective film (thickness 12 ⁇ m polypropylene film) was pressure-bonded on the transparent resin layer.
  • a transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), the transparent resin layer, and the protective film were integrated was produced.
  • the liquid diluted to a ratio of 2) was subjected to shower development at 30 ° C. for 60 seconds at a flat nozzle pressure of 0.04 MPa to remove the thermoplastic resin and the intermediate layer. Subsequently, air was sprayed on the upper surface (transparent resin layer side) of the glass transparent substrate to drain the liquid, and then pure was sprayed for 10 seconds by showering, pure shower cleaning was performed, and air was sprayed to spray the liquid on the glass transparent substrate. Reduced stagnation. Next, the glass transparent substrate is heat-treated at 230 ° C. for 60 minutes (post-bake), and the transparent resin layer is heated and cured to obtain a transparent film, whereby a substrate in which the transparent film is laminated on the glass transparent substrate is obtained. It was.
  • thermoplastic resin layer composed of the above-mentioned formulation H1
  • intermediate layer coating solution composed of the above-described formulation P1
  • photocurable resin layer coating solution for etching Formula E1 was applied and dried to form a photocurable resin layer for etching.
  • thermoplastic resin layer having a dry film thickness of 15.1 ⁇ m, the intermediate layer having a dry film thickness of 1.6 ⁇ m, and the photocurable resin layer for etching having a film thickness of 2.0 ⁇ m are formed on the temporary support.
  • a laminate was obtained.
  • a protective film thickness 12 ⁇ m polypropylene film
  • the post-baking process for 130 degreeC for 30 minutes was performed, and the front board in which the transparent electrode layer and the photocurable resin layer pattern for an etching were formed was obtained.
  • the front plate on which the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.) and treated for 100 seconds (etching treatment). Then, the transparent electrode layer in the exposed region that was not covered with the photocurable resin layer for etching was dissolved and removed to obtain a front plate with a transparent electrode layer pattern with the photocurable resin layer pattern for etching.
  • ITO etchant hydroochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.
  • a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products Co., Ltd.), immersed in a resist stripping tank containing a liquid temperature of 45 ° C., treated for 200 seconds (peeling treatment), the photocurable resin layer for etching was removed, a transparent film and a transparent film on a glass transparent substrate A substrate on which a transparent electrode pattern was formed was obtained.
  • a resist stripping solution N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465).
  • the formed ITO pattern had a tapered shape as shown in FIG. 10, and the taper angle ⁇ was about 3 °.
  • the front plate after the cleaning treatment was rubbed with a rotating brush, and the residue was removed by spraying ultrapure water from an ultrahigh pressure cleaning nozzle. Subsequently, air was blown to remove moisture on the base material, followed by post-baking at 145 ° C. for 30 minutes, and a transparent film, a transparent electrode pattern, a second transparent resin layer, and a curable transparent film on a glass transparent substrate. A laminate in which the resin layers were continued in this order was formed. Thus, a laminate was obtained in which a transparent film, a transparent electrode pattern, a second transparent resin layer, and a curable transparent resin layer were laminated in this order on a glass transparent substrate. The obtained laminated body was used as the laminated body of Examples 201 to 210.
  • thermoplastic film layer having a dry film thickness of 15.1 ⁇ m, the intermediate layer having a dry film thickness of 1.6 ⁇ m, and the dry film thickness so that the optical density is 4.0 are formed on the temporary support.
  • a 2.2 ⁇ m black photocurable resin layer was provided, and finally a protective film (thickness 12 ⁇ m polypropylene film) was pressure-bonded.
  • a transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the black photocurable resin layer were integrated was prepared, and the sample name was designated as a mask layer forming photosensitive film K1.
  • composition of K pigment dispersion 1 Carbon black (trade name: Nippon 35, manufactured by Degussa) : 13.1% by mass ⁇
  • Propylene glycol monomethyl ether acetate 79.53% by mass
  • the glass cleaner liquid adjusted to 25 ° C. was sprayed on a tempered glass (300 mm ⁇ 400 mm ⁇ 0.7 mm) in which an opening (15 mm ⁇ ) was formed, and was washed with a rotating brush having nylon hair while spraying it for 20 seconds with a shower.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support.
  • the substrate and the exposure mask (quartz exposure mask with a frame pattern) were set up vertically with a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp.
  • the distance between the exposure mask surface and the black light curable resin layer was set to 200 ⁇ m, and pattern exposure was performed at an exposure amount of 70 mJ / cm 2 (i-line).
  • a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) was used at 33 ° C. for 60 ° C.
  • shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer and the intermediate layer.
  • air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce the liquid pool on the base material.
  • the shower pressure was reduced to 0.1 MPa at 32 ° C. using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by FUJIFILM Corporation) diluted 5 times with pure water). It was set, developed for 45 seconds, and washed with pure water.
  • a sodium carbonate / sodium hydrogen carbonate developer trade name: T-CD1 (manufactured by FUJIFILM Corporation) diluted 5 times with pure water. It was set, developed for 45 seconds, and washed with pure water.
  • post-exposure is performed in the atmosphere at an exposure amount of 1300 mJ / cm 2 , and further post-baking treatment is performed at 240 ° C. for 80 minutes to form a mask layer having an optical density of 4.0 and a film thickness of 2.0 ⁇ m.
  • a face plate was obtained.
  • the front plate on which the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching bath containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.) and treated for 100 seconds (etching treatment). Then, the transparent electrode layer in the exposed region that was not covered with the photocurable resin layer for etching was dissolved and removed to obtain a front plate with a transparent electrode layer pattern with the photocurable resin layer pattern for etching.
  • ITO etchant hydroochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.
  • a front plate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products, Inc., liquid temperature 45 ° C.), immersed in a resist stripping tank, treated for 200 seconds, removed the photocurable resin layer for etching, mask layer, transparent film and first transparent electrode pattern A formed front plate was obtained.
  • a resist stripping solution N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465). , Manufactured by Air Products, Inc., liquid temperature 45 ° C.
  • the production of the mask layer forming photosensitive film K1 is the same as the production of the mask layer forming photosensitive film K1 except that the coating solution for the black light curable resin layer is replaced with an insulating layer coating liquid having the following formulation W1.
  • a photosensitive film W1 for forming an insulating layer was obtained (the film thickness of the insulating layer was 1.4 ⁇ m).
  • the above-described mask layer, transparent film, and front plate with the first transparent electrode pattern are washed, silane coupled, and then the protective film is removed.
  • W1 was laminated (base material temperature: 100 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, conveyance speed 2.3 m / min).
  • the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the insulating layer was set to 100 ⁇ m, and pattern exposure was performed at an exposure amount of 30 mJ / cm 2 (i-line). .
  • a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by FUJIFILM Corporation) diluted 10 times with pure water) was used at 33 ° C. for 60 ° C. Developed for 2 seconds, and further developed at 25 ° C. for 50 seconds using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by Fuji Film Co., Ltd.) diluted 5 times with pure water). After the treatment, it was washed at 33 ° C. for 20 seconds using a surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water).
  • the front plate after the cleaning treatment was rubbed with a rotating brush, and the residue was removed by spraying ultrapure water from an ultrahigh pressure cleaning nozzle.
  • a post-baking treatment at 230 ° C. for 60 minutes was performed to obtain a front plate on which a mask layer, a transparent film, a first transparent electrode pattern, and an insulating layer pattern were formed.
  • the mask layer, the transparent film, the first transparent electrode pattern, the insulating layer pattern, the transparent electrode layer, and the etching photocurable resin Similar to the formation of the first transparent electrode pattern, using the etching photosensitive film E1, the mask layer, the transparent film, the first transparent electrode pattern, the insulating layer pattern, the transparent electrode layer, and the etching photocurable resin. A front plate on which a layer pattern was formed was obtained (post-baking treatment; 130 ° C. for 30 minutes). Furthermore, in the same manner as the formation of the first transparent electrode pattern, etching (30 ° C. for 50 seconds), and then removing the photocurable resin layer for etching (45 ° C. for 200 seconds), the mask layer, the transparent film, A front plate on which the first transparent electrode pattern, the insulating layer pattern, and the second transparent electrode pattern were formed was obtained.
  • the front plate on which the mask layer, the transparent film, the first transparent electrode pattern, the insulating layer pattern, and the second transparent electrode pattern are formed is DC magnetron.
  • a front plate on which an aluminum (Al) thin film having a thickness of 200 nm was formed was obtained by sputtering.
  • the mask layer, the transparent film, the first transparent electrode pattern, the insulating layer pattern, and the second transparent A front plate on which an electrode pattern and a photocurable resin layer pattern for etching were formed was obtained (post-baking treatment; 130 ° C. for 30 minutes). Furthermore, in the same manner as the formation of the first transparent electrode pattern, etching (30 ° C. for 50 seconds), and then removing the photocurable resin layer for etching (45 ° C. for 200 seconds), the mask layer, the transparent film, A front plate on which conductive elements different from the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns were formed was obtained.
  • Capacitive type of each embodiment in which a second transparent electrode pattern, a conductive element different from the first and second transparent electrode patterns, a curable transparent resin layer and a second transparent resin layer are formed in this order An input device (front plate) was obtained.
  • the second transparent resin layer and the curable transparent resin layer were patterned by pattern exposure and development so that the second transparent resin layer and the curable transparent resin layer were not formed above the portion where the mask layer was formed and the terminal portion of the routing wiring.
  • the front plate on which the transparent resin layer and the curable transparent resin layer were formed had no contamination on the opening and the back surface (non-contact surface), was easy to clean, and had no problem of contamination of other members.
  • the mask layer had no pinholes and was excellent in light shielding properties. And there is no problem in each conductivity of the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element different from these, while the first transparent electrode pattern and the second transparent electrode pattern It had insulation between the transparent electrode patterns.
  • the curable transparent resin layer was free from defects such as bubbles and an image display device having excellent display characteristics was obtained.
  • Transparent substrate front plate
  • first transparent electrode pattern first transparent electrode pattern
  • Pad portion 3b Connection portion
  • Transparent electrode pattern second transparent electrode pattern
  • Insulating layer 6
  • Another conductive element 7 Curable transparent resin layer (preferably having a function of an overcoat layer or a transparent protective layer) 8 Opening 10
  • Capacitive Input Device 11
  • Transparent Film 12
  • Second Transparent Resin Layer Refractive Index Adjusting Layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Human Computer Interaction (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Laminated Bodies (AREA)
  • Materials For Photolithography (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

厚みが38μm以下である仮支持体と、前述の仮支持体上に直接接して配置された硬化性透明樹脂層とを有し、前述の硬化性透明樹脂層の厚みが、5μm以上であり、前述の硬化性透明樹脂層がバインダーポリマー、重合性化合物、および重合開始剤を含み、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s以上である、転写フィルムは、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できる;積層体の製造方法;積層体;静電容量型入力装置;画像表示装置。

Description

転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置
 本発明は、転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置に関するものである。詳しくは、指の接触位置を静電容量の変化として検出可能な静電容量型入力装置とそれに用いることができる積層体、積層体を製造するために用いる転写フィルム、この転写フィルムを用いた積層体の製造方法、並びに、この静電容量型入力装置を構成要素として備えた画像表示装置に関するものである。
 携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置が配置され、液晶装置の画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所に指またはタッチペンなどを触れることで、指示画像に対応する情報の入力が行えるものがある。
 このような入力装置(タッチパネル)には、抵抗膜型、静電容量型などがある。しかし、抵抗膜型の入力装置は、フィルムとガラスとの2枚構造でフィルムを押下してショートさせる構造のため、動作温度範囲の狭さや、経時変化に弱いという欠点を有している。
 これに対して、静電容量型入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点がある。かかる静電容量型入力装置では、例えば、互いに交差する方向に電極パターンを延在させて、指などが接触した際、電極間の静電容量が変化することを検知して入力位置を検出するタイプのものがある(例えば、下記特許文献1参照)。
 静電容量型入力装置では、電極を覆うための透明絶縁層や透明保護膜などの透明膜が形成される。
 ここで、静電容量型タッチパネルを液晶や有機ELディスプレイ上に備えたスマートフォンやタブレットPCでは前面板(直接指で接触する面)にコーニング社のゴリラガラスに代表される強化ガラスを用いたものが開発、発表されている。また、前述の前面板の一部に、感圧(静電容量変化ではなく、押圧式のメカニカルな機構)スイッチを設置するための開口部が形成されているものが上市されている。これらの強化ガラスは強度が高く、加工が困難であるため、前述の開口部を形成するには強化処理前に開口部を形成したのち、強化処理を行うのが一般的である。
 特許文献1には、このような開口部を有した強化処理後の基板に対して電極を覆うための透明絶縁層や透明保護膜などの透明膜を形成するときに、転写フィルムから透明膜を電極の上に転写する方法を採用することで、塗布法によって電極を覆うための透明絶縁層や透明保護膜などの透明膜を形成するよりも、開口部からの漏れやはみ出しを抑制できることが記載されている。
 この特許文献1に記載の転写フィルムは、仮支持体と、第一の硬化性透明樹脂層と、第一の硬化性透明樹脂層に隣接して配置された第二の硬化性透明樹脂層とをこの順で有し、第二の硬化性透明樹脂層の屈折率が第一の硬化性透明樹脂層の屈折率よりも高く、第二の硬化性透明樹脂層の屈折率が1.6以上である転写フィルムである。
 また、特許文献1には、転写フィルムは、仮支持体と第一の硬化性透明樹脂層との間に熱可塑性樹脂層が設けられることが好ましいとの記載がある。さらに特許文献1には熱可塑性樹脂層に関して記載があり、例えば、熱可塑性樹脂層を有する転写フィルムを用いて、第一の硬化性透明樹脂層および第二の硬化性透明樹脂層を転写して透明積層体を形成すると、転写して形成した各要素に気泡が発生し難くなり、画像表示装置に画像ムラなどが発生し難くなり、優れた表示特性を得ることができるとの記載がある。また、熱可塑性樹脂層は、下地表面の凹凸(既に形成されている画像などによる凹凸等も含む。)を吸収することができるようにクッション材としての役割を担うものであり、対象面の凹凸に応じて変形しうる性質を有していることが好ましいとの記載がある。また、熱可塑性樹脂層の層厚が3μm未満の場合には、ラミネート時の追随性が不十分で、下地表面の凹凸を完全に吸収できないことがあるとの記載がある。
 特許文献2にも、感光性フィルムは、仮支持体と着色感光性樹脂層(硬化性透明樹脂層)との間に熱可塑性樹脂層が設けられることが好ましいことに関して特許文献1と同様の記載がある。
特開2014-108541号公報 特開2013-218313号公報
 本発明者らが、特許文献1や2に記載の転写フィルムを用いて、下地表面に電極などの段差がある場合に透明絶縁層や透明保護膜などの透明膜を形成する方法を検討したところ、段差の高さ等のラミネート条件によってはラミネート時の気泡混入を抑制するためには仮支持体と硬化性透明樹脂層の間に熱可塑性樹脂層を設けた転写フィルムとする必要があることがわかった。
 これに対し、転写フィルムは、転写後に、現像処理等により、熱可塑性樹脂層を取り除く必要があるため、工程簡略化の観点から、仮支持体と硬化性透明樹脂層の間に熱可塑性樹脂層を設けず、仮支持体と硬化性透明樹脂層が直接接することが実用上求められている。
 本発明が解決しようとする課題は、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できる転写フィルムを提供することである。
 本発明者は、仮支持体の厚みを特定の範囲に制御し、硬化性透明樹脂層の厚みを特定の範囲に制御し、前述の硬化性透明樹脂層の組成と100℃で測定した溶融粘度ηcを特定の範囲に制御することにより、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できることを見出すに至った。
 上記課題を解決するための具体的な手段である本発明は以下のとおりである。
[1] 厚みが38μm以下である仮支持体と、前述の仮支持体上に直接接して配置された硬化性透明樹脂層とを有し、
 前述の硬化性透明樹脂層の厚みが、5μm以上であり、
 前述の硬化性透明樹脂層がバインダーポリマー、重合性化合物、および重合開始剤を含み、
 前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s以上である、転写フィルム。
[2] [1]に記載の転写フィルムは、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s~1.0x10Pa・sであることが好ましい。
[3] [1]または[2]に記載の転写フィルムは、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが3.0x10Pa・s~1.0x10Pa・sであることが好ましい。
[4] [1]~[3]のいずれか一つに記載の転写フィルムは、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが4.0x10Pa・s~1.0x10Pa・sであることが好ましい。
[5] [1]~[4]のいずれか一つに記載の転写フィルムは、前述の硬化性透明樹脂層上に、更に、第二の透明樹脂層を有し、
 前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高いことが好ましい。
[6] 段差を有する基材の上に、少なくとも前述の段差を構成する段の上部および段の下部を連続して覆うように[1]~[5]のいずれか一つに記載の転写フィルムの前述の硬化性透明樹脂層を積層する工程を含み、
 前述の段差を構成する段の厚みが100nm以上である、積層体の製造方法。
[7] [6]に記載の積層体の製造方法は、前述の段差を構成する基材の一方の方向から前述の段差を構成する段の上部および段の下部の上に前述の硬化性透明樹脂層を連続して積層し、
 前述の段差を構成する段の下部から段の上部までこの順で前述の硬化性透明樹脂層を積層する段差上昇工程と、
 前述の段差を構成する段の上部から段の下部までこの順で前述の硬化性透明樹脂層を積層する段差下降工程とを有することが好ましい。
[8] [6]または[7]に記載の積層体の製造方法は、前述の段差を構成する段の側部が、段の上部の方が段の下部よりも狭い傾斜構造であり、
 前述の段差を構成する段の側部と前述の基材のなす角度が5~90°であることが好ましい。
[9] [6]~[8]のいずれか一つに記載の積層体の製造方法は、前述の段差を構成する段が導電性要素を含むことが好ましい。
[10] [9]に記載の積層体の製造方法は、前述の段差を構成する段の上部が前述の導電性要素の上部であり、前述の段差を構成する段の下部が前述の基材であることが好ましい。
[11] [6]~[10]のいずれか一つに記載の積層体の製造方法は、前述の段差を有する基材が、透明電極パターンを含み、
 前述の透明電極パターン上に前述の硬化性透明樹脂層を積層する工程を含むことが好ましい。
[12] [11]に記載の積層体の製造方法は、前述の透明電極パターンの他に、別の導電性要素を含み、
 前述の段差を構成する段が前述の別の導電性要素であることが好ましい。
[13] [11]または[12]に記載の積層体の製造方法は、前述の段差を構成する段が前述の透明電極パターンであることが好ましい。
[14] [11]~[13]のいずれか一つに記載の積層体の製造方法は、前述の転写フィルムが前述の硬化性透明樹脂層上に、更に、第二の透明樹脂層を有し、
 前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高く、
 前述の透明電極パターン上に、前述の転写フィルムの前述の第二の透明樹脂層および前述の硬化性透明樹脂層をこの順で積層する工程を含むことが好ましい。
[15] [6]~[14]のいずれか一つに記載の積層体の製造方法で製造された積層体。
[16] [15]に記載の積層体を含む静電容量型入力装置。
[17] [16]に記載の静電容量型入力装置を構成要素として備えた画像表示装置。
 本発明によれば、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できる転写フィルムを提供することができる。
本発明の静電容量型入力装置の構成の一例を示す断面概略図である。 本発明の静電容量型入力装置の構成の他の一例を示す断面概略図である。 本発明における前面板の一例を示す説明図である。 本発明における透明電極パターンと、非パターン領域の関係の一例を示す説明図である。 開口部が形成された強化処理ガラスの一例を示す上面図である。 マスク層が形成された前面板の一例を示す上面図である。 第一の透明電極パターンが形成された前面板の一例を示す上面図である。 第一および第二の透明電極パターンが形成された前面板の一例を示す上面図である。 第一および第二の透明電極パターンとは別の導電性要素が形成された前面板の一例を示す上面図である。 金属ナノワイヤー断面を示す説明図である。 透明電極パターンの端部のテーパー形状の一例を示す説明図である。 本発明の積層体の構成の一例を示す断面概略図である。 本発明の転写フィルムの構成の一例を示す断面概略図である。 本発明の静電容量型入力装置の構成の他の一例を示す上面図であり、パターン露光され、硬化性透明樹脂層に覆われていない、引き回し配線の端末部(末端部分)を含む態様を示す。 第一および第二の透明樹脂層を有する本発明の転写フィルムを、静電容量型入力装置の透明電極パターンの上にラミネートにより積層し、露光等によって硬化する前の状態の一例を示す概略図である。 硬化性透明樹脂層と第二の透明樹脂層が硬化された所望のパターンの一例を示す概略図である。 本発明の転写フィルムの構成の他の一例を示す断面概略図である。 本発明の積層体の製造方法における硬化性透明樹脂層を積層する工程の一例の概略図である。 本発明の積層体の製造方法に用いることができる段差を有する基材の一例の断面概略図である。 本発明の積層体の製造方法に用いることができる段差を有する基材の他の一例の概略図である。 本発明の積層体の製造方法に用いることができる段差を有する基材の他の一例の概略図である。
 以下、本発明の転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置について説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 [転写フィルム]
 本発明の転写フィルムは、厚みが38μm以下である仮支持体と、前述の仮支持体上に直接接して配置された硬化性透明樹脂層とを有し、前述の硬化性透明樹脂層の厚みが、5μm以上であり、前述の硬化性透明樹脂層がバインダーポリマー、重合性化合物、および重合開始剤を含み、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s以上である。
 このような構成とすることで、本発明の転写フィルムは、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できる。いかなる理論に拘泥するものでもないが、このような厚みの範囲の仮支持体と、仮支持体に直接接して配置され、このような厚み、組成および溶融粘度の硬化性透明樹脂層とを有する転写フィルムであれば、100nm以上の段差を有する基材の段差を覆うようにラミネートした場合に転写フィルムの硬化性透明樹脂層が段差に所望の範囲で追随することができる。その結果、本発明の転写フィルムを用いると、段差を有する基材へのラミネート時の気泡混入を抑制できる。
 さらに本発明の転写フィルムは、透明電極パターンが視認される問題がなく、パターニング性が良好である積層体を形成できることが好ましい。本発明の転写フィルムは、硬化性透明樹脂に加えてさらに第二の透明樹脂層を有することが好ましい。このような転写フィルムを用い、透明電極パターン(好ましくはITO)と前述の第二の透明樹脂層との屈折率差、ならびに、前述の第二の透明樹脂層と前述の硬化性透明樹脂層との屈折率差を小さくすることにより、光反射が低減して透明電極パターンが見えにくくなり、透明電極パターン視認性を改善することができる。また、第一および第二の透明樹脂層のいずれか一方が水溶性を示す層であり、もう一方が非水溶性を示す層であることにより、硬化性透明樹脂層を積層した後に硬化性透明樹脂層を硬化させることなく第二の透明樹脂層を積層しても、層分画が良好となって、上記のメカニズムで透明電極パターン視認性を改善することができるとともに、転写フィルムから屈折率調整層(すなわち第一および第二の透明樹脂層)を透明電極パターン上に転写した後で、フォトリソグラフィによって所望のパターンに現像できる。
 さらに本発明の転写フィルムは、層分画が良好であることが好ましい。
 以下、本発明の転写フィルムの好ましい態様について説明する。
 なお、本発明の転写フィルムは、静電容量型入力装置の透明絶縁層用または透明保護層用であることが好ましい。より詳しくは、本発明の転写フィルムは、透明電極パターンの上に、フォトリソ方式により、屈折率調整層およびオーバーコート層(透明保護層)の積層パターンを形成するための転写フィルムとして好ましく用いることができる。
<構成>
 図12に、本発明の転写フィルムの好ましい構成の一例を示す。図12は、仮支持体26、硬化性透明樹脂層7、第二の透明樹脂層12および保護剥離層(保護フィルム)29がこの順で互いに隣接して積層された、本発明の転写フィルム30の概略図である。
 図16に、本発明の転写フィルムの好ましい構成の他の一例を示す。図16は、仮支持体26、硬化性透明樹脂層7および保護剥離層(保護フィルム)29がこの順で互いに隣接して積層された、本発明の転写フィルム30の概略図である。
 本発明の転写フィルムは、全層の合計厚みが、18~60μmであることが好ましく、21~54μmであることがより好ましく、24~50μmであることが特に好ましい。本発明の転写フィルムは、全層の合計厚みが薄い場合であっても、段差を有する基材へのラミネート時の気泡混入を抑制できる。そのため、特開2014-108541号公報の仮支持体と硬化性透明樹脂層の間にある程度の厚みの熱可塑性樹脂層を設ける態様よりも転写フィルムの薄膜化が可能となる。
<仮支持体>
 本発明の転写フィルムは、厚みが38μm以下である仮支持体を有する。
 仮支持体の厚みは、5~35μmの範囲であることが好ましく、10~30μmの範囲がより好ましい。
 一般にフィルムの単位長さあたりの曲げ剛性(N/mm)は、縦弾性率(MPa)xフィルム厚み(mm)/12で表されるため、薄膜化により、剛性は低下していく。曲げ剛性が低いとフィルムは屈曲しやすくなるため、後述の積層体の製造方法において、段差を有する基材の段差に対する仮支持体の追従性が高まり、気泡の混入を効果的に低減することができる。
 仮支持体の曲げ剛性は、0.5~9x10-2(N/mm)であることが好ましく、1~8x10-2(N/mm)であることがより好ましく、2~5x10-2(N/mm)であることが特に好ましい。
 仮支持体の縦弾性率(フィルム長手方向の弾性率)は、1x10~7x10MPaであることが好ましく、2x10~6x10MPaであることがより好ましく、3x10~6x10MPaであることが特に好ましい。
 縦弾性率が4x10~6x10(MPa)のフィルムの場合、厚みを38μm以下にすることで、曲げ剛性が、約2.0x10-2(N/mm)となり、屈曲しやすくなる。
 仮支持体の材料としては、可撓性を有し、加圧下または、加圧および加熱下で著しい変形、収縮もしくは伸びを生じない材料を用いることができる。このような仮支持体の例として、ポリエチレンテレフタレートフィルム(以下、PETとも言う)、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられ、中でも2軸延伸ポリエチレンテレフタレートフィルムが縦弾性率を4x10~6x10(MPa)に制御しやすい観点から特に好ましい。
 また、仮支持体は透明でもよいし、染料化ケイ素、アルミナゾル、クロム塩、ジルコニウム塩などを含有していてもよい。
 また、仮支持体には、特開2005-221726号公報に記載の方法などにより、導電性を付与することができる。
<硬化性透明樹脂層>
 本発明の転写フィルムは、前述の仮支持体上に直接接して配置された硬化性透明樹脂層を有し、前述の硬化性透明樹脂層の厚みが5μm以上であり、前述の硬化性透明樹脂層がバインダーポリマー、重合性化合物、および重合開始剤を含み、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s以上である。
 硬化性透明樹脂層は、光硬化性であっても、熱硬化性かつ光硬化性であってもよい。その中でも、硬化性透明樹脂層は熱硬化性透明樹脂層かつ光硬化性透明樹脂層であることが、転写後に光硬化して製膜しやすく、かつ、製膜後に熱硬化して膜の信頼性を付与できる観点から好ましい。
 なお、本明細書中では説明の都合上、本発明の転写フィルムの硬化性透明樹脂層および後述の第二の透明樹脂層を透明電極パターン上に転写し、これらの層を光硬化した後にこれらの層が光硬化性を失った場合において、これらの層が熱硬化性を有するか否かによらずそれぞれ引き続き硬化性透明樹脂層および第二の透明樹脂層と呼ぶ。さらに、これらの層を光硬化した後、熱硬化を行う場合もあるが、その場合もこれらの層が硬化性を有するか否かによらずそれぞれ引き続き硬化性透明樹脂層および第二の透明樹脂層と呼ぶ。同様に、本発明の転写フィルムの硬化性透明樹脂層および第二の透明樹脂層を透明電極パターン上に転写し、これらの層を熱硬化した後にこれらの層が熱硬化性を失った場合において、これらの層が光硬化性を有するか否かによらずそれぞれ引き続き硬化性透明樹脂層および第二の透明樹脂層と呼ぶ。
(厚み)
 本発明の転写フィルムは、前述の硬化性透明樹脂層の厚みが5μm以上であり、硬化性透明樹脂層を用いて静電容量型入力装置の透明保護層を形成するときに十分な表面保護能を発揮させる観点から、5~16μmであることがより好ましく、5~13μmであることが特に好ましく、5~10μmであることがより特に好ましい。
 本発明の転写フィルムは、仮支持体の厚みの、硬化性透明樹脂層の厚みに対する割合(仮支持体の厚み/硬化性透明樹脂層の厚み)が0.1~10倍であることが好ましく、1~8倍であることがより好ましく、2~5倍であることが特に好ましい。
 (溶融粘度)
 本発明の転写フィルムは、前述の硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s以上であり、1.0x10Pa・s~1.0×10Pa・sであることが好ましく、3.0×10Pa・s~1.0×10Pa・sであることがより好ましく、4.0×10Pa・s~1.0×10Pa・sであることが特に好ましい。
(屈折率)
 本発明の転写フィルムは、前述の硬化性透明樹脂層の屈折率が、1.50~1.53であることが好ましく、1.50~1.52であることがより好ましく、1.51~1.52であることが特に好ましい。
(組成)
 本発明の転写フィルムは、硬化性透明樹脂層が、バインダーポリマー、重合性化合物および重合開始剤を含む。
 本発明の転写フィルムは、ネガ型材料であってもポジ型材料であってもよい。
 本発明の転写フィルムがネガ型材料である場合、硬化性透明樹脂層には、金属酸化物粒子、バインダーポリマー(好ましくはアルカリ可溶性樹脂)、重合性化合物、重合開始剤を含むことが好ましい。さらに、添加剤などが用いられるがこれに限られない。
 本発明の転写フィルムは、硬化性透明樹脂層が透明樹脂層である。硬化性透明樹脂層の屈折率を制御する方法としては特に制限はないが、所望の屈折率の透明樹脂層を単独で用いたり、金属粒子や金属酸化物粒子などの粒子を添加した透明樹脂層を用いたり、また金属塩と高分子の複合体を用いることができる。
 さらに、前述の硬化性透明樹脂層には、添加剤を用いてもよい。前述の添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。
 以上、本発明の転写フィルムがネガ型材料である場合を中心に説明したが、本発明の転写フィルムは、ポジ型材料であってもよい。本発明の転写フィルムがポジ型材料である場合、前述の硬化性透明樹脂層に、例えば特開2005-221726号公報に記載の材料などが用いられるが、これに限られない。
-バインダーポリマー-
 前述の硬化性透明樹脂層に含まれるバインダーポリマーとしては任意のポリマー成分を特に制限なく用いることができるが、静電容量型入力装置の透明保護膜として用いる観点から、表面硬度、耐熱性が高いものが好ましく、アルカリ可溶性樹脂がより好ましく、アルカリ可溶性樹脂の中でも、公知の硬化性シロキサン樹脂材料、アクリル樹脂材料などが好ましく用いられる。転写フィルムの製造方法は、硬化性透明樹脂層の形成に用いられる有機溶媒系樹脂組成物に含まれるバインダーポリマーが、アクリル樹脂を含有することが好ましく、硬化性透明樹脂層の形成に用いられる有機溶媒系樹脂組成物に含まれるバインダーポリマーと後述の第二の透明樹脂層の形成に用いられる水系樹脂組成物に含まれる酸基を有する樹脂またはバインダーポリマーがいずれもアクリル樹脂を含有することが、硬化性透明樹脂層と第二の透明樹脂層を転写する前および後の層間密着性を高める観点からより好ましい。硬化性透明樹脂層の前述のバインダーポリマーの好ましい範囲を具体的に説明する。
 前述の硬化性透明樹脂層に用いられ、有機溶媒に対して溶解性を有する樹脂(バインダー、ポリマーという言う)としては本発明の趣旨に反しない限りにおいて特に制限は無く、公知のものの中から適宜選択でき、アルカリ可溶性樹脂が好ましく、前述のアルカリ可溶性樹脂としては、特開2011-95716号公報の段落0025、特開2010-237589号公報の段落0033~0052に記載のポリマーを用いることができる。
 また硬化性透明樹脂層は、ポリマーラテックスを含んでいても良い。ここで言うポリマーラテックスとは、水不溶のポリマーの微粒子が水に分散したものである。ポリマーラテックスについては、例えば室井宗一著「高分子ラテックスの化学(高分子刊行会発行(昭和48年))」に記載されている。
 使用できるポリマー粒子としてはアクリル系、酢酸ビニル系、ゴム系(例えばスチレン-ブタジエン系、クロロプレン系)、オレフィン系、ポリエステル系、ポリウレタン系、ポリスチレン系などのポリマー、及びこれらの共重合体からなるポリマー粒子が好ましい。
 ポリマー粒子を構成するポリマー鎖相互間の結合力を強くすることが好ましい。ポリマー鎖相互間の結合力を強くする手段としては水素結合による相互作用を利用するものと共有結合を生成する方法が挙げられる。水素結合力を付与する手段としてはポリマー鎖に極性基を有するモノマーを共重合、もしくはグラフト重合して導入することが好ましい。極性基としてはカルボキシル基(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸、クロトン酸、部分エステル化マレイン酸等に含有される)、一級、二級及び三級アミノ基、アンモニウム塩基、スルホン酸基(スチレンスルホン酸)などが挙げられ、カルボキシル基、スルホン酸基が特に好ましい。
 これらの極性基を有するモノマーの共重合比の好ましい範囲は、ポリマー100質量%に対し5~35質量%であり、より好ましくは5~20質量%、更に好ましくは15~20質量%の範囲内である。一方、共有結合を生成させる手段としては、水酸基、カルボキシル基、一級、二級アミノ基、アセトアセチル基、スルホン酸などに、エポキシ化合物、ブロックドイソシアネート、イソシアネ-ト、ビニルスルホン化合物、アルデヒド化合物、メチロール化合物、カルボン酸無水物などを反応させる方法が挙げられる。
 これらの反応を利用したポリマーの中でもポリオール類とポリイソシアネ-ト化合物の反応で得られるポリウレタン誘導体が好ましく、鎖延長剤として多価アミンを併用するのがより好ましく、さらにポリマー鎖に上記極性基を導入してアイオノマー型にしたものが特に好ましい。
 ポリマーの質量平均分子量は1万以上が好ましく、さらに好ましくは2万~10万である。本発明に好適なポリマーとしてエチレンとメタクリル酸の共重合体であるエチレンアイオノマー、ポリウレタンアイオノマーが挙げられる。
 本発明に用いることができるポリマーラテックスは、乳化重合によって得られるものでもよいし、乳化によって得られるものであってもよい。これらポリマーラテックスの調製方法については、例えば「エマルジョン・ラテックスハンドブック」(エマルジョン・ラテックスハンドブック編集委員会編集、(株)大成社発行(昭和50年))に記載されている。
 本発明に用いることができるポリマーラテックスとしては、例えば、ポリエチレンアイオノマーの水性ディスパージョン(商品名:ケミパールS120 三井化学(株)製。固形分27%)、ケミパールS100 三井化学(株)製。固形分27%)、ケミパールS111 三井化学(株)製。固形分27%)、ケミパールS200 三井化学(株)製。固形分27%)、ケミパールS300 三井化学(株)製。固形分35%)、ケミパールS650 三井化学(株)製。固形分27%)、ケミパールS75N 三井化学(株)製。固形分24%)や、ポリエーテル系ポリウレタンの水性ディスパージョン(商品名:ハイドランWLS-201 DIC(株)製。固形分35%、Tg-50℃)(商品名:ハイドランWLS-202 DIC(株)製。固形分35%、Tg-50℃)(商品名:ハイドランWLS-221 DIC(株)製。固形分35%、Tg-30℃)(商品名:ハイドランWLS-210 DIC(株)製。固形分35%、Tg-15℃)(商品名:ハイドランWLS-213 DIC(株)製。固形分35%、Tg-15℃)(商品名:ハイドランWLI-602 DIC(株)製。固形分39.5%、Tg-50℃)(商品名:ハイドランWLI-611 DIC(株)製。固形分39.5%、Tg-15℃)、アクリル酸アルキルコポリマーアンモニウム(商品名:ジュリマーAT-210 日本純薬製)、アクリル酸アルキルコポリマーアンモニウム(商品名:ジュリマーET-410 日本純薬製)、アクリル酸アルキルコポリマーアンモニウム(商品名:ジュリマーAT-510 日本純薬製)、ポリアクリル酸(商品名:ジュリマーAC-10L 日本純薬製)をアンモニア中和し、乳化した物を挙げることができる。
-重合性化合物-
 硬化性透明樹脂層は、重合性化合物を含む。重合性化合物としては、光重合性化合物であっても、熱重合性化合物であってもよい。
 硬化性透明樹脂層は、光重合性化合物を有することが好ましい。光重合性化合物の有する光重合性基としては特に制限は無く、エチレン性不飽和基、エポキシ基などを挙げることができる。本発明の転写フィルムは、硬化性透明樹脂層の光重合性化合物として、エチレン性不飽和基を有する化合物を含むことが好ましく、(メタ)アクリロイル基を有する化合物を含むことがより好ましい。
 本発明の転写フィルムに使用する光重合性化合物は、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよいが、2種以上を組み合わせて用いることが、転写後の硬化性透明樹脂層を露光した後の塩水付与後の湿熱耐性を改善する観点から好ましい。本発明の転写フィルムに使用する光重合性化合物は、3官能以上の光重合性化合物と2官能の光重合性化合物を組みあわせて使用することが転写後の硬化性透明樹脂層を露光した後の塩水付与後の湿熱耐性を改善する観点から、好ましい。2官能の光重合性化合物はすべての光重合性化合物に対して10~90質量%の範囲で使用することが好ましく、20~85質量%の範囲で使用することがより好ましく、30~80質量%の範囲で使用することが特に好ましい。3官能以上の光重合性化合物はすべての光重合性化合物に対して10~90質量%の範囲で使用することが好ましく、15~80質量%の範囲で使用することがより好ましく、20~70質量%の範囲で使用することが特に好ましい。本発明の転写フィルムは、前述の光重合性化合物として、2つのエチレン性不飽和基を有する化合物および少なくとも3つのエチレン性不飽和基を有する化合物を少なくとも含むことが好ましく、2つの(メタ)アクリロイル基を有する化合物および少なくとも3つの(メタ)アクリロイル基を有する化合物を少なくとも含むことがより好ましい。
 また、本発明の転写フィルムは、前述の光重合性化合物として、ウレタン(メタ)アクリレート化合物を含むことが好ましい。ウレタン(メタ)アクリレート化合物の混合量はすべての光重合性化合物に対して10質量%以上であることが好ましく、20質量%以上であることがより好ましい。ウレタン(メタ)アクリレート化合物は光重合性基の官能基数、すなわち(メタ)アクリロイル基の数が3官能以上であることが好ましく、4官能以上であることがより好ましい。
 2官能のエチレン性不飽和基を有する光重合性化合物は、エチレン性不飽和基を分子内に2つ持つ化合物であれば特に限定されず、市販の(メタ)アクリレート化合物が使用できる。例えば、トリシクロデカンジメタノールジアクリレート(A-DCP 新中村化学工業(株)製)、トリシクロデカンジメナノールジメタクリレート(DCP 新中村化学工業(株)製)、1,9-ノナンジオールジアクリレート(A-NOD-N 新中村化学工業(株)製)、1,6-ヘキサンジオールジアクリレート(A-HD-N 新中村化学工業(株)製)などを好ましく用いることができる。
 3官能以上のエチレン性不飽和基を有する光重合性化合物は、エチレン性不飽和基を分子内に3つ以上持つ化合物であれば特に限定されず、例えば、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)アクリレート、ペンタエリスリトール(トリ/テトラ)アクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、イソシアヌル酸アクリレート等の骨格の(メタ)アクリレート化合物が使用できるが、(メタ)アクリレート間のスパン長が長いものが好ましい。具体的には、前述のジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)アクリレート、ペンタエリスリトール(トリ/テトラ)アクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、イソシアヌル酸アクリレート等の骨格の(メタ)アクリレート化合物のカプロラクトン変性化合物(日本化薬製KAYARAD DPCA、新中村化学工業製A-9300-1CL等)、アルキレンオキサイド変性化合物(日本化薬製KAYARAD RP-1040、新中村化学工業製ATM-35E、A-9300、ダイセル・オルネクス製 EBECRYL 135等)等が好ましく用いることができる。また、カルボキシル基含有の多塩基酸変性の(メタ)アクリレートモノマー(東亞合成(株)製アロニックスM-510、M-520等)を好ましく用いることができる。また、3官能以上のウレタン(メタ)アクリレートを用いることが好ましい。3官能以上のウレタン(メタ)アクリレートとしては、8UX-015A(大成ファインケミカル(株)製)、UA-32P(新中村化学工業(株)製)、UA-1100H(新中村化学工業(株)製)などを好ましく用いることができる。
 本発明の転写フィルムに使用する光重合性化合物は、平均分子量が200~3000であることが好ましく、250~2600であることがより好ましく、280~2200であることが特に好ましい。
 熱重合性化合物としては、上記の光重合性化合物のうち熱重合性化合物でもあるものを好ましく用いることができる。
 前述の硬化性透明樹脂層中、重合性化合物の前述のバインダーポリマーに対する割合(重合性化合物の含有量M/バインダーポリマーの含有量B)は、0.1~2倍であることが好ましく、0.2~1.5倍であることがより好ましく、0.3~1倍であることが特に好ましい。
-重合開始剤-
 前述の硬化性透明樹脂層は、重合開始剤を含む。重合開始剤としては、光重合開始剤であっても、熱重合開始剤であってもよい。
 硬化性透明樹脂層は、光重合開始剤を有することが好ましい。前述の硬化性透明樹脂層が、前述の光重合性化合物および前述の光重合開始剤を含むことによって、硬化性透明樹脂層のパターンを形成しやすくすることができる。
 有機溶剤系樹脂組成物に用いられる光重合開始剤としては、特開2011-95716号公報に記載の段落0031~0042に記載の光重合開始剤を用いることができる。例えば、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)](商品名:IRGACURE OXE-01、BASF製)の他、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)商品名:IRGACURE OXE-02、BASF製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:IRGACURE 379EG、BASF製)、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(商品名:IRGACURE 907、BASF製)、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン(商品名:IRGACURE 127、BASF製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(商品名:IRGACURE 369、BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(商品名:IRGACURE 1173、BASF製)、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(商品名:IRGACURE 184、BASF製)、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(商品名:IRGACURE 651、BASF製)、オキシムエステル系の(商品名:Lunar 6、DKSHジャパン株式会社製などを好ましく用いることができる。
 熱重合開始剤としては、特開2011-32186号公報の0193~0195段落に記載のものを好ましく用いることができ、この公報の内容は本明細書に組み込まれる。
 前述の硬化性透明樹脂層中、前述の硬化性透明樹脂層に対して、前述の重合開始剤は、1質量%以上含まれることが好ましく、2質量%以上含まれることがより好ましい。前述の硬化性透明樹脂層中、前述の硬化性透明樹脂層に対して、前述の重合開始剤は、10質量%以下含まれることが好ましく、5質量%以下含まれることが本発明の透明積層体のパターニング性、基板密着性を改善する観点からより好ましい。
-金属酸化物粒子-
 前述の硬化性透明樹脂層は、屈折率や光透過性を調節することを目的として、粒子(好ましくは金属酸化物粒子)を含んでいても含んでいなくてもよい。上述の範囲に前述の硬化性透明樹脂層の屈折率を制御するために、使用するポリマーや重合性化合物の種類に応じて、任意の割合で金属酸化物粒子を含めることができる。前述の硬化性透明樹脂層中、前述の硬化性透明樹脂層に対して、前述の金属酸化物粒子は、0~35質量%含まれることが好ましく、0~10質量%含まれることがより好ましく、含まれないことが特に好ましい。
 金属酸化物粒子は、透明性が高く、光透過性を有するため、高屈折率で、透明性に優れたポジ型硬化性樹脂組成物が得られる。
 前述の金属酸化物粒子は、硬化性透明樹脂層からこの粒子を除いた材料からなる組成物の屈折率より屈折率が高いものであることが好ましい。
 なお、前述の金属酸化物粒子の金属には、B、Si、Ge、As、Sb、Te等の半金属も含まれるものとする。
 光透過性で屈折率の高い金属酸化物粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Sb、Bi、Te等の原子を含む酸化物粒子が好ましく、酸化チタン、チタン複合酸化物、酸化亜鉛、酸化ジルコニウム、インジウム/スズ酸化物、アンチモン/スズ酸化物がより好ましく、酸化チタン、チタン複合酸化物、酸化ジルコニウムが更に好ましく、酸化チタン、酸化ジルコニウムが特に好ましく、二酸化チタンが最も好ましい。二酸化チタンとしては、特に屈折率の高いルチル型が好ましい。これら金属酸化物粒子は、分散安定性付与のために表面を有機材料で処理することもできる。
 硬化性透明樹脂層の透明性の観点から、前述の金属酸化物粒子の平均一次粒子径は、1~200nmが好ましく、3~80nmが特に好ましい。ここで粒子の平均一次粒子径は、電子顕微鏡により任意の粒子200個の粒子径を測定し、その算術平均をいう。また、粒子の形状が球形でない場合には、最も長い辺を径とする。
 また、前述の金属酸化物粒子は、1種単独で使用してよいし、2種以上を併用することもできる。
 本発明の転写フィルムは、硬化性透明樹脂層が、ZrO粒子、Nb粒子およびTiO粒子のうち少なくとも一方を有することが、前述の硬化性透明樹脂層の屈折率の範囲に屈折率を制御する観点から好ましく、ZrO粒子及びNb粒子がより好ましい。
<第二の透明樹脂層>
 本発明の転写フィルムは、前述の硬化性透明樹脂層上に、更に、第二の透明樹脂層を有することが好ましく、前述の硬化性透明樹脂層に隣接して配置される第二の透明樹脂層を有することがより好ましい。
 本発明の転写フィルムは、前述の硬化性透明樹脂層上に、更に、第二の透明樹脂層を有し、前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高いことが好ましい。
 第二の透明樹脂層は、熱硬化性であっても、光硬化性であっても、熱硬化性かつ光硬化性であってもよい。その中でも、第二の透明樹脂層は少なくとも熱硬化性透明樹脂層であることが、転写後に熱硬化して膜の信頼性を付与できる観点から好ましく、熱硬化性透明樹脂層かつ光硬化性透明樹脂層であることが、転写後に光硬化して製膜しやすく、かつ、製膜後に熱硬化して膜の信頼性を付与できる観点からより好ましい。
(屈折率)
 本発明の転写フィルムは、前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高いことがより好ましい。
 透明電極パターン(好ましくはITO)と前述の第二の透明樹脂層との屈折率差、ならびに、前述の第二の透明樹脂層と前述の硬化性透明樹脂層との屈折率差を小さくすることにより、光反射が低減して透明電極パターンが見えにくくなり、透明電極パターン視認性を改善することができる。また、硬化性透明樹脂層を積層した後に硬化性透明樹脂層を硬化させることなく第二の透明樹脂層を積層しても、層分画が良好となって、上記のメカニズムで透明電極パターン視認性を改善することができるとともに、転写フィルムから屈折率調整層(すなわち硬化性透明樹脂層および第二の透明樹脂層)を透明電極パターン上に転写した後で、フォトリソグラフィによって所望のパターンに現像できる。なお、硬化性透明樹脂層および第二の透明樹脂層の層分画が良好であると、上記のメカニズムによる屈折率調整の効果が十分となりやすく、透明電極パターン視認性の改善が十分となりやすい。
 本発明の転写フィルムは、前述の第二の透明樹脂層の屈折率が1.60以上であることが好ましい。
 一方、前述の第二の透明樹脂層の屈折率は、透明電極パターンの屈折率によって調整する必要があり、値の上限値としては特に制限はないが、2.1以下であることが好ましく、1.78以下であることがより好ましく、1.74以下であってもよい。
 特に、透明電極パターンの屈折率が、In及びZnの酸化物(IZO)の場合の様に2.0を超える場合においては、第二の透明樹脂層の屈折率は、1.7以上1.85以下であることが好ましい。
(厚み)
 本発明の転写フィルムは、前述の第二の透明樹脂層の膜厚が、500nm以下であることが好ましく、110nm以下であることがより好ましい。前述の第二の透明樹脂層の膜厚が20nm以上であることが好ましい。前述の第二の透明樹脂層の膜厚が55~100nmであることが特に好ましく、60~100nmであることがより特に好ましく、70~100nmであることがさらにより特に好ましい。
(組成)
 本発明の転写フィルムは、ネガ型材料であってもポジ型材料であってもよい。
 本発明の転写フィルムがネガ型材料である場合、第二の透明樹脂層には、金属酸化物粒子、バインダー樹脂(好ましくはアルカリ可溶性樹脂)、重合性化合物、重合開始剤を含むことが好ましい。さらに、添加剤などが用いられるがこれに限られない。
 本発明の転写フィルムは、第二の透明樹脂層が、バインダーポリマー、光重合性化合物および光重合開始剤を含むことが好ましい。
 本発明の転写フィルムは、第二の透明樹脂層が透明樹脂層である。第二の透明樹脂層の屈折率を制御する方法としては特に制限はないが、所望の屈折率の透明樹脂層を単独で用いたり、金属粒子や金属酸化物粒子などの粒子を添加した透明樹脂層を用いたり、また金属塩と高分子の複合体を用いることができる。
 さらに、前述の第二の透明樹脂層には、添加剤を用いてもよい。前述の添加剤としては、例えば特許第4502784号公報の段落0017、特開2009-237362号公報の段落0060~0071に記載の界面活性剤や、特許第4502784号公報の段落0018に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落0058~0071に記載のその他の添加剤が挙げられる。
 以上、本発明の転写フィルムがネガ型材料である場合を中心に説明したが、本発明の転写フィルムは、ポジ型材料であってもよい。本発明の転写フィルムがポジ型材料である場合、前述の第二の透明樹脂層に、例えば特開2005-221726号公報に記載の材料などが用いられるが、これに限られない。
-酸基を有するモノマーのアンモニウム塩または酸基を有する樹脂のアンモニウム塩-
 第二の透明樹脂層は、酸基を有するモノマーのアンモニウム塩または酸基を有する樹脂のアンモニウム塩を含むことが好ましい。
 酸基を有するモノマーのアンモニウム塩または酸基を有する樹脂のアンモニウム塩としては特に制限はない。
 第二の透明樹脂層の前述の酸基を有するモノマーのアンモニウム塩または酸基を有する樹脂のアンモニウム塩が、酸基を有するアクリルモノマーまたはアクリル樹脂のアンモニウム塩であることが好ましい。
 酸基を有するモノマーまたは酸基を有する樹脂をアンモニア水溶液に溶解させ、前述の酸基の少なくとも一部がアンモニウム塩化したモノマーまたは樹脂を含む水系樹脂組成物を調製する工程を含むことが好ましい。
--酸基を有する樹脂--
 酸基を有するモノマーまたは酸基を有する樹脂としては、酸基を有する樹脂であることが好ましく、1価の酸基(カルボキシル基など)を有する樹脂であることがより好ましい。第二の透明樹脂層のバインダーポリマーは、カルボキシル基を有するバインダーポリマーであることが特に好ましい。
 第二の透明樹脂層に用い、水系溶媒(好ましくは水もしくは炭素原子数1乃至3の低級アルコールと水の混合溶媒)に対して溶解性を有する樹脂としては本発明の趣旨に反しない限りにおいて特に制限は無く、公知のものの中から適宜選択できる。
 第二の透明樹脂層に用いられる酸基を有する樹脂は、アルカリ可溶性樹脂であることが好ましい。アルカリ可溶性樹脂は、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(すなわち酸基:例えば、カルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。このうち、更に好ましくは、有機溶剤に可溶で弱アルカリ水溶液により現像可能なものである。酸基としては、カルボキシル基が好ましい。
 アルカリ可溶性樹脂の製造には、例えば、公知のラジカル重合法による方法を適用することができる。ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めるようにすることもできる。
 上記の線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましい。例えば、特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号、特開昭46-2121号公報や特公昭56-40824号公報の各公報に記載されているような、ポリ(メタ)アクリル酸、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、スチレン/マレイン酸等のマレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びにカルボキシアルキルセルロースおよびカルボキシアルキル澱粉等の側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等であり、更に側鎖に(メタ)アクリロイル基等の反応性官能基を有する高分子重合体も好ましいものとして挙げられる。
 これらの中では特に、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体やベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好適である。
 この他、2-ヒドロキシエチルメタクリレートを共重合したもの等も有用なものとして挙げられる。このポリマーは任意の量で混合して用いることができる。
 上記以外に、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクレート/メタクリル酸共重合体などが挙げられる。
 アルカリ可溶性樹脂の具体的な構成単位については、特に(メタ)アクリル酸と、これと共重合可能な他の単量体との共重合体が好適である。
 (メタ)アクリル酸と共重合可能な他の単量体としては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。ここで、アルキル基及びアリール基の水素原子は、置換基で置換されていてもよい。
 アルキル(メタ)アクリレート及びアリール(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジルアクリレート、トリルアクリレート、ナフチルアクリレート、シクロヘキシルアクリレート等を挙げることができる。
 また、ビニル化合物としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N-ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー、CH=CR、CH=C(R)(COOR)〔ここで、Rは水素原子又は炭素数1~5のアルキル基を表し、Rは炭素数6~10の芳香族炭化水素環を表し、Rは炭素数1~8のアルキル基又は炭素数6~12のアラルキル基を表す。〕等を挙げることができる。
 これら共重合可能な他の単量体は、1種単独で或いは2種以上を組み合わせて用いることができる。好ましい共重合可能な他の単量体は、CH=CR、CH=C(R)(COOR)、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート及びスチレンから選択される少なくとも1種であり、特に好ましくは、CH=CR及び/又はCH=C(R)(COOR)である。
 この他に反応性官能基を有する(メタ)アクリル化合物、ケイヒ酸等に、この反応性官能基と反応可能な置換基を有する線状高分子を反応させて、エチレン不飽和二重結合をこの線状高分子に導入した樹脂が挙げられる。反応性官能基としては、水酸基、カルボキシル基、アミノ基等が例示でき、この反応性官能基と反応可能な置換基としては、イソシアネート基、アルデヒド基、エポキシ基等をあげることができる。
 これらの中でも、酸基を有する樹脂としては、酸基を有するアクリル樹脂であることが好ましい。なお、本明細書中、アクリル樹脂には、メタクリル樹脂とアクリル樹脂の両方が含まれ、同様に(メタ)アクリルにはメタクリルとアクリルが含まれる。
--酸基を有するモノマー--
 酸基を有するモノマーとしては、(メタ)アクリル酸やその誘導体などのアクリルモノマーや、以下のモノマーを好ましく用いることができる。
 例えば、3~4官能のラジカル重合性モノマー(ペンタエリスリトールトリ及びテトラアクリレート[PETA]骨格にカルボン酸基を導入したもの(酸価=80~120mg-KOH/g)、5~6官能のラジカル重合性モノマー(ジペンタエリスリトールペンタ及びヘキサアクリレート[DPHA]骨格にカルボン酸基を導入したもの(酸価=25~70mg-KOH/g)等が挙げられる。具体的な名称は記載していないが、必要に応じ、2官能のアルカリ可溶性ラジカル重合性モノマーを用いても良い。
 その他、特開2004-239942号公報の[0025]~[0030]に記載の酸基を有するモノマーも好ましく用いることができ、この公報の内容は本発明に組み込まれる。
 これらの中でも、(メタ)アクリル酸やその誘導体などのアクリルモノマーをより好ましく用いることができる。なお、本明細書中、アクリルモノマーは、メタクリルモノマーとアクリルモノマーの両方が含まれる。
-他のバインダーポリマー-
 第二の透明樹脂層に用いられる酸基を有さない他のバインダーポリマーとしては特に制限はなく、前述の硬化性透明樹脂層の形成に用いられる有機溶媒系樹脂組成物に用いられるバインダーポリマーを用いることができる。
-重合性化合物-
 前述の第二の透明樹脂層が、前述の光重合性化合物または熱重合性化合物などの重合性化合物を含むことが、硬化させて膜の強度などを高める観点から好ましい。前述の酸基を有するモノマー以外の他の光重合性化合物を含むことがより好ましい。
 第二の透明樹脂層に用いられる重合性化合物としては、特許第4098550号の段落0023~0024に記載の重合性化合物を用いることができる。その中でも、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールエチレンオキサイド(EO)付加物のテトラアクリレートを好ましく用いることができる。これらの重合性化合物は単独で用いてもよく、複数を含みあわせて用いてもよい。ペンタエリスリトールテトラアクリレートとペンタエリスリトールトリアクリレートの混合物を用いる場合、ペンタエリスリトールトリアクリレートの比率は質量比で0~80%であることが好ましく、10~60%であることがより好ましい。
 第二の透明樹脂層に用いられる光重合性化合物として、具体的には、下記構造式1で表される水溶性の重合性化合物、ペンタエリスリトールテトラアクリレート混合物(NKエステル A-TMMT新中村化学工業(株)製、不純物としてトリアクリレート約10%含有)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM3LM-N 新中村化学工業(株)製、トリアクリレート37%)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM-3L 新中村化学工業(株)製、トリアクリレート55%)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM3 新中村化学工業(株)製、トリアクリレート57%)、ペンタエリスリトールエチレンオキサイド(EO)付加物のテトラアクリレート(カヤラッドRP-1040 日本化薬(株)製)などを挙げることができる。
 第二の透明樹脂層に用いられる光重合性化合物としては、これらの中でも、転写フィルムのレチキュレーションを改善する観点からは、下記構造式1で表される水溶性の重合性化合物、ペンタエリスリトールテトラアクリレート混合物(NKエステル A-TMMT新中村化学工業(株)製)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM3LM-N 新中村化学工業(株)製、トリアクリレート37%)、ペンタエリスリトールテトラアクリレートとトリアクリレートの混合物(NKエステル A-TMM-3L 新中村化学工業(株)製、トリアクリレート55%)を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000001
 その他の第二の透明樹脂層に用いられる光重合性化合物としては、水もしくは炭素原子数1乃至3の低級アルコールと水の混合溶媒に対して溶解性を有する重合性化合物としては、水酸基を有するモノマー、分子内にエチレンオキサイドやポリプロピレンオキサイド、及びリン酸基を有するモノマーが使用できる。
 第二の透明樹脂層に用いられる熱重合性化合物の例は、硬化性透明樹脂層に用いられる熱重合性化合物の例と同じである。
-重合開始剤-
 第二の透明樹脂層は、重合開始剤を含むことが好ましい。重合開始剤としては、光重合開始剤であっても、熱重合開始剤であってもよい。
 第二の透明樹脂層は、光重合開始剤を含むことが好ましい。前述の第二の透明樹脂層に用いられ、水もしくは炭素原子数1乃至3の低級アルコールと水の混合溶媒に対して溶解性を有する光重合開始剤としてはIRGACURE 2959や、下記構造式2の開始剤が使用できる。
 第二の透明樹脂層に用いられる熱重合開始剤の例は、硬化性透明樹脂層に用いられる熱重合開始剤の例と同じである。
Figure JPOXMLDOC01-appb-C000002
-金属酸化物粒子-
 前述の第二の透明樹脂層は、屈折率や光透過性を調節することを目的として、粒子(好ましくは金属酸化物粒子)を含んでいても含んでいなくてもよいが、金属酸化物粒子を含むことが、上述の範囲に前述の第二の透明樹脂層の屈折率を制御する観点から好ましい。前述の第二の透明樹脂層には、使用するポリマーや重合性化合物の種類に応じて、任意の割合で金属酸化物粒子を含めることができるが、前述の第二の透明樹脂層中、前述の第二の透明樹脂層に対して、前述の金属酸化物粒子は、40~95質量%含まれることが好ましく、55~95質量%含まれることがより好ましく、62~90質量%含まれることが転写フィルムのヒビ割れを改善する観点から特に好ましく、62~75質量%含まれることが転写フィルムのヒビ割れをより改善し、かつ、本発明の透明積層体の基板密着性を改善する観点からより特に好ましく、62~70質量%含まれることがさらにより特に好ましい。
 前述の金属酸化物粒子は、または第二の透明樹脂層からこの粒子を除いた材料からなる組成物の屈折率より屈折率が高いものであることが好ましい。具体的には、本発明の転写フィルムは第二の透明樹脂層が、400~750nmの波長を有する光における屈折率が1.50以上の粒子を含有することがより好ましく、屈折率が1.55以上の粒子を含有することが更に好ましく、屈折率が1.70以上の粒子を含有することが特に好ましく、1.90以上の粒子を含有することが最も好ましい。
 ここで、400~750nmの波長を有する光における屈折率が1.50以上であるとは、上記範囲の波長を有する光における平均屈折率が1.50以上であることを意味し、上記範囲の波長を有する全ての光における屈折率が1.50以上であることを要しない。また、平均屈折率は、上記範囲の波長を有する各光に対する屈折率の測定値の総和を、測定点の数で割った値である。
 また、前述の金属酸化物粒子は、1種単独で使用してよいし、2種以上を併用することもできる。
 本発明の転写フィルムは、第二の透明樹脂層が、ZrO粒子、Nb粒子およびTiO粒子のうち少なくとも一方を有することが、前述の第二の透明樹脂層の屈折率の範囲に屈折率を制御する観点から好ましく、ZrO粒子及びNb粒子がより好ましい。
<第三の硬化性透明樹脂層>
 本発明の転写フィルムは、前述の第二の透明樹脂層の上にさらに第三の硬化性透明樹脂層を設けても良い。
 第二の透明樹脂層が水溶性の場合は、第三の硬化性透明樹脂層は非水溶性であることが好ましく、第二の透明樹脂層が非水溶性の場合は、第三の硬化性透明樹脂層は水溶性であることが好ましい。
 前述の第三の硬化性透明樹脂層の屈折率が1.60以上であることが好ましい。
 一方、前述の第三の硬化性透明樹脂層の屈折率の上限値としては特に制限はないが、1.78以下であることが実用上好ましく、1.74以下であってもよい。
 本発明の転写フィルムは、前述の第三の硬化性透明樹脂層の膜厚が、500nm以下であることが好ましく、110nm以下であることがより好ましい。前述の第三の硬化性透明樹脂層の厚みが55~100nmであることが特に好ましく、60~100nmであることがより特に好ましく、70~100nmであることがさらにより特に好ましい。
 本発明の転写フィルムは、前述の第三の硬化性透明樹脂層が、前述の重合性化合物を含むことが、硬化させて膜の強度などを高める観点から好ましい。
 前述の第三の硬化性透明樹脂層は、金属酸化物粒子を含んでいても含んでいなくてもよいが、金属酸化物粒子を含むことが、上述の範囲に前述の第三の硬化性透明樹脂層の屈折率を制御する観点から好ましい。前述の第三の硬化性透明樹脂層には、使用するポリマーや重合性化合物の種類に応じて、任意の割合で金属酸化物粒子を含めることができるが、前述の第三の硬化性透明樹脂層中、前述の第三の硬化性透明樹脂層の固形分に対して、前述の金属酸化物粒子は、40~95質量%含まれることが好ましく、55~95質量%含まれることがより好ましく、82~90質量%含まれることが特に好ましい。
〔保護フィルム〕
 本発明の転写フィルムは、前述の第二の透明樹脂層の表面に保護フィルム(以下、「保護剥離層」とも言う。)などを更に設けることが好ましい。
 前述の保護フィルムとしては、特開2006-259138号公報の段落0083~0087および0093に記載の保護フィルムを適宜使用することができる。
<転写フィルムの製造方法>
 本発明の転写フィルムは、特開2006-259138号公報の段落0094~0098に記載の硬化性転写材料の作製方法に準じて作製することができる。本発明の転写フィルムは、以下の転写フィルムの製造方法によって製造されることが好ましい。
 転写フィルムの製造方法は、仮支持体上に、硬化性透明樹脂層を形成する工程と、硬化性透明樹脂層の上に直接第二の透明樹脂層を形成する工程とを有し、硬化性透明樹脂層および第二の透明樹脂層のうちいずれか一方を水/炭素原子数1~3のアルコール含有率が質量比で58/42~100/0の水または混合溶媒を含む塗布液を塗布して形成し、もう一方を有機溶媒を含む塗布液を塗布して形成し、第二の透明樹脂層の屈折率が硬化性透明樹脂層の屈折率よりも高く、第二の透明樹脂層の屈折率が、1.6以上であることが好ましい。
 このような構成により、前述の硬化性透明樹脂層と前述の第二の透明樹脂層の界面を明確にして透明電極パターンの視認性をより改善することができる。また、第一および第二の透明樹脂層のいずれか一方を水/炭素原子数1~3のアルコール含有率が質量比で58/42~100/0の水または混合溶媒を含む塗布液を塗布して形成し、もう一方を有機溶媒を含む塗布液を塗布して形成することにより、硬化性透明樹脂層を積層した後に硬化させることなく第二の透明樹脂層を積層しても層分画が良好となって透明電極パターン視認性を改善することができるとともに、転写フィルムから屈折率調整層(すなわち第一および第二の透明樹脂層)を透明電極パターン上に転写した後で、フォトリソグラフィによって所望のパターンに現像できる。
 転写フィルムの製造方法は、前述の仮支持体上に前述の硬化性透明樹脂層を形成する前に、さらに熱可塑性樹脂層を形成する工程を含むことが好ましい。
 転写フィルムの製造方法は、前述の熱可塑性樹脂層を形成する工程の後に、前述の熱可塑性樹脂層と前述の硬化性透明樹脂層の間に中間層を形成する工程を含むことが好ましい。具体的に中間層を有する前述の感光性フィルムを形成する場合には、仮支持体上に、熱可塑性の有機高分子と共に添加剤を溶解した溶解液(熱可塑性樹脂層用塗布液)を塗布し、乾燥させて熱可塑性樹脂層を設けた後、この熱可塑性樹脂層上に熱可塑性樹脂層を溶解しない溶剤に樹脂や添加剤を加えて調製した調製液(中間層用塗布液)を塗布し、乾燥させて中間層を積層し、この中間層上に更に、中間層を溶解しない溶剤を用いて調製した着色感光性樹脂層用塗布液を塗布し、乾燥させて着色感光性樹脂層を積層することによって、好適に作製することができる。
 [積層体の製造方法]
 本発明の積層体の製造方法は、段差を有する基材の上に、少なくとも前述の段差を構成する段の上部および段の下部を連続して覆うように本発明の転写フィルムの前述の硬化性透明樹脂層を積層する工程を含み、前述の段差を構成する段の厚みが100nm以上である。
 本発明の積層体の製造方法ではこのような構成により、段差を有する基材へのラミネート時の気泡混入を抑制でき、特に段差に沿った領域(図17における44)において段差を有する基材へのラミネート時の気泡混入を抑制できる。
<段差を有する基材の準備>
 本発明の積層体の製造方法は、段差を有する基材を用い、前述の段差を構成する段の厚みが100nm以上である。
 このような段差を有する基材の準備方法としては特に制限はない。
 段差を有する基材に用いることができる基材としては、後述の基材を用いることができ、透明基材が好ましい。
 (基材の表面処理)
 また、後の転写工程におけるラミネートによる各層の密着性を高めるために、予め基材(特に基材が透明基板(前面板)である場合)の非接触面に表面処理を施すことができる。前述の表面処理としては、シラン化合物を用いた表面処理(シランカップリング処理)を実施することが好ましい。シランカップリング剤としては、感光性樹脂と相互作用する官能基を有するものが好ましい。例えばシランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン)0.3質量%水溶液、商品名:KBM603、信越化学(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄する。この後、加熱により反応させる。加熱槽を用いてもよく、ラミネータの基板予備加熱でも反応を促進できる。
 また、段差を構成する段の下部が、基材ではなく、他の部材である場合は、基材上に他の部材を設ける工程を有していてもよい。
(段差)
 段差を構成する段の厚みは100nm以上であり、100nm~500nmであることが好ましく、100nm~300nmであることがより好ましい。段差を構成する段の厚みの上限値が上述の範囲以下であることが、転写フィルムが溶媒をほとんど含まないドライフィルムの場合の段差への追従性の観点から好ましい。
 本発明の積層体の製造方法に用いられる段差を有する基材について、図面をもとに説明する。本発明の積層体の製造方法に用いることができる段差を有する基材の一例を図18~20に示した。
 図18に示した段差を有する基材43は、フィルム基材1Aの上に、段差を構成する段41を有する。段差を構成する段41の厚みは、段差を構成する段の上部41aと段差を構成する段の下部41bの高さ(距離)に相当する。図18では段差を構成する段41の厚みを100nmと記載してあるが、本発明の積層体の製造方法に用いられる段差を有する基材は、このような態様に限定されるものではない。
 前述の段差を構成する段の下部は、基材(フィルム基材)ではなく、他の部材であってもよいが、基材であることが好ましい。図18に示した段差を有する基材43は、前述の段差を構成する段の下部がフィルム基材1Aである。
 また、段差を構成する段の上部は、平面ではなく、曲面であってもよい。
 前述の段差を構成する段の側部(図18における41b)が、段の上部の方が段の下部よりも狭い傾斜構造(いわゆるテーパー形状)であり、前述の段差を構成する段の側部(図18における41b)と段差を構成する段の下部41bのなす角度(図18におけるθ)が5~90°であることが好ましい。
 本発明の積層体の製造方法は、前述の段差を構成する段の側部(図18における41b)が、段の上部の方が段の下部よりも狭い傾斜構造(いわゆるテーパー形状)であり、前述の段差を構成する段の側部(図18における41b)と前述の基材(図18における1A)とのなす角度(図18におけるθ)が5~90°であることが好ましい。
 図18では、θ=約78°の態様を示した。
 図18では、前述の段差を構成する段の側部41bの傾斜構造(いわゆるテーパー形状)の幅は20nmであるが、本発明の積層体の製造方法に用いられる段差を有する基材は、このような態様に限定されるものではない。段の側部41bの傾斜構造(いわゆるテーパー形状)の幅は10nm~1000nmであることが好ましく、20nm~500nmであることがより好ましい。なお、段の側部41bの傾斜構造(いわゆるテーパー形状)の幅は(段差を構成する段の厚み)×cotθで求めることができる。
 -透明電極パターンおよび別の導電性要素の製膜-
 本発明の積層体の製造方法は、前述の段差を構成する段が導電性要素を含むことが好ましく、導電性要素であることがより好ましい。導電性要素としては、透明電極パターン、電極パターン、別の導電性要素などを挙げることができ、透明電極パターンまたは別の導電性要素であることがより好ましく、別の導電性要素であることが特に好ましい。
 前述の段差を構成する段が導電性要素を含む場合、本発明の積層体の製造方法は、前述の段差を構成する段の上部(図18における41a)が前述の導電性要素の上部であり、前述の段差を構成する段の下部(図18における41c)が前述の基材であることが好ましい。
 本発明の積層体の製造方法は、前述の透明電極パターンの他に、別の導電性要素を含み、前述の段差を構成する段が前述の別の導電性要素であることが好ましい。また、本発明の積層体の製造方法は、前述の段差を構成する段が前述の透明電極パターンであることが好ましい。ただし、本発明の積層体の製造方法では、透明電極パターンの厚みは100nm未満であってもよく、その場合は段差を構成する段が別の導電性要素であることが好ましい。
 本発明の積層体の製造方法に用いることができる段差を有する基材の一例として、段差を構成する段が別の導電性要素である態様を図19および図20に示した。図20では、段差を有する基材43は、フィルム基材1Aと、別の導電性要素6と、透明電極パターン3(第一の透明電極パターン)とを有し、段差を構成する段41が別の導電性要素6である。別の導電性要素6は、図20に示したように1本のみで段差を構成する段41を構成していてもよく、隣り合って並んだ複数本が段差を構成する段41を構成してもよい(不図示)。
 図19では、図20に示した透明電極パターン3(第一の透明電極パターン)を含む段差を有する基材43と、別の透明電極パターン4(第二の透明電極パターン)を含むフィルム基材と、透明基板1(前面板)とが積層された態様を示した。なお、図19に示した各部材を統合することにより、後述の本発明の静電容量型入力装置とすることができる。
 前述の透明電極パターンおよび前述の別の導電性要素は、後述する本発明の静電容量型入力装置の説明における、第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6の形成方法などを用いて、フィルム基材、透明基板上などの任意の基材上に製膜することができ、感光性フィルムを用いる方法が好ましい。
<保護フィルム除去工程>
 積層体の製造方法は、本発明の転写フィルムが保護フィルムを含む場合は、硬化性透明樹脂層を積層する工程の前に、本発明の転写フィルムから前述の保護フィルムを除去する保護フィルム除去工程を含むことが好ましい。
<硬化性透明樹脂層を積層する工程>
 本発明の積層体の製造方法は、段差を有する基材の上に、少なくとも前述の段差を構成する段の上部および段の下部を連続して覆うように本発明の転写フィルムの前述の硬化性透明樹脂層を積層する工程を含む。
 本発明の積層体の製造方法は、前述の段差を構成する基材の一方の方向から前述の段差を構成する段の上部および段の下部の上に前述の硬化性透明樹脂層を連続して積層することが好ましい。
 本発明の積層体の製造方法は、前述の段差を構成する段の下部(図18における41c)から段の上部(図18における41a)までこの順で前述の硬化性透明樹脂層を積層する段差上昇工程と、前述の段差を構成する段の上部(図18における41a)から段の下部(図18における41c)までこの順で前述の硬化性透明樹脂層を積層する段差下降工程とを有することが好ましい。このように段差上昇工程と、段差下降工程を含む場合であっても、本発明の積層体の製造方法によれば、特に図17の段差に沿った領域44において、段差を有する基材へのラミネート時の気泡混入を抑制できる。段差上昇工程は、図17においてラミネート方向42に近い側の段差において、硬化性透明樹脂層が段を乗り上げる際に行われる。段差下降工程は、図17においてラミネート方向42から遠い側の段差において、硬化性透明樹脂層が段を越える際に行われる。
 段差を有する基材の上に硬化性透明樹脂層を積層する工程は、転写(貼り合わせ)工程であることが好ましい。転写工程とは、転写フィルムから硬化性透明樹脂層が段差を有する基材に積層された結果、貼り合わせられることを言う。この際、本発明の転写フィルムの前述の硬化性透明樹脂層を、段差(別の導電性要素や透明電極パターン)を有する基材にラミネート後、仮支持体を取り除く工程を含む方法が好ましい。
 段差を有する基材の上に硬化性透明樹脂層を積層する工程は、前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を、段差を有する基材の表面に重ね、加圧および加熱することに行われることが好ましい。
 段差を有する基材の上に硬化性透明樹脂層を積層する工程には、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。ラミネータはゴムローラーなどの任意の加熱可能なローラーを備え、加圧および加熱をできることが好ましい。
 硬化性透明樹脂層を積層する工程における硬化性透明樹脂層と段差を有する基材とを貼り合わせる際の温度は、60~150℃であることが好ましく、65~130℃であることがより好ましく、70~100℃であることが特に好ましい。
 硬化性透明樹脂層を積層する工程における硬化性透明樹脂層と段差を有する基材の間には、線圧60~200N/cmをかけることが好ましく、線圧70~160N/cmをかけることがより好ましく、線圧80~120N/cmをかけることが特に好ましい。
 硬化性透明樹脂層を積層する工程における硬化性透明樹脂層の搬送速度は、2.0m/min以上が好ましく、3.0m/min以上がより好ましく、4.0m/min以上が更に好ましい。本発明の積層体の製造方法は、このような高速ラミネート時においても、段差を有する基材へのラミネート時の気泡混入を抑制できる。
 本発明の積層体の製造方法における硬化性透明樹脂層を積層する工程を、図面をもとに説明する。本発明の積層体の製造方法における硬化性透明樹脂層を積層する工程の一例の概略図を図17に示した。
 図17に示した段差を有する基材43は、フィルム基材1Aの上に、厚みが100nmであって、ラミネート方向42を縦方向としたときに、フィルム基材1Aの上方(図17の紙面の上方向)から見たときに縦2cm、横5cmの長方形となる形状の導電性要素を、段差を構成する段41として有する。図17に示した段差を有する基材43は、段差を構成する段の側部は、段の上部の方が段の下部よりも狭い傾斜構造(いわゆるテーパー形状)であり、この段差を構成する段の側部と基板のなす角度が約78°である。また、フィルム基材1Aの上方から見たときに段差を構成する段の側部の幅は20nmの長さである。
 本発明の転写フィルムを図17に示すラミネート方向42から段差41をすべて覆うように硬化性透明樹脂層を連続してラミネートし、段差を有する基材43の上に硬化性透明樹脂層を積層する。この際、不図示のラミネータにより、硬化性透明樹脂層を搬送しながら積層し、高温にて線圧をかけて圧着することが好ましい。
 本発明の積層体の製造方法は、前述の硬化性透明樹脂層および前述の第二の透明樹脂層を有する転写フィルムから、透明電極パターン上に前述の硬化性透明樹脂層および前述の第二の透明樹脂層を形成する方法であることが好ましい。
 本発明の積層体の製造方法は、前述の段差を有する基材が、透明電極パターンを含み、前述の透明電極パターン上に前述の硬化性透明樹脂層を積層する工程を含むことが好ましい。
 本発明の積層体の製造方法は、前述の転写フィルムが前述の硬化性透明樹脂層上に、更に、第二の透明樹脂層を有し、前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高く、前述の透明電極パターン上に、本発明の転写フィルムの前述の第二の透明樹脂層および前述の硬化性透明樹脂層をこの順で積層する工程を含むことがより好ましい。このような構成により、積層体の第二の透明樹脂層および前述の硬化性透明樹脂層を一括して転写することができ、透明電極パターンが視認される問題がない積層体を容易に、生産性良く製造することができる。
 なお、本発明の積層体の製造方法における前述の第二の透明樹脂層は、前述の透明電極パターン上と、前述の非パターン領域では前述の透明膜上に直接、または、他の層を介して、製膜される。
<露光工程、現像工程>
 積層体の製造方法は、段差を有する基材上に転写された硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を露光する露光工程と、露光された硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を現像する現像工程と、を有することが好ましい。
 前述の露光工程、現像工程、およびその他の工程の例としては、特開2006-23696号公報の段落0035~0051に記載の方法を本発明においても好適に用いることができる。
 前述の露光工程は、透明電極パターン上に転写された前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を露光する工程である。
 具体的には、前述の透明電極パターン上に形成された前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)の上方に所定のマスクを配置し、その後このマスク、仮支持体を介してマスク上方から前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を露光する方法が挙げられる。
 ここで、前述の露光の光源としては、前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を硬化しうる波長域の光(例えば、365nm、405nmなど)を照射できるものであれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5~200mJ/cm程度であり、好ましくは10~100mJ/cm程度である。
 積層体の製造方法は、硬化性透明樹脂層および第二の透明樹脂層を同時に硬化する工程を含むことが好ましく、同時にパターン硬化する工程を含むことがより好ましい。本発明の転写フィルムは、硬化性透明樹脂層を積層した後に、硬化性透明樹脂層を硬化させることなく、第二の透明樹脂層を積層されることが好ましい。このようにして得られた本発明の転写フィルムから転写された硬化性透明樹脂層および第二の透明樹脂層は、同時に硬化することができる。これにより、本発明の転写フィルムから第一および第二の透明樹脂層を透明電極パターン上に転写した後で、フォトリソグラフィによって所望のパターンに現像できる。
 積層体の製造方法は、硬化性透明樹脂層および第二の透明樹脂層を同時に硬化する工程の後に、硬化性透明樹脂層および第二の透明樹脂層の未硬化部分(光硬化の場合は、未露光部分のみ、または、露光部分のみ)を現像して、取り除く工程を含むことがより好ましい。
 前述の現像工程は、露光された硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を現像する工程である。
 本発明では、前述の現像工程は、パターン露光された前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を現像液によってパターン現像する狭義の意味の現像工程である。
 前述の現像は、現像液を用いて行うことができる。前述の現像液としては、特に制約はなく、特開平5-72724号公報に記載の現像液など、公知の現像液を使用することができる。尚、現像液は光硬化性樹脂層が溶解型の現像挙動をする現像液が好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含む現像液が好ましい。一方、前述の硬化性透明樹脂層および前述の第二の透明樹脂層自体はパターンを形成しない場合の現像液は前述の非アルカリ現像型着色組成物層を溶解しない型の現像挙動をする現像液が好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含む現像液が好ましい。現像液には、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、N-メチルピロリドン等を挙げることができる。有機溶剤の濃度は0.1質量%~30質量%が好ましい。
 また、前述の現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。
 前述の現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディップ現像等のいずれでもよい。ここで、前述のシャワー現像について説明すると、露光後の前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の液温度は20℃~40℃が好ましく、また、現像液のpHは8~13が好ましい。
 積層体の製造方法は、ポスト露光工程、ポストベーク工程等、その他の工程を有していてもよい。前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)が、熱硬化性透明樹脂層である場合は、ポストベーク工程を行うことが好ましい。
 尚、パターニング露光や全面露光は、仮支持体を剥離してから行ってもよいし、仮支持体を剥離する前に露光し、その後、仮支持体を剥離してもよい。マスクを介した露光でも良いし、レーザー等を用いたデジタル露光でも良い。
 (透明膜の製膜)
 本発明の積層体が、前述の透明電極パターンの前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)が形成された側と反対側に、屈折率が1.6~1.78であり膜厚が55~110nmの透明膜をさらに有する場合、前述の透明膜は、前述の透明電極パターンの上に直接、または、前述の第三の透明膜などの他の層を介して、製膜される。
 前述の透明膜の製膜方法としては特に制限はないが、転写またはスパッタによって製膜することが好ましい。
 その中でも、本発明の積層体は、前述の透明膜が、仮支持体上に形成された透明硬化性樹脂膜を、前述の透明基板上に転写して製膜されてなることが好ましく、転写後に硬化して製膜されてなることがより好ましい。転写および硬化の方法としては、後述する本発明の静電容量型入力装置の説明における感光性フィルムを用い、本発明の積層体の製造方法における前述の硬化性透明樹脂層(好ましくはさらに前述の第二の透明樹脂層)を積層する方法と同様に積層、露光、現像およびその他の工程を行う方法を挙げることができる。その場合は、感光性フィルム中の光硬化性樹脂層に前述の金属酸化物粒子を分散させることで、上述の範囲に前述の透明膜の屈折率を調整することが好ましい。
 一方、前述の透明膜が無機膜である場合は、スパッタによって形成されてなることが好ましい。すなわち、積層体は、前述の透明膜が、スパッタによって形成されてなることも好ましい。
 スパッタの方法としては、特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報に用いられている方法を好ましく用いることができる。
 (第三の透明膜の製膜)
 前述の第三の透明膜の製膜方法は、透明基板上に屈折率が1.6~1.78であり膜厚が55~110nmの透明膜を製膜する方法と同様である。
 [積層体]
 本発明の積層体は、本発明の積層体の製造方法で製造された積層体である。
 本発明の積層体は、透明電極パターンと、この透明電極パターンに隣接して配置された第二の透明樹脂層と、この第二の透明樹脂層に隣接して配置された硬化性透明樹脂層とを有し、前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高く、前述の第二の透明樹脂層の屈折率が1.6以上であることが好ましい。
 このような構成とすることにより、透明電極パターンが視認される問題を解決することができ、パターニング性が良好となる。
 さらに本発明の積層体は、着色が良好であること、すなわち黄色味を帯びていないことが好ましい。また、本発明の積層体は、基板密着性が良好であることが好ましい。
 <積層体の構成>
 本発明の積層体は、前述の透明電極パターンの前述の第二の透明樹脂層が形成された側と反対側に、屈折率が1.6~1.78であり膜厚が55~110nmの透明膜をさらに有することが、透明電極パターンの視認性をより改善する観点から、好ましい。なお、本明細書中、特に断りがなく「透明膜」と記載する場合は、上記の「屈折率が1.6~1.78であり膜厚が55~110nmの透明膜」を指す。
 本発明の積層体は、前述の屈折率が1.6~1.78であり膜厚が55~110nmの透明膜の前述の透明電極パターンが形成された側と反対側に、透明基板をさらに有することが好ましい。
 図11に本発明の積層体の構成の1例を示す。
 図11では、透明基板1、屈折率が1.6~1.78であり膜厚が55~110nmの透明膜11を有し、さらに透明電極パターン4、第二の透明樹脂層12および硬化性透明樹脂層7がこの順に積層された領域21を面内に有する。また、図11では、前述の積層体は、上記領域に加えて、透明基板1、および異なる屈折率を有する少なくとも2種の透明薄膜を含む多層膜11がこの順に積層された領域(図11の構成では、第二の透明樹脂層12と硬化性透明樹脂層7がこの順に積層された領域22(すなわち、透明電極パターンが形成されていない非パターン領域22))を含むことが示されている。
 換言すれば、前述の透明電極パターン付き基板は、透明基板1、異なる屈折率を有する少なくとも2種の透明薄膜を含む多層膜11、透明電極パターン4、第二の透明樹脂層12および硬化性透明樹脂層7がこの順に積層された領域21を面内方向に含む。
 面内方向とは、積層体の透明基板と平行な面に対して略平行方向を意味する。したがって、透明電極パターン4、第二の透明樹脂層12および硬化性透明樹脂層7がこの順に積層された領域を面内に含むとは、透明電極パターン4、第二の透明樹脂層12および硬化性透明樹脂層7がこの順に積層された領域の、積層体の透明基板と平行な面への正射影が、積層体の透明基板と平行な面内に存在することを意味する。
 ここで、本発明の積層体を後述する静電容量型入力装置に用いる場合、透明電極パターンは行方向と列方向の略直交する2つの方向にそれぞれ第一の透明電極パターンおよび第二の透明電極パターンとして設けられることがある(例えば、図3参照)。例えば図3の構成では、本発明の積層体における透明電極パターンは、第二の透明電極パターン4であっても、第一の透明電極パターン3のパッド部分3aであってもよい。言い換えると、以下の本発明の積層体の説明では、透明電極パターンの符号を「4」で代表して表すことがあるが、本発明の積層体における透明電極パターンは、本発明の静電容量型入力装置における第二の透明電極パターン4への使用に限定されず、例えば第一の透明電極パターン3のパッド部分3aとして使用してもよい。
 本発明の積層体は、前述の透明電極パターンが形成されていない非パターン領域を含むことが好ましい。本明細書中、非パターン領域とは、透明電極パターン4が形成されていない領域を意味する。
 図11には、本発明の積層体が非パターン領域22を含む態様が示されている。
 本発明の積層体は、前述の透明電極パターンが形成されていない非パターン領域22の少なくとも一部に、前述の透明基板、前述の透明膜および前述の第二の透明樹脂層がこの順に積層された領域を面内に含むことが好ましい。
 本発明の積層体は、前述の透明基板、前述の透明膜および前述の第二の透明樹脂層がこの順に積層された領域において、前述の透明膜および前述の第二の透明樹脂層が互いに隣接していることが好ましい。
 但し、前述の非パターン領域22のその他の領域には、本発明の趣旨に反しない限りにおいてその他の部材を任意の位置に配置してもよく、例えば本発明の積層体を後述する静電容量型入力装置に用いる場合、マスク層2や、絶縁層5や別の導電性要素6などを積層することができる。
 本発明の積層体は、前述の透明基板および透明膜が互いに隣接していることが好ましい。
 図11には、前述の透明基板1の上に隣接して前述の透明膜11が積層している態様が示されている。
 但し、本発明の趣旨に反しない限りにおいて、前述の透明基板および前述の透明膜の間に、第三の透明膜が積層されていてもよい。例えば、前述の透明基板および前述の透明膜の間に、屈折率1.5~1.52の第三の透明膜(図11には不図示)を含むことが好ましい。
 本発明の積層体は前述の透明膜の厚みが55~110nmであることが好ましく、60~110nmであることがより好ましく、70~90nmであることが特に好ましい。
 ここで、前述の透明膜は、単層構造であっても、2層以上の積層構造であってもよい。前述の透明膜が2層以上の積層構造である場合、前述の透明膜の膜厚とは、全層の合計膜厚を意味する。
 本発明の積層体は、前述の透明膜および前述の透明電極パターンが互いに隣接していることが好ましい。
 図11には、前述の透明膜11の一部の領域上に隣接して前述の透明電極パターン4が積層している態様が示されている。
 図11に示すように、前述の透明電極パターン4の端部は、その形状に特に制限はないがテーパー形状を有していてもよく、例えば、前述の透明基板側の面の方が、前述の透明基板と反対側の面よりも広いようなテーパー形状を有していてもよい。
 ここで、前述の透明電極パターンの端部がテーパー形状であるときの透明電極パターンの端部の角度(以下、テーパー角とも言う)は、30°以下であることが好ましく、0.1~15°であることがより好ましく、0.5~5°であることが特に好ましい。
 本明細書中におけるテーパー角の測定方法は、前述の透明電極パターンの端部の顕微鏡写真を撮影し、その顕微鏡写真のテーパー部分を三角形に近似し、テーパー角を直接測定して求めることができる。
 図10に透明電極パターンの端部がテーパー形状である場合の一例を示す。図10におけるテーパー部分を近似した三角形は、底面が800nmであり、高さ(底面と略平行な上底部分における膜厚)が40nmであり、このときのテーパー角αは約3°である。テーパー部分を近似した三角形の底面は、10~3000nmであることが好ましく、100~1500nmであることがより好ましく、300~1000nmであることが特に好ましい。
 なお、テーパー部分を近似した三角形の高さの好ましい範囲は、透明電極パターンの膜厚の好ましい範囲と同様である。
 本発明の積層体は、前述の透明電極パターンおよび前述の第二の透明樹脂層が互いに隣接している領域を含むことが好ましい。
 図11には、前述の透明電極パターン、前述の第二の透明樹脂層および硬化性透明樹脂層がこの順に積層された領域21において、前述の透明電極パターン、前述の第二の透明樹脂層および硬化性透明樹脂層が互いに隣接している態様が示されている。
 また、本発明の積層体は、前述の透明膜および前述の第二の透明樹脂層によって、前述の透明電極パターンおよび前述の透明電極パターンが形成されていない非パターン領域22の両方が連続して直接または他の層を介して被覆されたことが好ましい。
 ここで、「連続して」とは、前述の透明膜および前述の第二の透明樹脂層がパターン膜ではなく、連続膜であることを意味する。すなわち、前述の透明膜および前述の第二の透明樹脂層は、開口部を有していないことが、透明電極パターンを視認されにくくする観点から好ましい。
 また、前述の透明膜および前述の第二の透明樹脂層によって、前述の透明電極パターンおよび前述の非パターン領域22が、他の層を介して被覆されるよりも、直接被覆されることが好ましい。他の層を介して被覆される場合における「他の層」としては、後述する本発明の静電容量型入力装置に含まれる絶縁層5や、後述する本発明の静電容量型入力装置のように透明電極パターンが2層以上含まれる場合は2層目の透明電極パターンなどを挙げることができる。
 図11には、前述の第二の透明樹脂層12が積層している態様が示されている。前述の第二の透明樹脂層12は、前述の透明膜11上の透明電極パターン4が積層していない領域と、透明電極パターン4が積層している領域との上にまたがって積層している。すなわち、前述の第二の透明樹脂層12は、前述の透明膜11と隣接しており、さらに、前述の第二の透明樹脂層12は、透明電極パターン4と隣接している。
 また、透明電極パターン4の端部がテーパー形状である場合は、テーパー形状に沿って(テーパー角と同じ傾きで)前述の第二の透明樹脂層12が積層していることが好ましい。
 図11では、前述の第二の透明樹脂層12の前述の透明電極パターンが形成された表面とは反対側の表面上に、硬化性透明樹脂層7が積層された態様が示されている。
 <積層体の材料>
(段差を有する基材に用いられる基材)
 段差を有する基材に用いられる基材は、フィルム基材または透明基板であることが好ましい。
 段差を有する基材に用いられる基材がフィルム基材である場合は、フィルム基材は以下の態様であることが好ましい。
 フィルム基材は、光学的に歪みがないものや、透明度が高いものを用いることがより好ましく、具体的な素材には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)をあげることができる。
 段差を有する基材に用いられる基材が透明基板である場合は、前述の透明基板が屈折率1.5~1.55のガラス基板であることが好ましい。前述の透明基板の屈折率は、1.5~1.52であることが特に好ましい。前述の透明基板は、ガラス基板等の透光性基板で構成されており、コーニング社のゴリラガラスに代表される強化ガラスなどを用いることができる。また、前述の透明基板としては、特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報に用いられている材料を好ましく用いることができる。
 (透明電極パターン)
 本発明の積層体は、透明電極パターンを有することが好ましい。
 前述の透明電極パターンの屈折率は1.75~2.1であることが好ましい。
 前述の透明電極パターンの材料は特に制限されることはなく、公知の材料を用いることができる。例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできる。また、前述の第一の透明電極パターン3と、第二の透明電極パターン4と、後述する別の導電性要素6とは、導電性繊維を用いた光硬化性樹脂層を有する感光性フィルムを用いて製造することもできる。その他、ITO等によって第一の透明電極パターン等を形成する場合には、特許第4506785号公報の段落0014~0016等を参考にすることができる。その中でも、前述の透明電極パターンは、ITO膜であることが好ましい。
 本発明の積層体は、前述の透明電極パターンが屈折率1.75~2.1のITO膜であることが好ましい。
 (別の導電性要素)
 本発明の積層体は、透明電極パターンとは別の導電性要素を有することが好ましい。
 別の導電性要素は、透明電極パターンの引き回し配線(取出配線とも言われる)であることが好ましい。別の導電性要素の材料は特に制限されることはなく、公知の材料を用いることができる。従来は導電性が高く微細加工が容易な点から、別の導電性要素の材料としてMo/Al/Moの3層構造のMAMが一般的に用いられてきたが、上述の透明電極パターンの材料と同じ材料を好ましく用いることができ、さらにAu(金)、Ag(銀)、Cu(銅)、Al(アルミニウム)、Mo(モリブデン)、Pd(パラジウム)、Pt(白金)、C(炭素)、Fe(鉄)などの金属を用いることもできる。これらの金属が含まれる導電性ペーストまたは導電性インクをウェット法により成膜することで、蒸着法に比べてより安価なプロセスで取出配線を得ることができる。別の導電性要素の材料は金属であることが好ましく、銅またはアルミニウムであることがより好ましい。
 (硬化性透明樹脂層および第二の透明樹脂層)
 本発明の積層体に含まれる硬化性透明樹脂層および第二の透明樹脂層の好ましい範囲は、本発明の転写フィルムにおける前述の硬化性透明樹脂層および前述の第二の透明樹脂層の好ましい範囲と同様である。
 (透明膜)
 本発明の積層体は、前述の透明膜の屈折率が1.6~1.78であり、1.65~1.74であることが好ましい。ここで、前述の透明膜は、単層構造であっても、2層以上の積層構造であってもよい。前述の透明膜が2層以上の積層構造である場合、前述の透明膜の屈折率とは、全層の屈折率を意味する。
 このような屈折率の範囲を満たす限りにおいて、前述の透明膜の材料は特に制限されない。
 前述の透明膜の材料の好ましい範囲と屈折率などの物性の好ましい範囲は、前述の第二の透明樹脂層のそれらの好ましい範囲と同様である。
 本発明の積層体は、前述の透明膜と前述の第二の透明樹脂層が、同一材料によって構成されたことが光学的均質性の観点から好ましい。
 本発明の積層体は、前述の透明膜が透明樹脂膜であることが好ましい。
 透明樹脂膜に用いられる金属酸化物粒子や樹脂(バインダー)やその他の添加剤としては本発明の趣旨に反しない限りにおいて特に制限は無く、本発明の転写フィルムにおける前述の第二の透明樹脂層に用いられる樹脂やその他の添加剤を好ましく用いることができる。
 本発明の積層体は、前述の透明膜が無機膜であってもよい。無機膜に用いられる材料としては、本発明の転写フィルムにおける前述の第二の透明樹脂層に用いられる材料を好ましく用いることができる。
 (第三の透明膜)
 前述の第三の透明膜の屈折率は、1.5~1.55であることが前述の透明基板の屈折率に近付けて、透明電極パターンの視認性を改善する観点から好ましく、1.5~1.52であることがより好ましい。
 [静電容量型入力装置]
 本発明の静電容量型入力装置は、本発明の積層体を含む。
 静電容量型入力装置は、本発明の転写フィルムから第二の透明樹脂層と前述の第二の透明樹脂層に隣接して配置された硬化性透明樹脂層とを、静電容量型入力装置の透明電極パターンの上に転写して作製されてなることが好ましい。
 静電容量型入力装置は、本発明の転写フィルムから転写された硬化性透明樹脂層および第二の透明樹脂層を同時に硬化されてなることが好ましく、硬化性透明樹脂層および第二の透明樹脂層を同時にパターン硬化されてなることがより好ましい。なお、本発明の転写フィルムから転写された硬化性透明樹脂層および第二の透明樹脂層を同時に硬化する際、本発明の転写フィルムから保護フィルムを剥離しないことが好ましい。
 静電容量型入力装置は、本発明の転写フィルムから転写され、同時にパターン硬化されてなる硬化性透明樹脂層および第二の透明樹脂層の未硬化部分を現像し、取り除かれてなることがより好ましい。なお、本発明の転写フィルムから転写された硬化性透明樹脂層および第二の透明樹脂層を同時に硬化した後、現像する前に本発明の転写フィルムから保護フィルムを剥離することが好ましい。本発明の静電容量型入力装置は、引き回し配線の端末部で、ポリイミドフィルム上に形成されたフレキシブル配線と接続する必要があるため、硬化性透明樹脂層(および第二の透明樹脂層)に覆われていないことが好ましい。
 その態様を図13に示した。図13は透明電極パターンの引き回し配線(別の導電性要素6)と引き回し配線の端末部31を含む、以下の構成の静電容量型入力装置を示した。
 引き回し配線の端末部31上の硬化性透明樹脂層(および第二の透明樹脂層)が未硬化部(未露光部)となっているため、現像で除去され、引き回し配線の端末部31が露出している。
 具体的な露光、現像の態様を図14および図15に示した。図14は、第一および第二の透明樹脂層を有する本発明の転写フィルム30を、静電容量型入力装置の透明電極パターンの上にラミネートにより積層し、露光等によって硬化する前の状態を示す。フォトリソグラフィを利用する場合、すなわち露光により硬化する場合は、図15に示した形状の硬化性透明樹脂層と第二の透明樹脂層の硬化部(露光部)33を、マスクを用いてパターン露光および未露光部の現像をすることにより、得ることができる。具体的には、図15では、硬化性透明樹脂層と第二の透明樹脂層の未硬化部として引き回し配線の端末部に対応する開口部34と、静電容量型入力装置の枠部の輪郭の外側にはみ出していた第一および第二の透明樹脂層を有する本発明の転写フィルムの端部とが取り除かれた、引き回し配線の端末部(取出配線部)を覆わないための第一および第二の透明樹脂層の硬化部(所望のパターン)が得られる。
 これにより、ポリイミドフィルム上に作製されたフレキシブル配線を、引き回し配線の端末部31に直接つなぐことができ、これにより、センサーの信号を電気回路に送ることが可能になる。
 本発明の静電容量型入力装置は、透明電極パターンと、この透明電極パターンに隣接して配置された第二の透明樹脂層と、この第二の透明樹脂層に隣接して配置された硬化性透明樹脂層とを有し、前述の第二の透明樹脂層の屈折率が前述の硬化性透明樹脂層の屈折率よりも高く、前述の第二の透明樹脂層の屈折率が1.6以上である、積層体を有することが好ましい。
 以下、本発明の静電容量型入力装置の好ましい態様の詳細を説明する。
 本発明の静電容量型入力装置は、前面板(本発明の積層体における前述の透明基板に相当する)と、前述の前面板の非接触面側に少なくとも下記(3)~(5)、(7)および(8)の要素を有し、本発明の積層体を有することが好ましい。
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン;
(4)前述の第一の透明電極パターンと電気的に絶縁され、前述の第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン;
(5)前述の第一の透明電極パターンと前述の第二の電極パターンとを電気的に絶縁する絶縁層;
(7) 前述の(3)~(5)の要素の全てまたは一部を覆うように形成された第二の透明樹脂層;
(8) 前述の(7)の要素を覆うように隣接して形成された硬化性透明樹脂層。
 ここで、前述の(7)第二の透明樹脂層が、本発明の積層体における前述の第二の透明樹脂層に相当する。また、前述の(8)硬化性透明樹脂層が、本発明の積層体における前述の硬化性透明樹脂層に相当する。なお、前述の硬化性透明樹脂層は、通常公知の静電容量型入力装置におけるいわゆる透明保護層であることが好ましい。
 本発明の静電容量型入力装置は、前述の(4)第二の電極パターンが透明電極パターンであっても、透明電極パターンでなくてもよいが、透明電極パターンであることが好ましい。
 本発明の静電容量型入力装置は、さらに、(6)前述の第一の透明電極パターンおよび前述の第二の電極パターンの少なくとも一方に電気的に接続される、前述の第一の透明電極パターンおよび前述の第二の電極パターンとは別の導電性要素を有することが好ましい。
 ここで、前述の(4)第二の電極パターンが透明電極パターンでなく、前述の(6)別の導電性要素を有さない場合は、前述の(3)第一の透明電極パターンが、本発明の積層体における段差に相当する。
 前述の(4)第二の電極パターンが透明電極パターンであり、前述の(6)別の導電性要素を有さない場合は、前述の(3)第一の透明電極パターンおよび前述の(4)第二の電極パターンのうち少なくとも一つが、本発明の積層体における段差に相当する。
 前述の(4)第二の電極パターンが透明電極パターンでなく、前述の(6)別の導電性要素を有する場合は、前述の(3)第一の透明電極パターンおよび前述の(6)別の導電性要素のうち少なくとも一つが、本発明の積層体における段差に相当する。
 前述の(4)第二の電極パターンが透明電極パターンであり、前述の(6)別の導電性要素を有する場合は、前述の(3)第一の透明電極パターン、前述の(4)第二の電極パターンおよび前述の(6)別の導電性要素のうち少なくとも一つが、本発明の積層体における段差に相当する。
 本発明の静電容量型入力装置は、さらに(2)透明膜を、前述の(3)第一の透明電極パターンと前述の前面板の間、前述の(4)第二の電極パターンと前述の前面板の間、または、前述の(6)別の導電性要素と前述の前面板の間に有することが好ましい。ここで、前述の(2)透明膜が、本発明の積層体における、屈折率が1.6~1.78であり膜厚が55~110nmの透明膜に相当することが、透明電極パターンの視認性をより改善する観点から好ましい。
 本発明の静電容量型入力装置は、さらに必要に応じて(1)マスク層および/または加飾層を有することが好ましい。前述のマスク層は、指またはタッチペンなどで触れる領域の周囲に黒色の額縁として、透明電極パターンの引き回し配線を接触側から視認できないようにしたり、加飾をしたりするためにも設けられる。前述の加飾層は、指またはタッチペンなどで触れる領域の周囲に額縁として加飾のために設けられ、例えば白色の加飾層を設けることが好ましい。
 前述の(1)マスク層および/または加飾層は、前述の(2)透明膜と前述の前面板の間、前述の(3)第一の透明電極パターンと前述の前面板の間、前述の(4)第二の透明電極パターンと前述の前面板の間、または、前述の(6)別の導電性要素と前述の前面板の間に有することが好ましい。前述の(1)マスク層および/または加飾層は、前述の前面板に隣接して設けられることがより好ましい。
 本発明の静電容量型入力装置は、このような様々な部材を含む場合であっても、透明電極パターンに隣接して配置された前述の第二の透明樹脂層と、前述の第二の透明樹脂層に隣接して配置された前述の硬化性透明樹脂層を含むことによって、透明電極パターンを目立たなくすることができ、透明電極パターンの視認性の問題を改善することができる。さらに、上述のとおり、前述の屈折率が1.6~1.78であり膜厚が55~110nmの透明膜と前述の第二の透明樹脂層を用いて、透明電極パターンを挟みこむ構成とすることによって、より透明電極パターンの視認性の問題を改善することができる。
 <静電容量型入力装置の構成>
 まず、本発明の静電容量型入力装置の好ましい構成について、装置を構成する各部材の製造方法とあわせて説明する。
 図1Aは、本発明の静電容量型入力装置の好ましい構成を示す断面図である。図1Aにおいて静電容量型入力装置10は、透明基板(前面板)1と、マスク層2と、屈折率が1.6~1.78であり膜厚が55~110nmの透明膜11と、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、第二の透明樹脂層12と、硬化性透明樹脂層7と、から構成されている態様が示されている。
 また、後述する図3におけるX1-X2断面を表した図1Bも同様に、本発明の静電容量型入力装置の好ましい構成を示す断面図である。図1Bにおいて静電容量型入力装置10は、透明基板(前面板)1と、屈折率が1.6~1.78であり膜厚が55~110nmの透明膜11と、第一の透明電極パターン3と、第二の透明電極パターン4と、第二の透明樹脂層12と、硬化性透明樹脂層7と、から構成されている態様が示されている。
 透明基板(前面板)1は、本発明の積層体における透明電極パターンの材料として挙げた材料を用いることができ、また、図1Aにおいて、前面板1の各要素が設けられている側を非接触面側と称する。本発明の静電容量型入力装置10においては、前面板1の接触面(非接触面の反対の面)に指などを接触などさせて入力が行われる。
 また、前面板1の非接触面上にはマスク層2が設けられている。マスク層2は、タッチパネル前面板の非接触面側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えないようにするために形成される。
 本発明の静電容量型入力装置10には、図2に示すように、前面板1の一部の領域(図2においては入力面以外の領域)を覆うようにマスク層2が設けられている。更に、前面板1には、図2に示すように一部に開口部8を設けることができる。開口部8には、押圧式のメカニカルなスイッチを設置することができる。
 前面板1の接触面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン3と、第一の透明電極パターン3と電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン4と、第一の透明電極パターン3と第二の透明電極パターン4を電気的に絶縁する絶縁層5とが形成されている。前述の第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、本発明の積層体における透明電極パターンの材料として挙げたものを用いることができ、ITO膜であることが好ましい。
 また、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方は、前面板1の非接触面およびマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置することができる。図1Aにおいては、第二の透明電極パターンが、前面板1の非接触面およびマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置されている図が示されている。
 このように、一定の厚みが必要なマスク層と前面板裏面とにまたがって感光性フィルムをラミネートする場合でも、後述する特定の層構成を有する感光性フィルムを用いることで真空ラミネータなどの高価な設備を用いなくても、簡単な工程でマスク部分境界に泡の発生がないラミネートが可能になる。
 図3を用いて第一の透明電極パターン3および第二の透明電極パターン4について説明する。図3は、本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。図3に示すように、第一の透明電極パターン3は、パッド部分3aが接続部分3bを介して第一の方向に延在して形成されている。また、第二の透明電極パターン4は、第一の透明電極パターン3と絶縁層5によって電気的に絶縁されており、第一の方向に交差する方向(図3における第二の方向)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン3を形成する場合、前述のパッド部分3aと接続部分3bとを一体として作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)してもよい。パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)する場合、図3に示すように接続部分3bの一部とパッド部分3aの一部とが連結され、且つ、絶縁層5によって第一の透明電極パターン3と第二の透明電極パターン4とが電気的に絶縁されるように各層が形成される。
 また、図3における第一の透明電極パターン3や第二の透明電極パターン4や後述する導電性要素6が形成されていない領域が、本発明の積層体における非パターン領域22に相当する。
 図1Aにおいて、マスク層2の前面板1とは逆側の面側には導電性要素6が設置されている。導電性要素6は、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方に電気的に接続され、且つ、第一の透明電極パターン3および第二の透明電極パターン4とは別の要素である。
 図1Aにおいては、導電性要素6が第二の透明電極パターン4に接続されている図が示されている。
 また、図1Aにおいては、各構成要素の全てを覆うように硬化性透明樹脂層7が設置されている。硬化性透明樹脂層7は、各構成要素の一部のみを覆うように構成されていてもよい。絶縁層5と硬化性透明樹脂層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5を構成する材料としては、本発明の積層体における第一または第二の透明樹脂層の材料として挙げたものを好ましく用いることができる。
 <静電容量型入力装置の製造方法>
 本発明の静電容量型入力装置を製造する過程で形成される態様例として、図4~8の態様を挙げることができる。図4は、開口部8が形成された強化処理ガラス11の一例を示す上面図である。図5は、マスク層2が形成された前面板の一例を示す上面図である。図6は、第一の透明電極パターン3が形成された前面板の一例を示す上面図である。図7は、第一の透明電極パターン3と第二の透明電極パターン4が形成された前面板の一例を示す上面図である。図8は、第一および第二の透明電極パターンとは別の導電性要素6が形成された前面板の一例を示す上面図である。これらは、以下の説明を具体化した例を示すものであり、本発明の範囲はこれらの図面により限定的に解釈されることはない。
 静電容量型入力装置の製造方法において、前述の第二の透明樹脂層12および前述の硬化性透明樹脂層7を形成する場合、本発明の転写フィルムを用いて、各要素が任意に形成された前述の前面板1の表面に前述の第二の透明樹脂層および前述の硬化性透明樹脂層を転写することで形成することができる。
 静電容量型入力装置の製造方法においては、マスク層2と、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6の少なくとも一要素が、仮支持体と光硬化性樹脂層とをこの順で有する前述の感光性フィルムを用いて形成されることが好ましい。
 本発明の転写フィルムや前述の感光性フィルムを用いて前述の各要素を形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、特に前面板の境界線直上まで遮光パターンを形成する必要のあるマスク層において、ガラス端からのレジスト成分のはみ出し(モレ)がないため前面板裏側を汚染することなく、簡略な工程で、薄層化および軽量化されたタッチパネルを製造することができる。
 前述のマスク層、絶縁層、導電性光硬化性樹脂層を用いた場合の第一の透明電極パターン、第二の透明電極パターンおよび導電性要素などの永久材を、前述の感光性フィルムを用いて形成する場合、感光性フィルムは、基材にラミネートされた後、必要に応じてパターン様に露光され、ネガ型材料の場合は非露光部分、ポジ型材料の場合は露光部分を現像処理して除去することでパターンを得ることができる。現像は熱可塑性樹脂層と、光硬化性樹脂層を別々の液で現像除去してもよいし、同一の液で除去してもよい。必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、ポストベークを行ってもよい。
 (感光性フィルム)
 本発明の静電容量型入力装置を製造するときに好ましく用いられる、本発明の転写フィルム以外の前述の感光性フィルムについて説明する。前述の感光性フィルムは、仮支持体と光硬化性樹脂層を有し、仮支持体と光硬化性樹脂層との間に熱可塑性樹脂層を有することが好ましい。前述の熱可塑性樹脂層を有する感光性フィルムを用いて、マスク層等を形成すると、光硬化性樹脂層を転写して形成した要素に気泡が発生し難くなり、画像表示装置に画像ムラなどが発生し難くなり、優れた表示特性を得ることができる。
 前述の感光性フィルムは、ネガ型材料であってもポジ型材料であってもよい。
 -光硬化性樹脂層以外の層、作製方法-
 前述の感光性フィルムにおける前述の仮支持体、前述の熱可塑性樹脂層としては、特開2014-108541号公報の[0041]~[0047]に記載の熱可塑性樹脂層を用いることができる。また、前述の感光性フィルムの作製方法としても、特開2014-108541号公報の[0041]~[0047]に記載の作製方法と同様の方法を用いることができる。
 -光硬化性樹脂層-
 前述の感光性フィルムは、その用途に応じて光硬化性樹脂層に添加物を加える。即ち、マスク層の形成に前述の感光性フィルムを用いる場合には、光硬化性樹脂層に着色剤を含有させる。また、前述の感光性フィルムが導電性光硬化性樹脂層を有する場合は、前述の光硬化性樹脂層に導電性繊維等が含有される。
 前述の感光性フィルムがネガ型材料である場合、光硬化性樹脂層には、アルカリ可溶性樹脂、重合性化合物、重合開始剤または重合開始系、を含むことが好ましい。さらに、導電性繊維、着色剤、その他の添加剤、などが用いられるがこれに限られない。
 --アルカリ可溶性樹脂、重合性化合物、前述の重合開始剤または重合開始系--
 前述の感光性フィルムに含まれるアルカリ可溶性樹脂、重合性化合物、前述の重合開始剤または重合開始系としては、本発明の転写フィルムに用いられるものと同様のアルカリ可溶性樹脂、重合性化合物、重合開始剤または重合開始系を用いることができる。
 --導電性繊維(導電性光硬化性樹脂層として用いる場合)--
 前述の導電性光硬化性樹脂層を積層した前述の感光性フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを光硬化性樹脂層に用いることができる。
 導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造および中空構造のいずれかが好ましい。
 ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが1nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と称することがある。
 また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
 前述の導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、前述の導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。
 前述の金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。
 前述の金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀を主に含有するもの、または銀と銀以外の金属との合金を含有するものが好ましい。
 前述の銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
 前述の銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 前述の金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
 前述の金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
 前述の金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、前述の「断面の各辺」の合計長さに対する前述の「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図9に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。前述の鋭利度は60%以下が好ましく、50%以下がより好ましい。前述の鋭利度が75%を超えると、この角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。前述の鋭利度の下限は、30%が好ましく、40%がより好ましい。
 前述の金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm~40nmがより好ましく、10nm~40nmが更に好ましく、15nm~35nmが特に好ましい。
 前述の平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
 前述の金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。
 なお、前述の金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。
 前述の金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。
 前述の平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
 前述の金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前述の金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。
 導電性光硬化性樹脂層の層厚は、塗布液の安定性や塗布時の乾燥やパターニング時の現像時間などのプロセス適性の観点から、0.1~20μmが好ましく、0.5~18μmが更に好ましく、1~15μmが特に好ましい。
 前述の導電性光硬化性樹脂層の全固形分に対する前述の導電性繊維の含有量は、導電性と塗布液の安定性の観点から、0.01~50質量%が好ましく、0.05~30質量%が更に好ましく、0.1~20質量%が特に好ましい。
 --着色剤(マスク層として用いる場合)--
 また、前述の感光性フィルムをマスク層として用いる場合には、光硬化性樹脂層に着色剤を用いることができる。本発明に用いる着色剤としては、公知の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。尚、本発明においては、黒色着色剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。
 前述の光硬化性樹脂層を黒色のマスク層として用いる場合には、光学濃度の観点から、黒色着色剤を含むことが好ましい。黒色着色剤としては、例えば、カーボンブラック、チタンカーボン、酸化鉄、酸化チタン、黒鉛などが挙げられ、中でも、カーボンブラックが好ましい。
 前述の光硬化性樹脂層を白色のマスク層として用いる場合には、特開2005-7765公報の段落0015や0114に記載のホワイト顔料を用いることができる。その他の色のマスク層として用いるためには、特許第4546276号公報の段落0183~0185などに記載の顔料、あるいは染料を混合して用いてもよい。具体的には、特開2005-17716号公報の段落0038~0054に記載の顔料および染料、特開2004-361447号公報の段落0068~0072に記載の顔料、特開2005-17521号公報の段落0080~0088に記載の着色剤等を好適に用いることができる。
 前述の着色剤(好ましくは顔料、より好ましくはカーボンブラック)は、分散液として使用することが望ましい。この分散液は、前述の着色剤と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。前述のビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって前述の顔料と結合して塗膜を形成する成分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。
 前述の顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438項に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル、ビーズミル等の公知の分散機が挙げられる。
 更にこの文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。
 前述の着色剤は、分散安定性の観点から、数平均粒径が0.001μm~0.1μmの着色剤が好ましく、更に0.01μm~0.08μmの着色剤が好ましい。尚、ここで言う「粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について前述の粒径を求め、このうち、任意に選択する100個の粒径の平均値をいう。
 着色剤を含む光硬化性樹脂層の層厚は、他層との厚み差の観点から、0.5~10μmが好ましく、0.8~5μmが更に好ましく、1~3μmが特に好ましい。前述の着色感光性樹脂組成物の固形分中の着色剤の含有率としては、特に制限はないが、十分に現像時間を短縮する観点から、15~70質量%であることが好ましく、20~60質量%であることがより好ましく、25~50質量%であることが更に好ましい。
 本明細書でいう全固形分とは着色感光性樹脂組成物から溶剤等を除いた不揮発成分の総質量を意味する。
 尚、前述の感光性フィルムを用いて絶縁層を形成する場合、光硬化性樹脂層の層厚は、絶縁性の維持の観点から、0.1~5μmが好ましく、0.3~3μmが更に好ましく、0.5~2μmが特に好ましい。
 --その他の添加剤--
 さらに、前述の光硬化性樹脂層は、その他の添加剤を用いてもよい。前述の添加剤としては、本発明の転写フィルムに用いられるものと同様の添加剤を用いることができる。
 また、前述の感光性フィルムを塗布により製造する際の溶剤としては、本発明の転写フィルムに用いられるものと同様の溶剤を用いることができる。
 以上、前述の感光性フィルムがネガ型材料である場合を中心に説明したが、前述の感光性フィルムは、ポジ型材料であってもよい。前述の感光性フィルムがポジ型材料である場合、光硬化性樹脂層に、例えば特開2005-221726号公報に記載の材料などが用いられるが、これに限られない。
 (感光性フィルムによるマスク層、絶縁層の形成)
 前述のマスク層2、絶縁層5は、前述の感光性フィルムを用いて光硬化性樹脂層を前面板1などに転写することで形成することができる。例えば、黒色のマスク層2を形成する場合には、前述の光硬化性樹脂層として黒色光硬化性樹脂層を有する前述の感光性フィルムを用いて、前述の前面板1の表面に前述の黒色光硬化性樹脂層を転写することで形成することができる。絶縁層5を形成する場合には、前述の光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する前述の感光性フィルムを用いて、第一の透明電極パターンが形成された前述の前面板1の表面に前述の光硬化性樹脂層を転写することで形成することができる。
 さらに、遮光性が必要なマスク層2の形成に、光硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する前述の感光性フィルムを用いることで感光性フィルムラミネート時の気泡発生を防止し、光モレのない高品位なマスク層2等を形成することができる。
 (感光性フィルムによる第一および第二の透明電極パターン、別の導電性要素の形成)
 前述の第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6は、エッチング処理または導電性光硬化性樹脂層を有する前述の感光性フィルムを用いて、あるいは感光性フィルムをリフトオフ材として使用して形成することができる。
 -エッチング処理-
 エッチング処理によって、前述の第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成する場合、まずマスク層2等が形成された前面板1の非接触面上にITO等の透明電極層をスパッタリングによって形成する。次いで、前述の透明電極層上に前述の光硬化性樹脂層としてエッチング用光硬化性樹脂層を有する前述の感光性フィルムを用いて露光・現像によってエッチングパターンを形成する。その後、透明電極層をエッチングして透明電極をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成することができる。
 前述の感光性フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、前述の方法と同様にして、レジストパターンを得ることができる。前述のエッチングは、特開2010-152155公報の段落0048~0054等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。
 例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのエッチング液を適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせたものを使用してもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせたものを使用してもよい。
 エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用される樹脂パターンは、上述した光硬化性樹脂層を使用して形成されることにより、このような温度域における酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮する。したがって、エッチング工程中に樹脂パターンが剥離することが防止され、樹脂パターンの存在しない部分が選択的にエッチングされることになる。
 前述のエッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm程度)を適宜調整し行えばよい。
 次いで、樹脂パターンの剥離方法としては、特に限定されないが、例えば、30~80℃、好ましくは50~80℃にて攪拌中の剥離液に基材を5~30分間浸漬する方法が挙げられる。本発明でエッチングマスクとして使用される樹脂パターンは、上述のように45℃以下において優れた薬液耐性を示すものであるが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示す。このような性質により、50~80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、樹脂パターンの剥離残渣が少なくなるという利点がある。すなわち、前述のエッチング工程と剥離工程との間で薬液温度に差を設けることにより、本発明でエッチングマスクとして使用される樹脂パターンは、エッチング工程において良好な薬液耐性を発揮する一方で、剥離工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。
 剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N-メチルピロリドン、またはこれらの混合溶液に溶解させた剥離液が挙げられる。前述の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。
 -導電性光硬化性樹脂層を有する感光性フィルム-
 導電性光硬化性樹脂層を有する前述の感光性フィルムを用いて、前述の第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成する場合、前述の前面板1の表面に前述の導電性光硬化性樹脂層を転写することで形成することができる。
 前述の第一の透明電極パターン3等を、前述の導電性光硬化性樹脂層を有する感光性フィルムを用いて形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、基板裏側を汚染することなく、簡略な工程で、薄層/軽量化のメリットがあるタッチパネルの製造を可能となる。
 さらに、第一の透明電極パターン3等の形成に、導電性光硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する前述の感光性フィルムを用いることで感光性フィルムラミネート時の気泡発生を防止し、導電性に優れ抵抗の少ないに第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成することができる。
 -感光性フィルムのリフトオフ材としての使用-
 また、前述の感光性フィルムをリフトオフ材として用いて、第一の透明電極層、第二の透明電極層およびその他の導電性部材を形成することもできる。
 この場合、前述の感光性フィルムを用いてパターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと前述の光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。
[画像表示装置]
 本発明の画像表示装置は、本発明の静電容量型入力装置を構成要素として備えた画像表示装置である。
 本発明の静電容量型入力装置、およびこの静電容量型入力装置を構成要素として備えた画像表示装置は、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されない。なお、特に断りのない限り、「部」、「%」は質量基準である。
[実施例1~15および比較例1~8]
<硬化性透明樹脂の形成>
 下記表2に記載の厚さのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、下記表1に材料-1~材料-13として記載した処方の硬化性透明樹脂層用塗布液を下記表2に記載の所望の膜厚になるように調整して塗布し、100℃で2分間乾燥させた後、さらに120℃で1分間乾燥させて、硬化性透明樹脂層を形成した。
 また、材料-1~材料-13に含まれるバインダーポリマーの含有量に対する、光重合性化合物の含有量の割合(質量比)を求めて、下記表1に記載した。
Figure JPOXMLDOC01-appb-T000003
 なお、上記表1中の「wt%」は「質量%」と同義である。
Figure JPOXMLDOC01-appb-C000004
<転写フィルムの評価>
(硬化性透明樹脂層の屈折率の評価)
 硬化性透明樹脂層の400~750nmの波長を有する光における平均屈折率を求め、下記表2に記載した。
(硬化性透明樹脂層の100℃での溶融粘度ηcの測定)
 硬化性透明樹脂層の100℃での溶融粘度ηcの測定では、硬化性透明樹脂層の溶融粘度は例えば、次のようにして測定できる。大気圧および減圧乾燥により、硬化性透明樹脂層用塗布液から溶剤を除去して測定サンプルとし、測定器として、バイブロン(DD-III型:東洋ボールドウィン(株)製)を使用し、測定開始温度50℃、測定終了温度150℃、昇温速度5℃/分および振動数1Hz/degの条件で測定し、100℃の測定値を用いた。得られた結果を上記表1および下記表2に記載した。
<保護フィルムの圧着>
 このようにして仮支持体の上に、下記表中の乾燥膜厚になるような硬化性透明樹脂層および第二の透明樹脂層を設けた後、最後に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。
 こうして仮支持体と硬化性透明樹脂層と保護フィルムとが一体となった転写フィルムを作製した。得られた転写フィルムを実施例1~15および比較例1~8の転写フィルムとした。実施例1~15および比較例1~8の転写フィルムの構成を図16に示した。実施例1~15および比較例1~8の転写フィルム30は、仮支持体26と硬化性透明樹脂層7が直接接しており、さらに保護フィルム29を有する。
<積層体の製造>
 積層体の製造方法を図17および図18に基づいて説明する。
 フィルム基材上に、段差を構成する段の厚みが100nmであって、ラミネート方向42を縦方向としたときに、フィルム基材の上方から見たときに縦2cm、横5cmの長方形となる形状の銅製の導電性要素を形成した。このようにして、段差を構成する段41が銅製の導電性要素であり、段差を構成する段の下部41cがフィルム基材1Aであって、段差を構成する段の上部41aが銅製の導電性要素の上部である、段差を有する基材43を得た。
 段差を有する基材では、段差を構成する段の側部41bは、段の上部の方が段の下部よりも狭い傾斜構造(いわゆるテーパー形状)であり、この段差を構成する段の側部と基板のなす角度θが約78°であった。また、フィルム基材の上方から見たときに段差を構成する段の側部の幅は20nmの長さであった。
 上記方法で得られた段差を有する基材上に、実施例1~15および比較例1~8の転写フィルムを図17に示すラミネート方向42から段差をすべて覆うように硬化性透明樹脂層を連続してラミネートし、硬化性透明樹脂層を積層した(ゴムローラー温度100℃、線圧100N/cm、搬送速度2.0m/分)。なお、このラミネート方法には、段差を構成する段の下部から段の上部までこの順で硬化性透明樹脂層を積層する段差上昇工程と、段差を構成する段の上部から段の下部までこの順で硬化性透明樹脂層を積層する段差下降工程がそれぞれ1回ずつ含まれる。
<積層体の評価>
(段差を有する基材へのラミネート時の気泡混入)
 段差に沿った領域における、巻き込まれた気泡の数を光学顕微鏡を用いて観察し、以下の基準に沿って評価を行った。段差に沿った領域とは、転写フィルムのラミネート方向に対して垂直な方向において、段差を構成する段の側部の下端に接する部分のことを言う。図17に段差に沿った領域44の一例を示したが、段差に沿った領域は符号44で示した領域に限定されず、図17の段差を構成する段41の周囲の四辺に沿って存在する。
   A:段差に沿った領域における気泡の数が5個未満
   B:段差に沿った領域における気泡の数が5個以上30個未満
   C:段差に沿った領域における気泡の数が30個以上100個未満
   D:段差に沿った領域における気泡の数が100個以上
Figure JPOXMLDOC01-appb-T000005
 上記表2より、本発明の転写フィルムは、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できることがわかった。
 一方、比較例1および2より、仮支持体の厚みが本発明で規定する上限値を上回り、かつ、硬化性透明樹脂層の100℃で測定した溶融粘度ηcが本発明で規定する下限値を下回る転写フィルムを用いると、段差を有する基材へのラミネート時の気泡混入が多いことがわかった。
 比較例3および8より、硬化性透明樹脂層の100℃で測定した溶融粘度ηcが本発明で規定する下限値を下回る転写フィルムを用いると、段差を有する基材へのラミネート時の気泡混入が多いことがわかった。
 比較例4および5より、硬化性透明樹脂層の厚みが本発明で規定する下限値を下回り、かつ、硬化性透明樹脂層の100℃で測定した溶融粘度ηcが本発明で規定する下限値を下回る転写フィルムを用いると、段差を有する基材へのラミネート時の気泡混入が多いことがわかった。
 比較例6および7より、仮支持体の厚みが本発明で規定する上限値を上回る転写フィルムを用いると、段差を有する基材へのラミネート時の気泡混入が多いことがわかった。
 なお、実施例1~15において本発明の転写フィルムのラミネート時の搬送速度を4.0m/分にした場合も、段差に沿った領域における巻き込まれた気泡の数は、搬送速度2.0m/分の場合と同程度であることを確認した。
[実施例101~110]
<硬化性透明樹脂の形成>
 下記表4に記載の厚さのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、上記表1に材料-1~材料-13として記載した処方の硬化性透明樹脂層用塗布液を下記表4に記載の所望の膜厚になるように調整して塗布し、100℃で2分間乾燥させた後、さらに120℃で1分間乾燥させて、硬化性透明樹脂層を形成した。
 <第二の透明樹脂層の形成>
 次に、硬化性透明樹脂層上に、下記表3に材料-40~材料-49として記載した処方の第二の透明樹脂層用塗布液を、下記表4に記載の所望の膜厚になるように調整して塗布し、80℃で1分間乾燥させた後さらに110℃で1分間乾燥させて第二の透明樹脂層を形成した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-C000007
 上記表3でジルコニア分散液に用いたZrOは、屈折率が2.2であり、平均粒径が約12nmの粒子である。
<評価>
 硬化性透明樹脂層および第二の透明樹脂層の屈折率および厚み、ならびに硬化性透明樹脂層の溶融粘度を、実施例1と同様の方法で測定した。得られた結果を下記表4に記載した。
<保護フィルムの圧着>
 このようにして仮支持体の上に、下記表中の乾燥膜厚になるような硬化性透明樹脂層および第二の透明樹脂層を設けた後、最後に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。
 こうして仮支持体と硬化性透明樹脂層と第二の透明樹脂層と保護フィルムとが一体となった転写フィルムを作製した。得られた転写フィルムを実施例101~110の転写フィルムとした。
<積層体の製造>
 フィルム基材上に、高さ100nmの透明電極パターンを形成し、実施例1と同様に段差を有する基材を設けた。
 実施例1において、実施例1の転写フィルムの代わりに実施例101~110のいずれか一つの転写フィルムを用いた以外は実施例1と同様にして、段差を有する基材上に、実施例101の転写フィルムをラミネートした(ゴムローラー温度100℃、線圧100N/cm、搬送速度2.0m/分)。
<積層体の評価>
(段差を有する基材へのラミネート時の気泡混入)
 段差を有する基材へのラミネート時の気泡混入を、実施例1と同様にして評価した。得られた結果を下記表4に記載した。
Figure JPOXMLDOC01-appb-T000008
 上記表4より、本発明の転写フィルムは、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できることがわかった。
 なお、実施例101~110において本発明の転写フィルムのラミネート時の搬送速度を4.0m/分にした場合も、段差に沿った領域における巻き込まれた気泡の数は、搬送速度2.0m/分の場合と同程度であることを確認した。
[実施例201~210:積層体の作製]
 上記にて得られた実施例101~110の転写フィルムを用いて、以下の方法で透明電極パターンを含む積層体を作製した。
<1.透明膜の形成>
 屈折率1.51のガラス製透明基板上(ガラス基板)に、上記表1中に示すT1を用いた屈折率1.60、膜厚80nmの透明膜を以下の方法で製膜した。
 (転写材料の作製)
 厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、下記処方H1からなる熱可塑性樹脂層用塗布液を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、熱可塑性樹脂層上に、下記の処方P1からなる中間層用塗布液を塗布し、乾燥させて中間層を形成した。
 更に、透明硬化性組成物用の塗布液T1を塗布し、乾燥させて透明樹脂層を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、乾燥膜厚80nmになる透明樹脂層を設けた。最後に、透明樹脂層上に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と透明樹脂層と保護フィルムとが一体となった転写材料を作製した。
(熱可塑性樹脂層用塗布液:処方H1)
・メタノール                    :11.1質量部
・プロピレングリコールモノメチルエーテルアセテート :6.36質量部
・メチルエチルケトン                :52.4質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタ
クリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11
.7/4.5/28.8、重量平均分子量=10万、Tg(ガラス転移温度
)≒70℃)                    :5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、
重量平均分子量=1万、Tg≒100℃)       :13.6質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製)
                           :9.1質量部
・フッ素系ポリマー                 :0.54質量部
 上記のフッ素系ポリマーは、C13CHCHOCOCH=CH 40部とH(OCH(CH)CHOCOCH=CH 55部とH(OCHCHOCOCH=CH 5部との共重合体で、重量平均分子量3万、メチルエチルケトン30質量%溶液である(商品名:メガファックF780F、大日本インキ化学工業(株)製)。
 (中間層用塗布液:処方P1)
・ポリビニルアルコール               :32.2質量部
(商品名:PVA205、(株)クラレ製、鹸化度=88%、重合度550)
・ポリビニルピロリドン               :14.9質量部
(商品名:K-30、アイエスピー・ジャパン(株)製)
・蒸留水                       :524質量部
・メタノール                     :429質量部
Figure JPOXMLDOC01-appb-T000009
 (透明膜の形成)
 保護フィルムを剥離した前述の転写材料を用いて、ガラス製透明基板上に、透明樹脂層を熱可塑性樹脂および中間層およびPET仮支持体と共に転写したのち、PET仮支持体を剥離した。次に、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)を用いて、熱可塑性樹脂層側からi線、40mJ/cmにて全面露光した。次に、トリエタノールアミン系現像液(トリエタノールアミン30%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍(T-PD2を1部と純水9部の割合で混合)に希釈した液)を30℃で60秒間、フラットノズル圧力0.04MPaでシャワー現像し、熱可塑性樹脂と中間層を除去した。引き続き、このガラス製透明基板の上面(透明樹脂層側)にエアを吹きかけて液きりした後、純粋をシャワーにより10秒間吹きつけ、純粋シャワー洗浄し、エアを吹きかけてガラス製透明基板上の液だまりを減らした。次に、ガラス製透明基板を230℃下で60分間加熱処理(ポストベーク)して、透明樹脂層を加熱硬化させて透明膜とし、ガラス製透明基板上に透明膜が積層された基板を得た。
<2.透明電極パターンの形成>
 上記にて得られたガラス製透明基板上に透明膜が積層された基板を、真空チャンバー内に導入し、SnO含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ100nm、屈折率1.82のITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
 (エッチング用感光性フィルムE1の作製)
 厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、上述の処方H1からなる熱可塑性樹脂層用塗布液を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、熱可塑性樹脂層上に、上述の処方P1からなる中間層用塗布液を塗布し、乾燥させて中間層を形成した。
 更に、エッチング用光硬化性樹脂層用塗布液:処方E1を塗布し、乾燥させてエッチング用光硬化性樹脂層を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、膜厚2.0μmエッチング用光硬化性樹脂層から成る積層体を得た。最後に、エッチング用光硬化性樹脂層上に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)とエッチング用光硬化性樹脂層とが一体となった転写材料を作製した。
 (エッチング用光硬化性樹脂層用塗布液:処方E1)
・メチルメタクリレート/スチレン/メタクリル酸共重合体(共重合体組成
(質量%):31/40/29、重量平均分子量60000、酸価163m
gKOH/g)                     :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製)
                           :5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノメタクリ
レート0.5モル付加物                  :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジメタノー
ルモノアクリレート                   2.8質量部
・2-クロロ-N-ブチルアクリドン         :0.42質量部
・2,2-ビス(オルト-クロロフェニル)-4,4’,5,5’-テトラ
フェニルビイミダゾール               :2.17質量部
・マラカイトグリーンシュウ酸塩           :0.02質量部
・ロイコクリスタルバイオレット           :0.26質量部
・フェノチアジン                 :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製
)                         :0.03質量部
・メチルエチルケトン                  :40質量部
・1-メトキシ-2-プロパノール            :20質量部
 なお、エッチング用光硬化性樹脂層用塗布液:処方E1の溶剤除去後の100℃の粘度は2500Pa・secであった。
 (透明電極パターンの形成)
 透明電極層を形成した前面板を洗浄し、保護フィルムを除去したエッチング用感光性フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面とエッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm(i線)でパターン露光した。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて25℃で100秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間洗浄処理した。洗浄処理後の前面板を、回転ブラシで擦り、更に超高圧洗浄ノズルから、超純水を噴射することで残渣を除去した。次いで、130℃30分間のポストベーク処理を行って、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。
 透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒間処理(エッチング処理)し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を得た。
 次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を、レジスト剥離液(N-メチル-2-ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、エアープロダクツ製)、液温45℃)を入れたレジスト剥離槽に浸漬し、200秒間処理(剥離処理)し、エッチング用光硬化性樹脂層を除去し、ガラス製透明基板上に透明膜および透明電極パターンを形成した基板を得た。
 透明電極パターンの端部をPtコート(約20nm厚)により、導電性付与及び表面保護を行った後、FEI製Nova200型FIB/SEM複合機を用いて、透明電極パターン端部の形状観察(二次電子像、加速電圧20kV)を行った。
 形成したITOパターンは、図10の様なテーパー形状となっており、テーパー角α=約3°であった。
<3.硬化性透明樹脂層と第二の透明樹脂層の形成>
 上記にて得られたガラス製透明基板上に透明膜および透明電極パターンを形成した基板上に、保護フィルムを除去した実施例101~110のいずれかの転写フィルムをラミネートした(ゴムローラー温度110℃、線圧100N/cm、搬送速度2.0m/分)。露光マスク(オーバーコート形成用パターンを有す石英露光マスク)面と仮支持体との間の距離を125μmに設定し、仮支持体を介して露光量100mJ/cm(i線)でパターン露光した。仮支持体を剥離後、炭酸ソーダ2%水溶液32℃で60秒間洗浄処理した。洗浄処理後の前面板を、回転ブラシで擦り、更に超高圧洗浄ノズルから、超純水を噴射することで残渣を除去した。引き続き、エアを吹きかけて基材上の水分を除去し、145℃30分間のポストベーク処理を行って、ガラス製透明基板上に透明膜、透明電極パターン、第二の透明樹脂層および硬化性透明樹脂層がこの順で連続された積層体を製膜した。
 こうして、ガラス製透明基板上に透明膜、透明電極パターン、第二の透明樹脂層および硬化性透明樹脂層をこの順に積層させた積層体を得た。得られた積層体を、実施例201~210の積層体とした。
<積層体の評価>
(段差を有する基材へのラミネート時の気泡混入)
 透明電極パターンが本発明の範囲内の段差であって、別の導電性要素を設けていない実施例201~210の積層体の製造において、段差を有する基材へのラミネート時の気泡混入を、実施例1と同様にして評価した。得られた結果は、実施例101~110と同じ傾向であり、本発明の転写フィルムは、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できることがわかった。
 各実施例の積層体は、透明電極パターンが視認される問題もなかった。
[実施例301~310:静電容量型入力装置の製造]
〔マスク層の形成〕
<マスク層形成用感光性フィルムK1の作製>
 厚さ75μmのポリエチレンテレフタレートフィルム(仮支持体)の上に、スリット状ノズルを用いて、上述の処方H1からなる熱可塑性樹脂層用塗布液を塗布し、乾燥させて熱可塑性樹脂層を形成した。次に、熱可塑性樹脂層上に、上述の処方P1からなる中間層用塗布液を塗布し、乾燥させて中間層を形成した。更に、下記処方K1からなる黒色光硬化性樹脂層用塗布液を塗布し、乾燥させて黒色光硬化性樹脂層を形成した。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、光学濃度が4.0となるように乾燥膜厚が2.2μmの黒色光硬化性樹脂層を設け、最後に保護フィルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と黒色光硬化性樹脂層とが一体となった転写材料を作製し、サンプル名をマスク層形成用感光性フィルムK1とした。
 (黒色光硬化性樹脂層用塗布液:処方K1)
・K顔料分散物1                  :31.2質量部
・R顔料分散物1(下記の組成)            :3.3質量部
・MMPGAc(プロピレングリコールモノメチルエーテルアセテート、ダ
イセル化学(株)製)                 :6.2質量部
・メチルエチルケトン(東燃化学(株)製)      :34.0質量部
・シクロヘキサノン(関東電化工業(株)製)      :8.5質量部
・バインダー2(ベンジルメタクリレート/メタクリル酸=78/22モル
比のランダム共重合物、重量平均分子量3.8万)   :10.8質量部
・フェノチアジン(東京化成(株)製)        :0.01質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)
製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量
%)                         :5.5質量部
・2,4-ビス(トリクロロメチル)-6-[4’-(N,N-ビス(エト
キシカルボニルメチル)アミノ-3’-ブロモフェニル]-s-トリアジン
                           :0.4質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製
)                          :0.1質量部
 なお、上記処方K1からなる黒色光硬化性樹脂層用塗布液の溶剤除去後の100℃の粘度は10000Pa・secであった。
 (K顔料分散物1の組成)
・カーボンブラック(商品名:Nipex35、デグッサ社製)
                          :13.1質量%
・下記分散剤1                   :0.65質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル
比のランダム共重合物、重量平均分子量3.7万)   :6.72質量%
・プロピレングリコールモノメチルエーテルアセテート:79.53質量%
Figure JPOXMLDOC01-appb-C000010
 -R顔料分散物1の組成-
・顔料(C.I.(Colour Index Internationa
l)ピグメントレッド177)              :18質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル
比のランダム共重合物、重量平均分子量3.7万)     :12質量%
・プロピレングリコールモノメチルエーテルアセテート   :70質量%
<マスク層の形成>
 次いで、開口部(15mmΦ)が形成された強化処理ガラス(300mm×400mm×0.7mm)に、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基材を基材予備加熱装置で140℃2分間加熱した。
 得られたシランカップリング処理ガラス基材に、上述から得られたマスク層形成用感光性フィルムK1から保護フィルムを除去し、除去後に露出した黒色光硬化性樹脂層の表面と前述のシランカップリング処理ガラス基材の表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、前述の140℃で加熱した基材に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体を、熱可塑性樹脂層との界面で剥離し、仮支持体を除去した。仮支持体を剥離後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)で、基材と露光マスク(額縁パターンを有す石英露光マスク)とを垂直に立てた状態で、露光マスク面と黒色光硬化性樹脂層の間の距離を200μmに設定し、露光量70mJ/cm(i線)でパターン露光した。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、熱可塑性樹脂層と中間層とを除去した。引き続き、このガラス基材の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけて基材上の液だまりを減らした。
 その後、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて32℃でシャワー圧を0.1MPaに設定して、45秒現像し、純水で洗浄した。
 引き続き、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間、コーン型ノズル圧力0.1MPaにてシャワーで吹きかけ、更にやわらかいナイロン毛を有する回転ブラシにより、形成されたパターン像を擦って残渣除去を行った。さらに、超高圧洗浄ノズルにて9.8MPaの圧力で超純水を噴射して残渣除去を行った。
 次いで大気下にて露光量1300mJ/cmにてポスト露光を行い、さらに240℃80分間のポストベーク処理を行って、光学濃度4.0、膜厚2.0μmのマスク層が形成された前面板を得た。
〔透明膜〕
 マスク層が形成された前面板に対して、上記の積層体の形成におけるガラス製透明基板上への透明膜の製膜と同様にして、透明膜を製膜した。
〔第一の透明電極パターンの形成〕
<透明電極層の形成>
 マスク層および透明膜が形成された前面板を、真空チャンバー内に導入し、SnO含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
<エッチング用感光性フィルムE1の作製>
 前述のマスク層形成用感光性フィルムK1の作製において、黒色光硬化性樹脂層用塗布液を、下記処方E1からなるエッチング用光硬化性樹脂層用塗布液に代えた以外はマスク層形成用感光性フィルムK1の作製と同様にして、エッチング用感光性フィルムE1を得た(エッチング用光硬化性樹脂層の膜厚は2.0μmであった)。
 (エッチング用光硬化性樹脂層用塗布液:処方E1)
・メチルメタクリレート/スチレン/メタクリル酸共重合体(共重合体組成
(質量%):31/40/29、重量平均分子量60000、酸価163m
gKOH/g)                     :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製)
                           :5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノメタクリ
レート0.5モル付加物                  :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジメタノー
ルモノアクリレート                  :2.8質量部
・2-クロロ-N-ブチルアクリドン         :0.42質量部
・2,2-ビス(オルト-クロロフェニル)-4,4’,5,5’-テトラ
フェニルビイミダゾール               :2.17質量部
・マラカイトグリーンシュウ酸塩           :0.02質量部
・ロイコクリスタルバイオレット           :0.26質量部
・フェノチアジン                 :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製
)                         :0.03質量部
・メチルエチルケトン                  :40質量部
・1-メトキシ-2-プロパノール            :20質量部
 なお、上記処方E1からなるエッチング用光硬化性樹脂層用塗布液の溶剤除去後の100℃の粘度は2500Pa・secであった。
<第一の透明電極パターンの形成>
 マスク層の形成と同様にして、マスク層、透明膜、透明電極層を形成した前面板を洗浄し、次いで保護フィルムを除去したエッチング用感光性フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面とエッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm(i線)でパターン露光した。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて25℃で100秒間現像処理し、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間洗浄処理した。洗浄処理後の前面板を回転ブラシで擦り、更に超高圧洗浄ノズルから、超純水を噴射することで残渣を除去した。次いで130℃30分間のポストベーク処理を行って、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を得た。
 透明電極層とエッチング用光硬化性樹脂層パターンとを形成した前面板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒間処理(エッチング処理)し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を得た。
 次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の前面板を、レジスト剥離液(N-メチル-2-ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、エアープロダクツ製)、液温45℃)を入れたレジスト剥離槽に浸漬し、200秒間処理し、エッチング用光硬化性樹脂層を除去し、マスク層、透明膜および第一の透明電極パターンを形成した前面板を得た。
〔絶縁層の形成〕
<絶縁層形成用感光性フィルムW1の作製>
 マスク層形成用感光性フィルムK1の作製において、黒色光硬化性樹脂層用塗布液を、下記処方W1からなる絶縁層用塗布液に代えた以外はマスク層形成用感光性フィルムK1の作製と同様にして、絶縁層形成用感光性フィルムW1を得た(絶縁層の膜厚は1.4μm)。
 (絶縁層用塗布液:処方W1)
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレ
ート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加
物(d)(組成(質量%):a/b/c/d=46/1/10/43、重量
平均分子量:36000、酸価66mgKOH/g)の1-メトキシ-2-
プロパノール、メチルエチルケトン溶液(固形分:45%)) 
                          :12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)
製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量
%)                         :1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA-32P、新中村化学(株
)製:不揮発分75%、プロピレングリコールモノメチルエーテルアセテー
ト:25%)                    :0.68質量部
・トリペンタエリスリトールオクタアクリレート(商品名:V#802、大
阪有機化学工業(株)製)               :1.8質量部
・ジエチルチオキサントン              :0.17質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-
[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:Irga
cure379、BASF製)            :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製)
                          :0.19質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ製)
                          :0.05質量部
・メチルエチルケトン                :23.3質量部
・MMPGAc(プロピレングリコールモノメチルエーテルアセテート、ダ
イセル化学(株)製)                :59.8質量部
 なお、上記処方W1からなる絶縁層形成用塗布液の溶剤除去後の100℃の粘度は4000Pa・secであった。
 マスク層の形成と同様にして、前述のマスク層、透明膜、第一の透明電極パターン付の前面板を洗浄、シランカップリング処理し、次いで、保護フィルムを除去した絶縁層形成用感光性フィルムW1をラミネートした(基材温度:100℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.3m/分)。仮支持体を剥離後、露光マスク(絶縁層用パターンを有す石英露光マスク)面と絶縁層との間の距離を100μmに設定し、露光量30mJ/cm(i線)でパターン露光した。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で60秒間現像処理し、さらに炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて25℃で50秒間現像処理した後、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間洗浄処理した。洗浄処理後の前面板を、回転ブラシで擦り、更に超高圧洗浄ノズルから、超純水を噴射することで残渣を除去した。次いで、230℃60分間のポストベーク処理を行って、マスク層、透明膜、第一の透明電極パターン、絶縁層パターンを形成した前面板を得た。
〔第二の透明電極パターンの形成〕
<透明電極層の形成>
 前述の第一の透明電極パターンの形成と同様にして、マスク層、透明膜、第一の透明電極パターン、絶縁層パターンを形成した前面板をDCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、透明電極層を形成した前面板を得た。ITO薄膜の表面抵抗は110Ω/□であった。
 第一の透明電極パターンの形成と同様にして、エッチング用感光性フィルムE1を用いて、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、透明電極層、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 さらに、第一の透明電極パターンの形成と同様にして、エッチングし(30℃50秒間)、次いでエッチング用光硬化性樹脂層を除去(45℃200秒間)することにより、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板を得た。
〔第一および第二の透明電極パターンとは別の導電性要素の形成〕
 前述の第一、および第二の透明電極パターンの形成と同様にして、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板をDCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
 前述の第一、および第二の透明電極パターンの形成と同様にして、エッチング用感光性フィルムE1を用いて、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 さらに、第一の透明電極パターンの形成と同様にして、エッチングし(30℃50秒間)、次いでエッチング用光硬化性樹脂層を除去(45℃200秒間)することにより、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した前面板を得た。
〔硬化性透明樹脂層と第二の透明樹脂層〕
 各実施例の積層体の製造において、ガラス製透明基板上に、透明膜、透明電極パターンを形成した基板の代わりに、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素が形成された前面板を用いた以外は上記の各実施例の積層体の製造と同様にして、各実施例の転写フィルムから硬化性透明樹脂層と第二の透明樹脂層を転写して製膜して、ガラス製透明基板上に、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、硬化性透明樹脂層と第二の透明樹脂層がこの順で形成された各実施例の静電容量型入力装置(前面板)を得た。なお、第二の透明樹脂層ならびに硬化性透明樹脂層は、マスク層が形成された部分および引き回し配線の端末部の上方に形成されないように、パターン露光および現像されてパターニングされた。
〔画像表示装置(タッチパネル)の作製〕
 特開2009-47936号公報に記載の方法で製造した液晶表示素子に、先に製造した各実施例の静電容量型入力装置(前面板)を貼り合せ、公知の方法で静電容量型入力装置を構成要素として備えた各実施例の画像表示装置を作製した。
 《前面板および画像表示装置の評価》
 透明電極パターンが本発明の範囲外の段差であって、別の導電性要素が本発明の範囲内の段差である実施例301~310の積層体の製造において、段差を有する基材へのラミネート時の気泡混入を、実施例1と同様にして評価した。得られた結果は、実施例101~110と同じ傾向であり、本発明の転写フィルムは、仮支持体と硬化性透明樹脂層が直接接し、かつ、段差を有する基材へのラミネート時の気泡混入を抑制できることがわかった。
 各実施例の静電容量型入力装置および画像表示装置は、透明電極パターンが視認される問題がなかった。
 上述の各工程において、マスク層、透明膜、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素、第二の透明樹脂層ならびに硬化性透明樹脂層を形成した前面板は、開口部、および裏面(非接触面)に汚れがなく、洗浄が容易であり、かつ、他部材の汚染の問題がなかった。
 また、マスク層にはピンホールがなく、光遮蔽性に優れていた。
 そして、第一の透明電極パターン、第二の透明電極パターン、およびこれらとは別の導電性要素の、各々の導電性には問題がなく、一方で、第一の透明電極パターンと第二の透明電極パターンの間では絶縁性を有していた。
 さらに、硬化性透明樹脂層にも気泡等の欠陥がなく、表示特性に優れた画像表示装置が得られた。
1  透明基板(前面板)
1A フィルム基材
2  マスク層
3  透明電極パターン(第一の透明電極パターン)
3a パッド部分
3b 接続部分
4  透明電極パターン(第二の透明電極パターン)
5  絶縁層
6  別の導電性要素
7  硬化性透明樹脂層(オーバーコート層または透明保護層の機能を有することが好ましい)
8  開口部
10 静電容量型入力装置
11 透明膜
12 第二の透明樹脂層(屈折率調整層。透明絶縁層の機能を有してもよい)
13 積層体
21 透明電極パターンと第二の透明樹脂層と硬化性透明樹脂層がこの順に積層された領域
22 非パターン領域
α  テーパー角
26 仮支持体
29 保護剥離層(保護フィルム)
30 転写フィルム
31 引き回し配線の端末部
33 硬化性透明樹脂層と第二の透明樹脂層の硬化部
34 引き回し配線の末端部に対応する開口部(硬化性透明樹脂層と第二の透明樹脂層の未硬化部)
41 段差を構成する段
41a 段の上部
41b 段の側部
41c 段の下部
42 ラミネート方向
43 段差を有する基材
44 段差に沿った領域
C  第一の方向
D  第二の方向
θ  段差を構成する段の側部と基板のなす角度

Claims (17)

  1.  厚みが38μm以下である仮支持体と、前記仮支持体上に直接接して配置された硬化性透明樹脂層とを有し、
     前記硬化性透明樹脂層の厚みが、5μm以上であり、
     前記硬化性透明樹脂層がバインダーポリマー、重合性化合物、および重合開始剤を含み、
     前記硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s以上である、転写フィルム。
  2.  前記硬化性透明樹脂層の100℃で測定した溶融粘度ηcが1.0x10Pa・s~1.0x10Pa・sである、請求項1に記載の転写フィルム。
  3.  前記硬化性透明樹脂層の100℃で測定した溶融粘度ηcが3.0x10Pa・s~1.0x10Pa・sである、請求項1または2に記載の転写フィルム。
  4.  前記硬化性透明樹脂層の100℃で測定した溶融粘度ηcが4.0x10Pa・s~1.0x10Pa・sである、請求項1~3のいずれか一項に記載の転写フィルム。
  5.  前記硬化性透明樹脂層上に、更に、第二の透明樹脂層を有し、
     前記第二の透明樹脂層の屈折率が前記硬化性透明樹脂層の屈折率よりも高い、請求項1~4のいずれか一項に記載の転写フィルム。
  6.  段差を有する基材の上に、少なくとも前記段差を構成する段の上部および段の下部を連続して覆うように請求項1~5のいずれか一項に記載の転写フィルムの前記硬化性透明樹脂層を積層する工程を含み、
     前記段差を構成する段の厚みが100nm以上である、積層体の製造方法。
  7.  前記段差を構成する基材の一方の方向から前記段差を構成する段の上部および段の下部の上に前記硬化性透明樹脂層を連続して積層し、
     前記段差を構成する段の下部から段の上部までこの順で前記硬化性透明樹脂層を積層する段差上昇工程と、
     前記段差を構成する段の上部から段の下部までこの順で前記硬化性透明樹脂層を積層する段差下降工程とを有する、請求項6に記載の積層体の製造方法。
  8.  前記段差を構成する段の側部が、段の上部の方が段の下部よりも狭い傾斜構造であり、
     前記段差を構成する段の側部と前記基材のなす角度が5~90°である、請求項6または7に記載の積層体の製造方法。
  9.  前記段差を構成する段が導電性要素を含む、請求項6~8のいずれか一項に記載の積層体の製造方法。
  10.  前記段差を構成する段の上部が前記導電性要素の上部であり、前記段差を構成する段の下部が前記基材である、請求項9に記載の積層体の製造方法。
  11.  前記段差を有する基材が、透明電極パターンを含み、
     前記透明電極パターン上に前記硬化性透明樹脂層を積層する工程を含む、請求項6~10のいずれか一項に記載の積層体の製造方法。
  12.  前記透明電極パターンの他に、別の導電性要素を含み、
     前記段差を構成する段が前記別の導電性要素である、請求項11に記載の積層体の製造方法。
  13.  前記段差を構成する段が前記透明電極パターンである、請求項11または12に記載の積層体の製造方法。
  14.  前記転写フィルムが前記硬化性透明樹脂層上に、更に、第二の透明樹脂層を有し、
     前記第二の透明樹脂層の屈折率が前記硬化性透明樹脂層の屈折率よりも高く、
     前記透明電極パターン上に、前記転写フィルムの前記第二の透明樹脂層および前記硬化性透明樹脂層をこの順で積層する工程を含む、請求項11~13のいずれか一項に記載の積層体の製造方法。
  15.  請求項6~14のいずれか一項に記載の積層体の製造方法で製造された積層体。
  16.  請求項15に記載の積層体を含む静電容量型入力装置。
  17.  請求項16に記載の静電容量型入力装置を構成要素として備えた画像表示装置。
PCT/JP2015/073078 2014-08-28 2015-08-18 転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置 WO2016031615A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580045515.6A CN106660334B (zh) 2014-08-28 2015-08-18 转印膜、层叠体的制造方法、层叠体、静电电容型输入装置及图像显示装置
JP2016545447A JP6552507B2 (ja) 2014-08-28 2015-08-18 転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置
US15/433,623 US10207481B2 (en) 2014-08-28 2017-02-15 Transfer film, method for manufacturing laminate, laminate, electrostatic capacitance-type input device, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173606 2014-08-28
JP2014-173606 2014-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/433,623 Continuation US10207481B2 (en) 2014-08-28 2017-02-15 Transfer film, method for manufacturing laminate, laminate, electrostatic capacitance-type input device, and image display device

Publications (1)

Publication Number Publication Date
WO2016031615A1 true WO2016031615A1 (ja) 2016-03-03

Family

ID=55399511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073078 WO2016031615A1 (ja) 2014-08-28 2015-08-18 転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置

Country Status (5)

Country Link
US (1) US10207481B2 (ja)
JP (3) JP6552507B2 (ja)
CN (1) CN106660334B (ja)
TW (1) TWI658931B (ja)
WO (1) WO2016031615A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106079954A (zh) * 2016-06-12 2016-11-09 贵州劲嘉新型包装材料有限公司 一种pet转移膜循环利用工艺
JP7437328B2 (ja) 2019-02-13 2024-02-22 住友ファーマ株式会社 多能性幹細胞の除去剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225053B2 (ja) * 2014-03-20 2017-11-01 富士フイルム株式会社 感光性積層体、転写材料、パターン化された感光性積層体及びその製造方法、タッチパネル、並びに画像表示装置
JP6707146B2 (ja) 2016-12-08 2020-06-10 富士フイルム株式会社 転写フィルム、電極保護膜、積層体、静電容量型入力装置、及び、タッチパネルの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121811A (ja) * 2003-10-15 2005-05-12 Nippon Paper Industries Co Ltd 光拡散層転写シート及び光拡散層の形成方法
JP2008018645A (ja) * 2006-07-14 2008-01-31 Fujicopian Co Ltd 保護層転写シート
JP2010072589A (ja) * 2008-09-22 2010-04-02 Fujifilm Corp 感光性転写材料、樹脂パターンの形成方法、樹脂パターン付き基板、表示素子及び表示装置
JP2010085502A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
JP2013237273A (ja) * 2013-06-24 2013-11-28 Nitto Denko Corp 粘着剤層付き透明導電性フィルムとその製造方法、透明導電性積層体およびタッチパネル
JP2014142834A (ja) * 2013-01-24 2014-08-07 Fujifilm Corp 透明積層体およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147859A (ja) * 2010-01-20 2011-08-04 Kuraray Co Ltd ウレタン塗膜形成方法
CN104246607A (zh) 2012-03-15 2014-12-24 富士胶片株式会社 感光性膜、静电电容型输入装置的制造方法及静电电容型输入装置、以及具备其的图像显示装置
JP5922008B2 (ja) 2012-11-30 2016-05-24 富士フイルム株式会社 転写フィルムおよび透明積層体、それらの製造方法、静電容量型入力装置ならびに画像表示装置
TWI674972B (zh) * 2013-08-23 2019-10-21 日商味之素股份有限公司 零件封裝用薄膜之製造方法
JP2015114390A (ja) * 2013-12-09 2015-06-22 住友ベークライト株式会社 接着シート、接着シート付き光導波路、光電気混載基板、光電気混載基板の製造方法、光モジュールおよび電子機器
WO2015087807A1 (ja) * 2013-12-11 2015-06-18 積水化学工業株式会社 有機エレクトロルミネッセンス表示素子封止用硬化性樹脂組成物、有機エレクトロルミネッセンス表示素子封止用硬化性樹脂シート、及び、有機エレクトロルミネッセンス表示素子
JP6257435B2 (ja) * 2014-04-25 2018-01-10 旭化成株式会社 積層体、多層プリント配線板の製造方法及び多層プリント配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121811A (ja) * 2003-10-15 2005-05-12 Nippon Paper Industries Co Ltd 光拡散層転写シート及び光拡散層の形成方法
JP2008018645A (ja) * 2006-07-14 2008-01-31 Fujicopian Co Ltd 保護層転写シート
JP2010072589A (ja) * 2008-09-22 2010-04-02 Fujifilm Corp 感光性転写材料、樹脂パターンの形成方法、樹脂パターン付き基板、表示素子及び表示装置
JP2010085502A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 反射防止フィルム、偏光板、及び画像表示装置
JP2014142834A (ja) * 2013-01-24 2014-08-07 Fujifilm Corp 透明積層体およびその製造方法
JP2013237273A (ja) * 2013-06-24 2013-11-28 Nitto Denko Corp 粘着剤層付き透明導電性フィルムとその製造方法、透明導電性積層体およびタッチパネル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106079954A (zh) * 2016-06-12 2016-11-09 贵州劲嘉新型包装材料有限公司 一种pet转移膜循环利用工艺
CN106079954B (zh) * 2016-06-12 2018-09-07 贵州劲嘉新型包装材料有限公司 一种pet转移膜循环利用工艺
JP7437328B2 (ja) 2019-02-13 2024-02-22 住友ファーマ株式会社 多能性幹細胞の除去剤

Also Published As

Publication number Publication date
JP2019196011A (ja) 2019-11-14
CN106660334B (zh) 2019-03-19
JPWO2016031615A1 (ja) 2017-06-08
JP6661822B1 (ja) 2020-03-11
US20170157899A1 (en) 2017-06-08
TWI658931B (zh) 2019-05-11
US10207481B2 (en) 2019-02-19
JP6552507B2 (ja) 2019-07-31
JP6599040B1 (ja) 2019-10-30
CN106660334A (zh) 2017-05-10
TW201609382A (zh) 2016-03-16
JP2020073309A (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
JP5922008B2 (ja) 転写フィルムおよび透明積層体、それらの製造方法、静電容量型入力装置ならびに画像表示装置
US10174181B2 (en) Transfer film, method for manufacturing film sensor, film sensor, front panel and sensor assembly, and image display device
JP6307036B2 (ja) 転写フィルム、静電容量型入力装置の電極用保護膜、積層体、積層体の製造方法および静電容量型入力装置
WO2017038278A1 (ja) 転写フィルム、静電容量型入力装置の電極保護膜、積層体、積層体の製造方法および静電容量型入力装置
WO2014007050A1 (ja) 透明積層体、静電容量型入力装置および画像表示装置
JP6336032B2 (ja) 転写フィルム、転写フィルムの製造方法、透明積層体、透明積層体の製造方法、静電容量型入力装置および画像表示装置
JP6599040B1 (ja) 転写フィルム、積層体の製造方法、積層体、静電容量型入力装置および画像表示装置
WO2013047553A1 (ja) 静電容量型入力装置の製造方法および静電容量型入力装置、並びに、これを備えた画像表示装置
JP6580153B2 (ja) フィルムセンサーの製造方法、前面板一体型センサーの製造方法および画像表示装置の製造方法
JP6030966B2 (ja) 透明積層体およびその製造方法
JP6230469B2 (ja) 転写フィルムおよび透明積層体、それらの製造方法、静電容量型入力装置ならびに画像表示装置
JP6554165B2 (ja) 転写フィルム、透明積層体、静電容量型入力装置および画像表示装置
JP6244463B2 (ja) 積層材料の製造方法、積層材料、透明積層体の製造方法、透明積層体、静電容量型入力装置および画像表示装置
WO2016088609A1 (ja) 転写フィルム、フィルムセンサーの製造方法、フィルムセンサー、前面板一体型センサーおよび画像表示装置
WO2016159043A1 (ja) 転写フィルム、積層体、静電容量型入力装置および画像表示装置
JP6155235B2 (ja) 転写フィルム、透明積層体および静電容量型入力装置
JP6404255B2 (ja) 転写フィルムおよび透明積層体、それらの製造方法、静電容量型入力装置ならびに画像表示装置
JP6646107B2 (ja) 転写フィルムおよび透明積層体、それらの製造方法、静電容量型入力装置ならびに画像表示装置
JP6865867B2 (ja) 転写フィルムおよび透明積層体、それらの製造方法、静電容量型入力装置ならびに画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835398

Country of ref document: EP

Kind code of ref document: A1