WO2016031606A1 - エンジンのオイル供給装置 - Google Patents

エンジンのオイル供給装置 Download PDF

Info

Publication number
WO2016031606A1
WO2016031606A1 PCT/JP2015/073026 JP2015073026W WO2016031606A1 WO 2016031606 A1 WO2016031606 A1 WO 2016031606A1 JP 2015073026 W JP2015073026 W JP 2015073026W WO 2016031606 A1 WO2016031606 A1 WO 2016031606A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
engine
hydraulic pressure
hydraulic
pressure
Prior art date
Application number
PCT/JP2015/073026
Other languages
English (en)
French (fr)
Inventor
智弘 小口
絢大 本田
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201580001936.9A priority Critical patent/CN106661975B/zh
Priority to DE112015000171.9T priority patent/DE112015000171T5/de
Priority to US15/022,803 priority patent/US10267190B2/en
Publication of WO2016031606A1 publication Critical patent/WO2016031606A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2280/00Valves

Definitions

  • the present invention relates to an engine oil supply apparatus that supplies oil to each part of an engine such as an automobile.
  • Patent Document 1 discloses an oil supply apparatus configured to suppress a temperature increase of a piston or a cylinder by injecting oil from a jet nozzle to the piston at the time of high load high rotation operation of the engine. .
  • This oil supply device is equipped with a variable capacity type oil pump, and when the engine is operated at high load and high speed, the oil is injected from the jet nozzle by controlling the on-off valve, while the oil pump discharge is synchronized with this. It is configured to increase the amount. That is, at the time of oil injection from the jet nozzle, the oil discharge amount is increased to maintain the overall hydraulic pressure balance in the oil supply passage so as to suppress the shortage of oil used for other purposes such as lubricating oil. It has become.
  • the object of the present invention is to suppress the temperature rise of the oil with a reasonable configuration.
  • the present invention is an oil supply device for an engine, an oil pump capable of controlling a discharge amount, an oil supply passage for supplying oil discharged from the oil pump to a hydraulic operation portion of the engine, and the oil supply passage
  • An oil cooler that cools oil discharged from an oil pump, and a required oil pressure that is a required oil pressure of the hydraulic operation unit and that corresponds to an operating state of the engine is set as a target oil pressure
  • a control device that controls the discharge amount of the oil pump so that the oil pressure becomes the target oil pressure, and the control device is configured to operate the engine so that the oil reaches a predetermined high oil temperature state.
  • the oil pump is controlled so that an amount of oil exceeding the discharge amount corresponding to the required oil pressure of the hydraulic operation unit according to the operating state of the engine is discharged. It is.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a multi-cylinder engine to which an oil supply apparatus according to the present invention is applied (first embodiment). It is sectional drawing which shows the structure and operation
  • (A) is sectional drawing which shows schematic structure of a variable valve timing mechanism
  • (b) is a graph which shows the valve characteristic (relationship between a phase and lift amount) of an intake valve and an exhaust valve.
  • FIG. 1 It is a figure which shows schematic structure of an oil supply apparatus (1st Embodiment). It is a figure which shows the characteristic of a variable displacement type oil pump.
  • (A) is a figure which shows the relationship between a reduced-cylinder operation area
  • (b) is a figure which shows the relationship between a reduced-cylinder operation area
  • FIG. 1 shows a multi-cylinder engine 2 (hereinafter simply referred to as an engine 2) to which an oil supply apparatus according to the present invention is applied.
  • the engine 2 is an in-line four-cylinder gasoline engine in which first to fourth cylinders are arranged in series in a direction perpendicular to the plane of FIG. 1, and is mounted on a vehicle such as an automobile.
  • the engine 2 includes a cam cap 3, a cylinder head 4, a cylinder block 5, a crankcase (not shown), and an oil pan 6 (see FIG. 4) that are connected vertically.
  • Four cylinder bores 7 are formed in the cylinder block 5, and pistons 8 are slidably accommodated in the respective cylinder bores 7.
  • a combustion chamber 11 is formed for each cylinder by the piston 8, the cylinder bore 7 and the cylinder head 4.
  • Each piston 8 is connected via a connecting rod 10 to a crankshaft 9 that is rotatably supported by the crankcase.
  • the cylinder head 4 is provided with an intake port 12 and an exhaust port 13 that open to the combustion chamber 11, and an intake valve 14 and an exhaust valve 15 that open and close the intake port 12 and the exhaust port 13, respectively. Equipped.
  • the intake valve 14 and the exhaust valve 15 are urged in the direction of closing the ports 12 and 13 (upward in FIG. 1) by return springs 16 and 17, respectively, and are provided on the outer periphery of the camshafts 18 and 19.
  • Each port 12 and 13 is configured to open when pressed by the cam portions 18a and 19a.
  • the cam portions 18a and 19a press the cam followers 20a and 21a provided at the substantially central portions of the swing arms 20 and 21, so that the swing arms 20 and 21 Oscillates with the tops of the pivot mechanisms of HLA 24 and 25 described later provided on one end side of the Along with this swing, the other ends of the swing arms 20 and 21 push down the intake valve 14 and the exhaust valve 15 against the urging force of the return springs 16 and 17. As a result, the ports 12 and 13 are opened.
  • the engine 2 incorporates variable valve timing mechanisms 32 and 33 to be described later, and the opening and closing timings of the intake and exhaust valves 14 and 15 are changed according to the operating state of the engine 2.
  • the variable valve timing mechanisms 32 and 33 will be described later.
  • a hydraulic lash adjuster (Hydraulic Lash Adjuster) 24 is provided as a pivot mechanism serving as a fulcrum of the swing arms 20 and 21 for the second and third cylinders in the center. (See FIG. 4).
  • the hydraulic lash adjuster 24 (hereinafter referred to as HLA 24) automatically adjusts the valve clearance to zero by hydraulic pressure.
  • the first and fourth cylinders located at both ends in the cylinder arrangement direction are hydraulic lash adjusters 25 with a valve stop mechanism (hereinafter referred to as “pipod mechanisms” that serve as fulcrums of the swing arms 20 and 21).
  • HLA25 with a valve stop mechanism or simply referred to as HLA25).
  • the HLA 25 with a valve stop mechanism automatically adjusts the valve clearance to zero like the HLA 24, but in addition to this function, the intake valve 14 and the exhaust valve 15 are allowed to operate. It has a function of switching to a stopped state.
  • the operating state is the all cylinder operation in which the intake / exhaust valves 14, 15 of all cylinders are operated (open / close operation), and the intake / exhaust valves 14 of the first and fourth cylinders among all the cylinders. , 15 is stopped (opening / closing operation is stopped), and the operation can be switched to the reduced-cylinder operation in which only the intake and exhaust valves 14 and 15 of the second and third cylinders are operated.
  • mounting holes 26 and 27 into which the lower end portion of the HLA 25 with a valve stop mechanism is inserted and mounted are provided in portions on the intake side and the exhaust side corresponding to the first and fourth cylinders. . Further, in the cylinder head 4, mounting holes 26 and 27 into which the lower end portion of the HLA 24 is inserted and mounted are similarly provided in portions on the intake side and the exhaust side corresponding to the second and third cylinders. .
  • Two oil passages 63, 64 extending in the cylinder arrangement direction over the first to fourth cylinders and communicating with the mounting holes 26, 27 of the HLA 24, 25 on the intake side and the exhaust side, respectively,
  • Two oil passages 61 and 62 extending in the cylinder arrangement direction at positions corresponding to the four cylinders and communicating with the mounting holes 26 and 27 of the HLA 25 with the valve stop mechanism on the intake side and the exhaust side are formed in the cylinder head 4. ing.
  • the oil passages 63, 64 are oils (hydraulic oil) with respect to the pivot mechanism main body 25 a of the HLA 24 mounted in the mounting holes 26, 27 and the HLA 25 with a valve stop mechanism. ), And the pivot mechanism body 25a of the HLA 24 and the HLA 25 with a valve stop mechanism automatically adjusts the valve clearance to zero by its hydraulic pressure (operating pressure).
  • the oil passages 61 and 62 supply oil to the later-described valve stop mechanism 25b (shown in FIG. 2) of the HLA 25 with a valve stop mechanism mounted in the mounting holes 26 and 27.
  • the oil passages 61, 62, 63 and 64 will be described in detail later.
  • a main gallery 54 extending in the cylinder arrangement direction is provided in the side wall on the exhaust side of the cylinder bore 7.
  • a piston cooling oil jet 28 communicating with the main gallery 54 is provided at a position near the lower side of the main gallery 54 and corresponding to each piston 8.
  • the oil jet 28 has a shower nozzle 28 a located below the piston 8, and is configured to inject oil (cooling oil) from the shower nozzle 28 a toward the back surface of the piston 8.
  • oil supply portions 29 and 30 are provided above the camshafts 18 and 19, respectively. These oil supply parts 29 and 30 have nozzles 29a and 30a.
  • the valve stop mechanism 25b of the HLA 25 with a valve stop mechanism switches the operation state of the engine 2 to the intake / exhaust valve of all cylinders by switching the intake valve 14 and the exhaust valve 15 between a state where the operation is allowed and a state where the operation is stopped. 14 and 15 are operated (open / close operation), the operation of the intake and exhaust valves 14 and 15 of the first and fourth cylinders is stopped (open / close operation is stopped), and the second and third cylinders are operated. The operation is switched to a reduced-cylinder operation state in which only the intake and exhaust valves 14 and 15 are operated.
  • valve stop mechanism 25b when the engine 2 is controlled to operate all cylinders, the valve stop mechanism 25b is stopped, thereby opening and closing the intake and exhaust valves 14 and 15 of all cylinders including the first and fourth cylinders.
  • the valve stop mechanism 25b when the engine 2 is controlled to reduce cylinder operation, the valve stop mechanism 25b is hydraulically operated, thereby stopping the opening / closing operations of the intake and exhaust valves 14 and 15 of the first and fourth cylinders among all the cylinders. .
  • the valve stop mechanism 25b is provided in the HLA 25 with a valve stop mechanism as described above. That is, the HLA 25 with a valve stop mechanism includes a pivot mechanism body 25a and a valve stop mechanism 25b.
  • the pivot mechanism body 25a has substantially the same configuration as the HLA 24 that automatically adjusts the valve clearance to zero by hydraulic pressure.
  • valve stop mechanism 25b is opposed to the bottomed outer cylinder 251 in which the pivot mechanism main body 25a is slidably accommodated in the axial direction and the peripheral side wall of the outer cylinder 251.
  • a pair of lock pins 252 provided so as to be able to enter and exit each of the two through-holes 251a provided therein, a lock spring 253 for urging the pair of lock pins 252 radially outward, an inner bottom portion of the outer cylinder 251 and a pivot
  • a lost motion spring 254 is provided between the bottom of the mechanism main body 25a and biases the pivot mechanism main body 25a upward.
  • the pair of lock pins 252 are spaced apart from each other and inserted into the through-holes 251a with their tips protruding outward from the outer cylinder 251, and an approach position protruding from the through-holes 251a to the inside of the outer cylinder 251. Can be displaced. Then, with the pivot mechanism main body 25a projecting upward from the outer cylinder 251, the pair of lock pins 252 are arranged at the separated positions by the urging force of the lock spring 253, so that the pivot mechanism main body 25a can be moved up and down. It is regulated (referred to as a locked state of the pivot mechanism body 25a).
  • the lock pin 252 is pivoted. It is configured to move up and down in the outer cylinder 251 together with the main body 25a (referred to as an unlocked state of the pivot mechanism main body 25a).
  • the engine 2 includes a variable valve timing mechanism 32 (hereinafter referred to as VVT 32) that changes the valve characteristics of the intake valve 14 and a variable valve timing mechanism 33 (hereinafter referred to as VVT 33) that changes the valve characteristics of the exhaust valve 15 in all cylinders. ) And are incorporated.
  • VVT 32 variable valve timing mechanism 32
  • VVT 33 variable valve timing mechanism 33
  • FIG. 3A is a cross-sectional view showing a schematic configuration of the VVTs 32 and 33, in which the constituent elements of the VVT 33 of the exhaust valve 15 are indicated in parentheses.
  • the VVT 32 (33) includes a substantially annular housing 321 (331) and a rotor 322 (332) accommodated inside the housing 321 (331). .
  • the housing 321 (331) is connected to a cam pulley 323 (333) that rotates in synchronization with the crankshaft 9 so as to be integrally rotatable
  • the rotor 322 (332) is a cam that opens and closes the intake valve 14 (exhaust valve 15). It is connected to the shaft 18 (19) so as to be integrally rotatable.
  • a retarded hydraulic chamber 325 335 partitioned by an inner peripheral surface of the housing 321 (331) and a vane 324 (334) provided on the rotor 322 (332).
  • a plurality of hydraulic chambers 326 336 are formed.
  • the retard hydraulic chamber 325 (335) and the advanced hydraulic chamber 326 (336) are supplied with oil via a first direction switching valve 34 (35) (see FIG. 4), which will be described later. 4) is connected.
  • the camshaft 18 (19) is rotated by the hydraulic pressure (indicated by the arrow in FIG. 3A).
  • FIG. 3B shows the valve opening phases of the intake valve 14 and the exhaust valve 15, and as can be seen from FIG. 3, the valve opening phase of the intake valve 14 is changed in the advance direction by VVT 32 (and / or VVT 33). 3 (see the arrow in FIG. 3B) (and / or when the valve opening phase of the exhaust valve 15 is changed in the retard direction), the valve opening period of the exhaust valve 15 and the valve opening period of the intake valve 14 (See the dash-dot line).
  • the combustion temperature can be suppressed, NOx generation can be suppressed and exhaust purification can be achieved.
  • the valve opening phase of the intake valve 14 is changed to the retarded direction (and / or the valve opening phase of the exhaust valve 15 is changed to the advanced direction) by the VVT 32 (and / or VVT 33)
  • the intake valve 14 The valve overlap amount between the valve opening period (see the solid line) and the valve opening period of the exhaust valve 15 decreases. Therefore, stable combustibility can be ensured when the engine load is a low load equal to or less than a predetermined value, such as during idling.
  • the valve opening periods of the intake valve 14 and the exhaust valve 15 are overlapped even when the load is low.
  • the oil supply device 1 for supplying oil (hydraulic oil) to each hydraulic operation part of the engine 2 will be described in detail with reference to FIG.
  • the “hydraulic actuator” means a device that operates by receiving the oil pressure of oil (ie, HLA 24, 25, VVT 32, 33, etc.), or an oil supply that supplies oil to an object for lubrication or cooling by the oil pressure. Part (namely, oil jet 28, oil supply part 29, 30 etc.).
  • the oil supply device 1 includes an oil pump 36 driven by the rotation of the crankshaft 9 and oil connected to the oil pump 36 and pressurized by the oil pump 36 to the lubrication unit and each hydraulic operation unit of the engine 2.
  • An oil supply passage 50 is provided.
  • the oil pump 36 is an auxiliary machine that is driven by the engine 2.
  • the oil supply passage 50 is composed of a passage formed in the cylinder head 4 and the cylinder block 5 or a pipe, or a pipe.
  • the oil supply passage 50 includes a first communication passage 51 that extends from the oil pump 36 to the branch point 54a in the cylinder block 5, the main gallery 54 that extends from the branch point 54a in the cylinder block 5 in the cylinder arrangement direction, and the main gallery 54.
  • a second communication path 52 extending from the upper branch point 54b to the cylinder head 4 and a third end extending in the engine width direction from the intake side to the exhaust side at the front end portion (end portion on the first cylinder side) in the cylinder head 4
  • a communication passage 53 and a plurality of oil passages described later extending from the third communication passage 53 are provided.
  • the oil pump 36 is a known variable displacement oil pump.
  • the oil pump 36 is formed so that one end side is open, and includes a pump body having a U-shaped cross section having a pump housing chamber formed in a columnar space therein, and a cover member that once closes the opening of the pump body.
  • a drive shaft 362 that is rotatably supported by the housing 361 and that is driven to rotate by the crankshaft 9 through the substantially central portion of the pump housing chamber, and a central portion that is rotatably accommodated in the pump housing chamber.
  • a pump element comprising a rotor 363 coupled to the drive shaft, and a vane 364 which is housed in a plurality of slits radially formed in the outer periphery of the rotor 363 so as to be retractable;
  • a pump which is arranged eccentrically with respect to the rotation center of the rotor 363 and is a plurality of hydraulic oil chambers together with the rotor 363 and the adjacent vane 364.
  • a cam ring 366 that defines a chamber 365; a spring 367 that is housed in the pump body and is a biasing member that constantly biases the cam ring 366 in a direction in which the eccentric amount of the cam ring 366 relative to the rotation center of the rotor 363 increases;
  • a pair of ring members 368 having a smaller diameter than the rotor 363 are slidably disposed on both sides of the inner peripheral side of 363.
  • the housing 361 includes a suction port 361 a that supplies oil to the internal pump chamber 365 and a discharge port 361 b that discharges oil from the pump chamber 365.
  • a pressure chamber 369 defined by the inner peripheral surface of the housing 361 and the outer peripheral surface of the cam ring 366 is formed inside the housing 361, and an introduction hole 369 a that opens to the pressure chamber 369 is provided. That is, in the oil pump 36, when the oil is introduced into the pressure chamber 369 from the introduction hole 369a, the cam ring 366 swings with respect to the fulcrum 361c, and the rotor 363 is eccentric relative to the cam ring 366, The discharge capacity is configured to change.
  • An oil strainer 39 facing the oil pan 6 is connected to the suction port 361a of the oil pump 36.
  • an oil filter 37 and an oil cooler 38 are arranged in order from the upstream side to the downstream side, and the oil stored in the oil pan 6 is After being pumped up by an oil pump 36 through an oil strainer 39, it is filtered by an oil filter 37 and cooled by an oil cooler 38 before being introduced into a main gallery 54 in the cylinder block 5.
  • the oil cooler 38 is a heat exchanger that cools the oil by exchanging heat between the engine coolant and the oil.
  • the oil pump 36 is connected to an oil passage 40 that branches from a branch point 54 c on the main gallery 54 and introduces oil into the pressure chamber 369 of the oil pump 36.
  • a linear solenoid valve 49 is interposed in the oil passage 40, and the oil flow rate introduced into the pressure chamber 369 is adjusted by the linear solenoid valve 49 according to the operating state of the engine 2, thereby The discharge amount of the pump 36 is changed.
  • the flow control valve of the oil passage 40 is not limited to the linear solenoid valve 49, and may be, for example, an electromagnetic control valve.
  • the main gallery 54 supplies oil to metal bearings arranged in the oil jet 28 for injecting cooling oil to the back side of the four pistons 8 and five main journals for rotatably supporting the crankshaft 9. It is connected to the oil supply part 42 of the metal bearing arrange
  • An oil supply unit 43 that supplies oil to the hydraulic chain tensioner and the oil passage 40 are connected to the downstream side of the branch point 54c on the main gallery 54.
  • the oil passage 68 branched from the branch point 53a of the third communication passage 53 is connected to the advance hydraulic chamber 336 of the exhaust side VVT 33 for changing the opening / closing timing of the exhaust valve 15 via the exhaust side first direction switching valve 35, and It is connected to the retarded hydraulic chamber 335 and is configured to supply oil by controlling the first direction switching valve 35.
  • the oil passage 64 branched from the branch point 53a includes a metal bearing oil supply portion 45 (see a white triangle ⁇ in FIG. 4) disposed in the cam journal of the exhaust side camshaft 19 and an HLA 24 (see FIG. 4). And an HLA 25 with a valve stop mechanism (see a white oval in FIG. 4). Oil is constantly supplied to the oil passage 64.
  • the oil passage 66 that branches from the branch point 64 a of the oil passage 64 is connected to the oil supply unit 30 that supplies lubricating oil to the swing arm 21 on the exhaust side. Oil is also constantly supplied to the oil passage 66.
  • the intake side is the same as the exhaust side, and the oil passage 67 branched from the branch point 53c of the third communication passage 53 changes the opening / closing timing of the intake valve 14 via the intake side first direction switching valve 34.
  • the VVT 32 is connected to the advance hydraulic chamber 326 and the retard hydraulic chamber 325.
  • the oil passage 63 branched from the branch point 53d includes a metal bearing oil supply unit 44 (see a white triangle ⁇ in FIG. 4) disposed in the cam journal of the intake side camshaft 18 and an HLA 24 (see FIG. 4). And an HLA 25 with a valve stop mechanism (see a white oval in FIG. 4).
  • the oil passage 65 that branches from the branch point 63a of the oil passage 63 is connected to the oil supply portion 29 that supplies lubricating oil to the swing arm 20 on the intake side.
  • the oil passage 69 branched from the branch point 53c of the third communication passage 53 has a check valve 48 that restricts the direction of oil flow to only one direction from the upstream side to the downstream side, and the check valve 48 branches off.
  • An oil pressure sensor 70 is disposed between the point 53c and detects the oil pressure in the oil supply passage 50 (upstream of the check valve 48 in the oil passage 69).
  • the oil passage 69 branches at the branch point 69a on the downstream side of the check valve 48 into the two oil passages 61 and 62 communicating with the mounting holes 26 and 27 for the HLA 25 with a valve stop mechanism.
  • the oil passage 61 is connected to the valve stop mechanism 25b of the HLA 25 with a valve stop mechanism on the intake side via a second direction switch valve 46 on the intake side, and the oil passage 62 is switched to the second direction switch on the exhaust side.
  • the valve 47 is connected to the valve stop mechanism 25b of the HLA 25 with a valve stop mechanism on the exhaust side via a valve 47. By controlling the second direction switching valve 46, oil is supplied to each valve stop mechanism 25b.
  • the check valve 48 is energized by a spring so as to open when the hydraulic pressure in the third communication passage 53 becomes equal to or higher than the required hydraulic pressure of the valve stop mechanism 25b, and allows oil flow only in one direction from the upstream side to the downstream side. regulate.
  • the check valve 48 opens with a hydraulic pressure larger than the required hydraulic pressure of the VVTs 32 and 33. If the VVT 32, 33 is activated during the reduced cylinder operation with the valve stop mechanism 25b activated, the oil pressure in the third communication passage 53 (and the oil pressure detected by the oil pressure sensor 70) may decrease. Since the check valve 48 provided in 69 blocks the oil flow from the valve stop mechanism 25b to the third communication passage 53 upstream of the check valve 48, the check valve 48 is downstream of the check valve 48.
  • valve stop mechanism 25b The required oil pressure in the valve stop mechanism 25b is ensured. However, in the present embodiment, as will be described later, even if the VVTs 32 and 33 are operated during the reduced cylinder operation, the oil pump 36 is controlled so that the hydraulic pressure of the third communication passage 53 does not decrease based on the detected hydraulic pressure of the hydraulic sensor 70. Since the oil discharge amount is controlled, the check valve 48 may be omitted.
  • the metal bearing for rotatably supporting the crankshaft 9 and the camshafts 18 and 19 and the lubricating and cooling oil supplied to the piston 8 and the camshafts 18 and 19 are shown after being cooled and lubricated.
  • the oil is dropped into the oil pan 6 through the drain oil passage and is recirculated by the oil pump 36.
  • the operation of the engine 2 is controlled by the controller 100. Detection information from various sensors that detect the operating state of the engine 2 is input to the controller 100. For example, the controller 100 detects the rotation angle of the crankshaft 9 by the crank angle sensor 71 and detects the engine rotation speed based on this detection signal. Further, the air flow sensor 72 detects the amount of air taken in by the engine 2 and detects the engine load based on this. Further, the oil temperature sensor 73 and the oil pressure sensor 70 detect the oil temperature and pressure in the oil supply passage 50, respectively. The oil temperature sensor 73 is disposed in the hydraulic path (in the present embodiment, the main gallery 54). An integrated oil pressure / oil temperature sensor having functions of an oil temperature sensor and a hydraulic pressure sensor may be disposed in the main gallery 54.
  • a cam angle sensor 74 provided in the vicinity of the camshafts 18 and 19 detects the rotational phase of the camshafts 18 and 19 and detects the operating angles of the VVTs 32 and 33 based on the cam angles. Further, the water temperature sensor 75 detects the temperature of cooling water that cools the engine 2 (hereinafter referred to as water temperature).
  • the controller 100 is a control device based on a well-known microcomputer, and includes various sensors (hydraulic sensor 70, crank angle sensor 71, air flow sensor 72, oil temperature sensor 73, cam angle sensor 74, water temperature sensor 75, etc.).
  • a signal input unit for inputting the detection signal a calculation unit for performing calculation processing related to control, and devices to be controlled (first direction switching valves 34 and 35, second direction switching valves 46 and 47, linear solenoid valve 49).
  • Etc. and a storage unit for storing programs and data (such as a hydraulic control map and a duty ratio map described later) necessary for control.
  • the controller 100 transmits a control signal with a duty ratio set as described later to the linear solenoid valve 49 to control the hydraulic pressure supplied to the pressure chamber 369 of the oil pump 36 via the linear solenoid valve 49.
  • the flow rate (discharge amount) of the oil pump 36 is controlled by controlling the amount of eccentricity of the cam ring 366 and the amount of change in the internal volume of the pump chamber 365 by the hydraulic pressure of the pressure chamber 369. That is, the capacity of the oil pump 36 is controlled by the duty ratio.
  • the flow rate (discharge amount) of the pump 36 is proportional to the engine rotation speed.
  • the duty ratio represents the ratio of the energization time to the linear solenoid valve with respect to the time of one cycle
  • the hydraulic pressure to the pressure chamber 369 of the pump 36 increases as the duty ratio increases (higher). Therefore, the gradient of the flow rate of the pump 36 with respect to is reduced.
  • the controller 100 controls the discharge amount of the oil pump 36 by changing the capacity of the oil pump 36.
  • the reduced-cylinder operation or all-cylinder operation of the engine 2 is switched according to the operation state of the engine 2. That is, when the operating state of the engine 2 that is grasped from the engine speed, the engine load, and the water temperature of the engine 2 is within the illustrated reduced cylinder operating region, the reduced cylinder operation is executed.
  • a reduced cylinder operation preparation area is provided adjacent to the reduced cylinder operation area, and when the engine is in the reduced cylinder operation preparation area, the reduced cylinder operation is executed.
  • the hydraulic pressure is increased in advance toward the required hydraulic pressure of the valve stop mechanism 25b.
  • This oil supply device 1 is provided to a plurality of hydraulic operation parts (HLA 24, 25, VVT 32, 33, oil jet 28, oil supply parts 44, 45 of a metal bearing such as a journal of the crankshaft 9) by one oil pump 36. Supply oil.
  • the required hydraulic pressure required by each hydraulic operating unit varies depending on the operating state of the engine 2. Therefore, in order to obtain the required hydraulic pressure for all hydraulic operating parts in all operating states of the engine 2, the hydraulic pressure equal to or higher than the highest required hydraulic pressure among the required hydraulic pressures of each hydraulic operating part for each operating state of the engine 2. It is reasonable to set the target oil pressure according to the operating state of the engine 2.
  • the oil supply parts 41 and 42 of metal bearings such as the HLA 25 with a valve stop mechanism (valve stop mechanism 25b), the oil jet 28, the journal of the crankshaft 9 and the like having a relatively high required oil pressure among all the hydraulic operating parts.
  • the target hydraulic pressure may be set so as to satisfy the required hydraulic pressure of the VVTs 32 and 33. This is because, if the target oil pressure is set in this way, the other oil pressure operating parts having a relatively low required oil pressure are naturally satisfied with the required oil pressure.
  • FIG. 7 shows the relationship between the engine speed and the required oil pressure of the hydraulic operation unit.
  • (A) mainly shows the relationship during low-load operation of the engine 2 and (b) shows the high-load operation of the engine 2. Each time relationship is shown.
  • the hydraulic operating parts having a relatively high required oil pressure are oil supply parts 41, 42 of metal bearings such as VVTs 32, 33 and journals of the crankshaft 9. And a valve stop mechanism 25b of the HLA 25 with a valve stop mechanism.
  • the required oil pressure of each of these hydraulic operating parts changes according to the operating state of the engine 2.
  • the required oil pressure of VVTs 32 and 33 (described as “VVT required oil pressure” in FIG. 7) is substantially constant when the engine speed is equal to or higher than V0 ( ⁇ V1).
  • the required oil pressure (described as “metal required oil pressure” in FIG. 7) of the oil supply portions 41 and 42 of the metal bearings increases as the engine speed increases.
  • valve stop required hydraulic pressure The required hydraulic pressure of the valve stop mechanism 25b (described as “valve stop required hydraulic pressure” in FIG. 7) is substantially constant at a predetermined range of engine speed (V2 to V3). Then, comparing these required oil pressures for each engine speed, there is only metal demand oil pressure when the engine speed is lower than V0, and VVT demand oil pressure is highest when the engine speed is V0 to V1, and the engine speed When the speed is V1 to V4, the valve stop required hydraulic pressure is the highest, when the engine rotational speed is V4 to V6, the VVT required hydraulic pressure is the highest, and when the engine rotational speed is V6 or higher, the metal required hydraulic pressure is the highest. Therefore, it is necessary to set the above-mentioned highest required oil pressure as the target oil pressure of the oil pump 36 for each engine speed.
  • the hydraulic operating parts having a relatively high required oil pressure are VVTs 32 and 33, metal bearing oil supply parts 41 and 42, and an oil jet 28. It is.
  • the required oil pressure of each of these hydraulic operation parts changes according to the operating state of the engine 2.
  • the VVT required oil pressure is substantially constant when the engine speed is V0 ′ or higher, and the metal required oil pressure increases as the engine speed increases.
  • the required oil pressure of the oil jet 28 is 0 when the engine rotational speed is less than V1 ′, increases from that to a certain rotational speed according to the engine rotational speed, and is constant above the rotational speed.
  • FIG. 8 shows the engine speed when the engine 2 is in a specific operating state, specifically, when the oil temperature of the oil supply passage 50 detected by the oil temperature sensor 73 is equal to or higher than a predetermined reference upper limit temperature Tlim.
  • the relationship with the required oil pressure is shown.
  • the required oil pressure shown in the figure is different from the required oil pressure of the hydraulic operating parts such as VVT 32, 33, etc., and is the required oil pressure mainly required from the viewpoint of oil cooling.
  • VVT 32, 33, etc. the required oil pressure mainly required from the viewpoint of oil cooling.
  • FIG. 8 shows the relationship between the oil flow rate effective for oil cooling, that is, the required oil pressure for oil cooling (hereinafter referred to as oil cooling required oil pressure / corresponding to the maximum oil pressure of the present invention) and the engine speed.
  • the reference upper limit temperature Tlim is an oil temperature at which the property may change (deteriorate) when the oil is used continuously for a long period of time, and is a temperature obtained experimentally. is there.
  • the oil cooling required oil pressure is any of the VVT required oil pressure, the valve stop required oil pressure, and the metal required oil pressure for each operating state of the engine 2 when the engine 2 is in a low load operation. Bigger than.
  • the oil cooling required oil pressure increases as the engine speed increases, and becomes substantially constant at a specific engine speed (speed between V2 and V3) or higher.
  • the oil cooling required hydraulic pressure is any of the VVT required hydraulic pressure, the metal required hydraulic pressure, and the oil jet required hydraulic pressure corresponding to the operating state of the engine 2.
  • the oil cooling required oil pressure increases at a constant rate as the engine rotational speed increases, and the predetermined engine speed exceeds the engine rotational speed (V2 ′) at which the required oil pressure of the oil jet 28 becomes constant. It becomes almost constant above the speed.
  • the oil cooling required oil pressure is larger than any required oil pressure of the hydraulic operation part. This makes it possible to increase the flow rate through the oil cooler 38 and promote oil cooling without hindering the operation of the hydraulic operating parts such as the VVTs 32 and 33.
  • the oil cooling required oil pressure during low load operation of the engine 2 substantially matches the valve stop required oil pressure in a predetermined engine speed range (V1 to V2), and the engine 2 is required to operate during high load operation.
  • the oil cooling required oil pressure is almost the same as the oil pressure required for the oil jet 28 in a predetermined engine speed range (V1 ′ to V2 ′). It may be made larger than the required oil pressure.
  • a temporary target of the operating state based on the highest required hydraulic pressure among the required hydraulic pressures of the VVTs 32 and 33, the oil supply units 41 and 42 of the metal bearings, and the oil jet 28.
  • a hydraulic control map in which the hydraulic pressure is set is stored in the storage unit of the controller 100.
  • the controller 100 reads the temporary target oil pressure corresponding to the operating state of the engine 2 from the oil pressure control map, and sets the higher one of the read temporary target oil pressure and the required oil pressure of the valve stop mechanism 25b as the target oil pressure. Set.
  • the storage unit of the controller 100 stores a hydraulic control map in which a temporary target hydraulic pressure in the operation state is determined based on the oil cooling request hydraulic pressure for each operation state of the engine 2.
  • the temporary target oil pressure corresponding to the operating state of the engine 2 is read from the oil pressure control map, and the read The higher hydraulic pressure between the temporary target hydraulic pressure and the required hydraulic pressure of the valve stop mechanism 25b is set as the target hydraulic pressure.
  • the temporary target hydraulic pressure read from the hydraulic control map is higher than or equal to the required hydraulic pressure of the valve stop mechanism 25b, so the temporary target hydraulic pressure read from the hydraulic control map becomes the target hydraulic pressure as it is.
  • the controller 100 executes hydraulic feedback control for controlling the discharge amount of the oil pump 36 so that the hydraulic pressure (actual hydraulic pressure) detected by the hydraulic sensor 70 becomes the target hydraulic pressure.
  • FIG. 10 is a hydraulic control map shown in FIG.
  • the hydraulic pressure control maps of FIGS. 9 and 10A are the highest required among the required hydraulic pressures of the VVTs 32 and 33, the oil supply units 41 and 42 of the metal bearings, and the oil jet 28 for each operating state of the engine 2.
  • the temporary target oil pressure in the operation state is set in advance based on the oil pressure
  • the oil pressure control map in FIG. 10B is based on the oil cooling request oil pressure for each operation state of the engine 2.
  • the temporary target hydraulic pressure is preset.
  • FIGS. 9 (a) and 9 (b) show the hydraulic control maps when the engine 2 (oil temperature) is cold and warm, respectively
  • FIGS. 10 (a) and 10 (b) show the engine control map.
  • 2 (oil temperature) is a hydraulic control map at a high temperature.
  • (a) shows a hydraulic control map below the reference upper limit temperature Tlim
  • (b) shows a hydraulic control map above the reference upper limit temperature Tlim.
  • the controller 100 uses these hydraulic pressure control maps in accordance with the oil temperature detected by the oil temperature sensor 73. That is, when the engine 2 is started and the engine 2 is in the cold state, the controller 100 determines the operation state (engine speed, engine speed, and the like) based on the cold hydraulic control map shown in FIG.
  • the controller 100 converts the target oil pressure into an oil flow rate (discharge amount) to obtain a target flow rate (target discharge amount). Then, the controller 100 drives the linear solenoid valve 49 using the duty ratio map similar to the characteristic of the oil pump 36 in FIG. , And a control signal of the set duty ratio is transmitted to the linear solenoid valve 49 to control the discharge amount of the oil pump 36.
  • FIG. 11 is a block diagram showing a configuration of the discharge amount control of the oil pump 36 by the controller 100.
  • the controller 100 reads the temporary target oil pressure from the engine rotation speed, engine load, and oil temperature detected by various sensors using the hydraulic control map, and the temporary target oil pressure and valve stop.
  • the higher hydraulic pressure than the required hydraulic pressure is set as the target hydraulic pressure. Since this target oil pressure is the target oil pressure at the position of the oil pressure sensor 70, the target oil pressure is corrected in consideration of the oil pressure drop from the oil pump 36 to the oil pressure sensor 70 (inspected in advance). The corrected target hydraulic pressure is calculated.
  • This corrected target hydraulic pressure is converted into a flow rate (discharge amount) of the oil pump 36 to obtain a target flow rate (target discharge amount).
  • the controller 100 converts the flow rate of the predicted operation amount of the intake side VVT 32 (determined from the difference between the current operation angle and the target operation angle and the engine speed) when the intake side VVT 32 is operated, In addition to obtaining the consumption flow rate when the VVT 32 is operated, similarly, the predicted operation amount of the exhaust side VVT 33 when the exhaust side VVT 33 is operated is converted to obtain the consumption flow rate when the exhaust side VVT 33 is activated.
  • the both target flow rates are added to the target flow rate to correct the target flow rate.
  • the controller 100 converts the flow rate of the predicted operation amount (predicted operation amount of the lock pin 252) of the valve stop mechanism 25b when the valve stop mechanism 25b is operated to stop the valve, and the valve stop mechanism 25b is operated. Get the consumption flow. Since the predicted operation amount of the lock pin 252 is constant, the consumption flow rate during operation of the valve stop mechanism 25b is also constant. In addition to the target flow rate, the target flow rate is corrected in addition to the target flow rate when the valve stop mechanism 25b is activated.
  • the predicted operating amounts of the VVTs 32 and 33 and the valve stop mechanism 25b are 0, so that the target flow rate is not corrected according to these predicted operating amounts.
  • the target flow rate is corrected according to the predicted operation amounts of the VVTs 32 and 33 and the valve stop mechanism 25b, that is, the discharge amount of the oil pump 36 is corrected and controlled.
  • this hydraulic pressure feedback amount is a predicted hydraulic pressure that predicts how the hydraulic pressure (actual hydraulic pressure) detected by the hydraulic pressure sensor 70 changes in response to a change in the target hydraulic pressure during transient operation of the engine 2.
  • This is a hydraulic pressure feedback amount corresponding to the deviation from the detected actual hydraulic pressure.
  • the hydraulic feedback amount becomes a negative value and the target flow rate is reduced.
  • the hydraulic feedback amount becomes a positive value and the target flow rate is reduced. Increase the amount.
  • the oil pressure feedback amount is 0 (correction by the oil pressure feedback amount is not performed).
  • the predicted oil pressure is obtained in consideration of the response delay of the oil pump 36 itself when the target oil pressure changes in a stepped manner, the response delay until the oil pressure reaches the oil pressure sensor 70 from the oil pump 36, and the like.
  • the controller 100 Based on the corrected target flow rate (described as “corrected target flow rate” in FIG. 11) and the engine rotation speed, the controller 100 sets the duty ratio using a duty ratio map that is stored in advance and is not shown. Then, the control signal of the set duty ratio is transmitted to the linear solenoid valve 49. Thereby, the discharge amount of the oil pump 36 is controlled.
  • ⁇ Effects of the oil supply device 1> According to the oil supply apparatus 1 as described above, in the normal operation state of the engine 2 whose oil temperature is lower than the reference upper limit temperature Tlim, the VVT 32, 33, the valve stop mechanism 25b, the oil jet 28, and the crank for each operation state.
  • the highest required hydraulic pressure among the required hydraulic pressures of the hydraulic operating parts such as the oil supply parts 41 and 42 of the metal bearings such as the journal of the shaft 9 is the target hydraulic pressure, and the hydraulic pressure (actual hydraulic pressure) detected by the hydraulic sensor 70 is the target.
  • the discharge amount of the oil pump 36 is feedback controlled so as to be hydraulic. Therefore, it is possible to keep the driving load of the oil pump 36 to a necessary minimum while appropriately securing the operating oil pressure (required oil pressure) of each hydraulic operating unit, thereby improving the fuel consumption.
  • the hydraulic operation unit corresponding to the operating state of the engine 2 is provided.
  • the required oil cooling oil pressure that exceeds the highest required oil pressure is set as the target oil pressure, and the discharge amount from the oil pump 36 is controlled based on this target oil pressure. That is, the oil discharge amount by the oil pump 36 is increased beyond the discharge amount corresponding to the required oil pressure of the hydraulic operation unit, and thereby the oil flow rate through the oil cooler 38 is increased, thereby cooling the oil. Promoted. Accordingly, the temperature rise of the oil can be effectively suppressed with a simple and rational configuration using the existing oil cooler 38, and the seizure of the sliding portion due to the deterioration of the oil is highly prevented. It becomes possible.
  • the oil cooling required oil pressure is the oil pressure that exceeds the highest required oil pressure among the required oil pressures of the hydraulic operating section corresponding to the operating state of the engine 2 as described above (see FIG. 8). , 33, etc., the oil temperature rise can be suppressed without hindering the operation of the hydraulic operating parts.
  • FIG. 12 shows an engine 2 ′ according to the second embodiment
  • FIG. 13 shows an oil supply apparatus 1 ′ applied to the engine 2 ′.
  • the structure of engine 2 'and oil supply apparatus 1' of 2nd Embodiment is common in 1st Embodiment, in the following description, a difference with 1st Embodiment is demonstrated in detail.
  • the engine 2 ′ of the second embodiment shown in FIG. 12 does not include the valve stop mechanism 25b. That is, the engine 2 'is provided with an HLA 24 without a valve stop mechanism as a pivot mechanism for the swing arms 20 and 21 for all the cylinders.
  • the main gallery 54 extending in the cylinder arrangement direction is provided in the side wall on the intake side of the cylinder bore 7.
  • An oil jet 56 for piston lubrication that communicates with the main gallery 54 is provided at a position near the lower side of the main gallery 54 and corresponding to each piston 8.
  • the oil jet 56 has a nozzle 56a located on the lower side of the piston 8, and is narrower than the oil jet 28 for cooling the piston from the nozzle 56a mainly toward the back surface of the skirt portion. It is configured to inject oil (lubricating oil).
  • An oil guide passage is formed in the skirt portion of the piston 8, and oil injected from the nozzle 56 a is guided to the piston sliding surface through the passage.
  • the exhaust-side VVT 33 is a hydraulic pressure VVT that changes the valve characteristics by hydraulic operation, as in the first embodiment, but the intake-side VVT 32 is electrically operated, specifically, electric This is an electric VVT that changes the valve characteristics by the operation of the motor.
  • the reason for adopting different operation methods for the intake side and the exhaust side in this way is that it is often required to control the valve characteristics as soon as possible after the engine 2 'is started on the intake side. This is because it is more advantageous. That is, the hydraulic VVT requires a relatively high hydraulic pressure for its operation, but it is difficult to ensure a sufficient hydraulic pressure in the operating region immediately after the engine is started with a low engine speed and a low oil temperature. This is because it is difficult to control promptly.
  • an oil jet 56 for piston lubrication and an on-off valve 57 for turning on / off the oil injection are connected to the main gallery 54.
  • the VVT 33 (advanced hydraulic chamber 336 and retarded hydraulic chamber 335) is connected to the second communication passage 52 via the exhaust-side first direction switching valve 35.
  • variable orifice 58 (corresponding to the hydraulic pressure adjusting device of the present invention) is interposed at a position downstream of the connection position of the exhaust side first direction switching valve 35.
  • the variable orifice 58 is one of flow rate adjustment valves that change the flow rate of oil, and adjusts the oil flow rate of the second communication path 52 under the control of the controller 100. That is, the oil flow rate of the second communication passage 52 is adjusted in this way, and as a result, the hydraulic pressure of the third communication passage 52 is adjusted.
  • the crankshaft 9 of the engine 2 'supplies oil supplied to the metal bearings of the second and fourth main journals to the crankpin through the internal passage of the crankshaft 9. is there. Therefore, the oil supply device 1 ′ is not provided with the oil supply portion 42 of the metal bearing disposed on the crankpin of the crankshaft 9. Instead, of the oil supply parts 41 of the metal bearings arranged in the five main journals of the crankshaft 9, the oil supply parts 41a of the second and fourth metal bearings that require high hydraulic pressure are used as the main gallery 54.
  • the other main journals that is, the oil supply portions 41 b of the first, third, and fifth metal bearings having a relatively low required oil pressure are connected to the third communication passage 53.
  • the oil supply device 1 ′ includes a main sensor 54 or an upstream oil passage (second communication passage 52 in this example) serving as an oil pressure equivalent to the oil pressure sensor 70 that detects the oil pressure of the oil supply passage 50.
  • a first hydraulic pressure sensor 70a for detecting the hydraulic pressure and a second hydraulic pressure sensor 70b for detecting the hydraulic pressure in the downstream oil passage (the third communication passage 53 in this example) are provided.
  • the main gallery 54 and the second communication passage 52 correspond to the upstream oil passage of the present invention
  • the third communication passage 53 corresponds to the downstream oil passage of the present invention.
  • the second hydraulic sensor 70b corresponds to the hydraulic sensor of the present invention.
  • the oil supply device 1 ′ includes the oil passages 61 and 62 and the second direction switching valve 46 described in the first embodiment. , 47 and check valve 48 are not provided.
  • the controller 100 previously controls the controller 2 for each operating state of the engine 2 'based on the engine speed, engine load and oil temperature detected by various sensors.
  • the target hydraulic pressure is read using the hydraulic control map stored in the storage unit 100. Then, the discharge amount of the oil pump 36 is feedback-controlled so that the oil pressure (actual oil pressure) of the oil supply passage 50 detected by the first oil pressure sensor 70a becomes the target oil pressure.
  • the engine 2 ' is not provided with a valve stop mechanism, and the VVT 32 on the intake side is an electric system. Therefore, although not shown in the drawings, for each operating state of the engine 2 ′, the VVT 32, the oil supply part 41 a (41) of the second and fourth metal bearings of the crankshaft 9, and the required oil pressure of the oil jets 28 and 56
  • the hydraulic control map (hydraulic control map corresponding to FIGS. 9 and 10) in which the target hydraulic pressure in the operation state is set based on the highest required hydraulic pressure is stored in advance in the storage unit of the controller 100.
  • the controller 100 sets a target oil pressure corresponding to the operating state of the engine 2 'from the oil pressure control map.
  • downstream oil paths 63 to 66 (hereinafter referred to as sub-gallerys) mainly including the third communication path 53 are provided.
  • the controller 100 stores a hydraulic control map (hereinafter referred to as a second hydraulic control map) determined in relation to the hydraulic operating unit connected to the controller 100.
  • a hydraulic pressure control map (a hydraulic pressure control map corresponding to FIGS. 9 and 10) in which the target hydraulic pressure is set is stored in advance in the storage unit of the controller 100.
  • the controller 100 sets a target hydraulic pressure according to the operating state of the engine 2 'from the second hydraulic pressure control map. Then, the controller 100 feedback-controls the opening of the variable orifice 58 so that the oil pressure (actual oil pressure) of the oil supply passage 50 detected by the second oil pressure sensor 70b becomes the target oil pressure obtained from the second oil pressure control map. To do.
  • the controller 100 determines a target oil pressure (hereinafter referred to as a first target oil pressure) using the first oil pressure control map for each operating state of the engine 2 ', and supplies the oil supply passage 50 detected by the first oil pressure sensor 70a.
  • the discharge amount of the oil pump 36 is feedback-controlled based on a configuration equivalent to the configuration of the discharge amount control of FIG. 11 so that the hydraulic pressure (actual hydraulic pressure) becomes the first target hydraulic pressure.
  • a target oil pressure hereinafter referred to as a second target oil pressure
  • the opening of the variable orifice 58 is feedback-controlled so that (actual oil pressure) becomes the second target oil pressure.
  • the controller 100 determines whether the engine 2 based on the first hydraulic control map (the hydraulic control map corresponding to FIG. 10B).
  • the oil cooling required oil pressure that exceeds the highest required oil pressure among the required oil pressures of the hydraulic operating section corresponding to the operation state of ′ is set as the first target oil pressure, and the discharge amount from the oil pump 36 is set based on this first target oil pressure.
  • the controller 100 does not store a dedicated map equal to or higher than the reference upper limit temperature Tlim as shown in FIG. 10B as the second hydraulic pressure control map at a high temperature.
  • the controller 100 sets the second target oil pressure based on one second oil pressure control map (the oil pressure control map corresponding to FIG. 10A) at the time of high temperature.
  • the opening degree of the variable orifice 58 is feedback controlled based on the target hydraulic pressure.
  • the HLA 24, the oil supply portions 29 and 30 such as the cam portions 18a and 19a of the camshafts 18 and 19 and the metal of the camshafts 18 and 19 are provided for each operating state of the engine 2'.
  • the highest required oil pressure among the oil supply parts 44 and 45 of the bearing and the oil supply parts 41b (41) of the first, third, and fifth metal bearings of the crankshaft 9 is set as the second target oil pressure.
  • the opening degree of the variable orifice 58 is feedback-controlled so that the hydraulic pressure (actual hydraulic pressure) detected by the second hydraulic pressure sensor 70 b provided in the third communication path 53 becomes the second target hydraulic pressure.
  • the oil pressure in the sub gallery (the downstream oil passages 63 to 66 including the third communication passage 53) may fluctuate greatly due to the influence of the oil pressure fluctuation of the main gallery 54 due to the operation of the oil jets 28, 56, etc. It is suppressed.
  • the required oil amount and hydraulic pressure are controlled for all the hydraulic operation parts connected to the oil supply passage 50 while suppressing the drive loss of the oil pump 36.
  • the oil can be supplied more reliably and stably.
  • the oil temperature of the oil supply passage 50 detected by the oil temperature sensor 73 becomes equal to or higher than the reference upper limit temperature Tlim, the oil that exceeds the highest required oil pressure among the required oil pressures of the hydraulic operating unit corresponding to the operating state of the engine 2 '.
  • the requested cooling oil pressure is set to the first target oil pressure, and the discharge amount from the oil pump 36 is controlled based on the first target oil pressure. Accordingly, also in the second embodiment, as in the first embodiment, when the engine 2 'is in an operating state where the oil temperature is equal to or higher than the reference upper limit temperature Tlim, the flow rate of the oil cooler 38 is increased to increase the oil temperature. The rise can be suppressed.
  • each hydraulic operation portion connected to the downstream oil passages 63 to 66 including the communication passage 53 can be appropriately operated. That is, when the oil discharge amount of the oil pump 36 increases, the hydraulic pressure of the entire oil supply passage 50 increases, so that a hydraulic operation unit that is connected to the sub gallery and has a relatively low required hydraulic pressure has a malfunction due to the increase of the hydraulic pressure. It is possible that this will occur.
  • the second embodiment as described above, it is variable based on the target oil pressure (second target oil pressure) determined based on the second oil pressure control map at high temperature (the oil pressure control map corresponding to FIG. 10A). Since the opening degree of the orifice 58 is controlled, it is possible to suppress the hydraulic pressure of the sub gallery from being excessively increased, and thereby it is possible to properly operate the respective hydraulic operation sections.
  • oil supply devices 1 and 1 ′ described above are examples of a preferred embodiment of the engine oil supply device according to the present invention, and the specific configuration thereof is appropriately set within the scope of the present invention. It can be changed.
  • the oil jet 28 for cooling the piston is configured to inject oil when the oil pressure of the main gallery 54 reaches the required oil pressure of the oil jet 28, but in the second embodiment.
  • the oil injection may be turned on and off by controlling the on-off valve.
  • the oil injection amount can be controlled by applying a linear solenoid valve as the on-off valve
  • the oil discharge amount from the oil pump 36 increases when the oil temperature becomes equal to or higher than the reference upper limit temperature Tlim.
  • the oil injection amount from the oil jet 28 may be reduced when the oil pump 36 is controlled based on the hydraulic control map of FIG. According to this structure, it becomes more effective in suppressing the temperature rise of oil.
  • the oil jet 28 when the oil temperature becomes equal to or higher than the reference upper limit temperature Tlim and the oil discharge amount from the oil pump 36 increases and the hydraulic pressure rises, the oil jet 28 accordingly The oil injection amount increases, and the amount of heat received from the piston also increases.
  • the configuration in which the oil injection amount from the oil jet 28 is reduced as described above the amount of oil received from the piston can be suppressed by reducing the oil injection amount. It becomes possible to suppress the temperature rise.
  • the controller 100 can be configured to control the solenoid valve based on the hydraulic pressure stored in the storage unit and detected by the hydraulic sensor 70. Such a configuration can also be applied to the oil jets 28 and 56 of the second embodiment.
  • the controller 100 indicates that the oil temperature detected by the oil temperature sensor 73 is equal to or higher than the reference upper limit temperature Tlim as “the engine operating state in which the oil is in a predetermined high oil temperature state”.
  • the oil discharge amount is increased by controlling the oil pump 36 based on the hydraulic pressure control map of FIG.
  • “the engine operating state in which the oil reaches a predetermined high oil temperature state” is not necessarily limited to that determined based on the reference upper limit temperature Tlim.
  • oil injection by the oil jet 28 is started when the engine rotational speed is equal to or higher than V1 ′ in the high load operation state of the engine.
  • the engine may be configured to increase the amount of oil discharged by the oil pump 36 based on the determination that the engine is in a state where the oil reaches a predetermined high oil temperature state.
  • the engine when the engine is in a high-load operation state that is equal to or higher than a predetermined engine load, or a high-load state that is equal to or higher than a predetermined engine load in a high-speed rotation state that is equal to or higher than a predetermined engine speed, It may be determined that the engine operating state is in a state, and the oil discharge amount by the oil pump 36 is increased. Similarly, in the second embodiment, when the oil jets 28 and 56 are operated, the oil discharge amount by the oil pump 36 is determined by determining that “the operating state of the engine is such that the oil is in a predetermined high oil temperature state”. May be configured to increase.
  • a pump driven by the engine 2, 2 ' is applied as the oil pump 36.
  • the oil pump 36 is driven by an electric motor and changes the oil discharge amount by controlling the rotation speed. You may do.
  • the present invention is applied to an in-line four-cylinder gasoline engine.
  • the present invention can also be applied to other engines such as a diesel engine.
  • an oil supply device for an engine includes an oil pump capable of controlling a discharge amount, an oil supply passage for supplying oil discharged from the oil pump to a hydraulic operation portion of the engine, and the oil supply passage.
  • An oil cooler that cools the oil discharged from the oil pump, and a required oil pressure that is a required oil pressure of the hydraulic operation unit and according to the operating state of the engine is set as a target oil pressure, and the oil pressure in the oil supply passage is A control device that controls the discharge amount of the oil pump so as to achieve the target oil pressure, and the control device is in an operating state of the engine such that the oil is in a predetermined high oil temperature state.
  • the oil pump is controlled so that an amount of oil exceeding the discharge amount corresponding to the required hydraulic pressure of the hydraulic operating unit according to the operating state of the engine is discharged A.
  • this oil supply device it is possible to improve the fuel consumption by keeping the oil pump driving load to a necessary minimum while appropriately securing the hydraulic pressure required for the hydraulic operating portion.
  • an amount of oil exceeding the discharge amount corresponding to the target hydraulic pressure is discharged from the oil pump.
  • the oil passes through the oil cooler, which promotes cooling of the oil. Since an oil cooler is generally provided in an oil supply path of an oil supply device such as a vehicle, therefore, according to the above configuration, the oil temperature rises with a reasonable configuration using an existing oil cooler. (Overheating) can be effectively suppressed.
  • the “hydraulic operating part” includes an oil supply part that supplies oil to a target or a target part for lubrication or cooling by the oil pressure in addition to a device that receives and drives the oil pressure of the oil. is there.
  • the control device when the engine is in an operating state such that the high oil temperature state is achieved, the control device sets a predetermined maximum hydraulic pressure that is higher than a required hydraulic pressure of the hydraulic operation unit. It is preferable to set the target oil pressure.
  • the hydraulic operation unit when the hydraulic operation unit is defined as a first hydraulic operation unit, upstream oil that supplies oil discharged from the oil pump to the first hydraulic operation unit as the oil supply passage. And a downstream oil passage connected to the upstream oil passage and the second hydraulic operation portion having a lower required oil pressure than the first hydraulic operation portion.
  • a hydraulic pressure sensor for detecting the hydraulic pressure and a hydraulic pressure adjusting device capable of adjusting the hydraulic pressure, and the control device causes the oil pump to discharge an amount of oil that exceeds a discharge amount corresponding to the target hydraulic pressure.
  • This configuration makes it possible to maintain the oil pressure in the downstream oil passage appropriately even if the engine is in an engine operating state that results in a high oil temperature state and the oil discharge amount is thereby increased.
  • the oil supply device includes an oil temperature sensor that detects the oil temperature in the oil supply passage, and the control device detects that the engine is high when the oil temperature detected by the oil temperature sensor is equal to or higher than a predetermined temperature. It is preferable to determine that the oil temperature is in the operating state.
  • the oil supply device includes an oil supply unit that is connected to the oil supply passage and injects oil into the piston when the engine speed is equal to or higher than a predetermined engine speed, and the control device is configured to have the predetermined engine speed and It is preferable that it is determined that the engine is in an operating state in which the engine is in the high oil temperature state in at least one specific operating state that is equal to or higher than a predetermined engine load.
  • the piston is cooled by injecting oil from the oil supply portion to the piston when at least one specific operation state of a predetermined engine speed or higher and a predetermined engine load or higher is reached.
  • the oil receives heat from the piston, but since the amount of oil discharged by the oil pump is increased, the temperature rise of the oil is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 エンジンのオイル供給装置は、吐出量を制御可能なオイルポンプと、オイルをエンジンの油圧作動部に供給する給油路と、この給油路に設けられ、オイルポンプから吐出されるオイルを冷却するオイルクーラと、前記油圧作動部の要求油圧であって前記エンジンの運転状態に応じた要求油圧を目標油圧として設定し、前記給油路内の油圧が前記目標油圧となるように、前記オイルポンプの吐出量を制御する制御装置とを備える。そして、前記制御装置は、前記オイルが所定の高油温状態となるような前記エンジンの運転状態のときには、前記エンジンの運転状態に応じた前記油圧作動部の要求油圧に対応する吐出量を超える量のオイルが吐出されるように前記オイルポンプを制御する。

Description

エンジンのオイル供給装置
 本発明は、自動車等のエンジンの各部にオイルを供給する、エンジンのオイル供給装置に関する。
 従来から、エンジンの軸受部や摺動部の潤滑用、ピストンの冷却用、又は油圧で作動する装置の作動用として、エンジンオイル(以下、単にオイルという)をオイルポンプによりエンジン各部に供給するオイル供給装置が知られている。例えば、特許文献1には、エンジンの高負荷高回転運転時にジェットノズルからピストンにオイルを噴射させることで、ピストンやシリンダの温度上昇を抑制するように構成されたオイル供給装置が開示されている。このオイル供給装置は、可変容量型のオイルポンプを備えており、エンジンの高負荷高回転運転時には、開閉弁の制御によりジェットノズルからオイルを噴射させる一方で、これと同期してオイルポンプの吐出量を増大させるように構成されている。すなわち、ジェットノズルからのオイル噴射時には、オイルの吐出量を増大させて給油路内の全体の油圧バランスを保ち、潤滑用オイルなど、他の目的に使用されるオイルが不足することを抑制するようになっている。
 オイルとエンジンの燃費特性との間には密接な関係があり、粘度の低いオイルを用いる方が燃費を向上させる上で有利である。これは周知の通り、オイルの粘度が低い方が、エンジン各部の摺動抵抗を低減させる上で有利だからである。
 しかし、比較的粘度の低いオイルのなかには、使用上限温度が比較的低いものも少なからず存在しており、このようなオイルが使用されたエンジンを長期的に高回転高負荷運転すると、温度上昇(過熱)によるオイルの劣化により、摺動部の焼き付きなどをもたらすことが考えられる。通常、オイルの選定は、ユーザーがその好みに応じて行えるため、上記のような不都合をエンジン側で未然に回避できるようにすることが望まれるが、上記従来のオイル供給装置には、そのような対策は見られない。
特開2013-142297号公報
 本発明は、オイルの温度上昇を合理的な構成で抑制することを目的とする。
 そして、本発明は、エンジンのオイル供給装置であって、吐出量を制御可能なオイルポンプと、このオイルポンプから吐出されるオイルを、エンジンの油圧作動部に供給する給油路と、前記給油路に設けられ、オイルポンプから吐出されるオイルを冷却するオイルクーラと、前記油圧作動部の要求油圧であって前記エンジンの運転状態に応じた要求油圧を目標油圧として設定し、前記給油路内の油圧が前記目標油圧となるように、前記オイルポンプの吐出量を制御する制御装置と、を備え、前記制御装置は、前記オイルが所定の高油温状態となるような前記エンジンの運転状態のときには、前記エンジンの運転状態に応じた前記油圧作動部の要求油圧に対応する吐出量を超える量のオイルが吐出されるように前記オイルポンプを制御するものである。
本発明に係るオイル供給装置が適用された多気筒エンジンの概略構成を示す断面図である(第1実施形態)。 弁停止機構付油圧ラッシュアジャスタの構成及び作動状態を示す断面図であり、(a)は、ピボット機構本体のロック状態、(b)は、ピボット機構本体の非ロック状態、(c)は、(c)の状態からピボット機構本体が押し下げられた状態をそれぞれ示す。 (a)は、可変バルブタイミング機構の概略構成を示す断面図であり、(b)は、吸気弁と排気弁の弁特性(位相とリフト量との関係)を示すグラフである。 オイル供給装置の概略構成を示す図である(第1実施形態)。 可変容量型オイルポンプの特性を示す図である。 (a)は、エンジンの減気筒運転領域とエンジン負荷とエンジン回転数との関係を示す図であり、(b)は、エンジンの減気筒運転領域と水温との関係を示す図である。 油圧作動装置の要求油圧についての説明図であり、(a)は、低負荷時の説明図であり、(b)は、高負荷時の説明図である。 油圧作動装置の要求油圧についての説明図であり、(a)は、低負荷時かつ油温が基準上限値以上のときの説明図であり、(b)は、高負荷時かつ基準上限値以上のときの説明図である。 エンジンの運転状態に対する仮の目標油圧を示す油圧制御マップであり、(a)は、冷間時の油圧制御マップであり、(b)は温間時の油圧制御マップである。 エンジンの運転状態に対する仮の目標油圧を示す油圧制御マップであり、(a)は、高温時かつ基準上限値未満のときの説明図であり、(b)は高温時かつ基準上限値以上のときの説明図である。 コントローラによるオイルポンプの吐出量制御の構成を示すブロック図である。 本発明に係るオイル供給装置が適用された多気筒エンジンの概略構成を示す断面図である(第2実施形態)。 オイル供給装置の概略構成を示す図である(第2実施形態)。 オイルジェットのオイル噴射量を制御する制御マップである。
 以下、本発明の第1の実施形態について図面に基づいて詳細に説明する。
 <エンジンの構成>
 図1は、本発明に係るオイル供給装置が適用された多気筒エンジン2(以下、単にエンジン2という)を示している。このエンジン2は、第1~第4気筒が順に図1の紙面に垂直な方向に直列に配置された直列4気筒ガソリンエンジンであって、自動車等の車両に搭載される。
 エンジン2は、上下に連結されるカムキャップ3、シリンダヘッド4、シリンダブロック5、クランクケース(図示せず)及びオイルパン6(図4参照)を含む。シリンダブロック5には4つのシリンダボア7が形成され、各シリンダボア7内にそれぞれピストン8が摺動可能に収容されている。これらピストン8、シリンダボア7およびシリンダヘッド4によって燃焼室11が気筒毎に形成されている。なお、各ピストン8は、コネクティングロッド10を介して、上記クランクケースに回転自在に支持されたクランク軸9に連結されている。
 シリンダヘッド4には、燃焼室11に開口する吸気ポート12及び排気ポート13が設けられ、吸気ポート12及び排気ポート13をそれぞれ開閉する吸気弁14及び排気弁15が、各ポート12,13にそれぞれ装備されている。
 吸気弁14及び排気弁15は、それぞれリターンスプリング16,17により各ポート12,13を閉止する方向(図1の上方向)に付勢されており、カムシャフト18,19の外周に設けられたカム部18a,19aによって押下されることで各ポート12,13を開くように構成されている。詳しくは、カムシャフト18,19の回転に伴い、上記カム部18a,19aがスイングアーム20,21の略中央部に設けられたカムフォロア20a,21aを押下することで、スイングアーム20,21がそれらの一端側に設けられた後記HLA24、25のピボット機構の頂部を支点として揺動する。この揺動に伴い、スイングアーム20,21の他端部が上記リターンスプリング16,17の付勢力に抗して吸気弁14及び排気弁15を押下する。これにより各ポート12,13が開く。なお、このエンジン2には、後述する可変バルブタイミング機構32、33が組み込まれており、エンジン2の運転状態に応じて、吸排気弁14、15の開閉時期が変更される。この可変バルブタイミング機構32、33については、後に説明する。
 上記エンジン2の第1~第4気筒のうち、中央部の第2、第3気筒については、各スイングアーム20,21の支点となるピボット機構として、油圧ラッシュアジャスタ(Hydraulic Lash Adjuster)24が設けられている(図4参照)。この油圧ラッシュアジャスタ24(以下、HLA24という)は油圧によりバルブクリアランスを自動的にゼロに調整するものである。
 一方、第1~第4気筒のうち、気筒配列方向の両端に位置する第1、第4気筒については、スイングアーム20、21の支点となるピポッド機構として弁停止機構付き油圧ラッシュアジャスタ25(以下、弁停止機構付きHLA25、又は単にHLA25という)が設けられている。この弁停止機構付きHLA25は、HLA24と同様にバルブクリアランスを自動的にゼロに調整するものであるが、この機能に加えて、上記吸気弁14及び排気弁15を、その作動を許容する状態と停止させる状態とに切り換える機能を有する。これにより、このエンジン2では、運転状態を、全気筒の吸排気弁14,15を作動させる(開閉動作させる)全筒運転と、全気筒のうち、第1、第4気筒の吸排気弁14,15の作動を停止(開閉動作を停止)させて、第2、第3気筒の吸排気弁14,15だけを作動をさせる減筒運転とに切り換え可能となっている。
 シリンダヘッド4のうち、第1、第4気筒に対応する吸気側及び排気側の部分には、上記弁停止機構付きHLA25の下端部が挿入、装着される装着穴26,27が設けられている。また、シリンダヘッド4のうち、第2、第3気筒に対応する吸気側及び排気側の部分には、上記HLA24の下端部が挿入、装着される装着穴26,27が同様に設けられている。そして、第1~第4気筒に亘って気筒配列方向に延びて、吸気側及び排気側のHLA24、25の装着穴26,27にそれぞれ連通する2つの油路63、64と、第1、第4気筒に対応する位置で気筒配列方向に延びて、吸気側及び排気側の弁停止機構付きHLA25の装着穴26,27にそれぞれ連通する2つの油路61、62とがシリンダヘッド4に形成されている。
 これら油路61、62、63、64のうち、油路63、64は、装着穴26,27に装着されたHLA24、および弁停止機構付きHLA25の後記ピボット機構本体25aに対してオイル(作動油)を供給するためのものであり、HLA24及び弁停止機構付きHLA25のピボット機構本体25aは、その油圧(作動圧)によりバルブクリアランスを自動的にゼロに調整する。一方、油路61、62は、装着穴26,27に装着された弁停止機構付きHLA25の後記弁停止機構25b(図2に示す)に対してオイルを供給するものである。なお、これら油路61、62、63、64については、後に詳述する。
 上記シリンダブロック5のうち、シリンダボア7の排気側の側壁内には、気筒配列方向に延びるメインギャラリ54が設けられている。このメインギャラリ54の下側近傍の位置であって各ピストン8に対応する位置には、メインギャラリ54と連通するピストン冷却用のオイルジェット28が設けられている。オイルジェット28は、ピストン8の下側に位置するシャワーノズル28aを有しており、このシャワーノズル28aからピストン8の裏面に向けてオイル(冷却用オイル)を噴射するように構成されている。
 また、各カムシャフト18,19の上方には、オイル供給部29,30が設けられている。これらオイル供給部29,30は、ノズル29a、30aを有しており、これらノズル29a、30aからその下方に位置するカムシャフト18,19のカム部18a,19aや、スイングアーム20,21とカムフォロア20a、21aとの接触部にオイル(潤滑用オイル)が滴下されるように構成されている。
<弁停止機構付きHLA25の構成>
 次に、図2を参照しながら、弁停止機構付きHLA25の弁停止機構25bについて説明する。この弁停止機構25bは、上記の通り、上記吸気弁14及び排気弁15を、その作動を許容する状態と停止させる状態とに切り換えることにより、エンジン2の運転状態を、全気筒の吸排気弁14,15を作動させる(開閉動作させる)全筒運転状態と、第1、第4気筒の吸排気弁14,15の作動を停止(開閉動作を停止)させて、第2、第3気筒の吸排気弁14,15だけを作動をさせる減筒運転状態とに切り換えるものである。換言すれば、エンジン2が全筒運転制御されるときは、弁停止機構25bが停止され、これにより第1、第4気筒を含む、全気筒の吸排気弁14、15の開閉動作が行われる一方、エンジン2が減筒運転制御されるときは、弁停止機構25bが油圧作動され、これにより全気筒のうち、第1、第4気筒の吸排気弁14、15の開閉動作が停止される。
 本実施形態では、弁停止機構25bは、上記の通り、弁停止機構付きHLA25に設けられている。つまり、弁停止機構付きHLA25は、ピボット機構本体25aと弁停止機構25bとを備える。ピボット機構本体25aは、油圧によりバルブクリアランスを自動的にゼロに調整する、上記HLA24と実質的に同じ構成である。
 弁停止機構25bは、図2(a)に示すように、ピボット機構本体25aが軸方向に摺動自在に収納される有底の外筒251と、当該外筒251の周側壁に互いに対向して設けられた2つの貫通孔251aに各々出入可能に設けられる一対のロックピン252と、これら一対のロックピン252を径方向外側へ付勢するロックスプリング253と、外筒251の内底部とピボット機構本体25aの底部との間に設けられ、ピボット機構本体25aを上向きに付勢するロストモーションスプリング254とを備えている。上記一対のロックピン252は、外筒251から外側に先端を突出させた状態で上記貫通孔251aにそれぞれ挿入される離間位置と、これら貫通孔251aから外筒251の内側に抜け出た接近位置とに変位可能である。そして、ピボット機構本体25aが外筒251から上方に突出する状態で、当該一対のロックピン252がロックスプリング253の付勢力により上記離間位置に配置されることで、ピボット機構本体25aの上下動が規制される(ピボット機構本体25aのロック状態という)。その一方で、上記油路61,62を通じて供給される油圧により上記ロックスプリング253の弾発力に抗して一対のロックピン252が上記接近位置に配置されると、該ロックピン252はピボット機構本体25aと共に外筒251内を上下動し得るように構成されている(ピボット機構本体25aのロック解除状態という)。
 つまり、図2(a)に示すように、ピボット機構本体25aのロック状態では、外筒251から突出したピボット機構本体25aの頂部がスイングアーム20,21の揺動の支点となる。そのため、カムシャフト18,19の回転によりカム部18a,19aがカムフォロア20a,21aを押下すると、吸排気弁14,15がリターンスプリング16,17の付勢力に抗して押下されて各ポート12,13が開弁する。したがって、第1、第4気筒についてピボット機構本体25aがロック状態とされることで、エンジン2の全筒運転を行うことができる。
 一方、図2(b)に示すように、油圧により上記一対のロックピン252の外側端面が押圧されると、ロックスプリング253の弾発力に抗して、両ロックピン252が互いに接近して貫通孔251aから外筒251の内側に抜け出し、これにより、ロックピン252の上方に位置するピボット機構本体25aの上下方向(軸方向)の移動が可能となる。つまり、ピボット機構本体25aがロック解除状態となる。
 このようにピボット機構本体25aがロック解除状態とされることで、吸排気弁14、15の開閉動作が停止される。すなわち、上記ロストモーションスプリング254の付勢力は、上記吸排気弁14,15を付勢するリターンスプリング16,17の付勢よりも小さく設定されている。そのため、ピボット機構本体25aのロック解除状態において、カムフォロア20a,21aがカム部18a,19aにより押下されると、吸排気弁14,15の頂部がスイングアーム20,21の揺動の支点となり、図2(c)に示すように、ロストモーションスプリング254の付勢力に抗してピボット機構本体25aが押下されることとなる。これにより吸排気弁14,15は閉弁状態に保たれる。従って、第1、第4気筒についてピボット機構本体25aがロック解除状態とされることで、エンジン2の減筒運転を行うことができる。
<可変バルブタイミング機構32、33の構成>
 エンジン2には、その全気筒において、吸気弁14の弁特性を変更する可変バルブタイミング機構32(以下、VVT32という)と排気弁15の弁特性を変更する可変バルブタイミング機構33(以下、VVT33という)とが組み込まれている。
 図3(a)は、VVT32、33の概略構成を示す断面図であり、同図中では、排気弁15のVVT33の構成要素についてはかっこ書きで参照符号を示している。
 図3(a)に示すように、VVT32(33)は、略円環状のハウジング321(331)と、該ハウジング321(331)の内部に収容されるロータ322(332)とを有している。ハウジング321(331)は、クランク軸9と同期して回転するカムプーリ323(333)に一体回転可能に連結されており、ロータ322(332)は、吸気弁14(排気弁15)を開閉させるカムシャフト18(19)に一体回転可能に連結されている。ハウジング321(331)の内部には、ハウジング321(331)の内周面とロータ322(332)に設けられたベーン324(334)とで区画される遅角油圧室325(335)と進角油圧室326(336)とが複数形成されている。これら遅角油圧室325(335)及び進角油圧室326(336)には、第1方向切替弁34(35)(図4参照)を介して、オイルを供給する後述のオイルポンプ36(図4参照)が接続されている。これら第1方向切替弁34(35)の制御により、遅角油圧室325(335)にオイルが導入されると、油圧によりカムシャフト18(19)がその回転方向(図3(a)の矢印の方向)とは逆向きに回動し、これにより吸気弁14(排気弁15)の開時期が遅くなる。一方、進角油圧室326(336)にオイルが導入されると、油圧によりカムシャフト18(19)がその回転方向に動くため、吸気弁14(排気弁15)の開時期が早くなる。
 図3(b)は、吸気弁14及び排気弁15の開弁位相を示しており、図からわかるように、VVT32(及び/又はVVT33)によって、吸気弁14の開弁位相を進角方向(図3(b)の矢印を参照)に変更する(及び/又は、排気弁15の開弁位相を遅角方向に変更する)と、排気弁15の開弁期間と吸気弁14の開弁期間(一点鎖線を参照)とがオーバーラップする。このように吸気弁14及び排気弁15の開弁期間をオーバーラップさせることで、エンジン燃焼時の内部EGR量を増加させることができ、ポンピングロスを低減して燃費性能を向上できる。また、燃焼温度を抑えることもできるため、NOxの発生を抑えて排気浄化を図れる。一方、VVT32(及び/又はVVT33)によって、吸気弁14の開弁位相を遅角方向に変更する(及び/又は、排気弁15の開弁位相を進角方向に変更する)と、吸気弁14の開弁期間(実線を参照)と排気弁15の開弁期間とのバルブオーバーラップ量が減少する。そのために、アイドリング時等のようにエンジン負荷が所定値以下の低負荷時には、安定燃焼性を確保できる。本実施形態では、高負荷時にバルブオーバーラップ量を出来る限り大きくするために、上記低負荷時にも、吸気弁14及び排気弁15の開弁期間をオーバーラップさせるようにしている。
 <オイル供給装置1の説明>
 次に、図4を参照しながら、エンジン2の各油圧作動部にオイル(作動油)を供給するためのオイル供給装置1について詳細に説明する。なお、「油圧作動部」とは、オイルの油圧を受けて作動する装置(すなわちHLA24、25やVVT32、33等)、又はオイルをその油圧により潤滑用又は冷却用として対象物に供給するオイル供給部(すなわち、オイルジェット28やオイル供給部29、30等)を指す。
 図示するように、オイル供給装置1は、クランク軸9の回転によって駆動されるオイルポンプ36と、これに接続され、オイルポンプ36により昇圧されたオイルをエンジン2の潤滑部及び各油圧作動部に導く給油路50とを備えている。オイルポンプ36は、エンジン2により駆動される補機である。
 上記給油路50は、シリンダヘッド4およびシリンダブロック5等に形成された通路や、パイプからなる。給油路50は、オイルポンプ36からシリンダブロック5内の分岐点54aまで延びる第1連通路51と、分岐点54aからシリンダブロック5内で気筒配列方向に延びる上記メインギャラリ54と、該メインギャラリ54上の分岐点54bからシリンダヘッド4まで延びる第2連通路52と、シリンダヘッド4内の前端部(第1気筒側の端部)において吸気側から排気側に亘ってエンジン幅方向に延びる第3連通路53と、この第3連通路53から分岐して延びる後記複数の油路とを備えている。
 上記オイルポンプ36は、周知の可変容量型のオイルポンプである。オイルポンプ36は、一端側が開口するように形成され、内部に円柱状の空間からなるポンプ収容室を有する断面コ字形状のポンプボディと該ポンプボディの一旦開口を閉塞するカバー部材とからなるハウジング361と、該ハウジング361に回転自在に支持され、ポンプ収容室のほぼ中心部を貫通してクランク軸9によって回転駆動される駆動軸362と、ポンプ収容室内に回転自在に収容されて中心部が駆動軸に結合されたロータ363及び該ロータ363の外周部に放射状に切欠形成された複数のスリット内にそれぞれ出没自在に収容されたべーン364からなるポンプ要素と、該ポンプ要素の外周側にロータ363の回転中心に対して偏心可能に配置され、ロータ363及び隣接するベーン364と共に複数の作動油室であるポンプ室365を画成するカムリング366と、ポンプボディ内に収容され、ロータ363の回転中心に対するカムリング366の偏心量が増大する方向へカムリング366を常時付勢する付勢部材であるスプリング367と、ロータ363の内周側の両側部に摺動自在に配置されたロータ363よりも小径な一対のリング部材368とを備えている。ハウジング361は、内部のポンプ室365にオイルを供給する吸入口361aと、ポンプ室365からオイルを吐出する吐出口361bとを備えている。ハウジング361の内部には、該ハウジング361の内周面とカムリング366の外周面により画成された圧力室369が形成されるとともに、該圧力室369に開口する導入孔369aが設けられている。つまり、オイルポンプ36は、導入孔369aから圧力室369にオイルが導入されることで、カムリング366が支点361cに対して揺動して、ロータ363がカムリング366に対して相対的に偏心し、吐出容量が変化するように構成されている。
 オイルポンプ36の吸入口361aには、オイルパン6に臨むオイルストレーナ39が接続されている。オイルポンプ36の吐出口361bに連通する第1連通路51には、上流側から下流側に順に、オイルフィルタ37及びオイルクーラ38が配置されており、オイルパン6内に貯留されたオイルは、オイルストレーナ39を通じてオイルポンプ36によってくみ上げられた後、オイルフィルタ37で濾過されかつオイルクーラ38で冷却されてからシリンダブロック5内のメインギャラリ54に導入される。なお、オイルクーラ38は、エンジン冷却水とオイルとの熱効交換により該オイルを冷却する熱効交換器である。
 オイルポンプ36には、メインギャラリ54上の分岐点54cから分岐して当該オイルポンプ36の圧力室369にオイルを導入する油路40が接続されている。この油路40には、リニアソレノイドバルブ49が介設されており、上記圧力室369に導入されるオイル流量がエンジン2の運転状態に応じて該リニアソレノイドバルブ49により調整されることで、オイルポンプ36の吐出量が変更される。なお、油路40の流量制御弁は、リニアソレノイドバルブ49に限らず、例えば電磁制御弁であってもよい。
 メインギャラリ54は、4つのピストン8の背面側に冷却用オイルを噴射するための上記オイルジェット28と、クランク軸9を回動自在に支持する5つのメインジャーナルに配置されたメタルベアリングのオイル供給部41と、4つのコネクティングロッドを回転自在に連結する、クランク軸9のクランクピンに配置されたメタルベアリングのオイル供給部42とに接続されている。このメインギャラリ54にはオイルが常時供給される。
 メインギャラリ54上の分岐点54cの下流側には、油圧式チェーンテンショナへオイルを供給するオイル供給部43と、上記油路40とが接続されている。
 第3連通路53の分岐点53aから分岐する油路68は、排気側第1方向切替弁35を介して、排気弁15の開閉時期を変更するための排気側VVT33の進角油圧室336及び遅角油圧室335に接続されており、第1方向切替弁35を制御することでオイルが供給されるように構成されている。また、分岐点53aから分岐する油路64は、排気側のカムシャフト19のカムジャーナルに配置されたメタルベアリングのオイル供給部45(図4の白抜き三角△を参照)と、HLA24(図4の黒三角▲を参照)と、弁停止機構付きHLA25(図4の白抜き楕円を参照)とに接続されている。この油路64にはオイルが常時供給される。さらに、油路64の分岐点64aから分岐する油路66は、排気側のスイングアーム21に潤滑用オイルを供給する上記オイル供給部30に接続されている。この油路66にも油が常時供給される。
 吸気側についても、排気側と同様であり、第3連通路53の分岐点53cから分岐する油路67は、吸気側第1方向切替弁34を介して、吸気弁14の開閉時期を変更するためのVVT32の進角油圧室326及び遅角油圧室325に接続されている。また、分岐点53dから分岐する油路63は、吸気側のカムシャフト18のカムジャーナルに配置されたメタルベアリングのオイル供給部44(図4の白抜き三角△を参照)と、HLA24(図4の黒三角▲を参照)と、弁停止機構付きHLA25(図4の白抜き楕円を参照)とに接続されている。さらに、油路63の分岐点63aから分岐する油路65は、吸気側のスイングアーム20に潤滑用オイルを供給する上記オイル供給部29に接続されている。
 また、第3連通路53の分岐点53cから分岐する油路69には、オイルの流れる方向を上流側から下流側への一方向のみに規制する逆止弁48と、逆止弁48と分岐点53cとの間に位置しかつ給油路50(油路69における逆止弁48よりも上流側)における油圧を検出する油圧センサ70とが配設されている。
 上記油路69は、逆止弁48の下流側の分岐点69aで、弁停止機構付きHLA25用の装着穴26,27に連通する上記2つの油路61,62に分岐する。油路61は、吸気側の第2方向切替弁46を介して、吸気側の弁停止機構付きHLA25の弁停止機構25bにそれぞれ接続されており、油路62は、排気側の第2方向切替弁47を介して、排気側の弁停止機構付きHLA25の弁停止機構25bに接続されている。これら第2方向切替弁46を制御することで各弁停止機構25bにオイルが供給されるように構成されている。
 逆止弁48は、第3連通路53における油圧が、弁停止機構25bの要求油圧以上になると開弁するようにスプリングで付勢され、上流側から下流側への一方向のみにオイル流れを規制する。また、この逆止弁48は、VVT32,33の要求油圧よりも大きい油圧で開弁するものである。弁停止機構25bを作動させた減気筒運転中にVVT32,33が作動すると、第3連通路53の油圧(及び、油圧センサ70により検出される油圧)が低下する可能性があるが、油路69に設けられた逆止弁48によって、弁停止機構25bから、逆止弁48の上流にある第3連通路53へのオイルの流れが遮蔽されるため、逆止弁48の下流側にある弁停止機構25bでの要求油圧が確保される。但し、本実施形態では、後述のように、減気筒運転中にVVT32,33が作動しても、油圧センサ70の検出油圧に基づき第3連通路53の油圧が低下しないようにオイルポンプ36のオイル吐出量が制御されるので、逆止弁48をなくしてもよい。
 クランク軸9及びカムシャフト18,19を回転自在に支持するメタルベアリングや、ピストン8、カムシャフト18,19等に供給された潤滑用及び冷却用のオイルは、冷却や潤滑を終えた後、図示しないドレイン油路を通ってオイルパン6内に滴下し、オイルポンプ36により再び環流される。
 上記エンジン2の作動は、コントローラ100によって制御される。コントローラ100には、エンジン2の運転状態を検出する各種センサからの検出情報が入力されている。コントローラ100は、例えば、クランク角センサ71によりクランク軸9の回転角度を検出し、この検出信号に基づいてエンジン回転速度を検出する。また、エアフローセンサ72により、エンジン2が吸入する空気量を検出し、これに基づいてエンジン負荷を検出する。さらに、油温センサ73及び上記油圧センサ70により上記給油路50におけるオイルの温度及び圧力をそれぞれ検出する。油温センサ73は、上記油圧経路(本実施形態ではメインギャラリ54)に配設されている。なお、油温センサと油圧センサの機能を有する一体式の油圧/油温センサをメインギャラリ54に配設してもよい。さらに、カムシャフト18,19の近傍に設けられたカム角センサ74により、カムシャフト18,19の回転位相を検出し、このカム角に基づいてVVT32,33の作動角を検出する。また、水温センサ75によって、エンジン2を冷却する冷却水の温度(以下、水温という)を検出する。
 コントローラ100は、周知のマイクロコンピュータをベースとする制御装置であって、各種センサ(油圧センサ70、クランク角センサ71、エアフローセンサ72、油温センサ73、カム角センサ74、水温センサ75等)からの検出信号を入力する信号入力部と、制御に係る演算処理を行う演算部と、制御対象となる装置(第1方向切替弁34,35、第2方向切替弁46,47、リニアソレノイドバルブ49等)に制御信号を出力する信号出力部と、制御に必要なプログラムやデータ(後述する油圧制御マップやデューティ比マップ等)を記憶する記憶部とを備えている。
 コントローラ100は、リニアソレノイドバルブ49に対し、後述の如く設定されたデューティ比の制御信号を送信して、リニアソレノイドバルブ49を介して、オイルポンプ36の圧力室369へ供給する油圧を制御する。この圧力室369の油圧により、カムリング366の偏心量を制御してポンプ室365の内部容積の変化量を制御することで、オイルポンプ36の流量(吐出量)を制御する。つまり、上記デューティ比によってオイルポンプ36の容量が制御される。ここで、ポンプ36はエンジン2のクランク軸9で駆動するため、図5に示すように、ポンプ36の流量(吐出量)はエンジン回転速度と比例する。デューティ比が1サイクルの時間に対するリニアソレノイドバルブへの通電時間の割合を表す場合、図示するように、デューティ比が大きい(高い)ほどポンプ36の圧力室369への油圧が増すため、エンジン回転速度に対するポンプ36の流量の傾きが減ることとなる。
 このようにコントローラ100は、オイルポンプ36の容量を変更してオイルポンプ36の吐出量を制御する。
 次に、図6を参照しながら、エンジン2の減気筒運転について説明する。
 エンジン2の減気筒運転又は全気筒運転は、エンジン2の運転状態に応じて切り替えられる。すなわち、エンジン回転速度、エンジン負荷及びエンジン2の水温から把握されるエンジン2の運転状態が、図示する減気筒運転領域内にあるときは減気筒運転が実行される。また、図示するように、この減気筒運転領域に隣接して減気筒運転準備領域が設けられており、エンジンの運転状態がこの減気筒運転準備領域内にあるときは減気筒運転を実行するための準備として、油圧を弁停止機構25bの要求油圧に向けて予め昇圧させておく。そして、エンジン2の運転状態がこれら減気筒運転領域及び減気筒運転準備領域の外にあるときは、全気筒運転を実行する。
 図6(a)を参照すると、所定のエンジン負荷(L0以下)で加速して、エンジン回転速度が上昇する場合、エンジン回転速度が所定回転速度V1未満では、全気筒運転を行い、エンジン回転速度がV1以上かつV2(>V1)未満になると、減気筒運転の準備に入り、エンジン回転速度がV2以上になると、減気筒運転を行う。また、例えば、所定のエンジン負荷(L0以下)で減速して、エンジン回転速度が下降する場合、エンジン回転速度がV4以上では、全気筒運転を行い、エンジン回転速度がV3(<V4)以上かつV4未満になると、減気筒運転の準備を行い、エンジン回転速度がV3以下になると、減気筒運転を行う。
 また、図6(b)を参照すると、所定のエンジン回転速度(V2以上V3以下)、所定のエンジン負荷(L0以下)で走行し、エンジン2が暖機して水温が上昇する場合、水温がT0未満では全気筒運転を行い、水温がT0以上かつT1未満になると減気筒運転の準備を行い、水温がT1以上になると減気筒運転を行う。
 以下、コントローラ100によるオイルポンプ36等の制御について説明する。
 このオイル供給装置1は、1つのオイルポンプ36によって複数の油圧作動部(HLA24,25、VVT32,33、オイルジェット28、クランク軸9のジャーナル等のメタルベアリングのオイル供給部44,45等)にオイルを供給する。各油圧作動部が必要とする要求油圧は、エンジン2の運転状態に応じて変化する。そのため、エンジン2の全ての運転状態において全ての油圧作動部が必要な油圧を得るためには、エンジン2の運転状態ごとに各油圧作動部の要求油圧のうちで最も高い要求油圧以上の油圧を当該エンジン2の運転状態に応じた目標油圧に設定するのが合理的である。そのためには、全ての油圧作動部のうちで要求油圧が比較的高い弁停止機構付きHLA25(弁停止機構25b)、オイルジェット28、クランク軸9のジャーナル等のメタルベアリングのオイル供給部41,42及びVVT32,33の要求油圧を満たすように目標油圧を設定すればよい。このように目標油圧を設定すれば、要求油圧が比較的低い他の油圧作動部は当然に要求油圧が満たされるからである。
 図7は、エンジン回転数と油圧作動部の要求油圧との関係を示しており、(a)は、主にエンジン2の低負荷運転時の関係を、(b)はエンジン2の高負荷運転時の関係をそれぞれ示している。
 図7(a)を参照すると、エンジン2の低負荷運転時においては、要求油圧が比較的高い油圧作動部は、VVT32,33、クランク軸9のジャーナル等のメタルベアリングのオイル供給部41、42及び弁停止機構付きHLA25の弁停止機構25bである。これら各油圧作動部の要求油圧は、エンジン2の運転状態に応じて変化する。例えば、VVT32,33の要求油圧(図7では、「VVT要求油圧」と記載)は、エンジン回転速度がV0(<V1)以上で略一定である。メタルベアリングのオイル供給部41,42の要求油圧(図7では、「メタル要求油圧」と記載)は、エンジン回転速度が大きくなるにつれて大きくなる。弁停止機構25bの要求油圧(図7では、「弁停止要求油圧」と記載)は、所定範囲のエンジン回転速度(V2~V3)においてほぼ一定である。そして、これらの要求油圧をエンジン回転速度ごとに大小を比較すると、エンジン回転速度がV0よりも低いときにはメタル要求油圧しかなく、エンジン回転速度がV0~V1では、VVT要求油圧が最も高く、エンジン回転速度がV1~V4では、弁停止要求油圧が最も高く、エンジン回転速度がV4~V6では、VVT要求油圧が最も高く、エンジン回転速度がV6以上では、メタル要求油圧が最も高い。従って、エンジン回転数毎に、上述の最も高い要求油圧をオイルポンプ36の目標油圧に設定する必要がある。
 一方、エンジン2の高負荷運転時においては、図7(b)に示すように、要求油圧が比較的高い油圧作動部は、VVT32,33、メタルベアリングのオイル供給部41,42及びオイルジェット28である。低負荷運転の場合と同様に、これら各油圧作動部の要求油圧はエンジン2の運転状態に応じて変化する。例えば、VVT要求油圧は、エンジン回転速度がV0′以上で略一定であり、メタル要求油圧は、エンジン回転速度が大きくなるにつれて大きくなる。また、オイルジェット28の要求油圧は、エンジン回転速度がV1′未満では0であり、そこから或る回転速度まではエンジン回転速度に応じて高くなり、その回転速度以上では一定である。
 図8は、エンジン2が特定の運転状態、具体的には、上記油温センサ73により検出される給油路50の油温が、予め定められた基準上限温度Tlim以上のときのエンジン回転速度と要求油圧との関係を示している。同図に示す要求油圧は、VVT32,33等の油圧作動部の要求油圧とは異なり、主にオイル冷却の観点から求められる要求油圧である。つまり、オイルが長期的に高温状態にあると、その性状が変化(劣化)して摺動部の焼き付きなどをもたらす原因となる。これを未然に防止するには、オイルを冷却する必要があるが、その場合には、オイルポンプ36によるオイルの吐出量を増大させ、上記オイルクーラ38を経由するオイル流量を増大させるのが簡単かつ合理的である。図8は、このオイル冷却に有効となるオイル流量、すなわちオイル冷却用の要求油圧(以下、オイル冷却要求油圧という/本発明の最大油圧に相当する)とエンジン回転速度との関係を示している。なお、基準上限温度Tlimは、その温度で長期的に継続してオイルが使用されると、その性状の変化(劣化)が生じるおそれがある油温であって、試験的に求められた温度である。
 オイル冷却要求油圧は、図8(a)に示すように、エンジン2の低負荷運転時においては、エンジン2の運転状態毎のVVT要求油圧、弁停止要求油圧およびメタル要求油圧のいずれの要求油圧よりも大きい。また、このオイル冷却要求油圧は、エンジン回転速度の増加に伴い増加し、特定のエンジン回転速度(上記V2~V3の間の速度)以上で略一定となる。
 一方、エンジン2の高負荷運転時においては、図8(b)に示すように、オイル冷却要求油圧は、エンジン2の運転状態に対応したVVT要求油圧、メタル要求油圧およびオイルジェット要求油圧の何れの要求油圧よりも大きく、このオイル冷却要求油圧は、エンジン回転速度の増加に伴い一定割合で増加し、オイルジェット28の要求油圧が一定となるエンジン回転速度(V2′)を超える所定のエンジン回転速度以上で略一定となる。
 このように、オイル冷却要求油圧は、油圧作動部の何れの要求油圧よりも大きい。これにより、VVT32,33等の油圧作動部の作動に支障を来たすことなく、オイルクーラ38を経由する流量を増大させて、オイル冷却を促進させることが可能となっている。
 なお、本実施形態では、エンジン2の低負荷運転時のオイル冷却要求油圧は、所定のエンジン回転速度域(V1~V2)では弁停止要求油圧とほぼ一致し、エンジン2の高負荷運転時のオイル冷却要求油圧は、所定のエンジン回転速度域(V1′~V2′)ではオイルジェット28の要求油圧とほぼ一致しているが、これらのエンジン回転速度域についても、オイル冷却要求油圧が他の要求油圧よりも大きくなるようにしてもよい。
 本実施形態では、エンジン2の運転状態毎に、VVT32,33、メタルベアリングのオイル供給部41,42及びオイルジェット28の要求油圧のうちで最も高い要求油圧に基づいて当該運転状態の仮の目標油圧が設定された油圧制御マップが上記コントローラ100の記憶部に記憶されている。コントローラ100は、その油圧制御マップからエンジン2の運転状態に応じた仮の目標油圧を読み取り、該読み取った仮の目標油圧と、弁停止機構25bの要求油圧との高い方の油圧を目標油圧に設定する。また、コントローラ100の記憶部には、エンジン2の運転状態毎のオイル冷却要求油圧に基づいて当該運転状態の仮の目標油圧が定められた油圧制御マップが記憶されており、コントローラ100は、上記油温センサ73により検出される給油路50の油温が、予め定められた基準上限温度Tlim以上のときには、その油圧制御マップからエンジン2の運転状態に応じた仮の目標油圧を読み取り、該読み取った仮の目標油圧と、弁停止機構25bの要求油圧との高い方の油圧を目標油圧に設定する。この場合、油圧制御マップから読み取った仮の目標油圧は、弁停止機構25bの要求油圧よりも高いか又は等しくなるので、油圧制御マップから読み取った仮の目標油圧がそのまま目標油圧となる。そして、コントローラ100は、油圧センサ70により検出される油圧(実油圧)が該目標油圧になるように、オイルポンプ36の吐出量を制御する油圧フィードバック制御を実行する。
 次に、図9、図10を参照しながら、油圧制御マップについて説明する。図7、図8で示した要求油圧は、エンジン回転速度をパラメータとしたものであるが、さらに、エンジン負荷と油温もパラメータとして仮の目標油圧を3次元グラフに表したのが、図9及び図10に示した油圧制御マップである。
 すなわち、図9及び図10(a)の油圧制御マップは、エンジン2の運転状態毎に、VVT32,33、メタルベアリングのオイル供給部41,42及びオイルジェット28の要求油圧のうちで最も高い要求油圧に基づいて当該運転状態の仮の目標油圧が予め設定されたものであり、図10(b)の油圧制御マップは、エンジン2の運転状態毎に、オイル冷却要求油圧に基づいて当該運転状態の仮の目標油圧が予め設定されたものである。
 ここで、図9(a)、(b)は、エンジン2(油温)の冷間時及び温間時の油圧制御マップをそれぞれ示しており、図10(a)、(b)は、エンジン2(油温)の高温時の油圧制御マップ、詳しくは、(a)は基準上限温度Tlim未満、(b)は基準上限温度Tlim以上の油圧制御マップをそれぞれ示している。コントローラ100は、油温センサ73が検出する油温に応じてこれらの油圧制御マップを使い分ける。すなわち、エンジン2を始動してエンジン2が冷間状態にあるときは、コントローラ100は、図9(a)に示す冷間時の油圧制御マップに基づいてエンジン2の運転状態(エンジン回転速度、エンジン負荷)に応じた仮の目標油圧を読み取る。エンジン2が暖機してオイルが所定の油温(<Tlim)以上になると、図9(b)の温間時の油圧制御マップ又は図10(a)の高温時の油圧制御マップに基づいて仮の目標油圧を読み取る。そして、高温時であってかつ油温が上記基準上限温度Tlimを超えるようなエンジン2の運転状態となると、コントローラ100は、図10(b)に示す油圧制御マップに基づいて仮の目標油圧を読み取る。
 上記目標油圧が設定されると、コントローラ100は、その目標油圧をオイル流量(吐出量)に変換して、目標流量(目標吐出量)を得る。そして、コントローラ100は、その目標流量を後述の如く補正した目標流量とエンジン回転速度とから、図5のオイルポンプ36の特性と同様のデューティ比マップを用いて、リニアソレノイドバルブ49を駆動するためのデューティ比を設定し、その設定したデューティ比の制御信号をリニアソレノイドバルブ49に送信し、オイルポンプ36の吐出量を制御する。
 図11は、コントローラ100によるオイルポンプ36の吐出量制御の構成を示すブロック図である。
 同図に示すように、コントローラ100は、各種センサより検出されたエンジン回転速度、エンジン負荷及び油温より、上記油圧制御マップを用いて仮の目標油圧を読み取り、この仮の目標油圧と弁停止要求油圧との高い方の油圧を目標油圧として設定する。この目標油圧は、油圧センサ70の位置での目標油圧であるため、オイルポンプ36から油圧センサ70までの油圧低下代(予め調べておく)を考慮して目標油圧を修正して(油圧低下代の分を増大させて)修正目標油圧を算出する。この修正目標油圧をオイルポンプ36の流量(吐出量)に変換して目標流量(目標吐出量)を得る。
 一方、コントローラ100は、吸気側VVT32を作動させる場合の該吸気側VVT32の予測作動量(現在の作動角と目標の作動角との差及びエンジン回転速度から求まる)を流量変換して、吸気側VVT32の作動時の消費流量を求めるとともに、同様に、排気側VVT33を作動させる場合の該排気側VVT33の予測作動量を流量変換して、排気側VVT33の作動時の消費流量を求める。これら両消費流量を上記目標流量に加えて、上記目標流量を補正する。
 また、コントローラ100は、弁停止機構25bを作動させて弁停止させる場合の該弁停止機構25bの予測作動量(ロックピン252の予測作動量)を流量変換して、弁停止機構25bの作動時の消費流量を得る。ロックピン252の予測作動量は一定であるため、弁停止機構25bの作動時の消費流量も一定である。この弁停止機構25bの作動時の消費流量も上記目標流量に加えて、上記目標流量を補正する。
 エンジン2の定常運転時には、VVT32,33および弁停止機構25bの予測作動量は0であるので、これらの予測作動量に応じた目標流量の補正はなされない。これに対し、エンジン2の過渡運転時には、VVT32,33および弁停止機構25bの予測作動量に応じて目標流量の補正がなされる、つまりオイルポンプ36の吐出量が補正制御されることになる。
 さらに、予測作動量に応じて補正された目標流量は、油圧フィードバック量によって更に補正される。この油圧フィードバック量は、本実施形態では、エンジン2の過渡運転時に、油圧センサ70により検出される油圧(実油圧)が目標油圧の変化に対してどのように変化するかを予測した予測油圧と該検出される実油圧との偏差に応じた油圧フィードバック量である。実油圧が予測油圧よりも高いときには、油圧フィードバック量が負の値となり、上記目標流量を減量する一方、実油圧が予測油圧よりも低いときには、油圧フィードバック量が正の値となり、上記目標流量を増量する。実油圧が予測油圧と同じであれば、油圧フィードバック量は0である(油圧フィードバック量による補正はなされない)。この場合、目標油圧がステップ状に変化したときのオイルポンプ36自体の応答遅れや、油圧がオイルポンプ36から油圧センサ70に達するまでの応答遅れ等を考慮して予測油圧が求められる。
 このようにして補正した目標流量(図11では「補正目標流量」と記載)及びエンジン回転速度から、コントローラ100は、予め記憶されている図外のデューティ比マップを用いて上記デューティ比を設定し、その設定したデューティ比の制御信号をリニアソレノイドバルブ49に送信する。これによりオイルポンプ36の吐出量を制御する。
 <オイル供給装置1の作用効果等> 
 上記のようなオイル供給装置1によれば、油温が基準上限温度Tlim未満の通常のエンジン2の運転状態では、その運転状態毎に、VVT32,33、弁停止機構25b、オイルジェット28およびクランク軸9のジャーナル等のメタルベアリングのオイル供給部41,42等の油圧作動部の要求油圧のうちで最も高い要求油圧が目標油圧とされ、油圧センサ70により検出される油圧(実油圧)が目標油圧になるように、オイルポンプ36の吐出量がフィードバック制御される。そのため、各油圧作動部の作動油圧(要求油圧)を適切に確保しながら、オイルポンプ36の駆動負荷を必要最小限に保ち、これにより燃費の向上を図ることができる。
 しかも、このオイル供給装置1によれば、油温センサ73により検出される給油路50の油温が基準上限温度Tlim以上になると、上記の通り、エンジン2の運転状態に対応した油圧作動部の要求油圧のうちで最も高い要求油圧を超えるオイル冷却要求油圧が目標油圧に設定され、この目標油圧に基づきオイルポンプ36からの吐出量が制御される。つまり、オイルポンプ36によるオイルの吐出量が、油圧作動部の要求油圧に対応する吐出量を超えて増大され、これにより、オイルクーラ38を経由するオイルの流量が増大することによりオイルの冷却が促進される。従って、既存のオイルクーラ38を利用した簡単かつ合理的な構成で、オイルの温度上昇を効果的に抑制することができ、ひいてはオイルの劣化に起因する摺動部の焼き付きなどを高度に防止することが可能となる。
 なおこの場合、オイル冷却要求油圧は、上記の通り、エンジン2の運転状態に対応した油圧作動部の要求油圧のうちで最も高い要求油圧を超える油圧とされているので(図8参照)、VVT32,33等の油圧作動部の作動に支障を来たすことなく、オイルの温度上昇を抑制することができる。
(第2実施形態)
 次に、本発明の第2実施形態について図面を用いて説明する。
 図12は、第2実施形態に係るエンジン2′を示しており、図13は、このエンジン2′に適用されるオイル供給装置1′を示している。なお、第2実施形態のエンジン2′及びオイル供給装置1′の構成は第1実施形態と共通するため、以下の説明では、第1実施形態との相違点について詳細に説明する。
<エンジンの構成>
 図12に示す、第2実施形態のエンジン2′は、弁停止機構25bを備えていない。すなわち、エンジン2′には、その全気筒について、各スイングアーム20,21のピボット機構として、弁停止機構の無いHLA24が設けられている。
 また、エンジン2′のシリンダブロック5のうち、シリンダボア7の吸気側の側壁内には、気筒配列方向に延びる上記メインギャラリ54が設けられている。このメインギャラリ54の下側近傍の位置であって各ピストン8に対応する位置には、メインギャラリ54と連通するピストン潤滑用のオイルジェット56が設けられている。このオイルジェット56は、ピストン8の下側に位置するノズル56aを有しており、このノズル56aからピストン8の主にスカート部裏面に向けて、ピストン冷却用のオイルジェット28よりも狭角でオイル(潤滑用オイル)を噴射するように構成されている。ピストン8のスカート部には、オイル案内用の通路が形成されており、ノズル56aから噴射されるオイルが当該通路を通じてピストン摺動面に案内される。
 また、VVT32、33のうち、排気側のVVT33は、第1実施形態と同様に、油圧作動により弁特性を変更する油圧VVTであるが、吸気側のVVT32は、電気作動、具体的には電気モータの作動により弁特性を変更する電動VVTである。このように吸気側と排気側とで異なる作動方式を採用しているのは、吸気側では、エンジン2′の始動後、いち早く弁特性を制御することが求められる場合が多いため、電動方式の方が有利だからである。すなわち、油圧VVTはその作動に比較的高い油圧が求められるが、エンジン回転数が低く、また油温も低いエンジン始動直後の運転領域では、十分な作動油圧を確保することが難しく、弁特性を速やかに制御することが難しいためである。
 <オイル供給装置1′の説明>
 図13に示すように、第2実施形態のオイル供給装置1′においては、メインギャラリ54に、ピストン潤滑用のオイルジェット56とそのオイル噴射をオンオフする開閉弁57が接続されている。また、VVT33(進角油圧室336及び遅角油圧室335)が排気側第1方向切替弁35を介して第2連通路52に接続されている。
 第2連通路52のうち、排気側第1方向切替弁35の接続位置よりも下流側の位置には、可変オリフィス58(本発明の油圧調整装置に相当する)が介設されている。この可変オリフィス58は、オイルの流量を変更する流量調整弁の一つであり、コントローラ100の制御により第2連通路52のオイル流量を調整する。つまり、このように第2連通路52のオイル流量が調整されることで、結果的に、第3連通路52の油圧が調整される。
 なお、図示を省略するが、上記エンジン2′のクランク軸9は、第2、第4メインジャーナルのメタルベアリングに供給されるオイルを、該クランク軸9の内部通路を通じてクランクピンに供給するものである。そのため、このオイル供給装置1′には、クランク軸9のクランクピンに配置されたメタルベアリングの上記オイル供給部42は設けられていない。その代わりに、クランク軸9の5つのメインジャーナルに配置されたメタルベアリングのオイル供給部41のうち、高い油圧が必要となる第2、第4番メタルベアリングのオイル供給部41aがメインギャラリ54に接続され、それ以外のメインジャーナル、すなわち要求油圧が比較的低い第1、第3、第5メタルベアリングのオイル供給部41bは第3連通路53に接続されている。これにより、クランクピン専用の上記オイル供給42を設けることなく、クランク軸9の全てのメタルベアリング、およびクランクピンに対して適量のオイルを供給できるようになっている。
 また、このオイル供給装置1′には、給油路50の油圧を検出する油圧センサ70として、メインギャラリ54又はそれ同等の油圧となる上流側の油路(当例では第2連通路52)の油圧を検出する第1油圧センサ70aと、その下流側の油路(当例では第3連通路53)の油圧を検出する第2油圧センサ70bとが設けられている。当例では、メインギャラリ54や第2連通路52が本発明の上流側油路に相当し、第3連通路53が本発明の下流側油路に相当する。そして、第2油圧センサ70bが本発明の油圧センサに相当する。
 なお、上記エンジン2′には、上記の通り弁停止機構が設けられていないため、オイル供給装置1′には、第1実施形態で説明した上記油路61,62、第2方向切替弁46,47及び逆止弁48等は備えられていない。
 この第2実施形態でも、基本的には第1実施形態と同様に、コントローラ100が各種センサより検出されたエンジン回転速度、エンジン負荷及び油温より、エンジン2′の運転状態毎に、予めコントローラ100の記憶部に記憶されている油圧制御マップを用いて目標油圧を読み取る。そして、第1油圧センサ70aにより検出される給油路50の油圧(実油圧が)が目標油圧となるように、オイルポンプ36の吐出量をフィードバック制御する。
 第2実施形態では、上記の通り、エンジン2′は弁停止機構を備えておらず、また、吸気側のVVT32は電動方式である。そのため、図示を省略するが、エンジン2′の運転状態毎に、VVT32、クランク軸9の第2、第4番メタルベアリングのオイル供給部41a(41)及びオイルジェット28、56の要求油圧のうちで最も高い要求油圧に基づいて当該運転状態の目標油圧が設定された油圧制御マップ(図9及び図10に相当する油圧制御マップ)が上記コントローラ100の記憶部に予め記憶されている。コントローラ100は、その油圧制御マップからエンジン2′の運転状態に応じた目標油圧を設定する。
 なお、第2実施形態では、上記油圧制御マップ(以下、第1油圧制御マップと称す)とは別に、主に第3連通路53を含む下流側の油路63~66(以下、サブギャラリと称す)に接続される油圧作動部との関係で定められた油圧制御マップ(以下、第2油圧制御マップと称す)がコントローラ100に記憶されている。具体的には、エンジン2′の運転状態毎に、油路63~66に接続されるHLA24、カムシャフト18、19のカム部18a,19a等のオイル供給部29,30、カムシャフト18、19のメタルベアリングのオイル供給部44、45、及びクランク軸9の第1、第3番、第5番メタルベアリングのオイル供給部41b(41)等のうちで最も高い要求油圧に基づいて当該運転状態の目標油圧が設定された油圧制御マップ(図9及び図10に相当する油圧制御マップ)が上記コントローラ100の記憶部に予め記憶されている。コントローラ100は、この第2油圧制御マップからエンジン2′の運転状態に応じた目標油圧を設定する。そして、コントローラ100は、第2油圧センサ70bにより検出される給油路50の油圧(実油圧が)が第2油圧制御マップから求めた目標油圧となるように、可変オリフィス58の開度をフィードバック制御する。
 すなわち、コントローラ100は、エンジン2′の運転状態毎に、第1油圧制御マップを用いて目標油圧(以下、第1目標油圧という)を決定し、第1油圧センサ70aにより検出される給油路50の油圧(実油圧が)が第1目標油圧となるように、図11の吐出量制御の構成と同等の構成に基づき、オイルポンプ36の吐出量をフィードバック制御する。その一方で、エンジン2′の運転状態毎に、第2油圧制御マップを用いて目標油圧(以下、第2目標油圧という)を決定し、第2油圧センサ70aにより検出される給油路50の油圧(実油圧が)が第2目標油圧となるように、可変オリフィス58の開度をフィードバック制御する。
 コントローラ100は、油温センサ73により検出される給油路50の油温が基準上限温度Tlim以上になると、第1油圧制御マップ(図10(b)に相当する油圧制御マップ)に基づき、エンジン2′の運転状態に対応した油圧作動部の要求油圧のうちで最も高い要求油圧を超えるオイル冷却要求油圧を第1目標油圧に設定し、この第1目標油圧に基づきオイルポンプ36からの吐出量を制御する。なお、コントローラ100には、高温時の第2油圧制御マップとして、図10(b)に相当するような、基準上限温度Tlim以上の専用のマップは記憶されていない。そのため、コントローラ100は、基準上限温度Tlimに拘わらず、高温時には、一つの第2油圧制御マップ(図10(a)に相当する油圧制御マップ)に基づき第2目標油圧を設定し、この第2目標油圧に基づき可変オリフィス58の開度をフィードバック制御する。
 <オイル供給装置1′の作用効果等>
 第2実施形態のオイル供給装置1′によれば、エンジン2′の運転状態毎に、VVT32、クランク軸9の第2、第4番メタルベアリングのオイル供給部41a(41)及びオイルジェット28、56の要求油圧のうちで最も高い要求油圧が第1目標油圧とされる。そして、第2連通路52に設けられた第1油圧センサ70aにより検出される油圧(実油圧)が該第1目標油圧になるように、オイルポンプ36の吐出量がフィードバック制御される。そのため、各油圧作動部の作動油圧(要求油圧)を適切に確保しながら、オイルポンプ36の駆動負荷を必要最小限に保ち、燃費の向上を図ることができる。
 しかも、このオイル供給装置1′によれば、エンジン2′の運転状態毎に、HLA24、カムシャフト18、19のカム部18a,19a等のオイル供給部29,30、カムシャフト18、19のメタルベアリングのオイル供給部44、45、及びクランク軸9の第1、第3番、第5番メタルベアリングのオイル供給部41b(41)等のうちで最も高い要求油圧が該第2目標油圧とされる。そして、第3連通路53に設けられた第2油圧センサ70bにより検出される油圧(実油圧)が該第2目標油圧になるように、可変オリフィス58の開度がフィードバック制御される。そのため、サブギャラリ(第3連通路53を含む下流側の油路63~66)の油圧が、オイルジェット28、56等の作動によるメインギャラリ54の油圧変動の影響を受けて大きく変動することが抑制される。
 従って、この第2実施形態のオイル供給装置1′によれば、オイルポンプ36の駆動損失を抑制しながら、給油路50に接続される全ての油圧作動部に対して、必要な油量、油圧のオイルをより確実にかつ安定的に供給することが可能となる。
 なお、油温センサ73により検出される給油路50の油温が基準上限温度Tlim以上になると、エンジン2′の運転状態に対応した油圧作動部の要求油圧のうちで最も高い要求油圧を超えるオイル冷却要求油圧が第1目標油圧に設定され、この第1目標油圧に基づきオイルポンプ36からの吐出量が制御される。従って、この第2実施形態についても、第1実施形態と同様に、油温が基準上限温度Tlim以上となるエンジン2′の運転状態のときには、オイルクーラ38の流量を増大させて、オイルの温度上昇を抑制することができる。
 この場合、第2実施形態によれば、上記の通り、第2目標油圧に基づき可変オリフィス58が制御されるため、オイルクーラ38を経由するオイルの流量を増大させる場合でも、サブギャラリ(第3連通路53を含む下流側の油路63~66)に接続される各油圧作動部を適切に作動させることができるという利点がある。すなわち、オイルポンプ36のオイル吐出量が増大すると給油路50全体の油圧が上昇するため、サブギャラリに接続されるような比較的要求油圧が低い油圧作動部については、油圧の上昇によって作動不良が生じることが考えられる。しかし、第2実施形態によれば、上記の通り、高温時の第2油圧制御マップ(図10(a)に相当する油圧制御マップ)に基づき定められる目標油圧(第2目標油圧)に基づき可変オリフィス58の開度が制御されるので、サブギャラリの油圧が上昇し過ぎることが抑制され、これにより各油圧作動部を適正に作動させることができる。
 <その他の構成等>
 ところで、以上説明したオイル供給装置1、1′は、本発明にかかるエンジンのオイル供給装置の好ましい実施形態の例示であって、その具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。
 例えば、第1実施形態(図4)では、ピストン冷却用のオイルジェット28は、メインギャラリ54の油圧が該オイルジェット28の要求油圧に達するとオイルを噴射する構成であるが、第2実施形態のピストン潤滑用のオイルジェット56と同様に、開閉弁の制御によりオイル噴射をオンオフできるように構成してもよい。この場合、開閉弁としてリニアソレノイドバルブを適用することによってオイル噴射量を制御できるように構成した上で、油温が基準上限温度Tlim以上となってオイルポンプ36からのオイル吐出量が増大するとき、すなわち、図10(b)の油圧制御マップに基づきオイルポンプ36が制御されるときに、オイルジェット28からのオイル噴射量を低減させるように構成してもよい。この構成によれば、オイルの温度上昇を抑制する上でより有効となる。すなわち、第1実施形態(図4)の構成の場合、油温が基準上限温度Tlim以上となってオイルポンプ36からのオイル吐出量が増大して油圧が上昇すると、これに伴いオイルジェット28からのオイル噴射量が増大し、ピストンからのオイルの受熱量も増大することとなる。しかし、上記のようにオイルジェット28からのオイル噴射量を低減させる構成によれば、該オイル噴射量の低減によって、ピストンからのオイルの受熱量を抑制することができるため、その分、オイルの温度上昇を抑制することが可能となる。この場合には、例えば図14に示すような制御マップ、具体的には、所定の油圧P0を超えるとオイル噴射量を漸減させるようにオイル噴射量と油圧との関係を定めた制御マップを予め上記記憶部に記憶させ、油圧センサ70が検出する油圧に基づき、コントローラ100が上記ソレノイドバルブを制御するように構成することができる。このような構成は、第2実施形態のオイルジェット28、56についても適用可能である。
 なお、第1実施形態では、「オイルが所定の高油温状態となるようなエンジンの運転状態」として、油温センサ73が検出する油温が基準上限温度Tlim以上になる状態をコントローラ100が検知し、これにより図10(b)の油圧制御マップに基づきオイルポンプ36を制御することによりオイル吐出量を増大させている。しかし「オイルが所定の高油温状態となるようなエンジンの運転状態」は、必ずしも基準上限温度Tlimを基準として判断されるものには限定されない。例えば第1実施形態では、図7(b)に示すように、エンジンの高負荷運転状態で、エンジン回転速度がV1′以上でオイルジェット28によるオイル噴射を開始する。このようにオイルジェット28によるオイル噴射が開始されると、ピストンからの受熱量が増大してオイル温度が上昇するので、このオイルジェット28が作動するとき、すなわちエンジン速度がV1′以上のときを「オイルが所定の高油温状態となるようなエンジンの運転状態」と判断して、オイルポンプ36によるオイル吐出量を増大させるように構成してもよい。また、所定のエンジン負荷以上である高負荷運転状態、あるいは、所定のエンジン回転速度以上である高回転状態で所定のエンジン負荷以上である高負荷状態であるときを「オイルが所定の高油温状態となるようなエンジンの運転状態」と判断して、オイルポンプ36によるオイル吐出量を増大させるように構成してもよい。第2実施形態についても同様に、オイルジェット28、56が作動するとき、を「オイルが所定の高油温状態となるようなエンジンの運転状態」と判断して、オイルポンプ36によるオイル吐出量を増大させるように構成してもよい。
 また、上記実施形態では、オイルポンプ36としてエンジン2、2′により駆動されるポンプが適用されているが、オイルポンプ36は、電気モータにより駆動され、回転速度を制御してオイル吐出量を変更するものであってもよい。
 また、上記実施形態では、本発明を直列4気筒ガソリンエンジンに適用した例について説明したが、本発明は、これ以外のエンジン、例えばディーゼルエンジンなどについても適用可能である。
 以上説明した本発明をまとめると以下の通りである。
 すなわち、本発明に係るエンジンのオイル供給装置は、吐出量を制御可能なオイルポンプと、このオイルポンプから吐出されるオイルを、エンジンの油圧作動部に供給する給油路と、前記給油路に設けられ、オイルポンプから吐出されるオイルを冷却するオイルクーラと、前記油圧作動部の要求油圧であって前記エンジンの運転状態に応じた要求油圧を目標油圧として設定し、前記給油路内の油圧が前記目標油圧となるように、前記オイルポンプの吐出量を制御する制御装置と、を備え、前記制御装置は、前記オイルが所定の高油温状態となるような前記エンジンの運転状態のときには、前記エンジンの運転状態に応じた前記油圧作動部の要求油圧に対応する吐出量を超える量のオイルが吐出されるように前記オイルポンプを制御するものである。
 このオイル供給装置によれば、油圧作動部に必要な油圧を適切に確保しつつ、オイルポンプの駆動負荷を必要最小限に保って燃費の向上を図ることができる。しかも、オイルが所定の高油温状態となるようなエンジンの運転状態のときには、前記目標油圧に対応する吐出量を超える量のオイルがオイルポンプから吐出されるので、当該運転状態時には、より多くのオイルがオイルクーラを経由することとなり、これによりオイルの冷却が促進せれる。車両等のオイル供給装置には、その給油路にオイルクーラが設けられるのが一般的であるため、従って、上記構成によれば、既存のオイルクーラを用いた合理的な構成でオイルの温度上昇(過熱)を効果的に抑制するこが可能となる。
 なお、上記「油圧作動部」とは、オイルの油圧を受けて駆動する装置に加え、オイルをその油圧により潤滑用又は冷却用として対象物や対象部位に供給するオイル供給部を包含するものである。
 上記オイル供給装置において、前記制御装置は、前記高油温状態となるような前記エンジンの運転状態のときには、前記油圧作動部の要求油圧を超える油圧であって予め定められている最大油圧を前記目標油圧として設定するものであるのが好適である。
 この構成によれば、目標油圧として予め設定されている最大油圧を設定するだけの簡単な制御で、オイルポンプの吐出量を増大させることが可能となる。
 また、上記オイル供給装置において、前記油圧作動部を第1油圧作動部と定義したときに、前記給油路として、前記オイルポンプから吐出されるオイルを前記第1油圧作動部に供給する上流側油路及びこの上流側油路に繋がり、前記第1油圧作動部よりも要求油圧が低い第2油圧作動部にオイルを供給する下流側油路とを含む場合には、前記下流側油路には、その油圧を検出する油圧センサとその油圧を調整可能な油圧調整装置とが備えられており、前記制御装置は、前記目標油圧に対応する吐出量を超える量のオイルを前記オイルポンプに吐出させるときには、前記第1油圧作動部の要求油圧に応じて下流側油路の油圧を調整すべく前記油圧調整装置を制御するものであるのが好適である。
 この構成によれば、高油温状態となるようなエンジン運転状態となり、これによりオイル吐出量が増大されても、下流側油路における油圧を適切に保つことが可能となる。
 なお、上記オイル供給装置においては、給油路内の油温を検出する油温センサを備え、前記制御装置は、前記油温センサが検出する油温が所定温度以上のときに、エンジンが上記高油温状態となる運転状態にあると判定するものであるのが好適である。
 この構成によれば、高油温状態となるようなエンジンの運転状態を、油温センサによる油温の検出によって直接的に検知することが可能となる。
 なお、上記オイル供給装置においては、前記給油路に接続され、所定のエンジン回転数以上のときにピストンにオイルを噴射するオイル供給部を備え、前記制御装置は、前記所定のエンジン回転数以上及び所定のエンジン負荷以上の少なくとも一方の特定運転状態のときに、エンジンが上記高油温状態となる運転状態にあると判定するものであるのが好適である。
 この構成では、所定のエンジン回転数以上及び所定のエンジン負荷以上の少なくとも一方の特定運転状態となるとオイル供給部からピストンにオイルが噴射されることでピストンの冷却が行われる。この場合、オイルはピストンから受熱するが、オイルポンプによるオイルの吐出量が増大されるので、オイルの温度上昇が抑制される。

Claims (5)

  1.  エンジンのオイル供給装置であって、
     吐出量を制御可能なオイルポンプと、
     このオイルポンプから吐出されるオイルを、エンジンの油圧作動部に供給する給油路と、
     前記給油路に設けられ、オイルポンプから吐出されるオイルを冷却するオイルクーラと、
     前記油圧作動部の要求油圧であって前記エンジンの運転状態に応じた要求油圧を目標油圧として設定し、前記給油路内の油圧が前記目標油圧となるように、前記オイルポンプの吐出量を制御する制御装置と、を備え、
     前記制御装置は、前記オイルが所定の高油温状態となるような前記エンジンの運転状態のときには、前記エンジンの運転状態に応じた前記油圧作動部の要求油圧に対応する吐出量を超える量のオイルが吐出されるように前記オイルポンプを制御する、ことを特徴とするエンジンのオイル供給装置。
  2.  請求項1に記載のエンジンのオイル供給装置において、
     前記制御装置は、前記高油温状態となるような前記エンジンの運転状態のときには、前記油圧作動部の要求油圧を超える油圧であって予め定められた最大油圧を前記目標油圧として設定する、ことを特徴とするエンジンのオイル供給装置。
  3.  請求項1又は2に記載のエンジンのオイル供給装置において、
     前記油圧作動部を第1油圧作動部と定義したときに、
     前記給油路は、前記オイルポンプから吐出されるオイルを前記第1油圧作動部に供給する上流側油路と、この上流側油路に繋がり、前記第1油圧作動部よりも要求油圧が低い第2油圧作動部にオイルを供給する下流側油路とを含み、
     前記下流側油路には、その油圧を検出する油圧センサとその油圧を調整可能な油圧調整装置とが備えられており、
     前記制御装置は、前記目標油圧に対応する吐出量を超える量のオイルを前記オイルポンプに吐出させるときには、前記第1油圧作動部の要求油圧に応じて下流側油路の油圧を調整すべく前記油圧調整装置を制御する、ことを特徴とするエンジンのオイル供給装置。
  4.  請求項1乃至3の何れか一項に記載のエンジンのオイル供給装置において、
     前記給油路内の油温を検出する油温センサを備え、
     前記制御装置は、前記油温センサが検出する油温が所定温度以上のときに、エンジンが上記高油温状態となる運転状態にあると判定する、ことを特徴とするエンジンのオイル供給装置。
  5.  請求項1乃至3の何れか一項に記載のエンジンのオイル供給装置において、
     前記給油路に接続され、所定のエンジン回転数以上及び所定のエンジン負荷以上の少なくとも一方の特定運転状態のときにピストンにオイルを噴射するオイル供給部を備え、
     前記制御装置は、前記特定運転状態のときに、エンジンが上記高油温状態となる運転状態にあると判定する、ことを特徴とするエンジンのオイル供給装置。
PCT/JP2015/073026 2014-08-27 2015-08-17 エンジンのオイル供給装置 WO2016031606A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580001936.9A CN106661975B (zh) 2014-08-27 2015-08-17 发动机的机油供应装置
DE112015000171.9T DE112015000171T5 (de) 2014-08-27 2015-08-17 Motorölzufuhrvorrichtung
US15/022,803 US10267190B2 (en) 2014-08-27 2015-08-17 Engine oil supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014172588A JP6187416B2 (ja) 2014-08-27 2014-08-27 エンジンのオイル供給装置
JP2014-172588 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031606A1 true WO2016031606A1 (ja) 2016-03-03

Family

ID=55399502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073026 WO2016031606A1 (ja) 2014-08-27 2015-08-17 エンジンのオイル供給装置

Country Status (5)

Country Link
US (1) US10267190B2 (ja)
JP (1) JP6187416B2 (ja)
CN (1) CN106661975B (ja)
DE (1) DE112015000171T5 (ja)
WO (1) WO2016031606A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107489545A (zh) * 2016-06-09 2017-12-19 福特环球技术公司 用于操作发动机油泵的系统和方法
CN114508424A (zh) * 2020-11-17 2022-05-17 本田技研工业株式会社 飞行器用的内燃机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605567B2 (en) * 2014-06-04 2017-03-28 GM Global Technology Operations LLC Oil pump control systems and methods
KR101734771B1 (ko) * 2016-05-24 2017-05-11 현대자동차주식회사 피스톤 냉각 오일젯 제어 장치 및 방법
US10208687B2 (en) * 2016-06-09 2019-02-19 Ford Global Technologies, Llc System and method for operating an engine oil pump
KR102463186B1 (ko) * 2016-12-13 2022-11-03 현대자동차 주식회사 차량용 피스톤 냉각 장치
DE102017206152A1 (de) * 2017-04-11 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Hubkolben-Brennkraftmaschine
JP6984208B2 (ja) * 2017-07-20 2021-12-17 いすゞ自動車株式会社 内燃機関の制御装置
US11852137B2 (en) 2018-03-05 2023-12-26 Pierburg Pump Technology Gmbh Automotive variable mechanical lubricant pump
CN112601877B (zh) * 2018-08-30 2022-08-05 沃尔沃卡车集团 油系统和控制油系统的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236754A (ja) * 2010-05-07 2011-11-24 Mazda Motor Corp エンジンの給油装置
JP2013142297A (ja) * 2012-01-10 2013-07-22 Honda Motor Co Ltd 内燃機関の潤滑油供給装置
WO2014073444A1 (ja) * 2012-11-07 2014-05-15 日産自動車株式会社 内燃機関のオイル供給装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2388633B (en) 2002-05-15 2006-03-08 Dana Automotive Ltd Engine lubrication system
US7124731B2 (en) * 2003-09-19 2006-10-24 Honda Motor Co., Ltd. Internal combustion engine with oil temperature sensor
JP2007051454A (ja) * 2005-08-17 2007-03-01 Hitachi Constr Mach Co Ltd 建設機械の作動油冷却システム
JP4538427B2 (ja) * 2006-06-01 2010-09-08 株式会社竹内製作所 作業用車両
US7973499B2 (en) * 2006-06-01 2011-07-05 Takeuchi Mfg. Co., Ltd. Working vehicle
JP2012145021A (ja) * 2011-01-11 2012-08-02 Mitsubishi Heavy Ind Ltd エンジンの冷却装置
DE102011114388B3 (de) 2011-09-24 2012-11-22 Thomas Magnete Gmbh Elektrohydraulische Regeleinrichtung für eine Verstellpumpe
CN102705073B (zh) 2012-05-31 2015-05-27 长城汽车股份有限公司 一种涡轮增压发动机增压器润滑油回油方式

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236754A (ja) * 2010-05-07 2011-11-24 Mazda Motor Corp エンジンの給油装置
JP2013142297A (ja) * 2012-01-10 2013-07-22 Honda Motor Co Ltd 内燃機関の潤滑油供給装置
WO2014073444A1 (ja) * 2012-11-07 2014-05-15 日産自動車株式会社 内燃機関のオイル供給装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107489545A (zh) * 2016-06-09 2017-12-19 福特环球技术公司 用于操作发动机油泵的系统和方法
CN114508424A (zh) * 2020-11-17 2022-05-17 本田技研工业株式会社 飞行器用的内燃机
JP2022079952A (ja) * 2020-11-17 2022-05-27 本田技研工業株式会社 航空機用の内燃機関

Also Published As

Publication number Publication date
JP6187416B2 (ja) 2017-08-30
US20160222843A1 (en) 2016-08-04
DE112015000171T5 (de) 2016-06-02
CN106661975B (zh) 2019-07-05
US10267190B2 (en) 2019-04-23
CN106661975A (zh) 2017-05-10
JP2016048034A (ja) 2016-04-07

Similar Documents

Publication Publication Date Title
JP6187416B2 (ja) エンジンのオイル供給装置
JP6163831B2 (ja) エンジンのオイル供給装置
JP6123575B2 (ja) 多気筒エンジンの制御装置
JP6217236B2 (ja) 多気筒エンジンの制御装置及び制御方法
JP6156297B2 (ja) エンジンのオイル供給装置
JP6213064B2 (ja) エンジンの制御装置
JP6094545B2 (ja) エンジンのオイル供給装置
JP6052205B2 (ja) エンジンのバルブタイミング制御装置
JP5966999B2 (ja) 多気筒エンジンの制御装置
JP5951513B2 (ja) 多気筒内燃機関の可変動弁装置及び該可変動弁装置の制御装置
JP6160539B2 (ja) エンジンの制御装置
JP6094430B2 (ja) エンジンの制御装置
JP2015194131A (ja) エンジンの制御装置
JP6123726B2 (ja) エンジンの制御装置
WO2018078815A1 (ja) 可変バルブタイミング機構付きエンジンの制御装置
JP6156182B2 (ja) 多気筒エンジンの制御装置
JP6020307B2 (ja) 多気筒エンジンの制御装置
JP6146341B2 (ja) エンジンのバルブタイミング制御装置
JP5947751B2 (ja) 多気筒内燃機関の可変動弁装置及び該可変動弁装置の制御装置
JP6350476B2 (ja) エンジンのオイル供給装置
JP2015161277A (ja) エンジンのバルブタイミング制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15022803

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000171

Country of ref document: DE

Ref document number: 1120150001719

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835743

Country of ref document: EP

Kind code of ref document: A1