WO2016031379A1 - 粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置 - Google Patents

粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置 Download PDF

Info

Publication number
WO2016031379A1
WO2016031379A1 PCT/JP2015/068605 JP2015068605W WO2016031379A1 WO 2016031379 A1 WO2016031379 A1 WO 2016031379A1 JP 2015068605 W JP2015068605 W JP 2015068605W WO 2016031379 A1 WO2016031379 A1 WO 2016031379A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
mist
opening device
pipe
container
Prior art date
Application number
PCT/JP2015/068605
Other languages
English (en)
French (fr)
Inventor
英雄 榎
茂輝 山口
孝浩 佐々木
亨 稲葉
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US15/327,484 priority Critical patent/US10604393B2/en
Priority to EP15835374.8A priority patent/EP3187457A4/en
Priority to CN201580034905.3A priority patent/CN106573767B/zh
Priority to JP2016545023A priority patent/JP6322714B2/ja
Publication of WO2016031379A1 publication Critical patent/WO2016031379A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B7/00Hand- or power-operated devices for opening closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • B01D19/0094Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042 by using a vortex, cavitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • B08B9/0327Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid the fluid being in the form of a mist
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • B01L1/04Dust-free rooms or enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67BAPPLYING CLOSURE MEMBERS TO BOTTLES JARS, OR SIMILAR CONTAINERS; OPENING CLOSED CONTAINERS
    • B67B7/00Hand- or power-operated devices for opening closed containers
    • B67B7/02Hand- or power-operated devices for opening closed containers for removing stoppers

Definitions

  • the present invention relates to an apparatus for opening a sample container with a stopper, which is provided with a mechanism for sucking and capturing suspended matters in the air and preventing contamination between samples.
  • Patent Document 1 As a background art in this technical field, there is JP 2014-1926 (Patent Document 1) as a plug opening device having a mechanism for sucking and capturing particles.
  • the opening device described in Patent Document 1 holds and fixes the sample container sandwiched around the transported sample container, and sucks air around the sample container by the power of an exhaust fan connected via a pipe.
  • a container gripping mechanism with an intake function for discharging and a stopper opening mechanism with a discharge function for discharging air by the power of a discharge fan connected to the periphery of the sample container via a pipe while removing the stopper mounted on the sample container. is doing.
  • suspended matter such as mist was generated between the opening mechanism and the container gripping mechanism in this device. It is sucked into the container gripping mechanism by the airflow.
  • a filter is provided on the suction side of the exhaust fan so that suspended matter such as mist sucked in is not discharged from the exhaust fan.
  • the filter provided on the suction side of the exhaust fan in Patent Document 1 is a cloth-like material that covers the inlet of the fan, but since a type built in the cartridge is also commercially available, it may be mounted in the middle of the piping.
  • These filters are filter members consisting of porous flow channels on the order of micrometers, and filter air to remove mist and mixed dust in the air. Gradually increases and the intake speed gradually decreases. When the intake speed decreases, the suspended matter cannot be sucked and the removal ability decreases.
  • the replacement of the filter is the time when the fluid resistance has doubled.
  • the intake speed when the filter is new must be more than double the speed required for mist suction.
  • the fan becomes larger.
  • accessory parts such as a pressure gauge are required, which may increase the size of the apparatus and increase the cost of parts and power.
  • mist and dust dried from the filter member at the time of decomposition are scattered and the surroundings are contaminated to increase contamination.
  • the present invention provides a plug-opening device having a particle suction / capturing mechanism that is small, low-cost, easy to maintain, and has little contamination between samples.
  • a container gripping mechanism for gripping a container, an opening mechanism for gripping a stopper of the opening of the container, and a relative distance between the container gripping mechanism and the opening mechanism are changed.
  • a suction opening device for removing the stopper from the opening of the container wherein the suction hole for sucking a gas containing liquid or solid particles existing around the opening is connected to the suction hole and sucked.
  • positioned between the said piping and the said suction device is employ
  • the floating substance floating around the container can be removed from the periphery of the opening, and the removed floating substance is prevented from contaminating the intake device, so that the maintenance of the intake device is not required.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a block diagram of the opening device 1.
  • the opening device 1 includes a pair of container gripping mechanisms 101 and 102 having a pair of left and right air suction functions, a pair of partition plates 111 and 112 mounted on the container gripping mechanisms 101 and 102, and an opening mechanism. It consists of thirteen. Further, a pipe 141 connecting both ends to each of the container gripping mechanisms 101 and 102, a pipe 142 branched from a branching portion 144 near the center of the pipe 141, an intake port 1431 connected to the pipe 142, and an exhaust for discharging the sucked air An intake system 14 including an intake device 143 such as a pump or a fan having a port 1432 is provided.
  • an intake device 143 such as a pump or a fan having a port 1432 is provided.
  • the pipe is usually formed in a straight shape with a circular cross section, but in this embodiment, a part of the pipe 142 is deformed and a coil portion 145 wound spirally is provided.
  • the coil portion may be a metal tube or resin tube processed in advance in a spiral shape, but may be wound around and fixed to a hard cylindrical surface such as a pipe if it is flexible such as a resin tube.
  • a transparent tube may also be used.
  • you may give a fine unevenness
  • the inner wall may be coated with a surface treatment agent that changes wettability, imparts adhesiveness, or prevents the growth of mold and bacteria.
  • FIG. 2 is a top view of the container gripping mechanisms 101 and 102 and the partition plates 111 and 112 attached to the container gripping mechanisms 101 and 102.
  • the container gripping mechanisms 101 and 102 and the partition plates 111 and 112 are shaped like a cylinder cut along a cylindrical axis, and are paired by a power source such as a motor and a power transmission mechanism such as a link mechanism in response to a command from a control device (not shown).
  • the cylindrical sample container 2 containing the sample liquid 21 such as a test tube is held and fixed on the cylindrical inner surfaces of the container gripping mechanisms 101 and 102 by opening and closing the container gripping mechanisms 101 and 102 to the left and right.
  • a large number of identically shaped holes 103 are uniformly arranged on the upper surfaces of the container gripping mechanisms 101 and 102, and the inside is hollow.
  • the intake system 14 of the container gripping mechanisms 101 and 102 sucks air from the hole 103 when the intake device 143 operates according to a command from a control device (not shown). Since a large number of identically shaped holes 103 are uniformly arranged on the upper surfaces of the container gripping mechanisms 101 and 102, the air flow generated by suction becomes uniform.
  • the pair of partition plates 111 and 112 are attached along the cylindrical outer surface of the container gripping mechanism 101 and 102 so as to surround the periphery of the side surface of the sample container 2 when the container gripping mechanism 101 and 102 are closed.
  • FIG. 1 shows a state in which a stopper 22 mounted on a sample container 2 is connected to a pair of container gripping mechanisms 101 and 102 by a command from a control device (not shown).
  • the figure shows a state immediately after being pulled and opened after being pinched by an opening mechanism 13 that is operated by a power transmission mechanism such as a power source and a link mechanism.
  • a power transmission mechanism such as a power source and a link mechanism.
  • the mist 212 sucked into the intake system 14 flows parallel to the pipe wall in the pipe 141, but when passing through the spiral coil part 145, the mist 212 rotates spirally in the coil part 145, causing centrifugal force. As a result, it moves in the direction perpendicular to the spiral axis and collides with the pipe wall.
  • the mist 212 that has collided with the tube wall is captured by the tube wall of the coil portion 145 and does not contaminate the intake device 143 disposed on the downstream side of the coil portion 145. Since contamination of the intake device 143 is prevented, cleaning maintenance of the intake device 143 becomes unnecessary.
  • the mist 212 can be captured by deforming a part of the pipe into a coil shape, so that no filter is required, and the apparatus can be reduced in size and cost.
  • the pipe can be cleaned by removing the pipe 142 provided with the coil portion 145, immersing it in a disinfectant or detergent, and then washing it with running water, thereby facilitating maintenance.
  • the mist 212 is captured on the inner wall of the coil portion 145 in the middle of the pipe 142, the mist 212 captured at the time of replacement is isolated from both ends of the pipe 142, and there is no possibility of coming into contact with the outside. National can be prevented. Further, if the coil portion 145 is made of a transparent member such as a resin tube, the state of trapping the internal mist 212 can be observed directly or non-contacted with a visual or optical sensor, so that maintenance can be performed reliably and efficiently.
  • the inner wall of the coil portion 145 has fine irregularities, it is possible to prevent the mist 212 from adhering to the inner wall and drying off after being dried, so that the dried mist does not peel off and contaminates the suction device 143. National can be prevented.
  • a surface treatment agent that changes the wettability of the inner wall of the coil portion 145 or imparts adhesiveness is coated, the mist 212 adheres to the inner wall, and the dust generated when the dried mist peels off. Can be reattached and fixed in the coil portion, so that contamination of the apparatus can be suppressed and contamination can be prevented.
  • the inner wall of the coil portion 145 is coated with a surface treatment agent that prevents the growth of mold and bacteria, the generation of dust such as spores can be suppressed and contamination can be prevented.
  • FIG. 3 is a diagram showing the shape of the coil portion 145.
  • the mist 212 that has reached the coil portion 145 together with the air flows while spirally rotating along the airflow. At this time, an outward centrifugal force is applied to the mist 212 perpendicular to the central axis of the coil portion 145. As a result, the mist 212 moves in the cross-sectional direction of the coil portion 145, and if it moves by the inner diameter at the maximum, it is reliably collided and captured on the wall surface.
  • the mist 212 When the mist 212 is small, the first term of the formula 1 can be ignored, and the time 2 is t and the time 2 is integrated to obtain the formula 2.
  • Equation 2 is the initial position of the mist 212.
  • Equation 3 Equation 3
  • the total length of the coil portion 145 is L, and there is no mixing in the coil portion 145, the maximum distance corresponding to the diameter of the coil portion 145 after the mist enters the coil portion 145, that is, the moving distance r from the initial position.
  • the length L a of the coil portion 145 required to capture all of the mist 212 formula 4 Given in.
  • Fig. 4 shows the mist capture performance evaluation system.
  • An ultrasonic medical nebulizer 3 was used to simulate the mist.
  • the particle diameter of the mist 212 generated by the nebulizer 3 is 1 to 8 ⁇ m, and becomes a cloud-like group and moves according to the air flow.
  • a coil portion 145 is provided in the middle of a pipe 1421 having one end inserted into the mist generating port of the nebulizer 3, and the other end on the downstream side of the pipe 1421 is connected to a sealed collection bottle 147.
  • a pipe 1422 having one end inserted into the collection bottle 147 is provided in a flow rate sensor 1481 and a temperature / humidity sensor 1482 and is connected to an intake port 1431 of the intake device 143 via a control valve 149.
  • the amount of mist generated in the nebulizer 3 is about 1.5 mL / min, and the mist 212 is stacked and accumulated on the inner wall of the coil to form droplets and pushed into the airflow.
  • the airflow from the coil unit 145 is once discharged to the recovery bottle 147, the droplet 215 generated in the coil unit is recovered in the recovery bottle 147, and the airflow not including the droplet flows toward the intake device 143.
  • the air flow rate is adjusted by changing the opening of the control valve 149.
  • the shape of the coil portion 145 used in this experiment is an inner diameter of 6 mm, an outer diameter of 8 mm, a length of 4.3 m, and a loop diameter of 60 mm, but the coil portion shape is not limited to this shape.
  • FIG. 5 shows the length of the coil portion 145 required for mist capture predicted by Equation 4 when the air flow rate is changed with the inner diameter of the coil portion 145 being 6 mm and the loop diameter being 60 mm.
  • the minimum mist diameter generated from the nebulizer 3 is 1 ⁇ m
  • the length of the coil portion 145 necessary for capturing the mist 212 is expected to be about 4.3 m if the air flow rate is 20 L / min or more.
  • Figure 6 shows the flow of the verification experiment.
  • Step 1 The operation is continued until the exhaust gas temperature is stabilized in a state where the nebulizer 3 is stopped and the mist 212 is not generated.
  • Step 2 Adjust the opening of the control valve 149 and set the air flow rate.
  • Step 3 Weigh the collection bottle and nebulizer.
  • Step 4 Drive the nebulizer for 2 minutes.
  • Step 5 Weigh the collection bottle and nebulizer again.
  • Step 6 Remove the liquid collected in the collection bottle and add the liquid to the nebulizer.
  • Step 7 The procedure from Step 3 to Step 6 is repeated 7 times to obtain a data set with one flow rate condition.
  • the coil 145 is captured.
  • the amount of mist trapped and the amount of mist introduced into the coil portion 145 are obtained. Since the generated mist 212 may evaporate while moving in the pipe, the temperature / humidity of the air flowing in the pipe is continuously measured by the temperature / humidity sensor 1482 during the experiment. Together, the amount of evaporation was calculated.
  • the water vapor amount a is calculated based on the Tetens equation shown in Equation 5.
  • T temperature [° C.]
  • e saturated water vapor pressure [hPa]
  • RH relative humidity [%]
  • a water vapor amount [g / m 3 ].
  • FIG. 7 shows a graph in which the mist amount ( ⁇ ) when the air flow rate is changed and the sum of the trap amount and the evaporation amount ( ⁇ ) are plotted.
  • Each data is an average value of 5 times excluding the maximum value and the minimum value among 7 experimental trials.
  • the mist amount is increased by about 3 to 4 percent compared to the sum of the trapped amount and the evaporated amount. This indicates that part of the mist 212 generated from the nebulizer 3 has flowed downstream from the recovery bottle 147, that is, part of the mist 212 has not been captured and has flowed out to the intake device 143 side.
  • the shape of the coil part 145 can be arbitrarily designed according to Equation 4, so that the mist 212 can be reliably recovered and the reliability of the apparatus is improved. Moreover, since the length of the coil part 145 can be set to the minimum, the apparatus can be reduced in size and cost. Further, since the capture capability of the coil unit 145 can be evaluated by the mist capture evaluation system, the capture mechanism can be inspected and quality guaranteed, and the reliability of the product is improved.
  • mist can be captured simply by deforming a part of the piping into a coil shape, no filter is required, and the device can be reduced in size and cost. Further, when the pipe is cleaned, the pipe provided with the coil portion is removed, immersed in a disinfectant or detergent, and then washed with running water, so that maintenance is facilitated. Moreover, since mist is captured by the inner wall of the coil part in the middle of piping, the mist captured at the time of replacement
  • the coil part is made of a transparent member such as a resin tube
  • the internal capture status can be observed directly or non-contacted with a visual sensor or an optical sensor, so that maintenance can be performed reliably and efficiently.
  • the mist adheres to the inner wall and can prevent peeling after drying, thereby preventing contamination of the device due to peeling and preventing contamination.
  • the inner wall of the coil part is coated with a surface treatment agent that changes the wettability of the inner wall or imparts tackiness, the mist adheres to the inner wall and dust that has peeled off after drying is re-introduced into the coil part. Since it is attached and fixed, contamination of the device can be suppressed and contamination can be prevented.
  • a surface treatment agent that prevents the growth of mold and bacteria is coated, the generation of dust such as spores can be suppressed and contamination can be prevented.
  • FIG. 8 is a diagram illustrating a state in which maintenance for cleaning the inside of the coil unit 145 is being performed.
  • the other end on the downstream side of the pipe 1421 having the coil part 145 is opened into a sealed waste liquid collector 1471.
  • a pipe 1422 having one end inserted into the waste liquid collector 1471 is connected to the intake port 1431 of the intake device 143.
  • the waste liquid collector 1471 collects droplets, and may be a recovery bottle 147 as shown in the first embodiment or a cyclone. Further, the connection of the intake device 143 may be released and an intake device dedicated for maintenance may be connected.
  • a cleaning mist 2121 in which the cleaning liquid is atomized by a cleaning mist source 31 such as a spray or a nebulizer is supplied to a large number of holes 103 on the upper surfaces of the container gripping mechanisms 101 and 102.
  • the diameter of the cleaning mist 2121 is set to be equal to or larger than the minimum diameter that can be collected by the coil portion.
  • the cleaning mist 2121 passes through the hole 103, reaches the coil unit 145, is captured, contacts and dissolves in the mist 212 captured on the inner wall of the coil unit 145, becomes waste droplets 2151, and is stored in the waste liquid collector 1471 on the downstream side. It does not flow to the intake device 143 side.
  • the waste liquid collector 1471 and the pipe 1422 may be attached at the time of maintenance, or may be always attached to the intake system 14.
  • the material of the coil unit 145 and the waste liquid collector 1471 may be transparent such as resin or glass.
  • This example has the following effects. Since the cleaning mist 2121 can be sucked and the inside of the pipe can be cleaned using the suction function of the particle suction / capture mechanism without removing the particle suction / capture mechanism, maintenance is facilitated and contamination due to surrounding contamination during decomposition is prevented. it can. Further, since the cleaning liquid is mist, it adheres to the portion where the mist of the sample liquid is accumulated, so that the cleaning efficiency is improved and the amount of the cleaning liquid can be reduced.
  • Example 3 of the present invention will be described with reference to FIG.
  • a plurality of coil portions are provided in the pipe.
  • FIG. 9 illustrates the case where there are two coil portions, it may be two or more.
  • Each coil unit modifies Equation 4 and determines the range of the trapped particle size in charge according to Equation 6 in which the particle size to be captured is determined, but is captured by the coil unit 1452 on the downstream side of the upstream coil unit 1451. It is desirable to determine the shape of the coil portion so as to reduce the particle diameter.
  • the inner diameter D1 of the coil portion contributes the most to the diameter d of the mist, and the smaller the inner diameter, the smaller the mist can be captured. Therefore, the inner diameter of the upstream coil portion 1451 is reduced to the downstream coil. Compared to the portion 1452, it is preferable to capture a small mist with the coil portion 1452 on the downstream side after capturing a large mist on the upstream side.
  • This example has the following effects.
  • a large mist is captured by the upstream coil portion 1451 and a small mist is captured by the downstream coil portion 1452.
  • the length of the coil part can be set to the minimum, so that the apparatus can be reduced in size and cost.
  • FIG. 10 is a diagram showing a coil portion whose inner diameter gradually changes from the upstream side toward the downstream side.
  • the decrease in the inner diameter is shown to be uniform, but the inner diameter may change stepwise.
  • This example has the following effects.
  • the distribution of the diameter of the target mist 212 extends over a wide range or when there are several peaks in the distribution of the diameter of the mist 212, the large mist 212 is captured on the upstream side (region where the inner diameter is large) of the coil portion 145
  • the length of the coil part 145 can be set to the minimum by determining the shape of the coil part 145 so as to capture the small mist 212 on the downstream side of the coil part 145 (region having a small inner diameter). Cost can be reduced.
  • FIG. 11 is a diagram showing a coil portion in which the inner diameter and the loop diameter gradually change from the upstream side toward the downstream side.
  • the decrease in the inner diameter and the loop diameter is shown to be uniform, but the inner diameter and the loop diameter may be changed stepwise.
  • This example has the following effects.
  • a large mist 212 is formed on the upstream side (region where the inner diameter and loop diameter are large) of the coil portion 145.
  • the length of the coil portion 145 can be set to the minimum by capturing and determining the shape of the coil portion 145 so as to capture the small mist 212 on the downstream side of the coil portion 145 (region where the inner diameter and loop diameter are small). Therefore, the size and cost of the device can be reduced.
  • Example 6 of the present invention will be described with reference to FIG.
  • This example facilitates the process of ensuring the capture of mist by the particle suction / capture mechanism.
  • a processing mist obtained by atomizing the surface processing liquid into a large number of holes 103 on the upper surfaces of the container gripping mechanisms 101 and 102 using a processing mist source 32 such as a spray or a nebulizer. 2122 is supplied.
  • the surface treatment liquid imparts a function of changing the wettability of the inner surface of the coil part, imparting adhesiveness, and preventing the growth of mold and bacteria.
  • the diameter of the processing mist 2122 is not less than the minimum diameter that can be collected by the coil portion.
  • the processing mist 2122 passes through the hole 103, reaches the coil portion 145, is captured by the inner wall, and is coated on the inner wall. Further, as shown in FIG. 8, in order to prevent droplets from entering the intake device 143 when the surface treatment liquid is converted into droplets and flows downstream on the downstream side of the coil unit 145 and upstream of the intake device, The waste liquid collector 1471 and the pipe 1422 may be inserted between the pipe 142 and the intake device 143. Alternatively, the connection between the pipe 142 and the intake device 143 may be released and an intake device dedicated to surface treatment may be connected.
  • This example has the following effects. Since the surface treatment mist 2122 can be sucked using the suction function of the particle suction and trapping mechanism without disassembling the particle suction and trapping mechanism and the inside of the pipe can be coated, the operation is facilitated. Moreover, even if the coating is peeled off due to maintenance such as cleaning, the coating can be easily performed again. In addition, since the surface treatment liquid is made mist, it adheres to the portion where the sample liquid is likely to accumulate, so that the amount of the surface treatment liquid can be reduced and the processing cost can be reduced.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Devices For Opening Bottles Or Cans (AREA)
  • Catching Or Destruction (AREA)

Abstract

 血液や細胞やDNAなどの生体由来の成分を含む試料液が入った栓付の試料容器の栓を開栓する装置で、開口部の周囲に浮遊している粒子を吸引捕捉し試料のコンタミネーションを防止する機構を提供する。 容器を把持する容器把持機構と、前記容器の開口部の栓を把持する開栓機構と、前記容器把持機構と前記開栓機構との相対距離を変えることで容器の開口部から栓を除去する開栓装置であって、前記開口部周囲に存在する、液体または固体からなる粒子を含んだ気体を吸い込む吸引孔と、前記吸引孔に接続され、吸引された気体および粒子を下流に導入する配管と、前記配管に接続された吸引装置と、前記前記配管と前記吸引装置の間に配置されたらせん状屈曲配管部と備えた開栓装置である。

Description

粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置
 本発明は、栓付の試料容器を開栓する装置であって、空気中の浮遊物を吸引捕捉し試料間のコンタミネーションを防止する機構を備えた開栓装置に関する。
 本技術分野の背景技術として、粒子を吸引捕捉する機構を備えた開栓装置として、特開2014-1926号公報(特許文献1)がある。特許文献1記載の開栓装置は、搬送されてきた試料容器の周囲を覆う仕切り板と、試料容器を挟み固定するとともに、配管を介して接続した排気ファンの動力により試料容器周囲の空気を吸引する吸気機能を備えた容器把持機構と、試料容器に装着された栓を抜くとともに試料容器周囲に配管を介して接続した吐出ファンの動力により空気を吐出する吐出機能を備えた開栓機構を有している。大気中に浮遊している埃やミストといったミクロのレベルの浮遊物が開栓した試料容器内に入らないよう、この装置ではミスト等の浮遊物は開栓機構と容器把持機構の間に発生した気流で容器把持機構に吸い込まれる。また、吸い込まれたミスト等の浮遊物が排気ファンから排出されないよう排気ファンの吸引側にフィルタを備えている。
特開2014-1926号公報
 特許文献1において排気ファンの吸引側に設けられたフィルタはファンの入口を覆う布状のものであるが、カートリッジに内蔵されたタイプも市販されているので配管途中に装着することも考えられる。これらのフィルタはマイクロメートルオーダの多孔質の流路からなるフィルタ部材で空気を濾して空気中のミストや混入した塵などを除去するが、時間が経過するとともに個々の流路が閉塞し流体抵抗が徐々に増加して吸気速度が徐々に低下する。吸気速度が低下すると、浮遊物を吸いきれなくなり除去能力が低下する。
 一般的にフィルタの交換は流体抵抗が2倍になった時点と言われているが、その場合、フィルタが新品の場合の吸気速度をミスト吸引に必要な速度の倍以上としなければならず、ファンが大型化する。また、交換時期を知るためには圧力計などの付属部品が必要になり、装置の大形化や部品・電力に係わるコスト増の恐れがある。また、メンテナンス時に多孔質の流路を洗浄再生することは技術・コスト・汚染の観点から困難である。また、交換する場合でも、分解時にフィルタ部材から乾燥したミストや塵が飛散して周囲を汚染しコンタミネーションが増加する恐れがある。
 本発明は、小形・低コストでメンテナンスが容易で試料間のコンタミネーションの少ない粒子吸引捕捉機構を備えた開栓装置を提供するものである。
 上記課題を解決するために、例えば、容器を把持する容器把持機構と、前記容器の開口部の栓を把持する開栓機構と、前記容器把持機構と前記開栓機構との相対距離を変えることで容器の開口部から栓を除去する開栓装置であって、前記開口部周囲に存在する、液体または固体からなる粒子を含んだ気体を吸い込む吸引孔と、前記吸引孔に接続され、吸引された気体および粒子を下流に導入する配管と、前記配管に接続された吸引装置と、
 前記前記配管と前記吸引装置の間に配置されたらせん状屈曲配管部と、を備えた構成を採用する。
 本発明によれば、容器の周囲に漂う浮遊物を開口部周囲から取り除くことができると共に、除去された浮遊物が吸気装置を汚染することを防ぎ、吸気装置の清掃メンテナンスが不要になる。
第一の実施例の開栓装置の構成図である。 第一の実施例の開栓装置の容器把持機構の上面図である。 第一の実施例のコイル部の詳細図である。 第一の実施例のミスト捕捉評価系の構成図である。 第一の実施例のミスト捕捉に要するコイル部の長さを示す図である。 第一の実施例の実験フローを示す図である。 第一の実施例の空気流量を変化した時のミスト量と捕捉量+蒸発量の図である。 第ニの実施例のコイル部の洗浄方法を示す図である。 第三の実施例のコイル部の構成図である。 第四の実施例のコイル部の形状を示す図である。 第五の実施例のコイル部の形状を示す図である。 第六の実施例のコイル部の表面処理方法を示す図である。
  以下、本発明の実施例について図面を用いて説明する。
 本発明の実施例1を図1~図7を用いて説明する。
 図1は、開栓装置1の構成図である。開栓装置1は、左右に分かれた一対の空気吸引機能を備えた一対の容器把持機構101、102と、容器把持機構101、102に装着された一対の仕切り板111、112と、開栓機構13からなる。さらに、容器把持機構101、102それぞれに両端を接続する配管141と、配管141の中央付近の分岐部144から分岐した配管142と、配管142に接続する吸気口1431と吸い込んだ空気を排出する排気口1432を有するポンプやファンなどの吸気装置143からなる吸気系14を備えている。
 配管は通常円形断面で直線状に作成されたものであるが、本実施例では配管142の一部を変形し螺旋状に巻いたコイル部145を設ける。コイル部は金属管や樹脂チューブを予め螺旋状に加工作成したものでもよいが、樹脂チューブなど柔軟なものであればパイプなどの硬質の円筒表面に巻き付け固定してもよい。また、透明なチューブでもよい。また、内壁にサンドブラストなどの処理により細かな凹凸をつけてもよい。また、内壁に濡れ性を変化したり、粘着性を付与したり、カビやバクテリアの繁殖を防止する表面処理剤をコーティングしてもよい。なお、配管141の分岐部144から容器把持機構101、102側の一部にそれぞれコイル部を設けてもよい。また、容器把持機構101、102それぞれにコイル部を設けた配管と吸気装置を接続した一対の吸気系としてもよい。
 図2は容器把持機構101、102および容器把持機構101、102に装着された仕切り板111、112の上面図である。容器把持機構101、102と仕切り板111、112は円筒を円筒軸に沿って切断した様な形状で、図示しない制御装置からの指令によりモータなどの動力源とリンク機構などの動力伝達機構により一対の容器把持機構101、102が左右に開閉することで容器把持機構101、102の円筒内面で、試験管などの試料液21が入った円柱状の試料容器2を把持固定する。
 容器把持機構101、102の上面には多数の同形の孔103が均一に配置され内部は空洞になっている。容器把持機構101、102の吸気系14は吸気装置143が図示しない制御装置の指令により動作することにより孔103から空気を吸引する。容器把持機構101、102の上面には多数の同形の孔103が均一に配置されているため吸引により生じる気流が一様になる。また、一対の仕切り板111、112は、容器把持機構101、102が閉じた時に試料容器2の側面周囲を取り囲むように容器把持機構101、102の円筒外面に沿って装着されている。
 図1は、一対の容器把持機構101、102に、試料容器2が挟まれて固定された状態で、試料容器2に装着された栓22を、図示しない制御装置からの指令によりモータなどの動力源とリンク機構などの動力伝達機構により動作する開栓機構13で挟んだ後に引上げ、開栓した直後の状態を示している。試料容器2の搬送時に栓22や試料容器2の内側に試料液21の一部が付着していた場合、開栓により試料容器2と栓22とが離れることによって引き伸ばされ液膜となり、液膜が破れることにより微粒化して飛散する可能性がある。また、大気中に浮遊している浮遊物が開栓後の開口部から試料容器2の内部に入り込むことも考えられる。比較的大きな飛沫211や試料容器2から離れて漂う浮遊物は、試料容器2の周囲を円筒状に覆う仕切り板111、112に衝突し捕捉される。一方、試料容器2の近くを漂う浮遊物や、試料容器2の周囲に漂う比較的小さな飛沫(ミスト212)は吸気系14を起動することにより発生する気流146により、孔103に吸い込まれ吸気装置143に向かって配管内を移動する。
 吸気系14に吸い込まれたミスト212は配管141内では配管壁に平行に流れるが、螺旋状のコイル部145を通過する際に、ミスト212がコイル部145内を螺旋状に回転し、遠心力により螺旋軸に垂直外側方向に移動し配管壁に衝突する。管壁に衝突したミスト212はコイル部145の管壁に捕捉され、コイル部145より下流側に配置されている吸気装置143を汚染することが無い。吸気装置143の汚染が防止されるため吸気装置143の清掃メンテナンスが不要になる。
 本実施例によれば、配管の一部をコイル状に変形することによりミスト212を捕捉できるのでフィルタが不要になり、装置の小形・低コスト化が可能になる。また、配管の洗浄はコイル部145を設けた配管142を取り外し、消毒液や洗剤に侵漬した後、流水洗浄するだけでよいためメンテナンスが容易になる。
 また、配管142途中のコイル部145の内壁にミスト212が捕捉されるため、交換時に捕捉されたミスト212が配管142の両端から隔離され、外部と接触する恐れが無いため周囲を汚染せずコンタミネーションを防止できる。また、コイル部145を樹脂チューブなど透明な部材で作成すれば、内部のミスト212の捕捉状況が目視または光センサ等で非接触かつ直接観測できるので、メンテナンスを確実かつ効率よく行うことができる。また、コイル部145の内壁に細かな凹凸を付ければ、ミスト212が内壁に密着し乾燥した後に、剥離することを防止できるので、乾燥したミストが剥離して吸引装置143を汚染しにくく、コンタミネーションを防止できる。また、コイル部145の内壁の濡れ性を変化したり、粘着性を付与したりする表面処理剤をコーティングすれば、ミスト212が内壁に密着するとともに、乾燥したミストが剥離することにより生成する塵埃をコイル部内に再付着固定することができるため、装置の汚染を抑制しコンタミネーションを防止できる。また、コイル部145の内壁にカビやバクテリアの繁殖を防止する表面処理剤をコーティングすれば、胞子などの塵埃の発生を抑制しコンタミネーションを防止できる。
 図3は、コイル部145の形状を示す図である。空気と共にコイル部145に到達したミスト212は、気流の流れに沿って螺旋状に回転しながら流れていく。このときミスト212には、コイル部145の中心軸に垂直で外向きの遠心力がかかる。これにより、ミスト212はコイル部145の断面方向に移動し、最大で内径分移動すれば壁面に確実に衝突・捕捉される。
 一例として、直径D1の配管142を、中心軸を中心に巻いて直径D0のループとしたコイル部145を考える。図3では簡単のため一巻きで表現しているが、実際はループは複数巻かれている。ここで、D0>>D1とし、コイル部145内のミスト212に働く遠心力は一定とする。ループを含む円筒面に垂直な方向をr座標とすると、ミスト212に働く慣性力と粘性力(空気抵抗)と遠心力からなる運動方程式は、ミスト212の重さをm、直径をd、密度をρ、空気の粘性をμ、円筒面回りの角速度をωとすると式1で表される。
Figure JPOXMLDOC01-appb-M000001
 ミスト212が小さい場合、式1の第一項が無視でき、時間をtとし、時間に関して積分すると式2が得られる。
Figure JPOXMLDOC01-appb-M000002
 なお、r0はミスト212の初期位置である。また、コイル部145内の空気流速vaは、D0ω/2とみなせるから、式2は式3へ変形できる。
Figure JPOXMLDOC01-appb-M000003
 流量をQ、コイル部145の全長をLとし、コイル部145内で混合が無いとすると、ミストがコイル部145に入ってから最大でコイル部145の直径分、すなわち初期位置からの移動距離r-r0がD1と等しくなれば、すべてのミスト212がコイル部145壁面に至ることになるから、すべてのミスト212を捕捉するのに必要なコイル部145の長さLaは、式4で与えられる。
Figure JPOXMLDOC01-appb-M000004
 次に、コイル部145によるミスト212の捕捉性能を実験により評価し、式4の妥当性を検証した。
 図4にミスト捕捉性能評価系を示す。模擬的にミストを作成するため超音波式の医療用ネブライザ3を使用した。ネブライザ3により生成されるミスト212の粒子径は1~8μmであり、雲状の集団となり空気の流れに従って移動する。
 ネブライザ3のミスト発生口に一端を挿入した配管1421の途中にコイル部145が設けられており、配管1421の下流側の他端は密閉した回収瓶147内に接続されている。また、回収瓶147内に一端を挿入した配管1422には、流量センサ1481、温湿度センサ1482に設けられ、調節弁149を介して、吸気装置143の吸気口1431に接続されている。ネブライザ3のミスト発生量は約1.5mL/minであり、ミスト212がコイル内壁に積層・集積し液滴化して気流に押し流される。コイル部145からの気流は一旦、回収瓶147に放出されるのでコイル部内に生じた液滴215は回収瓶147内に回収され、液滴を含まない気流が吸気装置143側に流れる。空気流量は調節弁149の開度を変え調節する。
 本実験に使用したコイル部145の形状は内径6mm、外径8mm、長さ4.3m、ループ径60mmのものであるが、コイル部形状は本形状に限定されるものではない。図5にコイル部145の内径6mm、ループ径60mmで空気流量を変化した時に、式4で予測したミスト捕捉に要するコイル部145の長さを示す。ネブライザ3から発生した最小のミスト径が1μmの場合、ミスト212を捕捉するために必要なコイル部145の長さは、空気流量を20L/min以上とすれば約4.3mで足りると予測される。
 図6に検証実験のフローを示す。
 ステップ1:ネブライザ3を停止しミスト212を発生しない状態で排気温度が安定するまで運転を続ける。
ステップ2:調節弁149の開度を調整し、空気流量を設定する。
ステップ3:回収瓶およびネブライザの重量を測定する。
ステップ4:ネブライザを2分間駆動させる。
ステップ5:回収瓶およびネブライザの重量を再び測定する。
ステップ6:回収瓶内に回収された液を除去し、ネブライザに液を追加する。
ステップ7:ステップ3~ステップ6の手順を7回繰り返し、1つの流量条件でのデータセットを得る。
 ステップ4でネブライザ3を駆動させた前後における回収瓶147重量の増加量とネブライザ3重量の減少量をステップ3およびステップ5で得られた重量の差分から算出することにより、コイル部145に捕捉されたミストの捕捉量およびコイル部145に導入されたミスト量が求められる。なお、発生したミスト212は配管内を移動するうちに水分が蒸発する可能性があるので、実験中、配管内を流れる空気の温湿度を温湿度センサ1482で連続測定し、外気の温湿度と合わせて蒸発量を計算した。
 ミスト量=ステップ3で測定されたネブライザ重量-ステップ5で測定されたネブライザ重量
捕捉量=ステップ5で測定された回収瓶の重量-ステップ3で測定された回収瓶の重量蒸発量=空気流量×ミスト発生時間×(配管内部の水蒸気量-外気の水蒸気量)
 なお、水蒸気量aは式5で示すTetensの式をもとに算出する。
Figure JPOXMLDOC01-appb-M000005
ここで式5において、T:温度[℃]、e:飽和水蒸気圧[hPa]、RH:相対湿度[%]、a:水蒸気量[g/m3]である。
 図7に、空気流量を変化させた時のミスト量(○)、および捕捉量と蒸発量の和(×)をプロットしたグラフを示す。各データは7回の実験試行のうち最大値と最小値を除いた5回の平均値である。空気流量が20L/minよりも小さい場合、捕捉量と蒸発量の和に比べてミスト量が3~4パーセント程度多くなる。これは、ネブライザ3から発生したミスト212の一部が回収瓶147より下流側に流れたこと、つまりミスト212の一部が捕捉されず吸気装置143側に流出したことを示している。一方、空気流量が20L/min以上ではミスト量と、捕捉量と蒸発量の和がほぼ一致し、ネブライザ3で発生したミストがほぼ全てコイル部145で捕捉されていることが示されている。以上の実験結果から空気流量20L/min以上とすればミストを100%捕捉できることを確認できた。これは、式4で予測された値と一致し、式4の妥当性が検証できた。
 本実施例には以下の効果がある。対象とするミスト径や吸入流量を与えれば、式4によりコイル部145の形状を任意に設計できるため、ミスト212の回収が確実にでき、装置の信頼性が向上する。また、コイル部145の長さを最小に設定することができるので装置を小形・低コスト化できる。また、ミスト捕捉評価系によりコイル部145の捕捉能力を評価できるので捕捉機構の検査・品質保証が可能になり製品の信頼性が向上する。
 また、配管の一部をコイル状に変形するだけでミストを捕捉できるのでフィルタが不要になり装置の小形・低コスト化が可能になる。また、配管の洗浄の際には、コイル部を設けた配管を取り外し消毒液や洗剤に侵漬した後、流水洗浄するだけでよいためメンテナンスが容易になる。また、配管途中のコイル部の内壁にミストが捕捉されるため、交換時に捕捉されたミストが配管両端から隔離され、外部と接触する恐れが無いため周囲を汚染せずコンタミネーションを防止できる。
 また、コイル部を樹脂チューブなど透明な部材とすれば、内部の捕捉状況が目視または光センサ等で非接触かつ直接観測できるのでメンテナンスを確実かつ効率よく行うことができる。
 さらに、コイル部の内壁に細かな凹凸を付ければ、ミストが内壁に密着し乾燥後の剥離を防止でき剥離による装置の汚染が無くなるのでコンタミネーションを防止できる。また、コイル部の内壁に、内壁の濡れ性を変化したり、粘着性を付与したりする表面処理剤をコーティングすれば、ミストが内壁に密着するとともに、乾燥後に剥離した塵埃をコイル部内に再付着固定するので、装置の汚染を抑制しコンタミネーションを防止できる。また、カビやバクテリアの繁殖を防止する表面処理剤をコーティングすれば、胞子などの塵埃の発生を抑制しコンタミネーションを防止できる。
 本発明の実施例2として、粒子吸引捕捉機構の除染やメンテナンスについて述べる。図8はコイル部145内を洗浄するメンテナンスを実行している状態を示す図である。
 コイル部145を有する配管1421の下流側他端を、密閉した廃液回収器1471内に開口する。また、廃液回収器1471内に一端を挿入した配管1422を、吸気装置143の吸気口1431に接続する。廃液回収器1471は液滴を回収するもので、実施例1で示した様な回収瓶147でもよいしサイクロンでもよい。また、吸気装置143の接続を解除して、メンテナンス専用の吸気装置を接続してもよい。
 メンテナンス時には吸気装置143を起動した後、容器把持機構101、102の上面にある多数の孔103に、スプレーやネブライザなどの洗浄用ミスト源31で洗浄液を微粒化した洗浄用ミスト2121を供給する。洗浄用ミスト2121の径はコイル部で回収可能な最小径以上とする。洗浄用ミスト2121は孔103を通過してコイル部145に至り捕捉されてコイル部145の内壁に捕捉されていたミスト212に接触溶解して廃液滴2151となり下流側の廃液回収器1471に貯留され吸気装置143側には流れない。廃液回収器1471と配管1422はメンテナンス時に取り付けてもよいし、常時、吸気系14に装着しておいてもよい。また、コイル部145や廃液回収器1471の材料を樹脂やガラスなど透明なものにしてもよい。
 本実施例には以下の効果がある。粒子吸引捕捉機構を取り外すことなく粒子吸引捕捉機構の吸引機能を利用して洗浄用ミスト2121を吸引し配管内部を洗浄できるので、メンテナンスが容易になり、分解時の周囲の汚染によるコンタミネーションが防止できる。また、洗浄液はミスト化しているため試料液のミストが集積した部分に同様に付着するため洗浄効率が向上し洗浄液量を低減できる。
 本発明の実施例3を、図9を用いて説明する。図9は配管に複数のコイル部を設けている。なお、図9はコイル部が2個の場合を例示しているが、2個以上であっても良い。
 各コイル部は式4を変形し、捕捉対象とする粒子径を求めた式6に従って、担当する捕捉粒子径の範囲を決めるが、上流側のコイル部1451よりも下流側のコイル部1452で捕捉する粒子径を小さくするようにコイル部の形状を決定することが望ましい。
Figure JPOXMLDOC01-appb-M000006
 式6からも分かるように、ミストの直径dに対し、コイル部の内径D1が最も大きく寄与し、内径が小さいほど細かいミストを捕捉できるため、上流側のコイル部1451の内径を下流側のコイル部1452に比較して、上流側で大きなミストを捕捉した後、下流側のコイル部1452で小さなミストを捕捉するのがよい。
 本実施例には以下の効果がある。対象とするミストの径の分布が広い範囲にわたる場合や、ミスト径の分布にいくつかのピークがある場合、上流側のコイル部1451で大きなミストを捕捉し下流側のコイル部1452で小さなミストを捕捉するよう各コイル部の形状を決めることにより、コイル部の長さを最小に設定することができるので装置を小形・低コスト化できる。
 本発明の実施例4を、図10を用いて説明する。図10は内径が上流側から下流側に向かって徐々に変化するコイル部を示す図である。なお、図10では内径の減少を一様であるように表したが、内径が段階的に変化してもよい。
 本実施例には以下の効果がある。対象とするミスト212の径の分布が広い範囲にわたる場合やミスト212の径の分布にいくつかのピークがある場合、コイル部145の上流側(内径が大きい領域)で大きなミスト212を捕捉し、コイル部145の下流側(内径が小さい領域)で小さなミスト212を捕捉するようコイル部145の形状を決めることにより、コイル部145の長さを最小に設定することができるので装置を小形・低コスト化できる。
 本発明の実施例5を、図11を用いて説明する。図11は内径およびループ径が上流側から下流側に向かって徐々に変化するコイル部を示す図である。なお、図11では内径およびループ径の減少を一様であるように表したが、内径およびループ径が段階的に変化してもよい。
 本実施例には以下の効果がある。対象とするミスト212の径の分布が広い範囲にわたる場合やミスト212の径の分布にいくつかのピークがある場合、コイル部145の上流側(内径およびループ径が大きい領域)で大きなミスト212を捕捉し、コイル部145の下流側(内径およびループ径が小さい領域)で小さなミスト212を捕捉するようコイル部145の形状を決めることにより、コイル部145の長さを最小に設定することができるので装置を小形・低コスト化できる。
 本発明の実施例6を、図12を用いて説明する。
 本実施例は粒子吸引捕捉機構でのミストの捕捉を確実にする処理を容易にするものである。図12に示すように吸気装置143を起動した後、容器把持機構101、102の上面にある多数の孔103にスプレーやネブライザなどの処理用ミスト源32で表面処理液を微粒化した処理用ミスト2122を供給する。表面処理液はコイル部の内表面の濡れ性を変化したり、粘着性を付与したり、カビやバクテリアの繁殖を防止する機能を付与するものである。処理用ミスト2122の径はコイル部で回収可能な最小径以上とする。処理用ミスト2122は孔103を通過してコイル部145に至り内壁に捕捉されて内壁にコーティングされる。また、コイル部145の下流側、吸気装置の上流側に、表面処理液が液滴化し下流側に流れた場合に、液滴が吸気装置143に入らないよう、図8で示したように、廃液回収器1471と配管1422を配管142と吸気装置143の間に挿入してもよい。また、配管142と吸気装置143の接続を解除して、表面処理専用の吸気装置を接続してもよい。
 本実施例には以下の効果がある。粒子吸引捕捉機構を分解することなく粒子吸引捕捉機構の吸引機能を利用して表面処理用ミスト2122を吸引し配管内部をコーティングできるので、作業が容易になる。また、洗浄などのメンテナンスによりコーティングが剥がれても再度容易にコーティングできる。また、表面処理液をミスト化するため試料液が集積しやすい部分に付着するので表面処理液の量を少なくし加工コストを低減できる。
1    開栓装置
2    試料容器
3    ネブライザ
13   開栓機構
14   吸気系
21   試料液
22   栓
31   洗浄用ミスト源
32   処理用ミスト源
101  容器把持機構(左側)
102  容器把持機構(右側)
103  孔
111  仕切り板(左側)
112  仕切り板(右側)
141  配管
142  配管
143  吸気装置
144  分岐部
145  コイル部
146  気流
147  回収瓶
149  調節弁
211  飛沫
212  ミスト
215  液滴
1421 配管
1422 配管
1431 吸気口
1432 排気口
1451 コイル部
1452 コイル部
1471 廃液回収器
1481 流量センサ
1482 温湿度センサ
2121 洗浄用ミスト
2122 処理用ミスト
2151 廃液滴 

Claims (10)

  1.  容器を把持する容器把持機構と、
     前記容器の開口部の栓を把持する開栓機構と、
     前記容器把持機構と前記開栓機構との相対距離を変えることで容器の開口部から栓を除去する開栓装置であって、
     前記開口部周囲に存在する、液体または固体からなる粒子を含んだ気体を吸い込む吸引孔と、
     前記吸引孔に接続され、吸引された気体および粒子を下流に導入する配管と、
     前記配管に接続された吸引装置と、
     前記前記配管と前記吸引装置の間に配置されたらせん状屈曲配管部と、を備えたことを特徴とする開栓装置。
  2.  請求項1記載の開栓装置において、
     前記らせん状屈曲配管部は気体中に含まれた粒子を当該らせん状屈曲配管部の内壁に衝突させることで捕捉することを特徴とする開栓装置。
  3.  請求項1記載の開栓装置において、
     前記らせん状屈曲配管部は前記配管および前記吸引装置に対して着脱可能に設けられていることを特徴とする開栓装置。
  4.  請求項1記載の開栓装置において、
     前記らせん状屈曲配管部は、上流側と下流側で内径またはループ径が異なることを特徴とする開栓装置。
  5.  請求項4記載の開栓装置において、
     前記らせん状屈曲配管部は、上流側に対して下流側の内径、ループ径、あるいはその両方が小さく形成されていることを特徴とする開栓装置。
  6.  請求項1記載の開栓装置において、
     前記らせん状屈曲配管部は、内壁面に凹凸形状が加工され、あるいは、内壁面に濡れ性、粘着性、または抗菌性を付与するコーティングが施されていることを特徴とする開栓装置。
  7.  請求項1記載の開栓装置において、
     前記配管と前記吸気装置の間にらせん状屈曲配管部を少なくとも二つ備え、
     上流側のらせん状屈曲配管部よりも下流側のらせん状屈曲配管部の方が内径またはループ径の少なくともいずれかが小さいことを特徴とする開栓装置。
  8.  請求項1記載の開栓装置において、
     前記らせん状屈曲配管部は、内部を視認可能な部材により形成されていることを特徴とする開栓装置。
  9.  請求項1記載の開栓装置において、
     前記らせん状屈曲配管部と前記吸気装置との間に配置された排液容器を備え、
     前記らせん状屈曲配管部の一端は前記配管に、他端は前記廃液容器に接続され、
     前記吸気装置は前記廃液容器に接続され、
     前記吸引孔に対して洗浄液を吹き付けることにより前記らせん状屈曲配管部を洗浄することを特徴とする開栓装置。
  10.  液体または固体からなる粒子を含んだ気体を内部に導入する一端と、
     吸気装置に接続されている他端を有する配管であって、
     当該配管は所定の内径およびループ径を持ったらせん状に形成されており、
     前記一端側の内径およびループ径が、前記他端側の内径およびループ径よりも大きく形成されていることを特徴とする配管。
PCT/JP2015/068605 2014-08-27 2015-06-29 粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置 WO2016031379A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/327,484 US10604393B2 (en) 2014-08-27 2015-06-29 Particle suction capture mechanism and unstopping device equipped with particle suction capture mechanism
EP15835374.8A EP3187457A4 (en) 2014-08-27 2015-06-29 Particle suction capture mechanism and unstopping device equipped with particle suction capture mechanism
CN201580034905.3A CN106573767B (zh) 2014-08-27 2015-06-29 开塞装置以及配管
JP2016545023A JP6322714B2 (ja) 2014-08-27 2015-06-29 粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172171 2014-08-27
JP2014172171 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031379A1 true WO2016031379A1 (ja) 2016-03-03

Family

ID=55399283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068605 WO2016031379A1 (ja) 2014-08-27 2015-06-29 粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置

Country Status (5)

Country Link
US (1) US10604393B2 (ja)
EP (1) EP3187457A4 (ja)
JP (1) JP6322714B2 (ja)
CN (1) CN106573767B (ja)
WO (1) WO2016031379A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170302A (ja) * 2016-03-22 2017-09-28 株式会社デンソー ミスト発生装置
WO2020054455A1 (ja) * 2018-09-11 2020-03-19 味の素株式会社 食品サンプルアロマの分析方法、分析装置及び分析ガス調製装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128939B (zh) * 2020-08-31 2022-06-14 青岛海尔空调器有限总公司 一种空调除湿控制方法及设备
EP4306214A1 (en) * 2022-07-14 2024-01-17 Roche Diagnostics GmbH Laboratory apparatus, laboratory sample handling system and use of a laboratory apparatus and/or a laboratory sample handling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226485A (ja) * 1990-01-30 1991-10-07 Shimadzu Corp キャップ開閉装置
JPH08201364A (ja) * 1995-01-23 1996-08-09 Shin Etsu Chem Co Ltd ガスクロマトグラフ試料用分解瓶の自動開閉栓装置と分解瓶
JP2008279128A (ja) * 2007-05-11 2008-11-20 Ids Co Ltd 真空採血管の開栓装置及び開栓方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2055634B (en) * 1979-08-16 1983-01-26 Ishikawajima Harima Heavy Ind Gas-liquid separators
US5647906A (en) 1992-03-11 1997-07-15 A-Z Terminal Corporation Pipe cleaning machine
US5314529A (en) * 1993-09-13 1994-05-24 Tilton Donald E Entrained droplet separator
DE4344506C2 (de) * 1993-12-24 1998-04-16 Knecht Filterwerke Gmbh Zyklon zur Abscheidung von Öl
ATE269958T1 (de) 1997-04-23 2004-07-15 Cadexair Gerät und verfahren zur entfernung und in situ biodegradierung von fetten aus einem küchenventilator
KR20040047910A (ko) * 2001-10-19 2004-06-05 모노젠, 인크. 물품 취급 시스템 및 방법
KR100653137B1 (ko) * 2005-10-20 2006-12-01 윤장식 회전 무화 장치를 이용한 원심 습식 공기 정화기
DE102005030615A1 (de) * 2005-06-30 2007-02-01 Rupert Soltenau Zyklonartiges Rohrstück zur Scheidung von Staubpartikeln aus Abgasen insbesondere bei Dieselmotoren mit Hilfe des hydrodynamischen Paradoxons
GB2432667A (en) 2005-09-06 2007-05-30 Gwernafalau Gyfyngedig Apparatus and method for the separation of material from biological samples
CN102225278A (zh) * 2011-04-19 2011-10-26 重庆科技学院 油烟净化器
JP5893035B2 (ja) * 2011-08-22 2016-03-23 株式会社日立ハイテクノロジーズ 開栓装置および試料処理装置
EA019996B1 (ru) * 2011-12-02 2014-07-30 Александр Дзахотович АБАЕВ Способ и устройство для очистки текучих сред от загрязняющих поликомпонентных ингредиентов
KR102129891B1 (ko) * 2012-01-25 2020-07-03 유니버시티 오브 체스터 분리기
CN102671469A (zh) * 2012-04-25 2012-09-19 任文建 一种离心式气液分离器
JP6018810B2 (ja) * 2012-06-15 2016-11-02 株式会社日立ハイテクノロジーズ 栓開閉装置および試料処理装置
EP2885117B1 (en) * 2012-08-14 2017-12-20 Colourmate Inc. Vacuum loader for conveying powder
JP5897733B2 (ja) * 2012-12-13 2016-03-30 ヤマハ発動機株式会社 吸引チップ、該吸引チップを用いた対象物観察装置ならびに対象物観察方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226485A (ja) * 1990-01-30 1991-10-07 Shimadzu Corp キャップ開閉装置
JPH08201364A (ja) * 1995-01-23 1996-08-09 Shin Etsu Chem Co Ltd ガスクロマトグラフ試料用分解瓶の自動開閉栓装置と分解瓶
JP2008279128A (ja) * 2007-05-11 2008-11-20 Ids Co Ltd 真空採血管の開栓装置及び開栓方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187457A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170302A (ja) * 2016-03-22 2017-09-28 株式会社デンソー ミスト発生装置
WO2020054455A1 (ja) * 2018-09-11 2020-03-19 味の素株式会社 食品サンプルアロマの分析方法、分析装置及び分析ガス調製装置
JPWO2020054455A1 (ja) * 2018-09-11 2021-08-30 味の素株式会社 食品サンプルアロマの分析方法、分析装置及び分析ガス調製装置
JP7439759B2 (ja) 2018-09-11 2024-02-28 味の素株式会社 食品サンプルアロマの分析方法、分析装置及び分析ガス調製装置

Also Published As

Publication number Publication date
CN106573767A (zh) 2017-04-19
JPWO2016031379A1 (ja) 2017-05-25
EP3187457A4 (en) 2018-04-25
US20170166428A1 (en) 2017-06-15
EP3187457A1 (en) 2017-07-05
JP6322714B2 (ja) 2018-05-09
CN106573767B (zh) 2020-02-21
US10604393B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
JP6322714B2 (ja) 粒子吸引捕捉機構及び粒子吸引捕捉機構を備えた開栓装置
US6110247A (en) Micromachined impactor pillars
US6363800B1 (en) Coating to enhance the efficiency of a particle impact collector
US8727708B2 (en) Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium storing program for implementing the method, substrate processing apparatus, and particle capturing component
US7759123B2 (en) Removing surface deposits of concentrated collected particles
TWI520207B (zh) Substrate processing device
US6938777B2 (en) Method for removing surface deposits of concentrated collected particles
JP2010264341A (ja) 塵埃収集装置及び塵埃分析方法
US9726653B2 (en) Chemical detector
TWI638683B (zh) 防止微粒負載效應、具有濕潤衝擊表面的慣性衝擊器
JP2005252100A (ja) ミスト分離器、及び、ミスト分離器を備えた基板処理装置
US11980920B2 (en) Apparatus and methods for exhaust cleaning
KR101945216B1 (ko) 액적 분리 악취 저감장치
JP3609989B2 (ja) 気中微粒子検出装置
JP2011184786A (ja) 金属部材の洗浄方法及びその装置
JP5921093B2 (ja) 試料汚染方法
US10105732B2 (en) Coater and surface treatment method
CN210786660U (zh) 一种湿式除尘器
EP3487640B1 (en) High speed air system and method
CN104697823B (zh) 一种稀土改性纳米涂层玻璃板自清洁气体收集装置
CN104492109B (zh) 蒸发器高效气液分离器
JP6500381B2 (ja) 液体吐出ノズル
JP7439326B1 (ja) サンプリングボックス
WO2015173858A1 (ja) 洗浄機構及びこれを備えた分析装置
JP6923193B2 (ja) 除湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545023

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327484

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015835374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE