WO2016031187A1 - 偏波分散付加器及び光受信機 - Google Patents

偏波分散付加器及び光受信機 Download PDF

Info

Publication number
WO2016031187A1
WO2016031187A1 PCT/JP2015/004145 JP2015004145W WO2016031187A1 WO 2016031187 A1 WO2016031187 A1 WO 2016031187A1 JP 2015004145 W JP2015004145 W JP 2015004145W WO 2016031187 A1 WO2016031187 A1 WO 2016031187A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
optical
signal light
pulse
pmd
Prior art date
Application number
PCT/JP2015/004145
Other languages
English (en)
French (fr)
Inventor
雄大 中野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016544941A priority Critical patent/JP6269841B2/ja
Priority to EP15835989.3A priority patent/EP3188383B1/en
Priority to US15/504,721 priority patent/US10338316B2/en
Priority to CN201580046486.5A priority patent/CN106797251B/zh
Publication of WO2016031187A1 publication Critical patent/WO2016031187A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • the present invention relates to a polarization dispersion adder and an optical receiver, and more particularly to a technique for suppressing a decrease in signal light transmission quality due to a nonlinear phenomenon occurring in an optical fiber transmission line.
  • FIG. 11 is a block diagram showing a configuration of a general optical transmitter 800 used in the digital coherent scheme.
  • the optical transmitter 800 includes a light source 1, optical modulators 2 and 12, and a polarization multiplexer 5.
  • the light source 1 outputs CW (continuous wave) light having a predetermined wavelength.
  • the CW light output from the light source 1 is branched into two.
  • the bifurcated CW light is subjected to phase modulation and intensity modulation by the transmitted information in the optical modulators 2 and 12, and becomes signal light.
  • the optical modulator 2 is an optical modulator for X polarization
  • the optical modulator 12 is an optical modulator for Y polarization.
  • the modulated signal light on the X polarization side and the Y polarization side is multiplexed by the polarization multiplexer 5 as signal light whose polarizations are orthogonal to each other (orthogonal polarization multiplexing). Since the configuration and operation of an optical transmitter used in a general digital coherent method are well known, detailed description of each part in FIG. 11 is omitted.
  • FIG. 12 is a block diagram showing a configuration of a general optical receiver 810 used in the digital coherent method.
  • the optical receiver 810 includes a PBS (polarization beam splitter) 21, optical hybrid circuits 22 and 23, an AD (analog to digital) converter 24, and a chromatic dispersion compensator 25.
  • the optical receiver 810 further includes an adaptive equalization unit 27, a frequency offset compensation unit 28, a carrier phase estimation unit 29, and an identification determination unit 30.
  • the transmitted signal light is bifurcated in the PBS 21 and mixed with local light in the optical hybrid circuits 22 and 23.
  • the optical hybrid circuits 22 and 23 convert the signal light into an analog electric signal and output it.
  • the general optical hybrid circuits 22 and 23 output analog electric signals of I (inphase) component and Q (quadrature) component from one polarization signal. For this reason, the optical hybrid circuits 22 and 23 output four analog electric signals in total.
  • the analog electric signal is digitized by the AD converter 24 and output as a digital received signal.
  • the digital received signal is subjected to digital signal processing by the chromatic dispersion compensation unit 25, the adaptive equalization unit 27, the frequency offset compensation unit 28, the carrier phase estimation unit 29, and the identification determination unit 30, and the transmitted signal is demodulated.
  • the chromatic dispersion compensation unit 25 mainly compensates for static degradation of signal light such as chromatic dispersion in the optical transmission line.
  • the adaptive equalization unit 27 mainly compensates for dynamic degradation of signal light such as polarization fluctuations.
  • the adaptive equalization unit 27 also performs polarization separation of the received signal.
  • the frequency offset compensator 28 compensates for the frequency difference between the optical carrier and the local light of the optical receiver.
  • the carrier phase estimation unit 29 compensates for the phase difference between the optical carrier wave and the local light.
  • the identification determination unit 30 identifies data included in the received signal. Since the configuration and operation of an optical receiver used in a general digital coherent method are well known, further detailed description of each part in FIG. 12 is omitted.
  • Patent Document 1 describes a communication system including a polarization compensator in a transmitter and a receiver.
  • Patent Document 2 describes an optical communication system including a modulation method for reducing crosstalk between polarizations.
  • Patent Document 3 describes an optical communication method for ensuring the confidentiality of information by polarization mode dispersion.
  • JP-T-2004-511128 paragraphs [0110]-[0122]
  • JP 2012-2222811 A paragraph [0040], FIG. 4
  • International Publication No. 2004/064315 page 5, line 34-page 6, line 46
  • Nonlinear optical effects include, for example, self phase modulation, cross phase modulation, and cross polarization modulation.
  • An object of this invention is to provide the technique for suppressing the fall of the transmission quality of the signal light resulting from the nonlinear phenomenon in an optical fiber.
  • the polarization mode dispersion adder provides a pulse deviation for each pulse of signal light generated by modulating an optical carrier wave, from the rising start time T0 of the pulse to the falling completion time T1 of the pulse.
  • Polarization rotating means for rotating and outputting a wave, and a delay for adding an amount of delay corresponding to the amount of rotation of the polarization added by the polarization rotating means to the pulse output from the polarization rotating means Adding means.
  • An optical receiver includes a polarization beam splitter that performs polarization separation on received signal light, an optical hybrid circuit that converts the polarization-separated signal light into an analog electrical signal, and digitally receives the analog electrical signal.
  • AD analog-to-digital
  • polarization mode dispersion compensation means for compensating for polarization mode dispersion added at the time of transmission of the signal light included in the signal light.
  • the polarization of the pulse is increased from the rising start time T0 of the pulse to the falling completion time T1 of the pulse.
  • a wave is rotated, and a delay of an amount corresponding to the rotation amount of the polarization added by the rotation is added to the pulse that has received the rotation of the polarization.
  • the present invention has an effect that it is possible to suppress a decrease in transmission quality of signal light due to a nonlinear phenomenon in an optical fiber.
  • FIG. 1 is a diagram illustrating a configuration of an optical fiber transmission system 100 according to a first embodiment of this invention.
  • the optical fiber transmission system 100 includes an optical transmission device 101, an optical reception device 102, and an optical fiber transmission path 103.
  • the signal light transmitted from the optical transmitter 101 propagates through the optical fiber transmission path 103 and is received by the optical receiver 102.
  • the optical transmission device 101 transmits a digital coherent WDM (wavelength-division-multiplexing) signal light in which a plurality of wavelengths are multiplexed to the optical fiber transmission line 103.
  • the optical fiber transmission line 103 includes an optical fiber 110 and an optical amplification device 109, and transmits WDM signal light to the optical reception device 102.
  • the optical transmission device 101 includes an optical multiplexing unit 107 and one or more optical transmission units 104.
  • Each of the optical transmitters 104 generates coherently modulated signal lights having different wavelengths.
  • the optical multiplexer 107 wavelength-multiplexes the plurality of signal lights generated by the optical transmitter 104 to generate WDM signal light, and sends the WDM signal light to the optical fiber transmission line 103.
  • the optical receiving device 102 includes an optical demultiplexing unit 108 and one or more optical receiving units 105.
  • the optical demultiplexing unit 108 demultiplexes the WDM signal light received from the optical fiber transmission path 103 into single wavelength signal light.
  • the optical receiver 105 receives the signal light output from the optical demultiplexer 108 and reproduces the transmitted information.
  • the optical transmission unit 104 and the optical reception unit 105 shown in FIG. 1 may have an optical transmission / reception function. That is, the optical transmission unit 104 may be a transmission unit of an optical transceiver. Further, the optical receiving unit 105 may be a receiving unit of an optical transceiver.
  • FIG. 2 is a block diagram showing a configuration of the optical transmission unit 104.
  • FIG. 3 is a block diagram showing the configuration of the optical receiver 105.
  • the optical transmitter 104 transmits coherently modulated signal light.
  • the optical receiver 105 receives the coherently modulated signal light and demodulates it by digital signal processing.
  • the optical transmission unit 104 includes a light source 1, optical modulators 2 and 12, polarization rotators 3 and 13, pre-PMD adders 4 and 14, and a polarization multiplexer 5.
  • the optical transmission unit 104 may further include a CPU (central processing unit) 91 and a memory 92.
  • the memory 92 stores a program executed by the CPU 91.
  • the memory 92 is a non-temporary storage medium, and includes, for example, a nonvolatile semiconductor memory and a volatile semiconductor memory. However, the configuration of the memory 92 is not limited to these.
  • the CPU 91 may control each unit of the optical transmission unit 104 by executing a program stored in the memory 92 to realize the function of the optical transmission unit 104.
  • PMD polarization mode dispersion
  • pre-PMD polarization mode dispersion
  • the optical transmission unit 104 is different from the general optical transmitter 800 described in FIG. 11 in that it further includes polarization rotators 3 and 13 and pre-PMD adders 4 and 14.
  • the CW (continuous wave) light output from the light source 1 is branched into two.
  • the bifurcated CW light is subjected to phase modulation and intensity modulation by the transmitted information in the optical modulators 2 and 12, and becomes signal light.
  • the optical modulator 2 is an optical modulator for X polarization
  • the optical modulator 12 is an optical modulator for Y polarization.
  • the modulated signal light on the X polarization side and the Y polarization side propagates through the optical path in the optical transmission unit 104 as signal light whose polarization planes are orthogonal to each other.
  • the signal light on the X polarization side and the Y polarization side passes through the polarization rotators 3 and 13 and the pre-PMD adders 4 and 14, respectively, and is then polarization multiplexed by the polarization multiplexer 5 (orthogonal polarization multiplexing). ).
  • the configuration and operation of the same blocks as those of the optical transmitter 800 described with reference to FIG. 11 are the same in the optical transmitter 104 unless otherwise specified. A description of operations common to a coherent optical transmitter is omitted.
  • the polarization rotators 3 and 13 output the respective polarization plane angles of the signal light on the X polarization side and the signal light on the Y polarization side while temporally changing.
  • the polarization rotators 3 and 13 can be realized, for example, by transmitting the signal light through two quarter-wave plates and controlling the rotation amount of the quarter-wave plates.
  • the polarization rotators 3 and 13 may be controlled by a control circuit built in the polarization rotators 3 and 13, or the amount of polarization rotation may be controlled by external control.
  • the pre-PMD adders 4 and 14 add polarization mode dispersion (PMD) to each of the X polarization signal light and the Y polarization signal light.
  • PMD polarization mode dispersion
  • optical fibers having high PMD are used as the pre-PMD adders 4 and 14.
  • polarization rotators 3 and 13 and the pre-PMD adders 4 and 14 Detailed operations of the polarization rotators 3 and 13 and the pre-PMD adders 4 and 14 will be described later.
  • FIG. 3 is a block diagram showing a configuration of the optical receiving unit 105.
  • the optical receiver 105 is a digital coherent receiver that receives coherently modulated signal light and demodulates transmitted information included in the signal light by digital signal processing.
  • the optical receiver 105 includes a PBS (polarized beam splitter) 21, optical hybrid circuits 22 and 23, an AD converter 24, and a chromatic dispersion compensator 25.
  • the optical reception unit 105 further includes a pre-PMD compensation unit 26, an adaptive equalization unit 27, a frequency offset compensation unit 28, a carrier phase estimation unit 29, and an identification determination unit 30.
  • optical receiver 105 includes a pre-PMD compensation unit 26.
  • the optical receiver 105 shown in FIG. In the following description, the configuration and operation of the same blocks as those of the optical receiver 810 are the same in the optical receiver 105 unless otherwise specified. Therefore, the description overlapping the optical receiver 810 and general digital coherent optical reception A description of operations common to the machine will be omitted.
  • the light receiving unit 105 may further include a CPU (central processing unit) 91 and a memory 92.
  • the memory 92 stores a program executed by the CPU 91.
  • the memory 92 is a non-temporary storage medium, and includes, for example, a nonvolatile semiconductor memory and a volatile semiconductor memory. However, the configuration of the memory 92 is not limited to these.
  • the CPU 91 may control each unit of the optical receiving unit 105 by executing a program stored in the memory 92 to realize the function of the optical receiving unit 105.
  • the digital reception signal output from the AD conversion unit 24 includes a chromatic dispersion compensation unit 25, a pre-PMD compensation unit 26, an adaptive equalization unit 27, a frequency offset compensation unit 28, a carrier phase estimation unit 29, an identification
  • the determination unit 30 performs digital signal processing.
  • the pre-PMD adder 4 on the X polarization side and the pre-PMD adder 14 on the Y polarization side add the same pre-PMD to the signal light.
  • the optical modulator 2 outputs signal light having the power and shape shown in FIG. 4 as a pulse train.
  • the peak power of the signal light shown in FIG. 4 is A (dBm)
  • the signal light output from the polarization rotator 3 is linearly polarized in the polarization direction (X-axis direction) shown in FIG. 6 at time T0. .
  • the polarization rotator 3 continuously changes the polarization plane angle of the output signal light from the X axis to the maximum rotation angle B from time T0 to T1, as shown in FIG. Change.
  • Time T0 indicates the start of rising of a pulse of signal light (hereinafter referred to as “pulse”), and time T1 indicates the completion of pulse falling.
  • pulse a pulse of signal light
  • the signal light to which the polarization rotation has been applied is input to the pre-PMD adder 4.
  • the pre-PMD adder 4 adds a delay corresponding to the polarization direction of the input signal light to the signal light.
  • the added delay amount is minimum when the polarization plane of the signal light input to the pre-PMD adder 4 is in the X-axis direction of FIG. 7, and increases with an increase in the rotation angle of the polarization plane. To do.
  • the amount of delay becomes maximum when the polarization plane of the input signal light is in the Y-axis direction. That is, the pre-PMD adder 4 adds the minimum delay to the pulse at the pulse rising start time T0, and adds the maximum delay to the pulse at the pulse falling completion time T1.
  • the angle of the polarization plane of the signal light output from the polarization rotator 3 is the angle at the start of the pulse rise (until the start of the rise of the next pulse).
  • the polarization rotator 3 may be controlled so as to return to the (X-axis direction).
  • the polarization rotator 3 is controlled to rotate counterclockwise in order to return the angle of the polarization plane to the position at the start of pulse rise.
  • the rotation angle of the polarization increases from the start of rising of the pulse input to the pre-PMD adder 4 to the completion of falling. Accordingly, the delay of the pulse output from the pre-PMD adder 4 increases. As a result, the pre-PMD is added by spreading the pulse in time.
  • the pre-PMD parameters to be added may be constant or may be different for each pulse.
  • the optical transmission unit 104 uses the polarization rotator 13 and the pre-PMD adder 14 to add pre-PMD similar to the signal light on the X polarization side to the signal light on the Y polarization side. That is, the polarization rotator 13 continuously changes the angle of the polarization plane of the input Y-polarized signal light pulse from the Y-axis direction to the maximum rotation angle B from time T0 to T1, and outputs it. . By such an operation of the polarization rotator 13, the polarization rotation of the angle B is also applied to the signal light on the Y polarization side within one pulse.
  • the pre-PMD adder 14 adds a delay corresponding to the polarization direction of the input Y-polarized signal light to the Y-polarized signal light.
  • FIG. 8 is a diagram illustrating an example of the polarization direction of the signal light polarization-multiplexed by the polarization multiplexer 5.
  • a delay corresponding to the polarization rotation and the amount of rotation from 0 to B is added to each of the X polarization side signal light and the Y polarization side signal light as pre-PMD for each pulse.
  • the polarization multiplexer 5 polarization-multiplexes the X-polarized signal light and the Y-polarized signal light to which the pre-PMD is added, and outputs the multiplexed light to the optical multiplexing unit 107.
  • the pulses on the X polarization side and the Y polarization side both have a shape that is spread over time as shown in FIG.
  • the signal light transmitted through the optical fiber transmission path 103 is more likely to be deteriorated in quality due to a nonlinear phenomenon as the peak power is higher.
  • the peak power (A (dBm) in FIG. 4) before adding the pre-PMD is lower than A (dBm) because the pulse spreads in the time direction when the pre-PMD is added. (FIG. 5).
  • the maximum rotation angle B of the polarization plane of the polarization rotators 3 and 13 increases, so the amount of delay increases, so the peak power of the pulse also decreases. That is, as the maximum rotation angle B is larger, the influence of the nonlinear phenomenon is suppressed. Therefore, the maximum rotation angle B may be set to be as large as possible within the range of the polarization rotation capability of the polarization rotators 3 and 13 and the PMD compensation capability of the optical receiver 105.
  • optical receiver 105 (Operation of optical receiver) Next, the operation of the optical receiver 105 will be described. 3 is different from the general optical receiver 810 described in FIG. 12 in that it further includes a pre-PMD compensation unit 26 that compensates for the pre-PMD.
  • the pre-PMD parameter added by the optical transmission unit 104 is shared by the optical transmission unit 104 and the optical reception unit 105 and stored in the pre-PMD compensation unit 26.
  • the 3 includes a pre-PMD compensation unit 26 between the chromatic dispersion compensation unit 25 and the adaptive equalization unit 27.
  • the optical reception unit 105 shown in FIG. The optical receiving unit 105 performs compensation for PMD generated in the transmission path in the adaptive equalization unit 27 as in the optical receiver 810.
  • the optical receiver 105 further compensates the pre-PMD added by the optical transmitter 104 by the pre-PMD compensation unit 26.
  • the pre-PMD compensation unit 26 of the present embodiment includes a digital filter.
  • the fluctuation amount of the polarization direction of the signal light and the PMD amount added to the signal light are expressed as a function of time. Therefore, the optical receiving unit 105 can compensate the pre-PMD added by the optical transmission unit 104 by the digital signal arithmetic processing in the pre-PMD compensation unit 26 having a digital filter function for inverse equalizing the pre-PMD.
  • the optical transmission unit 104 adds the pre-PMD to each signal light that is orthogonally polarized and multiplexed, and the optical power in the symbol of the signal light. And the direction of polarization is spread over time. As a result, the influence of the nonlinear phenomenon on the signal light in the optical fiber transmission line is suppressed.
  • the optical fiber transmission system 100 in the optical fiber transmission system 100 according to the first embodiment, it is possible to suppress degradation of signal light quality due to nonlinear phenomena.
  • optical fiber transmission system 100 In the optical fiber transmission system 100 shown in FIG. 1, digital coherent signals having a plurality of wavelengths are wavelength-multiplexed by the optical multiplexing unit 107 and transmitted as WDM signal light.
  • the transmitted signal light may not be WDM signal light. That is, the optical transmission device 101 and the optical reception device 102 according to the first embodiment are applicable to a system that does not include the optical multiplexing unit 107 and the optical demultiplexing unit 108 and transmits signal light having a single wavelength.
  • the optical fiber transmission system 100 may be a repeaterless optical transmission system that does not include the optical amplification device 109.
  • the polarization dispersion adder includes a polarization rotator (polarization rotator 3) and a delay adder (pre-PMD adder 4).
  • the polarization rotator rotates and outputs the polarization of the pulse for each pulse of the signal light generated by modulating the optical carrier wave, from the pulse rising start time T0 to the pulse falling completion time T1.
  • the delay adder adds a delay of an amount corresponding to the rotation amount of the polarization added by the polarization rotator to the pulse output from the polarization rotator.
  • the polarization dispersion adder having such a configuration adds pre-PMD to the signal light and spreads the optical power and polarization direction in the symbol of the signal light in time.
  • the polarization dispersion adder described above also has an effect that the influence of the nonlinear phenomenon on the signal light in the optical fiber transmission line can be suppressed.
  • the effect of the first embodiment is also brought about by an optical receiver having the following minimum configuration. That is, the optical receiver with the minimum configuration includes a polarization beam splitter (PBS21), an optical hybrid circuit (optical hybrid circuits 22 and 23), an AD converter (AD conversion unit 24), and a polarization mode dispersion compensation unit ( A pre-PMD compensation unit 26).
  • the polarization beam splitter performs polarization separation on the received signal light.
  • the optical hybrid circuit converts the signal light polarized by the polarization beam splitter into an analog electric signal.
  • the AD converter converts the analog electric signal output from the optical hybrid circuit into a digital reception signal.
  • the polarization mode dispersion compensation unit compensates for polarization mode dispersion (PMD) added during transmission of the signal light included in the digital reception signal.
  • the optical receiver with the minimum configuration having such a configuration is configured such that the PMD added at the time of signal light transmission is subjected to digital signal arithmetic processing in a polarization mode dispersion compensation unit having a digital filter function for inverse equalizing the PMD. Can compensate.
  • the optical receiver with the minimum configuration also has an effect that the influence of the nonlinear phenomenon on the signal light in the optical fiber transmission line can be suppressed.
  • the pre-PMD is added in the optical transmission unit, and the added pre-PMD is compensated in the optical reception unit. Therefore, the following modification of the first embodiment also has the above-described effect that it is possible to suppress the deterioration of the signal light quality due to the nonlinear phenomenon.
  • the delay time of the pre-PMD may be set to an amount that overlaps with the symbols after the next symbol as long as compensation is possible at the time of reception.
  • the rotation amount and the delay amount of the polarization plane gradually increase toward the pulse falling completion time T1, with the rising start time T0 of the pulse of the signal light being minimized.
  • the parameters of the pre-PMD such as the angle of the polarization plane and the rotation direction of the polarization plane at each time such as the start of rise of the pulse, the peak time, or the completion of the fall are limited to the example described in the first embodiment. Not. By arbitrarily setting the parameters, the pulse after adding the pre-PMD can be shaped into a specific shape.
  • the angle of the polarization plane of the pulse output from the polarization rotator 3 for X polarization may be returned in the X-axis direction before the start of pulse rise.
  • the control direction of the polarization rotator 3 may be controlled to always be the same direction. The same applies to the polarization rotator 13 for Y polarization.
  • the PMD amount added by the pre-PMD adder 4 may be switched to a setting in which the minimum delay amount is set on the Y axis perpendicular to the X axis and the maximum delay amount is set on the X axis after the pulse falling is completed. .
  • the angle of the polarization plane of the pulse output from the polarization rotator 3 is further rotated clockwise and moved to a direction coinciding with the Y axis. . Thereafter, the rotation of the polarization plane of the next pulse is started.
  • the position of the polarization rotator 3 is further rotated clockwise and moved to a direction coinciding with the X axis.
  • the same pre PMD can be added to successive pulses while the polarization rotator 3 continues to rotate in the same direction.
  • the control of the rotation of the polarization rotator is simplified.
  • the temporal change in the rotation speed of the polarization by the polarization rotators 3 and 13 and the delay amount by the pre-PMD adders 4 and 14 are constant from the pulse rising start time T0 to the signal light falling completion time T1. Or may not be constant.
  • the pulse after the pre-PMD addition can be shaped into a desired shape.
  • the parameters of the pre-PMD added to the signal light on the X polarization side and the signal light on the Y polarization side are the same, but the signal light of each polarization is different depending on different parameters. May be added.
  • the position of the pre-PMD compensation unit 26 of the optical receiving unit 105 illustrated in FIG. 3 is not limited to the example of FIG.
  • the pre-PMD compensation unit 26 may be disposed in front of the chromatic dispersion compensation unit 25.
  • the pre-PMD parameter added by the optical transmission unit 104 has been described as being shared by the optical transmission unit 104 and the optical reception unit 105 in advance.
  • the optical transmission unit 104 may change the pre-PMD parameter as needed.
  • the parameter of the pre-PMD is different from the signal light passing through the optical fiber transmission path 103 (for example, for monitoring control). Channel).
  • the pre-PMD is compensated by performing digital signal processing on the inverse function of the pre-PMD added by the optical transmitter 104 in the pre-PMD compensation unit 26.
  • the adaptive equalization unit 27 may include a procedure for estimating the pre-PMD amount of the received signal light and autonomously estimating and compensating for the pre-PMD compensation amount.
  • the adaptive equalization unit 27 autonomously compensates for the pre-PMD, so that the function of the pre-PMD compensation unit 26 and the function of the adaptive equalization unit 27 can be integrated, and the parameters of the pre-PMD can be integrated with the optical transmission unit 104 and the optical reception unit. It is not necessary to share with the unit 105.
  • the optical receiving unit 105 performs pre-PMD compensation by digital signal processing.
  • the pre-PMD compensation may be optically performed on the signal light.
  • FIG. 9 is a block diagram illustrating a configuration of the optical transmission unit 401 according to the second embodiment.
  • the optical transmission unit 401 includes a light source 1, optical modulators 2 and 12, a drive circuit 45, a DA (digital to analog) converter 46, a digital control circuit 47, and a polarization multiplexer 5.
  • the functions of the light source 1, the optical modulators 2 and 12, and the polarization multiplexer 5 included in the optical transmission unit 401 are the same as those of the optical transmission unit 104 of the first embodiment.
  • the optical transmission unit 401 may further include a CPU 91 and a memory 92.
  • the CPU 91 may control each unit of the optical transmission unit 401 by executing a program stored in the memory 92 to realize the function of the optical transmission unit 401.
  • the optical transmission unit 104 described in the first embodiment adds pre-PMD to signal light using the polarization rotators 3 and 13 and the pre-PMD adders 4 and 14.
  • the optical transmitter 401 generates signal light having a waveform with the pre-PMD added in the optical modulator 2 on the X polarization side and the optical modulator 12 on the Y polarization side.
  • the waveforms of the drive signals of the optical modulator 2 and the optical modulator 12 are controlled by the digital control circuit 47 and the DA converter 46 so that the signal light to which the pre-PMD is added is generated.
  • the optical transmission unit 401 adds the pre-PMD to the signal light. That is, the optical transmitter 401 can add pre-PMD to signal light without using the polarization rotators 3 and 13 and the pre-PMD adders 4 and 14 shown in FIG.
  • the optical transmission unit 401 can improve the optical characteristics and simplify the control procedure of the optical components by simplifying the configuration of the optical system.
  • FIG. 10 is a block diagram illustrating a configuration of the optical transmission unit 801 according to the third embodiment of this invention.
  • the polarization rotator 43 and the pre-PMD adder 44 are arranged at the subsequent stage of the polarization multiplexer 5.
  • the polarization rotator 43 and the pre-PMD adder 44 have functions similar to those of the polarization rotator 3 and the pre-PMD adder 4 included in the optical transmission unit 104 of the first embodiment.
  • the optical transmission unit 801 may further include a CPU 91 and a memory 92.
  • the CPU 91 may execute the program stored in the memory 92 to control each unit of the optical transmission unit 801 and realize the function of the optical transmission unit 401.
  • the configuration of the optical transmission unit 801 of the third embodiment can be simplified as compared with the optical transmission unit 104 of the first embodiment.
  • polarization rotation is performed by rotating the polarization of the pulse from the rising start time T0 of the pulse to the falling completion time T1 of the pulse.
  • a polarization dispersion adder For each pulse of signal light generated by modulating an optical carrier wave, polarization rotation is performed by rotating the polarization of the pulse from the rising start time T0 of the pulse to the falling completion time T1 of the pulse.
  • Appendix 2 The polarization dispersion adder according to appendix 1, wherein the polarization rotation means is controlled so that the rotation direction of the polarization is always the same.
  • Appendix 3 The polarization dispersion adder according to appendix 1 or 2, wherein the polarization rotation unit rotates and outputs the polarization of the signal light at a constant rotation speed between the time T0 and the time T1.
  • Appendix 4 The polarization dispersion adder according to any one of appendices 1 to 3, wherein the delay adding means adds a minimum delay to the pulse at the time T0 and adds a maximum delay to the pulse at the time T1. .
  • (Appendix 6) A light source for generating the optical carrier; First optical modulation means for modulating one of the two optical carriers branched into two and inputting one of the modulated optical carriers to the first dispersion adder; Second optical modulation means for modulating the other of the optical carrier that has been bifurcated and inputting the other of the modulated optical carrier to the second dispersion adder; First dispersion adding means, which is a polarization dispersion adder according to any one of appendices 1 to 5, which adds a predetermined delay to the light input from the first light modulation means; A second dispersion adding unit that is a polarization mode dispersion adder according to any one of appendices 1 to 5, which adds a predetermined delay to the light input from the second light modulation unit; Polarization multiplexing means for polarization multiplexing and outputting the light output from the first and second dispersion adding means; An optical transmitter.
  • Appendix 7 A light source for generating the optical carrier; First optical modulation means for modulating one of the two branched optical carriers to generate first signal light; Second optical modulation means for generating second signal light for modulating the other of the two branched optical carriers; Polarization multiplexing means for polarization multiplexing and outputting the first and second signal lights; The polarization dispersion adder according to any one of appendices 1 to 5, to which the polarization multiplexed first and second signal lights are input; An optical transmitter.
  • a light source that generates an optical carrier; A first optical modulation unit that modulates one of the two branched optical carriers and outputs a predetermined polarization mode dispersion for each optical pulse of the modulated optical carrier; A second optical modulation unit that modulates the other of the two branched optical carriers and outputs a predetermined polarization mode dispersion for each of the other optical pulses of the modulated optical carrier; Polarization multiplexing means for polarization multiplexing and outputting the light output from the first and second light modulation means; An optical transmitter.
  • a polarization beam splitter that polarizes and separates the received signal light;
  • An optical hybrid circuit that converts the polarization separated signal light into an analog electrical signal;
  • AD analog to digital conversion means for converting the analog electrical signal into a digital reception signal;
  • Polarization mode dispersion compensation means for compensating polarization mode dispersion added during transmission of the signal light included in the signal light;
  • An optical receiver An optical receiver.
  • the polarization mode dispersion compensation means stores a polarization mode dispersion parameter added at the time of transmission of the signal light, and electrically converts the polarization mode dispersion included in the signal light based on the stored parameter.
  • the optical receiver according to appendix 9, which compensates.
  • the polarization mode dispersion compensation means estimates the polarization mode dispersion amount of the signal light by computing the digital received signal and electrically compensates the polarization mode dispersion added at the time of transmission of the signal light.
  • the optical receiver according to appendix 9.
  • Appendix 14 An optical transmitter described in any one of Appendices 6 to 8, each outputting signal light having a different wavelength; Optical multiplexing means for combining the signal lights of different wavelengths and outputting them as wavelength multiplexed optical signals;
  • An optical transmission device comprising:
  • the optical receiver according to any one of appendices 9 to 13, which receives the signal light separated by the optical demultiplexing means;
  • An optical receiver comprising: (Appendix 16) An optical fiber transmission system connected by an optical fiber transmission line so that wavelength multiplexed signal light transmitted from the optical transmitter described in Appendix 14 is received by the optical receiver described in Appendix 15.
  • the received signal light is polarized and separated, The polarization separated signal light is converted into an analog electrical signal, Converting the analog electrical signal into a digital received signal; Compensating polarization mode dispersion added at the time of transmission of the signal light included in the signal light, Polarization mode dispersion compensation method.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

 光ファイバ内の非線形現象に起因する信号光の伝送品質の低下を抑制するための技術を提供するために、偏波分散付加器は、光搬送波を変調して生成された信号光のパルス毎に、パルスの立上り開始時刻T0からパルスの立下がり完了時刻T1までの間、パルスの偏波を回転させて出力する偏波回転部と、偏波回転部から出力されたパルスに、偏波回転部で付加された偏波の回転量に対応した量の遅延を付加する遅延付加部と、を備える。

Description

偏波分散付加器及び光受信機
 本発明は、偏波分散付加器及び光受信機に関し、特に、光ファイバ伝送路で発生する非線形現象による信号光の伝送品質の低下を抑制するための技術に関する。
 光ファイバ伝送システムの大容量化のために、デジタルコヒーレント方式が実用化されている。図11は、デジタルコヒーレント方式で用いられる一般的な光送信機800の構成を示すブロック図である。
 光送信機800は、光源1、光変調器2及び12、偏波多重器5を備える。光源1は所定の波長のCW(continuous wave、連続波)光を出力する。光源1が出力したCW光は、2分岐される。2分岐されたCW光は、光変調器2及び12において、伝送される情報によって位相変調や強度変調を受け、信号光となる。光変調器2は、X偏波用の光変調器であり、光変調器12は、Y偏波用の光変調器である。変調されたX偏波側及びY偏波側の信号光は、偏波多重器5で偏波が互いに直交する信号光として多重される(直交偏波多重)。
なお、一般的なデジタルコヒーレント方式で用いられる光送信機の構成及び動作はよく知られているので、図11の各部の詳細な説明は省略する。
 図12は、デジタルコヒーレント方式で用いられる一般的な光受信機810の構成を示すブロック図である。
 光受信機810は、PBS(polarization beam splitter、偏波ビームスプリッタ)21、光ハイブリッド回路22及び23、AD(analog to digital)変換部24、波長分散補償部25を備える。光受信機810は、さらに、適応等化部27、周波数オフセット補償部28、キャリア位相推定部29、識別判定部30を備える。
 伝送された信号光は、PBS21において2分岐され、光ハイブリッド回路22、23においてローカル光と混合される。光ハイブリッド回路22、23は、信号光をアナログ電気信号に変換して出力する。一般的な光ハイブリッド回路22、23は、1つの偏波の信号からI(inphase)成分及びQ(quadrature)成分のアナログ電気信号を出力する。このため、光ハイブリッド回路22、23は、合計で4つのアナログ電気信号を出力する。アナログ電気信号はAD変換部24にてデジタル化され、デジタル受信信号として出力される。
 デジタル受信信号は、波長分散補償部25、適応等化部27、周波数オフセット補償部28、キャリア位相推定部29、識別判定部30でデジタル信号処理を受け、伝送された信号が復調される。波長分散補償部25は、光伝送路の波長分散などの、主に信号光の静的な劣化を補償する。適応等化部27は、偏波変動などの、主に信号光の動的な劣化を補償する。適応等化部27は、受信信号の偏波分離も行う。周波数オフセット補償部28は、光搬送波と光受信機のローカル光との周波数差を補償する。キャリア位相推定部29は、光搬送波とローカル光との位相差を補償する。識別判定部30は、受信信号に含まれるデータを識別する。なお、一般的なデジタルコヒーレント方式で用いられる光受信機の構成及び動作はよく知られているので、図12の各部のさらに詳細な説明は省略する。
 本発明に関連して、特許文献1には、送信機及び受信機に偏波補償器を備える通信システムが記載されている。特許文献2には、偏波間クロストークを低減するための変調方式を備える光通信システムが記載されている。特許文献3には、偏波モード分散により情報の秘匿性を確保するための光通信方法が記載されている。
特表2004-511128号公報(段落[0110]-[0122]) 特開2012-222811号公報(段落[0040]、図4) 国際公開第2004/064315号(5ページ34行目-6ページ46行目)
 デジタルコヒーレント技術を用いた光伝送システムでは、伝送容量の拡大のために、光搬送波の偏波多重のみならず、光搬送波の位相や強度による多値化も進んでいる。一方、超長距離光ファイバ伝送システムにおいては、光ファイバによる非線形光学効果が信号光の伝送品質に影響することが広く知られている。非線形光学効果には、例えば、自己位相変調、相互位相変調、相互偏波変調がある。
 このため、光ファイバの内部で発生する非線形現象に起因する信号光の劣化の緩和あるいは補償によって、非線形現象による信号光の伝送品質低下に対する耐力を向上させる技術の重要性が高まっている。しかしながら、上述した一般的な光送信機及び光受信機並びに特許文献1-3に記載された技術は、いずれも、光ファイバ内の非線形現象に起因する信号光の伝送品質の低下を緩和あるいは補償するための機能を備えていない。このため、これらの公知の技術は信号光の非線形現象への耐力を向上させることはできない。
 (発明の目的)
 本発明は、光ファイバ内の非線形現象に起因する信号光の伝送品質の低下を抑制するための技術を提供することを目的とする。
 本発明の偏波分散付加器は、光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させて出力する偏波回転手段と、前記偏波回転手段から出力された前記パルスに、前記偏波回転手段で付加された偏波の回転量に対応した量の遅延を付加する遅延付加手段と、を備える。
 本発明の光受信機は、受信した信号光を偏波分離する偏波ビームスプリッタと、偏波分離された前記信号光をアナログ電気信号に変換する光ハイブリッド回路と、前記アナログ電気信号をデジタル受信信号に変換するAD(analog to digital)変換手段と、前記信号光に含まれる前記信号光の送信時に付加された偏波モード分散を補償する偏波モード分散補償手段と、を備える。
 本発明の偏波分散付加方法は、光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させ、偏波の前記回転を受けた前記パルスに、前記回転によって付加された偏波の回転量に対応した量の遅延を付加する、ことを特徴とする。
 本発明は、光ファイバ内の非線形現象に起因する信号光の伝送品質の低下を抑制できるという効果を奏する。
第1の実施形態の光ファイバ伝送システムの構成を示す図である。 光送信部の構成を示すブロック図である。 光受信部の構成を示すブロック図である。 X偏波側の信号光のシンボル列のプリPMDの付加前での波形の例を示す図である。 X偏波側の信号光のシンボル列のプリPMDの付加後での波形の例を示す図である。 X偏波側の信号光のプリPMDの付加前の偏波方向の例を示す図である。 X偏波側の信号光のプリPMDの付加後の偏波方向の例を示す図である。 偏波多重器において偏波多重された信号光の偏波方向の例を示す図である。 第2の実施形態の光送信部の構成を示すブロック図である。 第3の実施形態の光送信部の構成を示すブロック図である。 デジタルコヒーレント方式で用いられる一般的な光送信機の構成を示すブロック図である。 デジタルコヒーレント方式で用いられる一般的な光受信機の構成を示すブロック図である。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の光ファイバ伝送システム100の構成を示す図である。光ファイバ伝送システム100は、光送信装置101、光受信装置102、光ファイバ伝送路103を備える。光送信装置101から送信された信号光は、光ファイバ伝送路103を伝搬して、光受信装置102で受信される。
 光送信装置101は、複数の波長が多重されたデジタルコヒーレント方式のWDM(wavelength division multiplexing、波長分割多重)信号光を光ファイバ伝送路103に送出する。光ファイバ伝送路103は、光ファイバ110及び光増幅装置109を備え、WDM信号光を光受信装置102へ伝送する。
 光送信装置101は、光合波部107及び1台以上の光送信部104を備える。光送信部104は、それぞれ、コヒーレント変調された、異なる波長の信号光を生成する。光合波部107は、光送信部104で生成された複数の信号光を波長多重してWDM信号光を生成し、WDM信号光を光ファイバ伝送路103に送出する。
 光受信装置102は、光分波部108及び1台以上の光受信部105を備える。光分波部108は、光ファイバ伝送路103から受信したWDM信号光を単一波長の信号光に分波する。光受信部105は、光分波部108から出力された信号光を受信して伝送された情報を再生する。
 なお、図1に示す、光送信部104と光受信部105との少なくとも一方が光送受信機能を備えてもよい。すなわち、光送信部104は光トランシーバの送信部であってもよい。また、光受信部105は光トランシーバの受信部であってもよい。
 図2は光送信部104の構成を示すブロック図である。図3は光受信部105の構成を示すブロック図である。光送信部104はコヒーレント変調された信号光を送信する。光受信部105はコヒーレント変調された信号光を受信してデジタル信号処理により復調する。
 光送信部104は、光源1、光変調器2及び12、偏波ローテータ3及び13、プリPMD付加器4及び14、偏波多重器5を備える。光送信部104は、さらに、CPU(central processing unit、中央処理装置)91及びメモリ92を備えていてもよい。メモリ92は、CPU91において実行されるプログラムを記憶する。メモリ92は一時的でない記憶媒体であり、例えば不揮発性の半導体メモリ及び揮発性の半導体メモリで構成される。しかし、メモリ92の構成はこれらには限定されない。CPU91は、メモリ92に記憶されたプログラムを実行することで、光送信部104の各部を制御し、光送信部104の機能を実現してもよい。
 以下では、光送信部104にて付加される偏波モード分散(polarization mode dispersion、以下「PMD」という。)と、伝送路等で発生するPMDとを区別するために、光送信部104において付加されるPMDを「プリPMD」と記載する。
 光送信部104は、図11で説明した一般的な光送信機800と比較して、さらに、偏波ローテータ3及び13、プリPMD付加器4及び14を備える点で相違する。光源1が出力したCW(continuous wave、連続波)光は、2分岐される。2分岐されたCW光は、光変調器2、12において、伝送される情報によって位相変調や強度変調を受け、信号光となる。光変調器2は、X偏波用の光変調器であり、光変調器12は、Y偏波用の光変調器である。変調されたX偏波側及びY偏波側の信号光は、偏波面が互いに直交する信号光として光送信部104内の光路を伝搬する。X偏波側及びY偏波側の信号光は、それぞれ偏波ローテータ3及び13、プリPMD付加器4及び14を通過した後、偏波多重器5で偏波多重される(直交偏波多重)。以下の説明では、特に言及しない限り、図11で説明した光送信機800と同一のブロックの構成及び動作は光送信部104においても同一であるので、光送信機800と重複する説明及び一般的なコヒーレント光送信機と共通する動作に関する説明は省略する。
 偏波ローテータ3、13は、X偏波側の信号光及びY偏波側の信号光のそれぞれの偏波面の角度を、時間的に変化させながら出力する。偏波ローテータ3、13は、例えば、2枚の1/4波長板に信号光を透過させ、1/4波長板の回転量を制御することで実現できる。偏波ローテータ3、13は、偏波ローテータ3、13に内蔵された制御回路によって制御されてもよいし、外部からの制御によって偏波の回転量を制御してもよい。
 プリPMD付加器4、14は、X偏波側の信号光及びY偏波側の信号光のそれぞれに偏波モード分散(polarization mode dispersion、PMD)を付加する。プリPMD付加器4、14としては、例えば、高いPMDを持つ光ファイバが用いられる。偏波ローテータ3、13及びプリPMD付加器4、14の詳細な動作は後述する。
 図3は、光受信部105の構成を示すブロック図である。光受信部105はデジタルコヒーレント受信機であり、コヒーレント変調された信号光を受信して、信号光に含まれる伝送された情報をデジタル信号処理により復調する。光受信部105は、PBS(偏波ビームスプリッタ)21、光ハイブリッド回路22及び23、AD変換部24、波長分散補償部25を備える。光受信部105は、さらに、プリPMD補償部26、適応等化部27、周波数オフセット補償部28、キャリア位相推定部29、識別判定部30を備える。
 図3に示す光受信部105の構成の、図12に示した光受信機810との相違点は、光受信部105がプリPMD補償部26を備えることである。以下の説明では、特に言及しない限り、光受信機810と同一のブロックの構成及び動作は光受信部105においても同一であるので、光受信機810と重複する説明及び一般的なデジタルコヒーレント光受信機と共通する動作に関する説明は省略する。
 光受信部105は、さらに、CPU(central processing unit、中央処理装置)91及びメモリ92を備えていてもよい。メモリ92は、CPU91において実行されるプログラムを記憶する。メモリ92は、一時的でない記憶媒体であり、例えば不揮発性の半導体メモリ及び揮発性の半導体メモリで構成される。しかし、メモリ92の構成はこれらには限定されない。CPU91は、メモリ92に記憶されたプログラムを実行することで、光受信部105の各部を制御し、光受信部105の機能を実現してもよい。
 光受信部105において、AD変換部24から出力されたデジタル受信信号は、波長分散補償部25、プリPMD補償部26、適応等化部27、周波数オフセット補償部28、キャリア位相推定部29、識別判定部30でデジタル信号処理される。
 (光送信部の動作)
 光送信部104の動作について説明する。本実施形態の光送信部104では、X偏波側のプリPMD付加器4及びY偏波側のプリPMD付加器14は、同様のプリPMDを信号光に付加する。
 図4及び図5はX偏波側の信号光のシンボル列(パルス列)のプリPMDの付加前後での波形の例を示す図である。図6及び図7は、X偏波側の信号光のプリPMDの付加前後での偏波方向の例を示す図である。第1の実施形態では、光変調器2は、図4に示すパワー(power)及び形状の信号光をパルス列として出力する。図4に示す信号光のピークパワーはA(dBm)であり、偏波ローテータ3から出力される信号光は、時刻T0においては図6に示す偏光方向(X軸方向)に直線偏光している。
 本実施形態においては、まず、偏波ローテータ3は、図7に示すように、時刻T0からT1にかけて、出力される信号光の偏波面の角度を、X軸から最大回転角度Bまで連続的に変化させる。時刻T0は信号光のパルス(以下、「パルス」という。)の立上り開始時、時刻T1はパルス立下り完了時を示す。このような動作により、偏波ローテータ3から出力されるパルス毎に、角度Bの偏波回転が加わる。
 偏波回転が加えられた信号光は、プリPMD付加器4に入力される。プリPMD付加器4は、入力された信号光の偏波方向に対応する遅延を信号光に付加する。本実施形態では、付加される遅延量は、プリPMD付加器4に入力された信号光の偏波面が図7のX軸方向である場合に最小であり、偏波面の回転角の増加とともに増大する。遅延量は、入力された信号光の偏波面がY軸方向である場合に最大となる。すなわち、プリPMD付加器4は、パルスの立上り開始時刻T0において最小の遅延をパルスに付加し、パルスの立下り完了時刻T1において最大の遅延をパルスに付加する。
 なお、1個のパルスの偏波の回転が終了した後、次のパルスの立上り開始時までに、偏波ローテータ3から出力される信号光の偏波面の角度がパルスの立上り開始時点の角度(X軸方向)まで戻るように、偏波ローテータ3は制御されてもよい。例えば、偏波ローテータ3は、偏波面の角度をパルスの立上り開始時点の位置まで戻すために、反時計回りに回転するように制御される。
 偏波ローテータ3の作用により、プリPMD付加器4に入力されるパルスの立上り開始から立下り完了に至るまでの間に偏波の回転角が増加する。従って、プリPMD付加器4から出力されるパルスの遅延が増大する。その結果、パルスが時間的に広がることで、プリPMDが付加される。付加されるプリPMDのパラメータ(例えば、プリPMDの量、偏波回転角、遅延時間)は一定でもよいし、パルス毎に異なっていてもよい。
 図4から図7では、X偏波側の信号光に対してプリPMDが付加される手順を説明した。光送信部104は、偏波ローテータ13及びプリPMD付加器14を用いて、X偏波側の信号光と同様のプリPMDを、Y偏波側の信号光に加える。すなわち、偏波ローテータ13は、時刻T0からT1にかけて、入力されたY偏波側の信号光のパルスの偏波面の角度を、Y軸方向から最大回転角度Bまで連続的に変化させて出力する。このような偏波ローテータ13の動作により、Y偏波側の信号光にも、1個のパルス内で角度Bの偏波回転が加わる。プリPMD付加器14は、入力されたY偏波側の信号光の偏波方向に対応する遅延をY偏波側の信号光に付加する。
 図8は、偏波多重器5において偏波多重された信号光の偏波方向の例を示す図である。X偏波側の信号光及びY偏波側の信号光のいずれにも、パルス毎に0からBまでの偏波回転及び回転量に対応した遅延が、プリPMDとして加えられる。偏波多重器5は、それぞれプリPMDが付加されたX偏波側の信号光とY偏波側の信号光とを偏波多重して、光合波部107へ出力する。
 光送信部104において信号光にプリPMDを付加することにより、X偏波側及びY偏波側のパルスは、いずれも図5に示すように時間的な広がりを受けた形状となる。一般的に、光ファイバ伝送路103で伝送される信号光は、ピークパワーが高いほど非線形現象による品質劣化が生じやすい。本実施形態では、プリPMDを付加する前のパルスのピークパワー(図4のA(dBm))は、プリPMDの付加には、パルスが時間方向に広がるため、A(dBm)よりも低くなる(図5)。その結果、光ファイバ伝送路103における信号光に対する非線形現象による伝送品質の低下が抑制される。
 ここで、偏波ローテータ3、13の偏波面の最大回転角度Bが大きいほど遅延量が大きくなるため、パルスのピークパワーも低下する。すなわち、最大回転角度Bが大きいほど非線形現象による影響が抑制される。従って、最大回転角度Bは、偏波ローテータ3、13の偏波回転能力や光受信部105におけるPMDの補償能力の範囲内で、なるべく大きくなるように設定してもよい。
 (光受信部の動作)
 次に、光受信部105の動作について説明する。図3に示す光受信部105は、図12で説明した一般的な光受信機810と比較して、プリPMDを補償するプリPMD補償部26をさらに備える点で相違する。光送信部104で付加されるプリPMDのパラメータは、光送信部104と光受信部105とで共有され、プリPMD補償部26に記憶されている。
 図3に示す光受信部105は、波長分散補償部25と適応等化部27との間に、プリPMD補償部26を備える。光受信部105は、伝送路中で発生するPMDの補償を、光受信機810と同様に、適応等化部27において行う。光受信部105は、さらに、光送信部104において付加されたプリPMDを、プリPMD補償部26にて補償する。本実施形態のプリPMD補償部26は、デジタルフィルタを含んで構成される。信号光の偏光方向の変動量及び信号光に付加されたPMD量は、時間の関数として表現される。従って、光受信部105は、光送信部104において付加されたプリPMDを、プリPMDを逆等化するデジタルフィルタの機能を備えるプリPMD補償部26におけるデジタル信号の演算処理により補償できる。
 このように、第1の実施形態の光ファイバ伝送システム100では、光送信部104は、直交偏波多重されるそれぞれの信号光に対し、プリPMDを付加し、信号光のシンボル内の光パワー及び偏波方向を時間的に拡散する。その結果、光ファイバ伝送路内での信号光に対する非線形現象の影響が抑圧される。
 すなわち、第1の実施形態の光ファイバ伝送システム100では、非線形現象による信号光の品質低下の抑制が可能となる。
 なお、図1に示す光ファイバ伝送システム100では、複数の波長のデジタルコヒーレント信号が光合波部107で波長多重され、WDM信号光として伝送される。しかし、伝送される信号光はWDM信号光でなくてもよい。すなわち、第1の実施形態の光送信装置101及び光受信装置102は、光合波部107及び光分波部108を有しない、単一波長の信号光を伝送するシステムにも適用可能である。また、光ファイバ伝送システム100は、光増幅装置109を有しない無中継光伝送システムであってもよい。
 なお、第1の実施形態の効果は、以下の偏波分散付加器によってももたらされる。すなわち、偏波分散付加器は、偏波回転器(偏波ローテータ3)と、遅延付加器(プリPMD付加器4)を備える。偏波回転器は、光搬送波を変調して生成された信号光のパルス毎に、パルスの立上り開始時刻T0からパルスの立下がり完了時刻T1までの間、パルスの偏波を回転させて出力する。そして、遅延付加器は、偏波回転器から出力されたパルスに、偏波回転器で付加された偏波の回転量に対応した量の遅延を付加する。
 このような構成を備える偏波分散付加器は、信号光にプリPMDを付加し、信号光のシンボル内の光パワー及び偏波方向を時間的に拡散する。その結果、上述した偏波分散付加器も、光ファイバ伝送路内での信号光に対する非線形現象の影響を抑圧できるという効果を奏する。
 さらに、第1の実施形態の効果は、以下の最小構成の光受信機によってももたらされる。すなわち、最小構成の光受信機は、偏波ビームスプリッタ(PBS21)と、光ハイブリッド回路(光ハイブリッド回路22及び23)と、AD変換器(AD変換部24)と、偏波モード分散補償部(プリPMD補償部26)と、を備える。偏波ビームスプリッタは、受信した信号光を偏波分離する。光ハイブリッド回路は、偏波ビームスプリッタで偏波分離された信号光をアナログ電気信号に変換する。AD変換器は、光ハイブリッド回路が出力したアナログ電気信号をデジタル受信信号に変換する。偏波モード分散補償部は、デジタル受信信号に含まれる信号光の送信時に付加された偏波モード分散(PMD)を補償する。
 このような構成を備える最小構成の光受信機は、信号光の送信時に付加されたPMDを、PMDを逆等化するデジタルフィルタの機能を備える偏波モード分散補償部におけるデジタル信号の演算処理により補償できる。その結果、最小構成の光受信機も、光ファイバ伝送路内での信号光に対する非線形現象の影響を抑圧できるという効果を奏する。
 続いて、本実施形態の変形例を説明する。これらの変形例においても、光送信部においてプリPMDが付加され、付加されたプリPMDは光受信部において補償される。従って、第1の実施形態の以下の変形例も、非線形現象による信号光の品質低下の抑制が可能となるという上述された効果を奏する。
 (第1の実施形態の第1の変形例)
 光送信部104において信号光にプリPMDが付加される際には、プリPMDの付加後に信号光のシンボルが次のシンボルと重ならないように、プリPMDの遅延時間が設定されることが好ましい。しかし、プリPMDの付加によりシンボルが重なる場合でも、シンボルの重複により発生した符号間干渉は、例えば、光受信部105の波長分散補償部25において補償できる。従って、プリPMDの遅延時間は、受信時に補償可能であれば、次のシンボル以降のシンボルと重なるような量に設定されてもよい。
 (第1の実施形態の第2の変形例)
 図7では、偏波面の回転量や遅延量は、信号光のパルスの立上り開始時刻T0を最小として、パルス立下り完了時刻T1に向かって次第に増大する。ここで、パルスの立上り開始時、ピーク時あるいは立下り完了時等のそれぞれの時刻における偏波面の角度や偏波面の回転方向といったプリPMDのパラメータは、第1の実施形態で説明した例に限定されない。パラメータを任意に設定することで、プリPMDを付加した後のパルスを特定の形状に整形することもできる。
 (第1の実施形態の第3の変形例)
 第1の実施形態では、X偏波用の偏波ローテータ3から出力されるパルスの偏波面の角度は、パルスの立上り開始前にX軸方向に戻されてもよいとした。しかし、偏波ローテータ3の制御方向は、常に同一方向となるように制御されてもよい。Y偏波用の偏波ローテータ13に関しても同様である。
 例えば、パルスの立下り完了後に、プリPMD付加器4にて付加するPMDの量を、X軸と直角なY軸で最小遅延量とし、X軸で最大遅延量とする設定に切り替えてもよい。この場合、図7の時刻T0から時刻T1への動作の後、偏波ローテータ3から出力されるパルスの偏波面の角度は、さらに右回りに回転させてY軸と一致する方向まで移動される。そして、その後に次のパルスの偏波面の回転が開始される。この偏波面の回転の終了後、偏波ローテータ3の位置は、さらに右回りに回転させてX軸と一致する方向まで移動される。このような動作によっても偏波ローテータ3を同一方向に回転させ続けながら、連続するパルスに同様のプリPMDを付加できる。その結果、偏波ローテータの回転の制御が簡略化される。
 (第1の実施形態の第4の変形例)
 偏波ローテータ3、13による偏波の回転速度や、プリPMD付加器4、14による遅延量の時間的な変化は、パルス立上り開始時刻T0から信号光の立下り完了時刻T1までの間で一定であってもよく、あるいは一定でなくてもよい。プリPMD付加器4による遅延量を任意に制御することで、プリPMD付加後のパルスを所望の形状に整形することも可能となる。
 (第1の実施形態の第5の変形例)
 第1の実施形態では、X偏波側の信号光とY偏波側の信号光に付加されるプリPMDのパラメータは同一であるが、それぞれの偏波の信号光は、異なるパラメータによってプリPMDが付加されてもよい。
 (第1の実施形態の第6の変形例)
 図3に示した光受信部105のプリPMD補償部26の位置は、図3の例に限られない。プリPMD補償部26は、例えば、波長分散補償部25の前に配置されてもよい。
 (第1の実施形態の第7の変形例)
 第1の実施形態では、光送信部104で付加されるプリPMDのパラメータは、予め光送信部104と光受信部105とで共有されているものとして説明した。そして、光送信部104におけるプリPMDのパラメータの変更が光受信部105に直ちに反映される場合には、光送信部104は、プリPMDのパラメータを随時変更してもよい。プリPMDのパラメータの変更を光送信部104から光受信部105に直ちに通知するために、プリPMDのパラメータは、光ファイバ伝送路103を経由した信号光とは異なるチャネル(例えば、監視制御用のチャネル)によって通知されてもよい。プリPMDのパラメータを随時変更することで、信号光の速度の変化等、信号光の伝送条件の変化に応じたより好ましい量のプリPMDを信号光に付加できる。
 (第1の実施形態の第8の変形例)
 図3に示した光受信部105では、光送信部104で付加されたプリPMDの逆関数をプリPMD補償部26においてデジタル信号処理することで、プリPMDが補償された。しかし、適応等化部27が、受信した信号光のプリPMD量を推定し、自律的にプリPMDの補償量を推定して補償する手順を備えてもよい。適応等化部27が自律的にプリPMDを補償することで、プリPMD補償部26の機能と適応等化部27の機能とを統合できるとともに、プリPMDのパラメータを光送信部104と光受信部105との間で共有する必要がなくなる。
 (第1の実施形態の第9の変形例)
 第1の実施形態では、光受信部105は、デジタル信号処理によりプリPMD補償を行っている。しかし、プリPMD補償は、信号光に対して光学的に実施されてもよい。
 (第2の実施形態)
 図9は、第2の実施形態の光送信部401の構成を示すブロック図である。光送信部401は、光源1、光変調器2及び12、駆動回路45、DA(digital to analog)変換器46、デジタル制御回路47、偏波多重器5を備える。光送信部401が備える光源1、光変調器2及び12、偏波多重器5の機能は、第1の実施形態の光送信部104と同様である。光送信部401は、さらに、CPU91及びメモリ92を備えていてもよい。CPU91は、メモリ92に記憶されたプログラムを実行することで、光送信部401の各部を制御し、光送信部401の機能を実現してもよい。
 第1の実施形態で説明した光送信部104は、偏波ローテータ3、13及びプリPMD付加器4、14を用いて、信号光にプリPMDを付加する。これに対して、光送信部401は、X偏波側の光変調器2及びY偏波側の光変調器12において、プリPMDが付加された波形の信号光が生成される。光変調器2及び光変調器12の駆動信号の波形は、プリPMDが付加された信号光が生成されるように、デジタル制御回路47及びDA変換器46によって制御される。
 このような構成によって、第2の実施形態の光送信部401は、信号光にプリPMDを付加する。すなわち、光送信部401は、図1で示した偏波ローテータ3、13及びプリPMD付加器4、14を用いることなく信号光にプリPMDを付加できる。光送信部401は、光学系の構成が単純化されることにより、光学的な特性の改善や光学部品の制御手順の簡素化が可能である。
 (第3の実施形態)
 図10は、本発明の第3の実施形態の光送信部801の構成を示すブロック図である。光送信部801では、偏波ローテータ43及びプリPMD付加器44が偏波多重器5の後段に配置される。偏波ローテータ43及びプリPMD付加器44は、第1の実施形態の光送信部104が備える偏波ローテータ3及びプリPMD付加器4と同様の機能を備える。光送信部801は、さらに、CPU91及びメモリ92を備えていてもよい。CPU91は、メモリ92に記憶されたプログラムを実行することで、光送信部801の各部を制御し、光送信部401の機能を実現してもよい。
 X偏波側の信号光とY偏波側の信号光とでパルスの立上り開始時刻及び立下り完了時刻が一致していれば、1台の偏波ローテータ43及び1台のプリPMD付加器44によって、X偏波の信号光及びY偏波の信号光の双方に同時に同様のプリPMDを付加できる。その結果、第3の実施形態の光送信部801は、第1の実施形態の光送信部104と比較して、構成が簡素化できる。
 以上、実施形態及びその変形例を参照して本願発明を説明したが、本願発明は上記の実施形態及び変形例に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、上述した実施形態及びその変形例は、本発明の効果を奏する範囲で任意に組み合わせて用いられる。
 なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。
 (付記1)
 光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させて出力する偏波回転手段と、
 前記偏波回転手段から出力された前記パルスに、前記偏波回転手段で付加された偏波の回転量に対応した量の遅延を付加する遅延付加手段と、
を備える偏波分散付加器。
 (付記2)
 前記偏波回転手段は、偏波の回転方向が常に同一となるように制御される、付記1に記載された偏波分散付加器。
 (付記3)
 前記偏波回転手段は、前記時刻T0から前記時刻T1の間で一定の回転速度で前記信号光の偏波を回転させて出力する、付記1又は2に記載された偏波分散付加器。
 (付記4)
 前記遅延付加手段は、前記時刻T0において最小の遅延を前記パルスに付加し、前記時刻T1において最大の遅延を前記パルスに付加する、付記1乃至3のいずれかに記載された偏波分散付加器。
 (付記5)
 前記遅延付加手段により付加される前記遅延量の時間的な変化率は、前記時刻T0から前記時刻T1の間で一定である、付記1乃至4のいずれかに記載された偏波分散付加器。
 (付記6)
 前記光搬送波を生成する光源と、
 2分岐された前記光搬送波の一方を変調して、変調された前記光搬送波の一方を前記第1の分散付加器に入力する第1の光変調手段と、
 2分岐された前記光搬送波の他方を変調して、変調された前記光搬送波の他方を前記第2の分散付加器に入力する第2の光変調手段と、
 前記第1の光変調手段から入力された光に対して所定の遅延を付加する、付記1乃至5のいずれかに記載された偏波分散付加器である第1の分散付加手段と、
 前記第2の光変調手段から入力された光に対して所定の遅延を付加する、付記1乃至5のいずれかに記載された偏波分散付加器である第2の分散付加手段と、
 前記第1及び第2の分散付加手段から出力される光を偏波多重して出力する偏波多重手段と、
を備える光送信機。
 (付記7)
 前記光搬送波を生成する光源と、
 2分岐された前記光搬送波の一方を変調して第1の信号光を生成する第1の光変調手段と、
 2分岐された前記光搬送波の他方を変調する第2の信号光を生成する第2の光変調手段と、
 前記第1及び第2の信号光を偏波多重して出力する偏波多重手段と、
 前記偏波多重された前記第1及び第2の信号光が入力される付記1乃至5のいずれかに記載された偏波分散付加器と、
を備える光送信機。
 (付記8)
 光搬送波を生成する光源と、
 2分岐された前記光搬送波の一方を変調するとともに、変調された前記光搬送波の一方の光パルス毎に所定の偏波モード分散を付与して出力する第1の光変調手段と、
 2分岐された前記光搬送波の他方を変調するとともに、変調された前記光搬送波の他方の光パルス毎に所定の偏波モード分散を付与して出力する第2の光変調手段と、
 前記第1及び第2の光変調手段から出力される光を偏波多重して出力する偏波多重手段と、
を備える光送信機。
 (付記9)
 受信した信号光を偏波分離する偏波ビームスプリッタと、
 偏波分離された前記信号光をアナログ電気信号に変換する光ハイブリッド回路と、
 前記アナログ電気信号をデジタル受信信号に変換するAD(analog to digital)変換手段と、
 前記信号光に含まれる前記信号光の送信時に付加された偏波モード分散を補償する偏波モード分散補償手段と、
を備える光受信機。
 (付記10)
 前記偏波モード分散補償手段は、前記信号光の送信時に付加された偏波モード分散のパラメータを記憶し、前記記憶されたパラメータに基づいて前記信号光に含まれる偏波モード分散を電気的に補償する、付記9に記載された光受信機。
 (付記11)
 前記パラメータは、前記信号光とは異なるチャネルによって前記光受信機に通知される、付記10に記載された光受信機。
 (付記12)
 前記偏波モード分散補償手段は、前記デジタル受信信号を演算処理することにより前記信号光の偏波モード分散量を推定して前記信号光の送信時に付加された偏波モード分散を電気的に補償する、付記9に記載された光受信機。
 (付記13)
 前記信号光の送信時に付加された偏波モード分散の補償は、信号光に対して光学的に実施される、付記9に記載された光受信機。
 (付記14)
 付記6乃至8のいずれかに記載され、各々異なる波長の信号光を出力する光送信機と、
 前記各々異なる波長の信号光を合波して波長多重光信号として出力する光合波手段と、
を備える光送信装置。
 (付記15)
 波長多重光信号を受信して単一波長の信号光に分離する光分波手段と、
 前記光分波手段で分離された前記信号光を受信する付記9乃至13のいずれかに記載された光受信機と、
を備える光受信装置。
 (付記16)
 付記14に記載された光送信装置から送信される波長多重信号光が付記15に記載された光受信装置で受信されるように光ファイバ伝送路で接続された、光ファイバ伝送システム。
 (付記17)
 光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させ、
 偏波の前記回転を受けた前記パルスに、前記回転によって付加された偏波の回転量に対応した量の遅延を付加する、
偏波分散付加方法。
 (付記18)
 受信した信号光を偏波分離し、
 偏波分離された前記信号光をアナログ電気信号に変換し、
 前記アナログ電気信号をデジタル受信信号に変換し、
 前記信号光に含まれる前記信号光の送信時に付加された偏波モード分散を補償する、
偏波モード分散補償方法。
 (付記19)
 偏波分散付加器のコンピュータに、
 光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させる手順、
 偏波の前記回転を受けた前記パルスに、前記回転によって付加された偏波の回転量に対応した量の遅延を付加する手順、
を実行させるための制御プログラム。
 (付記20)
 光受信機のコンピュータに、
 偏波分離された前記信号光をアナログ電気信号に変換する手順、
 前記アナログ電気信号をデジタル受信信号に変換する手順、
 前記信号光に含まれる前記信号光の送信時に付加された偏波モード分散を補償する手順、
を実行させるための制御プログラム。
 この出願は、2014年8月28日に出願された日本出願特願2014-173766を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  光源
 2、12  光変調器
 3、13、43  偏波ローテータ
 4、14、44  プリPMD付加器
 5  偏波多重器
 21  PBS
 22、23  光ハイブリッド回路
 24  AD変換部
 25  波長分散補償部
 26  プリPMD補償部
 27  適応等化部
 28  周波数オフセット補償部
 29  キャリア位相推定部
 30  識別判定部
 45  駆動回路
 46  DA変換器
 47  デジタル制御回路
 91  CPU
 92  メモリ
 100  光ファイバ伝送システム
 101  光送信装置
 102  光受信装置
 103  光ファイバ伝送路
 104、801  光送信部
 105  光受信部
 107  光合波部
 108  光分波部
 109  光増幅装置
 110  光ファイバ
 800  光送信機
 810  光受信機

Claims (10)

  1.  光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させて出力する偏波回転手段と、
     前記偏波回転手段から出力された前記パルスに、前記偏波回転手段で付加された偏波の回転量に対応した量の遅延を付加する遅延付加手段と、
    を備える偏波分散付加器。
  2.  前記遅延付加手段は、前記時刻T0において最小の遅延を前記パルスに付加し、前記時刻T1において最大の遅延を前記パルスに付加する、請求項1に記載された偏波分散付加器。
  3.  前記光搬送波を生成する光源と、
     2分岐された前記光搬送波の一方を変調して、変調された前記光搬送波の一方を前記第1の分散付加器に入力する第1の光変調手段と、
     2分岐された前記光搬送波の他方を変調して、変調された前記光搬送波の他方を前記第2の分散付加器に入力する第2の光変調手段と、
     前記第1の光変調手段から入力された光に対して所定の遅延を付加する、請求項1又は2に記載された偏波分散付加器である第1の分散付加手段と、
     前記第2の光変調手段から入力された光に対して所定の遅延を付加する、請求項1又は2に記載された偏波分散付加器である第2の分散付加手段と、
     前記第1及び第2の分散付加手段から出力される光を偏波多重して出力する偏波多重手段と、
    を備える光送信機。
  4.  前記光搬送波を生成する光源と、
     2分岐された前記光搬送波の一方を変調して第1の信号光を生成する第1の光変調手段と、
     2分岐された前記光搬送波の他方を変調する第2の信号光を生成する第2の光変調手段と、
     前記第1及び第2の信号光を偏波多重して出力する偏波多重手段と、
     前記偏波多重された前記第1及び第2の信号光が入力される請求項1又は2に記載された偏波分散付加器と、
    を備える光送信機。
  5.  受信した信号光を偏波分離する偏波ビームスプリッタと、
     偏波分離された前記信号光をアナログ電気信号に変換する光ハイブリッド回路と、
     前記アナログ電気信号をデジタル受信信号に変換するAD(analog to digital)変換手段と、
     前記信号光に含まれる前記信号光の送信時に付加された偏波モード分散を補償する偏波モード分散補償手段と、
    を備える光受信機。
  6.  前記偏波モード分散補償手段は、前記信号光の送信時に付加された偏波モード分散のパラメータを記憶し、前記記憶されたパラメータに基づいて前記信号光に含まれる偏波モード分散を電気的に補償する、請求項5に記載された光受信機。
  7.  請求項3又は4に記載された、各々異なる波長の信号光を出力する光送信機と、
     前記各々異なる波長の信号光を合波して波長多重光信号として出力する光合波手段と、
    を備える光送信装置。
  8.  波長多重光信号を受信して単一波長の信号光に分離する光分波手段と、
     前記光分波手段で分離された前記信号光を受信する請求項5又は6に記載された光受信機と、
    を備える光受信装置。
  9.  請求項7に記載された光送信装置から送信される波長多重信号光が請求項8に記載された光受信装置で受信されるように光ファイバ伝送路で接続された、光ファイバ伝送システム。
  10.  光搬送波を変調して生成された信号光のパルス毎に、前記パルスの立上り開始時刻T0から前記パルスの立下がり完了時刻T1までの間、前記パルスの偏波を回転させ、
     偏波の前記回転を受けた前記パルスに、前記回転によって付加された偏波の回転量に対応した量の遅延を付加する、
    偏波分散付加方法。
PCT/JP2015/004145 2014-08-28 2015-08-19 偏波分散付加器及び光受信機 WO2016031187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016544941A JP6269841B2 (ja) 2014-08-28 2015-08-19 偏波分散付加器及び光受信機
EP15835989.3A EP3188383B1 (en) 2014-08-28 2015-08-19 Polarization dispersion adder and light receiver
US15/504,721 US10338316B2 (en) 2014-08-28 2015-08-19 Polarization dispersion adder and optical receiver
CN201580046486.5A CN106797251B (zh) 2014-08-28 2015-08-19 偏振色散添加器和光学接收器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173766 2014-08-28
JP2014-173766 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031187A1 true WO2016031187A1 (ja) 2016-03-03

Family

ID=55399103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004145 WO2016031187A1 (ja) 2014-08-28 2015-08-19 偏波分散付加器及び光受信機

Country Status (5)

Country Link
US (1) US10338316B2 (ja)
EP (1) EP3188383B1 (ja)
JP (1) JP6269841B2 (ja)
CN (1) CN106797251B (ja)
WO (1) WO2016031187A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031187A1 (ja) * 2014-08-28 2016-03-03 日本電気株式会社 偏波分散付加器及び光受信機
JP2018129618A (ja) * 2017-02-07 2018-08-16 富士通株式会社 受信装置および受信方法
GB2578583B (en) * 2018-10-30 2020-11-18 Rockley Photonics Ltd Optoelectronic modulator, photonic integrated circuit, and method
US20200256954A1 (en) * 2019-02-07 2020-08-13 Analog Devices, Inc. Optical pulse coding in a lidar system
US11018767B2 (en) * 2019-04-11 2021-05-25 Infinera Corporation Digital nonlinear phase compensator for legacy submarine cables
CN113132020B (zh) * 2019-12-31 2023-07-28 华为技术有限公司 相干光接收装置和采用相干光接收装置的光系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129239A (ja) * 2002-09-30 2004-04-22 Lucent Technol Inc チャンネル内非線形歪みを低減するための方法
JP2006238334A (ja) * 2005-02-28 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> コヒーレント光通信方式における光通信装置および光通信システム
JP2013162136A (ja) * 2012-02-01 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> コヒーレント伝送システム及び方法
WO2013124986A1 (ja) * 2012-02-22 2013-08-29 三菱電機株式会社 偏波推定器、偏波分離器、光受信器、偏波推定方法、および、偏波分離方法
JP2013205711A (ja) * 2012-03-29 2013-10-07 Oki Electric Ind Co Ltd 量子もつれ光子対発生装置
JP2014150371A (ja) * 2013-01-31 2014-08-21 Fujitsu Ltd 光送信装置および変調光信号生成方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001296430A1 (en) 2000-09-26 2002-04-08 Celight, Inc. System and method for code division multiplexed optical communication
WO2004064315A1 (ja) 2003-01-10 2004-07-29 Fujitsu Limited 秘匿性を有する光通信システムおよび光通信方法
US8295713B2 (en) * 2009-03-10 2012-10-23 Tyco Electronics Subsea Communications Llc Dual stage carrier phase estimation in a coherent optical signal receiver
CN102204132B (zh) * 2009-12-15 2014-10-15 穆尔蒂菲有限公司 对光纤中光信号的色度色散进行相干均衡的方法和系统
JP5421792B2 (ja) * 2010-01-12 2014-02-19 株式会社日立製作所 偏波多重送信器及び伝送システム
US8478135B2 (en) * 2010-06-30 2013-07-02 Alcatel Lucent Method and apparatus for polarization-division-multiplexed optical receivers
US8433205B2 (en) 2011-04-13 2013-04-30 Mitsubishi Electric Research Laboratories, Inc. Crosstalk-free high-dimensional constellations for dual-polarized nonlinear fiber-optic communications
JP5935442B2 (ja) * 2012-03-28 2016-06-15 富士通株式会社 光送受信装置、光伝送方法および光送信装置
JP6197590B2 (ja) * 2013-11-11 2017-09-20 富士通株式会社 光受信器、光信号処理方法、および光伝送システム
WO2016031187A1 (ja) * 2014-08-28 2016-03-03 日本電気株式会社 偏波分散付加器及び光受信機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129239A (ja) * 2002-09-30 2004-04-22 Lucent Technol Inc チャンネル内非線形歪みを低減するための方法
JP2006238334A (ja) * 2005-02-28 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> コヒーレント光通信方式における光通信装置および光通信システム
JP2013162136A (ja) * 2012-02-01 2013-08-19 Nippon Telegr & Teleph Corp <Ntt> コヒーレント伝送システム及び方法
WO2013124986A1 (ja) * 2012-02-22 2013-08-29 三菱電機株式会社 偏波推定器、偏波分離器、光受信器、偏波推定方法、および、偏波分離方法
JP2013205711A (ja) * 2012-03-29 2013-10-07 Oki Electric Ind Co Ltd 量子もつれ光子対発生装置
JP2014150371A (ja) * 2013-01-31 2014-08-21 Fujitsu Ltd 光送信装置および変調光信号生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIKOLAOS MANTZOUKIS ET AL.: "Performance Comparison of Electronic PMD Equalizers for Coherent PDM QPSK Systems", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 29, no. 11, pages 1721 - 1728, XP011323823, DOI: doi:10.1109/JLT.2011.2136320 *

Also Published As

Publication number Publication date
JPWO2016031187A1 (ja) 2017-06-01
US20170254957A1 (en) 2017-09-07
EP3188383A1 (en) 2017-07-05
EP3188383B1 (en) 2019-06-19
CN106797251B (zh) 2019-11-01
CN106797251A (zh) 2017-05-31
EP3188383A4 (en) 2018-05-02
US10338316B2 (en) 2019-07-02
JP6269841B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6269841B2 (ja) 偏波分散付加器及び光受信機
JP5585190B2 (ja) 光伝送システム,光送信装置,光受信装置及び光伝送方法
US9729229B2 (en) Optical spatial-division multiplexed transmission system and transmission method
US8958702B2 (en) System and method for reducing interference of a polarization multiplexed signal
JP2010081287A (ja) 光信号送信装置
WO2011083798A1 (ja) 波長分散を検出する方法及び装置並びに波長分散を補償する方法及び装置
US9331808B2 (en) Optical transmission apparatus and optical transmission method
WO2017084046A1 (zh) 一种信号发射方法、信号接收方法及相关设备与系统
US20150086201A1 (en) Data Multiplexing And Mixing Of Optical Signals Across Propagation Modes
EP3291462B1 (en) Dummy light generation device, light transmission device, and dummy light generation method
Puttnam et al. Long distance transmission in a multi-core fiber with self-homodyne detection
JP6319309B2 (ja) 光受信装置、光伝送システム、光受信方法および光伝送方法
Puttnam et al. 105Tb/s transmission system using low-cost, MHz linewidth DFB lasers enabled by self-homodyne coherent detection and a 19-core fiber
US20180294880A1 (en) System and method for coherent detection with digital signal procession
JP6036988B2 (ja) 光通信システム
CN111164911B (zh) 光载波抑制调制的方法和装置
JP5635923B2 (ja) 光信号品質監視装置及び方法
US20180041285A1 (en) Optical transmission device and wavelength division multiplexing optical transmission device
JP5750177B1 (ja) 光受信装置、光通信システムおよび偏波間クロストーク補償方法
US20230121555A1 (en) System and method for optical communication
Tran et al. A 2.5-Gb/s per channel DWDM-PON with a pulsed-ASE seed light source
Luis et al. OSNR penalties for non-zero skew in space-division multiplexed transmission link with self-homodyne detection
JP2010062654A (ja) 光送信装置及び光伝送システム
JP2013120246A (ja) 光送信機、及び光送信方法
JP2008219255A (ja) 光伝送装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544941

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15504721

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015835989

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835989

Country of ref document: EP