WO2017084046A1 - 一种信号发射方法、信号接收方法及相关设备与系统 - Google Patents

一种信号发射方法、信号接收方法及相关设备与系统 Download PDF

Info

Publication number
WO2017084046A1
WO2017084046A1 PCT/CN2015/094923 CN2015094923W WO2017084046A1 WO 2017084046 A1 WO2017084046 A1 WO 2017084046A1 CN 2015094923 W CN2015094923 W CN 2015094923W WO 2017084046 A1 WO2017084046 A1 WO 2017084046A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
spread spectrum
modulation
branch
subcarrier
Prior art date
Application number
PCT/CN2015/094923
Other languages
English (en)
French (fr)
Inventor
黄远达
李良川
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580084184.7A priority Critical patent/CN108352903B/zh
Priority to PCT/CN2015/094923 priority patent/WO2017084046A1/zh
Priority to EP15908543.0A priority patent/EP3367593B1/en
Publication of WO2017084046A1 publication Critical patent/WO2017084046A1/zh
Priority to US15/982,930 priority patent/US10374722B2/en
Priority to US16/517,214 priority patent/US10958352B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7087Carrier synchronisation aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/216Code division or spread-spectrum multiple access [CDMA, SSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709709Methods of preventing interference

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmitting method, a signal receiving method, and related devices and systems.
  • Baseband signals are generally not suitable for long-distance transmission on various channels due to transmission distortion, transmission loss, and the like.
  • it is necessary to perform corresponding carrier modulation to shift its signal spectrum to a high frequency, making it a form suitable for long-distance channel transmission.
  • carrier modulation can be performed by digital modulation methods such as QPSK (Quadrature Phase Shift Keying) and 16QAM (Quadrature Amplitude Modulation).
  • digital modulation methods such as QPSK (Quadrature Phase Shift Keying) and 16QAM (Quadrature Amplitude Modulation).
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • signal modulation begins to progress toward higher order QAM.
  • the ENOB Effective Number of Bits
  • the high-speed DAC Digital to Analog Converter
  • the back-to-back BER Bit Error Rate
  • the transmitter may include a light source, a multi-carrier generating device, a demultiplexer, an polarization-multiplexed IQ (In-phase, in-phase, quadrature, quadrature) modulator, a coupler, and the like.
  • a light source a multi-carrier generating device
  • a demultiplexer an polarization-multiplexed IQ (In-phase, in-phase, quadrature, quadrature) modulator
  • a coupler and the like.
  • the working principle of the transmitter is: after the light source generates a continuous optical carrier of a certain wavelength, multi-wavelength is generated by the multi-carrier generating device, and then demultiplexed into multiple sub-carriers by the demultiplexer, and then based on the high-speed data signal Multi-channel low-speed baseband IQ signal obtained by corresponding conversion to each subcarrier Polarization multiplexed IQ modulation is performed separately, and finally, the modulated subcarrier signals are combined and output through a coupler.
  • the high baud rate data signal can be converted into multiple low baud rate data signals by multi-subcarrier multiplexing, so that only low bandwidth devices (such as low bandwidth DACs) are needed. Other electrical devices with low bandwidth, etc.) can process and transmit the corresponding data signals. Since low-bandwidth DACs are generally easier to obtain higher ENOBs, resulting in less quantization noise, and other devices with lower bandwidths typically have less electrical noise, this approach can improve higher-order QAM systems. reliability. However, since the multi-carrier generating apparatus and the demultiplexer required in this manner can still be implemented only in a relatively complicated and high-cost manner, there are problems such as implementation complexity and high cost, which cannot be truly commercialized.
  • the transmitter may include a pulse light source, a DPSK (Differential Phase Shift Keying) encoder, a phase modulator, a spectral phase encoder, etc.;
  • the working principle is: the DPSK encoder generates a differential coded signal according to the input signal and outputs it to the phase modulator; the phase modulator phase modulates the optical carrier generated by the pulse light source according to the differential coded signal, and outputs the modulated signal to the spectral phase encoder.
  • the modulated signal is phase modulated by a spectral phase coder to achieve spread spectrum.
  • the spectral phase coder when performing phase modulation, needs to divide the signal into multiple spectral components and phase modulate the spectral components according to different optical phase shifts, wherein each optical phase shift is usually caused by multiple
  • the delay unit is generated or generated by a controllable phase unit formed by lithium niobate or its equivalent electro-optic material.
  • the modulation signal can be phase-modulated by the spectral phase coder to achieve spread spectrum to improve the reliability of the QAM system.
  • this method usually requires multiple delay units or controllable phase units to generate corresponding optical phase shifts to achieve spread spectrum, resulting in a more complex implementation, higher cost, and no real commercialization.
  • the existing methods for improving the reliability of the QAM system have problems such as high cost and difficulty in implementation. Therefore, it is urgent to provide a new way to solve the above problems.
  • the embodiments of the present invention provide a signal transmitting method, a signal receiving method, and related devices and systems, so as to solve the problems of high cost and difficult implementation in the existing methods for improving the reliability of the QAM system.
  • a signal transmission method comprising:
  • the N-channel spreading code and the N-channel subcarrier are a one-to-one correspondence
  • the N low-speed data signals are in a one-to-one correspondence with the N-channel subcarriers
  • the N low-speed data signals are obtained by serial-to-parallel conversion of the received high-speed data signals
  • the obtained N-way modulated spread spectrum signals are combined into one combined signal output.
  • data modulation and amplitude spread spectrum modulation are performed on the N subcarriers according to the N low speed data signal and the N way spreading code, to obtain an N path.
  • Modulating the spread spectrum signal including:
  • the N-channel low-speed data signal and the N-channel spreading code are used for performing data modulation and amplitude-spreading modulation on the N-channel subcarriers to obtain an N-channel.
  • Modulating the spread spectrum signal including:
  • a modulated spread spectrum signal corresponding to the subcarrier is obtained.
  • the N-channel low-speed data signal and the N-way spreading code are used for performing data modulation and amplitude spread spectrum modulation on the N-channel subcarriers to obtain an N-channel.
  • Modulating the spread spectrum signal including:
  • the path subcarrier performs data modulation to obtain a second branch data modulation signal, and performs amplitude spread spectrum modulation on the second branch data modulated signal according to the inverted one channel spreading code corresponding to the subcarrier. Obtaining a second branch modulation spread spectrum signal; and,
  • the N-channel low-speed data signal and the N-channel spreading code are used to perform data modulation and amplitude spread spectrum modulation on the N-channel subcarriers to obtain an N-channel.
  • Modulating the spread spectrum signal including:
  • Performing amplitude spread spectrum modulation on the first branch subcarrier according to a one-way spreading code corresponding to the subcarrier, to obtain a first branch spread spectrum signal, and according to one low speed data corresponding to the subcarrier Transmitting, by the signal, data modulation on the first branch spread spectrum signal to obtain a first branch modulated spread spectrum signal; and according to a reverse spreading code corresponding to the subcarrier after inversion, the second branch subcarrier Amplitude spread spectrum modulation is performed to obtain a second branch spread spectrum signal, and according to the inverted and the subcarriers a low-speed data signal corresponding to the wave, performing data modulation on the second-branch spread spectrum signal to obtain a second-branch modulated spread spectrum signal;
  • a signal receiving method including:
  • the signal transmitting device splits the generated single-wavelength optical carrier into sub-carriers of the same N wavelength by using the shunting device, and is based on the N low-speed data signal and the N-way spread spectrum a code, performing data modulation and amplitude spread spectrum modulation on the N-channel subcarriers, obtaining an N-way modulated spread spectrum signal, and combining the N-channel modulated spread spectrum signals;
  • the N is a positive integer not less than 2.
  • the method further includes:
  • Adaptive filtering is performed on each of the N data signals to obtain N adaptively filtered data signals.
  • the method further includes:
  • the method before the de-spreading the digital signal, the method further includes:
  • Dispersion compensation is performed on the digital signal.
  • a signal transmitting device including a light source, a serial-to-parallel converter, a first branching device, a first combining device, and N modulation and spreading devices, wherein the value of N is not less than 2.
  • N is not less than 2.
  • the light source is configured to generate a single wavelength optical carrier and output to the first branching device
  • the serial-to-parallel converter is configured to convert and convert the received high-speed data signal string into N low-speed data signals, and output the signals to the N modulated spread spectrum devices; wherein the N low-speed data signals are N modulation spread spectrum devices have a one-to-one correspondence;
  • the first branching device is configured to split a single-wavelength optical carrier generated by the light source into N-channel subcarriers with the same wavelength, and output the same to the N modulated spread spectrum devices; wherein the N-channel subcarriers and The N modulation and spread spectrum devices have a one-to-one correspondence;
  • Each of the N modulated spread spectrum devices modulates a spread spectrum device for respectively performing a modulated spread spectrum device according to a low speed data signal corresponding to the modulation spread spectrum device and an N way spread code Corresponding one-way spreading code, performing data modulation and amplitude spread spectrum modulation on the sub-carrier corresponding to the modulation and spread spectrum device, obtaining a modulated spread spectrum signal corresponding to the modulated spread spectrum device, and outputting to the first a combined device; wherein the N-channel spreading code has a one-to-one correspondence with the N modulation and spreading devices;
  • the first combining device is configured to combine the N modulated spectral spread signals received from the N modulation and spread spectrum devices into one combined signal output.
  • the spread spectrum device is modulated for any one of the N modulation spread spectrum devices, where the one modulation spread spectrum device is specifically configured to:
  • the spread spectrum device is modulated for any one of the N modulation and spread spectrum devices, where the one modulation spread spectrum device is specifically configured to:
  • the spread spectrum device is modulated for any one of the N modulation and spread spectrum devices, where the one modulation spread spectrum device is specifically configured to:
  • the road data modulation signal is subjected to amplitude spread spectrum modulation to obtain a second branch modulated spread spectrum signal; and, the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal are combined to obtain
  • the one channel of the modulation spread spectrum device modulates the spread spectrum signal and outputs the signal to the first combining device.
  • the spread spectrum device is modulated for any one of the N modulation and spread spectrum devices, where the one modulation spread spectrum device is specifically configured to:
  • Corresponding one low-speed data signal performs data modulation on the first-branch spread spectrum signal to obtain a first-branch modulated spread spectrum signal
  • one-way spreading code corresponding to the one modulated spread spectrum device according to the reverse phase Performing amplitude spread spectrum modulation on the second branch subcarrier to obtain a second branch spread spectrum a signal, and performing data modulation on the second branch spread spectrum signal according to the inverted one-way low-speed data signal corresponding to the one modulation spread spectrum device to obtain a second branch modulated spread spectrum signal
  • the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal are combined to obtain a modulated spread spectrum signal corresponding to the one modulated spread spectrum device, and output to the first combined path device.
  • the N way spreading codes are mutually orthogonal bipolar binary spreading sequences.
  • a signal receiving device including an OEC (Optical to Electrical Converter), an ADC (Analog to Digital Converter), and a DSP (Digital Signal Processor):
  • OEC Optical to Electrical Converter
  • ADC Analog to Digital Converter
  • DSP Digital Signal Processor
  • the OEC is configured to receive a signal transmitted by a signal transmitting device, and convert the received signal into an electrical signal and output the signal to the ADC; wherein the signal is generated by a signal transmitting device using a shunt device
  • the N-channel sub-carrier is subjected to data modulation and amplitude-spreading modulation based on the N-way low-speed data signal and the N-way spreading code to obtain an N-channel modulated spread spectrum signal. And combining the N-way modulated spread spectrum signals;
  • the ADC is configured to receive an electrical signal output by the OEC, and convert the electrical signal into a digital signal and output the signal to the DSP;
  • the DSP is configured to receive a digital signal output by the ADC, and despread the digital signal based on the N-channel spreading code to obtain an N-channel despread signal, and in the N-channel despread signal Each despread signal is low-pass filtered to obtain N data signals; the N is a positive integer not less than 2.
  • the DSP further includes a multiple input multiple output filter:
  • the MIMO filter is configured to adaptively filter each of the N data signals to obtain N adaptively filtered data signals.
  • the DSP is further included N phase restorers including one-to-one correspondence with the N-channel adaptively filtered data signals:
  • Each of the N phase restorers is configured to perform carrier phase recovery on an adaptively filtered data signal corresponding to the phase restorer to obtain a data signal after phase recovery of the carrier.
  • the DSP further includes a dispersion compensator:
  • the dispersion compensator is configured to perform dispersion compensation on the received digital signal before despreading the received digital signal, and output a dispersion-compensated digital signal to the N despreaders .
  • a signal transmission system including a signal transmitting device and a signal receiving device;
  • the signal transmitting device is configured to generate a single-wavelength optical carrier, and split the single-wavelength optical carrier into N-channel subcarriers with the same wavelength based on the shunting device, and according to the N low-speed data signal and the N-way spreading code.
  • N is a positive integer not less than 2
  • the N-way spreading code has a one-to-one correspondence with the N-channel subcarriers
  • the N-way low-speed data signal has a one-to-one correspondence with the N-channel subcarriers.
  • the N low-speed data signals are obtained by serial-to-parallel conversion of the received high-speed data signals;
  • the signal receiving device is configured to receive a signal transmitted by the signal transmitting device, perform photoelectric conversion and analog digital conversion processing on the received signal, obtain a digital signal, and, based on the N-channel spreading code pair
  • the digital signal is despread to obtain an N-way despread signal, and each of the N despread signals is low-pass filtered to obtain an N-channel data signal.
  • the generated single-wavelength optical carrier can be split into N sub-carriers having the same wavelength by the branching device. And using N low-speed data signals obtained by serial-to-parallel conversion of the received high-speed data signals, and N-way spreading codes to perform corresponding data modulation and amplitude on the N-channel subcarriers The spread spectrum modulation is obtained to obtain an N-way modulated spread spectrum signal, and the N-channel modulated spread spectrum signals are combined and output.
  • low-speed DACs with high ENOB and other low-bandwidth electrical devices can be used for data signal processing, which can effectively reduce the quantization noise and other electrical appliances of the DAC.
  • the electrical noise of the piece improves the performance of the high-order QAM modulation system.
  • the optical carrier when the optical carrier is split, it is not necessary to use a multi-carrier generating device and a multi-channel allocator having a complicated structure, and when performing spreading, it is not necessary to adopt a plurality of delay units or
  • the phase modulation mode of the controllable phase unit can effectively solve the problems of high cost and difficult implementation in the existing methods for improving the reliability of the QAM system on the basis of improving the reliability of the system.
  • FIG. 1 is a schematic structural diagram of a transmitter according to the prior art 1;
  • FIG. 2 is a schematic structural diagram of a transmitter described in the prior art 2;
  • FIG. 3 is a schematic flowchart diagram of a signal transmission method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic flowchart of a signal receiving method according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a signal transmitting apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of implementation of a first type of signal transmitting apparatus according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic structural diagram of an implementation of a second type of signal transmitting apparatus according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of an implementation of a third type of signal transmitting apparatus according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a fourth type of signal transmitting apparatus according to Embodiment 3 of the present invention. intention;
  • FIG. 10 is a schematic structural diagram of a signal receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic structural diagram of an implementation of a first type of DSP according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic structural diagram of an implementation of a second type of DSP according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic structural diagram of an implementation of a third DSP according to Embodiment 4 of the present invention.
  • FIG. 14 is a schematic structural diagram of implementation of a fourth DSP according to Embodiment 4 of the present invention.
  • FIG. 15 is a schematic structural diagram of a signal transmission system according to Embodiment 5 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the first embodiment of the present invention provides a signal transmitting method. Specifically, as shown in FIG. 3, it is The schematic diagram of the signal transmission method in the first embodiment of the present invention, the signal transmission method may specifically include the following steps:
  • Step 301 Generate a single wavelength optical carrier.
  • Step 302 The split-wavelength device is used to split the single-wavelength optical carrier into N-channel subcarriers with the same wavelength, and the value of the N is a positive integer not less than 2.
  • Step 303 Perform data modulation and amplitude spread spectrum modulation on the N-channel subcarrier according to the N low-speed data signal and the N-channel spreading code to obtain an N-channel modulated spread spectrum signal; the N-channel spreading code and the N
  • the path subcarriers have a one-to-one correspondence, the N low speed data signals have a one-to-one correspondence with the N way subcarriers, and the N low speed data signals are obtained by serial-to-parallel conversion of the received high-speed data signals. ;
  • Step 304 Combine the obtained N-channel modulated spread spectrum signals into one combined signal output.
  • the single-wavelength optical carrier can be split into N sub-carriers having the same wavelength by the branching device, and according to the N-way low-speed data signal and the N-way spreading code,
  • the N-channel subcarrier performs data modulation and amplitude spread spectrum modulation to obtain an N-channel modulated spread spectrum signal, and combines the N-channel modulated spread spectrum signals into one combined signal output. Since multiplexing can reduce the baud rate of each data signal, low-speed DACs with high ENOB and other low-bandwidth electrical devices can be used for data signal processing, which can effectively reduce the quantization noise and other electrical appliances of the DAC.
  • the electrical noise of the piece improves the performance of the high-order QAM modulation system.
  • the optical carrier can be split by using a relatively simple splitting device, without using a multi-carrier generating device with a relatively complicated structure, and when performing spreading, It is not necessary to adopt a phase modulation method that requires multiple delay units or controllable phase units, so as to improve the reliability of the system, the existing methods for improving the reliability of the system have higher cost and are difficult to implement. problem.
  • the branching device may be any branching device capable of splitting a single-wavelength optical carrier into multiple sub-carriers having the same wavelength, such as a coupler or a splitter, which is not limited in this embodiment of the present invention. .
  • N-channel modulated spread spectrum signal which can be performed as follows:
  • N-channel modulated spread spectrum signal which can also be implemented as:
  • a modulated spread spectrum signal corresponding to the subcarrier is obtained.
  • the sequence of data modulation and amplitude spread spectrum modulation of the subcarriers may be flexibly changed. For example, data modulation may be performed on the subcarriers first. The amplitude spread spectrum modulation is performed. The amplitude modulation and modulation of the subcarriers may be performed first, and then the data is modulated. This is not limited in this embodiment of the present invention.
  • the subcarriers may be split into two branch subcarriers to implement data modulation and respectively. Spreading to obtain two-channel modulated spread spectrum signals, and combining the two-channel modulated spread spectrum signals to obtain a one-way modulated spread spectrum signal corresponding to the sub-carriers.
  • the N-channel sub-carrier is subjected to data modulation and amplitude-spreading modulation to obtain an N-way modulated spread spectrum signal, which can also be implemented as:
  • phase shifting so that the phase difference between the two subcarriers is a set value (the set value can be flexibly set according to actual conditions, such as 180 degrees, etc.);
  • the path subcarrier performs data modulation to obtain a second branch data modulation signal, and performs amplitude spread spectrum modulation on the second branch data modulated signal according to the inverted one channel spreading code corresponding to the subcarrier. Obtaining a second branch modulation spread spectrum signal; and,
  • the subcarriers are split into a first branch subcarrier and a second branch subcarrier, and respectively, for the first branch subcarrier And the second branch subcarrier is phase-shifted, so that the phase difference between the two sub-carriers is a set value, and the data can be modulated and spread by the two sub-carriers in the following manner to obtain the One-way modulated spread spectrum signal corresponding to the subcarrier:
  • Performing amplitude spread spectrum modulation on the first branch subcarrier according to a one-way spreading code corresponding to the subcarrier, to obtain a first branch spread spectrum signal, and according to one low speed data corresponding to the subcarrier Transmitting, by the signal, data modulation on the first branch spread spectrum signal to obtain a first branch modulated spread spectrum signal; and according to a reverse spreading code corresponding to the subcarrier after inversion, the second branch subcarrier Performing amplitude spread spectrum modulation to obtain a second branch spread spectrum signal, and performing data modulation on the second branch spread spectrum signal according to the inverted one channel low speed data signal corresponding to the subcarrier Two-way modulated spread spectrum signal; and,
  • the order of the data modulation and the amplitude spread spectrum modulation can be flexibly changed, and the embodiment of the present invention does not limit this.
  • phase shifting the first branch subcarrier and the second branch subcarrier respectively so that a phase difference between the two subcarriers is the setting
  • the value can be specifically implemented as:
  • phase of the first branch subcarrier may also be phase shifted by 90 degrees, and the second branch subcarrier may be phase shifted by -90 degrees;
  • the first branch subcarrier is phase-shifted by -90 degrees, and the second branch subcarrier is phase-shifted by 90 degrees, etc., as long as the phase difference between the two subcarriers is 180 degrees, this embodiment of the present invention Do not repeat them.
  • N-way spreading codes described in the embodiments of the present invention may be mutually orthogonal bipolar binary spreading sequences.
  • each of the N-way spreading codes may be a real sequence such as a Walsh code or an OVSF code; of course, in order to obtain a more uniform spectrum, each of the spreading codes may also be based on a setting.
  • the pseudo random sequence code is a sequence code generated by scrambling a real sequence such as a Walsh code or an OVSF code, and the like, which is not limited in this embodiment of the present invention.
  • the execution body of the signal transmitting method in the embodiment of the present invention may be a corresponding signal transmitting device, which is not described in detail in the embodiments of the present invention.
  • the generated single-wavelength optical carrier can be split into N sub-carriers having the same wavelength by the branching device, and the received high-speed data signals are serially combined. Converting the obtained N low-speed data signals and N-channel spreading codes to perform corresponding data modulation and amplitude spread spectrum modulation on the N-channel subcarriers to obtain N-channel modulated spread spectrum signals, and then performing the N-channel modulated spread spectrum signals. Combine and output. Since multiplexing can reduce the baud rate of each data signal, low-speed DACs with high ENOB and other low-bandwidth electrical devices can be used for data signal processing, which can effectively reduce the quantization noise and other electrical appliances of the DAC.
  • the electrical noise of the piece improves the performance of the high-order QAM modulation system.
  • the optical carrier when the optical carrier is split, it is not necessary to use a multi-carrier generating device and a multi-channel allocator having a complicated structure, and when performing spreading, it is not necessary to adopt a plurality of delay units or
  • the phase modulation mode of the controllable phase unit can effectively solve the problems of high cost and difficult implementation in the existing methods for improving the reliability of the QAM system on the basis of improving the reliability of the system.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a second embodiment of the present invention provides a signal receiving method. Specifically, as shown in FIG. 4, it is a schematic flowchart of a signal receiving method according to Embodiment 2 of the present invention.
  • the signal receiving method may specifically include the following steps. :
  • Step 401 Receive a signal transmitted by a signal transmitting device, where the signal transmitting device splits the generated single-wavelength optical carrier into sub-carriers with the same N-wavelength by using the shunting device, based on the N-channel low-speed data signal and the N a channel spreading code, performing data modulation and amplitude spread spectrum modulation on the N-channel subcarriers, obtaining an N-way modulated spread spectrum signal, and combining the N-channel modulated spread spectrum signals;
  • Step 402 Perform photoelectric conversion and analog-to-digital conversion processing on the received signal to obtain a digital signal.
  • Step 403 De-spread the digital signal based on the N-channel spreading code to obtain an N-channel despread signal, and perform low-pass filtering on each despread signal in the N-channel despread signal to obtain N.
  • Road data signal; the N is a positive integer not less than 2.
  • the digital signal can be solved based on the N-channel spreading code used by the signal transmitting device for amplitude spread spectrum modulation. Expand to improve the accuracy of data recovery and reception.
  • the despreading of the signal may be implemented by separately multiplying each of the N-channel spreading codes and the digital signal to obtain an N-channel despread signal. I won't go into details here.
  • N-way spreading codes may be mutually orthogonal bipolar binary spreading sequences.
  • each of the N-channel spreading codes may be a real sequence such as a Walsh code or an OVSF code; of course, in order to obtain a more uniform spectrum, each of the spreading codes may also be set based.
  • the pseudo-random sequence code is a sequence code generated by scrambling a real sequence such as a Walsh code or an OVSF code, and the like, which is not limited in this embodiment of the present invention.
  • the orthogonality between the paths may be destroyed, thereby generating Multiple access crosstalk, etc., so the method may also include:
  • Adaptive filtering is performed on each of the N data signals to obtain N adaptively filtered data signals to improve data recovery and reception accuracy.
  • the method may further include:
  • the method may further include:
  • Dispersion compensation is performed on the digital signal to eliminate the influence of dispersion on the digital signal, thereby further improving the accuracy of data recovery and reception.
  • Embodiment 2 of the present invention is mainly
  • the body can be a corresponding signal receiving device, which is not described in detail in the embodiments of the present invention.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a third embodiment of the present invention provides a signal transmitting device.
  • FIG. 5 it is a schematic structural diagram of a signal transmitting device according to Embodiment 3 of the present invention.
  • the signal transmitting device may include a light source 51, a serial-to-parallel converter 52, a first branching device 53, a first combining device 54, and N modulation and spreading devices 55, and the value of the N is a positive integer not less than 2, where:
  • the light source 51 can be used to generate a single wavelength optical carrier, and output to the first branching device 53;
  • the serial-to-parallel converter 52 is configured to convert the received high-speed data signal string into N low-speed data signals and output the signals to the N modulation spread spectrum devices 55; wherein the N low-speed data signals and The N modulation and spread spectrum devices 55 have a one-to-one correspondence;
  • the first branching device 53 can be configured to split the single-wavelength optical carrier generated by the light source 51 into N-channel subcarriers with the same wavelength, and output the same to the N modulation and spreading devices 55; wherein, the N The path subcarriers have a one-to-one correspondence with the N modulation and spreading devices 55;
  • Each of the N modulation and spread spectrum devices 55, the modulation and spread spectrum device 55 can be used to respectively perform a modulation according to a low-speed data signal corresponding to the modulation and spread spectrum device 55 and an N-way spreading code.
  • the first spreading code corresponding to the spread spectrum device 55 performs data modulation and amplitude spread modulation on the subcarrier corresponding to the modulation and spread spectrum device 55 to obtain a modulation spread spectrum corresponding to the modulation and spread spectrum device 55.
  • the signal is output to the first combining device 54; wherein the N-channel spreading code has a one-to-one correspondence with the N modulation and spreading devices;
  • the first combining device 54 can be configured to combine the N modulated spread spectrum signals received from the N modulation and spreading devices 55 into one combined signal output.
  • the generated single-wavelength optical carrier it can be split into N sub-carriers having the same wavelength by the branching device, and N low-speed data signals obtained by serial-to-parallel conversion of the received high-speed data signals are used.
  • the N-channel spreading code performs corresponding data modulation and amplitude spread spectrum modulation on the N-channel subcarriers to obtain an N-channel modulated spread spectrum signal, and then combines and outputs the N-channel modulated spread spectrum signals.
  • multiplexing can reduce the baud rate of each data signal, it can be used High ENOB low-speed DACs and other low-bandwidth electrical devices are used to process the data signals, which can effectively reduce the quantization noise of the DAC and the electrical noise of other electrical components, and improve the performance of the high-order QAM modulation system.
  • the delay modulation unit or the phase modulation mode of the controllable phase unit can effectively solve the existing high cost and difficult implementation in the way of improving the reliability of the QAM system on the basis of improving the reliability of the system. problem.
  • the light source 51 can be a single-wavelength LED light source, a laser light source, or the like capable of generating a single-wavelength optical carrier
  • the first branching device 53 can be a coupler, a splitter, etc. capable of single-wavelength light.
  • the carrier is split into a plurality of arbitrary branching devices having subcarriers of the same wavelength
  • the first combining device 54 may be a coupler or a combiner capable of combining the N modulated and spread spectrum signals into one modulated spread spectrum Any combination of the signals is not limited in any way in the embodiments of the present invention.
  • the spread spectrum device 55 is modulated for any one of the N modulation spread spectrum devices, and the one modulation spread spectrum device 55 may be specifically configured to:
  • the spread spectrum device 55 is modulated for any one of the N modulation spread spectrum devices, and the one modulation spread spectrum device 55 is further specifically configured to:
  • the frequency-spreading device 55 first performs data modulation on the sub-carriers and then performs amplitude-spreading on the sub-carriers, and may perform amplitude-spreading on the sub-carriers before performing data modulation to increase data processing flexibility. No longer.
  • the one modulation and spread spectrum device 55 may specifically include a modulator and a spreader;
  • the modulator is configured to perform data modulation on a subcarrier corresponding to the one modulation spread spectrum device 55 according to a low speed data signal corresponding to the one modulation spread spectrum device 55, and output a data modulation signal Up to the spreader, the spread modulation unit performs amplitude spread modulation on the data modulation signal according to a spread code corresponding to the one modulation spread spectrum device 55, and outputs a modulated spread spectrum signal to a first combining device 54 (specifically, as shown in FIG.
  • the spreader can be configured to receive, by the modulator, data modulation on a subcarrier corresponding to the one modulation spread spectrum device 55 according to a low speed data signal corresponding to the one modulation spread spectrum device 55. And obtaining a data modulation signal, performing amplitude-spreading modulation on the data modulation signal according to a one-way spreading code corresponding to the one modulation and spreading device 55, and outputting the modulated spread spectrum signal to the first combining device 54 (specifically, as shown in FIG.
  • the modulator performs data modulation on the spread spectrum signal according to a low-speed data signal corresponding to the one modulation spread spectrum device 55, and outputs modulation
  • the spread spectrum signal is sent to the first combining device 54 (specifically, as shown in FIG. 7).
  • the XI, XQ, YI, and YQ signals shown in FIG. 6 or FIG. 7 are the low-speed data signals obtained by serial-to-parallel conversion of the high-speed data signals by the serial-to-parallel converter 52, and Code is the corresponding expansion.
  • the frequency code is not described in detail in the embodiment of the present invention.
  • each modulation and spreading device 55 may be PDM-QAM, single-bias QAM, PAM, etc., of course, any other modulation device capable of implementing corresponding data modulation.
  • the spreader included in each modulation and spread spectrum device 55 may be MZM or the like.
  • any other amplitude spread spectrum modulation can be implemented (the amplitude modulation of the subcarriers is implemented to achieve The spread spectrum device of the spread spectrum is not described in detail in the embodiments of the present invention.
  • the subcarriers may be split into two.
  • the branch subcarriers respectively implement data modulation and spread spectrum to obtain two-branch modulated spread spectrum signals, and combine the two-branch modulated spread spectrum signals to obtain one-way modulation corresponding to the sub-carriers.
  • Spread spectrum signal in addition to data modulation and spreading of any one of the subcarriers as a whole to obtain one modulated spread spectrum signal, the subcarriers may be split into two.
  • the branch subcarriers respectively implement data modulation and spread spectrum to obtain two-branch modulated spread spectrum signals, and combine the two-branch modulated spread spectrum signals to obtain one-way modulation corresponding to the sub-carriers.
  • the spread spectrum device 55 is modulated for any one of the N modulation spread spectrum devices, and the one modulation spread spectrum device 55 may also be specifically used for:
  • Corresponding one-way spreading code performing amplitude-spreading modulation on the first branch data modulated signal to obtain a first branch-modulated spread spectrum signal; and corresponding to the one modulated spread spectrum device 55 according to the inverse
  • a low-speed data signal performs data modulation on the second branch sub-carrier to obtain a second branch data modulation signal, and according to the inverted one-way spreading code corresponding to the one modulation and spreading device 55,
  • the second branch data modulation signal is subjected to amplitude spread spectrum modulation to obtain a second branch modulated spread spectrum signal; and the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal are combined a path corresponding to the one modulation spread spectrum device 55
  • the spread spectrum signal is modulated and output to the first combining device 54.
  • the subcarrier is split into a first subcarrier and a second subcarrier, and the first subcarrier is respectively
  • the second branch subcarrier is phase-shifted so that the phase difference between the two subcarriers is a set value (the set value can be flexibly set according to actual conditions, such as can be set to 180 degrees, etc.), the one modulation
  • the spread spectrum device 55 can also be specifically used for:
  • the first branch spread spectrum signal is data modulated by a corresponding low speed data signal corresponding to the device 55 to obtain a first branch modulated spread spectrum signal; and corresponding to the one modulation spread spectrum device 55 according to the reverse phase a spreading code, performing amplitude spread spectrum modulation on the second branch subcarrier to obtain a second branch spread spectrum signal, and according to the inverted low speed data signal pair corresponding to the one modulation spread spectrum device 55 Performing data modulation on the second branch spread spectrum signal to obtain a second branch modulated spread spectrum signal; and combining the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal A one-way modulated spread spectrum signal corresponding to the one modulation spread spectrum device 55 is obtained and output to the first combining device 54.
  • the order of the data modulation and the amplitude spread spectrum modulation can be flexibly changed, and the embodiment of the present invention does not limit this.
  • the one modulation and spread spectrum device 55 may include a second branching device, a phase shifter, a first two-electrode modulator, and a second two-electrode modulator. And a second combined device;
  • the second branching device may be configured to split a subcarrier corresponding to the one modulation and spreading device 55 into a first branch subcarrier and a second branch subcarrier;
  • the phase shifter may be configured to phase-shift the first branch subcarrier and the second branch subcarrier respectively, so that a phase difference between the two branch subcarriers is a set value, such as 180 degrees;
  • the first dual-electrode modulator can be configured to perform data modulation on the first branch subcarrier according to a low-speed data signal corresponding to the one modulation and spreading device 55, to obtain a first branch number. And modulating the signal, and performing amplitude-spreading modulation on the first branch data modulation signal according to a one-way spreading code corresponding to the one modulation and spreading device 55, to obtain a first branch-modulated spread spectrum signal (specific Or as shown in FIG.
  • the second dual-electrode modulator is configured to perform data modulation on the second branch subcarrier according to a reversed one-way low-speed data signal corresponding to the one modulation and spread spectrum device 55, to obtain a second branch data. Modulating a signal, and performing amplitude-spreading modulation on the second branch data modulated signal according to the inverted one-way spreading code corresponding to the one modulation and spreading device 55, to obtain a second branch modulation spread spectrum a signal (specifically, as shown in FIG.
  • the second combining device can be configured to combine the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal to obtain a modulation and expansion corresponding to the one modulation spread spectrum device 55.
  • the frequency signal is output to the first combining device 54.
  • the XI, XQ, YI, and YQ signals shown in FIG. 8 or FIG. 9 are low-speed data signals obtained by serial-to-parallel conversion of the high-speed data signals by the serial-to-parallel converter 52, and Code is the corresponding spread spectrum. The code is not described in detail in the embodiment of the present invention.
  • the second branching device may be any branching device capable of splitting a corresponding one subcarrier into two branch subcarriers, such as a coupler, a splitter, or the like;
  • the circuit device may be any combination device such as a coupler or a combiner capable of combining the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal into one modulated spread spectrum signal.
  • the phase shifter may be any phase shifting of two subcarriers capable of shifting two subcarriers of one subcarrier into two subcarriers having a certain phase difference (eg, 180 degrees, etc.) device. If the phase difference of the two subcarriers is required to be 180 degrees, the phase of the first subcarrier of the two subcarriers can be kept unchanged, and only the second subcarrier of the two subcarriers is phase shifted by 180 degrees.
  • phase difference of the two subcarriers is required to be 180 degrees, the phase of the first subcarrier of the two subcarriers can be kept unchanged, and only the second subcarrier of the two subcarriers is phase shifted by 180 degrees.
  • the first branch subcarrier of the two branch subcarriers may be phase shifted by 90 degrees
  • the second branch subcarrier may be phase shifted by -90 degrees
  • the first branch subcarrier of the two branch subcarriers may be phase shifted by -90 degrees
  • the phase difference between the two subcarriers is 180 degrees
  • the phase difference between the two subcarriers is 180 degrees.
  • first and second dual-electrode modulators may be any modulators capable of both data modulation and amplitude modulation of one carrier by using a data signal and a spreading code, such as EAM;
  • the first and second dual-electrode modulators can flexibly change the order of data modulation and amplitude modulation of one carrier, as long as the two signals (data signals, spreading codes, etc.) are used in the electrodes for receiving the corresponding signals. It is to be interchanged, and the embodiment of the present invention does not repeat this.
  • the data flow modulation and amplitude spread spectrum modulation of one subcarrier are taken as an example, and the workflow of the modulation spread spectrum device 55 having the two-electrode modulator is specifically described.
  • the first low speed data signal corresponding to the path subcarrier is utilized in the path subcarrier.
  • the expression of the obtained first branch modulation signal may be (Data 1 + P1) e j ⁇ t , where e j ⁇ t represents the subcarrier of the path.
  • the power offset point in the amplitude spread spectrum modulation is assumed to be P2
  • the first branch modulated signal is amplitude-spread modulated by using the first spreading code corresponding to the way subcarrier.
  • the expression of the obtained first branch modulated spread spectrum signal may be (Code 1 + P2) (Data 1 + P1) e j ⁇ t .
  • the obtained data is obtained.
  • the expression of the second branch modulated spread spectrum signal may be (-Code 1 + P2) (-Data 1 + P1) e j ⁇ t .
  • the first branch modulated spread spectrum signal and the second branch modulated spread spectrum signal are combined to obtain a modulated spread spectrum signal corresponding to the path subcarrier, wherein the expression of the modulated spread spectrum signal may be (Code 1 ⁇ Data 1 + P1 ⁇ P2) e j ⁇ t , P1 ⁇ P2 are residual carrier power after data modulation and amplitude spread modulation. It can be seen that the modulated spread spectrum signal after the combination is the correct modulated spread spectrum signal, thereby indicating that the correct data modulation and spread spectrum are realized.
  • the N way spreading codes may be mutually orthogonal bipolar binary spreading sequences.
  • each of the N-channel spreading codes may be a real sequence such as a Walsh code or an OVSF code; of course, in order to obtain a more uniform spectrum, each of the spreading codes may also be set based.
  • the pseudo-random sequence code is a sequence code generated by scrambling a real sequence such as a Walsh code or an OVSF code, and the like, which is not limited in this embodiment of the present invention.
  • the signal transmitting device can split the N-channel subcarriers having the same wavelength by the first branching device, and utilize N modulation spreads.
  • the N-channel low-speed data signal obtained by serial-to-parallel conversion of the received high-speed data signal by the frequency device and the serial-to-parallel converter, and the set N-way spreading code perform corresponding data modulation and amplitude expansion on the N-subcarrier subcarrier
  • the frequency modulation obtains an N-way modulated spread spectrum signal, and then combines and outputs the N-channel modulated spread spectrum signal by using the first combining device.
  • low-speed DACs with high ENOB and other low-bandwidth electrical devices can be used for data signal processing, which can effectively reduce the quantization noise and other electrical appliances of the DAC.
  • the electrical noise of the piece improves the performance of the high-order QAM modulation system.
  • the optical carrier when the optical carrier is split, it is not necessary to use a multi-carrier generating device and a multi-channel allocator having a complicated structure, and when performing spreading, it is not necessary to adopt a plurality of delay units or
  • the phase modulation mode of the controllable phase unit can effectively solve the problems of high cost and difficult implementation in the existing methods for improving the reliability of the QAM system on the basis of improving the reliability of the system.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the fourth embodiment of the present invention provides a signal receiving device, specifically, as shown in FIG. 10, which is the structure of the signal receiving device according to the fourth embodiment of the present invention.
  • the signal receiving device may include OEC101, ADC102, and DSP103:
  • the OEC 101 is configured to receive a signal transmitted by the signal transmitting device, and convert the received signal into an electrical signal and output the signal to the ADC 102.
  • the signal is generated by the signal transmitting device by using a shunt device After the single-wavelength optical carrier is split into N sub-carriers with the same wavelength, data modulation and amplitude spread spectrum modulation are performed on the N-channel subcarriers based on the N low-speed data signals and the N-way spreading codes, to obtain an N-way modulation spread. a frequency signal obtained by combining the N-channel modulated spread spectrum signals;
  • the ADC 102 is configured to receive an electrical signal output by the OEC 101, and convert the electrical signal into a digital signal and output the signal to the DSP;
  • the DSP 103 is configured to receive a digital signal output by the ADC 102, and despread the digital signal based on an N-channel spreading code to obtain an N-way despread signal, and each of the N-channel despread signals One despreading signal is low-pass filtered to obtain N data signals; the N is a positive integer not less than 2.
  • the digital signal can be solved based on the N-channel spreading code used by the signal transmitting device for amplitude spread spectrum modulation. Expand to improve the accuracy of data recovery and reception.
  • N-way spreading codes may be mutually orthogonal bipolar binary spreading sequences.
  • each of the N-channel spreading codes may be a real sequence such as a Walsh code or an OVSF code; of course, in order to obtain a more uniform spectrum, each of the spreading codes may also be set based.
  • the pseudo-random sequence code is a sequence code generated by scrambling a real sequence such as a Walsh code or an OVSF code, and is not described here.
  • the DSP 103 may include N despreaders corresponding to the N way spreading codes, and N LPFs corresponding to the N despreaders one by one (Low Pass Filter, low pass filter), where:
  • Each of the N despreaders may be configured to perform, according to the one spreading code corresponding to the despreader in the N way spreading code, the received digital signal Despreading, obtaining a despread signal and outputting to the LPF corresponding to the despreader;
  • Each of the N LPFs is configured to receive a despread signal output by a corresponding despreader, The received despread signal is low-pass filtered to obtain a data signal.
  • the despreader may be any despreading device capable of despreading the spread spectrum signal, such as a multiplier, and is not limited in this embodiment of the present invention. Specifically, when the despreader is a multiplier, it can achieve despreading of the spread spectrum signal by multiplying the received digital signal by a corresponding spreading code to improve data recovery and reception. Sex.
  • the DSP 103 in the signal receiving device may also adopt The implementation structure shown in Figure 12 is used to perform multiple access crosstalk cancellation and data recovery.
  • the DSP can also include a multiple input multiple output filter:
  • the multiple input multiple output filter can be used to adaptively filter each of the N data signals (ie, the data signals output by the N LPFs) to obtain N-channel adaptive filtering. Data signals to improve the accuracy of data recovery and reception.
  • the multiple input multiple output filter may be any filtering device capable of adaptively filtering multiple input signals to eliminate multiple access crosstalk, such as a MIMO FIR (Multiple Input Multiple Output Finite Impulse Response) filter, and the present invention
  • MIMO FIR Multiple Input Multiple Output Finite Impulse Response
  • the embodiment does not limit this.
  • the filter coefficients of the MIMO FIR can be calculated by using a CMA (Constant Modulus Algorithm) or an LMS (Least Mean Square) algorithm, and are not described here.
  • the DSP may further include N phase restorers that are in one-to-one correspondence with the N-channel adaptively filtered data signals:
  • Each of the N phase restorers is configured to perform carrier phase recovery on an adaptively filtered data signal corresponding to the phase restorer to obtain a data signal after phase recovery of the carrier. To improve the accuracy of data recovery and reception.
  • the DSP may further include a dispersion compensator, that is, CDC (Chromatic Dispersion Compensation):
  • the dispersion compensator may be configured to perform dispersion compensation on the received digital signal before despreading the received digital signal, and output a dispersion-compensated digital signal to the N despreaders to eliminate the influence of dispersion on the digital signal and improve the accuracy of data recovery and reception.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the fifth embodiment of the present invention provides a signal transmission system, specifically, as shown in FIG.
  • the signal transmission system can include a signal transmitting device 151 and a signal receiving device 152:
  • the signal transmitting device 151 is configured to generate a single-wavelength optical carrier, and split the single-wavelength optical carrier into N-channel subcarriers with the same wavelength based on the shunting device, and, according to the N low-speed data signal and the N-way spread spectrum a code, performing data modulation and amplitude spread spectrum modulation on the N subcarriers, obtaining an N-way modulated spread spectrum signal, and combining the obtained N-channel modulated spread spectrum signals into a combined signal to be output to the signal receiving device 152;
  • the value of N is a positive integer not less than 2, and the N-way spreading code has a one-to-one correspondence with the N-channel subcarriers, and the N-channel low-speed data signal and the N-channel subcarrier are one-to-one.
  • the N low-speed data signals are obtained by serial-to-parallel conversion of the received high-speed data signals;
  • the signal receiving device 152 is configured to receive a signal transmitted by the signal transmitting device 151, perform photoelectric conversion and analog digital conversion processing on the received signal, obtain a digital signal, and, based on the N-channel spread spectrum
  • the code despreads the digital signal to obtain an N-channel despread signal, and performs low-pass filtering on each of the N despread signals to obtain N data signals.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention may employ computer-usable storage media (including but not limited to disks) in one or more of the computer-usable program code embodied therein. The form of a computer program product implemented on a memory, CD-ROM, optical memory, or the like.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Abstract

一种信号发射方法、信号接收方法及相关设备与系统,针对生成的单波长光载波,可通过分路设备将其分束为N路具有相同波长的子载波,并利用对接收到的高速数据信号进行串并转换所得到的N路低速数据信号、以及N路扩频码对该N路子载波进行相应的数据调制及幅度扩频调制,得到N路调制扩频信号,进而将该N路调制扩频信号进行合路并输出。由于在进行光载波分路时,无需采用结构较为复杂的多载波生成装置等,且,在进行扩频时,无需采用需要多个延时单元或可控相位单元的相位调制方式,从而在提高系统可靠性的基础上,解决了现有的提升QAM系统可靠性的方案中存在的成本较高、实现较难等的问题。

Description

一种信号发射方法、信号接收方法及相关设备与系统 技术领域
本发明涉及通信领域,尤其涉及一种信号发射方法、信号接收方法及相关设备与系统。
背景技术
由于传输失真、传输损耗等原因,基带信号通常不适合在各种信道上进行长距离传输。为了使其能够在各种信道中进行长距离的传输,需对其进行相应的载波调制,以将其信号频谱搬移到高频处,使得其变成能适用于长距离信道传输的形式。
具体地,目前,可采用QPSK(Quadrature Phase Shift Keying,正交相移键控)以及16QAM(Quadrature Amplitude Modulation,正交幅度调制)等数字调制方式进行载波调制。且,随着QPSK以及16QAM的相继商用,以及持续提升的传输容量要求,信号调制开始向更高阶QAM进展。但是,由于高阶QAM的抗噪声性能远不如QPSK以及16QAM,因而使得,在目前商用的高速DAC(Digital to Analog Converter,数字模拟转换器)的ENOB(Effective Number of Bits,有效位数)较低、导致量化噪声较大的情况下,高阶QAM的背靠背BER(Bit Error Rate,误码率)性能非常差,信号基本处于无法传输的状态,使得高阶QAM的系统可靠性较低。
为了提升高阶QAM的系统可靠性,目前,业界常采用以下两种结构的发射机来实现信号的处理与发射:
第一种,如图1所示,所述发射机可包括光源、多载波生成装置、多路分配器、偏振复用IQ(In-phase,同相;Quadrature,正交)调制器以及耦合器等;所述发射机的工作原理为:光源产生某一波长的连续光载波后,通过多载波生成装置产生多波长,然后通过多路分配器解复用为多路子载波,再基于对高速数据信号进行相应转换所得到的多路低速基带IQ信号对各路子载波 分别进行偏振复用IQ调制,最后通过耦合器将各路已调子载波信号合路并输出。
也就是说,可通过多子载波多路复用的方式将高波特率的数据信号变为多路低波特率的数据信号,以使得仅需要低带宽的器件(如低带宽的DAC以及低带宽的其他电器件等)处理与传输相应的数据信号即可。由于低带宽的DAC通常比较容易获得较高的ENOB、从而具备较小的量化噪声,且,低带宽的其他电器件通常具有较小的电噪声,因此,这种方式能够提升高阶QAM的系统可靠性。但是,由于这种方式所需的多载波生成装置和多路分配器目前仍然只能以较为复杂和高成本的方式实现,因而,存在实现复杂以及成本较高等的问题,无法真正的商用。
第二种,如图2所示,所述发射机可包括脉冲光源、DPSK(Differential Phase Shift Keying,差分相移键控)编码器、相位调制器以及光谱相位编码器等;所述发射机的工作原理为:DPSK编码器根据输入信号,生成差分编码信号并输出至相位调制器;相位调制器根据差分编码信号对脉冲光源产生的光载波进行相位调制,并输出调制信号至光谱相位编码器,由光谱相位编码器对调制信号进行相位调制,以实现扩频。具体地,光谱相位编码器在进行相位调制时,需将信号分为多路光谱成分,并根据不同的光学相移对各路光谱成分进行相位调制,其中,每一光学相移通常是由多个延时单元来生成的,或者,是由铌酸锂或其等价电光材料所组建的可控相位单元生成的。
也就是说,可通过光谱相位编码器对调制信号进行相位调制,来实现扩频,以提高QAM系统的可靠性。但是这种方法通常需要多个延时单元或可控相位单元来生成相应的光学相移,以实现扩频,从而导致实现较为复杂,成本较高,无法实现真正的商用化。
综上所述,现有的提升QAM系统可靠性的方式存在成本较高、实现较难等的问题,因此,亟需提供一种新的方式以解决上述各问题。
发明内容
本发明实施例提供了一种信号发射方法、信号接收方法及相关设备与系统,以解决现有的提升QAM系统可靠性的方式所存在的成本较高、实现较难等的问题。
第一方面,提供了一种信号发射方法,包括:
生成单波长光载波;
基于分路设备将所述单波长光载波分束为波长相同的N路子载波,所述N的取值为不小于2的正整数;
根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号;所述N路扩频码与所述N路子载波为一一对应关系,所述N路低速数据信号与所述N路子载波为一一对应关系,且所述N路低速数据信号是对接收到的高速数据信号进行串并转换所得到的;
将得到的N路调制扩频信号合路为一路合路信号输出。
结合第一方面,在第一方面的第一种可能的实现方式中,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
针对所述N路子载波中的每一路子载波,根据与所述子载波相对应的一路低速数据信号,对所述子载波进行数据调制,得到数据调制信号;并
根据与所述子载波相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,得到与所述子载波相对应的一路调制扩频信号。
结合第一方面,在第一方面的第二种可能的实现方式中,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
针对所述N路子载波中的每一路子载波,根据与所述子载波相对应的一路扩频码,对所述子载波进行幅度扩频调制,得到扩频信号;并
根据与所述子载波相对应的一路低速数据信号,对所述扩频信号进行数 据调制,得到与所述子载波相对应的一路调制扩频信号。
结合第一方面,在第一方面的第三种可能的实现方式中,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
针对所述N路子载波中的每一路子载波,将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
根据与所述子载波相对应的一路低速数据信号,对所述第一支路子载波进行数据调制,得到第一支路数据调制信号,并根据与所述子载波相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号;根据反相后的与所述子载波相对应的一路低速数据信号,对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述子载波相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号;以及,
对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述子载波相对应的一路调制扩频信号。
结合第一方面,在第一方面的第四种可能的实现方式中,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
针对所述N路子载波中的每一路子载波,将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
根据与所述子载波相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述子载波相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号;根据反相后与所述子载波相对应的一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频信号,并根据反相后的与所述子载 波相对应的一路低速数据信号,对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号;以及,
对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述子载波相对应的一路调制扩频信号。
第二方面,提供了一种信号接收方法,包括:
接收信号发射设备发射的信号,所述信号是信号发射设备在利用分路设备将生成的单波长光载波分束为N路波长相同的子载波后,基于N路低速数据信号以及N路扩频码,对N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并对所述N路调制扩频信号进行合路所得到的;
对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号;
基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号;所述N为不小于2的正整数。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:
对所述N路数据信号中的每一路数据信号进行自适应滤波,得到N路自适应滤波后的数据信号。
结合第二方面,在第二方面的第二种可能的实现方式中,所述方法还包括:
对所述N路自适应滤波后的数据信号中的每一路数据信号进行载波相位恢复,得到路N载波相位恢复后的数据信号。
结合第二方面,在第二方面的第三种可能的实现方式中,在对所述数字信号进行解扩之前,所述方法还包括:
对所述数字信号进行色散补偿。
第三方面,提供了一种信号发射设备,包括光源、串并转换器、第一分路设备、第一合路设备以及N个调制扩频设备,所述N的取值为不小于2的 正整数,其中:
所述光源,用于生成单波长光载波,并输出至第一分路设备;
所述串并转换器,用于将接收到的高速数据信号串并转换为N路低速数据信号,并输出至所述N个调制扩频设备;其中,所述N路低速数据信号与所述N个调制扩频设备为一一对应关系;
所述第一分路设备,用于将所述光源生成的单波长光载波分束为波长相同的N路子载波,并输出至所述N个调制扩频设备;其中,所述N路子载波与所述N个调制扩频设备为一一对应关系;
所述N个调制扩频设备中的每一个调制扩频设备,用于分别根据与所述调制扩频设备相对应的一路低速数据信号以及N路扩频码中的与所述调制扩频设备相对应的一路扩频码,对与所述调制扩频设备相对应的子载波进行数据调制以及幅度扩频调制,得到与所述调制扩频设备相对应的调制扩频信号,并输出至第一合路设备;其中,所述N路扩频码与所述N个调制扩频设备为一一对应关系;
所述第一合路设备,用于将从所述N个调制扩频设备接收到的N路调制扩频信号合路为一路合路信号输出。
结合第三方面,在第一方面的第一种可能的实现方式中,针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
根据与所述一个调制扩频设备相对应的一路低速数据信号,对与所述一个调制扩频设备相对应的一路子载波进行数据调制,得到数据调制信号,并根据与所述一个调制扩频设备相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出至第一合路设备。
结合第三方面,在第三方面的第二种可能的实现方式中,针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
根据与所述一个调制扩频设备相对应的一路扩频码,对与所述一个调制扩频设备相对应的一路子载波进行幅度扩频调制,得到扩频信号,并根据与 所述一个调制扩频设备相对应的一路低速数据信号,对所述扩频信号进行数据调制,得到对应的调制扩频信号,并输出至第一合路设备。
结合第三方面,在第三方面的第三种可能的实现方式中,针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
将与所述一个调制扩频设备相对应一路子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
根据与所述一个调制扩频设备相对应的一路低速数据信号对所述第一支路子载波进行数据调制,得到第一支路数据调制信号,并根据与所述一个调制扩频设备相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号;根据反相后的与所述一个调制扩频设备相对应的一路低速数据信号对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述一个调制扩频设备相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号;以及,对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出至第一合路设备。
结合第三方面,在第三方面的第四种可能的实现方式中,针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
将与所述一个调制扩频设备相对应一路子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
根据与所述一个调制扩频设备相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述一个调制扩频设备相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号;根据反相后与所述一个调制扩频设备相对应的一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频 信号,并根据反相后的与所述一个调制扩频设备相对应的一路低速数据信号对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号;以及,对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出至第一合路设备。
结合第三方面,在第三方面的第五种可能的实现方式中,所述N路扩频码为相互正交的双极性二进制扩频序列。
第四方面,提供了一种信号接收设备,包括OEC(Optical to Electrical Converter,光电转换器)、ADC(Analog to Digital Converter,模拟数字转换器)以及DSP(Digital Signal Processor,数字信号处理器):
所述OEC,用于接收信号发射设备发射的信号,并将接收到的所述信号转换为电信号后输出至所述ADC;其中,所述信号是信号发射设备在利用分路设备将光源生成的单波长光载波分束为N路波长相同的子载波后,基于N路低速数据信号以及N路扩频码,对N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并对所述N路调制扩频信号进行合路所得到的;
所述ADC,用于接收所述OEC输出的电信号,并将所述电信号转换为数字信号后输出至所述DSP;
所述DSP,用于接收所述ADC输出的数字信号,并基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号;所述N为不小于2的正整数。
结合第四方面,在第四方面的第一种可能的实现方式中,所述DSP还包括多输入多输出滤波器:
所述多输入多输出滤波器,用于对所述N路数据信号中的每一路数据信号进行自适应滤波,得到N路自适应滤波后的数据信号。
结合第四方面,在第四方面的第二种可能的实现方式中,所述DSP还包 括与所述N路自适应滤波后的数据信号一一对应的N个相位恢复器:
所述N个相位恢复器中的每一相位恢复器,用于对与所述相位恢复器相对应的一路自适应滤波后的数据信号进行载波相位恢复,得到一路载波相位恢复后的数据信号。
结合第四方面,在第四方面的第三种可能的实现方式中,所述DSP还包括色散补偿器:
所述色散补偿器,用于在对接收到的所述数字信号进行解扩之前,对接收到的所述数字信号进行色散补偿,并输出色散补偿后的数字信号至所述N个解扩器。
第五方面,提供了一种信号传输系统,包括信号发射设备以及信号接收设备;
所述信号发射设备,用于生成单波长光载波,并基于分路设备将所述单波长光载波分束为波长相同的N路子载波,以及,根据N路低速数据信号和N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并将得到的N路调制扩频信号合路为一路合路信号输出至信号接收设备;其中,所述N的取值为不小于2的正整数,所述N路扩频码与所述N路子载波为一一对应关系,所述N路低速数据信号与所述N路子载波为一一对应关系,且所述N路低速数据信号是对接收到的高速数据信号进行串并转换所得到的;
所述信号接收设备,用于接收所述信号发射设备发射的信号,并对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号,以及,基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号。
根据第一方面~第五方面提供的信号发射方法、信号接收方法及相关设备与系统,针对生成的单波长光载波,可通过分路设备将其分束为N路具有相同波长的子载波,并利用对接收到的高速数据信号进行串并转换所得到的N路低速数据信号、以及N路扩频码对该N路子载波进行相应的数据调制及幅 度扩频调制,得到N路调制扩频信号,进而将该N路调制扩频信号进行合路并输出。由于多路复用可以降低每路数据信号的波特率,因此可以使用具备高ENOB的低速DAC和其他低带宽的电器件来进行数据信号的处理,从而可有效降低DAC的量化噪声和其他电器件的电噪声,提升了高阶QAM调制系统的性能。且,由于在本方案中,在进行光载波的分路时,无需采用结构较为复杂的多载波生成装置以及多路分配器,以及,在进行扩频时,无需采用需要多个延时单元或可控相位单元的相位调制方式,从而在提高系统可靠性的基础上,有效解决了现有的提升QAM系统可靠性的方式中所存在的成本较高、实现较难等的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为现有技术一中所述的发射机结构示意图;
图2所示为现有技术二中所述的发射机结构示意图;
图3所示为本发明实施例一中所述的一种信号发射方法的流程示意图;
图4所示为本发明实施例二中所述的一种信号接收方法的流程示意图;
图5所示为本发明实施例三中所述的一种信号发射设备的结构示意图;
图6所示为本发明实施例三中所述的第一种信号发射设备的实现结构示意图;
图7所示为本发明实施例三中所述的第二种信号发射设备的实现结构示意图;
图8所示为本发明实施例三中所述的第三种信号发射设备的实现结构示意图;
图9所示为本发明实施例三中所述的第四种信号发射设备的实现结构示 意图;
图10所示为本发明实施例四中所述的一种信号接收设备的结构示意图;
图11所示为本发明实施例四中所述的第一种DSP的实现结构示意图;
图12所示为本发明实施例四中所述的第二种DSP的实现结构示意图;
图13所示为本发明实施例四中所述的第三种DSP的实现结构示意图;
图14所示为本发明实施例四中所述的第四种DSP的实现结构示意图;
图15所示为本发明实施例五中所述的一种信号传输系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一:
为了解决现有的提升QAM系统可靠性的方式所存在的成本较高、实现较难等的问题,本发明实施例一提供了一种信号发射方法,具体地,如图3所示,其为本发明实施例一中所述的信号发射方法的流程示意图,所述信号发射方法具体可包括以下步骤:
步骤301:生成单波长光载波;
步骤302:基于分路设备将所述单波长光载波分束为波长相同的N路子载波,所述N的取值为不小于2的正整数;
步骤303:根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号;所述N路扩频码与所述N路子载波为一一对应关系,所述N路低速数据信号与所述N路子载波为一一对应关系,且所述N路低速数据信号是对接收到的高速数据信号进行串并转换所得到的;
步骤304:将得到的N路调制扩频信号合路为一路合路信号输出。
也就是说,在生成单波长光载波之后,可通过分路设备将该单波长光载波分束为N路具有相同波长的子载波,并根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,以及,将所述N路调制扩频信号合路为一路合路信号输出。由于多路复用可以降低每路数据信号的波特率,因此可以使用具备高ENOB的低速DAC和其他低带宽的电器件来进行数据信号的处理,从而可有效降低DAC的量化噪声和其他电器件的电噪声,提升了高阶QAM调制系统的性能。且,由于在本发明实施例所述方案中,可采用结构相对简单的分路设备进行光载波的分路,而无需采用结构较为复杂的多载波生成装置等,且,在进行扩频时,无需采用需要多个延时单元或可控相位单元的相位调制方式,从而在提高系统可靠性的基础上,解决了现有提升系统可靠性的方式所存在的成本较高、实现较难等的问题。
具体地,所述分路设备可为耦合器、分路器等任意的能够将单波长光载波分束成多路具有相同波长的子载波的分路设备,本发明实施例对此不作任何限定。
可选地,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,可执行为:
针对所述N路子载波中的每一路子载波,根据与所述子载波相对应的一路低速数据信号,对所述子载波进行数据调制,得到数据调制信号;并
根据与所述子载波相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,得到与所述子载波相对应的一路调制扩频信号。
可选地,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,还可执行为:
针对所述N路子载波中的每一路子载波,根据与所述子载波相对应的一路扩频码,对所述子载波进行幅度扩频调制,得到扩频信号;并
根据与所述子载波相对应的一路低速数据信号,对所述扩频信号进行数 据调制,得到与所述子载波相对应的一路调制扩频信号。
也就是说,针对所述N路子载波中的每一路子载波,对所述子载波的数据调制与幅度扩频调制的先后顺序可灵活变动,如,可先对所述子载波进行数据调制,再进行幅度扩频调制;也可先对所述子载波进行幅度扩频调制,再进行数据调制,本发明实施例对此不作任何限定。
进一步地,除了可将任意一路子载波作为一个整体进行数据调制以及扩频,以得到一路调制扩频信号以外,还可将所述子载波分束为两个支路子载波,分别实现数据调制与扩频,以得到两支路调制扩频信号,并将所述两支路调制扩频信号进行合路输出,以得到与所述子载波相对应的一路调制扩频信号。
也就是说,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,还可执行为:
针对所述N路子载波中的每一路子载波,将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相,以使得两支路子载波的相位差为一设定值(该设定值可根据实际情况进行灵活设置,如可设置为180度等);以及,
根据与所述子载波相对应的一路低速数据信号,对所述第一支路子载波进行数据调制,得到第一支路数据调制信号,并根据与所述子载波相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号;根据反相后的与所述子载波相对应的一路低速数据信号,对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述子载波相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号;以及,
对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述子载波相对应的一路调制扩频信号。
进一步地,针对所述N路子载波中的每一路子载波,在将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以 及第二支路子载波进行移相,以使得两支路子载波的相位差为一设定值之后,还可通过以下方式对该两个支路子载波进行数据调制与扩频,以得到与所述子载波相对应的一路调制扩频信号:
根据与所述子载波相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述子载波相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号;根据反相后与所述子载波相对应的一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频信号,并根据反相后的与所述子载波相对应的一路低速数据信号,对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号;以及,
对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述子载波相对应的一路调制扩频信号。
也就是说,对于每一支路子载波来说,数据调制与幅度扩频调制的先后顺序可灵活变动,本发明实施例对此也不作任何限定。
需要说明的是,以所述设定值为180度为例,分别对所述第一支路子载波以及第二支路子载波进行移相,以使得两支路子载波的相位差为所述设定值,可具体执行为:
保持所述第一支路子载波的相位不变,仅对所述第二支路子载波进行移相180度或-180度;或保持所述第二支路子载波相位不变,仅对所述第一支路子载波进行移相180度或-180度;当然,也可对所述第一支路子载波移相90度,且对所述第二支路子载波移相-90度;或可对所述第一支路子载波移相-90度,且对所述第二支路子载波移相90度等,只要保证两支路子载波之间的相位差为180度即可,本发明实施例对此不作赘述。
进一步地,需要说明的是,本发明实施例中所述的N路扩频码可为相互正交的双极性二进制扩频序列。
例如,所述N路扩频码中的每一路扩频码可为Walsh码、OVSF码等实数序列;当然,为了得到分布更均匀的频谱,每一路扩频码也可为基于设定 的伪随机序列码对Walsh码或OVSF码等实数序列进行扰码所产生的序列码等,本发明实施例对此不作任何限定。
另外,需要说明的是,本发明实施例中所述的信号发射方法的执行主体通常可为相应的信号发射设备,本发明实施例对此不作赘述。
由本发明实施例一所述的内容可知,针对生成的单波长光载波,可通过分路设备将其分束为N路具有相同波长的子载波,并利用对接收到的高速数据信号进行串并转换所得到的N路低速数据信号、以及N路扩频码对该N路子载波进行相应的数据调制及幅度扩频调制,得到N路调制扩频信号,进而将该N路调制扩频信号进行合路并输出。由于多路复用可以降低每路数据信号的波特率,因此可以使用具备高ENOB的低速DAC和其他低带宽的电器件来进行数据信号的处理,从而可有效降低DAC的量化噪声和其他电器件的电噪声,提升了高阶QAM调制系统的性能。且,由于在本方案中,在进行光载波的分路时,无需采用结构较为复杂的多载波生成装置以及多路分配器,以及,在进行扩频时,无需采用需要多个延时单元或可控相位单元的相位调制方式,从而在提高系统可靠性的基础上,有效解决了现有的提升QAM系统可靠性的方式中所存在的成本较高、实现较难等的问题。
实施例二:
本发明实施例二提供了一种信号接收方法,具体地,如图4所示,其为本发明实施例二中所述的信号接收方法的流程示意图,所述信号接收方法具体可包括以下步骤:
步骤401:接收信号发射设备发射的信号,所述信号是信号发射设备在利用分路设备将生成的单波长光载波分束为N路波长相同的子载波后,基于N路低速数据信号以及N路扩频码,对N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并对所述N路调制扩频信号进行合路所得到的;
步骤402:对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号;
步骤403:基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号;所述N为不小于2的正整数。
也就是说,对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号之后,可基于信号发射设备用于幅度扩频调制的N路扩频码,对所述数字信号进行解扩,以提高数据恢复与接收的准确性。
可选地,可通过分别将所述N路扩频码中的每一路扩频码与所述数字信号进行相乘的方式,来实现信号的解扩,得到N路解扩后的信号,此处不再赘述。
需要说明的是,所述N路扩频码可为相互正交的双极性二进制扩频序列。
具体地,所述N路扩频码中的每一路扩频码可为Walsh码、OVSF码等实数序列;当然,为了得到分布更均匀的频谱,每一路扩频码也可为基于设定的伪随机序列码对Walsh码或OVSF码等实数序列进行扰码所产生的序列码等,本发明实施例对此不作任何限定。
进一步地,由于光纤链路的色散、PMD(Polarization mode dispersion,偏振模色散)、SOP(State of Polarization,偏振态)旋转以及非线性等,可能导致各路间的正交性被破坏,从而产生多址串扰等,因此所述方法还可包括:
对所述N路数据信号中的每一路数据信号进行自适应滤波,得到N路自适应滤波后的数据信号,以提高数据恢复与接收的准确性。
进一步地,所述方法还可包括:
对所述N路自适应滤波后的数据信号中的每一路数据信号进行载波相位恢复,得到N路载波相位恢复后的数据信号,以进一步提高数据恢复与接收的准确性。
进一步地,在对所述数字信号进行解扩之前,所述方法还可包括:
对所述数字信号进行色散补偿,以消除色散对所述数字信号的影响,进一步提高数据恢复与接收的准确性。
最后,需要说明的是,本发明实施例二中所述的信号接收方法的执行主 体通常可为相应的信号接收设备,本发明实施例对此不作赘述。
实施例三:
基于与本发明实施例一相同的发明构思,本发明实施例三提供了一种信号发射设备,具体地,如5所示,其为本发明实施例三中所述的信号发射设备的结构示意图。由图5可知,所述信号发射设备可包括光源51、串并转换器52、第一分路设备53、第一合路设备54以及N个调制扩频设备55,所述N的取值为不小于2的正整数,其中:
所述光源51,可用于生成单波长光载波,并输出至第一分路设备53;
所述串并转换器52,可用于将接收到的高速数据信号串并转换为N路低速数据信号,并输出至所述N个调制扩频设备55;其中,所述N路低速数据信号与所述N个调制扩频设备55为一一对应关系;
所述第一分路设备53,可用于将所述光源51生成的单波长光载波分束为波长相同的N路子载波,并输出至所述N个调制扩频设备55;其中,所述N路子载波与所述N个调制扩频设备55为一一对应关系;
所述N个调制扩频设备55中的每一个调制扩频设备55,可用于分别根据与所述调制扩频设备55相对应的一路低速数据信号以及N路扩频码中的与所述调制扩频设备55相对应的一路扩频码,对与所述调制扩频设备55相对应的子载波进行数据调制以及幅度扩频调制,得到与所述调制扩频设备55相对应的调制扩频信号,并输出至第一合路设备54;其中,所述N路扩频码与所述N个调制扩频设备为一一对应关系;
所述第一合路设备54,可用于将从所述N个调制扩频设备55接收到的N路调制扩频信号合路为一路合路信号输出。
即,针对生成的单波长光载波,可通过分路设备将其分束为N路具有相同波长的子载波,并利用对接收到的高速数据信号进行串并转换所得到的N路低速数据信号、以及N路扩频码对该N路子载波进行相应的数据调制及幅度扩频调制,得到N路调制扩频信号,进而将该N路调制扩频信号进行合路并输出。由于多路复用可以降低每路数据信号的波特率,因此可以使用具备 高ENOB的低速DAC、和其他低带宽的电器件来进行数据信号的处理,从而可有效降低DAC的量化噪声和其他电器件的电噪声,提升了高阶QAM调制系统的性能。且,由于在本发明实施例所述方案中,在进行光载波的分路时,无需采用结构较为复杂的多载波生成装置以及多路分配器,以及,在进行扩频时,无需采用需要多个延时单元或可控相位单元的相位调制方式,从而在提高系统可靠性的基础上,有效解决了现有的提升QAM系统可靠性的方式中所存在的成本较高、实现较难等的问题。
具体地,所述光源51可为单一波长的LED光源、激光器光源等能够生成单波长光载波的任意光源;所述第一分路设备53可为耦合器、分路器等能够将单波长光载波分束成多路具有相同波长的子载波的任意分路设备;所述第一合路设备54可为耦合器或合路器等能够将N路调制扩频信号合路为一路调制扩频信号的任意合路设备,本发明实施例对此均不作任何限定。
可选地,针对N个调制扩频设备中的任意一个调制扩频设备55,所述一个调制扩频设备55可具体用于:
根据与所述一个调制扩频设备55相对应的一路低速数据信号,对与所述一个调制扩频设备55相对应的一路子载波进行数据调制,得到数据调制信号,并根据与所述一个调制扩频设备55相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,得到与所述一个调制扩频设备55相对应的一路调制扩频信号,并输出至第一合路设备54。
可选地,针对N个调制扩频设备中的任意一个调制扩频设备55,所述一个调制扩频设备55还可具体用于:
根据与所述一个调制扩频设备55相对应的一路扩频码,对与所述一个调制扩频设备55相对应的一路子载波进行幅度扩频调制,得到扩频信号,并根据与所述一个调制扩频设备55相对应的一路低速数据信号,对所述扩频信号进行数据调制,得到与所述一个调制扩频设备55相对应的一路调制扩频信号,并输出至第一合路设备54。
也就是说,针对每一路子载波,可利用与所述子载波相对应的一个调制 扩频设备55,先对所述子载波进行数据调制、之后再进行幅度扩频,也可以先对所述子载波进行幅度扩频,再进行数据调制,以增加数据处理的灵活性,此处不再赘述。
具体地,如图6或图7所示,针对任意一个调制扩频设备55,所述一个调制扩频设备55具体可包括调制器以及扩频器;
所述调制器,可用于根据与所述一个调制扩频设备55相对应的一路低速数据信号,对与所述一个调制扩频设备55相对应的一路子载波进行数据调制,并输出数据调制信号至所述扩频器,由所述扩频器根据与所述一个调制扩频设备55相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,并输出调制扩频信号至第一合路设备54(具体可如图6所示);或者,接收所述扩频器根据与所述一个调制扩频设备55相对应的一路扩频码,对与所述一个调制扩频设备55相对应的一路子载波进行幅度扩频调制,所得到的扩频信号,并根据与所述一个调制扩频设备55相对应的一路低速数据信号,对所述扩频信号进行数据调制,并输出调制扩频信号至第一合路设备54(具体可如图7所示);
所述扩频器,可用于接收所述调制器根据与所述一个调制扩频设备55相对应的一路低速数据信号,对与所述一个调制扩频设备55相对应的一路子载波进行数据调制所得到的数据调制信号,并根据与所述一个调制扩频设备55相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,并输出调制扩频信号至第一合路设备54(具体可如图6所示);或者,根据与所述一个调制扩频设备55相对应的一路扩频码,对与所述一个调制扩频设备55相对应的一路子载波进行幅度扩频调制,并输出扩频信号至所述调制器,由所述调制器根据与所述一个调制扩频设备55相对应的一路低速数据信号,对所述扩频信号进行数据调制,并输出调制扩频信号至第一合路设备54(具体可如图7所示)。
其中,图6或图7中所示的每路XI、XQ、YI、YQ信号即为串并转换器52对高速数据信号进行串并转换所得到的低速数据信号,Code即为相应的扩 频码,本发明实施例对此不作赘述。
进一步地,需要说明的是,每一调制扩频设备55所包括的调制器可为PDM-QAM、单偏QAM以及PAM等,当然,也可为其他任意能够实现相应的数据调制的调制设备。另外,需要说明的是,每一调制扩频设备55所包括的扩频器可为MZM等,当然,也可为其他任意能够实现相应的幅度扩频调制(对子载波进行幅度调制,以实现扩频)的扩频设备,本发明实施例对此均不作赘述。
进一步地,在本发明所述实施例中,除了可将任意一路子载波作为一个整体进行数据调制以及扩频,以得到一路调制扩频信号以外,还可将所述子载波分束为两个支路子载波,分别实现数据调制与扩频,以得到两支路调制扩频信号,并将所述两支路调制扩频信号进行合路输出,以得到与所述子载波相对应的一路调制扩频信号。
也就是说,针对所述N个调制扩频设备中的任意一个调制扩频设备55,所述一个调制扩频设备55还可具体用于:
将与所述一个调制扩频设备55相对应一路子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相,以使得两支路子载波的相位差为一设定值(该设定值可根据实际情况进行灵活设置,如可设置为180度等);以及,
根据与所述一个调制扩频设备55相对应的一路低速数据信号对所述第一支路子载波进行数据调制,得到第一支路数据调制信号,并根据与所述一个调制扩频设备55相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号;根据反相后的与所述一个调制扩频设备55相对应的一路低速数据信号对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述一个调制扩频设备55相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号;以及,对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备55相对应的一路 调制扩频信号,并输出至第一合路设备54。
需要说明的是,针对所述N路子载波中的每一路子载波,在将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相,以使得两支路子载波的相位差为一设定值(该设定值可根据实际情况进行灵活设置,如可设置为180度等)之后,所述一个调制扩频设备55还可具体用于:
根据与所述一个调制扩频设备55相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述一个调制扩频设备55相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号;根据反相后与所述一个调制扩频设备55相对应的一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频信号,并根据反相后的与所述一个调制扩频设备55相对应的一路低速数据信号对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号;以及,对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备55相对应的一路调制扩频信号,并输出至第一合路设备54。
也就是说,对于每一支路子载波来说,数据调制与幅度扩频调制的先后顺序可灵活变动,本发明实施例对此也不作任何限定。
具体地,如图8或图9所示,此种情况下,所述一个调制扩频设备55可包括第二分路设备、移相器、第一双电极调制器、第二双电极调制器以及第二合路设备;
所述第二分路设备,可用于将与所述一个调制扩频设备55相对应一路子载波分束为第一支路子载波以及第二支路子载波;
所述移相器,可用于分别对所述第一支路子载波以及第二支路子载波进行移相,以使得两个支路子载波的相位差为一设定值,如可为180度等;
所述第一双电极调制器,可用于根据与所述一个调制扩频设备55相对应的一路低速数据信号对所述第一支路子载波进行数据调制,得到第一支路数 据调制信号,并根据与所述一个调制扩频设备55相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号(具体可如图8所示);或者,根据与所述一个调制扩频设备55相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述一个调制扩频设备55相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号(具体可如图9所示);
所述第二双电极调制器,可用于根据反相后的与所述一个调制扩频设备55相对应的一路低速数据信号对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述一个调制扩频设备55相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号(具体可如图8所示);或者,根据反相后的与所述一个调制扩频设备55相对应的一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频信号,并根据反相后的与所述一个调制扩频设备55相对应的一路低速数据信号对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号(具体可如图9所示);
所述第二合路设备,可用于对所述第一支路调制扩频信号以及第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备55相对应的一路调制扩频信号,并输出至第一合路设备54。
其中,图8或图9中所示的每路XI、XQ、YI、YQ信号即为串并转换器52对高速数据信号进行串并转换所得到的低速数据信号,Code即为相应的扩频码,本发明实施例对此不作赘述。
进一步地,需要说明的是,所述第二分路设备可为耦合器、分路器等能够将对应的一路子载波分束成两个支路子载波的任意分路设备;所述第二合路设备可为耦合器或合路器等能够将第一支路调制扩频信号以及第二支路调制扩频信号合路为一路调制扩频信号的任意合路设备。
另外,需要说明的是,所述移相器可为任意能够将一路子载波的两支路子载波移相为具备一定相位差的(如可为180度等)的两支路子载波的移相 设备。如需要两支路子载波的相位差为180度时,可保持两支路子载波中的第一支路子载波相位不变,而仅对两支路子载波中的第二支路子载波进行移相180度或-180度;或可保持两支路子载波中的第二支路子载波相位不变,而仅对两支路子载波中的第一支路子载波进行移相180度或-180度;当然,也可对两支路子载波中的第一支路子载波移相90度,且对第二支路子载波移相-90度,或可对两支路子载波中的第一支路子载波移相-90度,且对第二支路子载波移相90度等,只要保证两支路子载波之间的相位差为180度即可,本发明实施例对此不作赘述。
再有,需要说明的是,所述第一、第二双电极调制器可为EAM等任意的能够利用数据信号以及扩频码对一路载波既进行数据调制又进行幅度调制的调制器;且,第一、第二双电极调制器对一路载波进行数据调制以及幅度调制的先后顺序可灵活变动,只要其两个用于接收相应信号的电极中接入的信号(数据信号、扩频码等)互换即可,本发明实施例对此也不作赘述。
下面,以一路子载波的数据调制和幅度扩频调制为例,对具备双电极调制器的调制扩频设备55的工作流程进行具体的说明。
当对该路子载波的第一支路子载波进行数据调制时,假设数据调制时的功率偏置点为P1,则在利用与该路子载波相对应的第一路低速数据信号对该路子载波中的第一支路子载波进行数据调制后,所得到的第一支路调制信号的表达式可为(Data1+P1)ejωt,其中ejωt即代表该路子载波。之后,若假设幅度扩频调制时的功率偏置点为P2,则在利用与该路子载波相对应的第一路扩频码对所述第一支路调制信号进行幅度扩频调制后,所得到的第一支路调制扩频信号的表达式可为(Code1+P2)(Data1+P1)ejωt。同理,当利用反相后的第一路低速数据信号以及反相后的第一路扩频码对该路子载波的第二支路子载波进行相应的数据调制和幅度扩频调制后,得到的第二支路调制扩频信号的表达式可为(-Code1+P2)(-Data1+P1)ejωt。之后,对第一支路调制扩频信号以及第二支路调制扩频信号进行合路,即可得到该路子载波相对应的调制扩频信号,其 中,该调制扩频信号的表达式可为(Code1·Data1+P1·P2)ejωt,P1·P2是数据调制和幅度扩频调制后的残留载波功率。可见,合路后的调制扩频信号即为正确的调制扩频信号,进而说明实现了正确的数据调制和扩频。
进一步地,所述N路扩频码可为相互正交的双极性二进制扩频序列。
具体地,所述N路扩频码中的每一路扩频码可为Walsh码、OVSF码等实数序列;当然,为了得到分布更均匀的频谱,每一路扩频码也可为基于设定的伪随机序列码对Walsh码或OVSF码等实数序列进行扰码所产生的序列码等,本发明实施例对此不作任何限定。
由本发明实施例三所述的内容可知,针对光源发出的单波长光载波,信号发射设备可通过第一分路设备将其分束为N路具有相同波长的子载波,并利用N个调制扩频设备、串并转换器对接收到的高速数据信号进行串并转换所得到的N路低速数据信号、以及设定的N路扩频码对该N子路子载波进行相应的数据调制及幅度扩频调制,得到N路调制扩频信号,进而利用第一合路设备将该N路调制扩频信号进行合路并输出。由于多路复用可以降低每路数据信号的波特率,因此可以使用具备高ENOB的低速DAC和其他低带宽的电器件来进行数据信号的处理,从而可有效降低DAC的量化噪声和其他电器件的电噪声,提升了高阶QAM调制系统的性能。且,由于在本方案中,在进行光载波的分路时,无需采用结构较为复杂的多载波生成装置以及多路分配器,以及,在进行扩频时,无需采用需要多个延时单元或可控相位单元的相位调制方式,从而在提高系统可靠性的基础上,有效解决了现有的提升QAM系统可靠性的方式中所存在的成本较高、实现较难等的问题。
实施例四:
基于与本发明实施例二相同的发明构思,本发明实施例四提供了一种信号接收设备,具体地,如图10所示,其为本发明实施例四中所述的信号接收设备的结构示意图,由图10可知,所述信号接收设备,可包括OEC101、ADC102以及DSP103:
所述OEC101,可用于接收信号发射设备发射的信号,并将接收到的所述信号转换为电信号后输出至所述ADC102;其中,所述信号是信号发射设备在利用分路设备将光源生成的单波长光载波分束为N路波长相同的子载波后,基于N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并对所述N路调制扩频信号进行合路所得到的;
所述ADC102,可用于接收所述OEC101输出的电信号,并将所述电信号转换为数字信号后输出至所述DSP;
所述DSP103,可用于接收所述ADC102输出的数字信号,并基于N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号;所述N为不小于2的正整数。
也就是说,对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号之后,可基于信号发射设备用于幅度扩频调制的N路扩频码,对所述数字信号进行解扩,以提高数据恢复与接收的准确性。
需要说明的是,所述N路扩频码可为相互正交的双极性二进制扩频序列。
具体地,所述N路扩频码中的每一路扩频码可为Walsh码、OVSF码等实数序列;当然,为了得到分布更均匀的频谱,每一路扩频码也可为基于设定的伪随机序列码对Walsh码或OVSF码等实数序列进行扰码所产生的序列码等,此处不再赘述。
具体地,如图11所示,所述DSP103可包括与所述N路扩频码一一对应的N个解扩器,以及与所述N个解扩器一一对应的N个LPF(Low Pass Filter,低通滤波器),其中:
所述N个解扩器中的每一解扩器,可用于根据所述N路扩频码中的与所述解扩器相对应的一路扩频码,对接收到的所述数字信号进行解扩,得到一路解扩信号,并输出至与所述解扩器相对应的LPF;
所述N个LPF中的每一LPF,可用于接收对应的解扩器输出的解扩信号, 并对接收到的解扩信号进行低通滤波,得到数据信号。
需要说明的是,所述解扩器可为乘法器等任意的能够实现扩频信号解扩的解扩设备,本发明实施例对此不作任何限定。具体地,当所述解扩器为乘法器时,其可通过将接收到的数字信号与相应的扩频码进行相乘,来实现扩频信号的解扩,以提高数据恢复与接收的准确性。
进一步地,由于光纤链路的色散、PMD、SOP旋转以及非线性等,可能导致CDMA各路间的正交性被破坏,从而产生多址串扰等,因此信号接收设备中的DSP103还可采用如图12所示的实现结构,来进行多址串扰消除和数据的恢复。
即,所述DSP还可包括多输入多输出滤波器:
所述多输入多输出滤波器,可用于对所述N路数据信号(即,所述N个LPF输出的数据信号)中的每一路数据信号进行自适应滤波,得到N路自适应滤波后的数据信号,以提高数据恢复与接收的准确性。
具体地,所述多输入多输出滤波器可为MIMO FIR(多输入多输出有限冲击响应)滤波器等任意的能够对多个输入信号进行自适应滤波以消除多址串扰的滤波设备,本发明实施例对此不作任何限定。其中,MIMO FIR的滤波器系数可以通过CMA(Constant Modulus Algorithm,恒模算法)或LMS(Least Mean Square,最小均方算法)等算法进行计算得到,此处不再赘述。
进一步地,如图13所示,所述DSP还可包括与所述N路自适应滤波后的数据信号一一对应的N个相位恢复器:
所述N个相位恢复器中的每一相位恢复器,可用于对与所述相位恢复器相对应的一路自适应滤波后的数据信号进行载波相位恢复,得到一路载波相位恢复后的数据信号,以提高数据恢复与接收的准确性。
进一步地,如图14所示,所述DSP还可包括色散补偿器,即CDC(Chromatic Dispersion Compensation):
所述色散补偿器,可用于在对接收到的所述数字信号进行解扩之前,对接收到的所述数字信号进行色散补偿,并输出色散补偿后的数字信号至所述N 个解扩器,以消除色散对所述数字信号的影响,提高数据恢复与接收的准确性。
实施例五:
基于与本发明实施例三以及本发明实施例四(或本发明实施例一以及本发明实施二)相同的发明构思,本发明实施例五提供了一种信号传输系统,具体地,如图15所示,所述信号传输系统可包括信号发射设备151以及信号接收设备152:
所述信号发射设备151,用于生成单波长光载波,并基于分路设备将所述单波长光载波分束为波长相同的N路子载波,以及,根据N路低速数据信号和N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并将得到的N路调制扩频信号合路为一路合路信号输出至信号接收设备152;其中,所述N的取值为不小于2的正整数,所述N路扩频码与所述N路子载波为一一对应关系,所述N路低速数据信号与所述N路子载波为一一对应关系,且所述N路低速数据信号是对接收到的高速数据信号进行串并转换所得到的;
所述信号接收设备152,用于接收所述信号发射设备151发射的信号,并对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号,以及,基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号。
需要说明的是,所述信号发射设备以及信号接收设备的具体结构以及工作流程可参见上述实施例一以及实施例二(或者实施例三以及实施例四)中的相关描述,此处不再赘述。
本领域技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘 存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种信号发射方法,其特征在于,包括:
    生成单波长光载波;
    基于分路设备将所述单波长光载波分束为波长相同的N路子载波,所述N的取值为不小于2的正整数;
    根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号;所述N路扩频码与所述N路子载波为一一对应关系,所述N路低速数据信号与所述N路子载波为一一对应关系,且所述N路低速数据信号是对接收到的高速数据信号进行串并转换所得到的;
    将得到的N路调制扩频信号合路为一路合路信号输出。
  2. 如权利要求1所述的信号发射方法,其特征在于,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
    针对所述N路子载波中的每一路子载波,根据与所述子载波相对应的一路低速数据信号,对所述子载波进行数据调制,得到数据调制信号;并
    根据与所述子载波相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,得到与所述子载波相对应的一路调制扩频信号。
  3. 如权利要求1所述的信号发射方法,其特征在于,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
    针对所述N路子载波中的每一路子载波,根据与所述子载波相对应的一路扩频码,对所述子载波进行幅度扩频调制,得到扩频信号;并
    根据与所述子载波相对应的一路低速数据信号,对所述扩频信号进行数据调制,得到与所述子载波相对应的一路调制扩频信号。
  4. 如权利要求1所述的信号发射方法,其特征在于,根据N路低速数据 信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
    针对所述N路子载波中的每一路子载波,将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
    根据与所述子载波相对应的一路低速数据信号,对所述第一支路子载波进行数据调制,得到第一支路数据调制信号,并根据与所述子载波相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号;根据反相后的与所述子载波相对应的一路低速数据信号,对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述子载波相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号;以及,
    对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述子载波相对应的一路调制扩频信号。
  5. 如权利要求1所述的信号发射方法,其特征在于,根据N路低速数据信号以及N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,包括:
    针对所述N路子载波中的每一路子载波,将所述子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
    根据与所述子载波相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述子载波相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号;根据反相后与所述子载波相对应的一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频信号,并根据反相后的与所述子载波相对应的一路低速数据信号,对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号;以及,
    对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述子载波相对应的一路调制扩频信号。
  6. 一种信号接收方法,其特征在于,包括:
    接收信号发射设备发射的信号,所述信号是信号发射设备在利用分路设备将生成的单波长光载波分束为N路波长相同的子载波后,基于N路低速数据信号以及N路扩频码,对N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并对所述N路调制扩频信号进行合路所得到的;
    对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号;
    基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号;所述N为不小于2的正整数。
  7. 如权利要求6所述的信号接收方法,其特征在于,所述方法还包括:
    对所述N路数据信号中的每一路数据信号进行自适应滤波,得到N路自适应滤波后的数据信号。
  8. 如权利要求6所述的信号接收方法,其特征在于,所述方法还包括:
    对所述N路自适应滤波后的数据信号中的每一路数据信号进行载波相位恢复,得到N路载波相位恢复后的数据信号。
  9. 如权利要求6所述的信号接收方法,其特征在于,在对所述数字信号进行解扩之前,所述方法还包括:
    对所述数字信号进行色散补偿。
  10. 一种信号发射设备,其特征在于,包括光源、串并转换器、第一分路设备、第一合路设备以及N个调制扩频设备,所述N的取值为不小于2的正整数,其中:
    所述光源,用于生成单波长光载波,并输出至第一分路设备;
    所述串并转换器,用于将接收到的高速数据信号串并转换为N路低速数据信号,并输出至所述N个调制扩频设备;其中,所述N路低速数据信号与 所述N个调制扩频设备为一一对应关系;
    所述第一分路设备,用于将所述光源生成的单波长光载波分束为波长相同的N路子载波,并输出至所述N个调制扩频设备;其中,所述N路子载波与所述N个调制扩频设备为一一对应关系;
    所述N个调制扩频设备中的每一个调制扩频设备,用于分别根据与所述调制扩频设备相对应的一路低速数据信号以及N路扩频码中的与所述调制扩频设备相对应的一路扩频码,对与所述调制扩频设备相对应的子载波进行数据调制以及幅度扩频调制,得到与所述调制扩频设备相对应的调制扩频信号,并输出至第一合路设备;其中,所述N路扩频码与所述N个调制扩频设备为一一对应关系;
    所述第一合路设备,用于将从所述N个调制扩频设备接收到的N路调制扩频信号合路为一路合路信号输出。
  11. 如权利要求10所述的信号发射设备,其特征在于,
    针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
    根据与所述一个调制扩频设备相对应的一路低速数据信号,对与所述一个调制扩频设备相对应的一路子载波进行数据调制,得到数据调制信号,并根据与所述一个调制扩频设备相对应的一路扩频码,对所述数据调制信号进行幅度扩频调制,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出至第一合路设备。
  12. 如权利要求10所述的信号发射设备,其特征在于,
    针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
    根据与所述一个调制扩频设备相对应的一路扩频码,对与所述一个调制扩频设备相对应的一路子载波进行幅度扩频调制,得到扩频信号,并根据与所述一个调制扩频设备相对应的一路低速数据信号,对所述扩频信号进行数据调制,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出 至第一合路设备。
  13. 如权利要求10所述的信号发射设备,其特征在于,
    针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
    将与所述一个调制扩频设备相对应一路子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
    根据与所述一个调制扩频设备相对应的一路低速数据信号对所述第一支路子载波进行数据调制,得到第一支路数据调制信号,并根据与所述一个调制扩频设备相对应的一路扩频码,对所述第一支路数据调制信号进行幅度扩频调制,得到第一支路调制扩频信号;根据反相后的与所述一个调制扩频设备相对应的一路低速数据信号对所述第二支路子载波进行数据调制,得到第二支路数据调制信号,并根据反相后的与所述一个调制扩频设备相对应的一路扩频码,对所述第二支路数据调制信号进行幅度扩频调制,得到第二支路调制扩频信号;以及,对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出至第一合路设备。
  14. 如权利要求10所述的信号发射设备,其特征在于,
    针对N个调制扩频设备中的任意一个调制扩频设备,所述一个调制扩频设备具体用于:
    将与所述一个调制扩频设备相对应一路子载波分束为第一支路子载波以及第二支路子载波,并分别对所述第一支路子载波以及第二支路子载波进行移相;以及,
    根据与所述一个调制扩频设备相对应的一路扩频码,对所述第一支路子载波进行幅度扩频调制,得到第一支路扩频信号,并根据与所述一个调制扩频设备相对应的一路低速数据信号对所述第一支路扩频信号进行数据调制,得到第一支路调制扩频信号;根据反相后与所述一个调制扩频设备相对应的 一路扩频码,对所述第二支路子载波进行幅度扩频调制,得到第二支路扩频信号,并根据反相后的与所述一个调制扩频设备相对应的一路低速数据信号对所述第二支路扩频信号进行数据调制,得到第二支路调制扩频信号;以及,对所述第一支路调制扩频信号以及所述第二支路调制扩频信号进行合路,得到与所述一个调制扩频设备相对应的一路调制扩频信号,并输出至第一合路设备。
  15. 如权利要求10所述的信号发射设备,其特征在于,所述N路扩频码为相互正交的双极性二进制扩频序列。
  16. 一种信号接收设备,其特征在于,包括光电转换器OEC、模拟数字转换器ADC以及数字信号处理器DSP:
    所述OEC,用于接收信号发射设备发射的信号,并将接收到的所述信号转换为电信号后输出至所述ADC;其中,所述信号是信号发射设备在利用分路设备将光源生成的单波长光载波分束为N路波长相同的子载波后,基于N路低速数据信号以及N路扩频码,对N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并对所述N路调制扩频信号进行合路所得到的;
    所述ADC,用于接收所述OEC输出的电信号,并将所述电信号转换为数字信号后输出至所述DSP;
    所述DSP,用于接收所述ADC输出的数字信号,并基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号;所述N为不小于2的正整数。
  17. 如权利要求16所述的信号接收设备,其特征在于,所述DSP还包括多输入多输出滤波器:
    所述多输入多输出滤波器,用于对所述N路数据信号中的每一路数据信号进行自适应滤波,得到N路自适应滤波后的数据信号。
  18. 如权利要求16所述的信号接收设备,其特征在于,所述DSP还包括 与所述N路自适应滤波后的数据信号一一对应的N个相位恢复器:
    所述N个相位恢复器中的每一相位恢复器,用于对与所述相位恢复器相对应的一路自适应滤波后的数据信号进行载波相位恢复,得到一路载波相位恢复后的数据信号。
  19. 如权利要求16所述的信号接收设备,其特征在于,所述DSP还包括色散补偿器:
    所述色散补偿器,用于在对接收到的所述数字信号进行解扩之前,对接收到的所述数字信号进行色散补偿,并输出色散补偿后的数字信号至所述N个解扩器。
  20. 一种信号传输系统,其特征在于,包括信号发射设备以及信号接收设备;
    所述信号发射设备,用于生成单波长光载波,并基于分路设备将所述单波长光载波分束为波长相同的N路子载波,以及,根据N路低速数据信号和N路扩频码,对所述N路子载波进行数据调制以及幅度扩频调制,得到N路调制扩频信号,并将得到的N路调制扩频信号合路为一路合路信号输出至信号接收设备;其中,所述N的取值为不小于2的正整数,所述N路扩频码与所述N路子载波为一一对应关系,所述N路低速数据信号与所述N路子载波为一一对应关系,且所述N路低速数据信号是对接收到的高速数据信号进行串并转换所得到的;
    所述信号接收设备,用于接收所述信号发射设备发射的信号,并对接收到的所述信号进行光电转换以及模拟数字转换处理,得到数字信号,以及,基于所述N路扩频码对所述数字信号进行解扩,得到N路解扩信号,并对所述N路解扩信号中的每一路解扩信号进行低通滤波,得到N路数据信号。
PCT/CN2015/094923 2015-11-18 2015-11-18 一种信号发射方法、信号接收方法及相关设备与系统 WO2017084046A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580084184.7A CN108352903B (zh) 2015-11-18 2015-11-18 一种信号发射方法、信号接收方法及相关设备与系统
PCT/CN2015/094923 WO2017084046A1 (zh) 2015-11-18 2015-11-18 一种信号发射方法、信号接收方法及相关设备与系统
EP15908543.0A EP3367593B1 (en) 2015-11-18 2015-11-18 Signal transmitting method, signal receiving method, and relevant device and system
US15/982,930 US10374722B2 (en) 2015-11-18 2018-05-17 Signal transmitting method, signal receiving method, and related device and system
US16/517,214 US10958352B2 (en) 2015-11-18 2019-07-19 Signal transmitting method, signal receiving method, and related device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094923 WO2017084046A1 (zh) 2015-11-18 2015-11-18 一种信号发射方法、信号接收方法及相关设备与系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/982,930 Continuation US10374722B2 (en) 2015-11-18 2018-05-17 Signal transmitting method, signal receiving method, and related device and system

Publications (1)

Publication Number Publication Date
WO2017084046A1 true WO2017084046A1 (zh) 2017-05-26

Family

ID=58717244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094923 WO2017084046A1 (zh) 2015-11-18 2015-11-18 一种信号发射方法、信号接收方法及相关设备与系统

Country Status (4)

Country Link
US (2) US10374722B2 (zh)
EP (1) EP3367593B1 (zh)
CN (1) CN108352903B (zh)
WO (1) WO2017084046A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463090A (zh) * 2017-08-16 2019-11-15 华为技术有限公司 一种光发射机、光接收机及光传输方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584969B1 (en) * 2017-03-10 2023-10-04 Huawei Technologies Co., Ltd. Signal transmitting method, signal receiving method, related device, and system
EP3776921A1 (en) * 2018-03-29 2021-02-17 Cable Television Laboratories, Inc. Systems and methods for coherent optics in an access network
CN110459001A (zh) * 2019-07-31 2019-11-15 浪潮金融信息技术有限公司 一种适用于自助售货机系统的红外光栅检货方法
CN111371497B (zh) * 2020-03-23 2021-03-30 珠海复旦创新研究院 一种有记忆的量化误差预均衡补偿系统和方法
CN112804182B (zh) * 2021-04-12 2021-07-02 中国人民解放军国防科技大学 一种多载波扩频方法及其应用的通信方法和相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972161A (zh) * 2005-11-25 2007-05-30 阿尔卡特公司 用于dqpsk调制信号的光纤传输系统、发射机和接收机及方法
CN101867435A (zh) * 2010-06-22 2010-10-20 华中科技大学 一种全光正交频分复用符号发生器
US20110176815A1 (en) * 2010-01-21 2011-07-21 Frankel Michael Y Multi-channel optical transceiver with offset quadrature amplitude modulation
EP2385637B1 (en) * 2010-05-07 2013-12-25 Telefonaktiebolaget LM Ericsson (Publ) Methods and devices for modulating a signal
CN103501186A (zh) * 2013-10-21 2014-01-08 哈尔滨工业大学 一种时-频混合分离子码结构的互补码cdma系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20012942U1 (de) * 2000-07-26 2000-11-30 Trw Automotive Electron & Comp Bediensystem mit Modulelement zur Montage in einer Blende
US6574268B1 (en) * 2000-11-21 2003-06-03 Bbnt Solutions Llc Asymmetric orthogonal codes for optical communications
US7120356B2 (en) * 2000-12-14 2006-10-10 Nortel Networks Limited Connection verification for optical switches
US20040208644A1 (en) * 2001-05-22 2004-10-21 Opticalis Ltd. Sub-carrier generation for optical communication
JP4586305B2 (ja) * 2001-06-18 2010-11-24 沖電気工業株式会社 多重化光伝送方法及び多重化光伝送装置
FI115364B (fi) * 2003-04-30 2005-04-15 Nokia Corp Kuvausprofiili digitaalisessa kuvauksessa
US20050019040A1 (en) * 2003-07-24 2005-01-27 Trutna William R. Optical communication system and method using spread-spectrum encoding
WO2006049075A1 (ja) 2004-11-08 2006-05-11 Matsushita Electric Industrial Co., Ltd. 光学的cdmaのための符号化器/復号器
US7620328B2 (en) * 2005-01-31 2009-11-17 Telcordia Technologies, Inc. Multi-wavelength optical CDMA with differential encoding and bipolar differential detection
WO2010002041A1 (ja) 2008-07-03 2010-01-07 国立大学法人山梨大学 光通信システム,光送信機,光受信機および方法ならびにこれらで用いる光相関器
CN102263726B (zh) * 2011-06-27 2018-05-01 中兴通讯股份有限公司 一种数据的传输方法、装置及系统
US8792789B1 (en) * 2012-03-07 2014-07-29 Applied Micro Circuits Corporation Optimized chromatic dispersion filter
CN103457902B (zh) * 2013-09-13 2016-06-01 北京邮电大学 一种wdm-pon有线/无线可选择接入系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1972161A (zh) * 2005-11-25 2007-05-30 阿尔卡特公司 用于dqpsk调制信号的光纤传输系统、发射机和接收机及方法
US20110176815A1 (en) * 2010-01-21 2011-07-21 Frankel Michael Y Multi-channel optical transceiver with offset quadrature amplitude modulation
EP2385637B1 (en) * 2010-05-07 2013-12-25 Telefonaktiebolaget LM Ericsson (Publ) Methods and devices for modulating a signal
CN101867435A (zh) * 2010-06-22 2010-10-20 华中科技大学 一种全光正交频分复用符号发生器
CN103501186A (zh) * 2013-10-21 2014-01-08 哈尔滨工业大学 一种时-频混合分离子码结构的互补码cdma系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367593A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463090A (zh) * 2017-08-16 2019-11-15 华为技术有限公司 一种光发射机、光接收机及光传输方法
EP3664324A4 (en) * 2017-08-16 2020-09-02 Huawei Technologies Co., Ltd. OPTICAL TRANSMITTER, OPTICAL RECEIVER AND OPTICAL TRANSMISSION METHOD
CN110463090B (zh) * 2017-08-16 2021-02-23 华为技术有限公司 一种光发射机、光接收机及光传输方法
US11018775B2 (en) 2017-08-16 2021-05-25 Huawei Technologies Co., Ltd. Optical transmitter, optical receiver, and optical transmission method

Also Published As

Publication number Publication date
EP3367593B1 (en) 2021-04-07
US20180287708A1 (en) 2018-10-04
CN108352903B (zh) 2020-11-17
US10374722B2 (en) 2019-08-06
CN108352903A (zh) 2018-07-31
EP3367593A4 (en) 2018-11-14
US20190342008A1 (en) 2019-11-07
US10958352B2 (en) 2021-03-23
EP3367593A1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
WO2017084046A1 (zh) 一种信号发射方法、信号接收方法及相关设备与系统
JP6358024B2 (ja) 光送信器および波形歪みを補正する方法
US9344193B2 (en) Digital optical spectral shaping
US10911093B2 (en) Signal transmission method, signal receiving method, related device, and system
US9853739B2 (en) Optical transmitter and method for controlling bias of optical modulator
WO2013114629A1 (ja) 光伝送システムおよび光信号伝送方法
US20120148260A1 (en) Optical transmitter and optical transmission method
WO2013039968A1 (en) Performance enhancement through optical variants
CN107852390B (zh) 一种调制器、调制系统以及实现高阶调制的方法
JP6269841B2 (ja) 偏波分散付加器及び光受信機
US9608732B2 (en) Optical transmitter, optical communication system, and optical communication method
JP5321591B2 (ja) 光送信装置、光受信装置および光通信システム
US11018775B2 (en) Optical transmitter, optical receiver, and optical transmission method
US9419719B2 (en) Transmitter apparatus and method
KR20120026069A (ko) 멀티-포맷 데이터용 전송기
EP3016303B1 (en) Method, device, and system for sending and receiving signal
JP6058168B2 (ja) 光伝送装置および光伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015908543

Country of ref document: EP