WO2004064315A1 - 秘匿性を有する光通信システムおよび光通信方法 - Google Patents

秘匿性を有する光通信システムおよび光通信方法 Download PDF

Info

Publication number
WO2004064315A1
WO2004064315A1 PCT/JP2003/000173 JP0300173W WO2004064315A1 WO 2004064315 A1 WO2004064315 A1 WO 2004064315A1 JP 0300173 W JP0300173 W JP 0300173W WO 2004064315 A1 WO2004064315 A1 WO 2004064315A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
polarization
communication system
optical communication
pmd
Prior art date
Application number
PCT/JP2003/000173
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Fukushima
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004566258A priority Critical patent/JP3983766B2/ja
Priority to PCT/JP2003/000173 priority patent/WO2004064315A1/ja
Publication of WO2004064315A1 publication Critical patent/WO2004064315A1/ja
Priority to US11/063,557 priority patent/US6999655B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/08Secret communication by varying the polarisation of transmitted waves

Definitions

  • the present invention relates to an optical communication system and an optical communication method for transmitting confidential information by an optical signal.
  • WDM Wavelength Division Multiplexing
  • OADM Optical Add / Drop Multiplexer
  • OXC optical cross-connect
  • the electric signal used for modulating light according to the transmitted information is subjected to encryption processing by software.
  • software encryption is likely to be broken by software.
  • optical spread spectrum communication system basically applies the wireless spread spectrum communication system to the optical domain. It is well known that wireless spread spectrum communication has excellent confidentiality, as is clear from the background of its development for military purposes.
  • the optical spread spectrum communication system described above has a large difference in configuration from the current optical communication system, it can be applied by adding simple hardware to existing systems or making simple modifications. There is a disadvantage that it is difficult. Specifically, for example, in an existing optical communication system in which WDM signal light including 40-wave optical signals having different wavelengths is transmitted, some of the 40-wave optical signals (for example, It is difficult after the system is constructed to respond to the need to apply optical spread spectrum communication to optical signals (wave signals) to add physical confidentiality. By the way, at present, the development of an optical communication system for transmitting an optical signal having a high bit rate such as 40 Gbit / s over a long distance is under way.
  • PMD polarization mode dispersion
  • PMD compensation technology For example, in Japanese Patent Application Laid-Open No. 11-196046, for example, a PMD compensator provided at the receiving end of an optical fiber transmission line monitors the occurrence state of the PMD of the transmission light while monitoring the state. Techniques for dynamically compensating for this have been proposed.
  • the above-mentioned known PMD compensator takes a long time to detect a PMD that fluctuates irregularly due to environmental changes or the like, so that a PMD that fluctuates relatively slowly or a fixed PMD is automatically generated. Can be compensated for. Conversely, it is difficult to receive and process an optical signal having a PMD that fluctuates at a high speed and irregularly, even if a known PMD compensator is used. Therefore, as a means of maintaining the confidentiality of information at the optical level, it is considered possible to actively use PMD, which has been a cause of deterioration of transmission characteristics.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an optical communication system and an optical communication method which maintain high security by maintaining confidentiality of information at an optical level. Disclosure of the invention
  • the optical communication system having secrecy of the present invention is a system for transmitting and receiving an optical signal between an optical transmitter and an optical receiver via an optical transmission line.
  • a second element having substantially the same configuration and characteristics as the first element; and driving the second element in accordance with the variable pattern, thereby providing a polarization mode imparted by the polarization mode dispersion imparting device.
  • the polarization mode dispersion changing according to the variable pattern is provided to the optical signal transmitted from the optical transmitter to the optical transmission line by the polarization mode dispersion providing device.
  • the optical signal to which the polarization mode dispersion has been applied passes through the optical transmission line.
  • the polarization mode dispersion imparted by the polarization mode dispersion imparting device is canceled, and the transmission state before being input to the polarization mode dispersion imparting device is restored. You. As a result, the confidentiality of the information transmitted by the optical signal is maintained by providing the polarization mode dispersion at the optical level, and the optical communication with high security is realized.
  • the optical communication method having confidentiality of the present invention is a method for transmitting and receiving an optical signal between an optical transmitter and an optical receiver via an optical transmission line, wherein the optical signal transmitted from the optical transmitter is By driving a first element that gives a variable polarization mode dispersion according to a variable pattern predetermined between the optical transmitter and the optical receiver, the optical signal with the polarization mode dispersion is Sending to the optical transmission line, giving a variable polarization mode dispersion to the optical signal sent from the optical transmission line to the optical receiver, and having the same configuration and characteristics as the first element.
  • the optical signal restored to the state at the time of transmission by giving the polarization mode dispersion that cancels the polarization mode dispersion given by the polarization mode dispersion giving device to the optical signal.
  • Send to receiver It is characterized by that.
  • FIG. 1 is a configuration diagram showing a first embodiment of the optical communication system of the present invention.
  • FIG. 2 is a configuration diagram showing a specific example of the PMD variable device according to the first embodiment.
  • FIG. 3 is a configuration diagram showing an application example related to the first embodiment.
  • FIG. 4 is a configuration diagram showing an example of a PMD variable device used in the second embodiment of the optical communication system of the present invention.
  • FIG. 1 is a configuration diagram showing a first embodiment of the optical communication system of the present invention.
  • the optical communication system includes, for example, a PMD adding device 1.0 at an output of the optical transmitter 1 for an optical network in which an optical transmitter 1 and an optical receiver 2 are connected via an optical network 3.
  • a PMD restoration device 20 at the input of the optical receiver 2
  • the optical signal transmitted from the optical transmitter 1 to the optical receiver 2 via the optical network 3 is concealed at the optical level. It is.
  • the optical transmitter 1 has a well-known configuration that generates an optical signal modulated according to a data signal such as 10 GbitZs, and outputs the modulated optical signal to the PMD providing apparatus 10.
  • the optical signal transmitted from the optical transmitter 1 includes a header 1 indicating additional information such as a destination address and a payload indicating a data body.
  • the PMD providing device 10 includes, for example, a PMD variable device 11 as a first element to which an optical signal from the optical transmitter 1 is input, a drive control circuit 12 for controlling a drive state of the PMD variable device 11, and And a variable pattern generator 13 for generating a predetermined variable pattern between the optical transmitter 1 and the optical receiver 2.
  • the PMD providing device 10 supplies a drive control signal generated by the drive control circuit 12 in accordance with the variable pattern output from the variable pattern generator 13 to the PMD variable device 11 so that the optical transmitter 1 A PMD that changes according to the variable pattern is added to the optical signal, and the optical signal is transmitted to the optical network 3.
  • the PMD restoring device 20 receives, for example, an optical signal transmitted to the optical receiver 2 by propagating through the optical network 3.
  • the PMD restoration device 20 includes a PMD variable device 21 as a second element having the same configuration and the same characteristics as the PMD variable device 11 of the PMD providing device 10, and a drive for controlling the driving state of the PMD variable device 21. It has a control circuit 22 and a variable pattern generator 23 that generates a predetermined variable pattern between the optical transmitter 1 and the optical receiver 2.
  • the above PMD restoration device 10 supplies the drive control signal generated by the drive control circuit 22 according to the variable pattern output from the variable pattern generator 23 to the PMD
  • the optical signal is restored to its original polarization state by giving a PMD opposite to the PMD given by the PMD giving device 10 on the transmitting side, and the optical signal is output to the optical receiver 2.
  • the optical receiver 2 receives and demodulates the optical signal output from the PMD restoring device 20, checks the transmission destination of the optical signal based on the information in the header, and includes it in the payload of the corresponding optical signal. This is a general configuration for identifying a data signal obtained.
  • FIG. 2 is a configuration diagram showing a specific example of each of the PMD variable devices 11 and 21 used in the above-described PMD providing device 10 and PMD restoring device 20.
  • Each of the PMD variable devices 11 and 21 shown in FIG. 2 has the same configuration and the same characteristics as described above, and here comprises a polarization rotation unit 31 and a polarization delay unit 32.
  • the polarization rotator 31 rotates the polarization of the optical signal transmitted from the optical transmitter 1 or the optical network 3 in accordance with the drive control signal output from the drive control circuit 11, and generates a polarization delay 32 Output to
  • the polarization rotation does not mean only rotation of the axis of linearly polarized light, but generally rotation on the Poincare sphere. For example, the movement on the meridian when the Poincare sphere is regarded as the earth is also rotation.
  • polarization rotator 31 for example, a half-wave plate (two plates) and a quarter-wave plate ( ⁇ / 4 plate) are sequentially arranged along the optical path, or a variable rotation angle is set.
  • a Faraday rotator, a liquid crystal, or the like can be used.
  • the configuration of the polarization rotator 31 is not limited to the above example.
  • Polarization delay unit 32 for example, lithium niobate (L i Nb0 3: hereinafter, LN to) the polarization rotating part to one end of the optical waveguide 32 formed on the crystal substrate 32 A having an electro-optic effect, such as B An optical signal from 31 is input. A plurality of polarization conversion devices are inserted into the optical waveguide 32B at required intervals.
  • the polarization conversion device 3 is polarization rotation part 3
  • a polarization conversion device 32 C 2 is provided in the vicinity of one end of the optical waveguide 32 B located on the first side, and is provided in the optical waveguide 32 B at a distance L 1 from the polarization conversion device 3.
  • the polarization conversion device 32 C 3 provided in the middle of the polarization conversion device 32 C 2 optical waveguide 32 at a distance L 2 from B.
  • the polarization conversion device 3 2 C 3 or RaHikarishirube waveguide 32 B the distance to the other end and L 3.
  • the optical signal input to the optical waveguide 32 B propagates through the optical waveguide part 32 between the polarization conversion devices 32 C 32 C 2 , so that orthogonal polarization mode components can be generated. Then, a group delay time difference of ⁇ 1 (positive and negative signs change according to the setting of the polarization conversion device 32) occurs. In addition, the optical signal is converted to a polarization conversion device 3
  • the group delay time difference of the orthogonal polarization mode component ⁇ 2 (positive and negative signs correspond to the settings of the polarization conversion device 32 C 2 change Te) is generated, further, an optical waveguide portion of the polarization conversion device 32 C 3 or later
  • the optical signal when an optical signal such as 10 GbitZs is transmitted from the optical transmitter 1, the optical signal is provided to the PMD converter 11 of the PMD providing device 10.
  • Each of the polarization conversion devices 32 Ci S 2 C 3 of the polarization rotation unit 31 and the polarization delay unit 32 constituting the PMD converter 11 is driven according to the variable pattern generated by the variable pattern generator 13.
  • the drive control signal generated by the control circuit 12 is supplied.
  • the optical signal input to the PMD converter 11 is subjected to a high-speed polarization rotation according to a variable pattern by a polarization rotator 31 for a portion corresponding to the payload excluding the header.
  • both the polarization rotation state and the group delay time difference between the orthogonal polarization mode components are scrambled at high speed according to a variable pattern prearranged between the optical transmitter 1 and the optical receiver 2.
  • a variable pattern prearranged between the optical transmitter 1 and the optical receiver 2.
  • what kind of PMD is given to the optical signal according to the variable pattern depends on the PMD variable unit 11 as hardware, and specifically, the polarization rotation unit 31 and the polarization delay unit It is uniquely determined by the configuration and characteristics of 32.
  • the operation of the PMD adding device 10 as described above is different from the operation of a general polarization scrambler that changes only the polarization state of an optical signal. That is, the operation of the PMD imparting device 10 makes it possible to realize a new function of so-called “two-element scrambling” that fluctuates both the polarization rotation state and the group delay time difference.
  • the optical signal that has passed through the PMD adding device 10 is transmitted through the optical network 3 to the optical receiver 2, and the PMD converter of the PMD recovery device 20 arranged before the optical receiver 2. 2 given to 1. Occur in this P MD transducer against 2 1 of polarization rotating unit 3 1 and polarization each polarization conversion delay unit 3 2 Device 3 2 C i ⁇ 3 2 C 3, variable pattern generator 2 3
  • the drive control signal generated by the drive control circuit 22 according to the variable pattern to be supplied is supplied in synchronization with the drive control signal supplied to the PMD variable device 11 of the PMD providing device 10.
  • the optical signal input to the PMD converter 21 has a portion corresponding to the payload except for the header 1, after a polarization rotation that rapidly changes in accordance with a variable pattern is performed by the polarization rotation portion 31.
  • polarization delay unit 3 2 of the optical waveguide portion 3 2 B by propagating to 3 2 B 3 in this order, thus the differential group delay that varies at high speed variable pattern is provided between orthogonal polarization mode components.
  • the portion corresponding to the header of the optical signal passes through the PMD converter 21 as it is.
  • the polarization rotation given by the polarization rotation unit 31 is a rotation in the opposite direction to cancel the polarization rotation given by the polarization rotation unit 31 of the PMD adding device 10.
  • the group delay time difference given by the polarization delay unit 32 is the polarization rotation unit of the PMD adding device 10. This is the inverse group delay time difference that cancels the group delay time difference given in 32.
  • the group delay time difference of the opposite sign is given to the optical signal while changing at a high speed according to the variable pattern, so that the group delay time difference between the orthogonal polarization mode components is changed to the state when transmitted from the optical transmitter 1. Will be returned.
  • the optical signal that has passed through the PMD recovery device 20 cancels both the polarization rotation state scrambled on the transmitting side and the group delay time difference between the orthogonal polarization mode components, and adds the PMD on the transmitting side. It is restored to the state before the operation.
  • the restoration of this optical signal is performed by matching the variable patterns generated by the variable pattern generator 13 of the PMD adding device 10 and the variable pattern generator 23 of the PMD restoring device 20, respectively, and by adding the PMD. This is realized only by satisfying the condition that the configurations and characteristics of the PMD variable device 11 of the device 10 and the PMD variable device 21 of the PMD recovery device 20 are substantially the same. In order for each of the PMD variable devices 21 used in the PMD adding device 10 and the PMD restoring device 20 to satisfy the above conditions, for example, it is necessary to use the same lot manufactured by the same manufacturer and in the same process. It is required to be something.
  • each PMD variable device 21 used in the PMD adding device 10 and the PMD restoring device 20 is a specific customer (here In addition to managing the information so that it is not known to a third party other than the user of the optical transmitter 1 and the optical receiver 2), be sure to give only a specific pair of PMD variable devices 21 to the customer. It becomes important.
  • the optical signal restored to the state at the time of transmission by the PMD restoration device 20 as described above is sent to the optical receiver 2 and subjected to reception processing.
  • the header of the optical signal that has passed through the PMD restoring device 20 is read, and information on the destination and the like is confirmed.
  • the transmitting side PMD adding apparatus 10 starts to add the PMD to the payload of the optical signal, and in synchronization therewith, the receiving side PMD recovering apparatus 2 By 0, the restoration of the PMD given above is started.
  • the optical receiver 2 reads the payload information of the optical signal restored to the state at the time of transmission, and performs data signal identification processing.
  • the output from the optical transmitter 1 PMD scrambles an optical signal such as 10 Gb it / s according to a variable pattern at high speed and transmits it to the optical network 3, and when the optical signal is received, the PMD contradicts the PMD given by the transmitting side. Is applied to the optical signal to restore it to its original state, so that the confidentiality of the optical signal transmitted between the optical transmitter 1 and the optical receiver 2 can be maintained at the optical level .
  • An optical signal with a PMD that changes at a high speed according to such a variable pattern is provided on the receiving side with a PMD variable unit 21 having the same configuration and the same characteristics as the PMD variable unit 11 used on the transmitting side.
  • the polarization delay unit 32 of each of the PMD variable devices 11 and 21 is divided into three elements (the optical waveguide part 3 S Bi S 2 B 3 and the polarization conversion devices 32 C to 32 C 3 ).
  • a configuration has been shown to provide a group delay time difference are two 3 between orthogonal polarization mode components separately, the present invention is not limited thereto, the group delay time difference of the polarization delay unit 32 Ke divided into any number of elements It is possible to give.
  • the number of combinations of group delay time differences given to the optical signal increases (when divided into N elements, there are 2 N combinations). Can be made more confidential.
  • a configuration for compensating for the PMD generated by the optical signal propagating through the optical network 3 is not particularly provided.
  • the PMD compensator 50 on the receiving side to compensate for PMD generated in the optical network 3.
  • the PMD It is preferable that a polarization controller 51 of the PMD compensator 50 is provided before the device 20 and a polarization delay device 52 and a PMD monitor 54 of the PMD compensator 50 are provided after the PMD restoration device 20.
  • the polarization controller 51 of the PMD compensator 50 rotates the direction of the plane of polarization of the optical signal according to the result of monitoring by the PMD monitor 54, and the polarization delay unit 53 is polarized by the polarization controller 51. It provides a certain group delay time difference to the orthogonal polarization mode component of the optical signal whose wave direction is controlled.
  • the header of the optical signal and the payload PMD scrambling may be applied to both.
  • FIG. 4 is a configuration diagram illustrating an example of a PMD variable device used in the optical communication system according to the second embodiment. Note that the configuration of the entire optical communication system is the same as that of the first embodiment shown in FIG. 1 described above, and a description thereof will be omitted.
  • the configuration shown in FIG. 4 shows the PMD variable devices 11 and 21 used in the PMD providing device 10 and the PMD restoring device 20 in FIG.
  • the PMD tuners 11 and 21 in Fig. 4 are composed of multiple (here, three) polarization maintaining fibers (Polarization fibers). Maintains Fiber: hereinafter, referred to as PMF) formed by connecting in series via a polarization rotation element 33 B physician 33 B 2, 3 3 B 3 a.
  • PMF 33 AS 3 A 3 has a different optical path length in the fiber axis direction with respect to the orthogonal polarization mode, and generates a constant PMD between orthogonal polarization mode components. It is a lossy optical transmission medium.
  • Each of the polarization rotation elements 33 33 B 2 and 33 B 3 is a known optical device that rotates the polarization of an input optical signal in accordance with a drive control signal from the drive control circuit 11 and outputs the resulting signal.
  • Specific examples of the polarization rotator 33 BS 3 B 3 include an LN waveguide, a Faraday rotator having a variable rotation angle, or a liquid crystal.
  • the optical signal transmitted from the optical transmitter 1 or the optical network 3 is given to the PMF 33 via the polarization rotation element 33, and the optical signal is polarized. After being polarized and rotated by the wave rotation element 33 according to the drive control signal, a group delay time difference of ⁇ 1 is given between the orthogonal polarization mode components by the PMF 33.
  • the optical signal passing through the PMF 33 is supplied to the PMF 33 A 2 via the polarization rotation element 33 B 2 , and further supplied to the PMF 33 A 3 via the polarization rotation element 33 B 3 is polarization rotated according to their respective drive control signal by the polarization rotator 33B 2, 33 B 3, PMF 33A 2, 33 B 3 by delta 2 between the polarization mode components of, respectively it perpendicular, delta 3 group A delay time difference is provided.
  • the optical communication system of the second embodiment as described above, the same effects as in the first embodiment can be obtained, and a system for transmitting a relatively low-speed optical signal such as 100 Mb its, It is possible to easily realize a PMD variable device that can give a large PMD to a signal.
  • the PMFs 33 Ai S 3 A 3 are connected in series via the polarization rotator 33 Bi S 3 B 3.
  • the polarization rotator 33 B 1 is omitted ⁇ 33 B 3
  • each PMF 33 a 1 ⁇ 33 a 3 each spindle are connected to each other so as to be different Do that angle.
  • PMD scrambling according to the variable pattern is not performed, so that the level of confidentiality of information is lower than in the case of the above-described second embodiment.
  • the above configuration can be realized at extremely low cost, and generally the value of encryption is Considering that it is determined by the cost of encrypting the data, it is useful as simple light-level encryption.
  • the confidential optical communication system and optical communication method of the present invention provide an optical signal output from an optical transmitter with polarization mode dispersion that changes according to a variable pattern, and transmits the optical signal to an optical transmission line.
  • the optical signal is given a polarization mode dispersion that cancels out the polarization mode dispersion given by the transmission side, and is restored to the state at the time of transmission. Since the confidentiality of the optical signal transmitted by the optical communication can be maintained at the optical level, and optical communication with high security can be realized, industrial applicability is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

本発明は、光レベルで情報の秘匿性を保持して高い安全性を確保した光通信方式を提供することを目的とする。このため、本発明の光通信システムは、光送信器から出力された光信号に対して、光送信器および光受信器間で予め取り決めた可変パターンに従って変化する偏波モード分散(PMD)を与えて光回線網に送るPMD付与装置と、光回線網を伝搬した光信号に対して、PMD付与装置で付与されたPMDを打ち消すPMDを与え、送信時の状態に復元して光受信器に送るPMD復元装置とを備えて構成される。

Description

明 細 書 秘匿性を有する光通信システムおよび光通信方法 技術分野
本発明は、 光信号によって秘匿情報を伝達するための光通信システムおよび光 通信方法に関する。 背景技術
従来の光通信は、 発光した光を単に受光して情報を伝達するだけであり、 第三 者に対して伝達情報の秘匿性を保つ工夫はなかった。 2地点間での一対一の光通 信では、 光により伝達される情報の秘匿性を保持しなくても普通は障害の生じる よう なこ とはない。 しかし、 波長分割多重 (Wavelength Divis ion Mult iplexing:以下、 WDMとする) 信号光の特定の波長だけを分岐または揷入 する光アドドロップ (Opt ical Add/Drop Mul t iplexer:以下、 OADMとする) 機能や、 光信号を電気に変換することなく光のままでルーティングを行う光クロ スコネクト (Opt ical Cross- connect:以下、 O X Cとする) 機能を持つ光ネッ トワークでは、 多数の利用者がネットワーク内のファイバ網を共有することにな るため、 第三者が光信号を取り出して受信することが可能である。 さらに、 その 第三者は、 光信号を取り出した後に元の光信号を増幅することによって、 当事者 に盗聴の事実を知られないようにすることも可能である。 現状の光通信システム で交信される光信号は、 悪意を有するネットワーク業者やハッカーなどに対して 無防備な状態にあると考えられる。
ただし、 現状の光通信システムにおいても伝達情報に従った光の変調に用いら れる電気信号に対してソフトウェアによる暗号化の処理が施されている。 しかし、 このようなソフトウエアによる暗号化は、 ソフトウェアによって解読されてしま う可能性が高い。 たとえ、 リアルタイムに暗号を解読することができなくとも、 暗号化された信号を記録し大型計算機等を利用して長期間かけて処理すれば、 喑 号の解読が可能になってしまう場合もあり得る。 このような光変調前の電気信号の暗号化に対して、 光信号そのものを暗号化す ることが可能になれば、 その暗号に対応したハードウェアを受信側に具備しない 限り暗号の解読は不可能である。 つまり、 暗号化された光信号を受光素子で電気 信号に変換して記録したとしても、 光レベルの情報 (例えば、 位相情報など) は 受光時に失われてしまうため、 大型計算機等を利用しても暗号を解読することは 困難である。
情報の秘匿性の保持を光レベルで実現する技術の提案としては、 例えば、 光ス ぺクトラム拡散通信方式などが知られている。 この光スぺクトラム拡散通信方式 は、 基本的に無線におけるスペクトラム拡散通信方式を光領域に応用したもので ある。 無線のスペクトラム拡散通信方式は、 当初軍用目的に開発された経緯から も明らかなように優れた秘匿性を有していることは周知である。
しかし、 上記のような光スペクトラム拡散通信方式は、 現状の光通信システム とは構成上の違いが大きいため、 既存のシステムに対する簡単なハードウエアの 付加や簡易な改造などによってその適用を図ることが難しいという欠点がある。 具体的には、 例えば波長の異なる 4 0波の光信号を含んだ WDM信号光が伝送さ れる既存の光通信システムについて、 4 0波の光信号のうちの何波かの光信号 (例えば 4波の光信号) に光スペクトラム拡散通信を適用して、 物理的な秘匿性 を付加するといつた対応を行うことはシステム構築後においては困難である。 ところで、 現在、 例えば 4 0 G b i t / s等の高速なビットレートの光信号を 長距離に亘つて伝送する光通信システムの開発が進められている。 このような光 通信システムにおける一つの問題として、 偏波モード分散 (Polarizat ion- Mode Dispers ion:以下、 P MDとする) の発生による伝送特性の劣化が知られている。 この P MDは、 複屈折媒体中を伝搬した光信号の 2つの直交する偏波モード成分 間に生じる群遅延時間差のことである。 光伝送路として一般的に利用される光フ アイバは理想的には軸対称性を有する伝送媒体であるが、 製造上の不完全性に起 因する真円からのゆらぎや、 被覆処理、 ケーブル化に伴う応力付与などにより実 際には複屈折性を生じる。 このため光ファイバをはじめとする複屈折媒体を用い て 4 0 G b i t Z sのような高速の光信号を長距離伝送する場合には、 P MDに よる伝送特性劣化を補償することが重要になる。 P M Dの補償に関する技術とし ては、 例えば特開平 1 1一 1 9 6 0 4 6号公報等において、 光ファイバ伝送路の 受信端に設けた P MD補償器により、 伝送光の P MDの発生状態をモニタしなが らその補償を動的に行う技術が提案されている。
上記のような公知の P M D補償器は、 環境の変化等により不規則に変動する P MDを検出するのに時間がかかるため、 比較的ゆつくりと変動する P MDまたは 一定の P MDを自動的に補償することができる。 このことは逆に、 高速かつ不規 則に変動する P M Dの発生した光信号を受信処理することは、 公知の P M D補償 器を用いても困難である。 そこで、 光レベルで情報の秘匿性を保持する一つの手 段として、 これまでは伝送特性劣化の要因とされてきた P MDを積極的に利用す ることが可能であると考えられる。
本発明は上記の点に着目してなされたもので、 光レベルで情報の秘匿性を保持 して高い安全性を確保した光通信システムおよび光通信方法を提供することを目 的とする。 発明の開示
このため、 本発明の秘匿性を有する光通信システムは、 光送信器および光受信 器の間で光伝送路を介して光信号を送受信するシステムにおいて、 前記光送信器 から送信される光信号に対して可変の偏波モード分散を与える第 1素子を有し、 前記光送信器および前記光受信器の間で予め取り決めた可変パターンに従って前 記第 1素子を駆動することにより、 偏波モード分散を付与した光信号を前記光伝 送路に送る偏波モード分散付与装置と、 前記光伝送路から前記光受信器に送られ る光信号に対して可変の偏波モード分散を与え、 かつ、 前記第 1素子と実質的に 同一な構成および特性を持つ第 2素子を有し、 前記可変パターンに従って前記第 2素子を駆動することにより、 前記偏波モード分散付与装置で付与された偏波モ 一ド分散を打ち消す偏波モード分散を与えて送信時の状態に復元した光信号を前 記光受信器に送る偏波モード分散復元装置と、 を備えて構成されるものである。 かかる構成の光通信システムでは、 光送信器から光伝送路に送られる光信号に 対して、 可変パターンに従って変化する偏波モード分散が偏波モード分散付与装 置によって付与される。 この偏波モード分散が付与された光信号は、 光伝送路を 伝搬した後、 第 1素子と実質的に同一な構成および特性を持つ第 2素子を備えた 偏波モ一ド分散復元装置において、 送信側で用いられた可変パターンに一致する 可変パターンに従って変化する偏波モ一ド分散が与えられることで、 偏波モード 分散付与装置で付与された偏波モード分散が打ち消されて、 偏波モード分散付与 装置に入力される前の送信時の状態に復元される。 これにより、 光信号によって 伝達される情報の秘匿性が光レベルでの偏波モード分散の付与によって保持され、 高い安全性を確保した光通信が実現されるようになる。
また、 本発明の秘匿性を有する光通信方法は、 光送信器および光受信器の間で 光伝送路を介して光信号を送受信する方法において、 前記光送信器から送信され る光信号に対して可変の偏波モード分散を与える第 1素子を、 前記光送信器およ び前記光受信器の間で予め取り決めた可変パターンに従って駆動することにより、 偏波モード分散を付与した光信号を前記光伝送路に送り、 前記光伝送路から前記 光受信器に送られる光信号に対して可変の偏波モード分散を与え、 かつ、 前記第 1素子と実質的に同一な構成および特性を持つ第 2素子を前記可変パターンに従 つて駆動することにより、 前記偏波モード分散付与装置で付与された偏波モード 分散を打ち消す偏波モード分散を与えて送信時の状態に復元した光信号を前記光 受信器に送ることを特徴とする。 図面の簡単な説明
図 1は、 本発明の光通信システムの第 1実施形態を示す構成図である。
図 2は、 上記の第 1実施形態における P MD可変器の具体的な一例を示す構成 図である。
図 3は、 上記の第 1実施形態に関連した応用例を示す構成図である。
図 4は、 本発明の光通信システムの第 2実施形態に用いられる P MD可変器の 一例を示す構成図である。 発明を実施するための最良の形態
以下に、 本発明の秘匿性を有する光通信方法および光通信システムを実施する ための最良の形態を添付図面に基づいて説明する。 なお、 全図を通して同一の符 号は同一または相当する部分を示すものとする。
図 1は、 本発明の光通信システムの第 1実施形態を示す構成図である。
図 1において、 本光通信システムは、 例えば、 光送信器 1および光受信器 2の 間を光回線網 3を介して接続した光ネットワークについて、 光送信器 1の出力に PMD付与装置 1.0を設けると共に、 光受信器 2の入力に PMD復元装置 20を 設けることによって、 光送信器 1から光回線網 3を介して光受信器 2に伝達され る光信号の秘匿化を光レベルで実現したものである。
光送信器 1は、 例えば 10Gb i tZs等のデータ信号に従って変調された光 信号を生成し、 それを PMD付与装置 10に出力する周知の構成のものである。 この光送信器 1から送信される光信号は、 具体的には、 送信先のアドレス等の付 加情報を示すヘッダ一およびデ一夕本体を示すペイロードの各部分からなる。
PMD付与装置 10は、 例えば、 光送信器 1からの光信号が入力される第 1素 子としての PMD可変器 11と、 該 PMD可変器 1 1の駆動状態を制御する駆動 制御回路 12と、 光送信器 1および光受信器 2の間で予め取り決められた可変パ ターンを発生する可変パターン発生器 13と、 を有する。 この PMD付与装置 1 0は、 可変パターン発生器 13から出力される可変パターンに応じて駆動制御回 路 12で生成した駆動制御信号を PMD可変器 11に供給することにより、 光送 信器 1からの光信号について可変パターンに従って変化する PMDを付与し、 そ の光信号を光回線網 3に送出する。
PMD復元装置 20は、 例えば、 光回線網 3を伝搬して光受信器 2に向けて送 られる光信号が入力される。 この PMD復元装置 20は、 PMD付与装置 10の PMD可変器 11と同一の構成で同一の特性を有する第 2素子としての PMD可 変器 21と、 該 PMD可変器 21の駆動状態を制御する駆動制御回路 22と、 光 送信器 1および光受信器 2の間で予め取り決められた可変パターンを発生する可 変パターン発生器 23とを有する。 上記の PMD復元装置 10は、 可変パターン 発生器 23から出力される可変パターンに応じて駆動制御回路 22で生成した駆 動制御信号を PMD可変器 21に供給することにより、 光回線網 3からの光信号 に対して、 送信側の PMD付与装置 10で付与された PMDとは相反する PMD を与えることにより元の偏波状態に復元し、 その光信号を光受信器 2に出力する。 光受信器 2は、 PMD復元装置 20から出力される光信号を受信して復調し、 ヘッダー部分の情報を基にその光信号の送信先を確認して該当する光信号のペイ ロード部分に含まれたデータ信号を識別する一般的な構成のものである。
図 2は、 上記の PMD付与装置 10および PMD復元装置 20に用いられる各 PMD可変器 1 1, 2 1の具体的な一例を示す構成図である。
図 2に示す各 PMD可変器 1 1, 2 1は、 前述したように同一の構成および同 一の特性を有するものであり、 ここでは、 偏波回転部 31および偏波遅延部 32 から構成される。 偏波回転部 31は、 光送信器 1または光回線網 3から送られて くる光信号の偏波を、 駆動制御回路 1 1から出力される駆動制御信号に従って回 転させて偏波遅延部 32に出力する。 なお、 ここでの偏波回転とは、 直線偏波の 軸の回転のみを意味するものではなく、 ポアンカレ球上の回転一般を意味するも のである。 例えば、 ポアンカレ球を地球に見立てたときの子午線上の動きも回転 とする。 上記の偏波回転部 3 1としては、 例えば、 二分の一波長板 ( 2板) と四分の一波長板 (λ/4板) を光路に沿って順に並べたものや、 可変回転角を 有するファラデー回転子、 液晶などを使用することができる。 ただし、 偏波回転 部 3 1の構成は上記の一例に限定されるものではない。
偏波遅延部 32は、 例えば、 ニオブ酸リチウム (L i Nb03 :以下、 LNと する) 等の電気光学効果を有する結晶基板 32 Aに形成した光導波路 32 Bの一 端に偏波回転部 31からの光信号が入力される。 この光導波路 32 Bには、 複数 個の偏波変換デバイスが所要の間隔で挿入されている。 具体的に、 ここでは例え ば 3個の偏波変換デバイス 32 ( ぃ 32 C2, 32 C3が光導波路 32 B上に配 置されるものとし、 偏波変換デバイス 3 は偏波回転部 3 1側に位置する光 導波路 32 Bの一端近傍に設けられ、 その偏波変換デバイス 3 から距離 L 1を隔てた光導波路 32 Bの途中に偏波変換デバイス 32 C2が設けられ、 さら に、 その偏波変換デバイス 32 C2から距離 L 2を隔てた光導波路 32 Bの途中 に偏波変換デバイス 32 C3が設けられる。 なお、 偏波変換デバイス 3 2 C3か ら光導波路 32 Bの他端までの距離を L 3とする。 各偏波変換デバイス 32 C, 〜32 C3は、 それぞれ、 光導波路 32 B内を伝搬する光信号の直交する偏波モ ード成分を、 駆動制御回路 1 1からの駆動制御信号に従って相互に変換する機能 を持つ。
このような偏波遅延部 32では、 光導波路 32 Bに入力された光信号が偏波変 換デバイス 32 C 32 C2間の光導波路部分 32 を伝搬することで、 直交 する偏波モード成分間に士 Δ 1の群遅延時間差 (正負の符号は偏波変換デバイス 32 の設定に応じて変化) が発生する。 また、 光信号が偏波変換デバイス 3
2 C2, 32 C3間の光導波路部分 32 B2を伝搬することで、 直交偏波モード成 分間 士 Δ 2の群遅延時間差 (正負の符号は偏波変換デバイス 32 C2の設定に 応じて変化) が発生し、 さらに、 偏波変換デバイス 32 C3以降の光導波路部分
32 B 3を伝搬することで直交偏波モード成分間に土 Δ 3の群遅延時間差 (正負 の符号は偏波変換デバイス 32 C3の設定に応じて変化) が発生する。
次に、 第 1実施形態の光通信システムの動作について説明する。
上記のような構成の光通信システムでは、 10 Gb i tZs等の光信号が光送 信器 1から送信されると、 その光信号は PMD付与装置 10の PMD変換器 11 に与えられる。 この PMD変換器 11を構成する偏波回転部 31および偏波遅延 部 32の各偏波変換デバイス 32 Ci S 2 C3に対しては、 可変パターン発生 器 13で発生する可変パターンに応じて駆動制御回路 12で生成した駆動制御信 号が供給されている。 PMD変換器 11に入力された光信号は、 ヘッダーを除い たペイロードに相当する部分について、 偏波回転部 31で可変パターンに従って 高速に変化する偏波回転が行われた後に、 偏波遅延部 32の各光導波路部分 32 Bi S 2 B3を順に伝搬することで、 直交する偏波モード成分間に可変パ夕一 ンに従って高速に変化する群遅延時間差が与えられる。 なお、 ここでは光信号の ヘッダーに相当する部分については、 そのまま PMD変換器 11を通過するもの とする。
偏波遅延部 32で与えられる群遅延時間差は、 各偏波変換デバイス 32 (^〜 32 C3の設定によって、 (Δ 1 +Δ 2 + Δ 3)、 (Δ 1 +厶 2— Δ 3)、 (Δ 1— Δ2+Δ 3)、 (Δ 1— Δ2— Δ 3)、 (― Δ 1 +Δ 2+Δ3)、 (一 Δ 1 +Δ 2—△ 3)、 (-Δ 1 -Δ 2 +Δ 3) および (― Δ 1— Δ 2— Δ 3) の 23=8通りに変 化し、 これらのうちのいずれか 1つの状態が可変パターンに従つて連続的に選択 される。 これにより、 PMD付与装置 10を通過した光信号は、 ヘッダー部分を 除いて、 光送信器 1および光受信器 2の間で予め取り決められた可変パターンに 従って偏波回転状態および直交偏波モード成分間の群遅延時間差の双方が高速に スクランブルされる。 このとき可変パターンに従ってどのような P MDが光信号 に与えられるかについては、 ハードウェアとしての P MD可変器 1 1に依存し、 具体的には、 偏波回転部 3 1と偏波遅延部 3 2の構成および特性によって一意に 決まる。
なお、 上記のような P MD付与装置 1 0の動作は、 光信号の偏波状態のみを変 動させる一般的な偏波スクランブラの動作とは相違するものである点に注意を要 する。 すなわち、 上記 P M D付与装置 1 0の動作は、 偏波回転状態および群遅延 時間差の両方を変動させる、 いわば 「二要素スクランブル」 という新しい機能を 実現可能にしている。
P MD付与装置 1 0を通過した光信号は、 光回線網 3を光受信器 2に向けて伝 搬し、 光受信器 2の前段に配置された P MD復元装置 2 0の P MD変換器 2 1に 与えられる。 この P MD変換器 2 1の偏波回転部 3 1および偏波遅延部 3 2の各 偏波変換デバイス 3 2 C i〜3 2 C 3に対しては、 可変パターン発生器 2 3で発 生する可変パターンに応じて駆動制御回路 2 2で生成した駆動制御信号が、 P M D付与装置 1 0の P MD可変器 1 1に与えられる駆動制御信号と同期した状態で 供給されている。 P MD変換器 2 1に入力された光信号は、 ヘッダ一を除いたぺ ィロードに相当する部分について、 偏波回転部 3 1で可変パターンに従って高速 に変化する偏波回転が行われた後に、 偏波遅延部 3 2の各光導波路部分 3 2 B , 〜3 2 B 3を順に伝搬することで、 直交する偏波モード成分間に可変パターンに 従って高速に変化する群遅延時間差が与えられる。 なお、 ここでは光信号のへッ ダ一に相当する部分については、 そのまま P MD変換器 2 1を通過するものとす る。
偏波回転部 3 1で与えられる偏波回転は、 P MD付与装置 1 0の偏波回転部 3 1で与えられた偏波回転を打ち消す逆方向の回転である。 そのような逆方向の偏 波回転が可変パターンに従って高速に変化しながら光信号に与えられることで、 光信号の偏波回転状態が光送信器 1から送信された時の状態に戻される。 また、 偏波遅延部 3 2で与えられる群遅延時間差は、 P MD付与装置 1 0の偏波回転部 3 2で与えられた群遅延時間差を打ち消す逆符合の群遅延時間差である。 そのよ うな逆符合の群遅延時間差が可変パターンに従って高速に変化しながら光信号に 与えられることで、 直交する偏波モード成分間の群遅延時間差が光送信器 1から 送信された時の状態に戻される。 これにより、 P MD復元装置 2 0を通過した光 信号は、 送信側でスクランブルされた偏波回転状態および直交偏波モード成分間 の群遅延時間差の双方が打ち消されて送信側で P MDを付与する前の状態に復元 される。
この光信号の復元は、 P MD付与装置 1 0の可変パターン発生器 1 3および P MD復元装置 2 0の可変パターン発生器 2 3でそれぞれ発生する各可変パターン がー致し、 かつ、 P MD付与装置 1 0の P MD可変器 1 1および P MD復元装置 2 0の P MD可変器 2 1それぞれの構成と特性とが実質的に同一であるという条 件を満たすことによってはじめて実現される。 P MD付与装置 1 0および P MD 復元装置 2 0に用いる各 P MD可変器 2 1が上記のような条件を満たすためには、 例えば、 同一の製造元において同じ工程で作製された同一ロッ卜のものであるこ とが必要とされる。 これは言い換えると、 本光通信システムを設計する際に留意 すべき事項として、 P MD付与装置 1 0および P MD復元装置 2 0に用いる各 P MD可変器 2 1の設計が特定の顧客 (ここでは光送信器 1および光受信器 2の使 用者) 以外の第三者に知られないように管理すると共に、 その顧客に対して特定 のペアの P MD可変器 2 1のみを渡すようにすることが重要になる。
上記のようにして P MD復元装置 2 0で送信時の状態に復元された光信号は、 光受信器 2に送られて受信処理される。 この光受信器 2における受信処理では、 初期操作として、 P MD復元装置 2 0を通過した光信号のヘッダーが読み取られ 送信先等に関する情報の確認が行われる。 この受信側でのヘッダー情報の確認が 完了すると、 送信側の P MD付与装置 1 0により光信号のペイロードに対する P MDの付与が開始されると共に、 それに同期して受信側の P MD復元装置 2 0に より上記付与された P MDの復元が開始される。 このような初期操作が終了した 後の光受信器 2では、 送信時の状態に復元された光信号のペイロード情報が読み 取られてデータ信号の識別処理が行われる。
上記のように第 1実施形態の光通信システムによれば、 光送信器 1から出力さ れる 10Gb i t/s等の光信号を可変パターンに従って高速に PMDスクラン ブルして光回線網 3に送信し、 その光信号を受信する際には送信側で付与された PMDとは相反する P MDを光信号に与えて元の状態に復元するようにしたこと で、 光送信器 1および光受信器 2間で伝送される光信号の秘匿性を光レベルで保 持することができるようになる。 このような可変パターンに従って高速に変化す る PMDの付与された光信号は、 送信側で用いた PMD可変器 1 1と同一の構成 および同一の特性を有する PMD可変器 21を受信側に用意し、 かつ、 送信側と 共通の可変パターンに従って PMD可変器 21を駆動しない限り、 元の状態に復 元することが不可能であるため、 伝達情報の秘匿性を非常に高いレベルで確保す ることができる。 たとえ、 上記 PMDの付与された光信号を受光素子で電気信号 に変換して記録したとしても、 光レベルの PMDに関する情報は受光時に失われ るため、 大型計算機等を利用して光信号に付与された PMDを解析することは不 可能であり、 また、 数 GHzを超えるような高速な可変パターンに追従して解析 を行うことも極めて困難である。 加えて、 従来の光スペクトラム拡散通信と比較 すると、 既存の光通信システムに対して PMD付与装置 10および PMD復元装 置 20を追加するだけで光レベルでの秘匿性を確保できるようになるため、 様々 な形態の光通信システムに柔軟に対応することが可能である。
なお、 上記の第 1実施形態では、 各 PMD可変器 11, 21の偏波遅延部 32 を 3つの要素 (光導波路部分 3 S Bi S 2 B 3および偏波変換デバイス 32 C 〜32C3) に分けて直交偏波モード成分間に 23通りの群遅延時間差を与える 構成を示したが、 本発明はこれに限らず、 偏波遅延部 32を任意の数の要素に分 けて群遅延時間差を与えるようにすることが可能である。 偏波遅延部 32をより 多くの要素に分けることにより、 光信号に与えられる群遅延時間差の組み合わせ が増えるため (N個の要素に分けた場合には 2 N通りの組み合わせとなる)、 光 信号の秘匿性をより高くすることが可能になる。
また、 上記の第 1実施形態では、 光信号が光回線網 3を伝搬することによって 発生する PMDを補償するための構成を特に設けていないが、 例えば図 3に示す ように、 公知の構成の PMD補償器 50を受信側に配置して、 光回線網 3で発生 する PMDの補償を行うようにすることも可能である。 この場合、 PMD復元装 置 20の前段に PMD補償器 50の偏波制御器 51を設け、 PMD復元装置 20 の後段に PMD補償器 50の偏波遅延器 52および PMDモニタ 54を設けるよ うにするのがよい。 なお、 PMD補償器 50の偏波制御器 51は、 PMDモニタ 54のモニタ結果に応じて光信号の偏波面の方向を回転させるものであり、 偏波 遅延器 53は偏波制御器 51で偏波方向の制御された光信号の直交偏波モード成 分間に一定の群遅延時間差を与えるものである。
さらに、 上記の第 1実施形態では、 光信号のヘッダ一部分に対して PMDの付 与が行われない場合を説明したが、 例えば、 ヘッダ一部分の光パルス幅を PMD スクランブルの影響を受けない程度に広く設定し、 つまり、 光信号のヘッダ一部 分の転送レートを低くして (例えば、 数 GHzの PMDスクランブルに対して、 数 MHzの転送レート等とする)、 光信号のヘッダ一およびペイロードの両方に PMDスクランブルをかけるようにしてもよい。
次に、 本発明の光通信システムの第 2実施形態について説明する。
前述した第 1実施形態では、 例えば 10 Gb i tノ s等の高速な光信号が光送 信器 1および光受信器 2間で伝送されるシステムを想定したが、 より低速な光信 号、 例えば 100 Mb i t/s等の光信号が伝送されるシステムの場合には、 光 レベルでの伝送情報の秘匿化のために光信号に与える PMDの大きさをかなり大 きくする必要がある。 これは光信号のパルス幅よりも直交偏波モード成分間の群 遅延時間差を大きくする必要があるためである。 このような大きな群遅延時間差 を光信号に与えるデバイスを第 1実施形態の場合のように LN基板を用いた偏波 遅延部 32で構成したとすると、 光導波路 32 Aの全長が著しく長くなつてしま うという欠点が生じる。 そこで、 第 2実施形態では、 上記のような比較的低速な システムに好適な一例について説明する。
図 4は、 第 2実施形態の光通信システムに用いられる PMD可変器の一例を示 す構成図である。 なお、 光通信システム全体の構成は、 上述の図 1に示した第 1 実施形態の場合と同様であるため、 ここでの説明を省略する。
図 4に示す構成は、 図 1の PMD付与装置 10および PMD復元装置 20に用 いられる各 PMD可変器 11, 21を表したものである。 この図 4の PMD可変 器 11, 21は、 複数本 (ここでは 3本) の偏波保持ファイバ (Polarization Maintains Fiber:以下、 PMFとする) を偏波回転素子 33 Bい 33 B2, 3 3 B 3を介して直列に接続して構成される。 各 PMF 33 A S 3 A3は、 ¾交 する偏波モードに対するファイバ軸方向の光路長が異なる値を有し、 直交する偏 波モ一ド成分間に一定の PMDを発生させる、 低価格かつ低損失な光伝送媒体で ある。 各偏波回転素子 33 33 B2, 33B3は、 それぞれ、 入力される光 信号の偏波を駆動制御回路 11からの駆動制御信号に従って回転させて出力する 公知の光デバイスである。 この偏波回転素子 33 B S 3 B3の具体例として は、 LN導波路、 可変回転角を有するファラデー回転子または液晶などを用いて 構成したものが挙げられる。
このような PMD可変器 11, 21では、 光送信器 1または光回線網 3から送 られてくる光信号が偏波回転素子 33 を介して PMF 33 工に与えられる ことで、 その光信号は偏波回転素子 33 により駆動制御信号に従って偏波回 転された後に PMF 33 で直交する偏波モード成分間に Δ 1の群遅延時間差 が与えられる。 そして、 PMF 33 を通過した光信号は、 偏波回転素子 33 B2を介して PMF 33 A2に与えられ、 さらに、 偏波回転素子 33 B 3を介して PMF 33 A3に与えられることで、 偏波回転素子 33B2, 33 B3によりそれ ぞれ駆動制御信号に従って偏波回転され、 PMF 33A2, 33 B3によりそれ ぞれ直交する偏波モード成分間に Δ 2, Δ 3の群遅延時間差が与えられる。 上記のような第 2実施形態の光通信システムによれば、 第 1実施形態の場合と 同様の効果が得られると共に、 例えば 100Mb i t s等の比較的低速な光信 号を伝送するシステムについても、 光信号に対して大きな P M Dを付与すること のできる PMD可変器を容易に実現することが可能になる。
なお、 上記の第 2実施形態では、 偏波回転素子 33 Bi S 3 B3を介して各 PMF 33 Ai S 3 A3を直列に接続するようにしたが、 例えば、 偏波回転素 子 33 B1〜33 B3を省略し、 各 PMF 33 A1〜33 A3を各々の主軸が異な る角度となるように互いに接続するという簡略化も可能である。 この場合、 可変 パターンに従った PMDスクランブルは行われなくなるため、 上述した第 2実施 形態の場合に比べて、 情報の秘匿性のレベルが低下することになる。 しかしなが ら、 上記の構成は極めて安価に実現でき、 一般に暗号の価値は解読に要するコス 卜に対する暗号化のコス卜で決まることを考慮すれば、 簡易な光レベルの暗号化 として有用である。 産業上の利用可能性
本発明の秘匿性を有する光通信システムおよび光通信方法は、 光送信器から出 力される光信号に対して可変パターンに従って変化する偏波モード分散を与えて 光伝送路に送信し、 その光信号を受信する際には送信側で付与された偏波モード 分散を打ち消す偏波モード分散を光信号に与えて送信時の状態に復元するように したことで、 光送信器および光受信器間で伝送される光信号の秘匿性を光レベル で保持することができるようになり、 高い安全性を確保した光通信が実現可能に なるため、 産業上の利用可能性が大である。

Claims

請 求 の 範 囲
1 . 光送信器および光受信器の間で光伝送路を介して光信号を送受信する光通 信システムにおいて、
前記光送信器から送信される光信号に対して可変の偏波モード分散を与える第 1素子を有し、 前記光送信器および前記光受信器の間で予め取り決めた可変パ夕 —ンに従って前記第 1素子を駆動することにより、 偏波モード分散を付与した光 信号を前記光伝送路に送る偏波モード分散付与装置と、
前記光伝送路から前記光受信器に送られる光信号に対して可変の偏波モード分 散を与え、 かつ、 前記第 1素子と実質的に同一な構成および特性を持つ第 2素子 を有し、 前記可変パターンに従って前記第 2素子を駆動することにより、 前記偏 波モード分散付与装置で付与された偏波モード分散を打ち消す偏波モード分散を 与えて送信時の状態に復元した光信号を前記光受信器に送る偏波モード分散復元 装置と、 を備えて構成されたことを特徴とする光通信システム。
2 . 請求項 1に記載の光通信システムであって、
前記第 1素子および前記第 2素子は、 それぞれ、 前記可変パターンに従って変 化する偏波回転を光信号に与える偏波回転部と、 光信号の直交する偏波モード成 分間に前記可変パターンに従って変化する群遅延時間差を与える偏波遅延部と、 を有することを特徴とする光通信システム。
3 . 請求項 2に記載の光通信システムであって、
前記偏波遅延部は、 電気光学効果を有する基板に形成した光導波路を、 直交す る偏波モード成分を相互に変換する複数 N個の偏波変換デバイスを介して複数の 部分に区分し、 前記可変パターンに従つて前記各偏波変換デバィスを制御するこ とで、 光信号の直交する偏波モード成分間に 2 N通りの群遅延時間差を与えるこ とを特徴とする光通信システム。
4. 請求項 3に記載の光通信システムであって、
前記光導波路は、 ニオブ酸リチウム基板に形成されたことを特徴とする光通信 システム。
5 . 請求項 2に記載の光通信システムであって、 前記偏波回転部は、 二分の一波長板および四分の一波長板を含んで構成された ことを特徴とする光通信システム。
6 . 請求項 2に記載の光通信システムであって、
前記偏波回転部は、 可変回転角を有するファラデー回転子を含んで構成された ことを特徴とする光通信システム。
7 . 請求項 2に記載の光通信システムであって、
前記偏波回転部は、 液晶を含んで構成されたことを特徵とする光通信システム。
8 . 請求項 1に記載の光通信システムであって、
前記第 1素子および前記第 2素子は、 それぞれ、 複数本の偏波保持ファイバと、 該各偏波保持ファイバを互いに接続する複数個の偏波回転素子と、 を有すること を特徴とする光通信システム。
9 . 請求項 8に記載の光通信システムであって、
前記各偏波回転素子は、 ニオブ酸リチウム基板を用いて構成されたことを特徴 とする光通信システム。
1 0 . 請求項 8に記載の光通信システムであって、
前記各偏波回転素子は、 可変回転角を有するファラデー回転子を含んで構成さ れたことを特徴とする光通信システム。
1 1 . 請求項 8に記載の光通信システムであって、
前記各偏波回転素子は、 液晶を含んで構成されたことを特徴とする光通信シス テム。
1 2 . 請求項 8に記載の光通信システムであって、
前記各偏波保持ファイバは、 前記各偏波回転素子を介して接続されるのに代え て、 各々の主軸が異なる角度となるように互いに接続されることを特徴とする光 通信システム。
1 3 . 請求項 1に記載の光通信システムであって、
前記光伝送路を伝搬することにより光信号に発生する偏波モ一ド分散を補償す るための偏波モード分散補償器を備えたことを特徴とする光通信システム。
1 4 . 光送信器および光受信器の間で光伝送路を介して光信号を送受信する光 通信方法において、 前記光送信器から送信される光信号に対して可変の偏波モード分散を与える第 1素子を、 前記光送信器および前記光受信器の間で予め取り決めた可変パターン に従って駆動することにより、 偏波モード分散を付与した光信号を前記光伝送路 に送り、
前記光伝送路から前記光受信器に送られる光信号に対して可変の偏波モード分 散を与え、 かつ、 前記第 1素子と実質的に同一な構成および特性を持つ第 2素子 を前記可変パターンに従って駆動することにより、 前記偏波モード分散付与装置 で付与された偏波モード分散を打ち消す偏波モード分散を与えて送信時の状態に 復元した光信号を前記光受信器に送ることを特徴とする光通信方法。
1 5 . 請求項 1 4に記載の光通信方法であって、
前記可変パターン、 並びに、 前記第 1および第 2素子の構成に関する情報が特 定の顧客に対してのみ与えられるように管理を行い、 当該顧客に対応した光信号 だけの秘匿性を保持することを特徴とする光通信方法。
PCT/JP2003/000173 2003-01-10 2003-01-10 秘匿性を有する光通信システムおよび光通信方法 WO2004064315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004566258A JP3983766B2 (ja) 2003-01-10 2003-01-10 秘匿性を有する光通信システムおよび光通信方法
PCT/JP2003/000173 WO2004064315A1 (ja) 2003-01-10 2003-01-10 秘匿性を有する光通信システムおよび光通信方法
US11/063,557 US6999655B2 (en) 2003-01-10 2005-02-24 Optical communication system and optical communication method having confidentiality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/000173 WO2004064315A1 (ja) 2003-01-10 2003-01-10 秘匿性を有する光通信システムおよび光通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/063,557 Continuation US6999655B2 (en) 2003-01-10 2005-02-24 Optical communication system and optical communication method having confidentiality

Publications (1)

Publication Number Publication Date
WO2004064315A1 true WO2004064315A1 (ja) 2004-07-29

Family

ID=32697364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000173 WO2004064315A1 (ja) 2003-01-10 2003-01-10 秘匿性を有する光通信システムおよび光通信方法

Country Status (3)

Country Link
US (1) US6999655B2 (ja)
JP (1) JP3983766B2 (ja)
WO (1) WO2004064315A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017084A (ja) * 2007-07-03 2009-01-22 Oki Electric Ind Co Ltd 偏波モード分散補償方法及び偏波モード分散補償装置
JP2015186135A (ja) * 2014-03-25 2015-10-22 日本電気株式会社 秘匿通信システム、秘匿通信方法および秘匿通信プログラム
US10338316B2 (en) 2014-08-28 2019-07-02 Nec Corporation Polarization dispersion adder and optical receiver

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8424096B2 (en) * 2006-07-18 2013-04-16 Verizon Patent And Licensing Inc. Color based network security
DE102006048793A1 (de) 2006-10-12 2008-04-17 Deutsche Telekom Ag Verfahren und System zur verschlüsselten optischen Datenübertragung
DE102007021547A1 (de) * 2007-05-08 2008-11-13 Adva Ag Optical Networking Verfahren und System zur optischen Ver- und Entschlüsselung von Signalen
JP5327343B2 (ja) * 2011-09-29 2013-10-30 沖電気工業株式会社 偏波モード分散生成装置、偏波モード分散補償装置、及び偏波モード分散エミュレーター、並びに偏波モード分散生成方法、偏波モード分散補償方法、及び偏波モード分散エミュレート方法
JP6409866B2 (ja) * 2014-03-27 2018-10-24 日本電気株式会社 光通信装置、光通信システム及び光通信方法
CN106134110B (zh) * 2014-03-27 2019-04-16 日本电气株式会社 光发送/接收装置、光通信系统以及光通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171051A (ja) * 1988-12-24 1990-07-02 Mitsubishi Electric Corp デジタル秘話通信方式
JP2001352303A (ja) * 2000-06-07 2001-12-21 Nippon Telegr & Teleph Corp <Ntt> 伝送試験方法及び伝送模擬装置
JP2002033701A (ja) * 2000-07-13 2002-01-31 Fujitsu Ltd 偏波モード分散補償方法および偏波モード分散補償装置
JP2002101094A (ja) * 2000-06-22 2002-04-05 Bsy:Kk 光の干渉原理を利用した暗号化方法及び暗号化装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930414A (en) 1997-09-16 1999-07-27 Lucent Technologies Inc. Method and apparatus for automatic compensation of first-order polarization mode dispersion (PMD)
JP2000031903A (ja) * 1998-07-07 2000-01-28 Hitachi Ltd 偏波分散補償装置および偏波分散補償方法
US6271952B1 (en) * 1998-08-18 2001-08-07 Nortel Networks Limited Polarization mode dispersion compensation
US20020012431A1 (en) 2000-06-22 2002-01-31 Zhixing Wang Encryption system using light interference theory
US20020012487A1 (en) * 2000-07-31 2002-01-31 Yafo Networks, Inc. Polarization mode dispersion generator
JP3798640B2 (ja) * 2001-03-02 2006-07-19 富士通株式会社 受信装置及び受信信号の波形劣化補償方法並びに波形劣化検出装置及び方法並びに波形測定装置及び方法
US6748126B2 (en) * 2001-12-31 2004-06-08 3M Innovative Properties Company System for polarization mode dispersion compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171051A (ja) * 1988-12-24 1990-07-02 Mitsubishi Electric Corp デジタル秘話通信方式
JP2001352303A (ja) * 2000-06-07 2001-12-21 Nippon Telegr & Teleph Corp <Ntt> 伝送試験方法及び伝送模擬装置
JP2002101094A (ja) * 2000-06-22 2002-04-05 Bsy:Kk 光の干渉原理を利用した暗号化方法及び暗号化装置
JP2002033701A (ja) * 2000-07-13 2002-01-31 Fujitsu Ltd 偏波モード分散補償方法および偏波モード分散補償装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017084A (ja) * 2007-07-03 2009-01-22 Oki Electric Ind Co Ltd 偏波モード分散補償方法及び偏波モード分散補償装置
JP2015186135A (ja) * 2014-03-25 2015-10-22 日本電気株式会社 秘匿通信システム、秘匿通信方法および秘匿通信プログラム
US10338316B2 (en) 2014-08-28 2019-07-02 Nec Corporation Polarization dispersion adder and optical receiver

Also Published As

Publication number Publication date
JPWO2004064315A1 (ja) 2006-05-18
US20050158055A1 (en) 2005-07-21
JP3983766B2 (ja) 2007-09-26
US6999655B2 (en) 2006-02-14

Similar Documents

Publication Publication Date Title
US6999655B2 (en) Optical communication system and optical communication method having confidentiality
EP2343846A2 (en) Polarization multiplexing transmitter and transmission system
US10581518B2 (en) Optical transmission/reception device, optical communication system, and optical communication method
CN106330428A (zh) 基于相位变换的二次加密混沌保密光通信系统
JP2007528175A (ja) 偏波モード分散補償と偏波多重信号の分波のためのシステム、方法及び装置
EP2540013B1 (en) Optical monitoring in a communications network element
US20170111136A1 (en) Optical communication device, optical communication system and optical communication method
CN113794559A (zh) 一种基于色散-相位加密的物理层保密通信系统和方法
CN114938249A (zh) 一种物理层保密光纤通信系统和方法
Mohammed et al. Design and simulation of secure fiber optic communication system utilizing hill cipher algorithm
Alishahi et al. Optical mitigation of interchannel crosstalk for multiple spectrally overlapped 20-GBd QPSK/16-QAM WDM channels using nonlinear wave mixing
CN116192284B (zh) 一种用于在光通信系统物理层中无痕加密的装置及方法
JP2003158488A (ja) 偏波スクランブルにより光信号を伝送する方法及び装置
US8504821B2 (en) Encrypted optoelectronic module
Huang et al. An optical frequency-hopping scheme based on phase modulator-embedded optical loop mirror
Abbade et al. Double all-optical encryption of M-QAM signals based on spectrally sliced encoding keys
CN114142933A (zh) 一种基于多芯光纤的保密通信装置及其通信方法
JP3977085B2 (ja) 偏波コントローラ
JPH1155221A (ja) 光信号送信装置及び方法
US20170272165A1 (en) Spatial Obfuscation of Optical Signal for Secure Data Transmission
Jin et al. A Novel Optical Frequency-Hopping Scheme Using Dual Drive Mach–Zehnder Modulator
Gamatham Nonlinear Effects with a Focus on Cross Phase Modulation and Its Impact on Wavelength Division Multiplexing Optical Fibre Networks
CN117527176A (zh) 一种基于外部时域自反馈加密的安全性增强混沌通信系统和方法
CN116264485A (zh) 一种基于载波抑制的光跳频通信系统和方法
JP2009290407A (ja) 光通信システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004566258

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11063557

Country of ref document: US