WO2016027589A1 - 眼科撮影装置およびその制御方法 - Google Patents
眼科撮影装置およびその制御方法 Download PDFInfo
- Publication number
- WO2016027589A1 WO2016027589A1 PCT/JP2015/070006 JP2015070006W WO2016027589A1 WO 2016027589 A1 WO2016027589 A1 WO 2016027589A1 JP 2015070006 W JP2015070006 W JP 2015070006W WO 2016027589 A1 WO2016027589 A1 WO 2016027589A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- eye
- unit
- examined
- distance
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/102—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0041—Operational features thereof characterised by display arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0075—Apparatus for testing the eyes; Instruments for examining the eyes provided with adjusting devices, e.g. operated by control lever
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
- A61B3/1225—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes using coherent radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/152—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
Definitions
- the present invention relates to an ophthalmologic photographing apparatus that acquires an image of an eye to be examined using optical coherence tomography (OCT), and a control method thereof.
- OCT optical coherence tomography
- OCT that visualizes the surface form and internal form of an object by using interference of light has attracted attention. Since OCT does not have invasiveness to the human body like X-ray CT, development in the medical field and the biological field is particularly expected. For example, in the field of ophthalmology, an apparatus for imaging the fundus and cornea has been put into practical use. *
- an ophthalmologic imaging apparatus using OCT performs various preliminary operations before performing OCT measurement.
- preliminary operations include alignment, optical path length difference adjustment, polarization adjustment, and focus adjustment.
- alignment the optical system is aligned with the eye to be examined.
- optical path length difference adjustment the difference between the optical path length of the measurement light and the optical path length of the reference light is adjusted so that the target site of the eye to be examined is depicted at a suitable position in the frame.
- the polarization adjustment the polarization state of the measurement light and / or the reference light is adjusted in order to increase the interference efficiency between the measurement light and the reference light.
- focus adjustment focusing is performed so that the beam waist of the measurement light is located at or near the target site.
- the subject to be photographed in the ophthalmic field is a living eye.
- the living eye constantly moves due to body movement, eye movement, pulsation, and the like. Therefore, the eye to be examined is moving while the preliminary motion is being executed and also between the completion of the preliminary motion and the start of OCT measurement.
- the subject eye moves in the traveling direction of the measurement light (the depth direction of the subject eye)
- the attention site is drawn at the end of the imaging range (frame) by OCT measurement, or in some cases, the attention site is out of the frame. I'm sorry. In this case, there arises a problem that the subsequent preliminary operation cannot be suitably executed, or an image of the attention site cannot be obtained.
- An object of the present invention is to suitably execute a preliminary operation for OCT measurement of an eye to be examined.
- a data acquisition unit that repeatedly acquires data by repeatedly scanning the eye to be examined using optical coherence tomography, and the eye to be inspected based on data that is repeatedly acquired by the data acquisition unit Performing a first control to adjust the optical path length difference between the sample arm and the reference arm in the interferometric optical system for optical coherence tomography so that the image is arranged at a reference position in the frame, and A control unit that executes second control for changing the optical path length difference so that the image of the eye to be examined is arranged at a new reference position of the frame based on data repeatedly acquired by the data acquisition unit It is an ophthalmologic photographing apparatus.
- the preliminary operation for OCT measurement of the eye to be examined can be suitably executed.
- the ophthalmologic imaging apparatus forms a tomographic image or a three-dimensional image of the eye to be examined using OCT.
- images acquired by OCT may be collectively referred to as OCT images.
- a measurement operation for forming an OCT image may be referred to as OCT measurement.
- the ophthalmologic imaging apparatus described below is configured to be able to acquire both an OCT image and a fundus image of the fundus using a spectral domain OCT technique, similar to the apparatus disclosed in Patent Document 1.
- the configuration according to the present invention can also be applied to an ophthalmologic photographing apparatus using a method other than the spectral domain, for example, a swept source OCT technique.
- an apparatus combining an OCT apparatus and a fundus camera will be described.
- a fundus photographing apparatus other than the fundus camera for example, an SLO, a slit lamp, an ophthalmic surgical microscope, and the like has a configuration according to this embodiment. It is also possible to combine the OCT apparatus which has. In addition, the configuration according to this embodiment can be incorporated into a single OCT apparatus.
- the region of the eye that is an imaging target is not limited to the fundus.
- the configuration according to this embodiment can be applied to an apparatus for performing OCT measurement of the anterior segment such as the cornea.
- the configuration of this embodiment can also be applied to an apparatus capable of OCT measurement of both the fundus and the anterior segment.
- a configuration in which an attachment for photographing an anterior segment (an objective lens, a front lens, etc.) is added to a fundus photographing apparatus described below can be adopted.
- the ophthalmologic photographing apparatus 1 includes a fundus camera unit 2, an OCT unit 100, and an arithmetic control unit 200.
- the fundus camera unit 2 is provided with an optical system for photographing the fundus and acquiring a front image.
- the OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus.
- the arithmetic control unit 200 includes a computer that executes various arithmetic processes and control processes.
- the display device 3 displays various information.
- the display device 3 may be configured as a part of the ophthalmologic photographing apparatus 1 or may be configured as an external device thereof.
- the fundus camera unit 2 shown in FIG. 1 is provided with an optical system for obtaining a two-dimensional image (fundus image) representing the surface form of the fundus oculi Ef of the eye E to be examined.
- the fundus image includes an observation image and a captured image.
- the observation image is, for example, a monochrome moving image formed at a predetermined frame rate using near infrared light.
- the captured image may be, for example, a color image obtained by flashing visible light, or a monochrome still image using near infrared light or visible light as illumination light.
- the fundus camera unit 2 may be configured to be able to acquire images other than these, such as a fluorescein fluorescent image, an indocyanine green fluorescent image, a spontaneous fluorescent image, and the like.
- the fundus camera unit 2 is provided with a chin rest and a forehead for supporting the subject's face. Further, the fundus camera unit 2 is provided with an illumination optical system 10 and a photographing optical system 30.
- the illumination optical system 10 irradiates the fundus oculi Ef with illumination light.
- the photographing optical system 30 guides the fundus reflection light of the illumination light to an imaging device (CCD image sensor (sometimes simply referred to as a CCD) 35, 38). Further, the imaging optical system 30 guides the measurement light from the OCT unit 100 to the fundus oculi Ef and guides the measurement light passing through the fundus oculi Ef to the OCT unit 100.
- CCD image sensor sometimes simply referred to as a CCD
- the observation light source 11 of the illumination optical system 10 is composed of, for example, a halogen lamp.
- the light (observation illumination light) output from the observation light source 11 is reflected by the reflection mirror 12 having a curved reflection surface, passes through the condensing lens 13, passes through the visible cut filter 14, and is converted into near infrared light. Become. Further, the observation illumination light is once converged in the vicinity of the photographing light source 15, reflected by the mirror 16, and passes through the relay lenses 17 and 18, the diaphragm 19 and the relay lens 20. Then, the observation illumination light is reflected at the peripheral portion (region around the hole portion) of the aperture mirror 21, passes through the dichroic mirror 46, and is refracted by the objective lens 22 to illuminate the fundus oculi Ef.
- An LED Light Emitting Diode
- the fundus reflection light of the observation illumination light is refracted by the objective lens 22, passes through the dichroic mirror 46, passes through the hole formed in the central region of the perforated mirror 21, passes through the dichroic mirror 55, and is a focusing lens. It is reflected by the mirror 32 via 31. Furthermore, the fundus reflection light passes through the half mirror 39A, is reflected by the dichroic mirror 33, and forms an image on the light receiving surface of the CCD image sensor 35 by the condenser lens.
- the CCD image sensor 35 detects fundus reflected light at a predetermined frame rate, for example. On the display device 3, an image (observation image) based on fundus reflection light detected by the CCD image sensor 35 is displayed.
- an observation image based on fundus reflection light detected by the CCD image sensor 35 is displayed.
- the photographing light source 15 is constituted by, for example, a xenon lamp.
- the light (imaging illumination light) output from the imaging light source 15 is applied to the fundus oculi Ef through the same path as the observation illumination light.
- the fundus reflection light of the imaging illumination light is guided to the dichroic mirror 33 through the same path as that of the observation illumination light, passes through the dichroic mirror 33, is reflected by the mirror 36, and is reflected by the condenser lens 37 of the CCD image sensor 38.
- An image is formed on the light receiving surface.
- On the display device 3 an image (captured image) based on fundus reflection light detected by the CCD image sensor 38 is displayed.
- the display device 3 that displays the observation image and the display device 3 that displays the captured image may be the same or different.
- an infrared captured image is displayed. It is also possible to use an LED as a photographing light source.
- the illumination optical system 10 has a small pupil stop that can be inserted into and removed from the optical path.
- the small pupil stop is inserted into the optical path when the eye E is a small pupil eye.
- the small pupil stop is arranged in the optical path as a stop 19, for example.
- an aperture normal pupil aperture
- the stop 19 includes a normal pupil stop and a small pupil stop that can alternatively be arranged in the optical path.
- the LCD (Liquid Crystal Display) 39 displays a fixation target and an eyesight measurement index.
- the fixation target is an index for fixing the eye E to be examined in a predetermined direction, and is used at the time of fundus photographing or OCT measurement.
- a part of the light output from the LCD 39 is reflected by the half mirror 39A, reflected by the mirror 32, passes through the focusing lens 31 and the dichroic mirror 55, passes through the hole of the perforated mirror 21, and reaches the dichroic.
- the light passes through the mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
- the direction (fixation position) in which the eye E is fixed can be changed by changing the display position of the fixation target on the screen of the LCD 39.
- the fixation position of the eye E for example, a position for acquiring an image centered on the macular portion of the fundus oculi Ef, or a position for acquiring an image centered on the optic disc as in the case of a conventional fundus camera And a position for acquiring an image centered on the fundus center between the macula and the optic disc. It is also possible to arbitrarily change the display position of the fixation target.
- the fundus camera unit 2 is provided with an alignment optical system 50 and a focus optical system 60 as in the conventional fundus camera.
- the alignment optical system 50 generates an index (alignment index) for performing alignment (alignment) of the apparatus optical system with respect to the eye E.
- the focus optical system 60 generates an index (split index) for adjusting the focal position of the photographing optical system 30 to the fundus oculi Ef.
- the light (alignment light) output from the LED 51 of the alignment optical system 50 is reflected by the dichroic mirror 55 via the apertures 52 and 53 and the relay lens 54, passes through the hole of the perforated mirror 21, and reaches the dichroic mirror 46. And is projected onto the cornea of the eye E by the objective lens 22.
- the corneal reflection light of the alignment light passes through the objective lens 22, the dichroic mirror 46 and the hole, part of which passes through the dichroic mirror 55, passes through the focusing lens 31, is reflected by the mirror 32, and is half mirror
- the light passes through 39A, is reflected by the dichroic mirror 33, and is projected onto the light receiving surface of the CCD image sensor 35 by the condenser lens.
- the light reception image (alignment index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image.
- the user can manually perform alignment while visually recognizing the alignment index.
- the arithmetic control unit 200 can perform alignment by analyzing the position of the alignment index and moving the optical system (auto-alignment function).
- the reflecting surface of the reflecting rod 67 is obliquely provided on the optical path of the illumination optical system 10.
- the light (focus light) output from the LED 61 of the focus optical system 60 passes through the relay lens 62, is separated into two light beams by the split indicator plate 63, passes through the two-hole aperture 64, and is reflected by the mirror 65, The light is focused on the reflecting surface of the reflecting bar 67 by the condenser lens 66 and reflected. Further, the focus light passes through the relay lens 20, is reflected by the perforated mirror 21, passes through the dichroic mirror 46, is refracted by the objective lens 22, and is projected onto the fundus oculi Ef.
- the fundus reflection light of the focus light is detected by the CCD image sensor 35 through the same path as the corneal reflection light of the alignment light.
- a light reception image (split index) by the CCD image sensor 35 is displayed on the display device 3 together with the observation image.
- the user can manually adjust the focus while visually checking the split index, similarly to the conventional fundus camera.
- the arithmetic control unit 200 can perform focus adjustment by analyzing the position of the split index and moving the focusing lens 31 and the focus optical system 60 (autofocus function).
- the dichroic mirror 46 branches the optical path for OCT measurement from the optical path for fundus imaging.
- the dichroic mirror 46 reflects light in a wavelength band used for OCT measurement and transmits light for fundus photographing.
- a collimator lens unit 40, an optical path length changing unit 41, a galvano scanner 42, a focusing lens 43, a mirror 44, and a relay lens 45 are provided in this order from the OCT unit 100 side. It has been.
- the optical path length changing unit 41 is movable in the optical axis direction (the direction of the arrow shown in FIG. 1), and changes the optical path length of the optical path (sample arm) for OCT measurement.
- the difference optical path length difference
- the change in the optical path length difference is used for correction of the optical path length according to the axial length of the eye E, adjustment of the interference state, and the like.
- the optical path length changing unit 41 includes, for example, a corner cube and a mechanism for moving the corner cube.
- the configuration for changing the optical path length difference between the sample arm and the reference arm is not limited to this.
- a reflection mirror reference mirror
- the reference mirror may be configured to move in the traveling direction of the reference light.
- the change of the optical path length difference can be realized through the change of the optical path length of the reference arm.
- the optical path length of the sample arm can be changed by moving the optical system itself that contributes to OCT measurement relative to the eye E.
- the optical path length difference changing unit has an arbitrary configuration capable of changing the optical path length of the sample arm and / or the reference arm.
- the galvano scanner 42 changes the traveling direction of light (measurement light) that passes through the optical path for OCT measurement. Thereby, the fundus oculi Ef can be scanned with the measurement light.
- the galvano scanner 42 includes, for example, a galvano mirror that scans measurement light in the x direction, a galvano mirror that scans in the y direction, and a mechanism that drives these independently. Thereby, the measurement light can be scanned in any direction on the xy plane.
- the OCT unit 100 is provided with an optical system for acquiring an OCT image of the fundus oculi Ef.
- This optical system has the same configuration as a conventional spectral domain type OCT apparatus. That is, this optical system divides the low-coherence light into reference light and measurement light, and generates interference light by causing the measurement light passing through the fundus oculi Ef and the reference light passing through the reference arm to interfere with each other. It is configured to detect spectral components. This detection result (detection signal) is sent to the arithmetic control unit 200.
- a wavelength swept light source is provided instead of a light source that outputs a low coherence light source, and an optical member that spectrally decomposes interference light is not provided.
- a known technique according to the type of optical coherence tomography can be arbitrarily applied.
- the light source unit 101 outputs a broadband low-coherence light L0.
- the low coherence light L0 includes, for example, a near-infrared wavelength band (about 800 nm to 900 nm) and has a temporal coherence length of about several tens of micrometers. Note that near-infrared light having a wavelength band invisible to the human eye, for example, a center wavelength of about 1040 to 1060 nm, may be used as the low-coherence light L0.
- the light source unit 101 includes a super luminescent diode (Super Luminescent Diode: SLD), an LED, and an optical output device such as an SOA (Semiconductor Optical Amplifier).
- SLD Super Luminescent Diode
- LED an LED
- SOA semiconductor Optical Amplifier
- the low coherence light L0 output from the light source unit 101 is guided to the fiber coupler 103 by the optical fiber 102 and is divided into the measurement light LS and the reference light LR.
- the reference light LR is guided by the optical fiber 104 and reaches an optical attenuator (attenuator) 105.
- the optical attenuator 105 automatically adjusts the amount of the reference light LR guided to the optical fiber 104 under the control of the arithmetic control unit 200 using a known technique.
- the reference light LR whose light amount has been adjusted by the optical attenuator 105 is guided by the optical fiber 104 and reaches the polarization adjuster (polarization controller) 106.
- the polarization adjuster 106 is a device that adjusts the polarization state of the reference light LR guided through the optical fiber 104 by, for example, applying external stress to the looped optical fiber 104.
- the configuration of the polarization adjuster 106 is not limited to this, and any known technique can be used.
- the reference light LR whose polarization state is adjusted by the polarization adjuster 106 reaches the fiber coupler 109.
- the polarization state of the reference light LR is adjusted, but the polarization state of the measurement light LS may be adjusted.
- any configuration that can change the polarization state of the measurement light LS and / or the reference light LR may be used. Thereby, control can be performed so that the polarization state of the measurement light LS and the polarization state of the reference light LR coincide with each other, and the interference efficiency between the measurement light LS and the reference light LR can be improved.
- the measurement light LS generated by the fiber coupler 103 is guided by the optical fiber 107 and converted into a parallel light beam by the collimator lens unit 40. Further, the measurement light LS reaches the dichroic mirror 46 via the optical path length changing unit 41, the galvano scanner 42, the focusing lens 43, the mirror 44, and the relay lens 45. Then, the measurement light LS is reflected by the dichroic mirror 46, is refracted by the objective lens 22, and is applied to the fundus oculi Ef. The measurement light LS is scattered (including reflection) at various depth positions of the fundus oculi Ef. The backscattered light of the measurement light LS from the fundus oculi Ef travels in the same direction as the forward path in the reverse direction, is guided to the fiber coupler 103, and reaches the fiber coupler 109 via the optical fiber.
- the fiber coupler 109 causes the backscattered light of the measurement light LS to interfere with the reference light LR that has passed through the optical fiber 104.
- the interference light LC generated thereby is guided by the optical fiber 110 and emitted from the emission end 111. Further, the interference light LC is converted into a parallel light beam by the collimator lens 112, dispersed (spectral decomposition) by the diffraction grating 113, condensed by the condenser lens 114, and projected onto the light receiving surface of the CCD image sensor 115.
- the diffraction grating 113 shown in FIG. 2 is a transmission type, but other types of spectroscopic elements such as a reflection type diffraction grating can also be used.
- the CCD image sensor 115 is a line sensor, for example, and detects each spectral component of the split interference light LC and converts it into electric charges.
- the CCD image sensor 115 accumulates this electric charge, generates a detection signal, and sends it to the arithmetic control unit 200.
- a Michelson type interferometer is used, but any type of interferometer such as a Mach-Zehnder type can be appropriately used.
- CMOS Complementary Metal Oxide Semiconductor
- another form of image sensor for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like can be used.
- the swept source type OCT is applied, the diffraction grating 113 is not necessary, and a balanced photodiode or the like is provided in place of the CCD image sensor 115.
- the configuration of the arithmetic control unit 200 will be described.
- the arithmetic control unit 200 analyzes the detection signal input from the CCD image sensor 115 and forms an OCT image of the fundus oculi Ef.
- the arithmetic processing for this is the same as that of a conventional spectral domain type OCT apparatus.
- the arithmetic control unit 200 controls each part of the fundus camera unit 2, the display device 3, and the OCT unit 100.
- the arithmetic control unit 200 controls the operation of the observation light source 11, the imaging light source 15 and the LEDs 51 and 61, the operation control of the LCD 39, the movement control of the focusing lenses 31 and 43, and the movement control of the reflector 67. Further, movement control of the focus optical system 60, movement control of the optical path length changing unit 41, operation control of the galvano scanner 42, and the like are performed.
- the arithmetic control unit 200 performs operation control of the light source unit 101, operation control of the optical attenuator 105, operation control of the polarization adjuster 106, operation control of the CCD image sensor 115, and the like.
- the arithmetic control unit 200 includes, for example, a microprocessor, a RAM, a ROM, a hard disk drive, a communication interface, and the like, as in a conventional computer.
- a computer program for controlling the ophthalmologic photographing apparatus 1 is stored in a storage device such as a hard disk drive.
- the arithmetic control unit 200 may include various circuit boards, for example, a circuit board for forming an OCT image.
- the arithmetic control unit 200 may include an operation device (input device) such as a keyboard and a mouse, and a display device such as an LCD.
- the fundus camera unit 2, the display device 3, the OCT unit 100, and the calculation control unit 200 may be configured integrally (that is, in a single housing) or separated into two or more cases. It may be.
- Control system The configuration of the control system of the ophthalmologic photographing apparatus 1 will be described with reference to FIGS. 3 and 4.
- the control system of the ophthalmologic photographing apparatus 1 is configured around the control unit 210.
- the control unit 210 includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, communication interface, and the like.
- the control unit 210 is provided with a main control unit 211 and a storage unit 212.
- the main control unit 211 performs the various controls described above.
- the main control unit 211 includes the optical path length changing unit 41 of the retinal camera unit 2, the galvano scanner 42, the focusing lens 31 and the focusing optical system 60 (imaging focusing driving unit 300), and the focusing lens 43 (OCT).
- the focus driving unit 400), the entire optical system (optical system driving unit 500), and the like are controlled.
- the main control unit 211 controls the light source unit 101, the optical attenuator 105, the polarization adjuster 106, and the like of the OCT unit 100.
- the imaging focus driving unit 300 moves the focusing lens 31 in the optical axis direction of the imaging optical system 30 and moves the focus optical system 60 in the optical axis direction of the illumination optical system 10. Thereby, the focus position of the imaging optical system 300 is changed.
- the photographing focus driving unit 300 may have a mechanism for moving the focusing lens 31 and a mechanism for moving the focus optical system 60 individually.
- the imaging focus driving unit 300 is controlled when focus adjustment is performed.
- the OCT focusing drive unit 400 moves the focusing lens 43 in the optical axis direction of the sample arm. Thereby, the focus position of the measurement light LS is changed.
- the focus position of the measurement light LS corresponds to the depth position (z position) of the beam waist of the measurement light LS.
- the optical system driving unit 500 moves the optical system provided in the fundus camera unit 2 three-dimensionally. This control is used in alignment and tracking. Tracking is to move the apparatus optical system in accordance with the eye movement of the eye E. When tracking is performed, alignment and focus adjustment are performed in advance. Tracking is a function of maintaining a suitable positional relationship in which the alignment and focus are achieved by causing the position of the apparatus optical system to follow the eye movement. Further, the optical system drive unit 500 may be controlled to change the optical path length of the sample arm (and hence the optical path length difference between the sample arm and the reference arm).
- the main control unit 211 performs a process of writing data to the storage unit 212 and a process of reading data from the storage unit 212.
- the main control unit 211 performs a plurality of preliminary operations before performing OCT measurement.
- Preliminary operations include alignment, coarse focus adjustment, optical path length difference adjustment, polarization adjustment, and focus fine adjustment.
- the plurality of preliminary operations are executed in a predetermined order. In this embodiment, the processes are executed in the above order.
- a preliminary operation for determining whether or not the eye E is a small pupil eye can be added to the preliminary operation.
- the small pupil determination is executed, for example, between the coarse focus adjustment and the optical path length difference adjustment.
- the small pupil determination includes, for example, the following series of processing: processing for acquiring a front image (anterior eye image) of the eye E; processing for specifying an image region corresponding to the pupil; size of the specified pupil region ( (Diameter, circumference, etc.) processing; processing for determining whether or not the eye is a small pupil based on the determined size (threshold processing); processing for controlling the diaphragm 19 when it is determined that the eye is a small pupil eye.
- processing for acquiring a front image (anterior eye image) of the eye E processing for specifying an image region corresponding to the pupil; size of the specified pupil region ( (Diameter, circumference, etc.) processing; processing for determining whether or not the eye is a small pupil based on the determined size (threshold processing); processing for controlling the diaphragm 19 when it is determined that the eye is a small pupil eye.
- a process of circularly or elliptically approximating the pupil region may be further included.
- the coarse focus adjustment is a focus adjustment using the above-described split index.
- the focus coarse adjustment is performed by determining the position of the focusing lens 31 based on the information obtained by associating the eye refractive power acquired in advance with the position of the focusing lens 31 and the measured value of the refractive power of the eye to be examined. Can also be performed.
- focus fine adjustment is performed based on the interference sensitivity of OCT measurement. For example, by performing OCT measurement of the eye E to obtain an interference signal and monitoring the interference intensity (interference sensitivity), the position of the focusing lens 43 that maximizes the interference intensity is obtained, and the position is adjusted to that position. By moving the focal lens 43, focus fine adjustment can be executed.
- the optical path length changing unit 41 is controlled so that the target part of the eye E is depicted at a predetermined z position in the frame of the OCT image. Thereby, the optical path length difference between the sample arm and the reference arm is adjusted.
- a target portion serving as a reference for optical path length difference adjustment a portion that exhibits characteristic luminance in the OCT image (or a portion that exhibits characteristic reflection intensity in the reflection intensity profile) is set in advance.
- the retinal pigment epithelium layer can be set as a reference in OCT measurement of the fundus
- the corneal surface can be set as a reference in OCT measurement of the anterior segment.
- auto-Z Such automatic processing for searching for a suitable optical path length difference is called auto-Z.
- the optical path length difference adjustment is not limited to auto Z.
- Such processing is called Z-lock.
- the optical path length changing unit 41 is controlled so that the target portion serving as a reference for optical path length difference adjustment is drawn at a predetermined z position in the frame.
- Z-lock may not be suitably performed due to body movement, eye movement or pulsation. That is, there is a possibility that Z-locking may fail due to a large shift in the positional relationship between the optical system and the eye E. It is possible to provide a preliminary operation for dealing with such a situation.
- This process includes a process of changing the z position (the above-described predetermined z position) that is a reference for the Z lock. A specific example of the Z lock position changing process will be described later.
- the polarization state of the reference light LR is adjusted in order to optimize the interference efficiency between the measurement light LS and the reference light LR.
- the storage unit 212 stores various data. Examples of the data stored in the storage unit 212 include OCT image image data, fundus image data, and examined eye information.
- the eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information.
- the storage unit 212 stores various programs and data for operating the ophthalmologic photographing apparatus 1.
- the image forming unit 220 forms tomographic image data of the fundus oculi Ef based on the detection signal from the CCD image sensor 115. This process includes processes such as noise removal (noise reduction), filter processing, dispersion compensation, and FFT (Fast Fourier Transform) as in the conventional spectral domain type optical coherence tomography. In the case of another type of OCT apparatus, the image forming unit 220 executes a known process corresponding to the type.
- the image forming unit 220 includes, for example, the circuit board described above. In this specification, “image data” and “image” based thereon may be identified.
- the data processing unit 230 processes data acquired by imaging of the eye E and OCT measurement. For example, the data processing unit 230 performs various types of image processing and analysis processing on the image formed by the image forming unit 220. For example, the data processing unit 230 executes various correction processes such as image brightness correction. Further, the data processing unit 230 performs various types of image processing and analysis processing on the image (fundus image, anterior eye image, etc.) obtained by the fundus camera unit 2.
- the data processing unit 230 executes known image processing such as interpolation processing for interpolating pixels between tomographic images to form image data of a three-dimensional image of the fundus oculi Ef.
- image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system.
- image data of a three-dimensional image there is image data composed of voxels arranged three-dimensionally. This image data is called volume data or voxel data.
- the data processing unit 230 When displaying an image based on volume data, the data processing unit 230 performs a rendering process (such as volume rendering or MIP (Maximum Intensity Projection)) on the volume data to view it from a specific line-of-sight direction.
- Image data of a pseudo three-dimensional image is formed. This pseudo three-dimensional image is displayed on a display device such as the display unit 241.
- stack data of a plurality of tomographic images is image data of a three-dimensional image.
- the stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scanning lines based on the positional relationship of the scanning lines. That is, stack data is image data obtained by expressing a plurality of tomographic images originally defined by individual two-dimensional coordinate systems by one three-dimensional coordinate system (that is, by embedding them in one three-dimensional space). is there.
- the data processing unit 230 includes an optical system movement amount acquisition unit 231, a photographing focus lens movement amount acquisition unit 232, an optical path length difference change amount acquisition unit 233, a determination unit 234, and an image quality determination unit 235.
- the optical system movement amount acquisition unit 231 relates to alignment.
- the photographing focusing lens movement amount acquisition unit 232 relates to the coarse focus adjustment.
- the optical path length difference change amount acquisition unit 233 relates to auto Z, Z lock, and Z lock position change processing.
- the determination unit 234 relates to the Z lock position change process.
- the image quality determination unit 235 relates to polarization adjustment and focus coarse adjustment.
- the ophthalmologic photographing apparatus 1 photographs the eye E (anterior eye portion) in a state where the alignment index is projected to acquire a front image.
- This front image is a moving image having a predetermined frame rate.
- the optical system movement amount acquisition unit 231 acquires the movement amount of the optical system necessary for achieving an appropriate alignment state by analyzing the front image (frame thereof).
- the information acquired by the optical system movement amount acquisition unit 231 is not limited to the movement amount of the optical system itself.
- the amount of movement of the optical system is substantially the same as the control contents of the optical system driving unit 500 (such as the number of transmission pulses) and information obtained during the process of acquiring the amount of movement (such as the amount of misalignment). May be equivalent (equivalent) information.
- An example of processing executed by the optical system movement amount acquisition unit 231 will be described.
- An alignment index is depicted in the front image input to the optical system movement amount acquisition unit 231.
- An example of an alignment index rendering mode is shown in FIGS. 5A and 5B. 5A and 5B, the image of the eye E is omitted.
- the main control unit 211 superimposes and displays a bracket-shaped target image T indicating the alignment target position on the center position of the front image G1.
- the two alignment index images A1 and A2 are drawn at positions away from the target image T.
- the two alignment index images A1 and A2 are drawn at different positions.
- the two alignment index images A1 and A2 are drawn inside the target image T in a state of overlapping each other.
- Displacement (displacement amount, displacement direction) of the two alignment index images A1 and A2 with respect to the target image T indicates misalignment (deviation amount, displacement direction) in the xy direction.
- the displacement (displacement amount, displacement direction) of the two alignment index images A1 and A2 indicates an alignment displacement (deviation amount, displacement direction) in the z direction.
- the optical system movement amount acquisition unit 231 obtains an alignment shift by analyzing the front image G1, and acquires the movement amount of the optical system that cancels the shift. This process is executed as follows, for example. First, the optical system movement amount acquisition unit 231 specifies an image region corresponding to the alignment index images A1 and A2 based on the pixel information (luminance value and the like) of the front image G1. Next, the optical system movement amount acquisition unit 231 specifies the characteristic position (center, center of gravity, etc.) of each specified image region. Subsequently, the optical system movement amount acquisition unit 231 obtains the displacement of the feature position of each image region with respect to the center position of the target image T.
- the optical system movement amount obtaining unit 231 obtains an alignment deviation based on the obtained displacement and obtains an optical system movement amount that cancels the alignment deviation.
- the optical system movement amount acquisition unit 231 previously stores information that associates the displacement of the alignment index image defined in the coordinate system of the front image with the alignment shift defined in the coordinate system of the real space.
- an alignment shift can be obtained by referring to the correspondence information. The operation related to the alignment is continued until the calculated amount of alignment deviation becomes a predetermined threshold value or less.
- the ophthalmologic photographing apparatus 1 photographs a fundus oculi Ef in a state where a split index (focusing index) is projected to obtain a front image.
- This front image is a moving image having a predetermined frame rate.
- the photographing focusing lens movement amount acquisition unit 232 analyzes the front image (frame thereof) to acquire the movement amount of the focusing lens 31 necessary for achieving an appropriate focus state.
- the information acquired by the imaging focusing lens movement amount acquisition unit 232 is not limited to the movement amount of the focusing lens 31 itself.
- the amount of movement of the focusing lens 31 such as the control content (number of transmission pulses, etc.) of the imaging focus driving unit 300 and information (such as the amount of focus shift) obtained during the process of acquiring this amount of movement. And may be substantially equivalent information.
- FIGS. 6A and 6B An example of processing executed by the photographing focusing lens movement amount acquisition unit 232 will be described.
- a split index is depicted in the front image input to the photographing focus lens movement amount acquisition unit 232.
- An example of how the split index is drawn is shown in FIGS. 6A and 6B.
- FIGS. 6A and 6B the image of the fundus oculi Ef is omitted.
- a shadow of the reflecting rod 67 is reflected in the front image G2 of the fundus oculi Ef shown in FIG. 6A, and two images (split index images) B1 and B2 of the split index are depicted as bright lines in the shadow area. .
- the two split index images B1 and B2 are drawn while being displaced in the horizontal direction.
- the displacement direction indicates the shift direction of the focus position (+ z direction or ⁇ z direction), and the displacement amount indicates the magnitude of the shift of the focus position.
- the two split index images B1 and B2 are drawn at positions aligned in the vertical direction.
- the photographing focusing lens movement amount acquisition unit 232 obtains a shift of the focus position by analyzing the front image G2, and acquires a movement amount of the focusing lens 31 that cancels the shift. This process is executed as follows, for example. First, the photographing focusing lens movement amount acquisition unit 232 specifies an image region corresponding to the split index images B1 and B2 based on the pixel information (luminance value and the like) of the front image G2. Next, the photographing focusing lens movement amount acquisition unit 232 specifies the characteristic position (center, center of gravity, axis, etc.) of each specified image region.
- the photographing focusing lens movement amount acquisition unit 232 obtains the lateral displacement of the characteristic positions of the two image areas corresponding to the split index images B1 and B2. Then, the photographing focusing lens movement amount acquisition unit 232 obtains the shift of the focus position based on the obtained displacement, and acquires the movement amount of the focusing lens 31 that cancels the shift of the focus position.
- the photographing focus lens movement amount acquisition unit 232 associates information that associates the displacement of the split index image defined in the coordinate system of the front image with the shift of the focus position defined in the coordinate system of the real space. The amount of change in the focus position can be obtained by storing in advance and referring to this correspondence information.
- the photographing focusing lens movement amount acquisition unit 232 may be configured to acquire the movement amount of the focusing lens 43 of the sample arm. This process is executed, for example, by referring to correspondence information similar to the above, or by referring to information associating the focus position between the two focusing lenses 31 and 43.
- the focusing of the sample arm executed in this way is rough adjustment, and fine adjustment is executed in the subsequent processing.
- the operation related to the coarse focus adjustment is continued until the calculated shift amount of the focus position becomes a predetermined threshold value or less.
- the ophthalmologic photographing apparatus 1 controls the optical system and executes OCT measurement of the fundus oculi Ef.
- OCT measurement for example, substantially the same cross section of the fundus oculi Ef is repeatedly scanned at a predetermined frequency. That is, OCT measurement with the same scan pattern is repeatedly performed on the eye E to which the fixation target is presented.
- the optical path length difference amount acquisition unit 233 arranges the image of the fundus oculi Ef at a specific position in the frame by analyzing the detection result (reflection intensity profile, OCT image, etc.) of the interference light LC repeatedly acquired by this OCT measurement. The amount of change in the optical path length difference is acquired.
- the optical path length difference change amount acquisition unit 233 of the present embodiment acquires the change amount of the optical path length of the sample arm.
- the information acquired by the optical path length difference change amount acquisition unit 233 is not limited to the optical path length difference (optical path length) change amount itself.
- the control content of the optical path length changing unit 41 such as the number of transmission pulses
- information obtained during the process of acquiring this change amount such as the amount of displacement of the position of the image in the z direction within the frame
- It may be information substantially equivalent to the change amount of the optical path length difference.
- an OCT image G3 as shown in FIG. 7A is displayed as a moving image.
- a slider H that can be moved in the vertical direction is displayed.
- the position indicated by the slider H corresponds to the specific position which is the target position of the auto Z.
- the position of the slider H may be a default position, a position arbitrarily set by the user, or a position after being changed by the z lock position changing process.
- an image of the fundus oculi Ef is not drawn on the OCT image, or an image of the fundus oculi Ef is displayed at any position of the OCT image as a result of the focus coarse adjustment described above, for example. (See FIG. 7A).
- the OCT image G3 formed by the image forming unit 220 is input to the optical path length difference change amount acquisition unit 233.
- the optical path length difference change amount acquisition unit 233 identifies the image region R corresponding to a predetermined part (for example, the retinal pigment epithelium layer) of the fundus oculi Ef by analyzing the pixel information (luminance value, etc.) of the OCT image G3.
- the z coordinate of the image area R is obtained.
- This z coordinate may be a z coordinate of a feature position (for example, center, end, bottom end, top end) in the image region R, or is statistically calculated from z coordinates at two or more positions in the image region R. It may be a statistical value (for example, an average value, a mode value, or a median value).
- the optical path length changing unit 41 is controlled according to a predetermined algorithm, and the image region R is specified again. This series of processing is repeated until the image region R is specified.
- the optical path length difference change amount acquisition unit 233 obtains the displacement of the z coordinate of the image region R with respect to the z coordinate (reference z position) indicated by the slider H, and this displacement. The amount of change in the optical path length difference that cancels is acquired.
- the optical path length difference change amount acquisition unit 233 associates information in which the displacement in the z direction defined in the coordinate system of the OCT image G3 and the deviation in the optical path length difference defined in the coordinate system of the real space are associated with each other.
- the change amount of the optical path length difference can be obtained by storing in advance and referring to the correspondence information.
- FIG. 7B shows a state in which the auto-Z based on the change amount acquired in this way is successful. Auto-Z is continued until the state shown in FIG. 7B is realized, that is, until the calculated displacement becomes a predetermined threshold value or less.
- the Z lock position change process related to the optical path length difference change amount acquisition unit 233 and the determination unit 234 will be described.
- the Z lock position changing process is started in response to the completion of auto Z, for example, and is executed in parallel with the Z lock.
- the Z-lock position changing process monitors the position in the z direction of the image of the eye E (image area R or other image area) within the frame of the OCT image G3, so that the upper end, the lower end, and the outside of the frame This includes processing for detecting that the image of the eye E has moved.
- the optical path length difference change amount acquisition unit 233 analyzes, for example, the detection result of the interference light LC repeatedly acquired by this OCT measurement, and the image of a predetermined part of the eye E and the upper end (or lower end) of the frame. The distance between is calculated. In the example shown in FIG. 8A, the distance ⁇ z1 between the image region (surface region) R1 corresponding to the surface of the fundus oculi Ef (the surface of the retina) and the upper end of the frame is calculated.
- the determination unit 234 determines whether the distance ⁇ z1 calculated by the optical path length difference change amount acquisition unit 233 is equal to or less than a threshold value.
- This threshold is preset.
- the threshold value may be any value greater than or equal to zero.
- the determination process performed by the determination unit 234 corresponds to a process of determining whether or not the surface region R1 is in contact with the upper end of the frame.
- the threshold value is a positive value
- the determination process executed by the determination unit 234 corresponds to a process of determining whether or not the surface region R1 is close to the upper end of the frame by a distance equal to or less than the threshold value. It is assumed that part or all of the surface region R1 protrudes from the frame.
- the surface region R1 is generally in contact with both the left end and the right end of the frame.
- the case where the surface region R1 is not in contact with one or both of the left end and the right end, or the case where a part or all of the surface region R1 is not specified corresponds to such a case.
- the determination unit 234 outputs the same determination result as when the distance calculated by the optical path length difference change amount acquisition unit 233 is equal to or less than the threshold value.
- the optical path length difference change amount acquisition unit 233 calculates the distance between the image of the predetermined part of the eye E to be examined and the reference z position by analyzing the detection result of the interference light LC repeatedly acquired by OCT measurement. To do. In the example shown in FIG. 8B, the distance ⁇ z2 between the image region R corresponding to the retinal pigment epithelium layer and the reference z position indicated by the slider H is calculated.
- the determination unit 234 determines whether the distance ⁇ z2 calculated by the optical path length difference change amount acquisition unit 233 is greater than or equal to a threshold value.
- This threshold is preset. It is assumed that part or all of the image region R protrudes from the frame. The image region R is generally in contact with both the left end and the right end of the frame. The case where the image region R does not touch one or both of the left end and the right end, or the case where a part or all of the image region R is not specified corresponds to such a case. In such a case, the determination unit 234 outputs the same determination result as when the distance calculated by the optical path length difference change amount acquisition unit 233 is equal to or greater than the threshold.
- the polarization adjustment will be described.
- the ophthalmologic photographing apparatus 1 performs the same repetitive OCT measurement as described above while controlling the polarization adjuster 106 according to a predetermined algorithm.
- the image quality determination unit 235 calculates a predetermined evaluation value related to the image quality of the OCT image by analyzing the detection result of the interference light LC repeatedly acquired by the OCT measurement. Furthermore, the image quality determination unit 235 determines whether or not the calculated evaluation value is equal to or less than a threshold value. This threshold is preset. The polarization adjustment is continued until the calculated evaluation value becomes equal to or less than the threshold value.
- the ophthalmologic photographing apparatus 1 When performing fine focus adjustment, the ophthalmologic photographing apparatus 1 performs repetitive OCT measurement similar to the above while controlling the OCT focus driving unit 400 according to a predetermined algorithm.
- the image quality determination unit 235 calculates a predetermined evaluation value related to the image quality of the OCT image by analyzing the detection result of the interference light LC repeatedly acquired by the OCT measurement. Furthermore, the image quality determination unit 235 determines whether or not the calculated evaluation value is equal to or less than a threshold value. The focus fine adjustment is continued until the calculated evaluation value becomes equal to or less than the threshold value.
- the focus fine adjustment can be executed by other methods. For example, the intensity (interference intensity, interference sensitivity) of sequentially acquired interference signals is monitored while acquiring the interference signals by performing the repeated OCT measurement as described above. Further, by moving the focusing lens 43 while performing this monitoring process, the position of the focusing lens 43 that maximizes the interference intensity is searched. According to such focus fine adjustment, the focusing lens 43 can be guided to a position where the interference intensity is optimized. Similarly, in the polarization adjustment, it is possible to monitor the interference intensity. More generally, processing for optimization in real time, such as polarization adjustment and focus fine adjustment, can be performed with reference to an arbitrary evaluation value that changes as the adjustment target changes.
- the data processing unit 230 that functions as described above includes, for example, the aforementioned microprocessor, RAM, ROM, hard disk drive, circuit board, and the like.
- a storage device such as a hard disk drive, a computer program for causing the microprocessor to execute the above functions is stored in advance.
- the user interface 240 includes a display unit 241 and an operation unit 242.
- the display unit 241 includes the display device of the arithmetic control unit 200 and the display device 3 described above.
- the operation unit 242 includes the operation device of the arithmetic control unit 200 described above.
- the operation unit 242 may include various buttons and keys provided on the housing of the ophthalmologic photographing apparatus 1 or outside.
- the operation unit 242 may include a joystick, an operation panel, or the like provided on the housing.
- the display unit 241 may include various display devices such as a touch panel provided in the housing of the fundus camera unit 2.
- the display unit 241 and the operation unit 242 do not need to be configured as individual devices.
- a device in which a display function and an operation function are integrated such as a touch panel
- the operation unit 242 includes the touch panel and a computer program.
- the operation content for the operation unit 242 is input to the control unit 210 as an electrical signal. Further, operations and information input may be performed using the graphical user interface (GUI) displayed on the display unit 241 and the operation unit 242.
- GUI graphical user interface
- the scanning mode of the measurement light LS by the ophthalmologic photographing apparatus 1 includes, for example, a horizontal scan, a vertical scan, a cross scan, a radial scan, a circular scan, a concentric scan, and a spiral (vortex) scan. These scanning modes are selectively used as appropriate in consideration of the observation site of the fundus, the analysis target (such as retinal thickness), the time required for scanning, the precision of scanning, and the like.
- the horizontal scan is to scan the measurement light LS in the horizontal direction (x direction).
- the horizontal scan includes a mode in which the measurement light LS is scanned along a plurality of horizontal scanning lines arranged in the vertical direction (y direction).
- the above-described three-dimensional image can be formed by sufficiently narrowing the interval between adjacent scanning lines (three-dimensional scanning). The same applies to the vertical scan.
- the cross scan scans the measurement light LS along a cross-shaped trajectory composed of two linear trajectories (straight trajectories) orthogonal to each other.
- the measurement light LS is scanned along a radial trajectory composed of a plurality of linear trajectories arranged at a predetermined angle.
- the cross scan is an example of a radiation scan.
- the circle scan scans the measurement light LS along a circular locus.
- the measurement light LS is scanned along a plurality of circular trajectories arranged concentrically around a predetermined center position.
- a circle scan is an example of a concentric scan.
- the measurement light LS is scanned along a spiral (spiral) locus while gradually reducing (or increasing) the radius of rotation.
- the galvano scanner 42 is configured to scan the measurement light LS in directions orthogonal to each other, the measurement light LS can be scanned independently in the x direction and the y direction, respectively. Furthermore, by simultaneously controlling the directions of the two galvanometer mirrors included in the galvano scanner 42, it is possible to scan the measurement light LS along an arbitrary locus on the xy plane. Thereby, various scanning modes as described above can be realized.
- a tomographic image on a plane stretched by the direction along the scanning line (scanning locus) and the fundus depth direction (z direction) can be acquired.
- the above-described three-dimensional image can be acquired particularly when the scanning line interval is narrow.
- the region on the fundus oculi Ef to be scanned with the measurement light LS as described above, that is, the region on the fundus oculi Ef to be subjected to OCT measurement is referred to as a scanning region.
- the scanning area in the three-dimensional scan is a rectangular area in which a plurality of horizontal scans are arranged.
- the scanning area in the concentric scan is a disk-shaped area surrounded by the locus of the circular scan with the maximum diameter.
- the scanning area in the radial scan is a disk-shaped (or polygonal) area connecting both end positions of each scan line.
- FIG. 9 illustrates an example of processing executed by the ophthalmologic imaging apparatus 1 in a preliminary operation executed before OCT measurement (and fundus imaging).
- preliminary operations are executed in the order of alignment, coarse focus adjustment, auto Z, Z lock, Z lock position change processing, polarization adjustment, and focus fine adjustment.
- (S1: Start acquisition of anterior segment image) First, in response to a predetermined operation for starting the preliminary operation, the main control unit 211 turns on the observation light source 11. Thereby, acquisition of the front image (near-infrared moving image) of the anterior segment of the eye E is started. This front image is obtained in real time until the observation light source 11 is turned off. The main control unit 211 displays the front image on the display unit 241 as a moving image in real time.
- the main controller 211 controls the alignment optical system 50 to project an alignment index onto the eye E. At this time, a fixation target by the LCD 39 is also projected onto the eye E to be examined.
- the optical system movement amount acquisition unit 231 analyzes frames (for example, all frames) acquired at predetermined time intervals, and acquires the movement amount of the optical system.
- the main control unit 211 controls the optical system driving unit 500 to move the optical system by the movement amount. The main control unit 211 repeatedly executes this process.
- the main controller 211 starts coarse focus adjustment. Specifically, the main control unit 211 starts acquiring a front image of the fundus oculi Ef and controls the focus optical system 60 to project a split index onto the fundus oculi Ef.
- the photographing focusing lens movement amount acquisition unit 232 analyzes frames (for example, all frames) acquired at predetermined time intervals, and acquires the movement amount of the focusing lens 31.
- the main control unit 211 controls the photographing focus driving unit 300 to move the focusing lens 31 by the movement amount.
- the main control unit 211 controls the OCT focusing driving unit 400 to move the focusing lens 43 by the movement amount. Move. The main control unit 211 repeatedly executes this process.
- the main control part 211 performs this after completion
- the main control unit 211 executes auto Z based on the OCT image (or reflection intensity profile or the like) that has been acquired in step S4.
- the determination unit 234 determines whether the distance ⁇ z1 is less than or equal to the threshold value.
- the polarization adjustment (S10) is started without determining that the distance ⁇ z1 is equal to or smaller than the threshold value (S8: No), the process continues.
- step S7 and step S8 are continued. If it is determined “Yes” again in step S8, the reference z position is changed again.
- step S10 Start polarization adjustment
- the main control unit 211 In response to the trigger for shifting to polarization adjustment, the main control unit 211 starts polarization adjustment. Also at this stage, the monitoring process started in step S7 is executed in parallel.
- the determination unit 234 determines whether the distance ⁇ z1 is equal to or less than a threshold value. When the polarization adjustment is completed without determining that the distance ⁇ z1 is equal to or smaller than the threshold value (S11: No), the process proceeds to step S13.
- step S13 Start focus fine adjustment
- the main control unit 211 In response to the trigger for shifting to the fine focus adjustment, the main control unit 211 starts the fine focus adjustment. Also at this stage, the monitoring process started in step S7 is executed in parallel.
- the determination unit 234 determines whether the distance ⁇ z1 is equal to or less than a threshold value.
- the focus fine adjustment is finished without determining that the distance ⁇ z1 is equal to or less than the threshold (S14: No, S16)
- the preliminary operation is finished, and the ophthalmologic photographing apparatus 1 performs the OCT measurement (main measurement) of the fundus oculi Ef. Transition to an executable state.
- the ophthalmologic imaging apparatus has a function of repeatedly acquiring data by repeatedly scanning the eye E using OCT.
- This function includes an interference optical system for performing OCT.
- the interference optical system includes a light source unit (101), a sample arm that guides measurement light (LS), a reference arm that guides reference light (LR), and a detector (spectrometer,) that detects interference light (LC). And a component (such as the image forming unit 220) that processes the detection result of the interference light. These correspond to an example of a data acquisition unit.
- the ophthalmologic photographing apparatus includes a control unit that executes the following first control and second control.
- the control unit based on the data repeatedly acquired by the data acquisition unit, the control unit sets the sample arm and the reference arm so that the image of the eye to be examined is arranged at the reference position (reference z position) in the frame. Adjust the optical path length difference between.
- the first control includes, for example, auto Z and Z lock.
- the control unit samples the image of the eye to be examined at a new reference position (new reference z position) of the frame based on the data repeatedly acquired by the data acquisition unit. Change the optical path length difference between the arm and the reference arm.
- the control unit that executes these controls includes at least the control unit 210 and further includes a part of the data processing unit 230.
- the reference position is automatically changed and the attention site is changed. Can be rendered in a suitable position.
- the drawing position of the attention site can be automatically corrected before the attention site is actually drawn at an inappropriate position. Therefore, a preliminary operation for OCT measurement of the eye to be examined can be suitably executed, and an OCT image in which a site of interest is depicted at a suitable position in the frame can be acquired.
- control unit may include a determination unit.
- the determination unit determines whether or not to execute the second control based on data repeatedly acquired by the data acquisition unit when one or more preliminary operations for performing OCT measurement of the eye to be examined are performed. To do.
- a part of the data processing unit 230 corresponds to the determination unit. Examples of the preliminary operation include polarization adjustment for adjusting the polarization state of measurement light and / or reference light, and focus fine adjustment for adjusting the focus of the sample arm.
- the reference position can be automatically adjusted in parallel with the preliminary operation executed before the OCT measurement (main measurement).
- the determination unit is calculated with a first distance calculation unit (optical path length difference change amount acquisition unit 233) that calculates a distance between an image of a predetermined part of the eye to be examined and the upper end or lower end of the frame.
- a first distance determination unit (determination unit 234) that determines whether the distance is equal to or less than a predetermined threshold value may be included.
- the control unit is configured to execute the second control in response to the determination that the distance is equal to or less than the threshold value.
- the threshold value may be zero.
- the predetermined part may be the retina surface
- the first distance calculation unit may be configured to calculate a distance between the image of the retina surface and the upper end of the frame.
- the control unit may be configured to execute the second control so as to set a new reference position on the upper end side of the frame with respect to the current reference position.
- the determination unit includes a second distance calculation unit (an optical path length difference change amount acquisition unit 233) that calculates a distance between an image of a predetermined part of the eye to be examined and a reference position, and the calculated distance is predetermined. And a second distance determination unit (determination unit 234) that determines whether or not the threshold is equal to or greater than the threshold value.
- the control unit is configured to execute the second control in response to the determination that the distance is equal to or greater than the threshold value.
- control unit is configured to execute the second control so as to set a new reference position on the side of the displacement direction of the image of the predetermined part from the current reference position. It's okay.
- the predetermined part may be a predetermined layer tissue (for example, a retinal pigment epithelium layer) of the retina of the eye to be examined.
- the reference z position is changed so that the site of interest such as the retinal pigment epithelium layer is arranged at a suitable position in the frame, but the present invention is not limited to this.
- Such processing includes, for example, processing for specifying a predetermined image region by analyzing an OCT image or a reflection intensity profile, and a reference z position for moving the specified image region to the end of the frame or outside.
- a process for obtaining the movement amount and a process for changing the optical path length difference between the sample arm and the reference arm based on the obtained movement amount are included.
- the data processing unit 230 specifies an image region (mirror image region) corresponding to a mirror image by analyzing sequentially input frames. Furthermore, the data processing unit 230 calculates a distance between a predetermined end region in the frame (a one-dimensional, two-dimensional, or three-dimensional region including at least the upper end or the lower end of the frame) and the mirror image region. This distance includes at least a distance in the z direction.
- an arbitrary position in the mirror image area can be obtained as the position of the mirror image area.
- the position of the lower end of the mirror image area can be adopted (in this case, the entire mirror image area can be moved to the end area).
- the main control unit 211 moves the reference z position by the determined distance.
- the second control can be performed so that the mirror image area is arranged near the edge of the frame or at a new reference position located outside the frame, and the situation where the mirror image area interferes with observation is avoided. It becomes possible to do.
- the computer program for realizing the above embodiment can be stored in an arbitrary recording medium readable by a computer.
- this recording medium for example, a semiconductor memory, an optical disk, a magneto-optical disk (CD-ROM / DVD-RAM / DVD-ROM / MO, etc.), a magnetic storage medium (hard disk / floppy (registered trademark) disk / ZIP, etc.), etc. Can be used.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
Abstract
被検眼の光コヒーレンストモグラフィのための予備動作を好適に実行する。実施形態の眼科撮影装置は、データ取得部と、制御部とを備える。データ取得部は、光コヒーレンストモグラフィを用いて被検眼を反復的に走査することによりデータを繰り返し取得する。制御部は、データ取得部により繰り返し取得されるデータに基づいて、被検眼の像がフレームにおける基準位置に配置されるように光コヒーレンストモグラフィのための干渉光学系におけるサンプルアームと参照アームとの間の光路長差を調整する第1の制御を実行する。さらに、制御部は、データ取得部により繰り返し取得されるデータに基づいて、被検眼の像がフレームの新たな基準位置に配置されるように光路長差を変更する第2の制御を実行する。
Description
この発明は、光コヒーレンストモグラフィ(Optical Coherence Tomography、OCT)を用いて被検眼の画像を取得する眼科撮影装置、およびその制御方法に関する。
近年、光の干渉を利用して物体の表面形態や内部形態を画像化するOCTが注目を集めている。OCTは、X線CTのような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における展開が期待されている。たとえば眼科分野においては、眼底や角膜を画像化する装置が実用化されている。
OCTを用いた眼科撮影装置では、一般に、OCT計測を行う前に各種の予備的な動作が実行される。このような予備動作の例として、アライメント、光路長差調整、偏光調整、フォーカス調整などがある。アライメントにおいては、被検眼に対する光学系の位置合わせが行われる。光路長差調整においては、被検眼の対象部位がフレーム内の好適な位置に描出されるように、測定光の光路長と参照光の光路長との差が調整される。偏光調整においては、測定光と参照光との干渉効率を高めるために、測定光および/または参照光の偏光状態が調整される。フォーカス調整においては、測定光のビームウェストが対象部位またはその近傍に位置するようにピント合わせが行われる。
ところで、眼科分野における撮影対象は生体眼である。生体眼は、体動や眼球運動や拍動などによって常に動いている。したがって、予備動作が実行されている間にも、予備動作の完了からOCT計測の開始までの間にも、被検眼は動いている。たとえば、測定光の進行方向(被検眼の奥行方向)に被検眼が移動すると、OCT計測による画像化範囲(フレーム)の端に注目部位が描画されたり、場合によっては注目部位がフレームから外れてしまったりする。そうすると、それ以降の予備動作を好適に実行することができなくなったり、注目部位の画像が得られなかったりと言った問題が生じる。
この発明は、被検眼のOCT計測のための予備動作を好適に実行することを目的とする。
一の実施形態は、光コヒーレンストモグラフィを用いて被検眼を反復的に走査することによりデータを繰り返し取得するデータ取得部と、前記データ取得部により繰り返し取得されるデータに基づいて、前記被検眼の像がフレームにおける基準位置に配置されるように光コヒーレンストモグラフィのための干渉光学系におけるサンプルアームと参照アームとの間の光路長差を調整する第1の制御を実行し、かつ、前記データ取得部により繰り返し取得されるデータに基づいて、前記被検眼の像がフレームの新たな基準位置に配置されるように前記光路長差を変更する第2の制御を実行する制御部とを備える眼科撮影装置である。
実施形態によれば、被検眼のOCT計測のための予備動作を好適に実行することができる。
この発明のいくつかの典型的な実施形態について、図面を参照しながら詳細に説明する。実施形態に係る眼科撮影装置は、OCTを用いて被検眼の断層像や3次元画像を形成する。この明細書では、OCTによって取得される画像をOCT画像と総称することがある。また、OCT画像を形成するための計測動作をOCT計測と呼ぶことがある。なお、この明細書に記載された文献の記載内容を、以下の実施形態の内容として適宜援用することが可能である。
この明細書においては、フーリエドメインタイプのOCTを適用した実施形態について詳しく説明する。特に、以下に説明される眼科撮影装置は、特許文献1に開示された装置と同様に、スペクトラルドメインOCTの手法を用いて眼底のOCT画像および眼底像の双方を取得可能に構成される。なお、スペクトラルドメイン以外のタイプ、たとえばスウェプトソースOCTの手法を用いる眼科撮影装置に対して、この発明に係る構成を適用することも可能である。また、以下の実施形態ではOCT装置と眼底カメラとを組み合わせた装置について説明するが、眼底カメラ以外の眼底撮影装置、たとえばSLO、スリットランプ、眼科手術用顕微鏡などに、この実施形態に係る構成を有するOCT装置を組み合わせることも可能である。また、この実施形態に係る構成を、単体のOCT装置に組み込むことも可能である。
以下においては、眼底の画像を取得する場合について詳しく説明するが、撮影対象である眼の部位は眼底に限定されない。たとえば、角膜等の前眼部のOCT計測を行うための装置に、この実施形態に係る構成を適用することが可能である。また、眼底と前眼部の双方のOCT計測が可能な装置に対してこの実施形態の構成を適用することも可能である。この場合の例として、以下に説明する眼底撮影用の装置に、前眼部撮影用のアタッチメント(対物レンズ、前置レンズ等)を加えた構成を採用することができる。
[構成]
図1および図2に示すように、眼科撮影装置1は、眼底カメラユニット2、OCTユニット100および演算制御ユニット200を含んで構成される。眼底カメラユニット2には、眼底を撮影して正面画像を取得するための光学系が設けられている。OCTユニット100には、眼底のOCT画像を取得するための光学系が設けられている。演算制御ユニット200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。表示装置3は、各種の情報を表示する。表示装置3は、眼科撮影装置1の一部として構成されてもよいし、その外部装置として構成されてもよい。
図1および図2に示すように、眼科撮影装置1は、眼底カメラユニット2、OCTユニット100および演算制御ユニット200を含んで構成される。眼底カメラユニット2には、眼底を撮影して正面画像を取得するための光学系が設けられている。OCTユニット100には、眼底のOCT画像を取得するための光学系が設けられている。演算制御ユニット200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。表示装置3は、各種の情報を表示する。表示装置3は、眼科撮影装置1の一部として構成されてもよいし、その外部装置として構成されてもよい。
〔眼底カメラユニット〕
図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、たとえば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、たとえば、可視光をフラッシュ発光して得られるカラー画像、または近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、たとえばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
図1に示す眼底カメラユニット2には、被検眼Eの眼底Efの表面形態を表す2次元画像(眼底像)を取得するための光学系が設けられている。眼底像には、観察画像や撮影画像などが含まれる。観察画像は、たとえば、近赤外光を用いて所定のフレームレートで形成されるモノクロの動画像である。撮影画像は、たとえば、可視光をフラッシュ発光して得られるカラー画像、または近赤外光若しくは可視光を照明光として用いたモノクロの静止画像であってもよい。眼底カメラユニット2は、これら以外の画像、たとえばフルオレセイン蛍光画像やインドシアニングリーン蛍光画像や自発蛍光画像などを取得可能に構成されていてもよい。
眼底カメラユニット2には、被検者の顔を支持するための顎受けや額当てが設けられている。さらに、眼底カメラユニット2には、照明光学系10と撮影光学系30が設けられている。照明光学系10は眼底Efに照明光を照射する。撮影光学系30は、この照明光の眼底反射光を撮像装置(CCDイメージセンサ(単にCCDと呼ぶことがある)35、38。)に導く。また、撮影光学系30は、OCTユニット100からの測定光を眼底Efに導くとともに、眼底Efを経由した測定光をOCTユニット100に導く。
照明光学系10の観察光源11は、たとえばハロゲンランプにより構成される。観察光源11から出力された光(観察照明光)は、曲面状の反射面を有する反射ミラー12により反射され、集光レンズ13を経由し、可視カットフィルタ14を透過して近赤外光となる。さらに、観察照明光は、撮影光源15の近傍にて一旦集束し、ミラー16により反射され、リレーレンズ17、18、絞り19およびリレーレンズ20を経由する。そして、観察照明光は、孔開きミラー21の周辺部(孔部の周囲の領域)にて反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efを照明する。なお、観察光源としてLED(Light Emitting Diode)を用いることも可能である。
観察照明光の眼底反射光は、対物レンズ22により屈折され、ダイクロイックミラー46を透過し、孔開きミラー21の中心領域に形成された孔部を通過し、ダイクロイックミラー55を透過し、合焦レンズ31を経由し、ミラー32により反射される。さらに、この眼底反射光は、ハーフミラー39Aを透過し、ダイクロイックミラー33により反射され、集光レンズ34によりCCDイメージセンサ35の受光面に結像される。CCDイメージセンサ35は、たとえば所定のフレームレートで眼底反射光を検出する。表示装置3には、CCDイメージセンサ35により検出された眼底反射光に基づく画像(観察画像)が表示される。なお、撮影光学系30のピントが前眼部に合わせられている場合、被検眼Eの前眼部の観察画像が表示される。
撮影光源15は、たとえばキセノンランプにより構成される。撮影光源15から出力された光(撮影照明光)は、観察照明光と同様の経路を通って眼底Efに照射される。撮影照明光の眼底反射光は、観察照明光のそれと同様の経路を通ってダイクロイックミラー33まで導かれ、ダイクロイックミラー33を透過し、ミラー36により反射され、集光レンズ37によりCCDイメージセンサ38の受光面に結像される。表示装置3には、CCDイメージセンサ38により検出された眼底反射光に基づく画像(撮影画像)が表示される。なお、観察画像を表示する表示装置3と撮影画像を表示する表示装置3は、同一のものであってもよいし、異なるものであってもよい。また、被検眼Eを赤外光で照明して同様の撮影を行う場合には、赤外の撮影画像が表示される。また、撮影光源としてLEDを用いることも可能である。
照明光学系10は、光路に対して挿脱可能な小瞳孔絞りを有する。小瞳孔絞りは、被検眼Eが小瞳孔眼である場合に光路に挿入される。小瞳孔絞りは、たとえば絞り19として光路に配置される。なお、被検眼Eの瞳孔径が通常である場合には、通常瞳孔径の被検眼Eの撮影に適用される絞り(通常瞳孔絞り)が絞り19として光路に配置される。すなわち、絞り19は、択一的に光路に配置可能な通常瞳孔絞りと小瞳孔絞りとを含む。
LCD(Liquid Crystal Display)39は、固視標や視力測定用指標を表示する。固視標は、被検眼Eを所定方向に固視させるための指標であり、眼底撮影時やOCT計測時などに使用される。
LCD39から出力された光は、その一部がハーフミラー39Aにて反射され、ミラー32に反射され、合焦レンズ31およびダイクロイックミラー55を経由し、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。
LCD39の画面上における固視標の表示位置を変更することにより、被検眼Eを固視させる方向(固視位置)を変更できる。被検眼Eの固視位置としては、たとえば従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする画像を取得するための位置や、視神経乳頭を中心とする画像を取得するための位置や、黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための位置などがある。また、固視標の表示位置を任意に変更することも可能である。
さらに、眼底カメラユニット2には、従来の眼底カメラと同様にアライメント光学系50とフォーカス光学系60が設けられている。アライメント光学系50は、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための指標(アライメント指標)を生成する。フォーカス光学系60は、撮影光学系30の焦点位置を眼底Efに合わせるための指標(スプリット指標)を生成する。
アライメント光学系50のLED51から出力された光(アライメント光)は、絞り52、53およびリレーレンズ54を経由してダイクロイックミラー55により反射され、孔開きミラー21の孔部を通過し、ダイクロイックミラー46を透過し、対物レンズ22により被検眼Eの角膜に投影される。
アライメント光の角膜反射光は、対物レンズ22、ダイクロイックミラー46および上記孔部を経由し、その一部がダイクロイックミラー55を透過し、合焦レンズ31を通過し、ミラー32により反射され、ハーフミラー39Aを透過し、ダイクロイックミラー33に反射され、集光レンズ34によりCCDイメージセンサ35の受光面に投影される。CCDイメージセンサ35による受光像(アライメント指標)は、観察画像とともに表示装置3に表示される。ユーザは、アライメント指標を視認しつつ手動でアライメントを行うことができる。また、詳細は後述するが、演算制御ユニット200がアライメント指標の位置を解析して光学系を移動させることによりアライメントを行うことができる(オートアライメント機能)。
フォーカス調整を行う際には、照明光学系10の光路上に反射棒67の反射面が斜設される。フォーカス光学系60のLED61から出力された光(フォーカス光)は、リレーレンズ62を通過し、スプリット指標板63により2つの光束に分離され、二孔絞り64を通過し、ミラー65に反射され、集光レンズ66により反射棒67の反射面に一旦結像されて反射される。さらに、フォーカス光は、リレーレンズ20を経由し、孔開きミラー21に反射され、ダイクロイックミラー46を透過し、対物レンズ22により屈折されて眼底Efに投影される。
フォーカス光の眼底反射光は、アライメント光の角膜反射光と同様の経路を通ってCCDイメージセンサ35により検出される。CCDイメージセンサ35による受光像(スプリット指標)は、観察画像とともに表示装置3に表示される。ユーザは、従来の眼底カメラと同様に、スプリット指標を視認しつつ手動でフォーカス調整を行うことができる。また、詳細は後述するが、演算制御ユニット200がスプリット指標の位置を解析して合焦レンズ31およびフォーカス光学系60を移動させることによりフォーカス調整を行なうことができる(オートフォーカス機能)。
ダイクロイックミラー46は、眼底撮影用の光路からOCT計測用の光路を分岐させている。ダイクロイックミラー46は、OCT計測に用いられる波長帯の光を反射し、眼底撮影用の光を透過させる。このOCT計測用の光路には、OCTユニット100側から順に、コリメータレンズユニット40と、光路長変更部41と、ガルバノスキャナ42と、合焦レンズ43と、ミラー44と、リレーレンズ45とが設けられている。
光路長変更部41は、光軸方向(図1に示す矢印の方向)に移動可能とされ、OCT計測用の光路(サンプルアーム)の光路長を変更する。サンプルアームの光路長を変更することにより、サンプルアームの光路長と参照アームの光路長との差(光路長差)が変更される。この光路長差の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部41は、たとえばコーナーキューブと、これを移動する機構とを含んで構成される。
サンプルアームと参照アームとの間の光路長差を変更するための構成はこれに限定されない。たとえば、参照アームに反射ミラー(参照ミラー)を配置し、この参照ミラーを参照光の進行方向に移動させるように構成することができる。それにより、参照アームの光路長の変更を介して光路長差の変更を実現できる。また、OCT計測に寄与する光学系自体を被検眼Eに対して移動させることによりサンプルアームの光路長を変更することができる。一般に、光路長差変更部は、サンプルアームおよび/または参照アームの光路長を変更可能な任意の構成を有する。
ガルバノスキャナ42は、OCT計測用の光路を通過する光(測定光)の進行方向を変更する。それにより、眼底Efを測定光で走査することができる。ガルバノスキャナ42は、たとえば、測定光をx方向に走査するガルバノミラーと、y方向に走査するガルバノミラーと、これらを独立に駆動する機構とを含んで構成される。それにより、測定光をxy平面上の任意の方向に走査することができる。
〔OCTユニット〕
図2を参照しつつOCTユニット100の構成の一例を説明する。OCTユニット100には、眼底EfのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスペクトラルドメインタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、低コヒーレンス光を参照光と測定光に分割し、眼底Efを経由した測定光と参照アームを経由した参照光とを干渉させて干渉光を生成し、この干渉光のスペクトル成分を検出するように構成されている。この検出結果(検出信号)は演算制御ユニット200に送られる。
図2を参照しつつOCTユニット100の構成の一例を説明する。OCTユニット100には、眼底EfのOCT画像を取得するための光学系が設けられている。この光学系は、従来のスペクトラルドメインタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、低コヒーレンス光を参照光と測定光に分割し、眼底Efを経由した測定光と参照アームを経由した参照光とを干渉させて干渉光を生成し、この干渉光のスペクトル成分を検出するように構成されている。この検出結果(検出信号)は演算制御ユニット200に送られる。
なお、スウェプトソースタイプのOCT装置の場合には、低コヒーレンス光源を出力する光源の代わりに波長掃引光源が設けられるとともに、干渉光をスペクトル分解する光学部材が設けられない。一般に、OCTユニット100の構成については、光コヒーレンストモグラフィのタイプに応じた公知の技術を任意に適用することができる。
光源ユニット101は広帯域の低コヒーレンス光L0を出力する。低コヒーレンス光L0は、たとえば、近赤外領域の波長帯(約800nm~900nm程度)を含み、数十マイクロメートル程度の時間的コヒーレンス長を有する。なお、人眼では視認できない波長帯、たとえば1040~1060nm程度の中心波長を有する近赤外光を低コヒーレンス光L0として用いてもよい。
光源ユニット101は、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、LEDや、SOA(Semiconductor Optical Amplifier)等の光出力デバイスを含んで構成される。
光源ユニット101から出力された低コヒーレンス光L0は、光ファイバ102によりファイバカプラ103に導かれて測定光LSと参照光LRに分割される。
参照光LRは、光ファイバ104により導かれて光減衰器(アッテネータ)105に到達する。光減衰器105は、公知の技術を用いて、演算制御ユニット200の制御の下、光ファイバ104に導かれる参照光LRの光量を自動で調整する。光減衰器105により光量が調整された参照光LRは、光ファイバ104により導かれて偏波調整器(偏波コントローラ)106に到達する。
偏波調整器106は、たとえば、ループ状にされた光ファイバ104に対して外部から応力を与えることで、光ファイバ104内を導かれる参照光LRの偏光状態を調整する装置である。なお、偏波調整器106の構成はこれに限定されるものではなく、任意の公知技術を用いることが可能である。偏波調整器106により偏光状態が調整された参照光LRは、ファイバカプラ109に到達する。
図2に示す構成では参照光LRの偏光状態を調整しているが、測定光LSの偏光状態を調整するよう構成されてもよい。一般に、測定光LSおよび/または参照光LRの偏光状態を変更可能な構成であればよい。それにより、測定光LSの偏光状態と参照光LRの偏光状態とを一致させるよう制御を行うことができ、測定光LSと参照光LRとの干渉効率を向上させることが可能となる。
ファイバカプラ103により生成された測定光LSは、光ファイバ107により導かれ、コリメータレンズユニット40により平行光束とされる。さらに、測定光LSは、光路長変更部41、ガルバノスキャナ42、合焦レンズ43、ミラー44、およびリレーレンズ45を経由してダイクロイックミラー46に到達する。そして、測定光LSは、ダイクロイックミラー46により反射され、対物レンズ22により屈折されて眼底Efに照射される。測定光LSは、眼底Efの様々な深さ位置において散乱(反射を含む)される。眼底Efによる測定光LSの後方散乱光は、往路と同じ経路を逆向きに進行してファイバカプラ103に導かれ、光ファイバ108を経由してファイバカプラ109に到達する。
ファイバカプラ109は、測定光LSの後方散乱光と、光ファイバ104を経由した参照光LRとを干渉させる。これにより生成された干渉光LCは、光ファイバ110により導かれて出射端111から出射される。さらに、干渉光LCは、コリメータレンズ112により平行光束とされ、回折格子113により分光(スペクトル分解)され、集光レンズ114により集光されてCCDイメージセンサ115の受光面に投影される。なお、図2に示す回折格子113は透過型であるが、たとえば反射型の回折格子など、他の形態の分光素子を用いることも可能である。
CCDイメージセンサ115は、たとえばラインセンサであり、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCDイメージセンサ115は、この電荷を蓄積して検出信号を生成し、これを演算制御ユニット200に送る。
この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。また、CCDイメージセンサに代えて、他の形態のイメージセンサ、たとえばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを用いることが可能である。また、スウェプトソースタイプのOCTを適用する場合には、回折格子113は不要であり、かつCCDイメージセンサ115の代わりにバランスドフォトダイオードなどが設けられる。
〔演算制御ユニット〕
演算制御ユニット200の構成について説明する。演算制御ユニット200は、CCDイメージセンサ115から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスペクトラルドメインタイプのOCT装置と同様である。
演算制御ユニット200の構成について説明する。演算制御ユニット200は、CCDイメージセンサ115から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のスペクトラルドメインタイプのOCT装置と同様である。
また、演算制御ユニット200は、眼底カメラユニット2、表示装置3およびOCTユニット100の各部を制御する。
眼底カメラユニット2の制御として、演算制御ユニット200は、観察光源11、撮影光源15およびLED51、61の動作制御、LCD39の動作制御、合焦レンズ31、43の移動制御、反射棒67の移動制御、フォーカス光学系60の移動制御、光路長変更部41の移動制御、ガルバノスキャナ42の動作制御などを行う。
OCTユニット100の制御として、演算制御ユニット200は、光源ユニット101の動作制御、光減衰器105の動作制御、偏波調整器106の動作制御、CCDイメージセンサ115の動作制御などを行う。
演算制御ユニット200は、たとえば、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイスなどを含んで構成される。ハードディスクドライブ等の記憶装置には、眼科撮影装置1を制御するためのコンピュータプログラムが記憶されている。演算制御ユニット200は、各種の回路基板、たとえばOCT画像を形成するための回路基板を備えていてもよい。また、演算制御ユニット200は、キーボードやマウス等の操作デバイス(入力デバイス)や、LCD等の表示デバイスを備えていてもよい。
眼底カメラユニット2、表示装置3、OCTユニット100および演算制御ユニット200は、一体的に(つまり単一の筺体内に)構成されていてもよいし、2つ以上の筐体に別れて構成されていてもよい。
〔制御系〕
眼科撮影装置1の制御系の構成について図3および図4を参照しつつ説明する。
眼科撮影装置1の制御系の構成について図3および図4を参照しつつ説明する。
(制御部)
眼科撮影装置1の制御系は、制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。制御部210には、主制御部211と、記憶部212とが設けられている。
眼科撮影装置1の制御系は、制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。制御部210には、主制御部211と、記憶部212とが設けられている。
(主制御部)
主制御部211は前述の各種制御を行う。特に、主制御部211は、眼底カメラユニット2の光路長変更部41や、ガルバノスキャナ42や、合焦レンズ31およびフォーカス光学系60(撮影合焦駆動部300)や、合焦レンズ43(OCT合焦駆動部400)や、光学系全体(光学系駆動部500)などを制御する。さらに、主制御部211は、OCTユニット100の光源ユニット101や、光減衰器105や、偏波調整器106などを制御する。
主制御部211は前述の各種制御を行う。特に、主制御部211は、眼底カメラユニット2の光路長変更部41や、ガルバノスキャナ42や、合焦レンズ31およびフォーカス光学系60(撮影合焦駆動部300)や、合焦レンズ43(OCT合焦駆動部400)や、光学系全体(光学系駆動部500)などを制御する。さらに、主制御部211は、OCTユニット100の光源ユニット101や、光減衰器105や、偏波調整器106などを制御する。
撮影合焦駆動部300は、撮影光学系30の光軸方向に合焦レンズ31を移動させるとともに、照明光学系10の光軸方向にフォーカス光学系60を移動させる。それにより、撮影光学系300の合焦位置が変更される。撮影合焦駆動部300は、合焦レンズ31を移動させる機構と、フォーカス光学系60を移動させる機構とを個別に有していてよい。撮影合焦駆動部300は、フォーカス調整を行なうときなどに制御される。
OCT合焦駆動部400は、サンプルアームの光軸方向に合焦レンズ43を移動させる。それにより、測定光LSの合焦位置が変更される。測定光LSの合焦位置は、測定光LSのビームウェストの深さ位置(z位置)に相当する。
光学系駆動部500は、眼底カメラユニット2に設けられた光学系を3次元的に移動させる。この制御は、アライメントやトラッキングにおいて用いられる。トラッキングとは、被検眼Eの眼球運動に合わせて装置光学系を移動させるものである。トラッキングを行う場合には、事前にアライメントとフォーカス調整が実行される。トラッキングは、装置光学系の位置を眼球運動に追従させることにより、アライメントとピントが合った好適な位置関係を維持する機能である。また、サンプルアームの光路長(よって、サンプルアームと参照アームとの間の光路長差)を変更するために光学系駆動部500の制御を行うように構成してもよい。
主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
主制御部211は、OCT計測を行なう前に複数の予備動作を実行する。予備動作としては、アライメント、フォーカス粗調整、光路長差調整、偏光調整、フォーカス微調整などがある。複数の予備動作は、所定の順序で実行される。この実施形態では上記順序で実行されるものとする。
なお、予備動作の種別や順序はこれに限定されるものではなく、任意である。たとえば、被検眼Eが小瞳孔眼であるか否か判定するための予備動作(小瞳孔判定)を予備動作に加えることができる。小瞳孔判定は、たとえば、フォーカス粗調整と光路長差調整との間に実行される。小瞳孔判定は、たとえば以下の一連の処理を含む:被検眼Eの正面画像(前眼部像)の取得する処理;瞳孔に相当する画像領域を特定する処理;特定された瞳孔領域のサイズ(径、周長など)を求める処理;求められたサイズに基づき小瞳孔眼か否か判定する処理(閾値処理);小瞳孔眼であると判定された場合に絞り19を制御する処理。ここで、瞳孔サイズを求めるために瞳孔領域を円近似または楕円近似する処理をさらに含んでいてもよい。
フォーカス粗調整は、前述のスプリット指標を用いたフォーカス調整である。なお、あらかじめ取得された眼屈折力と合焦レンズ31の位置とを関連付けた情報と、被検眼の屈折力の測定値とに基づいて合焦レンズ31の位置を決定することにより、フォーカス粗調整を行なうこともできる。
一方、フォーカス微調整は、OCT計測の干渉感度に基づいて行われる。たとえば、被検眼EのOCT計測を行なって干渉信号を取得して干渉強度(干渉感度)をモニタすることにより、干渉強度が最大となるような合焦レンズ43の位置を求め、その位置に合焦レンズ43を移動させることにより、フォーカス微調整を実行することができる。
光路長差調整においては、被検眼Eの対象部位がOCT画像のフレーム内における所定のz位置に描出されるように光路長変更部41の制御が行われる。それにより、サンプルアームと参照アームとの間の光路長差が調整される。光路長差調整の基準となる対象部位としては、OCT画像において特徴的な輝度を呈する部位(或いは、反射強度プロファイルにおいて特徴的な反射強度を呈する部位)があらかじめ設定される。具体例として、眼底のOCT計測においては網膜色素上皮層を基準として設定することができ、前眼部のOCT計測においては角膜表面を基準として設定することができる。このように好適な光路長差を探索する自動処理はオートZと呼ばれる。
光路長差調整はオートZには限定されない。たとえば、オートZにより達成された好適な画像描出位置を維持する自動処理を実行することが可能である。このような処理はZロックと呼ばれる。Zロックにおいては、たとえば、光路長差調整の基準となる対象部位がフレーム内の所定のz位置に描出されている状態が維持されるように光路長変更部41の制御が行われる。
なお、体動や眼球運動や拍動によってZロックが好適に行われない場合がある。つまり、光学系と被検眼Eとの位置関係が大きくずれることにより、Zロックに失敗するおそれがある。このような事態に対処するための予備動作を設けることが可能である。この処理は、Zロックの基準となるz位置(上記した所定のz位置)を変更する処理を含む。このZロック位置変更処理の具体例については後述する。
偏光調整においては、測定光LSと参照光LRとの干渉効率を最適化するために参照光LRの偏光状態が調整される。
(記憶部)
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部212には、眼科撮影装置1を動作させるための各種プログラムやデータが記憶されている。
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部212には、眼科撮影装置1を動作させるための各種プログラムやデータが記憶されている。
(画像形成部)
画像形成部220は、CCDイメージセンサ115からの検出信号に基づいて、眼底Efの断層像の画像データを形成する。この処理には、従来のスペクトラルドメインタイプの光コヒーレンストモグラフィと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、分散補償、FFT(Fast Fourier Transform)などの処理が含まれている。他のタイプのOCT装置の場合、画像形成部220は、そのタイプに応じた公知の処理を実行する。
画像形成部220は、CCDイメージセンサ115からの検出信号に基づいて、眼底Efの断層像の画像データを形成する。この処理には、従来のスペクトラルドメインタイプの光コヒーレンストモグラフィと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、分散補償、FFT(Fast Fourier Transform)などの処理が含まれている。他のタイプのOCT装置の場合、画像形成部220は、そのタイプに応じた公知の処理を実行する。
画像形成部220は、たとえば、前述の回路基板を含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。
(データ処理部)
データ処理部230は、被検眼Eの撮影やOCT計測により取得されたデータを処理する。たとえば、データ処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、データ処理部230は、画像の輝度補正等の各種補正処理を実行する。また、データ処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
データ処理部230は、被検眼Eの撮影やOCT計測により取得されたデータを処理する。たとえば、データ処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、データ処理部230は、画像の輝度補正等の各種補正処理を実行する。また、データ処理部230は、眼底カメラユニット2により得られた画像(眼底像、前眼部像等)に対して各種の画像処理や解析処理を施す。
データ処理部230は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Efの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、データ処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部241等の表示デバイスには、この擬似的な3次元画像が表示される。
また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。
データ処理部230は、光学系移動量取得部231と、撮影合焦レンズ移動量取得部232と、光路長差変更量取得部233と、判定部234と、画質判定部235とを有する。光学系移動量取得部231は、アライメントに関する。撮影合焦レンズ移動量取得部232は、フォーカス粗調整に関する。光路長差変更量取得部233は、オートZ、ZロックおよびZロック位置変更処理に関する。判定部234は、Zロック位置変更処理に関する。画質判定部235は、偏光調整およびフォーカス粗調整に関する。これら機能部位の全てがデータ処理部230に設けられている必要はなく、実施形態に係る処理の実行対象となる予備動作に関する機能部位が設けられていれば十分である。また、これら以外の予備動作について実施形態に係る処理を実行する場合には、その予備動作に関する機能部位が設けられる。なお、本実施形態においてはZロックおよびZロック位置変更処理が少なくとも実行され、これらに関する機能部位が少なくとも設けられる。
(光学系移動量取得部)
アライメントを行なうとき、眼科撮影装置1は、アライメント指標が投影されている状態の被検眼E(前眼部)を撮影して正面画像を取得する。この正面画像は、所定のフレームレートの動画像である。光学系移動量取得部231は、この正面画像(のフレーム)を解析することで、適正なアライメント状態を達成するために必要な光学系の移動量を取得する。
アライメントを行なうとき、眼科撮影装置1は、アライメント指標が投影されている状態の被検眼E(前眼部)を撮影して正面画像を取得する。この正面画像は、所定のフレームレートの動画像である。光学系移動量取得部231は、この正面画像(のフレーム)を解析することで、適正なアライメント状態を達成するために必要な光学系の移動量を取得する。
なお、光学系移動量取得部231により取得される情報は、光学系の移動量そのものには限定されない。たとえば、光学系駆動部500の制御内容(送信パルス数など)や、この移動量を取得する処理の途中で得られる情報(アライメントのずれ量など)のように、光学系の移動量と実質的に同値な(等価な)情報であってよい。
光学系移動量取得部231が実行する処理の例を説明する。光学系移動量取得部231に入力される正面画像には、アライメント指標が描出されている。アライメント指標の描出態様の例を図5Aおよび図5Bに示す。図5Aおよび図5Bにおいて、被検眼Eの像は省略されている。
図5Aに示す被検眼Eの正面画像G1には、アライメント指標の2つの像(アライメント指標像)A1およびA2が輝点として描出されている。また、主制御部211は、正面画像G1の中心位置に、アライメントの目標位置を示す括弧形状のターゲット像Tを重畳表示させる。
被検眼Eに対するxy方向のアライメントがずれている場合、2つのアライメント指標像A1およびA2は、ターゲット像Tから離れた位置に描出される。また、z方向のアライメントがずれている場合、2つのアライメント指標像A1およびA2は、互いに異なる位置に描出される。xyz方向全てのアライメントが適正である場合、図5Bに示すように、2つのアライメント指標像A1およびA2は、互いに重なった状態でターゲット像Tの内部に描出される。
ターゲット像Tに対する2つのアライメント指標像A1およびA2の変位(変位量、変位方向)は、xy方向におけるアライメントのずれ(ずれ量、ずれ方向)を示す。2つのアライメント指標像A1およびA2の変位(変位量、変位方向)は、z方向におけるアライメントのずれ(ずれ量、ずれ方向)を示す。
光学系移動量取得部231は、正面画像G1を解析することでアライメントのずれを求め、このずれを打ち消すような光学系の移動量を取得する。この処理はたとえば次のようにして実行される。まず、光学系移動量取得部231は、正面画像G1の画素情報(輝度値等)に基づいて、アライメント指標像A1およびA2に相当する画像領域を特定する。次に、光学系移動量取得部231は、特定された各画像領域の特徴位置(中心、重心等)を特定する。続いて、光学系移動量取得部231は、ターゲット像Tの中心位置に対する各画像領域の特徴位置の変位を求める。そして、光学系移動量取得部231は、求められた変位に基づいてアライメントのずれを求め、このアライメントのずれを打ち消すような光学系の移動量を取得する。なお、光学系移動量取得部231は、正面画像の座標系で定義されるアライメント指標像の変位と、実空間の座標系で定義されるアライメントのずれとを対応付けた情報をあらかじめ記憶しておき、この対応情報を参照してアライメントのずれを求めることができる。アライメントに関する動作は、算出されるアライメントのずれ量が所定の閾値以下になるまで継続される。
(撮影合焦レンズ移動量取得部)
フォーカス粗調整を行なうとき、眼科撮影装置1は、スプリット指標(合焦指標)が投影されている状態の眼底Efを撮影して正面画像を取得する。この正面画像は、所定のフレームレートの動画像である。撮影合焦レンズ移動量取得部232は、この正面画像(のフレーム)を解析することで、適正なフォーカス状態を達成するために必要な合焦レンズ31の移動量を取得する。
フォーカス粗調整を行なうとき、眼科撮影装置1は、スプリット指標(合焦指標)が投影されている状態の眼底Efを撮影して正面画像を取得する。この正面画像は、所定のフレームレートの動画像である。撮影合焦レンズ移動量取得部232は、この正面画像(のフレーム)を解析することで、適正なフォーカス状態を達成するために必要な合焦レンズ31の移動量を取得する。
なお、撮影合焦レンズ移動量取得部232により取得される情報は、合焦レンズ31の移動量そのものには限定されない。たとえば、撮影合焦駆動部300の制御内容(送信パルス数など)や、この移動量を取得する処理の途中で得られる情報(フォーカスのずれ量など)のように、合焦レンズ31の移動量と実質的に同値な情報であってよい。
撮影合焦レンズ移動量取得部232が実行する処理の例を説明する。撮影合焦レンズ移動量取得部232に入力される正面画像には、スプリット指標が描出されている。スプリット指標の描出態様の例を図6Aおよび図6Bに示す。図6Aおよび図6Bにおいて、眼底Efの像は省略されている。
図6Aに示す眼底Efの正面画像G2には反射棒67の影が映り込んでおり、この影の領域には、スプリット指標の2つの像(スプリット指標像)B1およびB2が輝線として描出される。
フォーカス位置が(z方向に)ずれている場合、2つのスプリット指標像B1およびB2は、互いに横方向に変位して描出される。その変位方向はフォーカス位置のずれ方向(+z方向または-z方向)を示し、その変位量はフォーカス位置のずれの大きさを示す。フォーカス位置が適正である場合、図6Bに示すように、2つのスプリット指標像B1およびB2は縦方向に揃った位置に描出される。
撮影合焦レンズ移動量取得部232は、正面画像G2を解析することでフォーカス位置のずれを求め、このずれを打ち消すような合焦レンズ31の移動量を取得する。この処理はたとえば次のようにして実行される。まず、撮影合焦レンズ移動量取得部232は、正面画像G2の画素情報(輝度値等)に基づいて、スプリット指標像B1およびB2に相当する画像領域を特定する。次に、撮影合焦レンズ移動量取得部232は、特定された各画像領域の特徴位置(中心、重心、軸線等)を特定する。続いて、撮影合焦レンズ移動量取得部232は、スプリット指標像B1およびB2に相当する2つの画像領域の特徴位置の、横方向における変位を求める。そして、撮影合焦レンズ移動量取得部232は、求められた変位に基づいてフォーカス位置のずれを求め、このフォーカス位置のずれを打ち消すような合焦レンズ31の移動量を取得する。ここで、撮影合焦レンズ移動量取得部232は、正面画像の座標系で定義されるスプリット指標像の変位と、実空間の座標系で定義されるフォーカス位置のずれとを対応付けた情報をあらかじめ記憶しておき、この対応情報を参照してフォーカス位置の変更量を求めることができる。
また、撮影合焦レンズ移動量取得部232は、サンプルアームの合焦レンズ43の移動量を取得するように構成されていてよい。この処理は、たとえば、上記と同様の対応情報を参照することにより、または2つの合焦レンズ31および43の間のフォーカス位置を対応付ける情報を参照することにより、実行される。このようにして実行されるサンプルアームのフォーカシングは粗調整であり、後段の処理において微調整が実行される。フォーカス粗調整に関する動作は、算出されるフォーカス位置のずれ量が所定の閾値以下になるまで継続される。
(光路長差変更量取得部、判定部)
オートZを行なうとき、眼科撮影装置1は、光学系を制御して眼底EfのOCT計測を実行する。このOCT計測においては、たとえば、眼底Efの実質的に同じ断面が所定の周波数で反復的にスキャンされる。すなわち、固視標が提示されている被検眼Eに対し、同じスキャンパターンでのOCT計測が繰り返し実行される。光路長差変更量取得部233は、このOCT計測により繰り返し取得される干渉光LCの検出結果(反射強度プロファイル、OCT画像など)を解析することで、眼底Efの像をフレームの特定位置に配置させるための光路長差の変更量を取得する。本実施形態の光路長差変更量取得部233は、サンプルアームの光路長の変更量を取得する。
オートZを行なうとき、眼科撮影装置1は、光学系を制御して眼底EfのOCT計測を実行する。このOCT計測においては、たとえば、眼底Efの実質的に同じ断面が所定の周波数で反復的にスキャンされる。すなわち、固視標が提示されている被検眼Eに対し、同じスキャンパターンでのOCT計測が繰り返し実行される。光路長差変更量取得部233は、このOCT計測により繰り返し取得される干渉光LCの検出結果(反射強度プロファイル、OCT画像など)を解析することで、眼底Efの像をフレームの特定位置に配置させるための光路長差の変更量を取得する。本実施形態の光路長差変更量取得部233は、サンプルアームの光路長の変更量を取得する。
なお、光路長差変更量取得部233により取得される情報は、光路長差(光路長)の変更量そのものには限定されない。たとえば、光路長変更部41の制御内容(送信パルス数など)や、この変更量を取得する処理の途中で得られる情報(フレーム内における画像のz方向の位置のずれ量など)のように、光路長差の変更量と実質的に同値な情報であってよい。
オートZのために光路長差変更量取得部233が実行する処理の例を説明する。オートZを行うとき、図7Aに示すようなOCT画像G3が動画表示される。OCT画像G3の右側面には、上下方向に移動可能なスライダHが表示される。スライダHが示す位置が、オートZの目標位置である上記特定位置に相当する。スライダHの位置はデフォルト位置であってもよいし、ユーザが任意に設定した位置であってもよいし、zロック位置変更処理により変更された後の位置であってもよい。
オートZの初期段階においては、一般に、眼底Efの画像はOCT画像に描出されていないか、或いは、たとえば上記のフォーカス粗調整の結果としてOCT画像のいずれかの位置に眼底Efの画像が表示される(図7Aを参照)。光路長差変更量取得部233には、画像形成部220により形成されたOCT画像G3が入力される。光路長差変更量取得部233は、OCT画像G3の画素情報(輝度値等)を解析することで、眼底Efの所定部位(たとえば網膜色素上皮層)に相当する画像領域Rを特定し、この画像領域Rのz座標を求める。このz座標は、画像領域Rにおける特徴位置(たとえば、中心、端部、最下端、最上端)のz座標でもよいし、画像領域Rにおける2以上の位置のz座標から統計的に算出される統計値(たとえば、平均値、最頻値、中央値)でもよい。
なお、目的の画像領域Rが特定されない場合、つまり上記所定部位がOCT画像G3に描出されていない場合、その旨を示す信号が制御部210に送られ、この信号を受けた主制御部211は、光路長変更部41を所定のアルゴリズムにしたがって制御し、画像領域Rの特定が再度実行される。この一連の処理は、画像領域Rが特定されるまで繰り返される。
画像領域Rが特定され、そのz座標が得られると、光路長差変更量取得部233は、スライダHが示すz座標(基準z位置)に対する画像領域Rのz座標の変位を求め、この変位をキャンセルするような光路長差の変更量を取得する。ここで、光路長差変更量取得部233は、OCT画像G3の座標系で定義されるz方向の変位と、実空間の座標系で定義される光路長差のずれとを対応付けた情報をあらかじめ記憶しておき、この対応情報を参照して光路長差の変更量を求めることができる。図7Bは、このようにして取得された変更量に基づくオートZに成功した状態を示す。オートZは、図7Bに示す状態が実現されるまで、すなわち、算出される変位が所定の閾値以下になるまで継続される。
Zロックについて説明する。Zロックにおいても、オートZの場合と同様に、眼底Efの実質的に同じ断面が所定の周波数で反復的にスキャンされる。さらに、光路長差変更量取得部233は、このOCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、スライダHが示す基準z位置に画像領域Rを配置させるための光路長差の変更量を取得する。この処理は、オートZの場合と同様にして実行される。
光路長差変更量取得部233および判定部234が関連するZロック位置変更処理について説明する。Zロック位置変更処理は、たとえば、オートZの完了に対応して開始され、Zロックと並行して実行される。Zロック位置変更処理は、OCT画像G3のフレーム内における被検眼Eの像(画像領域Rまたは他の画像領域)のz方向の位置をモニタすることにより、フレームの上端部や下端部や外部に被検眼Eの像が移動したことを検知する処理を含む。
Zロック位置変更処理においても、オートZおよびZロックの場合と同様に、眼底Efの実質的に同じ断面が所定の周波数で反復的にスキャンされる。
光路長差変更量取得部233は、たとえば、このOCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、被検眼Eの所定部位の画像と、フレームの上端(または下端)との間の距離を算出する。図8Aに示す例では、眼底Efの表面(網膜の表面)に相当する画像領域(表面領域)R1と、フレーム上端との間の距離Δz1が算出される。
判定部234は、光路長差変更量取得部233により算出された距離Δz1が閾値以下であるか判定する。この閾値はあらかじめ設定される。閾値は、ゼロ以上の任意の値であってよい。閾値がゼロである場合、判定部234が実行する判定処理は、表面領域R1がフレーム上端に接触しているか否かを判定する処理に相当する。また、閾値が正値である場合、判定部234が実行する判定処理は、表面領域R1がフレーム上端に当該閾値以下の距離だけ接近しているか否かを判定する処理に相当する。なお、表面領域R1の一部または全部がフレームからはみ出す場合も想定される。表面領域R1は、一般に、フレームの左端と右端の双方に接触している。表面領域R1が左端および右端の一方または双方に接触していない場合や、表面領域R1の一部または全部が特定されない場合が、このようなケースに相当する。このようなケースにおいて、判定部234は、光路長差変更量取得部233により算出された距離が閾値以下である場合と同様の判定結果を出力する。
他の処理例を説明する。光路長差変更量取得部233は、OCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、被検眼Eの所定部位の画像と、上記基準z位置との間の距離を算出する。図8Bに示す例では、網膜色素上皮層に相当する画像領域Rと、スライダHが示す基準z位置との間の距離Δz2が算出される。
判定部234は、光路長差変更量取得部233により算出された距離Δz2が閾値以上であるか判定する。この閾値はあらかじめ設定される。なお、画像領域Rの一部または全部がフレームからはみ出す場合も想定される。画像領域Rは、一般に、フレームの左端と右端の双方に接触している。画像領域Rが左端および右端の一方または双方に接触していない場合や、画像領域Rの一部または全部が特定されない場合が、このようなケースに相当する。このようなケースにおいて、判定部234は、光路長差変更量取得部233により算出された距離が閾値以上である場合と同様の判定結果を出力する。
(画質判定部)
偏光調整について説明する。測定光LSおよび/または参照光LRの偏光状態の調整を行なうとき、眼科撮影装置1は、偏波調整器106を所定のアルゴリズムにしたがって制御しつつ、上記と同様の反復的なOCT計測を行う。画質判定部235は、OCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、OCT画像の画質に関する所定の評価値を算出する。さらに、画質判定部235は、算出された評価値が閾値以下であるか否か判定する。この閾値はあらかじめ設定される。偏光調整は、算出される評価値が閾値以下になるまで継続される。
偏光調整について説明する。測定光LSおよび/または参照光LRの偏光状態の調整を行なうとき、眼科撮影装置1は、偏波調整器106を所定のアルゴリズムにしたがって制御しつつ、上記と同様の反復的なOCT計測を行う。画質判定部235は、OCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、OCT画像の画質に関する所定の評価値を算出する。さらに、画質判定部235は、算出された評価値が閾値以下であるか否か判定する。この閾値はあらかじめ設定される。偏光調整は、算出される評価値が閾値以下になるまで継続される。
フォーカス微調整について説明する。フォーカス微調整を行うとき、眼科撮影装置1は、OCT合焦駆動部400を所定のアルゴリズムにしたがって制御しつつ、上記と同様の反復的なOCT計測を行う。画質判定部235は、OCT計測により繰り返し取得される干渉光LCの検出結果を解析することで、OCT画像の画質に関する所定の評価値を算出する。さらに、画質判定部235は、算出された評価値が閾値以下であるか否か判定する。フォーカス微調整は、算出される評価値が閾値以下になるまで継続される。
なお、フォーカス微調整を他の手法にて実行することもできる。たとえば、上記のような反復的なOCT計測を行なって干渉信号を取得しつつ、逐次に取得される干渉信号の強度(干渉強度、干渉感度)をモニタする。さらに、このモニタ処理を行いながら、合焦レンズ43を移動させることにより、干渉強度が最大となるような合焦レンズ43の位置を探索する。このようなフォーカス微調整によれば、干渉強度が最適化されるような位置に合焦レンズ43を導くことができる。偏光調整においても同様に、干渉強度をモニタすることが可能である。より一般に、偏光調整やフォーカス微調整のようなリアルタイムで最適化を図る処理については、調整対象の変化に伴い変化する任意の評価値を参照して行うことが可能である。
以上のように機能するデータ処理部230は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。ハードディスクドライブ等の記憶装置には、上記機能をマイクロプロセッサに実行させるコンピュータプログラムが予め格納されている。
(ユーザインターフェイス)
ユーザインターフェイス240には、表示部241と操作部242とが含まれる。表示部241は、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部242は、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部242には、眼科撮影装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。たとえば眼底カメラユニット2が従来の眼底カメラと同様の筺体を有する場合、操作部242は、この筺体に設けられたジョイスティックや操作パネル等を含んでいてもよい。また、表示部241は、眼底カメラユニット2の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
ユーザインターフェイス240には、表示部241と操作部242とが含まれる。表示部241は、前述した演算制御ユニット200の表示デバイスや表示装置3を含んで構成される。操作部242は、前述した演算制御ユニット200の操作デバイスを含んで構成される。操作部242には、眼科撮影装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。たとえば眼底カメラユニット2が従来の眼底カメラと同様の筺体を有する場合、操作部242は、この筺体に設けられたジョイスティックや操作パネル等を含んでいてもよい。また、表示部241は、眼底カメラユニット2の筺体に設けられたタッチパネルなどの各種表示デバイスを含んでいてもよい。
なお、表示部241と操作部242は、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部242は、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部242に対する操作内容は、電気信号として制御部210に入力される。また、表示部241に表示されたグラフィカルユーザインターフェイス(GUI)と、操作部242とを用いて、操作や情報入力を行うようにしてもよい。
〔測定光の走査およびOCT画像について〕
ここで、測定光LSの走査およびOCT画像について説明しておく。
ここで、測定光LSの走査およびOCT画像について説明しておく。
眼科撮影装置1による測定光LSの走査態様としては、たとえば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋(渦巻)スキャンなどがある。これらの走査態様は、眼底の観察部位、解析対象(網膜厚など)、走査に要する時間、走査の精密さなどを考慮して適宜に選択的に使用される。
水平スキャンは、測定光LSを水平方向(x方向)に走査させるものである。水平スキャンには、垂直方向(y方向)に配列された複数の水平方向に延びる走査線に沿って測定光LSを走査させる態様も含まれる。この態様においては、走査線の間隔を任意に設定することが可能である。また、隣接する走査線の間隔を十分に狭くすることにより、前述の3次元画像を形成することができる(3次元スキャン)。垂直スキャンについても同様である。
十字スキャンは、互いに直交する2本の直線状の軌跡(直線軌跡)からなる十字型の軌跡に沿って測定光LSを走査するものである。放射スキャンは、所定の角度を介して配列された複数の直線軌跡からなる放射状の軌跡に沿って測定光LSを走査するものである。なお、十字スキャンは放射スキャンの一例である。
円スキャンは、円形状の軌跡に沿って測定光LSを走査させるものである。同心円スキャンは、所定の中心位置の周りに同心円状に配列された複数の円形状の軌跡に沿って測定光LSを走査させるものである。円スキャンは同心円スキャンの一例である。螺旋スキャンは、回転半径を次第に小さく(または大きく)させながら螺旋状(渦巻状)の軌跡に沿って測定光LSを走査するものである。
ガルバノスキャナ42は、互いに直交する方向に測定光LSを走査するように構成されているので、測定光LSをx方向およびy方向にそれぞれ独立に走査できる。さらに、ガルバノスキャナ42に含まれる2つのガルバノミラーの向きを同時に制御することで、xy面上の任意の軌跡に沿って測定光LSを走査することが可能である。それにより、上記のような各種の走査態様を実現できる。
上記のような態様で測定光LSを走査することにより、走査線(走査軌跡)に沿う方向と眼底深度方向(z方向)とにより張られる面における断層像を取得することができる。また、特に走査線の間隔が狭い場合には、前述の3次元画像を取得することができる。
上記のような測定光LSの走査対象となる眼底Ef上の領域、つまりOCT計測の対象となる眼底Ef上の領域を走査領域と呼ぶ。3次元スキャンにおける走査領域は、複数の水平スキャンが配列された矩形の領域である。また、同心円スキャンにおける走査領域は、最大径の円スキャンの軌跡により囲まれる円盤状の領域である。また、放射スキャンにおける走査領域は、各スキャンラインの両端位置を結んだ円盤状(或いは多角形状)の領域である。
[動作]
眼科撮影装置1の動作について説明する。図9は、OCT計測(および眼底撮影)の前に実行される予備動作において、眼科撮影装置1が実行する処理の例を表す。本例では、アライメント、フォーカス粗調整、オートZ、Zロック、Zロック位置変更処理、偏光調整およびフォーカス微調整の順に予備動作が実行される場合を説明する。
眼科撮影装置1の動作について説明する。図9は、OCT計測(および眼底撮影)の前に実行される予備動作において、眼科撮影装置1が実行する処理の例を表す。本例では、アライメント、フォーカス粗調整、オートZ、Zロック、Zロック位置変更処理、偏光調整およびフォーカス微調整の順に予備動作が実行される場合を説明する。
(S1:前眼部像の取得を開始)
まず、予備動作を開始させるための所定の操作を受けて、主制御部211は、観察光源11を点灯する。それにより、被検眼Eの前眼部の正面画像(近赤外動画像)の取得が開始される。この正面画像は、観察光源11が消灯されるまでリアルタイムで得られる。主制御部211は、この正面画像を表示部241にリアルタイムで動画表示させる。
まず、予備動作を開始させるための所定の操作を受けて、主制御部211は、観察光源11を点灯する。それにより、被検眼Eの前眼部の正面画像(近赤外動画像)の取得が開始される。この正面画像は、観察光源11が消灯されるまでリアルタイムで得られる。主制御部211は、この正面画像を表示部241にリアルタイムで動画表示させる。
(S2:アライメント)
主制御部211は、アライメント光学系50を制御して、被検眼Eにアライメント指標を投影させる。このとき、被検眼Eには、LCD39による固視標も投影される。光学系移動量取得部231は、所定の時間間隔で取得されるフレーム(たとえば全てのフレーム)をそれぞれ解析し、光学系の移動量を取得する。主制御部211は、光学系駆動部500を制御し、光学系を当該移動量だけ移動させる。主制御部211は、この処理を繰り返し実行させる。
主制御部211は、アライメント光学系50を制御して、被検眼Eにアライメント指標を投影させる。このとき、被検眼Eには、LCD39による固視標も投影される。光学系移動量取得部231は、所定の時間間隔で取得されるフレーム(たとえば全てのフレーム)をそれぞれ解析し、光学系の移動量を取得する。主制御部211は、光学系駆動部500を制御し、光学系を当該移動量だけ移動させる。主制御部211は、この処理を繰り返し実行させる。
(S3:フォーカス粗調整)
アライメントが終了すると、主制御部211は、フォーカス粗調整を開始する。具体的には、主制御部211は、眼底Efの正面画像の取得を開始させ、フォーカス光学系60を制御して眼底Efにスプリット指標を投影させる。撮影合焦レンズ移動量取得部232は、所定の時間間隔で取得されるフレーム(たとえば全てのフレーム)をそれぞれ解析し、合焦レンズ31の移動量を取得する。主制御部211は、撮影合焦駆動部300を制御して合焦レンズ31を当該移動量だけ移動させる。ここで、撮影合焦レンズ移動量取得部232が合焦レンズ43の移動量も取得する場合、主制御部211は、OCT合焦駆動部400を制御して合焦レンズ43を当該移動量だけ移動させる。主制御部211は、この処理を繰り返し実行させる。
アライメントが終了すると、主制御部211は、フォーカス粗調整を開始する。具体的には、主制御部211は、眼底Efの正面画像の取得を開始させ、フォーカス光学系60を制御して眼底Efにスプリット指標を投影させる。撮影合焦レンズ移動量取得部232は、所定の時間間隔で取得されるフレーム(たとえば全てのフレーム)をそれぞれ解析し、合焦レンズ31の移動量を取得する。主制御部211は、撮影合焦駆動部300を制御して合焦レンズ31を当該移動量だけ移動させる。ここで、撮影合焦レンズ移動量取得部232が合焦レンズ43の移動量も取得する場合、主制御部211は、OCT合焦駆動部400を制御して合焦レンズ43を当該移動量だけ移動させる。主制御部211は、この処理を繰り返し実行させる。
なお、前述した小瞳孔判定が行われる場合、主制御部211は、フォーカス粗調整の終了を受けてこれを実行させる。
(S4:OCT画像の取得を開始)
フォーカス粗調整(または小瞳孔判定)の終了を受けて、或いはその終了後に所定の操作が行われたことを受けて、主制御部211は、OCT計測を開始させる。このOCT計測においては、前述したように、眼底Efの実質的に同じ断面が所定の周波数で反復的にスキャンされる。
フォーカス粗調整(または小瞳孔判定)の終了を受けて、或いはその終了後に所定の操作が行われたことを受けて、主制御部211は、OCT計測を開始させる。このOCT計測においては、前述したように、眼底Efの実質的に同じ断面が所定の周波数で反復的にスキャンされる。
(S5:オートZ)
主制御部211は、ステップS4において取得が開始されたOCT画像(または反射強度プロファイルなど)に基づいてオートZを実行する。
主制御部211は、ステップS4において取得が開始されたOCT画像(または反射強度プロファイルなど)に基づいてオートZを実行する。
(S6:Zロックを開始)
オートZの成功を受けて、主制御部211はZロックを開始させる。
オートZの成功を受けて、主制御部211はZロックを開始させる。
(S7:像位置のモニタを開始)
Zロックの開始とともに、主制御部211は、Zロック位置を変更するためのモニタを開始する。このモニタ処理においては、前述したように、OCT画像のフレーム内における被検眼Eの像(画像領域R、表面領域R1など)のz方向の位置が監視される。なお、本例では、網膜表面に相当する表面領域R1と、フレーム上端との間の距離Δz1が算出される場合について説明するが、他の場合(たとえば上記の距離Δz2が算出される場合)についても同様の処理を実行することができる。
Zロックの開始とともに、主制御部211は、Zロック位置を変更するためのモニタを開始する。このモニタ処理においては、前述したように、OCT画像のフレーム内における被検眼Eの像(画像領域R、表面領域R1など)のz方向の位置が監視される。なお、本例では、網膜表面に相当する表面領域R1と、フレーム上端との間の距離Δz1が算出される場合について説明するが、他の場合(たとえば上記の距離Δz2が算出される場合)についても同様の処理を実行することができる。
(S8:距離Δz1≦閾値?)
判定部234は、前述したように、距離Δz1が閾値以下であるか判定する。距離Δz1が閾値以下であると判定されることなく偏光調整(S10)が開始された場合(S8:No)、そのまま処理が続く。
判定部234は、前述したように、距離Δz1が閾値以下であるか判定する。距離Δz1が閾値以下であると判定されることなく偏光調整(S10)が開始された場合(S8:No)、そのまま処理が続く。
(S9:基準z位置を変更)
一方、偏光調整(S10)が開始される前に距離Δz1が閾値以下であると判定された場合(S8:Yes)、主制御部211は、現在の基準z位置を新たな基準z位置に変更する。この処理は、図7A等に示すスライダHの位置を変更することに相当する。新たな基準z位置は、たとえば、現在の基準z位置よりもフレームの上端側に位置する。また、現在の基準z位置と新たな基準z位置との間の距離は、たとえば、現在の基準z位置に対する画像の変位量と同じであってよい。この変位量は、たとえば、基準z位置と画像領域Rとの間の変位として取得される。基準z位置が変更された後にもステップS7およびステップS8は継続され、ステップS8において再度「Yes」と判定された場合には基準z位置が再度変更される。
一方、偏光調整(S10)が開始される前に距離Δz1が閾値以下であると判定された場合(S8:Yes)、主制御部211は、現在の基準z位置を新たな基準z位置に変更する。この処理は、図7A等に示すスライダHの位置を変更することに相当する。新たな基準z位置は、たとえば、現在の基準z位置よりもフレームの上端側に位置する。また、現在の基準z位置と新たな基準z位置との間の距離は、たとえば、現在の基準z位置に対する画像の変位量と同じであってよい。この変位量は、たとえば、基準z位置と画像領域Rとの間の変位として取得される。基準z位置が変更された後にもステップS7およびステップS8は継続され、ステップS8において再度「Yes」と判定された場合には基準z位置が再度変更される。
(S10:偏光調整を開始)
偏光調整への移行トリガを受けて、主制御部211は偏光調整を開始する。この段階においても、ステップS7で開始されたモニタ処理が並行して実行されている。
偏光調整への移行トリガを受けて、主制御部211は偏光調整を開始する。この段階においても、ステップS7で開始されたモニタ処理が並行して実行されている。
(S11:距離Δz1≦閾値?)
判定部234は、距離Δz1が閾値以下であるか判定する。距離Δz1が閾値以下であると判定されることなく偏光調整が終了した場合(S11:No)、ステップS13に移行する。
判定部234は、距離Δz1が閾値以下であるか判定する。距離Δz1が閾値以下であると判定されることなく偏光調整が終了した場合(S11:No)、ステップS13に移行する。
(S12:基準z位置を変更)
一方、偏光調整の終了前に距離Δz1が閾値以下であると判定された場合(S11:Yes)、主制御部211は、現在の基準z位置を新たな基準z位置に変更する。この処理は、ステップS9と同様であってよい。
一方、偏光調整の終了前に距離Δz1が閾値以下であると判定された場合(S11:Yes)、主制御部211は、現在の基準z位置を新たな基準z位置に変更する。この処理は、ステップS9と同様であってよい。
(S13:フォーカス微調整を開始)
フォーカス微調整への移行トリガを受けて、主制御部211はフォーカス微調整を開始する。この段階においても、ステップS7で開始されたモニタ処理が並行して実行されている。
フォーカス微調整への移行トリガを受けて、主制御部211はフォーカス微調整を開始する。この段階においても、ステップS7で開始されたモニタ処理が並行して実行されている。
(S14:距離Δz1≦閾値?)
判定部234は、距離Δz1が閾値以下であるか判定する。距離Δz1が閾値以下であると判定されることなくフォーカス微調整が終了した場合(S14:No、S16)、予備動作は終了となり、眼科撮影装置1は、眼底EfのOCT計測(本計測)を実行可能な状態に移行する。
判定部234は、距離Δz1が閾値以下であるか判定する。距離Δz1が閾値以下であると判定されることなくフォーカス微調整が終了した場合(S14:No、S16)、予備動作は終了となり、眼科撮影装置1は、眼底EfのOCT計測(本計測)を実行可能な状態に移行する。
(S15:基準z位置を変更)
一方、フォーカス微調整の終了前に距離Δz1が閾値以下であると判定された場合(S14:Yes)、主制御部211は、現在の基準z位置を新たな基準z位置に変更する。この処理は、ステップS9と同様であってよい。
一方、フォーカス微調整の終了前に距離Δz1が閾値以下であると判定された場合(S14:Yes)、主制御部211は、現在の基準z位置を新たな基準z位置に変更する。この処理は、ステップS9と同様であってよい。
(S16:フォーカス微調整を終了)
フォーカス微調整が終了すると、予備計測は終了となり、眼科撮影装置1は、眼底EfのOCT計測(本計測)を実行可能な状態に移行する。
フォーカス微調整が終了すると、予備計測は終了となり、眼科撮影装置1は、眼底EfのOCT計測(本計測)を実行可能な状態に移行する。
[効果]
実施形態に係る眼科撮影装置の効果について説明する。
実施形態に係る眼科撮影装置の効果について説明する。
実施形態に係る眼科撮影装置は、OCTを用いて被検眼Eを反復的に走査することによりデータを繰り返し取得する機能を有する。この機能は、OCTを行うための干渉光学系を含む。干渉光学系は、光源ユニット(101)と、測定光(LS)を案内するサンプルアームと、参照光(LR)を案内する参照アームと、干渉光(LC)を検出する検出器(分光器、バランスドフォトダイオードなど)と、干渉光の検出結果を処理する構成要素(画像形成部220など)を含む。これらは、データ取得部の一例に相当する。
さらに、実施形態に係る眼科撮影装置は、以下の第1の制御および第2の制御を実行する制御部を含む。第1の制御において、制御部は、データ取得部により繰り返し取得されるデータに基づいて、被検眼の像がフレームにおける基準位置(基準z位置)に配置されるようにサンプルアームと参照アームとの間の光路長差を調整する。第1の制御は、たとえば、オートZおよびZロックを含む。また、第2の制御において、制御部は、データ取得部により繰り返し取得されるデータに基づいて、被検眼の像がフレームの新たな基準位置(新たな基準z位置)に配置されるようにサンプルアームと参照アームとの間の光路長差を変更する。上記の実施形態において、これら制御を実行する制御部は、制御部210を少なくとも含み、さらに、データ処理部230の一部を含む。
このような実施形態によれば、被検眼の移動によって注目部位が画像化範囲(フレーム)の端に描出されたりフレームから外れたりした場合であっても、基準位置を自動で変更して注目部位を好適な位置に描出することができる。また、実際に注目部位が不適当な位置に描出される状態になる前に、注目部位の描出位置を自動で補正することができる。したがって、被検眼のOCT計測のための予備動作を好適に実行することができ、フレーム内の好適な位置に注目部位が描出されたOCT画像を取得することが可能である。
実施形態において、制御部は判定部を含んでいてよい。判定部は、被検眼のOCT計測を行うための1以上の予備動作が実行されているときに、データ取得部により繰り返し取得されるデータに基づいて、第2の制御を実行するか否か判定する。上記の実施形態において、データ処理部230の一部が判定部に相当する。また、予備動作の例として、測定光および/または参照光の偏光状態を調整する偏光調整や、サンプルアームのフォーカスを調整するフォーカス微調整などがある。
このような実施形態によれば、OCT計測(本計測)の前に実行される予備動作と並行して基準位置の自動調整を行うことができる。
実施形態において、判定部は、被検眼の所定部位の画像とフレームの上端または下端との間の距離を算出する第1の距離算出部(光路長差変更量取得部233)と、算出された距離が既定の閾値以下であるか判定する第1の距離判定部(判定部234)とを含んでいてよい。この場合、制御部は、距離が前記閾値以下であると判定されたことに対応して第2の制御を実行するよう構成される。
このような実施形態の具体例として、上記閾値はゼロであってよい。他の具体例として、所定部位は網膜表面であってよく、第1の距離算出部は、網膜表面の画像とフレームの上端との間の距離を算出するよう構成されていてよい。さらに、制御部は、現在の基準位置よりもフレームの上端側に新たな基準位置を設定するように第2の制御を実行するよう構成されていてよい。
実施形態において、判定部は、被検眼の所定部位の画像と基準位置との間の距離を算出する第2の距離算出部(光路長差変更量取得部233)と、算出された距離が既定の閾値以上であるか判定する第2の距離判定部(判定部234)とを含んでいてよい。この場合、制御部は、距離が前記閾値以上であると判定されたことに対応して第2の制御を実行するよう構成される。
このような実施形態の具体例として、制御部は、現在の基準位置よりも所定部位の画像の変位方向の側に新たな基準位置を設定するように第2の制御を実行するよう構成されていてよい。他の具体例として、所定部位は、被検眼の網膜の所定の層組織(たとえば網膜色素上皮層)であってよい。
[変形例]
以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。
以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。
上記の実施形態では、網膜色素上皮層等の注目部位がフレーム内の好適な位置に配置されるように基準z位置が変更されるが、この発明はこれに限定されない。たとえば、観察が不要な部位の画像や観察の邪魔になる画像を、フレームの端部や外部に移動させるように基準z位置を変更するように構成することが可能である。このような処理は、たとえば、OCT画像や反射強度プロファイルを解析することにより所定の画像領域を特定する処理と、特定された画像領域をフレームの端部や外部に移動させるための基準z位置の移動量を求める処理と、求められた移動量に基づいてサンプルアームと参照アームとの間の光路長差を変更する処理とを含む。
具体例として、OCT画像にミラーイメージ(鏡像)が混入している場合について、上記実施形態の構成を準用しつつ説明する。本例においては、上記実施形態で説明した反復的なOCT計測が実行される。データ処理部230(鏡像特定部)は、逐次に入力されるフレームを解析することにより、鏡像に相当する画像領域(鏡像領域)を特定する。さらに、データ処理部230は、フレーム内の所定の端部領域(フレームの上端または下端を少なくとも含む1次元、2次元または3次元の領域)と、鏡像領域との間の距離を算出する。この距離は、少なくともz方向における距離を含む。また、鏡像領域内の任意の位置を当該鏡像領域の位置として求めることができる。たとえば、フレームの上端側に鏡像領域を移動させる場合、鏡像領域の下端の位置を採用することができる(この場合、鏡像領域全体を端部領域に移動させることができる)。主制御部211は、求められた距離だけ基準z位置を移動させる。それにより、フレームの端部近傍またはフレームの外部に位置する新たな基準位置に鏡像領域が配置されるように第2の制御を実行することができ、鏡像領域が観察の邪魔をする事態を回避することが可能となる。
なお、上記実施形態に係る第2の制御と本変形例に係る第2の制御との両立を図ることが困難な場合も想定される。たとえば、注目部位に鏡像が発生している場合が考えられる。このような場合において、いずれの第2の制御を優先するかは任意である。たとえば、上記実施形態に係る第2の制御を優先的に実行し、さらに、鏡像を除去したり薄くしたり移動させたりするための他の処理を実行するように構成することが可能である。
上記の実施形態を実現するためのコンピュータプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、半導体メモリ、光ディスク、光磁気ディスク(CD-ROM/DVD-RAM/DVD-ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。
また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
1 眼科撮影装置
42 ガルバノスキャナ
100 OCTユニット
101 光源ユニット
115 CCDイメージセンサ
210 制御部
220 画像形成部
230 データ処理部
42 ガルバノスキャナ
100 OCTユニット
101 光源ユニット
115 CCDイメージセンサ
210 制御部
220 画像形成部
230 データ処理部
Claims (13)
- 光コヒーレンストモグラフィを用いて被検眼を反復的に走査することによりデータを繰り返し取得するデータ取得部と、
前記データ取得部により繰り返し取得されるデータに基づいて、前記被検眼の像がフレームにおける基準位置に配置されるように光コヒーレンストモグラフィのための干渉光学系におけるサンプルアームと参照アームとの間の光路長差を調整する第1の制御を実行し、かつ、前記データ取得部により繰り返し取得されるデータに基づいて、前記被検眼の像がフレームの新たな基準位置に配置されるように前記光路長差を変更する第2の制御を実行する制御部と
を備える眼科撮影装置。 - 前記制御部は、前記被検眼の光コヒーレンストモグラフィを行うための1以上の予備動作が実行されているときに、前記データ取得部により繰り返し取得されるデータに基づいて前記第2の制御を実行するか否か判定する処理を実行する判定部を含む
ことを特徴とする請求項1に記載の眼科撮影装置。 - 前記判定部は、
前記被検眼の所定部位の画像とフレームの上端または下端との間の距離を算出する第1の距離算出部と、
前記第1の距離算出部により算出された距離が既定の閾値以下であるか判定する第1の距離判定部と、
を含み、
前記制御部は、前記第1の距離判定部により前記距離が前記閾値以下であると判定されたことに対応して前記第2の制御を実行する
ことを特徴とする請求項2に記載の眼科撮影装置。 - 前記閾値はゼロである
ことを特徴とする請求項3に記載の眼科撮影装置。 - 前記所定部位は、前記被検眼の網膜表面であり、
前記第1の距離算出部は、前記網膜表面の画像とフレームの上端との間の距離を算出する
ことを特徴とする請求項3または請求項4に記載の眼科撮影装置。 - 前記制御部は、前記基準位置よりもフレームの上端側に前記新たな基準位置を設定するように前記第2の制御を実行する
ことを特徴とする請求項5に記載の眼科撮影装置。 - 前記判定部は、
前記被検眼の所定部位の画像と前記基準位置との間の距離を算出する第2の距離算出部と、
前記第2の距離算出部により算出された距離が既定の閾値以上であるか判定する第2の距離判定部と、
を含み、
前記制御部は、前記第2の距離判定部により前記距離が前記閾値以上であると判定されたことに対応して前記第2の制御を実行する
ことを特徴とする請求項2に記載の眼科撮影装置。 - 前記制御部は、前記基準位置よりも前記所定部位の画像の変位方向の側に前記新たな基準位置を設定するように前記第2の制御を実行する
ことを特徴とする請求項7に記載の眼科撮影装置。 - 前記所定部位は、前記被検眼の網膜の所定の層組織である
ことを特徴とする請求項7または請求項8に記載の眼科撮影装置。 - 前記1以上の予備動作は、前記サンプルアームにより導かれる測定光および前記参照アームにより導かれる参照光の少なくとも一方の偏光状態を調整する動作を含む
ことを特徴とする請求項2~請求項9のいずれか一項に記載の眼科撮影装置。 - 前記1以上の予備動作は、前記サンプルアームのフォーカス調整を含む
ことを特徴とする請求項2~請求項10のいずれか一項に記載の眼科撮影装置。 - 前記制御部は、
フレームに描出されている前記被検眼の鏡像を特定する鏡像特定部を含み、
前記鏡像特定部により特定された前記鏡像がフレームの端部近傍またはフレームの外部に位置する前記新たな基準位置に配置されるように前記第2の制御を実行する
ことを特徴とする請求項1に記載の眼科撮影装置。 - 光コヒーレンストモグラフィを用いて被検眼を反復的に走査することによりデータを繰り返し取得する眼科撮影装置の制御方法であって、
繰り返し取得されるデータに基づいて、前記被検眼の像がフレームにおける基準位置に配置されるように光コヒーレンストモグラフィのための干渉光学系におけるサンプルアームと参照アームとの間の光路長差を調整する第1の制御を実行し、
繰り返し取得されるデータに基づいて、前記被検眼の像がフレームの新たな基準位置に配置されるように前記光路長差を変更する第2の制御を実行する
ことを特徴とする眼科撮影装置の制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/500,665 US10314480B2 (en) | 2014-08-19 | 2015-07-13 | Ophthalmologic imaging apparatus and method for controlling the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014166522A JP2016041221A (ja) | 2014-08-19 | 2014-08-19 | 眼科撮影装置およびその制御方法 |
JP2014-166522 | 2014-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016027589A1 true WO2016027589A1 (ja) | 2016-02-25 |
Family
ID=55350539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070006 WO2016027589A1 (ja) | 2014-08-19 | 2015-07-13 | 眼科撮影装置およびその制御方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10314480B2 (ja) |
JP (1) | JP2016041221A (ja) |
WO (1) | WO2016027589A1 (ja) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6527668B2 (ja) * | 2014-05-02 | 2019-06-05 | 株式会社トプコン | 眼科手術装置および眼科手術用アタッチメント |
JP2017185057A (ja) * | 2016-04-06 | 2017-10-12 | キヤノン株式会社 | 眼科撮影装置及びその制御方法、並びに、プログラム |
US10792002B2 (en) * | 2017-04-20 | 2020-10-06 | Siemens Healthcare Gmbh | Method and system for determining the position of a C-arm of an X-ray system |
JP6934747B2 (ja) * | 2017-05-19 | 2021-09-15 | 株式会社トプコン | 眼科装置、及びその制御方法 |
JP2019037650A (ja) * | 2017-08-28 | 2019-03-14 | キヤノン株式会社 | 画像取得装置およびその制御方法 |
CN111542258B (zh) | 2017-11-07 | 2023-10-20 | 诺达尔视觉有限公司 | 用于眼科成像设备的对准的方法和系统 |
CN111511268B (zh) | 2017-11-07 | 2023-12-26 | 诺达尔视觉有限公司 | 视网膜成像设备和相关方法 |
CN110123262B (zh) * | 2018-02-08 | 2024-06-28 | 深圳莫廷医疗科技股份有限公司 | 眼科测量系统和方法 |
JP7202807B2 (ja) * | 2018-08-10 | 2023-01-12 | 株式会社トプコン | 眼科装置 |
JP7286853B2 (ja) * | 2018-08-10 | 2023-06-05 | 株式会社トプコン | 眼科装置、及びその制御方法 |
JP7202808B2 (ja) * | 2018-08-10 | 2023-01-12 | 株式会社トプコン | 眼科装置、及びその制御方法 |
US10595722B1 (en) | 2018-10-03 | 2020-03-24 | Notal Vision Ltd. | Automatic optical path adjustment in home OCT |
JP7281906B2 (ja) * | 2019-01-16 | 2023-05-26 | 株式会社トプコン | 眼科装置、その制御方法、プログラム、及び記録媒体 |
CN111601538B (zh) * | 2019-01-16 | 2021-03-09 | 株式会社拓普康 | 眼科装置 |
US10653311B1 (en) | 2019-06-12 | 2020-05-19 | Notal Vision Ltd. | Home OCT with automatic focus adjustment |
JP7343331B2 (ja) * | 2019-08-08 | 2023-09-12 | 株式会社トプコン | 眼科装置、その制御方法、プログラム、及び、記録媒体 |
EP4257032A1 (en) * | 2022-04-04 | 2023-10-11 | Optos PLC | A method and system of detecting clipping of an oct image |
JP2024139950A (ja) | 2023-03-28 | 2024-10-10 | 株式会社トプコン | 眼科装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010181172A (ja) * | 2009-02-03 | 2010-08-19 | Topcon Corp | 光画像計測装置 |
JP2011036431A (ja) * | 2009-08-11 | 2011-02-24 | Canon Inc | 断層像撮像装置およびその制御方法、プログラム、記憶媒体 |
JP2011092290A (ja) * | 2009-10-27 | 2011-05-12 | Topcon Corp | 眼科観察装置 |
JP2012223264A (ja) * | 2011-04-18 | 2012-11-15 | Nidek Co Ltd | 光断層像撮影装置 |
JP2013188316A (ja) * | 2012-03-13 | 2013-09-26 | Nidek Co Ltd | 眼底撮影装置 |
JP2013212173A (ja) * | 2012-03-30 | 2013-10-17 | Canon Inc | 光干渉断層撮影装置、撮影システム、制御装置、及び制御方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6101475B2 (ja) | 2012-12-06 | 2017-03-22 | 株式会社トプコン | 眼科観察装置 |
JP6108845B2 (ja) * | 2013-01-24 | 2017-04-05 | 株式会社トプコン | 眼科観察装置 |
-
2014
- 2014-08-19 JP JP2014166522A patent/JP2016041221A/ja active Pending
-
2015
- 2015-07-13 US US15/500,665 patent/US10314480B2/en active Active
- 2015-07-13 WO PCT/JP2015/070006 patent/WO2016027589A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010181172A (ja) * | 2009-02-03 | 2010-08-19 | Topcon Corp | 光画像計測装置 |
JP2011036431A (ja) * | 2009-08-11 | 2011-02-24 | Canon Inc | 断層像撮像装置およびその制御方法、プログラム、記憶媒体 |
JP2011092290A (ja) * | 2009-10-27 | 2011-05-12 | Topcon Corp | 眼科観察装置 |
JP2012223264A (ja) * | 2011-04-18 | 2012-11-15 | Nidek Co Ltd | 光断層像撮影装置 |
JP2013188316A (ja) * | 2012-03-13 | 2013-09-26 | Nidek Co Ltd | 眼底撮影装置 |
JP2013212173A (ja) * | 2012-03-30 | 2013-10-17 | Canon Inc | 光干渉断層撮影装置、撮影システム、制御装置、及び制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016041221A (ja) | 2016-03-31 |
US10314480B2 (en) | 2019-06-11 |
US20170215725A1 (en) | 2017-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016027589A1 (ja) | 眼科撮影装置およびその制御方法 | |
JP6522827B2 (ja) | 眼科装置 | |
JP6045895B2 (ja) | 眼科観察装置 | |
JP5941761B2 (ja) | 眼科撮影装置及び眼科画像処理装置 | |
JP6411728B2 (ja) | 眼科観察装置 | |
WO2014192520A1 (ja) | 眼科撮影装置および眼科画像表示装置 | |
WO2018135175A1 (ja) | 眼科装置 | |
US10045691B2 (en) | Ophthalmologic observation apparatus using optical coherence tomography | |
JP5514026B2 (ja) | 眼底画像処理装置及び眼底観察装置 | |
JP6407631B2 (ja) | 眼科装置 | |
JP6901264B2 (ja) | 眼科装置 | |
JP6279682B2 (ja) | 眼科観察装置 | |
JP6108845B2 (ja) | 眼科観察装置 | |
JP6452977B2 (ja) | 眼科撮影装置及びその制御方法 | |
JP6311045B2 (ja) | 眼科観察装置 | |
JP2018023818A (ja) | 眼科観察装置 | |
JP6557388B2 (ja) | 眼科撮影装置 | |
JP6158535B2 (ja) | 眼底解析装置 | |
JP2012223428A (ja) | 眼科装置 | |
JP2016104306A (ja) | 眼科撮影装置 | |
JP6756873B2 (ja) | 眼科撮影装置 | |
JP2018023816A (ja) | 眼科観察装置 | |
JP7231366B2 (ja) | 眼科装置および眼科装置の制御方法 | |
JP2018051340A (ja) | 眼科装置 | |
JP6404431B2 (ja) | 眼科観察装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15834320 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15500665 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15834320 Country of ref document: EP Kind code of ref document: A1 |