WO2016027423A1 - 伝送方法、再生方法及び再生装置 - Google Patents

伝送方法、再生方法及び再生装置 Download PDF

Info

Publication number
WO2016027423A1
WO2016027423A1 PCT/JP2015/003876 JP2015003876W WO2016027423A1 WO 2016027423 A1 WO2016027423 A1 WO 2016027423A1 JP 2015003876 W JP2015003876 W JP 2015003876W WO 2016027423 A1 WO2016027423 A1 WO 2016027423A1
Authority
WO
WIPO (PCT)
Prior art keywords
hdr
luminance
metadata
video signal
conversion
Prior art date
Application number
PCT/JP2015/003876
Other languages
English (en)
French (fr)
Inventor
遠間 正真
洋 矢羽田
智輝 小川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016543801A priority Critical patent/JP6566271B2/ja
Priority to PCT/JP2015/003876 priority patent/WO2016027423A1/ja
Priority to CN201580007932.1A priority patent/CN105981396B/zh
Priority to EP15834222.0A priority patent/EP3185572B1/en
Priority to MX2017000432A priority patent/MX366637B/es
Publication of WO2016027423A1 publication Critical patent/WO2016027423A1/ja
Priority to US15/214,507 priority patent/US10291955B2/en
Priority to US16/371,607 priority patent/US20190230407A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/43615Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/432Content retrieval operation from a local storage medium, e.g. hard-disk
    • H04N21/4325Content retrieval operation from a local storage medium, e.g. hard-disk by playing back content from the storage medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/44008Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving operations for analysing video streams, e.g. detecting features or characteristics in the video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • H04N21/440218Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display by transcoding between formats or standards, e.g. from MPEG-2 to MPEG-4
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • H04N21/44029Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display for generating different versions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/57Control of contrast or brightness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera

Definitions

  • the present disclosure relates to a transmission method, a reproduction method, and a reproduction apparatus.
  • Patent Document 1 An image signal processing apparatus for improving the displayable luminance level has been disclosed (see, for example, Patent Document 1).
  • a transmission method is a transmission method in a playback device that transmits a video signal to a display device, and a version of a transmission protocol that connects the playback device and the display device is a first version , Used in common for a plurality of images included in a continuous reproduction unit of the video signal, and transmits first metadata, which is information relating to a luminance range of the video signal, to the display device, and the continuous video signal
  • first metadata which is information relating to a luminance range of the video signal
  • a reproduction method is a reproduction method for reproducing a video signal, and the luminance of the video signal is a first luminance defined as a first maximum luminance value having a maximum luminance value exceeding 100 nits.
  • a reproduction method is a reproduction method for reproducing a video signal, and the luminance of the video signal is a first luminance defined as a first maximum luminance value having a maximum luminance value exceeding 100 nits.
  • a determination step of determining whether a luminance value of an image included in the video signal includes a first luminance value in a range and exceeds a predetermined first threshold; and determining that the luminance value exceeds the first threshold An adjustment step of performing an adjustment process for reducing the luminance value of the image.
  • FIG. 1 is a diagram for explaining the evolution of video technology.
  • FIG. 2 is a diagram for explaining the positioning of HDR.
  • FIG. 3 is a diagram illustrating an example of an image showing the effect of HDR.
  • FIG. 4 is a diagram for explaining the relationship between the master, the distribution method, and the display device when HDR is introduced.
  • FIG. 5 is an explanatory diagram of a method for determining the code value of the luminance signal stored in the content and the process of restoring the luminance value from the code value during reproduction.
  • FIG. 6 is a diagram illustrating an example of HDR metadata.
  • FIG. 7 is a diagram illustrating a storage example of static HDR metadata.
  • FIG. 8 is a diagram illustrating a storage example of dynamic HDR metadata.
  • FIG. 9 is a diagram illustrating an example of storing dynamic HDR metadata.
  • FIG. 10 is a flowchart of a method for transmitting static HDR metadata.
  • FIG. 11 is a flowchart of an HDR metadata processing method.
  • FIG. 12 is a block diagram showing the configuration of the data output device.
  • FIG. 13 is a diagram illustrating an example of the data structure of an SEI message storing HDR metadata.
  • FIG. 14 is a diagram illustrating a data structure example of an SEI message storing HDR metadata.
  • FIG. 15 is a diagram illustrating an example of the data structure of an SEI message storing HDR metadata.
  • FIG. 16 is a block diagram illustrating a configuration example of the data output device.
  • FIG. 17 is a block diagram illustrating a configuration example of the DR conversion unit.
  • FIG. 18 is a block diagram illustrating a configuration example of the DR conversion unit.
  • FIG. 19 is a diagram illustrating an example of the instruction content of the HDR meta interpretation unit.
  • FIG. 20 is a diagram illustrating an example of instruction content of the HDR meta interpretation unit.
  • FIG. 21 is a diagram illustrating an example of instruction content of the HDR meta interpretation unit.
  • FIG. 22 is a block diagram illustrating a configuration example of the data output device.
  • FIG. 23 is a diagram illustrating a combination example of the characteristics of the video signal and the display device and the output signal of the data output device.
  • FIG. 24 is a diagram illustrating an example of an operation model when various signals are reproduced and signals are output to various TVs.
  • FIG. 25 is a diagram illustrating a storage example of static HDR metadata and dynamic HDR metadata.
  • FIG. 26 is a diagram illustrating an example of a user guidance display method.
  • FIG. 27 is a diagram illustrating an example of a user guidance display method.
  • FIG. 28 is a diagram illustrating an example of a user guidance display method.
  • FIG. 29 is a diagram illustrating an example of a user guidance display method.
  • FIG. 30 is a flowchart of a method for transmitting dynamic HDR metadata depending on the version of HDMI (registered trademark, the same applies hereinafter).
  • FIG. 31 is a flowchart of a method of transmitting static HDR metadata depending on the HDMI version.
  • FIG. 32 is a flowchart of a method for controlling a luminance value in reproducing an HDR signal.
  • FIG. 33 is a diagram for explaining the reproduction operation of the dual disc.
  • FIG. 34A is a diagram illustrating an example of a display process in which HDR display is performed by converting an HDR signal in HDRTV.
  • FIG. 34B is a diagram illustrating an example of display processing for performing HDR display using an HDR-compatible playback device and SDRTV.
  • FIG. 34C is a diagram illustrating an example of display processing for performing HDR display on the HDR-compatible playback device and SDRTV that are connected to each other via the standard interface.
  • FIG. 35 is a diagram for describing a conversion process from HDR to pseudo-HDR.
  • FIG. 36A is a diagram showing an example of EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
  • FIG. EOTF Electro-Optical Transfer Function
  • FIG. 36B is a diagram illustrating an example of inverse EOTF corresponding to each of HDR and SDR.
  • FIG. 37 is a block diagram illustrating configurations of the conversion device and the display device according to the embodiment.
  • FIG. 38 is a flowchart illustrating a conversion method and a display method performed by the conversion device and the display device according to the embodiment.
  • FIG. 39A is a diagram for describing the first luminance conversion.
  • FIG. 39B is a diagram for describing another example of the first luminance conversion.
  • FIG. 40 is a diagram for describing the second luminance conversion.
  • FIG. 41 is a diagram for describing the third luminance conversion.
  • FIG. 42 is a flowchart showing detailed display setting processing.
  • a transmission method is a transmission method in a playback device that transmits a video signal to a display device, and a version of a transmission protocol that connects the playback device and the display device is a first version , Used in common for a plurality of images included in a continuous reproduction unit of the video signal, and transmits first metadata, which is information relating to a luminance range of the video signal, to the display device, and the continuous video signal
  • first metadata which is information relating to a luminance range of the video signal
  • the transmission method can transmit appropriate metadata of the first metadata and the second metadata to the display device according to the version of the transmission protocol.
  • a conversion process for converting the luminance range of the video signal is performed using the second metadata, and the converted video signal is transmitted to the display device. May be.
  • the conversion process can be performed by the playback device.
  • the conversion process is performed and the converted video signal is transmitted to the display device If the version of the transmission protocol is the second version and the display device supports the conversion process, the video signal is transmitted to the display device without performing the conversion process. Also good.
  • the conversion process can be executed by an appropriate device of the playback device and the display device.
  • the playback device does not support the conversion process for converting the luminance range of the video signal using the second metadata
  • the conversion process is not performed, and the second metadata is transferred to the display device. It is not necessary to transmit.
  • the luminance value in the video signal is encoded as a code value
  • the first metadata specifies an EOTF (Electro-Optical Transfer Function) that associates a plurality of luminance values with a plurality of code values.
  • EOTF Electro-Optical Transfer Function
  • the second metadata may indicate a mastering characteristic of the video signal.
  • a reproduction method is a reproduction method for reproducing a video signal, and the luminance of the video signal is a first luminance defined as a first maximum luminance value having a maximum luminance value exceeding 100 nits.
  • the reproduction method can generate a video signal that can be appropriately displayed on the display device by reducing the luminance value of the video signal.
  • the reproduction method can reduce the adverse effect by lowering the luminance value of the video signal when there is a possibility that the viewer will be adversely affected due to a large amount of change in the luminance value of the video signal.
  • the luminance value of the pixel may be adjusted so that the change amount of the pixel is equal to or less than the first threshold value with respect to a pixel whose change amount exceeds the first threshold value.
  • the peak luminance of the first image included in the video signal, and the luminance values of a plurality of pixels included in the second image after the first image included in the video signal, Whether the difference exceeds the first threshold, and in the adjustment step, for the pixel where the difference exceeds the first threshold, the pixel so that the difference of the pixel is less than or equal to the first threshold May be adjusted.
  • the determination step it may be determined whether the amount of change in the luminance value in a reference time interval that is an integer multiple of the reciprocal of the frame rate of the video signal exceeds the first threshold value.
  • the determination step it is determined whether a ratio of pixels whose change amount exceeds the first threshold exceeds a second threshold among a plurality of pixels included in the image included in the video signal, and the adjustment step Then, when the ratio exceeds the second threshold, the luminance values of the plurality of pixels may be adjusted so that the ratio is equal to or less than the second threshold.
  • the determination step for each of a plurality of areas obtained by dividing the screen, it is determined whether the amount of change in luminance value between the screens in the area exceeds the first threshold value.
  • An adjustment process for reducing the luminance value of the area may be performed on the area where the change amount is determined to exceed the first threshold.
  • the reproduction method is a reproduction method for reproducing a video signal, wherein the luminance of the video signal is defined as a first luminance range defined as a first maximum luminance value with a maximum luminance value exceeding 100 nits.
  • a determination step for determining whether a luminance value of an image included in the video signal exceeds a predetermined first threshold value, and that the luminance value exceeds the first threshold value The adjustment step of performing an adjustment process for reducing the luminance value of the image.
  • the reproduction method can generate a video signal that can be appropriately displayed on the display device by reducing the luminance value of the video signal.
  • the reproduction method can reduce the adverse effect by lowering the luminance value of the video signal when the luminance value of the video signal is likely to adversely affect the viewer.
  • the number of pixels having a luminance value exceeding the first threshold value among a plurality of pixels included in the image is determined, and in the adjustment step, the number of pixels exceeds a third threshold value.
  • the luminance value of the image may be lowered so that the number of pixels is equal to or less than the third threshold value.
  • a ratio of pixels having a luminance value exceeding the first threshold among a plurality of pixels included in the image is determined.
  • the luminance value of the image may be lowered so that the ratio is equal to or less than the third threshold value.
  • the first threshold value may be a value calculated based on an upper limit value of a voltage that can be simultaneously applied to a plurality of pixels in the display device that displays the video signal.
  • the playback device is a playback device that transmits a video signal to a display device, and a version of a transmission protocol that connects the playback device and the display device is a first version.
  • the first metadata that is used in common for a plurality of images included in the continuous playback unit of the video signal and is information on the luminance range of the video signal is transmitted to the display device, and the continuous playback of the video signal
  • the second metadata which is commonly used for a unit smaller than the unit, is not transmitted to the display device and is the second metadata that is information on the luminance range of the video signal
  • the version of the transmission protocol is the second version
  • One metadata and the second metadata are transmitted to the display device.
  • the playback device can transmit appropriate metadata of the first metadata and the second metadata to the display device according to the version of the transmission protocol.
  • the playback device is a playback device that plays back a video signal, and the brightness of the video signal is defined as a first brightness value having a maximum brightness value that is greater than 100 nits.
  • a determination unit configured to determine whether an amount of change in luminance value between screens in the video signal exceeds a predetermined first threshold, and the amount of change exceeds the first threshold.
  • an adjustment unit that performs an adjustment process for reducing the luminance value of the video signal when the determination is made.
  • the playback device when the luminance value of the video signal exceeds the display capability of the display device, the playback device can generate a video signal that can be appropriately displayed on the display device by reducing the luminance value of the video signal.
  • the playback device when the amount of change in the luminance value of the video signal is likely to adversely affect the viewer, the playback device can reduce the adverse effect by reducing the luminance value of the video signal.
  • the playback device is a playback device that plays back a video signal, and the brightness of the video signal is defined as a first brightness value having a maximum brightness value that is greater than 100 nits.
  • a determination unit configured to determine whether a luminance value of an image included in the video signal includes a first luminance value in a range and exceeds a predetermined first threshold value; and determining that the luminance value exceeds the first threshold value
  • An adjustment unit that performs an adjustment process for reducing the luminance value of the image.
  • the playback device when the luminance value of the video signal exceeds the display capability of the display device, the playback device can generate a video signal that can be appropriately displayed on the display device by reducing the luminance value of the video signal.
  • the playback device when the luminance value of the video signal is likely to adversely affect the viewer, the playback device can reduce the adverse effect by reducing the luminance value of the video signal.
  • each of the embodiments described below shows a specific example of the present disclosure.
  • constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
  • FIG. 1 is a diagram for explaining the evolution of video technology.
  • SD Standard Definition
  • HD high definition 1920 x 1080 pixels
  • the dynamic range is the maximum brightness to express bright light such as specular reflection light that cannot be expressed by the current TV signal with more realistic brightness while maintaining the dark gradation in the conventional video.
  • HDR High Dynamic Range
  • SDR Standard Dynamic Range
  • the maximum luminance value was 100 nits, whereas in HDR the maximum is 1000 nits or more. It is assumed that the luminance value is enlarged. Standardization of HDR is underway in SMPTE (Society of Motion Picture & Television Engineers) and ITU-R (International Telecommunications Union Radiocommunications Sector).
  • HDR high definition video recorder
  • package media Blu-ray (registered trademark, the same shall apply hereinafter) Disc, etc.
  • Internet distribution etc., as in HD and UHD.
  • the luminance of the video is composed of luminance values in the HDR luminance range, and a luminance signal obtained by quantizing the luminance value of the video is referred to as an HDR signal.
  • the luminance of the video is composed of luminance values in the luminance range of SDR, and a luminance signal obtained by quantizing the luminance value of the video is called an SDR signal.
  • An HDR (High Dynamic Range) signal which is an image signal having a luminance range higher than that of a conventional image signal, is transmitted via a package medium such as a Blu-ray disc storing the HDR signal, broadcast, or a distribution medium such as OTT (Over The Top). Delivered on.
  • OTT means a Web site provided on the Internet, content or service such as video or audio, or a provider that provides them.
  • the distributed HDR signal is decoded by a Blu-ray device or the like.
  • the decoded HDR signal is sent to an HDR compatible display device (TV, projector, tablet, smartphone, etc.), and an HDR video is reproduced by the HDR compatible display device.
  • the HDR technology is still at an early stage, and it is assumed that a new HDR method will be developed after the introduction of the first introduced HDR technology.
  • the new HDR method can be adopted by storing the HDR signal (and metadata) of the newly created HDR method in the HDR distribution medium.
  • “Forward Compatibility” that can play back an HDR distribution medium storing a new HDR signal on an original device (for example, a Blu-ray device) that does not support the new function is important.
  • the original technology can be used without changing a decoding device (for example, a Blu-ray device) designed for the original distribution medium.
  • FIG. 2 is a diagram showing HDR positioning (brightness expansion).
  • FIG. 3 shows an example of an image showing the effect of HDR.
  • FIG. 4 is a diagram illustrating a relationship between a flow for producing an SDR and HDR home entertainment master, a distribution medium, and a display device.
  • the HDR concept has been proposed and its effectiveness at the HDR concept level has been confirmed.
  • the first implementation method of HDR is proposed.
  • a large amount of HDR content was created using this method, and the first implementation method was not verified.
  • metadata for the current HDR production method, HDR to SDR conversion method, tone mapping conversion method in a display device, etc. may change. .
  • FIG. 5 is an explanatory diagram of a method for determining the code value of the luminance signal stored in the content and the process of restoring the luminance value from the code value during reproduction.
  • the luminance signal indicating the luminance in this example is an HDR signal corresponding to HDR.
  • the image after grading is quantized by the inverse EOTF of HDR, and the code value corresponding to the luminance value of the image is determined. Image coding or the like is performed based on this code value, and a video stream is generated. At the time of reproduction, the decoding result of the stream is converted into a linear signal by inverse quantization based on HDR EOTF, and the luminance value for each pixel is restored.
  • quantization using the inverse EOTF of HDR is referred to as “inverse HDR EOTF conversion”.
  • Inverse quantization using HDR EOTF is referred to as “HDR EOTF conversion”.
  • quantization using inverse SDR EOTF is referred to as “inverse SDR EOTF conversion”.
  • Inverse quantization using SDR EOTF is referred to as “SDR EOTF conversion”.
  • the HDR image can be displayed on the video display unit by converting the luminance value and metadata into a luminance value that can be displayed on the video display unit by the video conversion processing unit. For example, when the peak brightness of the original HDR video is 2000 nits and the peak brightness of the video display unit is 800 nits, conversion can be performed to lower the brightness.
  • the HDR master method is realized by a combination of EOTF, metadata, and HDR signal. Therefore, more efficient EOTF and metadata may be developed, and it may be time to adopt the HDR method using such EOTF and metadata.
  • This disclosure aims to promote the spread of HDR by reducing the risk that a customer who bought an HDR-compatible device re-buys a new device even when the HDR transmission format is changed in this way.
  • FIG. 6 is a diagram illustrating an example of HDR metadata.
  • the HDR metadata includes conversion auxiliary information used for changing the luminance range of the video signal (DR conversion) and HDR control information.
  • Each piece of information is either static HDR metadata provided in units of titles or dynamic HDR metadata provided in units of frames, for example.
  • static HDR metadata is classified as either essential metadata (basic data) or selection metadata (extended data), and dynamic HDR metadata is classified as selection metadata. Details of each information will be described later.
  • the basic method can be implemented using only static HDR metadata.
  • Each expansion method is designed so as not to affect the playback device (Blu-ray, etc.) of the basic method.
  • HDR metadata 1 As parameters indicating characteristics at the time of mastering in HDR content, there are static HDR metadata that is fixed for each title or each playlist and dynamic HDR metadata that is variable for each scene.
  • the title and the playlist are information indicating video signals that are continuously reproduced.
  • video signals that are continuously played back are referred to as continuous playback units.
  • static HDR metadata includes at least one of EOTF function (curve) type, 18% Gray value, Diffuse White value, Knee point, and Clip point.
  • the EOTF is information that associates a plurality of luminance values with a plurality of code values, and is information for changing the luminance range of the video signal. Since the other information is attribute information regarding the luminance of the video signal, the static HDR metadata is information regarding the luminance range of the video signal and can be said to be information for specifying the luminance range of the video signal.
  • the 18% Gray value and the Diffuse White value indicate the luminance value (nit) in a video with a predetermined reference brightness, in other words, the reference brightness in the video. More specifically, the 18% Gray value indicates a luminance value (nit) after mastering of an object having a brightness of 18 nits before mastering.
  • the Diffuse White value indicates a luminance value (nit) corresponding to white.
  • Knee point and Clip point are parameters of the EOTF function and indicate the point at which the characteristics of EOTF change. Specifically, Knee point differs from the one-to-one increment in the luminance value (output luminance) mapped to the EOTF as the luminance of the video signal with respect to the original luminance value (input luminance) at the time of shooting. Indicates the change point to be a value. For example, Knee point is information for specifying a point that deviates from a linear change in FIG. 39A described later.
  • Clip point indicates the point at which clipping starts in the EOTF function.
  • clip refers to converting an input luminance value greater than a certain value into the same output luminance value. For example, Clip point indicates a point where the output luminance value does not change in FIG. 39B described later.
  • EOTF functions are, for example, HDR EOTF and SDR EOTF shown in FIG. 36A.
  • the content data generation method is a content data generation method for generating content data, in which a video signal and a plurality of images (continuous playback units are included in the continuous playback unit of the video signal).
  • a second generation step of generating content data by associating the static HDR metadata For example, the information regarding the luminance range of the video signal is information for converting the luminance range of the video signal.
  • the static HDR metadata includes information for specifying an EOTF that associates a plurality of luminance values with a plurality of code values.
  • the luminance value in the video signal is encoded as a code value.
  • the static HDR metadata further includes information indicating a luminance value in a video signal having a predetermined reference brightness, or information indicating a point at which a characteristic in EOTF changes.
  • the static HDR metadata includes information (Diffuse White value) indicating a luminance value corresponding to white in the video signal.
  • dynamic HDR metadata (second metadata) that is information that is commonly used for a unit smaller than the continuous reproduction unit and that is information on the luminance range of the video signal is further generated.
  • the information regarding the luminance range of the video signal is information for converting the luminance range of the video signal.
  • the dynamic HDR metadata is a parameter indicating a mastering characteristic that is different for each scene.
  • the mastering characteristic indicates the relationship between the original luminance (before mastering) and the luminance after mastering.
  • the parameter indicating the mastering characteristic is the same information as the static HDR metadata described above, in other words, is at least one piece of information included in the static HDR metadata.
  • FIG. 7 is a diagram illustrating a storage example of static HDR metadata.
  • static HDR metadata is stored in a playlist in a package medium such as a Blu-ray disc.
  • Static HDR metadata is stored as one piece of metadata for each stream referenced from the playlist.
  • static HDR metadata is fixed for each playlist. That is, the static HDR metadata is stored in association with each playlist.
  • static HDR metadata may be stored in a manifest file that is referred to prior to stream acquisition. That is, the content data generation method according to the present embodiment may generate a video signal as a video stream, and store static HDR metadata in a manifest file that is referenced prior to acquisition of the video stream.
  • static HDR metadata may be stored in a descriptor indicating the attribute of a stream. That is, the content data generation method according to the present embodiment may generate content data as a video stream, and store static HDR metadata as an identifier indicating the attribute of the video stream independently of the video stream.
  • static HDR metadata can be stored as a descriptor (descriptor) in MPEG2-TS.
  • the static HDR metadata when the static HDR metadata is fixed for each title, the static HDR metadata may be stored as management information indicating title attributes.
  • static HDR metadata for HDR is stored using a mechanism for storing various metadata in a playlist in a Blu-ray disc. For this reason, from the viewpoint of an application standard such as Blu-ray or a device, the presence of static HDR metadata needs to be defined in the playlist. For this reason, when new static metadata for HDR is newly established, it is necessary to revise the Blu-ray standard. In addition, since there is a capacity regulation, it is difficult to store static HDR metadata for HDR option technology without limitation.
  • FIG. 8 is a diagram illustrating an example of storing dynamic HDR metadata in a video stream.
  • information related to stream reproduction control is stored using a data structure called SEI (Supplemental Enhancement Information).
  • SEI Supplemental Enhancement Information
  • the head of the scene is a head access unit (AU) of a random access unit such as GOP (Group Of Pictures). Therefore, the dynamic HDR metadata may be stored in the head access unit in the decoding order in the random access unit.
  • the head access unit of the random access unit is an IDR picture or a non-IDR I picture to which SPS (Sequence Parameter Set) is added. Therefore, the receiving-side apparatus can acquire dynamic HDR metadata by detecting a NAL (Network Abstraction Layer) unit that constitutes a first access unit in a random access unit.
  • NAL Network Abstraction Layer
  • SEI that stores dynamic HDR metadata.
  • the type of the EOTF function may be stored as stream attribute information in the SPS. That is, in the content data generation method according to the present embodiment, content data may be generated as a video stream encoded by HEVC, and information for specifying EOTF may be stored in an SPS included in the video stream.
  • this example uses a mechanism for storing MPEG option data, and dynamic HDR metadata is stored in the video elementary stream. For this reason, the existence of dynamic HDR metadata cannot be understood from the viewpoint of an application standard such as Blu-ray or a device. Therefore, dynamic HDR metadata can be recorded using only the MPEG option data storage mechanism without revising the Blu-ray standard. Furthermore, since the area used is the SEI area, it is possible to store dynamic HDR metadata for a plurality of options.
  • FIG. 9 is a diagram illustrating an example in which dynamic HDR metadata is stored in a TS stream format different from the main video.
  • the Blu-ray has a function to play back two TS streams synchronously.
  • the synchronized playback function of the two TS streams includes a 2TS playback function that plays back two TS streams that are separately managed in the disc in synchronization, and a 1TS playback that handles the two streams as one TS stream by interleaving the two streams. There is a function.
  • the playback device can use the dynamic HDR metadata in synchronization with the main HDR video. .
  • a normal HDR player can reproduce only the main HDR video and obtain a video of standard HDR quality.
  • the option-compatible HDR player can reproduce high gradation HDR quality video by using dynamic HDR metadata stored in the TS.
  • dynamic HDR metadata is stored in an auxiliary TS stream using a mechanism for storing two TS streams of Blu-ray.
  • the presence of dynamic HDR metadata is recognized as a TS stream from the viewpoint of an application standard such as Blu-ray or a device. For this reason, it is necessary to revise the Blu-ray standard.
  • Two types of optional TS streams can be stored simultaneously.
  • FIG. 10 is a diagram illustrating a transmission method of static HDR metadata.
  • a playback device such as a BD player (Blu-ray device) or a recorder transmits an HDR signal to a display device through a transmission protocol such as HDMI. It is a flowchart which shows an operation example.
  • the playback device acquires the static HDR metadata from the content management information at the start of playback of the title or playlist.
  • Static HDR metadata is stored and transmitted as HDMI control information.
  • the playback device acquires static HDR metadata corresponding to the title or playlist prior to the start of transmission of the video signal constituting the title or playlist, and controls the acquired static HDR metadata according to HDMI. It transmits as information (S402). More generally, the playback device may transmit static HDR metadata as initialization information when performing an HDMI initialization process between the playback device and the display device.
  • the playback device transmits a video stream corresponding to the static HDR metadata (S403). Note that the transmitted static HDR metadata is valid for this video stream.
  • the video stream transmission method is a video stream transmission method for transmitting a video stream (video stream), and is common to a video signal and a plurality of images included in a continuous reproduction unit.
  • content data including static HDR metadata (first metadata) relating to a luminance range of a video signal, a video stream corresponding to the video signal, and a static HDR meta A transmission step of transmitting data.
  • the video stream and static HDR metadata are transmitted according to the HDMI communication protocol.
  • dynamic HDR metadata is transmitted as part of the video stream (SEI).
  • the playback apparatus may transmit the dynamic HDR metadata as an HDMI control signal at a timing when the dynamic HDR metadata becomes valid.
  • the playback device transmits the static HDR metadata and the dynamic HDR metadata so that they can be distinguished from each other by providing an identifier or the like.
  • only the data structure of the container for storing the dynamic HDR metadata may be defined so that the contents of the SEI can be copied as it is as the payload data of the container.
  • the reproduction device can be changed even if the syntax of the static HDR metadata is changed. It can be handled without changing the implementation. That is, the container data structure for storing the static HDR metadata is defined. In the transmission step, the static HDR metadata included in the content data is copied to the payload of the container, and the container is transmitted. May be.
  • the dynamic HDR metadata stored in the TS stream is combined with the main HDR video signal by some method and then transmitted as a new video signal (high gradation HDR video in the example of FIG. 9) via HDMI.
  • FIG. 11 is a flowchart illustrating an example of a method for processing HDR metadata when an HDR signal is displayed on a display device.
  • the display device acquires static HDR metadata from the HDMI control information (S411), and determines a display method of the HDR signal based on the acquired static HDR metadata (S412).
  • the display device determines an HDR signal display method based on a value predetermined in the application standard or a default setting of the display device. . That is, in the video display method according to the present embodiment, when static HDR metadata cannot be acquired, the video display method corresponding to the video signal is determined based on a predetermined value or setting.
  • the display device updates the HDR signal display method based on the dynamic HDR metadata (S414). That is, in the video display method according to the present embodiment, when static HDR metadata is acquired, the display method is determined based on the acquired static HDR metadata, the video is displayed, and dynamic HDR metadata is acquired. In such a case, the display method determined based on the static HDR metadata is updated to the display method determined based on the dynamic HDR metadata, and the video is displayed. Alternatively, the display method may be determined based on both static HDR metadata and dynamic HDR metadata.
  • the display device may operate based only on static HDR metadata. Even when the display device supports the acquisition of dynamic HDR metadata, the display device displays the HDR signal in synchronization with the display time (PTS: Presentation Time Stamp) of the access unit storing the metadata. The method may not be updated. In this case, the display device may update the display method from the access unit displayed after the earliest time at which the display method can be updated after obtaining the metadata.
  • PTS Presentation Time Stamp
  • each of the static HDR metadata and the dynamic HDR metadata may include a plurality of versions, and may include a basic unit that is used in common by a plurality of versions and an extension unit that is different for each version. By doing so, backward compatibility in the display device can be ensured based on the HDR metadata of the basic part.
  • the video display method according to the present embodiment is a video display method for displaying video based on the video stream, and the video stream corresponding to the video signal and the static HDR metadata (first metadata). And a display step of determining and displaying a video display method corresponding to the video signal based on the static HDR metadata.
  • the luminance value in the video signal is encoded as a code value
  • the static HDR metadata includes information for specifying an EOTF that associates a plurality of luminance values with a plurality of code values, and is displayed.
  • a video is generated by converting a code value indicated by the video signal into a luminance value using EOTF specified by the static HDR metadata.
  • FIG. 12 is a block diagram showing a configuration of a data output device 400 that outputs an HDR signal such as a BD player.
  • the HDR metadata input to the data output device 400 indicates characteristic data indicating the mastering characteristic of the HDR signal and a tone mapping method when converting the HDR signal into the SDR signal or converting the dynamic range of the HDR signal. Conversion auxiliary data.
  • These two types of metadata are stored as static HDR metadata or dynamic HDR metadata, as described with reference to FIGS.
  • the static HDR metadata is stored in at least one of the content management information and the video stream.
  • the data output device 400 includes a video decoding unit 401, an external meta acquisition unit 402, an HDR meta interpretation unit 403, an HDR control information generation unit 404, a DR conversion unit 405, and an HDMI output unit 406.
  • the video decoding unit 401 generates a video signal (first video signal) by decoding a video stream that is an encoded video stream, and outputs the obtained video signal to the DR conversion unit 405.
  • the video decoding unit 401 acquires HDR metadata (second metadata) (static HDR metadata or dynamic HDR metadata) in the video stream.
  • the video decoding unit 401 outputs the HDR metadata stored in an MPEG-4 AVC or HEVC SEI message to the HDR meta interpretation unit 403.
  • the external metadata acquisition unit 402 acquires static HDR metadata (first metadata) stored in content management information such as a playlist, and outputs the acquired static HDR metadata to the HDR meta interpretation unit 403. .
  • static HDR metadata first metadata
  • dynamic HDR metadata that can be changed in a predetermined unit that can be randomly accessed, such as a play item, may be stored in the content management information.
  • the external meta acquisition unit 402 acquires dynamic HDR metadata from content management information, and outputs the acquired dynamic HDR metadata to the HDR meta interpretation unit 403.
  • the HDR meta interpretation unit 403 determines the type of HDR metadata output from the video decoding unit 401 or the external meta acquisition unit 402, outputs the characteristic data to the HDR control information generation unit 404, and converts the conversion auxiliary data into the DR conversion unit. Output to 405.
  • the HDR meta interpretation unit 403 obtains the characteristic data and the conversion auxiliary data by analyzing the first metadata when the first metadata and the second metadata are obtained together. To do.
  • the HDR meta interpretation unit 403 uses the static HDR metadata as valid metadata when the external metadata acquisition unit 402 acquires the static HDR metadata, and the video decoding unit 401 further uses the static HDR metadata.
  • valid metadata may be overwritten with the static HDR metadata. That is, the first metadata acquired by the external metadata acquisition unit 402 and the second metadata acquired by the video decoding unit 401 are commonly used for a plurality of images included in the continuous playback unit of the first video signal.
  • the HDR meta interpretation unit 403 analyzes the first metadata when only the first metadata is acquired from the first metadata and the second metadata. When the data and the conversion auxiliary data are acquired and the second metadata is acquired, the metadata to be used is switched from the first metadata to the second metadata.
  • the HDR control information generation unit 404 generates HDR control information in HDMI based on the characteristic data, and outputs the generated HDR control information to the HDMI output unit 406.
  • the output timing of the HDR control information in the HDMI output unit 406 is determined so that the HDR control information can be output in synchronization with the video signal for which the metadata is valid. That is, the HDMI output unit 406 outputs the HDR control information in synchronization with a video signal (video signal) for which metadata becomes valid.
  • the DR conversion unit 405 converts the decoded video signal into an SDR signal or converts the dynamic range based on the conversion auxiliary data.
  • the data output device 400 can determine whether conversion processing is necessary by confirming whether the connected display device supports the input of an HDR signal in an HDMI initialization process or the like. Good.
  • the first video signal obtained by the video decoding unit 401 is input to the HDMI output unit 406 without passing through the DR conversion unit 405.
  • the HDMI output unit 406 displays the first video signal and the HDR control information when the display device connected to the data output device 400 supports video output in the luminance range of the HDR signal (first video signal). Output to the display device. Also, the HDMI output unit 406 displays the second video obtained by converting HDR into SDR when the display device connected to the data output device 400 does not support video output in the luminance range of the HDR signal (first video signal). The signal and the HDR control information are output to the display device. Also, the HDMI output unit 406 determines whether or not the display device supports video output in the luminance range of the HDR signal (first video signal) in the initialization process of the transmission protocol (for example, HDMI).
  • the transmission protocol for example, HDMI
  • the HDMI output unit 406 outputs the video signal output from the DR conversion unit 405 or the video decoding unit 401 and the HDR control information according to the HDMI protocol.
  • the same configuration can be used when the data output device 400 receives and outputs broadcast or OTT content. Further, when the data output device 400 and the display device are included in a single device, the HDMI output unit 406 is not necessary.
  • the data output device 400 includes the external metadata acquisition unit 402 that acquires metadata from management information and the like, and the video decoding unit 401 has a function of acquiring metadata from a video stream.
  • the output device 400 may have only one of them.
  • the data output device 400 outputs data (video signal and HDR control information) according to HDMI has been described. However, if the data output device 400 outputs data according to an arbitrary transmission protocol, Good.
  • the data output device 400 relates to the decoding unit (video decoding unit 401) that generates the first video signal in the first luminance range (HDR) by decoding the video stream, and the luminance range of the first video signal.
  • the acquisition unit at least one of the video decoding unit 401 and the external metadata acquisition unit 402 and interpreting the first metadata acquire characteristic data indicating the luminance range of the first video signal.
  • An interpretation unit HDR meta-interpretation unit 403
  • a control information generation unit HDR control information generation unit 404 that converts characteristic data into HDR control information according to a predetermined transmission protocol (for example, HDMI), and HDR control information
  • an output unit (HDMI output unit 406) that outputs a predetermined transmission protocol.
  • the data output device 400 can generate control information based on the characteristic data included in the metadata.
  • the interpretation unit (HDR meta-interpretation unit 403) further obtains conversion auxiliary data for converting the luminance range of the first video signal by interpreting the first metadata
  • the data output device 400 Furthermore, a conversion unit (DR conversion unit 405) is provided that generates a second video signal having a luminance range narrower than the luminance range of the first video signal by converting the luminance range of the first video signal based on the auxiliary conversion data.
  • the output unit (HDMI output unit 406) further outputs at least one of the first video signal and the second video signal using a predetermined transmission protocol.
  • the data output device 400 can change the luminance range of the first video signal by using the conversion auxiliary data included in the metadata.
  • the decoding unit (video decoding unit 401) further acquires second metadata (HDR metadata) related to the luminance range of the first video signal from the video stream, and the interpretation unit (HDR meta-interpretation unit 403)
  • the characteristic data and the conversion auxiliary data are acquired by analyzing at least one of the first metadata and the second metadata.
  • the static HDR metadata includes essential metadata and selection metadata
  • the dynamic HDR metadata includes only selection metadata. That is, static HDR metadata is always used, and dynamic HDR metadata is selectively used.
  • the first metadata acquired by the external meta acquisition unit 402 or the second metadata acquired by the video decoding unit 401 is used in common for a plurality of images included in the continuous reproduction unit of the video signal.
  • the HDR control information generation unit 404 converts the characteristic data included in the static HDR metadata into HDR control information according to a predetermined transmission protocol.
  • the HDMI output unit 406 outputs HDR control information based on static HDR metadata.
  • the first metadata acquired by the external metadata acquisition unit 402 or the second metadata acquired by the video decoding unit 401 is further commonly used for a unit smaller than the continuous reproduction unit of the video signal, and has characteristics.
  • Dynamic HDR metadata including data (dynamic metadata) is included.
  • the HDR control information generation unit 404 converts the characteristic data included in the static HDR metadata and the specific data included in the dynamic HDR metadata into HDR control information according to a predetermined transmission protocol.
  • the HDMI output unit 406 outputs HDR control information based on static HDR metadata and dynamic HDR metadata.
  • a data generation method is a data generation method performed by a data generation device, and includes a first generation step of generating metadata related to a luminance range of a video signal, and a video stream including the video signal and metadata.
  • a second generation step of generating The metadata includes characteristic data indicating the luminance range of the video signal and conversion auxiliary data for converting the luminance range of the video signal.
  • FIG. 13 is a diagram illustrating an example of the data structure of an SEI message storing HDR metadata. As shown in FIG. 13, a dedicated SEI message for HDR metadata may be defined. That is, the metadata may be stored in a message dedicated to metadata.
  • HDR metadata is stored in a general-purpose SEI message for storing user data, and information (HDR extended identification information described later) indicating that HDR metadata is stored in the message in the payload portion of the message. It may be provided.
  • the HDR metadata includes static HDR metadata and dynamic HDR metadata. Further, flag information indicating whether static HDR metadata is stored and flag information indicating whether dynamic HDR metadata is stored may be provided.
  • there are three types of storage a method of storing only static HDR metadata, a method of storing only dynamic HDR metadata, and a method of storing both static HDR metadata and dynamic HDR metadata. The method can be used.
  • basic data (basic part) that must be interpreted and extended data (extended part) that is optional (interpretation is optional)
  • type information indicating the type of metadata (basic data or extension data) and a size are included in the header information, and a container format in which the metadata is stored in the payload is defined. That is, the metadata includes a payload, information indicating whether the payload data is basic data or extension data, and information indicating the payload data size.
  • the metadata includes type information indicating the type of metadata. For example, basic data is stored in a container whose type value is 0. Further, one or more values are assigned as type values to the extension data, and the type of extension data is indicated by the value.
  • the data output device and the display device refer to the type value and acquire container data that can be interpreted by the data output device and the display device.
  • the data output device uses the type information to determine whether the data output device (or display device) can interpret the metadata, and the data output device (or display device) determines the metadata. If the data can be interpreted, the characteristic data and the conversion auxiliary data are acquired by interpreting the metadata.
  • the maximum size of the HDR metadata may be set in advance, and the metadata may be generated so that the sum of the sizes of the basic data and the extended data is not more than the maximum size. That is, the maximum value of the metadata data size is defined, and the data generation method according to the present disclosure generates the metadata so that the total data size of the basic data and the extended data is equal to or less than the maximum value.
  • the HDR data can be stored in the memory by providing the data for the maximum size in the data output device and the display device.
  • Such a data structure may be used for storing HDR metadata in content management information.
  • option information can be stored relatively freely.
  • FIG. 14 is a diagram illustrating an example of a data structure when HDR metadata is stored in an SEI message for storing user data.
  • the data structure is the same as that of FIG. 14 except that the message includes the HDR extended identification information and the extended type ID.
  • the HDR extended identification information indicates that the message includes HDR metadata.
  • the extension type ID indicates the HDR metadata version and the like. That is, the metadata is stored in the HEVC SEI message, and the SEI message includes HDR extended identification information indicating whether the SEI message includes metadata.
  • the data output device receives the SEI message for storing user data including the HDR extended identification information, and the display device connected to the data output device supports the input of the HDR signal and the HDR control information.
  • the received SEI message is copied and output as it is according to the protocol of the output I / F to the display device such as HDMI. That is, the data output device acquires an SEI message including HDR extended identification information indicating that the SEI message includes metadata, and the data output destination display device supports input of HDR control information.
  • the SEI message is output as it is according to a predetermined transmission protocol (for example, HDMI).
  • the data output device can output the HDR metadata to the display device regardless of the content of the metadata.
  • a new DR conversion process is developed in the future, new HDR metadata is defined, and a display device corresponding to the new HDR metadata is connected to a data output device not corresponding to the new HDR metadata. Even in this case, the new HDR metadata can be output from the data output device to the display device.
  • DR conversion processing according to the new HDR metadata can be performed in the display device.
  • FIG. 15 is a diagram illustrating an example of a data structure when a plurality of HDR metadata is stored in one SEI message for storing user data.
  • the SEI message stores a plurality of HDR metadata for a plurality of conversion modes (methods) related to dynamic range (brightness range) conversion.
  • the data generation method is a data generation method performed by the data generation apparatus, and includes one or more metadata (HDR metadata) corresponding to one or more conversion modes for converting the luminance range of the video signal.
  • FIG. 16 is a block diagram illustrating a configuration example of the data output apparatus 500 according to the present embodiment.
  • the data output device 500 includes a video decoding unit 501, an external meta acquisition unit 502, an HDR meta interpretation unit 503, an HDR control information generation unit 504, a DR conversion unit 505, and an HDMI output unit 506. Note that the operations of the HDR meta-interpretation unit 503 and the DR conversion unit 505 are different from those of the data output device 400 shown in FIG.
  • the operations of the video decoding unit 501, the external meta acquisition unit 502, the HDR control information generation unit 504, and the HDMI output unit 506 are the video decoding unit 401, the external meta acquisition unit 402, the HDR control information generation unit 404, and the HDMI output unit 406. It is the same as the operation of.
  • the data output device 500 is connected to the display device 510 (display unit), and outputs the generated video signal and HDR control information to the display device 510 via a predetermined transmission protocol such as HDMI.
  • the DR conversion unit 505 and the display device 510 each correspond to a plurality of dynamic range conversion modes (conversion methods).
  • “corresponding” means having a function of performing processing in the conversion mode.
  • the HDR meta interpretation unit 503 acquires static HDR metadata and dynamic HDR metadata from the external meta acquisition unit 502 and the video decoding unit 501.
  • a plurality of HDR metadata for a plurality of conversion modes is stored in the content management information or the encoded video stream.
  • the HDR meta interpretation unit 503 determines a plurality of conversion modes corresponding to a plurality of HDR metadata as a plurality of usable conversion modes.
  • the HDR meta interpretation unit 503 acquires information on the conversion mode of the HDR signal supported by the display device 510 by communicating with the display device 510 or via a separate network. Then, the HDR meta interpretation unit 503 (1) a conversion mode corresponding to the HDR metadata, (2) a conversion mode corresponding to the DR conversion unit 505, and (3) a conversion corresponding to the display device 510. Based on the mode, (1) which of the data output device 500 and the display device 510 performs the dynamic range conversion processing and (2) the conversion mode to be used is determined.
  • the DR conversion unit 505 converts the HDR signal into an SDR signal according to the conversion mode instructed from the HDR meta interpretation unit 503.
  • the data output device 500 transmits a video signal (HDR signal) to the display device 510, and converts the HDR metadata necessary for the conversion to an HDMI control signal ( (HDR control information) to the display device 510.
  • the DR conversion unit 505 is compatible with a plurality of conversion modes, but may be compatible with one or more conversion modes.
  • the data output device 500 may acquire one or more HDR metadata corresponding to one or more conversion modes.
  • the data output device 500 has a decoding unit (video decoding unit 501) that generates the first video signal by decoding the video stream, and one or more first conversion modes that convert the luminance range of the video signal.
  • the acquisition range at least one of the video decoding unit 501 and the external metadata acquisition unit 502 that acquires one or more corresponding metadata, and the luminance range of the first video signal by interpreting one of the one or more metadata Interpretation unit (HDR meta-interpretation unit 503) that obtains characteristic data indicating the above and conversion auxiliary data for converting the luminance range of the first video signal, and the characteristic data to a predetermined transmission protocol (for example, HDMI)
  • HDR control information generation unit 504 for converting to the HDR control information according to the above, and one or more second conversion modes for converting the luminance range of the video signal, Based on the auxiliary conversion data, the second video signal having a luminance range narrower than the luminance range of the first video signal is obtained by performing the conversion process of the
  • a conversion unit (DR conversion unit 505) to be generated and an output unit (HDMI output unit 506) that outputs the second video signal and the HDR control information to the display device 510 using a predetermined transmission protocol are provided.
  • the interpretation unit (HDR meta-interpretation unit 503) further converts the luminance range of the video signal corresponding to the one or more first conversion modes, the one or more second conversion modes, and the display device 510. Based on the conversion mode, which of the data output device 500 and the display device 510 performs the conversion process is determined.
  • the data output device 500 includes a first conversion mode corresponding to one or more metadata, a second conversion mode corresponding to the data output device 500, and a third conversion mode corresponding to the display device 510. Based on the conversion mode, it can be determined which of the data output device 500 and the display device 510 performs the conversion process. Thereby, the data output apparatus 500 can determine the apparatus which performs an appropriate conversion process.
  • the one or more second conversion modes supported by the data output device 500 may include at least a part of a plurality of first conversion modes corresponding to one or more metadata, or one or more first conversion modes. None of the modes may be included.
  • the third conversion mode supported by the display device 510 may include at least a part of the one or more first conversion modes, or may not include any of the one or more first conversion modes. Further, the third conversion mode may include at least a part of the one or more second conversion modes, or may not include any of the one or more second conversion modes.
  • FIG. 17 is a block diagram illustrating a configuration example of the DR conversion unit 505.
  • the DR conversion unit 505 includes a mode determination unit 511, N mode processing units 512, and a conversion result output unit 513.
  • Each of the N mode processing units 512 corresponds to each of the N conversion modes (processing methods), and performs processing of the corresponding conversion mode.
  • the mode determination unit 511 acquires the conversion mode instructed from the HDR meta interpretation unit 503, and determines the mode processing unit 512 that performs the conversion process. That is, the mode determination unit 511 selects the mode processing unit 512 corresponding to the conversion mode instructed from the HDR meta interpretation unit 503.
  • the determined mode processing unit 512 converts the HDR signal (video signal) into an SDR signal (video signal after conversion).
  • the conversion result output unit 513 outputs the converted SDR signal.
  • FIG. 18 is a block diagram illustrating a configuration example of a DR conversion unit 505A, which is another example of the DR conversion unit 505.
  • the DR conversion unit 505 includes a mode determination unit 521, a basic processing unit 522, N extended mode processing units 523, and a conversion result output unit 524.
  • the basic processing unit 522 performs a default conversion process that is a process common to the N conversion modes.
  • the N extended mode processing units 523 perform extended processing such as dynamically controlling parameters of conversion processing using dynamic HDR metadata.
  • the N extended mode processing units 523 each correspond to each of the N conversion modes, and perform an extended process of the corresponding conversion mode.
  • the basic processing unit 522 operates using only static HDR metadata
  • the extended mode processing unit 523 operates using dynamic HDR metadata in addition to static HDR metadata.
  • HDR meta-interpretation unit 19 and 20 show instructions of the HDR meta interpretation unit 503 based on the conversion mode in which HDR metadata is provided, whether each mode is supported in the data output device 500, and whether each mode is supported in the display device 510. It is a figure which shows the example of the content.
  • the HDR meta-interpretation unit 503 basically selects an operation with the highest reproducibility for the master image from among selectable combinations.
  • the master image is an image output without changing the luminance range.
  • the data output device 500 corresponds to mode 1 and mode 2, and the display device 510 does not support any conversion mode.
  • mode 1 and mode 2 mode 2 is more reproducible with respect to the master image.
  • the HDR meta interpretation unit 503 knows in advance the reproducibility of the master image in each mode. In this case, the HDR meta-interpretation unit 503 determines that the data output device 500 performs the conversion process, and selects the mode 2 with high reproducibility among the mode 1 and the mode 2.
  • the data output device 500 corresponds to mode 1, and the display device 510 corresponds to mode 1 and mode 2.
  • the HDR meta-interpretation unit 503 determines that the conversion process is to be performed by the display device 510 and selects mode 2 having high reproducibility among mode 1 and mode 2. Further, the data output device 500 outputs the HDR metadata corresponding to the conversion processing in mode 2 to the display device 510 as HDMI control information (HDR control information).
  • the display device 510 performs a mode 2 conversion process using the control information.
  • the HDR meta interpretation unit 503 is further included in one or more first conversion modes corresponding to one or more metadata, and included in one or more second conversion modes corresponding to the data output device 500.
  • the conversion mode to be converted is determined as the conversion mode of the conversion process performed by the data output device 500.
  • the HDR meta interpretation unit 503 further includes one or more second conversion modes included in one or more first conversion modes respectively corresponding to one or more metadata and corresponding to the data output device 500.
  • the conversion mode included in at least one of the third conversion modes corresponding to the display device 510 is determined as the conversion mode of the conversion process performed by the data output device 500 or the display device 510.
  • the HDR meta interpretation unit 503 includes the master image among the plurality of conversion modes included in the plurality of first conversion modes and included in at least one of the plurality of second conversion modes and the third conversion mode. Is determined as the conversion mode of the conversion process performed by the data output device 500 or the display device 510.
  • the data output device 500 selects the conversion mode with the highest reproducibility among the conversion modes supported by the data output device 500 and the display device 510, and selects the mode selected from the data output device 500 and the display device 510. It is determined that conversion processing is performed by a compatible device.
  • the HDR meta-interpretation unit 503 determines that the conversion mode of the determined conversion process is included in the second conversion mode and not included in the third conversion mode. It is determined that the data output device 500 performs the conversion process. Also, as illustrated in FIG. 20, the HDR meta-interpretation unit 503 causes the display device 510 to change the conversion mode of the determined conversion process to be included in the third conversion mode and not included in the second conversion mode. It is determined that the conversion process is performed.
  • the data output device 500 is based on the first conversion mode corresponding to the plurality of metadata, the second conversion mode corresponding to the data output device, and the third conversion mode corresponding to the display device.
  • the conversion mode to be used can be determined. Further, since the data output device 500 can select a conversion mode with the highest reproducibility for the master image, the image quality of the displayed video can be improved.
  • FIG. 21 is a diagram illustrating an example in which the data output device 500 determines the conversion process depending on whether the parameter of the display device 510 can be acquired.
  • the parameters of the display device 510 are the peak luminance of the display device 510 (the maximum value of the luminance range that can be displayed by the display device 510), the display mode in which the display device 510 can display, or the like. Specifically, this parameter indicates the currently viewing display mode as the display mode.
  • the display mode includes a normal mode, a dynamic mode, a cinema mode, and the like.
  • the data output device 500 corresponds to mode 1, mode 2, and mode 3, and the display device 510 corresponds to mode 1. Further, the data output device 500 can acquire the parameters of the display device 510 for the mode 1 and the mode 2, and cannot acquire the parameters of the display device 510 for the mode 3. Also, mode 2 has higher reproducibility than mode 1, and mode 3 has higher reproducibility than mode 2.
  • the mode with the highest reproducibility among the modes supported by the data output device 500 and the display device 510 is the mode 3, but the data output device 500 cannot acquire the parameters of the display device 510 for the mode 3. Therefore, mode 3 is excluded. Then, the data output device 500 selects the conversion mode that uses the mode 2 that has the next highest reproducibility after the mode 3 and that can acquire parameters. Then, the data output device 500 acquires the parameters necessary for the mode 2 from the display device 510, and performs the conversion processing of the mode 2 using the acquired parameters.
  • the HDR meta interpretation unit 503 further determines whether the parameters for each of the plurality of first conversion modes corresponding to the plurality of metadata can be acquired from the display device 510, depending on whether or not the data output device 500 can obtain the parameters.
  • the conversion mode of the conversion process performed by the display device 510 is determined.
  • the HDR meta interpretation unit 503 is included in the plurality of first conversion modes and is included in at least one of the plurality of second conversion modes and the third conversion mode, and acquires the parameters from the display device 510.
  • the possible conversion mode is determined as the conversion mode of the conversion process performed by the data output device 500 or the display device 510.
  • the data output device 500 selects the mode with the highest reproducibility among the conversion modes supported by the data output device 500 and the display device 510, and only the data output device 500 supports the selected mode. Then, it is determined whether or not the parameters of the display device 510 for the mode can be acquired. If the parameter can be acquired, the data output device 500 selects the mode. On the other hand, when the parameter cannot be acquired, the data output device 500 selects another mode (the mode with the next highest reproducibility).
  • the data output device 500 determines the conversion mode to be used depending on whether or not the parameters of the display device 510 can be acquired, a more appropriate conversion mode can be selected.
  • FIG. 22 is a block diagram showing a configuration of the data output device 500A.
  • This data output device 500A further includes a DC unit 507 in addition to the data output device 500 shown in FIG.
  • the DC unit 507 down-converts the resolution of the video signal obtained by the video decoding unit 501. For example, when the video signal is 4K, the DC unit 507 down-converts the 4K video signal into a 2K video signal.
  • the data output device 500A (1) converts a 4K HDR signal into a 2K HDR signal and outputs it according to the resolution and dynamic range supported by the display device 510. (2) a 4K HDR signal Is converted to a 2K HDR signal and then output after changing the dynamic range in the DR conversion unit 505, and (3) a 4K SDR signal is converted into a 2K SDR signal and output, etc. Can be done. That is, the data output device 500A can switch the operation according to the resolution of the display device 510 and the presence / absence of HDR signal support.
  • FIG. 23 is a diagram illustrating a combination example of the characteristics (resolution and dynamic range (luminance range)) of the video signal in the content, the characteristics of the display device 510, and the output signal of the data output device 500A.
  • the data output device 500A selects the format of the output signal so as to match the resolution of the display device 510 and whether or not the HDR signal is supported, and the DC unit 507 and the DR conversion unit 505 so as to generate the output signal of the selected format. To control.
  • the display device 510 does not support the display of an HDR signal with a resolution of 4K, and supports the display of an HDR signal with a resolution of 2K, data
  • the output device 500A converts the video signal in the content into an HDR signal having a resolution of 2K and outputs it (see the combination example described in the second line in FIG. 23). At this time, the conversion of the resolution of the video signal is performed in the DC unit 507.
  • the video signal in the content is an HDR signal with a resolution of 4K
  • the display device 510 does not support the display of an HDR signal with a resolution of 4K and an HDR signal with a resolution of 2K, and also supports the display of an SDR signal of 2K.
  • the data output device 500A converts the video signal in the content into an SDR signal having a resolution of 2K and outputs it (see the combination example described in the third line in FIG. 23). At this time, the conversion of the resolution of the video signal is performed by the DC unit 507, and the conversion of the luminance range is performed by the DR conversion unit 505.
  • the display device 510 can reproduce the video signal of the content more faithfully.
  • the data output device 500A may operate so that the display device 510 performs resolution conversion or dynamic range conversion as described in FIG.
  • the data output device 500A includes the down-conversion unit (DC unit 507) that generates the third video signal by reducing the resolution of the first video signal obtained by the video decoding unit 501.
  • the conversion unit (DR conversion unit 505) further converts the luminance range of the third video signal by performing conversion processing of the luminance range of the third video signal in any one of the plurality of second conversion modes based on the auxiliary conversion data.
  • a fourth video signal having a luminance range narrower than the range is generated.
  • the output unit (HDMI output unit 506) further outputs the third video signal or the fourth video signal to the display device 510.
  • the data output device 500A can change the resolution of the video signal to a resolution suitable for the display device 510, for example.
  • the down-conversion unit (DC unit 507) generates the third video signal and (2 )
  • the output unit (HDMI output unit 506) outputs the third video signal to the display device 510.
  • the resolution of the video signal is 4K and the resolution of the display device 510 is 2K, a 2K output signal is output.
  • the conversion unit displays the luminance range (HDR) of the first video signal.
  • a second video signal with a narrower luminance range (SDR) is generated.
  • the output unit (HDMI output unit 506) outputs the second video signal and the HDR control information to the display device 510.
  • the dynamic range (luminance range) of the video signal is HDR and the display device 510 does not support HDR (in the case of SDR)
  • the HDR video signal is changed to the SDR video signal.
  • the SDR video signal (output signal) is output after conversion.
  • the down-conversion unit (DC unit 507) generates a third video signal
  • the conversion unit (DR conversion unit 505) has a luminance range (SDR) narrower than the luminance range (HDR) of the third video signal.
  • the output unit (HDMI output unit 506) outputs the fourth video signal to the display device 510.
  • the resolution of the video signal is 4K
  • the dynamic range (luminance range) of the video signal is HDR
  • the resolution of the display device 510 is 2K
  • the display device 510 supports HDR. If not (SDR), 2K and SDR output signals are output.
  • FIG. 24 shows a 4K HDR signal, a 2K HDR signal, and a 4K SDR signal reproduced by a next-generation Blu-ray playback device, and the reproduced signals are converted to an HDR compatible 4KTV, an HDR non-compliant 4KTV, and It is a figure which shows the example of an operation
  • the Blu-ray playback device acquires static HDR metadata stored in the content management information and dynamic HDR metadata stored in the encoded video stream.
  • the Blu-ray playback device uses these HDR metadata to convert the video HDR signal into an SDR signal according to the characteristics of the output TV connected by HDMI, or outputs the HDR metadata. Are output as HDMI control signals.
  • Each of the conversion process from the HDR signal to the SDR signal and the conversion process from the HDR signal to the video signal in the luminance range suitable for the display device can be selected and implemented from a plurality of methods.
  • the HDR metadata corresponding to the implemented conversion process in the content management information or the video encoded stream at the time of content production, the effect of the conversion process can be enhanced.
  • the content management information or the encoded stream can store a plurality of HDR metadata for each conversion method.
  • the Blu-ray playback device may include a plurality of conversion processing units, such as an option conversion module B (option conversion module B) or an option conversion module D (option conversion module D) in the figure.
  • a plurality of conversion processing units such as an option conversion module B (option conversion module B) or an option conversion module D (option conversion module D) in the figure.
  • an HDR-compatible TV may include a plurality of conversion processing units, may include only one conversion processing unit, or may not include a conversion processing unit.
  • HDR metadata is stored in a predetermined container in which an operation at the time of format or input is determined in advance.
  • a display device corresponding to the new HDR metadata is connected to a Blu-ray playback device that does not support the new HDR metadata
  • the new HDR metadata can be output from the Blu-ray playback device to the display device.
  • conversion processing according to the new HDR metadata can be performed in the display device.
  • the Blu-ray playback device corresponding to the new HDR metadata may perform the new conversion process on the video data in the playback device and output the processed video data to the display device. .
  • the playback apparatus may down-convert a 4K signal into a 2K signal and output the signal according to the TV resolution.
  • FIG. 25 is a diagram illustrating an example of a method for storing static HDR metadata and two dynamic HDR metadata. As shown in FIG. 20, in the expandable HDR method according to the present embodiment, (a) static HDR metadata, (b) dynamic HDR metadata clip (dynamic HDR metadata), (c 3) Dynamic HDR metadata is used.
  • Static HDR metadata is stored in a metadata storage area (playlist in the case of BDA) for each stream specified by an application standard such as Blu-ray Disc Association (BDA) or a distribution system.
  • BDA Blu-ray Disc Association
  • a clip for dynamic HDR metadata (dynamic HDR metadata) is stored in a TS stream for secondary use defined by an application standard such as BDA or a distribution system.
  • C The dynamic HDR metadata is stored as an SEI message included in a video stream such as HEVC.
  • the combination of metadata to be used can be changed when introducing a new HDR technology.
  • the conditions for introducing a new HDR technology can be changed. For example, if you want to quickly introduce your own HDR technology without emphasizing compatibility, you can use your own HDR technology without affecting the application standards or distribution system by using only the metadata in (c). Can be introduced.
  • compatibility is important even if it takes some time, and you want to define a new technology in the application standard or distribution system, use the metadata of (a) and (b) for compatibility and new technology. Can be implemented in a timely manner.
  • HDR metadata storage method 2 An example of how to use the three metadata (a) to (c) shown in FIG. 25 will be described in detail by taking the case of Blu-ray as an example.
  • the metadata (a) and (b) is used.
  • the proposer discloses the details of the technology.
  • a draft specification of Blu-ray for adapting the technology to Blu-ray is submitted.
  • a Blu-ray test specification proposal for adapting the technology to Blu-ray is submitted.
  • a test stream is provided.
  • a test disk is provided.
  • the verifier is updated.
  • the BDA registers the new technology as a certified option, adds the new technology to the standard, and performs minimum compatibility verification.
  • the BDA authorizes the announcement that the new technology has been adopted by the BDA as a certified option.
  • FIG. 26 is a diagram illustrating a user guidance display method on a Blu-ray device that executes a conversion process from HDR to SDR.
  • an HDR-compatible Blu-ray device connected to a non-HDR compatible TV detects the start of conversion processing from HDR to SDR, for example, “The disk is an HDR-compatible disk. Your TV is a non-HDR compatible TV. Therefore, a guide message such as “SDR video in which the Blu-ray device performs the conversion process from HDR to SDR is reproduced instead of the HDR video” is displayed.
  • the data output device converts the first luminance range to the second luminance range when the display device does not support the video output of the luminance range of the first video signal (HDR signal).
  • the second video signal (SDR signal) and the HDR control information are output to the display device, and the display device displays that the second video signal converted from the first luminance range to the second luminance range is displayed.
  • FIG. 27 is a diagram showing a method for displaying user guidance when executing a conversion process from HDR to SDR stored in the disc.
  • a message (menu) to be displayed by the Blu-ray device is stored in the HDR disk or a non-volatile memory in the Blu-ray device.
  • the Blu-ray device can display a message when executing the conversion process from HDR to SDR.
  • the disc is an HDR-compatible disc. Because your TV is non-HDR compatible, the Blu-ray device plays SDR video that has been converted from HDR to SDR instead of HDR video. Is displayed.
  • FIG. 28 is a diagram showing a display method of a user guidance menu when executing a conversion process from HDR to SDR stored in the disc.
  • the Blu-ray devices use the Blu-ray menu, “The disc is an HDR-compatible disc. Because your TV is non-HDR compatible, the Blu-ray device is not HDR video, and the Blu-ray device is from HDR to SDR. Message such as “Is it possible to play the SDR video that has been subjected to the conversion process” is displayed? The Blu-ray device starts displaying the converted image when the user selects the “Play” button. Also, if the user selects “do not play”, the Blu-ray device stops playing and displays a message prompting the user to insert a non-HDR compatible Blu-ray disc.
  • the data output device converts the first luminance range to the second luminance range when the display device does not support the video output of the luminance range of the first video signal (HDR signal).
  • a message for the user to select whether or not to display the second video signal (SDR signal) is displayed on the display device.
  • FIG. 29 is a diagram showing a display method of a user guidance menu capable of selecting a processing method when executing a conversion process from HDR to SDR stored in the disc.
  • the Blu-ray device displays this information when metadata for conversion processing from HDR to SDR is stored in Blu-ray.
  • the Blu-ray device displays a message prompting that a more beautiful conversion is possible when the user selects a specified conversion method.
  • the Blu-ray device says, “The disc is an HDR-compatible disc. Because your TV is non-HDR compatible, the Blu-ray device is not an HDR video, and the Blu-ray device has converted HDR to SDR.
  • Display the selection menu of the HDR to SDR conversion processing method such as “Play back in process 1”, “Play back in process 3”, “Do not play back”. be able to.
  • processing 1 and processing 3 are different conversion processing from HDR to SDR.
  • the data output device converts the first luminance range to the second luminance range when the display device does not support the video output of the luminance range of the first video signal (HDR signal).
  • the display device displays a message for the user to select one of a plurality of conversion methods.
  • a similar message can be displayed in broadcasting.
  • a TV or playback device that does not support HDR signals uses a data broadcast application or the like to display a message indicating that the broadcast program is an HDR signal and may not be displayed correctly when viewed with To do.
  • the TV or the playback device that supports the HDR signal may not display the message.
  • the tag value indicating the message attribute indicates that the message is a warning message for the HDR signal. The TV or playback device corresponding to the HDR signal determines that display of the message is unnecessary with reference to the tag value.
  • HDR metadata transmission method For example, dynamic HDR metadata or static HDR metadata is a data structure that can be transmitted by HDMI or the like.
  • the specification or version of a transmission protocol such as HDMI determines whether HDR metadata can be transmitted to the display device according to the transmission protocol.
  • the playback device can transmit dynamic HDR metadata to the display device.
  • the playback device and the display device are connected with HDMI versions earlier than 2.1, the playback device cannot transmit dynamic HDR metadata to the display device.
  • the playback device determines whether the HDMI version connectable with the display device is compatible with transmission of dynamic HDR metadata. If not compatible, the playback device performs conversion processing from HDR to SDR using dynamic HDR metadata, and then outputs the converted signal to the display device via HDMI.
  • the playback device may operate based on whether or not the display device supports conversion processing using dynamic HDR metadata. That is, when the display device does not support the conversion process, the playback device may perform the conversion process even if the HDR version can transmit dynamic HDR metadata. Further, when the playback device does not support conversion processing using dynamic HDR metadata, the playback device does not perform conversion processing and does not need to transmit dynamic HDR metadata to the display device. .
  • FIG. 30 is a flowchart of a method for transmitting dynamic HDR metadata by the playback device.
  • the playback device determines whether the playback device and the display device are connected with HDMI 2.0 or an earlier version (S501). In other words, the playback device determines, for example, whether the playback device and the display device can be connected by HDMI 2.1 that supports transmission of dynamic HDR metadata. Specifically, the playback device determines whether both the playback device and the display device are compatible with HDMI 2.1.
  • the playback device When the playback device and the display device are connected with HDMI 2.0 or an earlier version (Yes in S501), the playback device performs conversion processing using dynamic HDR metadata, and converts the converted image data.
  • the data is transmitted to the display device by HDMI (S502).
  • the conversion process is a process of changing the luminance range of the image data, for example, a process of converting HDR to SDR so as to match the luminance range supported by the display device, or an HDR signal having a narrow luminance range. It is a process to convert to.
  • the playback device uses the image data before the conversion process, the dynamic HDR metadata, Are transmitted to the display device by HDMI using different types of packets (S503).
  • InfoFrame such as AVI (Auxiliary Video Information) Infoframe
  • AVI Advanced Video Information
  • the playback device transmits the data after the conversion process to the display device.
  • the playback device uses the static HDR based on the HDMI version when the playback device is connected to the display device. It is determined whether to transmit the metadata to the display device or to perform conversion processing in the playback device.
  • the static HDR metadata is divided into a required part and an extended part, and the size of the required part is set to be smaller than the size that can be transmitted in a specific version of a specific transmission protocol such as the current HDMI 2.0. May be.
  • the playback apparatus may transmit only the essential part to the display device when using HDMI 2.0, and may transmit both the essential part and the extension part when using HDMI 2.1.
  • the identification information indicating that the static HDR metadata includes the essential part and the extension part, or at least the essential part can be transmitted in a specific version such as HDMI 2.0 is PlayList in Blu-ray disc or It may be stored in a database such as PlayItem.
  • the static HDR metadata may be set to be equal to or smaller than the size that can be transmitted in the lowest version that can transmit the static HDR metadata such as HDMI 2.0.
  • the syntax of the management information such as playlist or the static HDR metadata in the disc stored in the SEI of the video stream may be different from the syntax of the static HDR metadata transmitted by HDMI or the like. If the two are different, the playback device converts the static HDR metadata in the disc into the syntax of the static HDR metadata in the transmission protocol and outputs it.
  • Blu-ray content has been described as an example, but metadata used in broadcasting or OTT can be handled in the same manner.
  • FIG. 31 is a flowchart of a method for transmitting static HDR metadata by the playback device.
  • the playback device determines whether the playback device and the display device are connected with HDMI 2.0 or an earlier version (S511).
  • the playback device transmits only the essential part of the static HDR metadata to the display device by HDMI (S512). ).
  • the playback device uses both the essential part and the extended part of the static HDR metadata by HDMI. It transmits to the display apparatus which transmits (S513).
  • the playback device switches whether to transmit dynamic HDR metadata to the display device according to the HDMI version, but at least the essential part of the static HDR metadata is changed to the HDMI version. Regardless, it is always transmitted to the display device.
  • the playback device transmits a video signal to the display device.
  • the version of the transmission protocol for connecting the playback device and the display device is the first version (for example, HDMI 2.0)
  • the playback device is commonly used for a plurality of images included in the continuous playback unit of the video signal.
  • the first metadata static HDR metadata
  • the second metadata dynamic HDR metadata
  • the playback device stores the first metadata (static HDR metadata) and the second metadata (dynamic HDR metadata). Both are transmitted to the display device.
  • the playback device uses the second metadata (dynamic HDR metadata) and the luminance range of the video signal. Conversion processing is performed to convert the video signal, and the converted video signal is transmitted to the display device (S502).
  • the version of the transmission protocol for example, HDMI 2.0
  • the playback device uses the second metadata (dynamic HDR metadata) and the luminance range of the video signal. Conversion processing is performed to convert the video signal, and the converted video signal is transmitted to the display device (S502).
  • the conversion process can be performed by the playback device.
  • the playback device when the version of the transmission protocol is the second version (for example, HDMI 2.1) and the display device does not support conversion processing, the playback device performs conversion processing, and converts the converted video signal.
  • the second metadata is not transmitted to the display device.
  • the playback device when the version of the transmission protocol is the second version (for example, HDMI 2.1) and the display device supports conversion processing, the playback device does not perform the conversion processing and the video signal and the second Transmit the metadata to the display device.
  • the conversion process can be executed by an appropriate device of the playback device and the display device.
  • the playback device when the playback device does not support the conversion process of converting the luminance range of the video signal using the second metadata (dynamic HDR metadata), the playback device displays the video signal without performing the conversion process.
  • the second metadata dynamic HDR metadata
  • the playback device takes into consideration the performance of the panel or signal processing circuit in the display device such as a TV, the influence on the human body, etc.
  • the peak luminance of the video may be controlled.
  • the processing (reproduction method) described below may be performed by a reproduction device such as a Blu-ray device, or may be performed by a display device such as a TV.
  • the playback device described below only needs to have a function of playing back video, and includes the playback device (Blu-ray device or the like) and the display device (TV or the like) described above.
  • the playback device may control the luminance value of each pixel when playing back the HDR signal based on the following playback conditions and the like.
  • the playback device adjusts the luminance value so that the amount of change in luminance between screens in the reference time interval T is equal to or less than the threshold value P.
  • the reference time interval T is, for example, an integral multiple of the reciprocal of the video frame rate.
  • Threshold value P is an absolute value of luminance or a rate of change of luminance value. This threshold value P is determined based on the influence of the blinking of the image on the human body or the performance of following the change in the signal value in the TV panel.
  • condition may be set so that the number of pixels whose luminance value change amount exceeds the threshold value P in the screen is equal to or less than a predetermined ratio.
  • the screen may be divided into a plurality of areas, and the same or different conditions may be set for each area.
  • the reproducing apparatus adjusts the luminance value so that the number of pixels having a luminance equal to or higher than the reference luminance S or the ratio of the pixels to all the pixels in the screen is equal to or less than the threshold value Q.
  • the reference luminance S and the threshold value Q are determined based on the influence on the human body or the upper limit value of the voltage that can be simultaneously applied to each pixel in the TV panel.
  • the values of the parameters can be set for each TV. .
  • the reproducing apparatus sets the threshold P as the absolute value of the difference between I (i, j) and L1. For the pixels that exceed, the luminance value is adjusted so that the difference is equal to or less than the threshold value P.
  • This process may be performed on the entire screen, or may be performed for each area obtained by dividing the screen in order to perform the processes in parallel. For example, the playback device divides the screen in each of the horizontal direction and the vertical direction, and adjusts the luminance value so that the amount of change in luminance within each region is equal to or less than the threshold value P.
  • the frame interval when displaying an image on the TV panel is used as the reference time interval T
  • the luminance value is adjusted based only on the luminance value of the immediately preceding frame, the luminance between frames The continuity of values may be impaired. Therefore, a predetermined time constant is set, and the playback apparatus may determine the luminance value (L1) by weighting and adding the peak luminance of each frame within the set time constant. At this time, a time constant and a weighting coefficient are set in advance so that the amount of change in luminance value is equal to or less than the threshold value P.
  • the first method is a method of clipping the luminance value for pixels whose luminance value exceeds a predetermined value. For example, the luminance value of a pixel whose luminance value exceeds a predetermined value is adjusted to the predetermined value.
  • the second method is not to clip the luminance values uniformly, but to set the Knee point, etc., so as to keep the relative luminance value ratio between the pixels as much as possible. This is a method for reducing the overall luminance value. Alternatively, the luminance value of the high luminance portion may be decreased while the luminance value of the low luminance portion is retained.
  • the brightness value of the HDR signal of the content is 400 nits in the half area A (4 megapixels) in the screen and 1000 nits in the other half area B (4 megapixels).
  • the luminance values are uniformly clipped, all the luminance values in the region B are clipped to 600 nits.
  • the luminance value for each pixel in the frame of the video or still image so that the condition of the first method or the second method is satisfied not only when reproducing the HDR signal but also when generating the HDR signal. May be determined.
  • FIG. 32 is a flowchart showing a method of controlling the luminance value in reproducing the HDR signal.
  • the playback device determines whether the amount of change in luminance value between screens or the luminance value in the screen satisfies playback conditions (S521). Specifically, as described above, the playback device determines whether the amount of change in luminance value between screens is equal to or less than a threshold value, or whether the luminance value in the screen is equal to or less than the threshold value.
  • the playback device When the amount of change in luminance value between screens or the luminance value within the screen satisfies the playback condition, that is, when the amount of change in luminance value between screens is less than or equal to the threshold value, or the luminance value within the screen is less than or equal to the threshold value (Yes in S521), the playback device outputs a signal having the same luminance value as the luminance value of the input HDR signal (S522). That is, the playback device outputs the HDR signal as it is without adjusting the luminance value of the HDR signal.
  • the reproducing apparatus adjusts the luminance value of each pixel so as to satisfy the reproducing condition, and outputs the adjusted luminance value (S523). That is, the playback apparatus adjusts the luminance value of each pixel so that the amount of change in the luminance value between the screens is equal to or smaller than the threshold value, or the luminance value in the screen is equal to or smaller than the threshold value.
  • the playback device plays back video signals.
  • the luminance of the video signal includes a first luminance value in a first luminance range defined as a first maximum luminance value having a maximum luminance value exceeding 100 nit. That is, the video signal is an HDR signal.
  • the playback device determines whether the amount of change in the luminance value between screens in the video signal exceeds a predetermined first threshold (S521). For example, the playback device determines whether the amount of change in the luminance value in the reference time interval that is an integral multiple of the reciprocal of the frame rate of the video signal exceeds the first threshold.
  • the playback device When it is determined that the amount of change in the luminance value exceeds the first threshold (No in S521), the playback device performs an adjustment process for reducing the luminance value of the video signal (S523). Specifically, the reproduction apparatus adjusts the luminance value of the pixel so that the luminance value change amount of the pixel is equal to or less than the first threshold value for the pixel whose luminance value change amount exceeds the first threshold value. .
  • the playback device can generate a video signal that can be appropriately displayed on the display device by reducing the luminance value of the video signal.
  • the playback device can reduce the negative effect by reducing the luminance value of the video signal.
  • the playback device includes the peak luminance of the first image included in the video signal and the luminance values of the plurality of pixels included in the second image after the first image included in the video signal. It is determined whether or not the difference from each exceeds a first threshold value.
  • the reproduction device adjusts the luminance value of the pixel so that the difference between the pixels is equal to or less than the first threshold for the pixels where the difference exceeds the first threshold.
  • step S521 the playback device determines whether the proportion of pixels whose luminance value change amount exceeds the first threshold among the plurality of pixels included in the image included in the video signal exceeds the second threshold value. In step S523, when the ratio exceeds the second threshold, the playback device adjusts the luminance values of the plurality of pixels so that the ratio is equal to or less than the second threshold.
  • step S521 the playback device determines, for each of a plurality of areas obtained by dividing the screen, whether the amount of change in luminance value between the screens in the area exceeds the first threshold.
  • step S523 the reproducing device performs an adjustment process for reducing the luminance value of the area for which the luminance value change amount is determined to exceed the first threshold.
  • the playback device determines whether the luminance value of the image included in the video signal exceeds a predetermined first threshold (S521). When it is determined that the luminance value of the pixel exceeds the first threshold value (No in S521), adjustment processing for decreasing the luminance value of the image is performed (S523).
  • the playback device can generate a video signal that can be appropriately displayed on the display device by reducing the luminance value of the video signal.
  • the playback device can reduce the adverse effect by reducing the luminance value of the video signal.
  • step S521 the playback device determines the number of pixels whose luminance value exceeds the first threshold among the plurality of pixels included in the image.
  • step S523 when the number of pixels whose luminance value exceeds the first threshold exceeds the third threshold in step S523, the playback device determines that the number of pixels whose luminance value exceeds the first threshold is equal to or less than the third threshold. Decrease the brightness value.
  • step S521 the playback device determines the proportion of pixels whose luminance value exceeds the first threshold among the plurality of pixels included in the image.
  • step S523 when the ratio exceeds the third threshold value, the playback device lowers the luminance value of the image so that the ratio is equal to or less than the third threshold value.
  • the first threshold value, the second threshold value, and the third threshold value are values calculated based on the upper limit value of the voltage that can be simultaneously applied to a plurality of pixels in a display device that displays a video signal.
  • static HDR metadata may be stored in the head access unit in the decoding order in a random access unit such as GOP.
  • the NAL unit including the SEI is arranged so that the decoding order comes before the NAL unit that stores the encoded video data.
  • dynamic HDR metadata is stored in both management information such as a playlist and a video stream, the same metadata is used as these two dynamic HDR metadata.
  • dynamic HDR metadata can be switched in random access units and is constant within the random access units.
  • the SEI storing dynamic HDR metadata is stored in the head access unit in the random access unit.
  • decoding is started from the beginning of the random access unit.
  • the head access unit of the random access unit is always decoded. Therefore, the playback device can always acquire the HDR metadata by storing the HDR metadata in the first access unit of the random access unit.
  • An MPEG-4 AVC or HEVC stream includes a Sequence Parameter Set (SPS), which is initialization information at the time of decoding, only in the head access unit in the decoding order in random access units.
  • SPS Sequence Parameter Set
  • This SPS can be used as information indicating the start of a random access unit.
  • static HDR metadata and dynamic HDR metadata may be stored in different SEI messages. Both SEI messages are identified based on the type of SEI message or identification information included in the payload of the SEI message. For example, when transmitting only the static HDR metadata by HDMI, the playback device can extract only the SEI message including the static HDR metadata and transmit the metadata included in the payload as it is by HDMI. This eliminates the need for the playback device to analyze the payload of the SEI message and acquire static HDR metadata.
  • FIG. 33 is a diagram for explaining multiplexed data stored in a dual disk.
  • the HDR signal and the SDR signal are stored as different multiplexed streams.
  • data of a plurality of media such as video, audio, subtitles, and graphics is stored as one multiplexed stream by an MPEG-2 TS-based multiplexing method called M2TS.
  • M2TS MPEG-2 TS-based multiplexing method
  • These multiplexed streams are referred to from reproduction control metadata such as a playlist, and are reproduced by the player analyzing the metadata at the time of reproduction, or individual languages stored in the multiplexed stream. Select the data.
  • playlists for HDR and SDR are individually stored, and each playlist refers to an HDR signal or an SDR signal. Further, identification information indicating that both the HDR signal and the SDR signal are stored may be separately indicated.
  • HDR and SDR signals are multiplexed to satisfy a buffer model such as T-STD (System Target Decoder) defined in MPEG-2 TS.
  • T-STD System Target Decoder
  • Data such as audio, subtitles, or graphics needs to be stored for each multiplexed stream, and the amount of data increases compared to the case of multiplexing to one.
  • the increase in the amount of data can reduce the amount of video data by using a video encoding method with a high compression rate.
  • the compression ratio can be improved by 1.6 to 2 times.
  • the dual disk is stored in a combination of 2K HDR and SDR, such as a combination of 4K SDR and 2K HDR, or 2K, or a combination of 2K and 4K. It is also possible to allow only combinations that fit within the capacity of the optical disk by prohibiting storing two.
  • a Blu-ray device that plays back a 4K compatible BD or HDR compatible BD needs to support four TVs: a 2K_SDR compatible TV, a 2K_HDR compatible TV, a 4K_SDR compatible TV, and a 4K_HDR compatible TV.
  • the Blu-ray device needs to support three sets of HDMI / HDCP standards (HDMI 1.4 / HDCP 1.4, HDMI 2.0 / HDCP 2.1, HDMI 2.1 / HDCP 2.2).
  • each BD (content) and connection It is necessary to select an appropriate process and HDMI / HDCP for each display device (TV). Furthermore, when a graphic is combined with a video, it is necessary to change processing depending on the type of BD and the type of display device (TV) connected thereto.
  • the graphic stream is restricted and the types of combinations of the video stream and the graphic stream are reduced.
  • the HDR video when HDR video is displayed in SDRTV, the HDR video is converted to SDR video of 100 nit or less by using the peak brightness of SDRTV to be displayed exceeds 100 nit (usually 200 nit or more). Instead, it realizes a “HDR ⁇ pseudo HDR conversion process” that can be converted to maintain a certain level of gradation in a region exceeding 100 nits, converted into pseudo HDR video close to the original HDR, and displayed on SDRTV.
  • the conversion method of “HDR ⁇ pseudo HDR conversion processing” may be switched depending on the display characteristics (maximum luminance, input / output characteristics, and display mode) of SDRTV.
  • the display characteristic information can be acquired by (1) automatically acquiring it via HDMI (registered trademark) or a network, (2) generating it by allowing the user to input information such as manufacturer name and product number, and (3) manufacturer. It can be obtained from the cloud using information such as name and product number.
  • the display characteristic information acquisition timing of the conversion device 100 includes (1) acquisition immediately before pseudo-HDR conversion, and (2) when connecting to the display device 200 (such as SDRTV) for the first time (when connection is established). ) Can be considered.
  • the conversion method may be switched according to the luminance information (CAL, CPL) of the HDR video.
  • the method of acquiring the luminance information of the HDR video of the conversion device 100 (1) acquiring as meta information attached to the HDR video, (2) acquiring by causing the user to input content title information, And (3) It is conceivable to acquire from the cloud or the like using input information that has been instructed by the user.
  • the details of the conversion method are as follows: (1) Conversion so as not to exceed DPL; (2) Conversion so that CPL becomes DPL; (3) CAL and its surrounding luminance are not changed; 4) Conversion using natural logarithm, (5) Clip processing by DPL.
  • display settings such as the SDRTV display mode and display parameters can be transmitted to the display device 200 and switched. For example, the user is prompted to perform display settings. A message may be displayed on the screen.
  • FIG. 34A is a diagram showing an example of a display process for converting an HDR signal and performing HDR display in HDRTV.
  • the maximum value of the HDR luminance range (peak luminance (HPL (HDR Peak Luminance): example 1500 nit)) should be displayed as it is. May not be possible.
  • the linear signal after inverse quantization using HDR EOTF is adjusted to the maximum value of the luminance range of the display device (peak luminance (DPL (Display Peak Iluminance): example 750 nit)).
  • DPL Display Peak Iluminance
  • FIG. 34B is a diagram illustrating an example of a display process for performing HDR display using an HDR-compatible playback device and SDRTV.
  • FIG. 34C is a diagram showing an example of a display process for performing HDR display using an HDR-compatible playback device and SDRTV connected to each other via a standard interface.
  • a signal input via an input interface passes through “SDR EOTF conversion”, “brightness conversion for each mode”, and “display device” in order, and an image that matches the maximum luminance range of the display device. Is displayed. For this reason, a signal (pseudo HDR signal) that can cancel the “SDR EOTF conversion” and “brightness conversion for each mode” that passes immediately after the input interface in SDRTV in the HDR-compatible Blu-ray device.
  • an input interface such as HDMI (registered trademark)
  • a normal SDRTV has an input signal of 100 nits, but has an ability to express an image of 200 nits or more according to the viewing environment (dark room: cinema mode, bright room: dynamic mode, etc.). However, since the upper limit of the luminance of the input signal to SDRTV was determined to be 100 nits, it was not possible to directly use this capability.
  • HDR video in SDRTV When displaying HDR video in SDRTV, using the fact that the peak brightness of SDRTV to be displayed exceeds 100 nits (usually 200 nits or more), the HDR video is not converted to SDR video of 100 nits or less, but luminance exceeding 100 nits “HDR ⁇ pseudo HDR conversion processing” is performed so as to maintain the gradation of the range to some extent. For this reason, it can be displayed on SDRTV as a pseudo HDR video close to the original HDR.
  • An HDR signal transmitted by broadcasting, package media such as Blu-ray, and Internet distribution such as OTT is converted into a pseudo HDR signal by performing HDR-pseudo HDR conversion processing. As a result, it is possible to display the HDR signal as a pseudo HDR video with the existing SDRTV.
  • FIG. 36A is a diagram showing an example of EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
  • EOTF Electro-Optical Transfer Function
  • EOTF is generally called a gamma curve, indicates the correspondence between code values and luminance values, and converts code values into luminance values. That is, EOTF is relationship information indicating a correspondence relationship between a plurality of code values and luminance values.
  • FIG. 36B is a diagram illustrating an example of inverse EOTF corresponding to each of HDR and SDR.
  • Inverse EOTF indicates the correspondence between the luminance value and the code value.
  • the luminance value is quantized and converted into a code value. That is, inverse EOTF is relationship information indicating a correspondence relationship between a luminance value and a plurality of code values. For example, when the luminance value of a video corresponding to HDR is expressed by a 10-bit gradation code value, the luminance values in the HDR luminance range up to 10,000 nits are quantized and 1024 from 0 to 1023 Mapped to the integer value of.
  • HDR EOTF an EOTF corresponding to HDR
  • HDR inverse EOTF an EOTF corresponding to HDR
  • SDR EOTF an EOTF corresponding to SDR
  • inverse EOTF of SDR a reverse EOTF corresponding to SDR
  • the value (peak luminance) is 10,000 nits. That is, the HDR luminance range includes the entire SDR luminance range, and the HDR peak luminance is larger than the SDR peak luminance.
  • the HDR luminance range is a luminance range obtained by expanding the maximum value from 100 nit, which is the maximum value of the SDR luminance range, to 10,000 nit.
  • HDR EOTF and HDR inverse EOTF are, for example, SMPTE 2084 standardized by the American Film and Television Engineers Association (SMPTE).
  • the luminance range from 0 nit to 100 nit which is the peak luminance described in FIGS. 36A and 36B may be described as the first luminance range.
  • the luminance range described in FIGS. 36A and 36B from 0 nit to 10,000 nit which is the peak luminance may be described as the second luminance range.
  • FIG. 37 is a block diagram illustrating configurations of the conversion device and the display device according to the embodiment.
  • FIG. 38 is a flowchart illustrating a conversion method and a display method performed by the conversion device and the display device according to the embodiment.
  • the conversion apparatus 100 includes an HDR EOTF conversion unit 101, a luminance conversion unit 102, an inverse luminance conversion unit 103, and an inverse SDR EOTF conversion unit 104.
  • the display device 200 includes a display setting unit 201, an SDR EOTF conversion unit 202, a luminance conversion unit 203, and a display unit 204.
  • a conversion method performed by the conversion apparatus 100 will be described with reference to FIG.
  • the conversion method includes steps S101 to S104 described below.
  • the HDR EOTF conversion unit 101 of the conversion apparatus 100 acquires an HDR video that has been subjected to reverse HDR EOTF conversion.
  • the HDR EOTF conversion unit 101 of the conversion device 100 performs HDR EOTF conversion on the HDR signal of the acquired HDR video (S101).
  • the HDR EOTF converter 101 converts the acquired HDR signal into a linear signal indicating a luminance value.
  • HDR EOTF is, for example, SMPTE 2084.
  • the luminance conversion unit 102 of the conversion device 100 performs first luminance conversion that converts the linear signal converted by the HDR EOTF conversion unit 101 using display characteristic information and content luminance information (S102). .
  • a luminance value corresponding to the HDR luminance range (hereinafter referred to as “HDR luminance value”) is changed to a luminance value corresponding to the display luminance range (hereinafter referred to as “display luminance value”). Convert. Details will be described later.
  • the HDR EOTF converter 101 functions as an acquisition unit that acquires the HDR signal as the first luminance signal indicating the code value obtained by quantizing the luminance value of the video.
  • the HDR EOTF conversion unit 101 and the luminance conversion unit 102 determine the code value indicated by the HDR signal acquired by the acquisition unit based on the luminance range of the display (display device 200). It functions as a conversion unit that converts to a display luminance value corresponding to the luminance range of the display that is a maximum value (DPL) that is smaller than the value (HPL) and larger than 100 nits.
  • DPL maximum value
  • the HDR EOTF conversion unit 101 uses the acquired HDR signal and the HDR EOTF in step S101 to determine the HDR code value as the first code value indicated by the acquired HDR signal.
  • An HDR luminance value associated with the HDR code value in the HDR EOTF is determined.
  • the HDR signal is obtained by quantizing the luminance value of the video (content) using the HDR inverse EOTF that associates the luminance value in the HDR luminance range with a plurality of HDR code values.
  • the code value of HDR is shown.
  • step S102 the luminance conversion unit 102 determines a display luminance value corresponding to the luminance range of the display, which is associated with the HDR luminance value in advance in the HDR luminance value determined in step S101.
  • the first luminance conversion is performed to convert the HDR luminance value corresponding to the luminance range of the display into the display luminance value corresponding to the luminance range of the display.
  • the conversion apparatus 100 includes content luminance information including at least one of a maximum luminance value (CPL: Content Peak luminance) and an average luminance value (CAL: Content Average luminance) of video (content) before step S102. Is acquired as information relating to the HDR signal.
  • CPL first maximum luminance value
  • CAL is an average luminance value that is an average of luminance values for a plurality of images constituting an HDR video, for example.
  • the conversion device 100 acquires the display characteristic information of the display device 200 from the display device 200 before step S102.
  • the display characteristic information refers to the maximum value (DPL) of luminance that can be displayed on the display device 200, the display mode of the display device 200 (see later), the input / output characteristics (EOTF corresponding to the display device), and the like. This is information indicating display characteristics.
  • the conversion apparatus 100 may transmit recommended display setting information (referred to below-mentioned, hereinafter also referred to as “setting information”) to the display apparatus 200.
  • recommended display setting information referred to below-mentioned, hereinafter also referred to as “setting information”.
  • the reverse luminance conversion unit 103 of the conversion device 100 performs reverse luminance conversion according to the display mode of the display device 200. Accordingly, the inverse luminance conversion unit 103 performs the second luminance conversion for converting the luminance value corresponding to the luminance range of the display into the luminance value corresponding to the luminance range (0 to 100 [nit]) of the SDR (S103). . Details will be described later. That is, the inverse luminance conversion unit 103 uses the display luminance value obtained in step S102 as the third luminance value corresponding to the luminance range of SDR, which is associated with the display luminance value in advance and has a maximum value of 100 nits.
  • SDR luminance value Luminance value corresponding to SDR
  • the luminance value of SDR is determined, and the display luminance value corresponding to the luminance range of the display is changed to the luminance value of SDR corresponding to the luminance range of SDR.
  • a second luminance conversion for conversion is performed.
  • the inverse SDR EOTF converter 104 of the conversion device 100 performs pseudo SDR EOTF conversion to generate a pseudo HDR video (S104). That is, the inverse SDR EOTF conversion unit 104 performs the inverse dynamic EOTF (Electro-Optical) of SDR (Standard Dynamic Range), which is the third relational information that associates the luminance value in the HDR luminance range with a plurality of third code values.
  • the determined SDR brightness value is quantized using Transfer Function), the third code value obtained by the quantization is determined, and the SDR brightness value corresponding to the SDR brightness range is indicated as the third code value.
  • a pseudo HDR signal is generated by converting the SDR signal as the third luminance signal.
  • the third code value is a code value corresponding to SDR, and is hereinafter referred to as “SDR code value”. That is, the SDR signal is obtained by quantizing the luminance value of the video using the SDR inverse EOTF that associates the luminance value in the luminance range of the SDR and a plurality of SDR code values. Expressed as a code value. Then, conversion device 100 outputs the pseudo HDR signal (SDR signal) generated in step S104 to display device 200.
  • SDR code value a code value corresponding to SDR
  • the conversion apparatus 100 generates the SDR luminance value corresponding to the pseudo HDR by performing the first luminance conversion and the second luminance conversion on the HDR luminance value obtained by dequantizing the HDR signal. Then, the SDR luminance value is quantized using the SDR EOTF to generate an SDR signal corresponding to the pseudo HDR.
  • the SDR luminance value is a numerical value in the luminance range of 0 to 100 nits corresponding to the SDR.
  • the HDR EOTF and the SDR are converted to the HDR luminance value. This is a numerical value different from the luminance value in the luminance range of 0 to 100 nit corresponding to the SDR obtained by performing luminance conversion using the EOTF.
  • the display method includes steps S105 to S108 described below.
  • the display setting unit 201 of the display device 200 sets the display setting of the display device 200 using the setting information acquired from the conversion device 100 (S105).
  • the display device 200 is an SDRTV.
  • the setting information is information indicating display settings recommended for the display device, and information indicating how to perform pseudo-HDR video EOTF and display at which setting a beautiful video can be displayed (that is, Information for switching the display setting of the display device 200 to the optimal display setting).
  • the setting information includes, for example, a gamma curve characteristic at the time of output in the display device, a display mode such as a living mode (normal mode) and a dynamic mode, a numerical value of backlight (brightness), and the like.
  • a message that prompts the user to change the display setting of the display device 200 by a manual operation may be displayed on the display device 200 (hereinafter also referred to as “SDR display”). Details will be described later.
  • the display device 200 acquires an SDR signal (pseudo HDR signal) and setting information indicating display settings recommended for the display device 200 in displaying a video before step S105.
  • the display device 200 may acquire the SDR signal (pseudo HDR signal) before step S106, or after step S105.
  • the SDR EOTF converter 202 of the display device 200 performs SDR EOTF conversion on the acquired pseudo-HDR signal (S106). That is, the SDR EOTF converter 202 performs inverse quantization on the SDR signal (pseudo HDR signal) using the SDR EOTF. Accordingly, the SDR EOTF converter 202 converts the SDR code value indicated by the SDR signal into an SDR luminance value.
  • the luminance conversion unit 203 of the display device 200 performs luminance conversion according to the display mode set in the display device 200. Thereby, the luminance conversion unit 203 converts the SDR luminance value corresponding to the SDR luminance range (0 to 100 [nit]) into the display luminance value corresponding to the display luminance range (0 to DPL [nit]). The third luminance conversion is performed (S107). Details will be described later.
  • the display device 200 uses the setting information acquired in step S105 to obtain the third code value indicated by the acquired SDR signal (pseudo HDR signal) in step S106 and step S107. 0 to DPL [nit]).
  • step S106 in the conversion from the SDR signal (pseudo HDR signal) to the display luminance value, in step S106, using the EOTF that associates the luminance value in the luminance range of the SDR with a plurality of third code values. Then, for the SDR code value indicated by the acquired SDR signal, the SDR luminance value related to the SDR code value by the SDR EOTF is determined.
  • step S107 the display brightness value corresponding to the brightness range of the display, which is related in advance to the determined brightness value of the SDR, is determined, and the SDR value corresponding to the SDR brightness range is determined.
  • a third luminance conversion is performed for converting the luminance value into a display luminance value corresponding to the luminance range of the display.
  • the display unit 204 of the display device 200 displays the pseudo HDR video on the display device 200 based on the converted display luminance value (S108).
  • FIG. 39A is a diagram for describing an example of the first luminance conversion.
  • the luminance conversion unit 102 of the conversion device 100 performs first luminance conversion that converts the linear signal (HDR luminance value) obtained in step S101 using display characteristic information and content luminance information of the HDR video. .
  • the HDR luminance value input luminance value
  • the display luminance value output luminance value
  • the DPL is determined using the maximum brightness and display mode of the SDR display, which is display characteristic information.
  • the display mode is, for example, mode information such as a theater mode that is displayed dark on the SDR display and a dynamic mode that is displayed brightly.
  • DPL second maximum luminance value
  • DPL is the maximum luminance value that can be displayed in the display mode in which the SDR display is currently set. That is, in the first luminance conversion, DPL as the second maximum luminance value is determined using display characteristic information that is information indicating display characteristics of the SDR display.
  • the first luminance conversion CAL and CPL in the content luminance information are used, luminance values below the CAL are the same before and after the conversion, and the luminance value is changed only for luminance values near the CPL.
  • the first luminance conversion when the HDR luminance value is CAL or less, the HDR luminance value is not converted, and the HDR luminance value is determined as the display luminance value.
  • the DPL as the second maximum luminance value is determined as the display luminance value.
  • the peak luminance (CPL) of the HDR video in the luminance information is used, and when the HDR luminance value is CPL, DPL is determined as the display luminance value.
  • the linear signal (HDR luminance value) obtained in step S101 may be converted so as to be clipped to a value not exceeding DPL.
  • the processing in the conversion device 100 can be simplified, and the device can be reduced, the power consumption can be reduced, and the processing speed can be increased.
  • FIG. 39B is a diagram for describing another example of the first luminance conversion.
  • FIG. 40 is a diagram for describing the second luminance conversion.
  • the inverse luminance conversion unit 103 of the conversion device 100 performs inverse luminance conversion corresponding to the display mode on the display luminance value in the display luminance range (0 to DPL [nit]) converted by the first luminance conversion in step S102. Apply.
  • the reverse luminance conversion when the luminance conversion processing (step S107) according to the display mode by the SDR display is performed, the display luminance value of the display luminance range (0 to DPL [nit]) after the processing of step S102 is acquired. This is a process for making it possible. That is, the second luminance conversion is an inverse luminance conversion of the third luminance conversion.
  • the second luminance conversion converts the display luminance value (input luminance value) in the luminance range of the display into the SDR luminance value (output luminance value) in the SDR luminance range.
  • the conversion formula is switched depending on the display mode of the SDR display. For example, when the display mode of the SDR display is the normal mode, the luminance is converted to a directly proportional value that is directly proportional to the display luminance value.
  • the second luminance conversion when the display mode of the SDR display is a dynamic mode in which a high luminance pixel is brighter and a low luminance pixel is darker than in the normal mode, the inverse function is used to obtain the low luminance pixel.
  • the luminance value of the SDR is converted to a value higher than the direct proportional value that is directly proportional to the display luminance value, and the luminance value of the SDR of the high luminance pixel is converted to a value lower than the direct proportional value that is directly proportional to the display luminance value. That is, in the second luminance conversion, the display luminance value determined in step S102 is related to the display luminance value using luminance relationship information corresponding to the display characteristic information that is information indicating the display characteristic of the SDR display. The brightness value is determined as the brightness value of the SDR, and the brightness conversion process is switched according to the display characteristic information.
  • the luminance-related information according to the display characteristic information is, for example, a display luminance value (input luminance value) determined for each display parameter (display mode) of the SDR display as shown in FIG. This is information relating brightness values (output brightness values).
  • FIG. 41 is a diagram for describing the third luminance conversion.
  • the luminance conversion unit 203 of the display device 200 converts the SDR luminance value in the SDR luminance range (0 to 100 [nit]) into (0 to DPL [nit]) according to the display mode set in step S105. .
  • This processing is performed so as to be an inverse function of inverse luminance conversion for each mode in S103.
  • the conversion formula is switched depending on the display mode of the SDR display. For example, when the display mode of the SDR display is the normal mode (that is, when the set display parameter is a parameter corresponding to the normal mode), the display luminance value is converted into a direct proportional value that is directly proportional to the luminance value of the SDR. .
  • the display mode of the SDR display is the dynamic mode in which the high luminance pixel is brighter and the low luminance pixel is darker than the normal mode, the display luminance value of the low luminance pixel is SDR.
  • the luminance value of the display luminance value of the high luminance pixel is converted to a value higher than the direct proportional value that is directly proportional to the luminance value of the SDR. That is, in the third luminance conversion, for the luminance value of the SDR determined in step S106, luminance related in advance to the luminance value of the SDR using luminance relationship information corresponding to the display parameter indicating the display setting of the SDR display. The value is determined as the display luminance value, and the luminance conversion processing is switched according to the display parameter.
  • the luminance-related information according to the display parameter is, for example, as shown in FIG. 41, the SDR luminance value (input luminance value) determined for each display parameter (display mode) of the SDR display, and the display luminance. This is information that relates values (output luminance values).
  • FIG. 42 is a flowchart showing detailed display setting processing.
  • the display setting unit 201 of the SDR display performs the following steps S201 to S208 in step S105.
  • the display setting unit 201 uses the setting information to determine whether the EOTF set for the SDR display (EOF for SDR display) matches the EOTF assumed when the pseudo HDR video (SDR signal) is generated. Determine (S201).
  • the display setting unit 201 determines that the EOTF set in the SDR display is different from the EOTF indicated by the setting information (EOTF matching the pseudo HDR video) (Yes in S201), the display setting unit 201 sets the EOTF for the SDR display in the system. It is determined whether switching is possible on the side (S202).
  • the display setting unit 201 determines that switching is possible, the setting information is used to switch the SDR display EOTF to an appropriate EOTF (S203).
  • step S105 in the display setting setting (S105), the EOTF set in the SDR display is set to the recommended EOTF corresponding to the acquired setting information. Accordingly, in step S106 performed after step S105, the luminance value of SDR can be determined using the recommended EOTF.
  • a message prompting the user to change the EOTF manually is displayed on the screen (S204). For example, a message “Please set the display gamma to 2.4” is displayed on the screen. That is, if the EOTF set for the SDR display cannot be switched in the display setting setting (S105), the display setting unit 201 switches the EOTF set for the SDR display (EOF for SDR display) to the recommended EOTF. A message for prompting the user to do so is displayed on the SDR display.
  • the pseudo-HDR image (SDR signal) is displayed on the SDR display, but it is determined whether or not the display parameters of the SDR display match the setting information using the setting information before display (S205).
  • the display setting unit 201 determines whether the display parameter of the SDR display can be switched (S206). .
  • the display setting unit 201 determines that the display parameter of the SDR display can be switched (Yes in S206)
  • the display setting unit 201 switches the display parameter of the SDR display according to the setting information (S207).
  • step S105 in the display setting setting (S105), the display parameter set in the SDR display is set to the recommended display parameter corresponding to the acquired setting information.
  • a message prompting the user to manually change the display parameters set in the SDR display is displayed on the screen (S208). For example, a message “Please set the display mode to dynamic mode and maximize the backlight” is displayed on the screen. That is, in the setting (S105), when the display parameter set in the SDR display cannot be switched, a message for prompting the user to switch the display parameter set in the SDR display to the recommended display parameter is displayed. To display.
  • HDR video is, for example, Blu-ray Disc, DVD, Internet video distribution site, broadcast, video in HDD.
  • the conversion device 100 may exist inside a disk player, a disk recorder, a set top box, a television, a personal computer, or a smartphone.
  • the conversion device 100 may exist inside a server device in the Internet.
  • the display device 200 (SDR display unit) is, for example, a television, a personal computer, or a smartphone.
  • the display characteristic information acquired by the conversion apparatus 100 may be acquired from the display apparatus 200 via an HDMI (registered trademark) cable or a LAN cable using HDMI (registered trademark) or another communication protocol.
  • the display characteristic information acquired by the conversion apparatus 100 may acquire display characteristic information included in the model information of the display apparatus 200 via the Internet.
  • the user may perform a manual operation to set display characteristic information in the conversion device 100.
  • the display characteristic information of the conversion device 100 may be acquired immediately before the pseudo HDR video generation (steps S101 to S104), or may be at the time of initial setting of the device or at the time of display connection.
  • the display characteristic information may be acquired immediately before the conversion to the display luminance value, or may be performed at the timing when the conversion device 100 is first connected to the display device 200 with an HDMI (registered trademark) cable.
  • HDR video CPL or CAL there may be one HDR video CPL or CAL per content, or there may be one for each scene. That is, in the conversion method, the luminance information corresponding to each of the plurality of scenes of the video, and for each scene, the first maximum luminance value that is the maximum value among the luminance values for the plurality of images constituting the scene. And luminance information (CPL, CAL) including at least one of average luminance values that are averages of luminance values for a plurality of images constituting the scene, and in the first luminance conversion, for each of the plurality of scenes, The display brightness value may be determined according to the brightness information corresponding to the scene.
  • CPL and CAL may be included in the same medium (Blu-ray Disc, DVD, etc.) as the HDR video, or acquired from a different location from the HDR video, such as acquired by the conversion device 100 from the Internet. May be. That is, luminance information including at least one of CPL and CAL may be acquired as video meta information or may be acquired via a network.
  • a fixed value may be used without using CPL, CAL, and display peak luminance (DPL). Further, the fixed value may be changed from the outside.
  • CPL, CAL, and DPL may be switched in several types. For example, DPL may be set to only three types of 200 nit, 400 nit, and 800 nit, and the value closest to the display characteristic information is used. You may make it do.
  • the HDR EOTF may not be SMPTE 2084, but other types of HDR EOTF may be used.
  • the maximum luminance (HPL) of the HDR video may not be 10,000 nits, for example, 4,000 nits or 1,000 nits.
  • the bit width of the code value may be 16, 14, 12, 10, 8 bits, for example.
  • inverse SDR EOTF conversion is determined from the display characteristic information, a fixed conversion function (which can be changed from the outside) may be used. Inverse SDR EOTF conversion is performed in, for example, Rec. ITU-R BT. A function defined in 1886 may be used. Also, the types of inverse SDR EOTF conversion may be limited to several types, and the one closest to the input / output characteristics of the display device 200 may be selected and used.
  • the display mode may be a fixed mode and may not be included in the display characteristic information.
  • the conversion device 100 may not transmit the setting information, and the display device 200 may have a fixed display setting or may not change the display setting.
  • the display setting unit 201 is not necessary.
  • the setting information may be flag information indicating whether or not the image is a pseudo HDR video.
  • the setting information may be changed to a setting that displays the brightest image. That is, in the display setting setting (S105), when the acquired setting information indicates that the signal indicates a pseudo-HDR image converted using DPL, the brightness setting of the display device 200 is set to display the brightest. You may switch to.
  • L indicates a luminance value normalized to 0 to 1
  • S1, S2, a, b, and M are values set based on CAL, CPL, and DPL.
  • V is a luminance value after conversion normalized to 0 to 1.
  • CAL is set to 300 nit
  • CPL is set to 2,000 nit
  • DPL is set to 750 nit
  • CAL + is not converted to 50 nit
  • conversion is performed for 350 nit or more
  • each value is, for example, It becomes a value like this.
  • the conversion formula can be changed according to the content, and conversion can be performed so as to keep the HDR gradation as much as possible. It becomes.
  • adverse effects such as being too dark and too bright can be suppressed.
  • the gradation is kept as much as possible by mapping the content peak luminance of the HDR video to the display peak luminance.
  • the overall brightness is prevented from changing by not changing the pixel values below the average luminance.
  • the conversion formula can be changed according to the display environment of the SDR display, and there is a sense of HDR according to the performance of the SDR display.
  • Video can be displayed with the same gradation and brightness as the original HDR video.
  • the display peak brightness is determined according to the maximum brightness of the SDR display and the display mode, and the HDR video is converted so as not to exceed the peak brightness value.
  • the display is performed with almost no gradation reduction, and the brightness that cannot be displayed is reduced to the displayable brightness.
  • the display can be displayed in a form close to the original HDR video without reducing the gradation of displayable brightness.
  • the overall brightness is maintained by converting to a pseudo HDR video with a peak luminance of 1,000 nits, and the luminance value changes depending on the display mode of the display. For this reason, the luminance conversion formula is changed according to the display mode of the display. If the pseudo-HDR image allows a luminance larger than the peak luminance of the display, the high luminance may be replaced with the peak luminance on the display side, and in that case, it is darker than the original HDR video. Become.
  • the performance relating to the gradation of the display is not used at the maximum.
  • the pseudo HDR video can be better displayed by switching the display setting using the setting information. For example, when the brightness is set to dark, high brightness display cannot be performed, so that the HDR feeling is impaired. In that case, by changing the display setting or displaying a message prompting the user to change the display setting, the display performance can be maximized and a high gradation video can be displayed.
  • each component may be configured by dedicated hardware such as a circuit, or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the present disclosure can be applied to a content data generation device, a video stream transmission device such as a Blu-ray device, or a video display device such as a television.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Television Signal Processing For Recording (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

 本開示の一態様に係る伝送方法は、表示装置に映像信号を伝送する再生装置における伝送方法であって、再生装置と表示装置とを接続する伝送プロトコルのバージョンが第1バージョンである場合、映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、映像信号の輝度範囲に関する情報である第1メタデータを表示装置に伝送し、映像信号の連続再生単位より細かい単位に対して共通に用いられ、映像信号の輝度範囲に関する情報である第2メタデータを表示装置に伝送せず、伝送プロトコルのバージョンが第2バージョンである場合、第1メタデータ及び第2メタデータを表示装置へ伝送する。

Description

伝送方法、再生方法及び再生装置
 本開示は、伝送方法、再生方法及び再生装置に関する。
 従来、表示可能な輝度レベルを改善するための画像信号処理装置が開示されている(例えば特許文献1参照)。
特開2008-167418号公報
 本開示の一態様に係る伝送方法は、表示装置に映像信号を伝送する再生装置における伝送方法であって、前記再生装置と前記表示装置とを接続する伝送プロトコルのバージョンが第1バージョンである場合、前記映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第1メタデータを前記表示装置に伝送し、前記映像信号の前記連続再生単位より細かい単位に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第2メタデータを前記表示装置に伝送せず、前記伝送プロトコルのバージョンが第2バージョンである場合、前記第1メタデータ及び前記第2メタデータを前記表示装置へ伝送する。
 また、本開示の一態様に係る再生方法は、映像信号を再生する再生方法であって、前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像信号における画面間の輝度値の変化量が予め定められた第1閾値を超えるかを判定する判定ステップと、前記変化量が前記第1閾値を超えると判定された場合、前記映像信号の輝度値を下げる調整処理を行う調整ステップとを含む。
 また、本開示の一態様に係る再生方法は、映像信号を再生する再生方法であって、前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像信号に含まれる画像の輝度値が予め定められた第1閾値を超えるかを判定する判定ステップと、前記輝度値が前記第1閾値を超えると判定された場合、前記画像の輝度値を下げる調整処理を行う調整ステップとを含む。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
図1は、映像技術の進化について説明するための図である。 図2は、HDRの位置づけを説明するための図である。 図3は、HDRの効果を示す画像例を示す図である。 図4は、HDR導入時のマスター、配信方式、および表示装置の関係について説明するための図である。 図5は、コンテンツに格納される輝度信号のコード値の決定方法、および、再生時にコード値から輝度値を復元するプロセスの説明図である。 図6は、HDRメタデータの例を示す図である。 図7は、静的HDRメタデータの格納例を示す図である。 図8は、動的HDRメタデータの格納例を示す図である。 図9は、動的HDRメタデータの格納例を示す図である。 図10は、静的HDRメタデータの伝送方法のフローチャートである。 図11は、HDRメタデータの処理方法のフローチャートである。 図12は、データ出力装置の構成を示すブロック図である。 図13は、HDRメタデータを格納するSEIメッセージのデータ構造例を示す図である。 図14は、HDRメタデータを格納するSEIメッセージのデータ構造例を示す図である。 図15は、HDRメタデータを格納するSEIメッセージのデータ構造例を示す図である。 図16は、データ出力装置の構成例を示すブロック図である。 図17は、DR変換部の構成例を示すブロック図である。 図18は、DR変換部の構成例を示すブロック図である。 図19は、HDRメタ解釈部の指示内容の例を示す図である。 図20は、HDRメタ解釈部の指示内容の例を示す図である。 図21は、HDRメタ解釈部の指示内容の例を示す図である。 図22は、データ出力装置の構成例を示すブロック図である。 図23は、ビデオ信号及び表示装置の特性と、データ出力装置の出力信号との組合せ例を示す図である。 図24は、各種信号を再生し、各種TVに対して信号を出力する際の動作モデル例を示す図である。 図25は、静的HDRメタデータ及び動的HDRメタデータの格納例を示す図である。 図26は、ユーザーガイダンスの表示方法の例を示す図である。 図27は、ユーザーガイダンスの表示方法の例を示す図である。 図28は、ユーザーガイダンスの表示方法の例を示す図である。 図29は、ユーザーガイダンスの表示方法の例を示す図である。 図30は、HDMI(登録商標、以下同様)のバージョンに依存した動的HDRメタデータの伝送方法のフローチャートである。 図31は、HDMIのバージョンに依存した静的HDRメタデータの伝送方法のフローチャートである。 図32は、HDR信号の再生における輝度値の制御方法のフローチャートである。 図33は、デュアルディスクの再生動作について説明するための図である。 図34Aは、HDRTV内で、HDR信号を変換してHDR表示を行う表示処理の一例を示す図である。 図34Bは、HDR対応の再生装置とSDRTVとを用いてHDR表示を行う表示処理の一例を示す図である。 図34Cは、標準インターフェースを介して互いに接続したHDR対応の再生装置とSDRTVとをHDR表示を行う表示処理の一例を示す図である。 図35は、HDRから疑似HDRへの変換処理について説明するための図である。 図36Aは、HDRおよびSDRのそれぞれに対応したEOTF(Electro-Optical Transfer Function)の例について示す図である。 図36Bは、HDRおよびSDRのそれぞれに対応した逆EOTFの例について示す図である。 図37は、実施の形態の変換装置および表示装置の構成を示すブロック図である。 図38は、実施の形態の変換装置および表示装置により行われる変換方法および表示方法を示すフローチャートである。 図39Aは、第1輝度変換について説明するための図である。 図39Bは、第1輝度変換の他の一例について説明するための図である。 図40は、第2輝度変換について説明するための図である。 図41は、第3輝度変換について説明するための図である。 図42は、表示設定の詳細な処理を示すフローチャートである。
 本開示の一態様に係る伝送方法は、表示装置に映像信号を伝送する再生装置における伝送方法であって、前記再生装置と前記表示装置とを接続する伝送プロトコルのバージョンが第1バージョンである場合、前記映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第1メタデータを前記表示装置に伝送し、前記映像信号の前記連続再生単位より細かい単位に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第2メタデータを前記表示装置に伝送せず、前記伝送プロトコルのバージョンが第2バージョンである場合、前記第1メタデータ及び前記第2メタデータを前記表示装置へ伝送する。
 これによれば、当該伝送方法は、伝送プロトコルのバージョンに応じて、第1メタデータ及び第2メタデータのうち適切なメタデータを表示装置へ伝送できる。
 例えば、前記伝送プロトコルのバージョンが前記第1バージョンである場合、前記第2メタデータを用いて前記映像信号の輝度範囲を変換する変換処理を行い、変換後の映像信号を前記表示装置に伝送してもよい。
 これによれば、第2メタデータを表示装置に伝送できず、表示装置で変換処理を行えない場合には、再生装置で変換処理を行うことができる。
 例えば、前記伝送プロトコルのバージョンが前記第2のバージョンであり、かつ、前記表示装置が前記変換処理に対応していない場合、前記変換処理を行い、前記変換後の映像信号を前記表示装置に伝送し、前記伝送プロトコルのバージョンが前記第2のバージョンであり、かつ、前記表示装置が前記変換処理に対応している場合、前記変換処理を行わずに前記映像信号を前記表示装置に伝送してもよい。
 これにより、再生装置及び表示装置のうちの適切な装置で変換処理を実行できる。
 例えば、前記再生装置が、前記第2メタデータを用いて前記映像信号の輝度範囲を変換する変換処理に対応していない場合、前記変換処理を行わず、前記第2メタデータを前記表示装置へ伝送しなくてもよい。
 例えば、前記映像信号における輝度値は、コード値として符号化されており、前記第1メタデータは、複数の輝度値と複数のコード値とを関係付けたEOTF(Electro-Optical Transfer Function)を特定するための情報であってもよい。
 例えば、前記第2メタデータは、前記映像信号のマスタリング特性を示してもよい。
 また、本開示の一態様に係る再生方法は、映像信号を再生する再生方法であって、前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像信号における画面間の輝度値の変化量が予め定められた第1閾値を超えるかを判定する判定ステップと、前記変化量が前記第1閾値を超えると判定された場合、前記映像信号の輝度値を下げる調整処理を行う調整ステップとを含む。
 これによれば、当該再生方法は、映像信号の輝度値が表示装置の表示能力を超える場合に、映像信号の輝度値を下げることで、表示装置で適切に表示できる映像信号を生成できる。また、当該再生方法は、映像信号の輝度値の変化量が大きいことにより視聴者に悪影響を与える可能性がある場合に、映像信号の輝度値を下げることで、当該悪影響を低減できる。
 例えば、前記調整ステップでは、前記変化量が前記第1閾値を超える画素に対して、当該画素の前記変化量が前記第1閾値以下になるように当該画素の輝度値を調整してもよい。
 例えば、前記判定ステップでは、前記映像信号に含まれる第1画像のピーク輝度と、前記映像信号に含まれる、前記第1画像より後の第2画像に含まれる複数の画素の輝度値の各々との差分が前記第1閾値を超えるかを判定し、前記調整ステップでは、前記差分が前記第1閾値を超える画素に対して、当該画素の前記差分が前記第1閾値以下になるように当該画素の輝度値を調整してもよい。
 例えば、前記判定ステップでは、前記映像信号のフレームレートの逆数の整数倍である基準時間間隔における前記輝度値の前記変化量が前記第1閾値を超えるかを判定してもよい。
 例えば、前記判定ステップでは、前記映像信号に含まれる画像に含まれる複数の画素のうち、前記変化量が前記第1閾値を超える画素の割合が第2閾値を超えるかを判定し、前記調整ステップでは、前記割合が前記第2閾値を超える場合、前記割合が前記第2閾値以下になるように前記複数の画素の輝度値を調整してもよい。
 例えば、前記判定ステップでは、画面が分割されることで得られた複数の領域毎に、当該領域の画面間の輝度値の変化量が前記第1閾値を超えるかを判定し、前記調整ステップでは、前記変化量が前記第1閾値を超えると判定された領域に対して、当該領域の輝度値を下げる調整処理を行ってもよい。
 また、本開示の一態様に係る再生方法、映像信号を再生する再生方法であって、前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像信号に含まれる画像の輝度値が予め定められた第1閾値を超えるかを判定する判定ステップと、前記輝度値が前記第1閾値を超えると判定された場合、前記画像の輝度値を下げる調整処理を行う調整ステップとを含む。
 これによれば、当該再生方法は、映像信号の輝度値が表示装置の表示能力を超える場合に、映像信号の輝度値を下げることで、表示装置で適切に表示できる映像信号を生成できる。また、当該再生方法は、映像信号の輝度値が高いことにより視聴者に悪影響を与える可能性がある場合に、映像信号の輝度値を下げることで、当該悪影響を低減できる。
 例えば、前記判定ステップでは、前記画像に含まれる複数の画素のうち、輝度値が前記第1閾値を超える画素の数を判定し、前記調整ステップでは、前記画素の数が第3閾値を超える場合、前記画素の数が前記第3閾値以下になるように、前記画像の輝度値を下げてもよい。
 例えば、前記判定ステップでは、前記画像に含まれる複数の画素のうち、輝度値が前記第1閾値を超える画素の割合を判定し、前記調整ステップでは、前記割合が第3閾値を超える場合、前記割合が前記第3閾値以下になるように、前記画像の輝度値を下げてもよい。
 例えば、前記第1閾値は、前記映像信号を表示する表示装置において複数の画素に対して同時に印加できる電圧の上限値に基づいて算出される値であってもよい。
 また、本開示の一態様に係る再生装置は、表示装置に映像信号を伝送する再生装置であって、前記再生装置と前記表示装置とを接続する伝送プロトコルのバージョンが第1バージョンである場合、前記映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第1メタデータを前記表示装置に伝送し、前記映像信号の前記連続再生単位より細かい単位に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第2メタデータを前記表示装置に伝送せず、前記伝送プロトコルのバージョンが第2バージョンである場合、前記第1メタデータ及び前記第2メタデータを前記表示装置へ伝送する。
 これによれば、当該再生装置は、伝送プロトコルのバージョンに応じて、第1メタデータ及び第2メタデータのうち適切なメタデータを表示装置へ伝送できる。
 また、本開示の一態様に係る再生装置は、映像信号を再生する再生装置であって、前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像信号における画面間の輝度値の変化量が予め定められた第1閾値を超えるかを判定する判定部と、前記変化量が前記第1閾値を超えると判定された場合、前記映像信号の輝度値を下げる調整処理を行う調整部とを備える。
 これによれば、当該再生装置は、映像信号の輝度値が表示装置の表示能力を超える場合に、映像信号の輝度値を下げることで、表示装置で適切に表示できる映像信号を生成できる。また、当該再生装置は、映像信号の輝度値の変化量が大きいことにより視聴者に悪影響を与える可能性がある場合に、映像信号の輝度値を下げることで、当該悪影響を低減できる。
 また、本開示の一態様に係る再生装置は、映像信号を再生する再生装置であって、前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、前記映像信号に含まれる画像の輝度値が予め定められた第1閾値を超えるかを判定する判定部と、前記輝度値が前記第1閾値を超えると判定された場合、前記画像の輝度値を下げる調整処理を行う調整部とを備える。
 これによれば、当該再生装置は、映像信号の輝度値が表示装置の表示能力を超える場合に、映像信号の輝度値を下げることで、表示装置で適切に表示できる映像信号を生成できる。また、当該再生装置は、映像信号の輝度値が高いことにより視聴者に悪影響を与える可能性がある場合に、映像信号の輝度値を下げることで、当該悪影響を低減できる。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 また、上記特徴に関しては、主に、[27.HDRメタデータの伝送方法]~[28.輝度値の調整]において説明する。
 また、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素。構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態)
 [1.背景]
 まず、映像技術の変遷について、図1を用いて説明する。図1は、映像技術の進化について説明するための図である。
 これまで、映像の高画質化としては、表示画素数の拡大に主眼がおかれ、Standard Definition(SD)の720×480画素の映像から、High Definition(HD)の1920×1080画素の、所謂2K映像が普及している。
 近年、映像の更なる高画質化を目指して、Ultra High Definition(UHD)の3840×1920画素、あるいは、4Kの4096×1920画素の、所謂4K映像の導入が開始された。
 そして、4Kの導入による映像の高解像度化を行うと共に、ダイナミックレンジ拡張や色域の拡大、あるいは、フレームレートの追加、向上などを行うことで映像を高画質化することが検討されている。
 その中でも、ダイナミックレンジについては、従来の映像における暗部階調を維持しつつ、現行のTV信号では表現不能な鏡面反射光などの明るい光を、より現実に近い明るさで表現するために最大輝度値を拡大した輝度範囲に対応させた方式として、HDR(High Dynamic Range)が注目されている。具体的には、これまでのTV信号が対応している輝度範囲の方式は、SDR(Standard Dynamic Range)と呼ばれ、最大輝度値が100nitであったのに対して、HDRでは1000nit以上まで最大輝度値を拡大することが想定されている。HDRは、SMPTE(Society of Motion Picture & Television Engineers)やITU-R(International Telecommunications Union Radiocommunications Sector)などにおいて、標準化が進行中である。
 HDRの具体的な適用先としては、HDやUHDと同様に、放送やパッケージメディア(Blu-ray(登録商標、以下同様) Disc等)、インターネット配信などで使われることが想定されている。
 なお、以下では、HDRに対応した映像において、当該映像の輝度は、HDRの輝度範囲の輝度値からなり、当該映像の輝度値が量子化されることで得られた輝度信号をHDR信号と呼ぶ。SDRに対応した映像において、当該映像の輝度は、SDRの輝度範囲の輝度値からなり、当該映像の輝度値が量子化されることで得られた輝度信号をSDR信号と呼ぶ。
 [2.目的及び課題]
 従来の画像信号より輝度範囲が高い画像信号であるHDR(High Dynamic Range)信号は、HDR信号を格納したBlu-rayディスク等のパッケージメディア、放送、又はOTT(Over The Top)等の配信媒体経由で配信される。ここで、OTTとは、インターネット上で提供されるWebサイト、動画或いは音声などのコンテンツ或いはサービス、又はそれらを提供する事業者を意味する。配信されたHDR信号は、Blu-ray機器等により復号される。また、復号されたHDR信号は、HDR対応表示装置(TV、プロジェクタ、タブレット、又はスマートフォン等)に送られ、HDR対応表示装置によりHDR映像が再生される。
 HDR技術はまだ初期段階であり、最初に導入したHDR技術が採用された後に、新たなHDR方式が開発されることが想定される。この場合、新たに作成されたHDR方式のHDR信号(及びメタデータ)をHDR配信媒体に格納することにより新規HDR方式を採用できる。この場合、新機能をサポートしていない元の機器(例えばBlu-ray機器)で、新規HDR方式の信号を格納したHDR配信媒体を再生できる“Forward Compatibility”が重要である。本開示では、新たなHDR信号形式(メタデータ)を格納した配信媒体に対して、元の配信媒体用に設計された復号装置(例えばBlu-ray機器)を変えることなく、元の技術でのHDR再生は保証することで互換性を保持し、新たな方式に対応したHDR復号装置(例えばBlu-ray機器)では新たなHDR方式の処理に対応することが可能にする方法及び装置を実現する。
 また、拡張方式を選定したり、登録する方法を適切に決めないで、あまりに無作為に新技術を採用する方式を採用すると、多くの非互換方式が乱立して市場での混乱が起きる可能性がある。逆に非常に厳格な技術選択のメカニズムを導入すると、新技術の決定が遅くなってしまう。これにより、技術革新の導入が遅れることで、その配信プラットホーム(Blu-ray等)が陳腐化する可能性がある。これにより、当該配信プラットホームが他のプラットホーム(例えばOTT等の電子配信サービス)に対して競争力を維持できなくなるリスクがある。このために、両者の利点を取り入れた、オプション導入方式が必要である。本実施の形態では、このニーズに応えるハイブリッドオプション導入方式を提案する。
 図2は、HDRの位置づけ(輝度の拡大)を示す図である。また、図3は、HDRの効果を示す画像例を示す。
 [3.HDR導入時のマスター、配信方式、および表示装置の関係]
 図4は、SDRとHDRのホームエンターテイメント用マスターを制作するフローと、配信媒体及び表示装置の関係を示す図である。
 HDRのコンセプトは提案されており、HDRのコンセプトレベルでの有効性は確認されている。また、HDRの最初の実施方法が提案されている。ただし、この方法を使ってHDRコンテンツが大量に作られ、最初の実施方法の実証が行われたわけではない。このため、今後HDRコンテンツの制作が本格化した場合、現状のHDRの制作方式、HDRからSDRへの変換方式、又は表示装置でのトーンマッピング変換方式等のためのメタデータが変わる可能性がある。
 [4.EOTFの使い方]
 図5は、コンテンツに格納される輝度信号のコード値の決定方法、および、再生時にコード値から輝度値を復元するプロセスの説明図である。
 本例における輝度を示す輝度信号はHDRに対応したHDR信号である。グレーディング後の画像は、HDRの逆EOTFにより量子化され、当該画像の輝度値に対応するコード値が決定する。このコード値に基づいて画像符号化などが行われ、ビデオのストリームが生成される。再生時には、ストリームの復号結果に対して、HDRのEOTFに基づいて逆量子化することによりリニアな信号に変換され、画素毎の輝度値が復元される。以下、HDRの逆EOTFを用いた量子化を「逆HDRのEOTF変換」という。HDRのEOTFを用いた逆量子化を「HDRのEOTF変換」という。同様に、SDRの逆EOTFを用いた量子化を「逆SDRのEOTF変換」という。SDRのEOTFを用いた逆量子化を「SDRのEOTF変換」という。
 この輝度値とメタデータを使って、映像変換処理部で、映像表示部で表示できる輝度値に変換することで、映像表示部でHDR映像を表示することができる。例えば、元のHDR映像のピーク輝度が2000nitであり、映像表示部のピーク輝度が800nitの場合、変換を行って輝度を下げることができる。
 このように、HDRマスターの方式は、EOTF及びメタデータとHDR信号との組み合わせにより実現されている。よって、より効率的なEOTF及びメタデータが開発され、そのようなEOTF及びメタデータを用いたHDR方式を採用すべき時が来る可能性がある。
 但し、この新たな方式がどのようなものになるかは、現時点では解らないが、EOTFが変更される可能性とメタデータが追加される可能性とは想像できる。この場合、HDR信号自体も変わる。
 本開示は、このようにHDRの伝送フォーマットが変更された場合でも、HDR対応機器を買ったお客様が新たな機器を買いなおすリスクを下げることで、HDRの普及を図ることを目指している。
 [5.メタデータ]
 図6は、HDRメタデータの例を示す図である。HDRメタデータは、映像信号の輝度範囲の変更(DR変換)に用いられる変換補助情報と、HDR制御情報とを含む。各情報は、例えばタイトル単位で設けられる静的HDRメタデータと、例えばフレーム単位で設けられる動的HDRメタデータとのいずれかである。また、静的HDRメタデータは、必須メタデータ(基本データ)と、選択メタデータ(拡張データ)とのいずれかに分類され、動的HDRメタデータは、選択メタデータに分類される。なお、各情報の詳細は後述する。
 このように、基本方式は、静的HDRメタデータのみで実装可能である。また、各拡張方式は、基本方式の再生機器(Blu-ray等)に影響を与えないように設計されている。
 [6.HDRメタデータ1]
 HDRコンテンツにおけるマスタリング時の特性を示すパラメータとしては、タイトル毎又はプレイリスト毎に固定である静的HDRメタデータと、シーン毎に可変である動的HDRメタデータとが存在する。ここで、タイトル及びプレイリストは、連続して再生される映像信号を示す情報である。以降、連続して再生される映像信号を連続再生単位と呼ぶ。
 例えば、静的HDRメタデータは、EOTF関数(カーブ)の種類、18%Gray値、Diffuse White値、Knee point、及びClip pointの少なくとも一つを含む。EOTFは、複数の輝度値と複数のコード値とを関係付けた情報であり、映像信号の輝度範囲を変更するための情報である。その他の情報は、映像信号の輝度に関する属性情報であることから、静的HDRメタデータは、映像信号の輝度範囲に関する情報であり、映像信号の輝度範囲を特定するための情報と言える。
 具体的には、18%Gray値及びDiffuse White値は、予め定められた基準となる明るさの映像における輝度値(nit)を示し、言い換えると、映像における基準の明るさを示す。より具体的には、18%Gray値は、マスタリング前において18nitの明るさの物体のマスタリング後の輝度値(nit)を示す。Diffuse White値は、白色に相当する輝度値(nit)を示す。
 また、Knee point及びClip pointは、EOTF関数のパラメータであり、EOTFにおける特性が変化する点を示す。具体的には、Knee pointは、撮影時のオリジナルの輝度値(入力輝度)の増分に対する、映像信号の輝度としてEOTFにマッピングされる輝度値(出力輝度)の増分を、1対1とは異なる値とする変化点を示す。例えば、Knee pointは、後述する図39Aにおいて、線形変化からはずれる点を特定するための情報である。また、Clip pointは、EOTF関数においてクリップが開始される点を示す。ここでクリップとは、ある値以上の入力輝度値を同一の出力輝度値に変換することである。例えば、Clip pointは、後述する図39Bにおいて、出力輝度値が変化しなくなる点を示す。
 また、EOTF関数(カーブ)の種類とは、例えば、図36Aに示すHDRのEOTF及びSDRのEOTFである。
 このように、本実施の形態に係るコンテンツデータ生成方法は、コンテンツデータを生成するコンテンツデータ生成方法であって、映像信号と、映像信号の連続再生単位に含まれる複数の画像(連続再生単位を構成する映像信号)に対して共通に用いられる情報であって、映像信号の輝度範囲に関する情報を含む静的HDRメタデータ(第1メタデータ)とを生成する第1生成ステップと、連続再生単位と静的HDRメタデータとを関連付けることによりコンテンツデータを生成する第2生成ステップを含む。例えば、映像信号の輝度範囲に関する情報とは、映像信号の輝度範囲を変換するための情報である。
 また、静的HDRメタデータは、複数の輝度値と複数のコード値とを関係付けたEOTFを特定するための情報を含む。また、映像信号における輝度値は、コード値として符号化される。
 また、静的HDRメタデータは、さらに、予め定められた基準となる明るさの映像信号における輝度値を示す情報、又は、EOTFにおける特性が変化する点を示す情報を含む。例えば、静的HDRメタデータは、映像信号における白色に相当する輝度値を示す情報(Diffuse White値)を含む。
 また、第1生成ステップでは、連続再生単位より細かい単位に対して共通に用いられる情報であって、映像信号の輝度範囲に関する情報である動的HDRメタデータ(第2メタデータ)をさらに生成する。例えば、映像信号の輝度範囲に関する情報とは、映像信号の輝度範囲を変換するための情報である。
 動的HDRメタデータは、シーン毎に異なるマスタリング特性を示すパラメータなどである。ここでマスタリング特性とは、オリジナル(マスタリング前)の輝度と、マスタリング後の輝度との関係を示す。例えば、マスタリング特性を示すパラメータとは、上記した静的HDRメタデータと同様の情報であり、言い換えると、静的HDRメタデータに含まれる情報の少なくとも一つである。
 図7は、静的HDRメタデータの格納例を示す図である。本例は、Blu-rayディスクなどのパッケージメディアにおいて、静的HDRメタデータをプレイリストに格納する例である。
 プレイリストから参照されるストリーム毎のメタデータの1つとして、静的HDRメタデータが格納される。この場合、静的HDRメタデータはプレイリスト単位で固定である。つまり、静的HDRメタデータは、各プレイリストに対応付けて格納される。
 また、OTTでは、ストリームの取得に先立って参照されるマニフェストファイルに静的HDRメタデータが格納されてもよい。つまり、本実施の形態に係るコンテンツデータ生成方法は、映像信号を映像ストリームとして生成し、静的HDRメタデータを、映像ストリームの取得に先立って参照されるマニフェストファイルに格納してもよい。
 また、放送では、ストリームの属性を示す記述子に静的HDRメタデータが格納されてもよい。つまり、本実施の形態に係るコンテンツデータ生成方法は、コンテンツデータを映像ストリームとして生成し、静的HDRメタデータを、映像ストリームの属性を示す識別子として当該映像ストリームとは独立に格納してもよい。例えば、静的HDRメタデータを、MPEG2-TSにおける記述子(デスクリプタ)として格納できる。
 また、タイトル毎に静的HDRメタデータが固定である場合には、静的HDRメタデータは、タイトルの属性を示す管理情報として格納されてもよい。
 また、この例では、Blu-rayディスク内のプレイリスト内に各種メタダータを格納する仕組みを使って、HDR用の静的HDRメタデータを格納している。このため、Blu-ray等のアプリケーション規格又は機器の視点からは、静的HDRメタデータの存在がプレイリスト内で定義されている必要がある。このため、新たなHDR用の静的メタデータを新設する場合は、Blu-rayの規格を改定する必要がある。また、容量の規定があるため、無制限にHDRのオプション技術用の静的HDRメタデータを格納することは困難である。
 [7.HDRメタデータ2]
 図8は、動的HDRメタデータの、ビデオストリーム内への格納例を示す図である。MPEG-4 AVC又はHEVC(High Efficiency Video Coding)では、SEI(Supplemental Enhancement Information)と呼ばれるデータ構造を用いて、ストリームの再生制御に関わる情報を格納する。よって、例えば、SEIに動的HDRメタデータが格納される。
 動的HDRメタデータは、シーン毎に更新されることが想定される。シーンの先頭は、GOP(Group Of Pictures)などのランダムアクセス単位の先頭のアクセスユニット(AU)である。従って、動的HDRメタデータは、ランダムアクセス単位における復号順で先頭のアクセスユニットに格納することにしてもよい。ランダムアクセス単位の先頭アクセスユニットは、IDRピクチャ、又は、SPS(Sequence Parameter Set)が付加されたnon-IDR Iピクチャなどとなる。よって、受信側の装置は、ランダムアクセス単位の先頭アクセスユニットを構成するNAL(Network Abstraction Layer)ユニットを検出することにより、動的HDRメタデータを取得できる。あるいは、動的HDRメタデータを格納するSEIに対して、固有のタイプが付与されてもよい。
 なお、EOTF関数の種類について、SPSにおけるストリームの属性情報などとして格納されてもよい。つまり、本実施の形態に係るコンテンツデータ生成方法は、コンテンツデータをHEVCにより符号化した映像ストリームとして生成し、EOTFを特定するための情報を、映像ストリームに含まれるSPSに格納してもよい。
 また、この例は、MPEGのオプションデータを格納する仕組みを使っており、ビデオエレメンタリストリーム内に、動的HDRメタデータを格納している。このため、Blu-ray等のアプリケーション規格又は機器の視点からは、動的HDRメタデータの存在が解らない。このため、Blu-rayの規格を改定しなくても、MPEGのオプションデータの格納の仕組みだけを使用して動的HDRメタデータを記録することができる。更に、使用される領域がSEI領域であるため、複数のオプション用の動的HDRメタデータを格納することも可能である。
 [8.動的HDRメタデータの格納方法]
 図9は、主映像とは別のTSストリーム形式で動的HDRメタデータを格納した例を示す図である。
 Blu-rayでは、2つのTSストリームを同期して再生する機能がある。この2つのTSストリームの同期再生機能には、ディスク内の別個に管理された2つのTSストリームを同期させて再生する2TS再生機能と、2つのストリームをインターリーブして1つのTSストリームとして扱う1TS再生機能とがある。
 この2つのTSストリームの同期再生機能を使い、かつ、動的HDRメタデータをTSストリーム形式で格納することにより、再生装置は、主HDR映像と同期して動的HDRメタデータを使うことができる。このため、通常のHDRプレーヤでは、主HDR映像のみを再生し、標準HDR品質の映像を得ることができる。また、オプション対応HDRプレーヤでは、TS内に格納された動的HDRメタデータを使うことにより、高階調HDR品質映像を再生できる。
 この例では、Blu-rayの2つのTSストリームを格納する仕組みを使って、補助的なTSストリーム内に動的HDRメタデータを格納している。このため、Blu-ray等のアプリケーション規格又は機器の視点からは、動的HDRメタデータの存在がTSストリームとして認識される。このため、Blu-rayの規格を改定する必要がある。また、同時に2種類のオプションのTSストリームを格納できる。
 [9.静的HDRメタデータの伝送方法]
 図10は、静的HDRメタデータの伝送方法を示す図であり、BDプレーヤ(Blu-ray機器)又はレコーダなどの再生装置においてHDMIなどの伝送プロトコルを通じて、表示装置にHDR信号を伝送する際の動作例を示すフローチャートである。
 静的HDRメタデータは、タイトル単位又はプレイリスト単位で固定であることを先に述べた。従って、再生装置は、静的HDRメタデータの設定が必要な場合(S401でYes)、タイトル又はプレイリストの再生開始時において、静的HDRメタデータをコンテンツの管理情報から取得して、取得した静的HDRメタデータをHDMIの制御情報として格納して伝送する。つまり、再生装置は、タイトル又はプレイリストを構成する映像信号の伝送開始に先立って、当該タイトル又はプレイリストに対応する静的HDRメタデータを取得し、取得した静的HDRメタデータをHDMIの制御情報として伝送する(S402)。より一般的には、再生装置は、当該再生装置と表示装置との間のHDMIの初期化処理を行う際に、初期化情報として静的HDRメタデータを伝送してもよい。
 その後、再生装置は、静的HDRメタデータに対応するビデオストリームを伝送する(S403)。なお、このビデオストリームに対しては、伝送済みの静的HDRメタデータが有効となる。
 このように、本実施の形態に係る映像ストリーム伝送方法は、映像ストリーム(ビデオストリーム)を伝送する映像ストリーム伝送方法であって、映像信号と、連続再生単位に含まれる複数の画像に対して共通に用いられる情報であって、映像信号の輝度範囲に関する静的HDRメタデータ(第1メタデータ)とを含むコンテンツデータを取得する取得ステップと、映像信号に対応する映像ストリームと、静的HDRメタデータとを伝送する伝送ステップとを含む。
 例えば、伝送ステップでは、HDMIの通信プロトコルに従い、映像ストリームと静的HDRメタデータとを伝送する。
 また、動的HDRメタデータは、ビデオストリームの一部(SEI)として伝送される。
 なお、再生装置は、動的HDRメタデータを、当該動的HDRメタデータが有効となるタイミングにおいてHDMIの制御信号として伝送してもよい。このとき、再生装置は、静的HDRメタデータと動的HDRメタデータとに識別子などを設けて互いに識別できるようにして伝送する。
 また、制御信号においては、動的HDRメタデータを格納するためのコンテナのデータ構造のみ規定しておき、コンテナのペイロードデータとしてSEIの内容をそのままコピーできるようにしてもよい。これにより、SEIに含まれる動的HDRメタデータのシンタックスが更新されてもBDプレーヤ等の再生装置の実装を変更せずに対応できる。
 静的HDRメタデータについても同様に、コンテンツの管理情報における静的HDRメタデータをコピーして伝送できるようにしておけば、静的HDRメタデータのシンタックスの変更に対しても、再生装置の実装を変更せずに対応可能である。つまり、静的HDRメタデータを格納するためのコンテナのデータ構造が規定されており、伝送ステップでは、コンテンツデータに含まれる静的HDRメタデータを、コンテナのペイロードにコピーし、当該コンテナを伝送してもよい。
 また、TSストリームに格納された動的HDRメタデータは、主HDR映像信号と何らかの方法で合成されたうえで、新たな映像信号(図9の例では高階調HDR映像)として、HDMIで伝送される。
 [10.HDRメタデータの処理方法]
 図11は、表示装置においてHDR信号を表示する際のHDRメタデータの処理方法の例を示すフローチャートである。まず、表示装置は、HDMIの制御情報から静的HDRメタデータを取得し(S411)、取得した静的HDRメタデータに基づき、HDR信号の表示方法を決定する(S412)。
 なお、制御情報に静的HDRメタデータが含まれない場合には、表示装置は、アプリケーション規格において予め定められた値、又は、表示装置のデフォルト設定に基づいて、HDR信号の表示方法を決定する。つまり、本実施の形態に係る映像表示方法は、静的HDRメタデータを取得できない場合、予め定められた値又は設定に基づき、映像信号に対応する映像の表示方法を決定する。
 また、表示装置は、ビデオストリーム内のSEIなどにおいて動的HDRメタデータを検出した場合(S413でYes)、動的HDRメタデータに基づいてHDR信号の表示方法を更新する(S414)。つまり、本実施の形態に係る映像表示方法は、静的HDRメタデータを取得した場合、取得した静的HDRメタデータに基づき表示方法を決定して映像を表示し、動的HDRメタデータを取得した場合、静的HDRメタデータに基づき決定した表示方法を、動的HDRメタデータに基づき決定した表示方法に更新して映像を表示する。あるいは、静的HDRメタデータと動的HDRメタデータとの両方に基づいて表示方法を決定してもよい。
 なお、表示装置が、動的HDRメタデータの取得に対応していない場合には、表示装置は、静的HDRメタデータのみに基づいて動作してもよい。また、表示装置が動的HDRメタデータの取得に対応している場合でも、表示装置が、メタデータが格納されたアクセスユニットの表示時刻(PTS:Presentation Time Stamp)に同期してHDR信号の表示方法を更新できないことがある。この場合には、表示装置は、メタデータを取得後、表示方法を更新可能な最も早い時刻以降に表示されるアクセスユニットから、表示方法を更新してもよい。
 なお、HDRメタデータにバージョン情報などを付与することで、パラメータの更新及び追加に対応できる。これにより、表示装置は、HDRメタデータのバージョン情報に基づいて、当該メタデータが解釈可能であるかを判定できる。あるいは、HDRメタデータは、基本部と拡張部とから構成され、パラメータの更新又は追加は拡張部の変更により対応し、基本部は更新しないことにしてもよい。つまり、静的HDRメタデータ及び動的HDRメタデータの各々は、複数のバージョンを有し、複数のバーションで共通に用いられる基本部と、バージョン毎に異なる拡張部とを含んでもよい。こうすることで、基本部のHDRメタデータに基づいて、表示装置における後方互換性を確保できる。
 このように、本実施の形態に係る映像表示方法は、映像ストリームに基づき映像を表示する映像表示方法であって、映像信号に対応する映像ストリームと、静的HDRメタデータ(第1メタデータ)とを取得する取得ステップと、静的HDRメタデータに基づき、映像信号に対応する映像の表示方法を決定して表示する表示ステップとを含む。
 また、映像信号における輝度値は、コード値として符号化されており、静的HDRメタデータは、複数の輝度値と複数のコード値とを関係付けたEOTFを特定するための情報を含み、表示ステップでは、静的HDRメタデータで特定されるEOTFを用いて、映像信号で示されるコード値を輝度値に変換することで映像を生成する。
 [11.データ出力装置]
 図12は、BDプレーヤなどのHDR信号を出力するデータ出力装置400の構成を示すブロック図である。データ出力装置400に入力されるHDRメタデータは、HDR信号のマスタリング特性を示す特性データと、HDR信号をSDR信号に変換する、又は、HDR信号のダイナミックレンジを変換する際のトーンマッピング方法を示す変換補助データとを含む。これら2種類のメタデータは、図7及び図8において説明したように、静的HDRメタデータ、又は、動的HDRメタデータとして格納される。さらに、静的HDRメタデータは、コンテンツの管理情報及び、映像ストリーム内の少なくとも一方に格納される。
 データ出力装置400は、ビデオ復号部401と、外部メタ取得部402と、HDRメタ解釈部403と、HDR制御情報生成部404と、DR変換部405と、HDMI出力部406とを備える。
 ビデオ復号部401は、ビデオの符号化ストリームである映像ストリームを復号することで映像信号(第1映像信号)を生成し、得られた映像信号をDR変換部405に出力する。また、ビデオ復号部401は、映像ストリーム内のHDRメタデータ(第2メタデータ)(静的HDRメタデータ又は動的HDRメタデータ)を取得する。具体的には、ビデオ復号部401は、MPEG-4 AVC又はHEVCのSEIメッセージなどに格納されたHDRメタデータをHDRメタ解釈部403に出力する。
 外部メタ取得部402は、プレイリストなどのコンテンツの管理情報に格納された静的HDRメタデータ(第1メタデータ)を取得し、取得した静的HDRメタデータをHDRメタ解釈部403に出力する。ここで、コンテンツの管理情報に、プレイアイテムなど、ランダムアクセス可能な所定の単位において変更可能な動的HDRメタデータが格納されていてもよい。この場合、外部メタ取得部402は、コンテンツの管理情報から、動的HDRメタデータを取得し、取得した動的HDRメタデータをHDRメタ解釈部403に出力する。
 HDRメタ解釈部403は、ビデオ復号部401又は外部メタ取得部402から出力されたHDRメタデータの種類を判定し、特性データをHDR制御情報生成部404に出力し、変換補助データをDR変換部405に出力する。
 なお、ビデオ復号部401及び外部メタ取得部402の両方において静的HDRメタデータが取得される場合には、外部メタ取得部402から出力された静的HDRメタデータのみが有効なメタデータとして用いられてもよい。つまり、外部メタ取得部402で取得された第1メタデータ及びビデオ復号部401で取得された第2メタデータが、第1映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられる静的HDRメタデータである場合において、HDRメタ解釈部403は、第1メタデータ及び第2メタデータを共に取得した場合、第1メタデータを解析することで特性データ及び変換補助データを取得する。
 または、HDRメタ解釈部403は、外部メタ取得部402で静的HDRメタデータが取得された場合、当該静的HDRメタデータを有効なメタデータとして用い、さらに、ビデオ復号部401で静的HDRメタデータが取得された場合、当該静的HDRメタデータで有効なメタデータを上書きしてもよい。つまり、外部メタ取得部402で取得された第1メタデータ及びビデオ復号部401で取得された第2メタデータが、第1映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられる静的HDRメタデータである場合において、HDRメタ解釈部403は、第1メタデータ及び第2メタデータのうち第1メタデータのみが取得された場合、第1メタデータを解析することで特性データ及び変換補助データを取得し、第2メタデータが取得された場合、使用するメタデータを第1メタデータから第2メタデータに切り替える。
 HDR制御情報生成部404は、特性データに基づいてHDMIにおけるHDR制御情報を生成し、生成したHDR制御情報をHDMI出力部406に出力する。ここで、動的HDRメタデータについては、メタデータが有効となるビデオ信号と同期して、HDR制御情報が出力できるように、HDMI出力部406におけるHDR制御情報の出力タイミングが決定される。つまり、HDMI出力部406は、メタデータが有効になるビデオ信号(映像信号)と同期してHDR制御情報を出力する。
 DR変換部405は、変換補助データに基づいて、復号後の映像信号をSDR信号に変換したりダイナミックレンジを変換したりする。ここで、データ出力装置400と接続される表示装置がHDR信号の入力に対応している場合にはDR変換部405による変換は不要である。従って、データ出力装置400は、接続先の表示装置がHDR信号の入力に対応しているかどうかをHDMIの初期化処理などにおいて確認することで、変換処理が必要であるかどうかを判定してもよい。変換処理が不要と判定された場合には、ビデオ復号部401で得られた第1映像信号は、DR変換部405を介さずにHDMI出力部406に入力される。
 つまり、HDMI出力部406は、データ出力装置400に接続されている表示装置がHDR信号(第1映像信号)の輝度範囲の映像出力に対応している場合、第1映像信号及びHDR制御情報を表示装置へ出力する。また、HDMI出力部406は、データ出力装置400に接続されている表示装置がHDR信号(第1映像信号)の輝度範囲の映像出力に対応していない場合、HDRをSDRに変換した第2映像信号及びHDR制御情報を表示装置へ出力する。また、HDMI出力部406は、表示装置がHDR信号(第1映像信号)の輝度範囲の映像出力に対応していか否かを、伝送プロトコル(例えばHDMI)の初期化処理において判定する。
 HDMI出力部406は、DR変換部405又はビデオ復号部401から出力された映像信号、及びHDR制御情報をHDMIのプロトコルに従って出力する。
 なお、データ出力装置400が、放送又はOTTのコンテンツを受信して出力する場合にも、同様の構成を用いることができる。また、データ出力装置400と表示装置とが単一の機器に含まれる場合には、HDMI出力部406は必要ない。
 また、上記説明では、データ出力装置400が管理情報等からメタデータを取得する外部メタ取得部402を備え、ビデオ復号部401が映像ストリームからメタデータを取得する機能を有しているが、データ出力装置400は、いずれか一方のみを有してもよい。
 また、上記説明では、データ出力装置400がHDMIに従ったデータ(映像信号及びHDR制御情報)を出力する例を述べたが、データ出力装置400は任意の伝送プロトコルに従ったデータを出力すればよい。
 このように、データ出力装置400は、映像ストリームを復号することで第1輝度範囲(HDR)の第1映像信号を生成する復号部(ビデオ復号部401)と、第1映像信号の輝度範囲に関する第1メタデータを取得する取得部(ビデオ復号部401及び外部メタ取得部402の少なくとも一方)と、第1メタデータを解釈することで、第1映像信号の輝度範囲を示す特性データを取得する解釈部(HDRメタ解釈部403)と、特性データを、所定の伝送プロトコル(例えばHDMI)に従ったHDR制御情報に変換する制御情報生成部(HDR制御情報生成部404)と、HDR制御情報を所定の伝送プロトコルで出力する出力部(HDMI出力部406)とを備える。
 これによれば、データ出力装置400は、メタデータに含まれる特性データに基づき、制御情報を生成できる。
 また、解釈部(HDRメタ解釈部403)は、さらに、第1メタデータを解釈することで、第1映像信号の輝度範囲を変換するための変換補助データを取得し、データ出力装置400は、さらに、変換補助データに基づいて、第1映像信号の輝度範囲を変換することで第1映像信号の輝度範囲より狭い輝度範囲の第2映像信号を生成する変換部(DR変換部405)を備え、出力部(HDMI出力部406)は、さらに、第1映像信号及び第2映像信号の少なくとも一方を所定の伝送プロトコルで出力する。
 これによれば、データ出力装置400は、メタデータに含まれる変換補助データを用いて第1映像信号の輝度範囲を変更できる。
 また、復号部(ビデオ復号部401)は、さらに、映像ストリームから第1映像信号の輝度範囲に関する第2メタデータ(HDRメタデータ)を取得し、解釈部(HDRメタ解釈部403)は、第1メタデータ及び第2メタデータの少なくとも一方を解析することで特性データ及び変換補助データを取得する。
 また、図6に示すように、静的HDRメタデータは、必須メタデータと選択メタデータとを含み、動的HDRメタデータは、選択メタデータのみを含む。つまり、静的HDRメタデータは常に用いられ、動的HDRメタデータは選択的に用いられる。このように、外部メタ取得部402で取得された第1メタデータ又はビデオ復号部401で取得された第2メタデータは、映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、特性データを含む静的HDRメタデータ(静的メタデータ)を含む。HDR制御情報生成部404は、静的HDRメタデータに含まれる特性データを、所定の伝送プロトコルに従ったHDR制御情報に変換する。HDMI出力部406は、第1映像信号(HDR信号)を出力する場合、静的HDRメタデータに基づくHDR制御情報を出力する。
 また、外部メタ取得部402で取得された第1メタデータ又はビデオ復号部401で取得された第2メタデータは、さらに、映像信号の連続再生単位より細かい単位に対して共通に用いられ、特性データを含む動的HDRメタデータ(動的メタデータ)を含む。HDR制御情報生成部404は、静的HDRメタデータに含まれる特性データ及び動的HDRメタデータに含まれる特定データを、所定の伝送プロトコルに従ったHDR制御情報に変換する。HDMI出力部406は、第1映像信号(HDR信号)を出力する場合、静的HDRメタデータ及び動的HDRメタデータに基づくHDR制御情報を出力する。
 また、本開示に係るデータ生成方法は、データ生成装置が行うデータ生成方法であって、映像信号の輝度範囲に関するメタデータを生成する第1生成ステップと、映像信号とメタデータとを含む映像ストリームを生成する第2生成ステップとを含む。メタデータは、映像信号の輝度範囲を示す特性データと、映像信号の輝度範囲を変換するための変換補助データとを含む。
 [12.HDRメタデータの格納例1]
 図13は、HDRメタデータを格納するSEIメッセージのデータ構造例を示す図である。図13に示すように、HDRメタデータ専用のSEIメッセージが定義されてもよい。つまり、メタデータは、メタデータ専用のメッセージに格納されてもよい。
 または、HDRメタデータは、ユーザーデータ格納用の汎用的なSEIメッセージに格納され、当該メッセージのペイロード部分に当該メッセージにHDRメタデータが格納されることを示す情報(後述するHDR拡張識別情報)が設けられてもよい。
 HDRメタデータは、静的HDRメタデータと動的HDRメタデータとを含む。また、静的HDRメタデータが格納されているかどうかを示すフラグ情報と、動的HDRメタデータが格納されているかどうかを示すフラグ情報とが設けられてもよい。これにより、静的HDRメタデータのみを格納する方法、動的HDRメタデータのみを格納する方法、及び、静的HDRメタデータと動的HDRメタデータとの両方を格納する方法の3通りの格納方法を用いることができる。
 さらに、それぞれのメタデータに対して、解釈が必須である基本データ(基本部)と、解釈がオプションである(解釈が任意である)拡張データ(拡張部)とが定義されてもよい。例えば、メタデータのタイプ(基本データ又は拡張データ)を示すタイプ情報とサイズがヘッダ情報に含まれ、ペイロードにメタデータが格納されるコンテナのフォーマットが定義される。つまり、メタデータは、ペイロードと、ペイロードのデータが基本データであるか拡張データであるかを示す情報と、ペイロードのデータサイズを示す情報とを含む。言い換えると、メタデータはメタデータの種別を示すタイプ情報を含む。例えば、タイプ値が0であるコンテナには基本データが格納される。また、拡張データに対してはタイプ値として1以上の値が割り当てられ、その値により拡張データの種別が示される。
 データ出力装置及び表示装置は、タイプ値を参照して、自身が解釈可能なコンテナのデータを取得する。つまり、データ出力装置(又は表示装置)は、タイプ情報を用いて、データ出力装置(又は表示装置)がメタデータを解釈可能であるかを判定し、データ出力装置(又は表示装置)が当該メタデータを解釈可能である場合、当該メタデータを解釈することで特性データ及び変換補助データを取得する。
 また、HDRメタデータの最大サイズが予め設定され、基本データと拡張データとのサイズの総和が最大サイズ以下となるようにメタデータが生成されてもよい。つまり、メタデータのデータサイズの最大値が規定されており、本開示に係るデータ生成方法は、基本データ及び拡張データの合計のデータサイズを、最大値以下になるようにメタデータを生成する。
 データ出力装置及び表示装置が、この最大サイズ分のメモリを備えることで、HDRメタデータを全てメモリ内に格納できることを保証できる。あるいは、静的HDRメタデータ、又は動的HDRメタデータに対して固定サイズ分のデータ領域を確保しておき、基本データを格納する領域以外は将来拡張用としておくなども可能である。
 このようなデータ構造は、コンテンツの管理情報におけるHDRメタデータの格納に用いられてもよい。
 このようにSEI領域を使うことで、比較的自由にオプション情報を格納できる。
 [13.HDRメタデータの格納例2]
 図14は、ユーザーデータ格納用のSEIメッセージにHDRメタデータが格納される場合のデータ構造の一例を示す図である。メッセージがHDR拡張識別情報と拡張タイプIDとを含む点以外は、図14のデータ構造と同様である。HDR拡張識別情報は、当該メッセージにHDRメタデータが含まれることを示す。拡張タイプIDは、HDRメタデータのバージョン等を示す。つまり、メタデータは、HEVCのSEIメッセージに格納され、当該SEIメッセージは、当該SEIメッセージにメタデータが含まれるか否かを示すHDR拡張識別情報を含む。
 この場合、データ出力装置は、HDR拡張識別情報を含むユーザーデータ格納用のSEIメッセージを受信し、かつデータ出力装置に接続されている表示装置がHDR信号及びHDR制御情報の入力に対応している場合には、HDMIなどの表示装置への出力I/Fのプロトコルに従って、受信したSEIメッセージをそのままコピーして出力する。つまり、データ出力装置は、当該SEIメッセージにメタデータが含まれることを示すHDR拡張識別情報を含むSEIメッセージが取得され、かつ、データ出力先の表示装置がHDR制御情報の入力に対応している場合には、当該SEIメッセージを所定の伝送プロトコル(例えばHDMI)に従ってそのまま出力する。
 これにより、メタデータの内容によらずデータ出力装置は表示装置へHDRメタデータを出力することが可能となる。このような構成により、将来新たなDR変換処理が開発されて新たなHDRメタデータが定義され、この新HDRメタデータに対応する表示装置が新HDRメタデータに対応しないデータ出力装置に接続された場合でも、データ出力装置から表示装置へ新HDRメタデータを出力できる。また、表示装置において新HDRメタデータに応じたDR変換処理の実施が可能となる。
 [14.複数のHDRメタデータの格納例]
 図15は、一つのユーザーデータ格納用のSEIメッセージに複数のHDRメタデータを格納する際のデータ構造の一例を示す図である。本SEIメッセージには、ダイナミックレンジ(輝度範囲)の変換に係る複数の変換モード(方式)に対する複数のHDRメタデータが格納される。
 図15に示すデータ構造は、図14に示すデータ構造に対して、HDRメタデータが提供される変換モードの数を示すフィールド(変換モード数)が追加されている。また、変換モード数の後に、各変換モードに対応する複数のHDRメタデータが順に格納される。
 つまり、本実施の形態に係るデータ生成方法は、データ生成装置が行うデータ生成方法であって、映像信号の輝度範囲を変換する1以上の変換モードに対応する1以上のメタデータ(HDRメタデータ)を生成する第1生成ステップと、映像信号と、1以上のメタデータと、1以上の変換モードの数を示す変換モード数とを含む映像ストリームを生成する第2生成ステップとを含む。
 [15.データ出力装置の構成]
 図16は、本実施の形態に係るデータ出力装置500の構成例を示すブロック図である。このデータ出力装置500は、ビデオ復号部501と、外部メタ取得部502と、HDRメタ解釈部503と、HDR制御情報生成部504と、DR変換部505と、HDMI出力部506とを備える。なお、HDRメタ解釈部503及びDR変換部505の動作が、図12に示すデータ出力装置400と異なる。つまり、ビデオ復号部501、外部メタ取得部502、HDR制御情報生成部504及びHDMI出力部506の動作は、ビデオ復号部401、外部メタ取得部402及びHDR制御情報生成部404及びHDMI出力部406の動作と同様である。
 また、データ出力装置500は、表示装置510(表示部)と接続されており、生成した映像信号及びHDR制御情報を、HDMI等の所定の伝送プロトコルを介して表示装置510に出力する。
 DR変換部505及び表示装置510は、それぞれ、複数のダイナミックレンジの変換モード(変換方式)に対応している。ここで、「対応している」とは、その変換モードの処理を行う機能を有することを意味する。まず、HDRメタ解釈部503は、外部メタ取得部502及びビデオ復号部501から、静的HDRメタデータ及び動的HDRメタデータを取得する。コンテンツの管理情報又は符号化映像ストリームには、複数の変換モードに対する複数のHDRメタデータが格納される。HDRメタ解釈部503は、複数のHDRメタデータが対応する複数の変換モードを、使用可能な複数の変換モードと判定する。
 また、HDRメタ解釈部503は、表示装置510との間で通信すること、又は、別途ネットワークを経由することにより、表示装置510が対応しているHDR信号の変換モードの情報を取得する。そして、HDRメタ解釈部503は、(1)HDRメタデータが対応する変換モードと、(2)DR変換部505が対応している変換モードと、(3)表示装置510が対応している変換モードとに基づいて、(1)ダイナミックレンジの変換処理をデータ出力装置500及び表示装置510とのどちらで行うかと、(2)使用する変換モードとを決定する。
 変換処理をデータ出力装置500で行うと決定された場合、DR変換部505は、HDRメタ解釈部503から指示された変換モードに従って、HDR信号をSDR信号に変換する。変換処理を表示装置510で行うと決定された場合には、データ出力装置500は、映像信号(HDR信号)を表示装置510に送信するとともに、変換に必要なHDRメタデータをHDMIの制御信号(HDR制御情報)として表示装置510に送信する。
 なお、上記説明では、DR変換部505は、複数の変換モードに対応しているが、1以上の変換モードに対応していればよい。この場合、データ出力装置500は、1以上の変換モードに対応する1以上のHDRメタデータを取得すればよい。
 このように、データ出力装置500は、映像ストリームを復号することで第1映像信号を生成する復号部(ビデオ復号部501)と、映像信号の輝度範囲を変換する1以上の第1変換モードに対応する1以上のメタデータを取得する取得部(ビデオ復号部501及び外部メタ取得部502の少なくとも一方)と、1以上のメタデータの一つを解釈することで、第1映像信号の輝度範囲を示す特性データと、第1映像信号の輝度範囲を変換するための変換補助データと、を取得する解釈部(HDRメタ解釈部503)と、特性データを、所定の伝送プロトコル(例えばHDMI)に従ったHDR制御情報に変換する制御情報生成部(HDR制御情報生成部504)と、映像信号の輝度範囲を変換する1以上の第2変換モードに対応しており、変換補助データに基づいて、1以上の第2変換モードのいずれかにより、第1映像信号の輝度範囲の変換処理を行うことで第1映像信号の輝度範囲より狭い輝度範囲の第2映像信号を生成する変換部(DR変換部505)と、第2映像信号及びHDR制御情報を所定の伝送プロトコルで表示装置510へ出力する出力部(HDMI出力部506)とを備える。解釈部(HDRメタ解釈部503)は、さらに、1以上の第1変換モードと、1以上の第2変換モードと、表示装置510が対応している、映像信号の輝度範囲を変換する第3変換モードとに基づいて、データ出力装置500及び表示装置510のどちらで上記変換処理を行うかを決定する。
 これによれば、データ出力装置500は、1以上のメタデータに対応する第1変換モードと、データ出力装置500が対応している第2変換モードと、表示装置510が対応している第3変換モードとに基づき、データ出力装置500及び表示装置510のどちらで変換処理を行うかを決定できる。これにより、データ出力装置500は、適切に変換処理を行う装置を決定できる。
 なお、データ出力装置500が対応している1以上の第2変換モードは、1以上のメタデータに対応する複数の第1変換モードの少なくとも一部を含んでもよいし、1以上の第1変換モードのいずれも含まなくてもよい。同様に、表示装置510が対応している第3変換モードは、1以上の第1変換モードの少なくとも一部を含んでもよいし、1以上の第1変換モードのいずれも含まなくてもよい。また、第3変換モードは、1以上の第2変換モードの少なくとも一部を含んでもよいし、1以上の第2変換モードのいずれも含まなくてもよい。
 [16.DR変換部の構成]
 以下、DR変換部505の構成例を説明する。図17は、DR変換部505の構成例を示すブロック図である。このDR変換部505は、モード判定部511と、N個のモード処理部512と、変換結果出力部513とを備える。N個のモード処理部512は、各々がN個の変換モード(処理方式)の各々に対応し、対応する変換モードの処理を行う。モード判定部511は、HDRメタ解釈部503から指示された変換モードを取得し、変換処理を行うモード処理部512を決定する。つまり、モード判定部511は、HDRメタ解釈部503から指示された変換モードに対応するモード処理部512を選択する。決定されたモード処理部512は、HDR信号(映像信号)に変換処理を行うことでSDR信号(変換後の映像信号)を生成する。変換結果出力部513は、変換後のSDR信号を出力する。
 図18は、DR変換部505の別の例であるDR変換部505Aの構成例を示すブロック図である。このDR変換部505は、モード判定部521と、基本処理部522と、N個の拡張モード処理部523と、変換結果出力部524とを備える。
 基本処理部522は、N個の変換モードに共通の処理であるデフォルトの変換処理を行う。N個の拡張モード処理部523は、基本処理部522の処理に加え、動的HDRメタデータを用いて変換処理のパラメータを動的に制御するなどの拡張処理を行う。また、N個の拡張モード処理部523は、各々がN個の変換モードの各々に対応し、対応する変換モードの拡張処理を行う。例えば、基本処理部522は静的HDRメタデータのみを用いて動作し、拡張モード処理部523は、静的HDRメタデータに加えて、動的HDRメタデータを用いて動作する。
 [17.HDRメタ解釈部の動作例]
 図19及び図20は、HDRメタデータが提供される変換モードと、データ出力装置500における各モードのサポート有無、及び、表示装置510における各モードのサポート有無に基づく、HDRメタ解釈部503の指示内容の例を示す図である。HDRメタ解釈部503は、基本的には、選択可能な組合せの中で、マスター画像に対する再現性が最も高くなる動作を選択する。ここでマスター画像とは、輝度範囲を変更することなく出力した画像である。
 例えば、図19に示す例では、データ出力装置500は、モード1及びモード2に対応しており、表示装置510は、いずれの変換モードにも対応していない。なお、モード1とモード2とでは、モード2のほうがマスター画像に対する再現性が高い。また、HDRメタ解釈部503は、各モードのマスター画像に対する再現性を予め把握している。この場合、HDRメタ解釈部503は、データ出力装置500で変換処理を行うと決定するとともに、モード1及びモード2のうち再現性が高いモード2を選択する。
 また、図20に示す例では、データ出力装置500は、モード1に対応しており、表示装置510は、モード1及びモード2に対応している。この場合、HDRメタ解釈部503は、表示装置510で変換処理を行うと決定するとともに、モード1及びモード2のうち再現性が高いモード2を選択する。また、データ出力装置500は、モード2の変換処理に対応するHDRメタデータをHDMIの制御情報(HDR制御情報)として表示装置510に出力する。表示装置510は、当該制御情報を用いてモード2の変換処理を行う。
 このように、HDRメタ解釈部503は、さらに、1以上のメタデータにそれぞれ対応する1以上の第1変換モードに含まれ、かつデータ出力装置500が対応する1以上の第2変換モードに含まれる変換モードをデータ出力装置500で行う変換処理の変換モードに決定する。具体的には、HDRメタ解釈部503は、さらに、1以上のメタデータにそれぞれ対応する1以上の第1変換モードに含まれ、かつデータ出力装置500が対応する1以上の第2変換モード及び表示装置510が対応する第3変換モードの少なくとも一方に含まれる変換モードをデータ出力装置500又は表示装置510で行う変換処理の変換モードに決定する。
 より具体的には、HDRメタ解釈部503は、複数の第1変換モードに含まれ、かつ複数の第2変換モード及び第3変換モードの少なくとも一方に含まれる複数の変換モードのうち、マスター画像に対する再現性が最も高い変換モードをデータ出力装置500又は表示装置510で行う変換処理の変換モードに決定する。
 言い換えると、データ出力装置500は、データ出力装置500及び表示装置510が対応している変換モードのうち最も再現性が高いモードを選択し、データ出力装置500及び表示装置510のうち選択したモードに対応している装置で変換処理を行うと決定する。
 より具体的には、図19に示すように、HDRメタ解釈部503は、決定された変換処理の変換モードが、第2変換モードに含まれ、かつ、第3変換モードに含まれない場合、データ出力装置500で変換処理を行うと決定する。また、図20に示すように、HDRメタ解釈部503は、決定された変換処理の変換モードが、第3変換モードに含まれ、かつ、第2変換モードに含まれない場合、表示装置510で変換処理を行うと決定する。
 これにより、データ出力装置500は、複数のメタデータに対応する第1変換モードと、データ出力装置が対応している第2変換モードと、表示装置が対応している第3変換モードとに基づき、使用する変換モードを決定できる。また、データ出力装置500は、マスター画像に対する再現性が最も高い変換モードを選択できるので、表示される映像の画質を向上できる。
 図21は、データ出力装置500が表示装置510のパラメータを取得可能であるかどうかに応じて変換処理を決定する例を示す図である。表示装置510のパラメータとは、表示装置510のピーク輝度(表示装置510が表示可能な輝度範囲の最大値)、又は表示装置510が表示可能な表示モードなどである。具体的には、このパラメータは、表示モードとして、現在視聴中の表示モードを示す。例えば、表示モードとは、ノーマルモード、ダイナミックモード及びシネマモード等である。
 図21に示す例では、データ出力装置500は、モード1、モード2及びモード3に対応しており、表示装置510は、モード1に対応している。また、データ出力装置500は、モード1及びモード2のための表示装置510のパラメータを取得可能であり、モード3のための表示装置510のパラメータを取得不可である。また、モード1よりモード2のほうが再現性が高く、モード2よりモード3のほうが再現性が高い。
 この場合、データ出力装置500及び表示装置510が対応しているモードのうち最も再現性が高いモードはモード3であるが、データ出力装置500においてモード3のための表示装置510のパラメータを取得できないため、モード3は除外される。そして、データ出力装置500は、モード3の次に再現性が高く、かつパラメータを取得できるモード2を使用する変換モードとして選択する。そして、データ出力装置500は、モード2に必要なパラメータを表示装置510から取得し、取得したパラメータを用いてモード2の変換処理を行う。
 このように、HDRメタ解釈部503は、さらに、複数のメタデータに対応する複数の第1変換モードの各々のためのパラメータを表示装置510から取得できるか否かに応じて、データ出力装置500又は表示装置510で行う変換処理の変換モードを決定する。具体的には、HDRメタ解釈部503は、複数の第1変換モードに含まれ、かつ複数の第2変換モード及び第3変換モードの少なくとも一方に含まれ、かつ、パラメータを表示装置510から取得できる変換モードをデータ出力装置500又は表示装置510で行う変換処理の変換モードに決定する。
 つまり、データ出力装置500は、データ出力装置500及び表示装置510が対応している変換モードのうち最も再現性が高いモードを選択し、選択したモードにデータ出力装置500のみが対応している場合、当該モードのための表示装置510のパラメータを取得できるか否かを判定する。パラメータを取得できる場合は、データ出力装置500は、当該モードを選択する。一方、パラメータを取得できない場合は、データ出力装置500は、他のモード(次に再現性が高いモード)を選択する。
 これにより、データ出力装置500は、表示装置510のパラメータを取得できるか否かに応じて、使用する変換モードを決定するので、より適切な変換モードを選択できる。
 [18.データ出力装置の構成例2]
 以下、データ出力装置の別の構成例について説明する。図22は、データ出力装置500Aの構成を示すブロック図である。このデータ出力装置500Aは、図16に示すデータ出力装置500に対して、さらに、DC部507を備える。DC部507は、ビデオ復号部501で得られた映像信号の解像度をダウンコンバートする。例えば、DC部507は、映像信号が4Kの場合、当該4Kの映像信号を2Kの映像信号にダウンコンバートする。
 この構成により、データ出力装置500Aは、表示装置510が対応する解像度及びダイナミックレンジに応じて、(1)4KのHDR信号を2KのHDR信号に変換して出力する、(2)4KのHDR信号を2KのHDR信号に変換後、DR変換部505においてダイナミックレンジを変更してから出力する、及び(3)4KのSDR信号を2KのSDR信号に変換して出力する、などの動作を選択的に行うことができる。つまり、データ出力装置500Aは、表示装置510の解像度及びHDR信号のサポートの有無などに応じて動作を切替えることができる。
 図23は、コンテンツにおけるビデオ信号の特性(解像度及びダイナミックレンジ(輝度範囲))及び表示装置510の特性と、データ出力装置500Aの出力信号との組合せ例を示す図である。データ出力装置500Aは、表示装置510の解像度とHDR信号のサポートの有無と整合するように出力信号の形式を選択し、選択した形式の出力信号を生成するようにDC部507及びDR変換部505を制御する。
 例えば、コンテンツにおける映像信号が解像度4KのHDR信号であり、表示装置510が解像度4KのHDR信号の表示をサポートしておらず、かつ、解像度2KのHDR信号の表示をサポートしている場合、データ出力装置500Aは、コンテンツにおける映像信号を解像度2KのHDR信号に変換して出力する(図23の2行目に記載した組み合わせ例を参照)。このとき、映像信号の解像度の変換はDC部507において行われる。
 また、コンテンツにおける映像信号が解像度4KのHDR信号であり、表示装置510が解像度4KのHDR信号および解像度2KのHDR信号の表示をサポートしておらず、かつ、2KのSDR信号の表示をサポートしている場合、データ出力装置500Aは、コンテンツにおける映像信号を解像度2KのSDR信号に変換して出力する(図23の3行目に記載した組み合わせ例を参照)。このとき、映像信号の解像度の変換はDC部507において行われ、輝度範囲の変換はDR変換部505において行われる。
 これにより、表示装置510において、コンテンツのビデオ信号をより忠実に再現できる。なお、データ出力装置500Aは、解像度の変換、又は、図16において説明したようなダイナミックレンジの変換を表示装置510において行うように動作してもよい。
 このように、データ出力装置500Aは、ビデオ復号部501で得られた第1映像信号の解像度を下げることで第3映像信号を生成するダウンコンバート部(DC部507)を備える。変換部(DR変換部505)は、さらに、変換補助データに基づいて、複数の第2変換モードのいずれかにより、第3映像信号の輝度範囲の変換処理を行うことで第3映像信号の輝度範囲より狭い輝度範囲の第4映像信号を生成する。出力部(HDMI出力部506)は、さらに、第3映像信号又は第4映像信号を表示装置510へ出力する。
 これにより、データ出力装置500Aは、例えば、表示装置510等に適した解像度に、映像信号の解像度を変更できる。
 具体的には、表示装置510が、第1映像信号の解像度の映像の表示に対応していない場合、(1)ダウンコンバート部(DC部507)は、第3映像信号を生成し、(2)出力部(HDMI出力部506)は、第3映像信号を表示装置510へ出力する。例えば、図23に示すように、ビデオ信号の解像度が4Kであり、表示装置510の解像度が2Kである場合、2Kの出力信号が出力される。
 また、表示装置510が、第1映像信号の輝度範囲(HDR)の映像の表示に対応していない場合、(1)変換部(DR変換部505)は、第1映像信号の輝度範囲(HDR)より狭い輝度範囲(SDR)の第2映像信号を生成し、(2)出力部(HDMI出力部506)は、第2映像信号及びHDR制御情報を表示装置510へ出力する。例えば、図23に示すように、ビデオ信号のダイナミックレンジ(輝度範囲)がHDRであり、表示装置510がHDRをサポートしていない場合(SDRの場合)、HDRの映像信号がSDRの映像信号に変換され、SDRの映像信号(出力信号)が出力される。
 また、表示装置510が、第1映像信号の解像度の映像の表示に対応しておらず、かつ、第1映像信号の輝度範囲(HDR)の映像の表示に対応していない場合、(1)ダウンコンバート部(DC部507)は、第3映像信号を生成し、(2)変換部(DR変換部505)は、第3映像信号の輝度範囲(HDR)より狭い輝度範囲(SDR)の第4映像信号を生成し、(3)出力部(HDMI出力部506)は、第4映像信号を表示装置510へ出力する。例えば、図23に示すように、ビデオ信号の解像度が4Kであり、ビデオ信号のダイナミックレンジ(輝度範囲)がHDRであり、表示装置510の解像度が2Kであり、表示装置510がHDRをサポートしていない場合(SDRの場合)、2KかつSDRの出力信号が出力される。
 [19.HDR信号及び4K信号を再生する動作モデル]
 図24は、4KのHDR信号、2KのHDR信号、及び4KのSDR信号を、次世代のBlu-ray再生装置において再生し、再生した信号を、HDR対応の4KTV、HDR非対応の4KTV、及びSDR対応の2KTVのいずれかに対して出力する際の動作モデル例を示す図である。
 Blu-ray再生装置は、コンテンツ管理情報に格納される静的HDRメタデータと、ビデオの符号化ストリームに格納される動的HDRメタデータとを取得する。Blu-ray再生装置は、これらのHDRメタデータを用いて、HDMIにより接続された出力先のTVの特性に応じて、ビデオのHDR信号をSDR信号に変換して出力する、又は、HDRメタデータをHDMIの制御信号として出力する。
 HDR信号からSDR信号への変換処理、及びHDR信号から表示装置が適合する輝度範囲の映像信号への変換処理の各々は、複数の方式から選択して実装できるものとする。実装した変換処理に対応するHDRメタデータをコンテンツ制作時にコンテンツ管理情報又はビデオの符号化ストリームに格納することで、変換処理の効果を高めることができる。コンテンツ管理情報又は符号化ストリームには、変換方式毎に複数のHDRメタデータを格納することが可能である。
 なお、Blu-ray再生装置は、図中のオプション変換モジュールB(option conversion module B)又はオプション変換モジュールD(option conversion module D)のように、複数の変換処理部を備えてもよいし、機器のコストと性能のバランスに鑑みて一つの変換処理部のみを備えてもよいし、変換処理部を備えなくてもよい。同様に、HDR対応のTVは、複数の変換処理部を備えてもよいし、一つの変換処理部のみを備えてもよいし、変換処理部を備えなくてもよい。
 また、図14又は図15に示すユーザーデータ格納用のSEIメッセージなどのように、予めフォーマット又は入力時の動作を定めた所定のコンテナにHDRメタデータが格納される。これにより、将来新たな変換処理が開発されて新たなHDRメタデータが定義され、この新HDRメタデータに対応する表示装置が新HDRメタデータに対応しないBlu-ray再生装置に接続された場合でも、Blu-ray再生装置から表示装置へ新HDRメタデータを出力できる。また、表示装置において新HDRメタデータに応じた変換処理の実施が可能となる。これにより新技術が開発された場合に、新HDRメタデータへIDをアサインするなどの簡単な手続きで新技術への対応が可能となる。よって、OTTなど技術進化の早いアプリケーションに対するBlu-rayなどのパッケージメディア規格の競争力を高めることができる。なお、新HDRメタデータに対応したBlu-ray再生装置は、映像データに対して、上記の新たな変換処理を当該再生装置内で施し、表示装置へ処理済の映像データを出力してもよい。
 また、Blu-ray再生装置、及びTVのどちらで変換処理が行われるかは、図19~図21に示した方法などに基づいて決定される。なお、再生装置は、TVの解像度に応じて、4Kの信号を2Kの信号にダウンコンバートして出力してもよい。
 [20.HDRメタデータの格納方法1]
 図25は、静的HDRメタデータ及び2つの動的HDRメタデータの格納方法の一例を示す図である。図20に示すように、本実施の形態における拡張可能なHDR方式では、(a)静的HDRメタデータと、(b)動的HDRメタデータ用クリップ(動的HDRメタデータ)と、(c)動的HDRメタデータとの3つが用いられる。
 (a)静的HDRメタデータは、Blu-ray Disc Association(BDA)等のアプリ規格又は配信システムで規定される、ストリーム毎のメタデータ格納エリア(BDAの場合はプレイリスト)内に格納される。(b)動的HDRメタデータ用クリップ(動的HDRメタデータ)は、BDA等のアプリ規格又は配信システムで規定される、二次的利用用のTSストリーム内に格納される。(c)動的HDRメタデータは、HEVCなどのビデオストリームに含まれるSEIメッセージとして格納される。
 この3つを使い分けることにより、新たなHDR技術を導入する際に、使用するメタデータの組み合わせを変更できる。これにより、新たなHDR技術の導入の条件を変えることができる。例えば、互換性を重視せずに、早く、独自のHDR技術を導入したい場合は、(c)のメタデータのみをつかうことにより、アプリ規格又は配信システムに影響を与えずに独自のHDR技術を導入できる。逆に多少時間はかかっても互換性を重視し、アプリ規格又は配信システムで新技術を規定させたい場合は、(a)と(b)とのメタデータを使うことにより、互換性と新規技術のタイムリーな導入との2つを実現できる。
 [21.HDRメタデータの格納方法2]
 図25で示した、3つのメタデータ(a)~(c)の使い方の例をBlu-rayの場合を例に詳細に説明する。
 まず、新HDR技術の提案者が早期実装を希望する場合について説明する。この場合、(c)のメタデータのみが使用される。(1)提案者は新HDR技術の概要のみを開示する。(2)現行HDR(基本部分)Blu-ray再生機器との互換性を確認するための新技術のメタデータを格納したテストディスクが提供される。(3)BDAは、新技術を非公認オプションとして登録し、非互換性の検証を行わず、その責任を負わない。(4)BDAは、一切の責任を負わない。
 次に、新HDR技術の提案者が新技術を広く普及させるために互換性を重視する場合について説明する。この場合、(a)及び(b)のメタデータが使用される。(1)提案者は技術の詳細を開示する。(2)該当技術をBlu-rayに適応するためのBlu-rayの仕様書案が提出される。(3)該当技術をBlu-rayに適応するためのBlu-rayのテスト仕様案が提出される。(4)テストストリームが提供される。(5)テストディスクが提供される。(6)ベリファイアが更新される。(7)BDAは、新技術を公認オプションとして登録し、新技術を規格書に追加(annex)し、最低限の互換性検証を行う。(8)BDAは、公認オプションとして、新技術がBDAで採用されたことの公表を許可する。
 [22.ユーザーガイダンス表示方法1]
 図26は、HDRからSDRへの変換処理を実行するBlu-ray機器でのユーザーガイダンス表示方法を示す図である。
 HDRからSDRへの変換処理のアルゴリズムが確立されていないため、正確なHDRからSDRへの変換は現状困難である。また、複数のHDRからSDRへの変換処理アルゴリズムを実装することも可能である。
 このため、ユーザがHDR対応ディスクを、HDR非対応TVに接続されたHDR対応Blu-ray機器に挿入した場合には、適切なユーザーガイドを行う必要がある。
 HDR非対応TVに接続されたHDR対応Blu-ray機器が、HDRからSDRへの変換処理の開始を検知した場合は、例えば「ディスクはHDR対応ディスクです。お使いのTVはHDR非対応TVのため、HDR映像ではなく、Blu-ray機器がHDRからSDRへの変換処理を行ったSDR映像を再生します。」等のガイドメッセージを表示する。
 このように、データ出力装置(Blu-ray機器)は、表示装置が第1映像信号(HDR信号)の輝度範囲の映像出力に対応していない場合、第1輝度範囲から第2輝度範囲に変換した第2映像信号(SDR信号)及びHDR制御情報を表示装置へ出力するとともに、第1輝度範囲から第2輝度範囲に変換された第2映像信号が表示される旨を表示装置に表示させる。
 [23.ユーザーガイダンス表示方法2]
 図27は、ディスク内に格納されたHDRからSDRへの変換処理実行時のユーザーガイダンスの表示方法を示す図である。
 HDRからSDRへの変換処理が行われる場合にBlu-ray機器が表示すべきメッセージ(メニュー)がHDRディスク、あるいは、Blu-ray機器内の不揮発メモリなどに格納される。これにより、Blu-ray機器は、HDRからSDRへの変換処理実行時に、メッセージを表示させることができる。この場合、例えば「ディスクはHDR対応ディスクです。お使いのTVはHDR非対応TVのため、HDR映像ではなく、Blu-ray機器がHDRからSDRへの変換処理を行ったSDR映像を再生します。」と表示される。
 [24.ユーザーガイダンス表示方法3]
 図28は、ディスク内に格納されたHDRからSDRへの変換処理実行時のユーザーガイダンスメニューの表示方法を示す図である。
 Blu-ray機器は、Blu-rayのメニューを使うことで、「ディスクはHDR対応ディスクです。お使いのTVはHDR非対応TVのため、HDR映像ではなく、Blu-ray機器がHDRからSDRへの変換処理を行ったSDR映像を再生しますが、再生して良いですか?」等のメッセージを表示することができる。Blu-ray機器は、ユーザが「再生します」ボタンを選択した場合、変換画像の表示を開始する。また、Blu-ray機器は、ユーザが「再生しません」を選択した場合は、再生を中止し、ユーザにHDR非対応Blu-rayディスクの挿入を促すメッセージを表示する。
 このように、データ出力装置(Blu-ray機器)は、表示装置が第1映像信号(HDR信号)の輝度範囲の映像出力に対応していない場合、第1輝度範囲から第2輝度範囲に変換された第2映像信号(SDR信号)を表示させるかどうかを、ユーザが選択するためのメッセージを表示装置に表示させる。
 [25.ユーザーガイダンス表示方法4]
 図29は、ディスク内に格納されたHDRからSDRへの変換処理実行時の処理方法を選択可能なユーザーガイダンスメニューの表示方法を示す図である。
 Blu-ray機器は、Blu-rayにHDRからSDRへの変換処理用のメタデータが格納されている場合は、そのことを表示する。Blu-ray機器は、ユーザが指定の変換方式を選択した場合、より綺麗な変換が可能なことを促すメッセージを表示する。つまり、ディスク内のJava(登録商標)コマンド等により、Blu-ray機器に、どのようなHDRからSDRへの変換処理が実装されているかを判定する。これにより、Blu-ray機器は、「ディスクはHDR対応ディスクです。お使いのTVはHDR非対応TVのため、HDR映像ではなく、Blu-ray機器がHDRからSDRへの変換処理を行ったSDR映像を再生しますが、どの方法を選びますか?(処理1で再生)、(処理3で再生)、(再生しません)」等のHDRからSDRへの変換処理方式の選択メニューを表示することができる。なお、ここで処理1及び処理3は、HDRからSDRへの異なる変換処理である。
 このように、データ出力装置(Blu-ray機器)は、表示装置が第1映像信号(HDR信号)の輝度範囲の映像出力に対応していない場合、第1輝度範囲を第2輝度範囲に変換するための複数の変換方式のうちいずれかを、ユーザが選択するためのメッセージを表示装置に表示させる。
 [26.ユーザーガイダンス表示方法5]
 なお、放送においても同様のメッセージを表示することができる。例えば、HDR信号に対応していないTV又は再生装置は、データ放送のアプリケーションなどを用いて、放送番組がHDR信号であり、で視聴した場合には正しく表示できないことがある旨を示すメッセージを表示する。また、HDR信号に対応したTV又は再生装置は、当該メッセージを表示しなくてもよい。また、メッセージの属性を示すタグ値などにより、当該メッセージがHDR信号に対する警告メッセージであることが示される。HDR信号に対応したTV又は再生装置は、タグ値を参照してメッセージの表示が不要であることを判定する。
 [27.HDRメタデータの伝送方法]
 例えば、動的HDRメタデータ、又は静的HDRメタデータは、HDMIなどで伝送可能なデータ構造である。ここで、HDMIなどの伝送プロトコルの仕様又はバージョンによって、当該伝送プロトコルによりHDRメタデータを表示装置に伝送可能であるかが決まる。
 まず、動的HDRメタデータの伝送方法について説明する。
 例えば、現行のHDMI2.0では、フレーム又はシーン単位で可変となる動的HDRメタデータを伝送できないため、規格を拡張して動的HDRメタデータを伝送するためのパケットを新たに定義する必要がある。この拡張規格のバージョンを2.1とする。
 この場合、HDR対応Blu-ray機器又は放送受信機器などの再生装置とTVなどの表示装置とがHDMI2.1で接続されていれば、再生装置は動的HDRメタデータを表示装置へ送信できるが、2.1よりも以前のバージョンのHDMIで再生装置と表示装置とが接続されている場合には、再生装置は動的HDRメタデータを表示装置へ送信できない。
 まず、再生装置は、表示装置との間で接続可能なHDMIのバージョンが動的HDRメタデータの伝送に対応しているかどうかを判定する。対応していなければ、再生装置は、動的HDRメタデータを用いてHDRからSDRへの変換処理などを行ってから変換後の信号をHDMIにより表示装置へ出力する。
 さらに、再生装置は、表示装置が動的HDRメタデータを用いた変換処理に対応しているかどうかにも基づいて動作してもよい。つまり、再生装置は、表示装置が変換処理に対応していない場合、HDMIのバージョンとしては動的HDRメタデータの伝送が可能であっても、当該再生装置で変換処理を行ってもよい。また、再生装置が動的HDRメタデータを用いた変換処理に対応していない場合には、当該再生装置は、変換処理は行わず、動的HDRメタデータも表示装置へ伝送しなくてもよい。
 図30は、再生装置による動的HDRメタデータの伝送方法のフローチャートである。まず、再生装置は、当該再生装置と表示装置とがHDMI2.0又はそれ以前のバージョンで接続されているかを判定する(S501)。言い換えると、再生装置は、例えば、当該再生装置と表示装置とが動的HDRメタデータの伝送に対応しているHDMI2.1で接続可能かを判定する。具体的には、再生装置は、当該再生装置及び表示装置の両方が、HDMI2.1に対応しているかを判定する。
 再生装置と表示装置とがHDMI2.0又はそれ以前のバージョンで接続されている場合(S501でYes)、再生装置は、動的HDRメタデータを用いて変換処理を行い、変換後の画像データをHDMIにより表示装置に伝送する(S502)。ここで変換処理とは画像データの輝度範囲を変更する処理であり、例えば、表示装置が対応している輝度範囲に合うように、HDRをSDRへ変換する処理、又は、輝度範囲の狭いHDR信号へ変換する処理である。
 一方、再生装置と表示装置とがHDMI2.1又はそれより後のバージョンで接続されている場合(S501でNo)、再生装置は、変換処理を行う前の画像データと、動的HDRメタデータとを、それぞれ異なるタイプのパケットを用いて、HDMIにより表示装置に伝送する(S503)。
 次に、静的HDRメタデータの伝送方法について説明する。
 静的HDRメタデータをHDMIにより伝送する際には、AVI(Auxiliary Video Information) InfoframeなどのInfoframeを用いることができる。しかしながら、HDMI2.0ではAVI Infoframeに格納可能な最大データサイズは27バイトであるため、これを超えるサイズのデータは扱えない。よって、静的HDRメタデータのサイズが、HDMIにより伝送可能な上限値を超える場合には、再生装置は変換処理を行った後のデータを表示装置に伝送する。あるいは、HDMIのバージョンに依存して伝送可能な静的HDRメタデータのサイズが異なる場合には、再生装置は、当該再生装置と表示装置とを接続する際のHDMIのバージョンに基づいて静的HDRメタデータを表示装置に伝送するか、当該再生装置において変換処理を行うかを決定する。
 また、静的HDRメタデータを必須部分と拡張部分とに分け、必須部分のサイズを、現行のHDMI2.0など、特定の伝送プロトコルの特定のバージョンにおいて伝送可能なサイズ以下となるように設定してもよい。例えば、再生装置は、HDMI2.0を用いる場合には、必須部分のみを表示装置に伝送し、HDMI2.1を用いる場合には必須部分と拡張部分とを共に伝送してもよい。さらに、静的HDRメタデータが必須部分と拡張部分とを含むこと、又は、少なくとも必須部分がHDMI2.0などの特定バージョンで伝送可能であることを示す識別情報が、Blu-ray discにおけるPlayList又はPlayItemなどのデータベースに格納されてもよい。
 あるいは、より簡単化して、静的HDRメタデータを、HDMI2.0など、静的HDRメタデータを伝送可能である最も低いバージョンにおいて伝送可能なサイズ以下となるように設定してもよい。なお、プレイリストなどの管理情報又はビデオストリームのSEIにおいて格納されるディスク内の静的HDRメタデータと、HDMIなどにより伝送される静的HDRメタデータとのシンタックスは異なっていてもよい。両者が異なる場合には、再生装置は、ディスク内の静的HDRメタデータを、伝送プロトコルにおける静的HDRメタデータのシンタックスに変換して出力する。
 なお、ここではBlu-rayのコンテンツを例に説明したが、放送又はOTTにおいて使用するメタデータについても同様に扱える。
 図31は、再生装置による静的HDRメタデータの伝送方法のフローチャートである。まず、再生装置は、当該再生装置と表示装置とがHDMI2.0又はそれ以前のバージョンで接続されているかを判定する(S511)。
 再生装置と表示装置とがHDMI2.0又はそれ以前のバージョンで接続されている場合(S511でYes)、再生装置は、静的HDRメタデータの必須部分のみをHDMIにより表示装置に伝送する(S512)。
 一方、再生装置と表示装置とがHDMI2.1又はそれより後のバージョンで接続されている場合(S511でNo)、再生装置は、静的HDRメタデータの必須部分及び拡張部分の両方をHDMIにより伝送する表示装置に伝送する(S513)。
 このように、再生装置は、HDMIのバージョンに応じて、動的HDRメタデータを表示装置へ伝送するか否かを切り替えるが、静的HDRメタデータのうち少なくとも必須部分に関しては、HDMIのバージョンに依らず常に表示装置へ伝送する。
 つまり、再生装置は、表示装置に映像信号を伝送する。再生装置は、当該再生装置と表示装置とを接続する伝送プロトコルのバージョンが第1バージョン(例えば、HDMI2.0)である場合、映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、映像信号の輝度範囲に関する情報である第1メタデータ(静的HDRメタデータ)を表示装置に伝送し、映像信号の連続再生単位より細かい単位に対して共通に用いられ、映像信号の輝度範囲に関する情報である第2メタデータ(動的HDRメタデータ)を表示装置に伝送しない。また、再生装置は、上記伝送プロトコルのバージョンが第2バージョン(例えば、HDMI2.1)である場合、第1メタデータ(静的HDRメタデータ)及び第2メタデータ(動的HDRメタデータ)を共に表示装置へ伝送する。
 これにより、再生装置は、伝送プロトコルのバージョンに応じて適切なメタデータを表示装置へ伝送できる。
 また、再生装置は、上記伝送プロトコルのバージョンが第1バージョン(例えば、HDMI2.0)である場合(S501でYes)、第2メタデータ(動的HDRメタデータ)を用いて映像信号の輝度範囲を変換する変換処理を行い、変換後の映像信号を表示装置に伝送する(S502)。
 これにより、動的HDRメタデータを表示装置に伝送できず、表示装置で変換処理を行えない場合には、再生装置で変換処理を行うことができる。
 また、上記伝送プロトコルのバージョンが第2のバージョン(例えばHDMI2.1)であり、かつ、表示装置が変換処理に対応していない場合、再生装置は、変換処理を行い、変換後の映像信号を表示装置に伝送し、第2メタデータを表示装置に伝送しない。また、上記伝送プロトコルのバージョンが第2のバージョン(例えばHDMI2.1)であり、かつ、表示装置が変換処理に対応している場合、再生装置は、変換処理を行わずに映像信号及び第2メタデータを表示装置に伝送する。
 これにより、再生装置及び表示装置のうちの適切な装置で変換処理を実行できる。
 また、再生装置が、第2メタデータ(動的HDRメタデータ)を用いて映像信号の輝度範囲を変換する変換処理に対応していない場合、再生装置は、変換処理を行わず映像信号を表示装置へ伝送し、第2メタデータ(動的HDRメタデータ)を表示装置へ伝送しない。
 [28.輝度値の調整]
 これまで、HDR信号を忠実に再現するためのHDRメタデータの扱い方、及び、再生装置におけるHDRからSDRへの変換などについて説明した。しかしながら、HDR信号は従来のSDR信号よりも大幅に高いピーク輝度を有するため、再生装置は、TV等の表示装置におけるパネル或いは信号処理回路の性能、又は、人体への影響などを考慮して、映像のピーク輝度を制御してもよい。なお、以下で述べる処理(再生方法)は、Blu-ray機器等の再生装置で行われてもよいし、TV等の表示装置で行われてもよい。言い換えると、以下で述べる再生装置とは映像を再生する機能を有すればよく、上述した再生装置(Blu-ray機器等)と表示装置(TV等)とを含む。
 ここで、TVパネルの各画素において出力可能な輝度値の上限が1000nitであっても、同時に1000nitの輝度で出力できる領域は、画面の50%に制限されるなどが想定される。このとき、HDR信号においては、画面の70%の領域が1000nitであったとしても、信号値をそのまま出力することができない。そこで、再生装置は、以下の再生条件などに基づいて、HDR信号を再生する際の各画素の輝度値を制御してもよい。
 まず、第1の方法について説明する。再生装置は、基準時間間隔Tにおける画面間の輝度の変化量が閾値P以下になるように輝度値を調整する。ここで基準時間間隔Tは、例えば、ビデオのフレームレートの逆数の整数倍である。
 閾値Pは輝度の絶対値、又は、輝度値の変化の割合などである。この閾値Pは、画像の点滅が人体に及ぼす影響、又は、TVパネルにおける信号値の変化への追従性能に基づいて決定される。
 また、画面内において輝度値の変化量が閾値Pを超える画素の数が所定の割合以下となるように条件が設定されてもよい。さらには、画面を複数の領域に分割し、領域毎に同一、又は異なる条件が設定されてもよい。
 次に、第2の方法について説明する。再生装置は、基準輝度S以上の輝度を有する画素の数、又は、画面内の全画素に占める当該画素の割合が閾値Q以下になるように輝度値を調整する。
 基準輝度S及び閾値Qは、人体への影響、又はTVパネルにおいて各画素に対して同時に印加できる電圧の上限値などに基づいて決定される。
 また、第1の方法及び第2の方法に用いられるパラメータ(閾値P、基準輝度S及び閾値Q)をTVパネルの性能に基づいて設定する場合には、当該パラメータの値はTV毎に設定できる。
 以下、第1の方法における画素値の制御方法について説明する。例えば、時刻tのフレームを構成する複数の画素のピーク輝度がL1であったとする。時刻t+Tのフレームにおいて座標が(i,j)である画素の輝度値をI(i,j)とすると、再生装置は、I(i,j)とL1との差分の絶対値が閾値Pを超える画素については、差分が閾値P以下となるように輝度値を調整する。この処理は、画面全体に対して行ってもよいし、処理を並列して行うために、画面を分割した領域毎に行ってもよい。例えば、再生装置は、画面を水平方向及び垂直方向のそれぞれに分割し、各領域内での輝度の変化量が閾値P以下となるように輝度値を調整する。
 また、基準時間間隔Tとして、TVパネルにおいて画像を表示する際のフレームの間隔を用いることが想定されるが、直前のフレームの輝度値のみに基づいて輝度値を調整すると、フレーム間での輝度値の連続性が損なわれることがある。従って、所定の時定数を設定し、再生装置は、設定された時定数の範囲内の各フレームのピーク輝度を重み付け加算することで輝度値(上記L1)を決定してもよい。このとき、輝度値の変化量が閾値P以下となるように、予め時定数及び重み付けの係数が設定される。
 次に、第2の方法における画素値の制御方法を説明する。この制御方法として以下の2通りの方法がある。1つ目の方法は、輝度値が所定値を超える画素については、輝度値をクリップする方法である。例えば、輝度値が所定値を超える画素の輝度値が当該所定値に調整される。
 2つ目の方法は、輝度値を一律にクリップするのではなく、Knee pointを設定するなどして、画素間の相対的な輝度値の割合をなるべく保持するように、画面内の各画素の輝度値を全体的に低下させる方法である。あるいは、低輝度部分の輝度値は保持したまま、高輝度部分の輝度値を低下させてもよい。
 一例として、TVパネルの画素数が8メガピクセルであり、画面内の全画素の輝度値の総和が8メガ×500nit=4ギガnit以下となるように制限されるとする。ここで、コンテンツのHDR信号の輝度値が、画面内の半分の領域A(4メガピクセル)では400nitであり、残り半分の領域B(4メガピクセル)では1000nitであったとする。このとき、輝度値を一律にクリップする場合には、領域Bの輝度値が全て600nitにクリップされる。この結果、全画素の輝度値の総和は、4メガ×400+4メガ×600=4ギガnitとなり、上記制限を満たす。
 なお、HDR信号の再生時だけでなく、HDR信号を生成する際にも、上記第1の方法又は第2の方法の条件を満たすように、ビデオ又は静止画におけるフレーム内の画素毎の輝度値が決定されてもよい。
 図32は、HDR信号の再生における輝度値の制御方法を示すフローチャートである。まず、再生装置は、画面間の輝度値の変化量、又は画面内の輝度値が再生条件を満たすかを判定する(S521)。具体的には、上述したように、再生装置は、画面間の輝度値の変化量が閾値以下であるか、又は画面内の輝度値が閾値以下であるかを判定する。
 画面間の輝度値の変化量、又は画面内の輝度値が再生条件を満たす場合、つまり、画面間の輝度値の変化量が閾値以下である、又は画面内の輝度値が閾値以下である場合(S521でYes)、再生装置は、入力されたHDR信号の輝度値と同一の輝度値の信号を出力する(S522)。つまり、再生装置は、HDR信号の輝度値を調整せず、そのまま出力する。
 一方、画面間の輝度値の変化量、又は画面内の輝度値が再生条件を満たさない場合、つまり、画面間の輝度値の変化量が閾値を超える、又は画面内の輝度値が閾値を超える場合(S521でNo)、再生装置は、再生条件を満たすように、各画素の輝度値を調整し、調整後の輝度値を出力する(S523)。つまり、再生装置は、画面間の輝度値の変化量が閾値以下になるように、又は画面内の輝度値が閾値以下になるように、各画素の輝度値を調整する。
 以上のように、本実施の形態に係る再生装置は、映像信号を再生する。映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなる。つまり、映像信号はHDR信号である。
 上記第1の方法で説明したように、再生装置は、映像信号における画面間の輝度値の変化量が予め定められた第1閾値を超えるかを判定する(S521)。例えば、再生装置は、映像信号のフレームレートの逆数の整数倍である基準時間間隔における輝度値の変化量が第1閾値を超えるかを判定する。
 輝度値の変化量が第1閾値を超えると判定された場合(S521でNo)、再生装置は、映像信号の輝度値を下げる調整処理を行う(S523)。具体的には、再生装置は、輝度値の変化量が第1閾値を超える画素に対して、当該画素の輝度値の変化量が第1閾値以下になるように当該画素の輝度値を調整する。
 これにより、再生装置は、映像信号の輝度値が表示装置の表示能力を超える場合に、映像信号の輝度値を下げることで、表示装置で適切に表示できる映像信号を生成できる。また、再生装置は、映像信号の輝度値の変化量が大きいことにより視聴者に悪影響を与える可能性がある場合に、映像信号の輝度値を下げることで、当該悪影響を低減できる。
 具体的には、再生装置は、ステップS521において、映像信号に含まれる第1画像のピーク輝度と、映像信号に含まれる、第1画像より後の第2画像に含まれる複数の画素の輝度値の各々との差分が第1閾値を超えるかを判定する。再生装置は、ステップS523において、上記差分が第1閾値を超える画素に対して、当該画素の差分が第1閾値以下になるように当該画素の輝度値を調整する。
 または、再生装置は、ステップS521において、映像信号に含まれる画像に含まれる複数の画素のうち、輝度値の変化量が第1閾値を超える画素の割合が第2閾値を超えるかを判定する。再生装置は、ステップS523において、上記割合が第2閾値を超える場合、上記割合が第2閾値以下になるように複数の画素の輝度値を調整する。
 または、再生装置は、ステップS521において、画面が分割されることで得られた複数の領域毎に、当該領域の画面間の輝度値の変化量が第1閾値を超えるかを判定する。再生装置は、ステップS523において、輝度値の変化量が第1閾値を超えると判定された領域に対して、当該領域の輝度値を下げる調整処理を行う。
 または、上記第2の方法で説明したように、再生装置は、映像信号に含まれる画像の輝度値が予め定められた第1閾値を超えるかを判定する(S521)。画素の輝度値が第1閾値を超えると判定された場合(S521でNo)、画像の輝度値を下げる調整処理を行う(S523)。
 これにより、再生装置は、映像信号の輝度値が表示装置の表示能力を超える場合に、映像信号の輝度値を下げることで、表示装置で適切に表示できる映像信号を生成できる。また、再生装置は、映像信号の輝度値が高いことにより視聴者に悪影響を与える可能性がある場合に、映像信号の輝度値を下げることで、当該悪影響を低減できる。
 具体的には、再生装置は、ステップS521において、画像に含まれる複数の画素のうち、輝度値が第1閾値を超える画素の数を判定する。再生装置は、ステップS523において、輝度値が第1閾値を超える画素の数が第3閾値を超える場合、輝度値が第1閾値を超える画素の数が第3閾値以下になるように、画像の輝度値を下げる。
 または、再生装置は、ステップS521において、画像に含まれる複数の画素のうち、輝度値が第1閾値を超える画素の割合を判定する。再生装置は、ステップS523において、上記割合が第3閾値を超える場合、当該割合が第3閾値以下になるように、画像の輝度値を下げる。
 また、上記第1閾値、第2閾値及び第3閾値は、映像信号を表示する表示装置において複数の画素に対して同時に印加できる電圧の上限値に基づいて算出される値である。
 [29.メタデータの配置方法]
 以下、ビデオストリーム内での静的HDRメタデータと動的HDRメタデータの配置方法について説明する。
 静的HDRメタデータをSEIなどを用いてビデオストリーム内に格納する際には、GOPなどのランダムアクセス単位における復号順で先頭のアクセスユニット内に静的HDRメタデータを格納してもよい。このとき、SEIを含むNALユニットは、ビデオの符号化データを格納するNALユニットよりも復号順が前となるように配置される。
 また、プレイリストなどの管理情報とビデオストリームとの両方に動的HDRメタデータを格納する場合には、これらの二つの動的HDRメタデータとして同一のメタデータが用いられる。
 また、動的HDRメタデータは、ランダムアクセス単位で切替え可能であり、ランダムアクセス単位内では一定である。例えば、動的HDRメタデータを格納するSEIは、ランダムアクセス単位における先頭アクセスユニットに格納される。ストリームの途中から再生開始する際にはランダムアクセス単位の先頭から復号が開始される。また、IピクチャとPピクチャのみを再生して高速再生するなどの特殊再生時においても、ランダムアクセス単位の先頭アクセスユニットは必ず復号される。よって、ランダムアクセス単位の先頭アクセスユニットにHDRメタデータを格納することで、再生装置は、必ずHDRメタデータを取得できる。
 MPEG-4 AVC又はHEVCのストリームにおいては、ランダムアクセス単位における復号順で先頭のアクセスユニットにおいてのみ、復号時の初期化情報であるSequence Parameter Set(SPS)が含まれる。このSPSをランダムアクセス単位の開始を示す情報として用いることができる。
 また、静的HDRメタデータと動的HDRメタデータは、それぞれ異なるSEIメッセージに格納されてもよい。両者のSEIメッセージは、SEIメッセージのタイプ、又は、SEIメッセージのペイロードに含まれる識別情報に基づいて識別される。例えば、再生装置は、HDMIにより静的HDRメタデータのみを送信する場合には、静的HDRメタデータを含むSEIメッセージのみを抽出して、ペイロードに含まれるメタデータをそのままHDMIにより伝送できる。これにより、再生装置がSEIメッセージのペイロードを解析して静的HDRメタデータを取得する処理が不要となる。
 [30.デュアルディスクの再生動作1]
 以上では、HDR信号のみが格納されたHDRディスクの再生動作について説明した。
 次に、HDR信号とSDR信号との両方が格納されたデュアルディスクに格納される多重化データについて図33を用いて説明する。図33は、デュアルディスクに格納される多重化データについて説明するための図である。
 デュアルディスクでは、図33に示すように、HDR信号とSDR信号とがそれぞれ異なる多重化ストリームとして格納される。例えば、Blu-rayなどの光ディスクにおいては、M2TSと呼ばれるMPEG-2 TSベースの多重化方式により、ビデオやオーディオ、字幕、グラフィックスなど複数メディアのデータが1本の多重化ストリームとして格納される。これらの多重化ストリームは、プレイリストなどの再生制御用のメタデータから参照され、再生時にはプレーヤがメタデータを解析することで再生する多重化ストリーム、あるいは、多重化ストリームに格納される個別の言語のデータを選択する。本例では、HDR用とSDR用とのプレイリストを個別に格納し、それぞれのプレイリストがHDR信号、あるいは、SDR信号を参照するケースを示す。また、HDR信号とSDR信号の両方が格納されていることを示す識別情報などを別途示しても良い。
 同一の多重化ストリームにHDR信号とSDR信号との両方を多重化することも可能であるが、MPEG-2 TSにおいて規定されるT-STD(System Target Decoder)などのバッファモデルを満たすように多重化する必要があり、特に、予め定められたデータの読み出しレートの範囲内で、ビットレートの高いビデオを2本多重化するのは困難である。このため、多重化ストリームを分離することが望ましい。
 オーディオ、字幕、あるいはグラフィックスなどのデータは、それぞれの多重化ストリームに対して格納する必要があり、1本に多重化する場合に比べてデータ量が増加する。ただし、データ量の増加は、圧縮率の高いビデオ符号化方式を用いてビデオのデータ量を削減することができる。例えば、従来のBlu-rayにおいて使用していたMPEG-4 AVCを、HEVC(High Efficiency Video Coding)に変えることで、1.6~2倍の圧縮率向上が見込まれる。また、デュアルディスクに格納するのは、2KのHDRとSDRとの組み合わせ、4KのSDRと2KのHDRとの組み合わせなど、2Kを2本、あるいは、2Kと4Kとの組合せとするなど、4Kを2本格納することは禁止することにより、光ディスクの容量に収まる組合せのみを許容してもよい。
 [31.まとめ]
 4K対応BDまたはHDR対応BDを再生するBlu-ray機器は、2K_SDR対応TV、2K_HDR対応TV、4K_SDR対応TV、及び、4K_HDR対応TVの4つのTVに対応する必要がある。具体的には、Blu-ray機器は、3組のHDMI/HDCP規格(HDMI1.4/HDCP1.4、HDMI2.0/HDCP2.1、HDMI2.1/HDCP2.2)をサポートする必要がある。
 さらに、Blu-ray機器は、4種類のBlu-rayディスク(2K_SDR対応BD、2K_HDR対応BD、4K_SDR対応BD、及び、4K_HDR対応BD)の再生を行う場合、そのBD(コンテンツ)毎、及び、接続されている表示装置(TV)毎に、適切な処理とHDMI/HDCPとを選択する必要がある。さらに、ビデオにグラフィックを合成する場合も、BDの種類と接続されている表示装置(TV)の種類により、処理を変える必要がある。
 このため、Blu-ray機器の内部処理が非常に複雑になる。上記実施の形態3においては、Blu-ray機器内部処理を比較的簡単にするための各種手法を提供した。
 [1]HDR非対応のTVにHDR信号を表示する場合は、HDRからSDRへの変換が必要になる。これに対し、上記実施の形態3では、この変換をBlu-ray機器においてオプション化するために、デュアルストリームディスク(Dual Streams Disc)というBDの構成を提案した。
 [2]また、上記実施の形態3では、グラフィックストリームに制限を加え、ビデオストリームとグラフィックストリームとの組み合わせの種類を減らした。
 [3]上記実施の形態3では、デュアルストリームディスクと、グラフィックストリームの制限とにより、Blu-ray機器内での複雑な処理の組み合わせ数を大幅に減らしている。
 [4]上記実施の形態3では、疑似HDR変換を導入した場合でも、デュアルストリームディスクの処理に対して矛盾が生じない、内部処理及びHDMI処理を提示した。
 本開示の変換方法では、HDR映像をSDRTVで表示する場合において、表示するSDRTVのピーク輝度が100nitを超える(通常200nit以上)ことを利用して、HDR映像を100nit以下のSDR映像に変換するのではなく、100nitを超える領域の階調をある程度保つよう変換し、元のHDRに近い疑似HDR映像に変換してSDRTVに表示させることができる「HDR→疑似HDR変換処理」を実現する。
 また、変換方法では、SDRTVのディスプレイ特性(最高輝度、入出力特性、および表示モード)によって「HDR→疑似HDR変換処理」の変換方法を切り替えてもよい。
 ディスプレイ特性情報の取得方法としては、(1)HDMI(登録商標)やネットワークを通して自動取得すること、(2)ユーザにメーカー名、品番等の情報入力させることで生成すること、および(3)メーカー名や品番等の情報を使ってクラウド等から取得することが考えられる。
 また、変換装置100のディスプレイ特性情報の取得タイミングとしては、(1)疑似HDR変換する直前に取得すること、および(2)表示装置200(SDRTV等)と初めて接続する時(接続が確立した時)に取得することが考えられる。
 また、変換方法では、HDR映像の輝度情報(CAL、CPL)によって変換方法を切り替えてもよい。
 例えば、変換装置100のHDR映像の輝度情報の取得方法としては、(1)HDR映像に付随したメタ情報として取得すること、(2)ユーザにコンテンツのタイトル情報を入力させることで取得すること、および(3)ユーザに有力させた入力情報を使ってクラウド等から取得すること等が考えられる。
 また、変換方法の詳細としては、(1)DPLを超えないように変換し、(2)CPLがDPLになるように変換し、(3)CALおよびその周辺以下の輝度は変更せず、(4)自然対数を用いて変換し、(5)DPLでクリップ処理をする。
 また、変換方法では、疑似HDRの効果を高めるために、SDRTVの表示モード、表示パラメータなどの表示設定を、表示装置200に送信して切り替えることも可能であり、例えば、ユーザに表示設定を促すメッセージを画面に表示してもよい。
 [32.疑似HDRの必要性1]
 次に、疑似HDRの必要性について図34A~図34Cを用いて説明する。
 図34Aは、HDRTV内で、HDR信号を変換してHDR表示を行う表示処理の一例を示す図である。
 図34Aに示すように、HDR映像を表示する場合、表示装置がHDRTVであっても、HDRの輝度範囲の最大値(ピーク輝度(HPL(HDR Peak Luminance):例1500nit))をそのまま表示することができない場合がある。この場合、HDRのEOTFを用いた逆量子化を行った後のリニアな信号を、その表示装置の輝度範囲の最大値(ピーク輝度(DPL(Display Peak Iuminance):例750nit))に合わせるための輝度変換を行う。そして、輝度変換を行うことで得られた映像信号を表示装置に入力することで、その表示装置の限界である最大値の輝度範囲に合わせたHDR映像を表示することができる。
 図34Bは、HDR対応の再生装置とSDRTVとを用いて、HDR表示を行う表示処理の一例を示す図である。
 図34Bに示すように、HDR映像を表示する場合、表示装置がSDRTVであれば、表示するSDRTVの輝度範囲の最大値(ピーク輝度(DPL:例300nit))が100nitを超えることを利用して、図34BのHDR対応の再生装置(Blu-ray機器)内の「HDR→疑似HDR変換処理」で、HDRTV内で行っている、「HDRのEOTF変換」とSDRTVの輝度範囲の最大値であるDPL(例:300nit)を使った「輝度変換」を行い、「輝度変換」を行うことで得られた信号をSDRTVの「表示装置」に直接入力できれば、SDRTVを使っても、HDRTVと同じ効果を実現することができる。
 しかしながら、SDRTVには、このような信号を、外部から直接入力するための手段が無いため、実現できない。
 図34Cは、標準インターフェースを介して互いに接続したHDR対応の再生装置とSDRTVと用いて、HDR表示を行う表示処理の一例を示す図である。
 図34Cに示すように、通常、SDRTVが備える入力インターフェース(HDMI(登録商標)等)を使って、図34Bの効果を得られるような信号をSDRTVに入力する必要がある。SDRTVでは、入力インターフェースを介して入力した信号は、「SDRのEOTF変換」と「モード毎の輝度変換」と「表示装置」を順に通過し、その表示装置の最大値の輝度範囲に合わせた映像を表示する。このため、HDR対応のBlu-ray機器内で、SDRTVで入力インターフェースの直後に通過する、「SDRのEOTF変換」と「モード毎の輝度変換」とをキャンセルできるような信号(疑似HDR信号)を生成する。つまり、HDR対応のBlu-ray機器内で、「HDRのEOTF変換」とSDRTVのピーク輝度(DPL)を使った「輝度変換」との直後に、「モード毎の逆輝度変換」と「逆SDRのEOTF変換」とを行うことで、「輝度変換」直後の信号を「表示装置」に入力した場合(図34Cの破線矢印)と同じ効果を疑似的実現する。
 [33.疑似HDRの必要性2]
 通常のSDRTVは入力信号が100nitであるが、視聴環境(暗い室:シネマモード、明るい部屋:ダイナミックモード等)に合わせて200nit以上の映像表現が可能な能力を持つ。しかし、SDRTVへの入力信号の輝度上限が100nitに決められていたため、その能力を直接つかうことはできなかった。
 HDR映像をSDRTVで表示する場合において、表示するSDRTVのピーク輝度が100nitを超える(通常200nit以上)ことを利用して、HDR映像を100nit以下のSDR映像に変換するのではなく、100nitを超える輝度範囲の階調をある程度保つように、「HDR→疑似HDR変換処理」を行っている。このため、元のHDRに近い疑似HDR映像としてSDRTVに表示させることができる。
 この「HDR→疑似HDR変換処理」技術をBlu-rayに応用した場合は、図35に示すように、HDRディスクにはHDR信号のみを格納し、Blu-ray機器にSDRTVを接続した場合、Blu-ray機器が、「HDR→疑似HDR変換処理」を行い、HDR信号を疑似HDR信号に変換してSDRTVに送る。これにより、SDRTVは、受信した疑似HDR信号から輝度値に変換することで、疑似的なHDR効果を持った映像を表示させることができる。このように、HDR対応TVが無い場合でも、HDR対応のBDとHDR対応のBlu-ray機器を用意すれば、SDRTVであっても、SDR映像よりも高画質な疑似HDR映像を表示させることができる。
 従って、HDR映像を見るためにはHDR対応TVが必要と考えられていたが、HDR的な効果を実感できる疑似HDR映像を、既存のSDRTVで見ることができる。これにより、HDR対応Blu-rayの普及が期待できる。
 [34.効果等]
 放送、Blu-ray等のパッケージメディア、OTT等のインターネット配信により送られてきたHDR信号を、HDR-疑似HDR変換処理を行うことで、疑似HDR信号に変換する。これにより、HDR信号を疑似HDR映像として既存のSDRTVで表示することが可能となる。
 [35.EOTFについて]
 ここで、EOTFについて、図36Aおよび図36Bを用いて説明する。
 図36Aは、HDRおよびSDRのそれぞれに対応したEOTF(Electro-Optical Transfer Function)の例について示す図である。
 EOTFは、一般的にガンマカーブと呼ばれるものであり、コード値と輝度値との対応を示し、コード値を輝度値に変換するものである。つまり、EOTFは、複数のコード値と輝度値との対応関係を示す関係情報である。
 また、図36Bは、HDRおよびSDRのそれぞれに対応した逆EOTFの例について示す図である。
 逆EOTFは、輝度値とコード値との対応を示し、EOTFとは逆に輝度値を量子化してコード値に変換するものである。つまり、逆EOTFは、輝度値と複数のコード値との対応関係を示す関係情報である。例えば、HDRに対応した映像の輝度値を10ビットの階調のコード値で表現する場合、10,000nitまでのHDRの輝度範囲における輝度値は、量子化されて、0~1023までの1024個の整数値にマッピングされる。つまり、逆EOTFに基づいて量子化することで、10,000nitまでの輝度範囲の輝度値(HDRに対応した映像の輝度値)を、10ビットのコード値であるHDR信号に変換する。HDRに対応したEOTF(以下、「HDRのEOTF」という。)またはHDRに対応した逆EOTF(以下、「HDRの逆EOTF」という。)においては、SDRに対応したEOTF(以下、「SDRのEOTF」という。)またはSDRに対応した逆EOTF(以下、「SDRの逆EOTF」という。)よりも高い輝度値を表現することが可能であり、例えば、図36Aおよび図36Bにおいては、輝度の最大値(ピーク輝度)は、10,000nitである。つまり、HDRの輝度範囲は、SDRの輝度範囲を全て含み、HDRのピーク輝度は、SDRのピーク輝度より大きい。HDRの輝度範囲は、SDRの輝度範囲の最大値である100nitから、10,000nitまで、最大値を拡大した輝度範囲である。
 例えば、HDRのEOTFおよびHDRの逆EOTFは、一例として、米国映画テレビ技術者協会(SMPTE)で規格化されたSMPTE 2084がある。
 なお、以降の明細書中において、図36A及び図36Bに記載されている0nitからピーク輝度である100nitまでの輝度範囲は、第1輝度範囲と記載される場合がある。同様に、図36A及び図36Bに記載されている、0nitからピーク輝度である10,000nitまでの輝度範囲は、第2輝度範囲と記載される場合がある。
 [36.変換装置および表示装置]
 図37は、実施の形態の変換装置および表示装置の構成を示すブロック図である。図38は、実施の形態の変換装置および表示装置により行われる変換方法および表示方法を示すフローチャートである。
 図37に示すように、変換装置100は、HDRのEOTF変換部101、輝度変換部102、逆輝度変換部103、および逆SDRのEOTF変換部104を備える。また、表示装置200は、表示設定部201、SDRのEOTF変換部202、輝度変換部203、および表示部204を備える。
 変換装置100および表示装置200の各構成要素についての詳細な説明は、変換方法および表示方法の説明において行う。
 [37.変換方法および表示方法]
 変換装置100が行う変換方法について、図38を用いて説明する。なお、変換方法は、以下で説明するステップS101~ステップS104を含む。
 まず、変換装置100のHDRのEOTF変換部101は、逆HDRのEOTF変換が行われたHDR映像を取得する。変換装置100のHDRのEOTF変換部101は、取得したHDR映像のHDR信号に対して、HDRのEOTF変換を実施する(S101)。これにより、HDRのEOTF変換部101は、取得したHDR信号を、輝度値を示すリニアな信号に変換する。HDRのEOTFは、例えばSMPTE 2084がある。
 次に、変換装置100の輝度変換部102は、HDRのEOTF変換部101により変換されたリニアな信号を、ディスプレイ特性情報とコンテンツ輝度情報とを用いて変換する第1輝度変換を行う(S102)。第1輝度変換において、HDRの輝度範囲に対応した輝度値(以下、「HDRの輝度値」という。)を、ディスプレイの輝度範囲に対応した輝度値(以下、「ディスプレイ輝度値」という。)に変換する。詳細は後述する。
 上記のことから、HDRのEOTF変換部101は、映像の輝度値が量子化されることで得られたコード値を示す第1輝度信号としてのHDR信号を取得する取得部として機能する。また、HDRのEOTF変換部101および輝度変換部102は、取得部により取得されたHDR信号が示すコード値を、ディスプレイ(表示装置200)の輝度範囲に基づいて決定する、HDRの輝度範囲の最大値(HPL)よりも小さく、かつ、100nitよりも大きい最大値(DPL)であるディスプレイの輝度範囲に対応するディスプレイ輝度値へ変換する変換部として機能する。
 より具体的には、HDRのEOTF変換部101は、ステップS101において、取得したHDR信号と、HDRのEOTFとを用いて、取得したHDR信号が示す第1コード値としてのHDRのコード値について、HDRのコード値にHDRのEOTFにおいて関係付けられたHDRの輝度値を決定する。なお、HDR信号は、HDRの輝度範囲における輝度値と、複数のHDRのコード値とを関係付けたHDRの逆EOTFを用いて、映像(コンテンツ)の輝度値が量子化されることで得られたHDRのコード値を示す。
 また、輝度変換部102は、ステップS102において、ステップS101で決定したHDRの輝度値について、当該HDRの輝度値に予め関係付けられた、ディスプレイの輝度範囲に対応するディスプレイ輝度値を決定し、HDRの輝度範囲に対応するHDRの輝度値を、ディスプレイの輝度範囲に対応するディスプレイ輝度値へ変換する第1輝度変換を行う。
 また、変換装置100は、ステップS102の前に、映像(コンテンツ)の輝度の最大値(CPL:Content Peak luminance)および映像の平均輝度値(CAL:Content Average luminance)の少なくとも一方を含むコンテンツ輝度情報をHDR信号に関する情報として取得している。CPL(第1最大輝度値)は、例えば、HDR映像を構成する複数の画像に対する輝度値のうちの最大値である。また、CALは、例えば、HDR映像を構成する複数の画像に対する輝度値の平均である平均輝度値である。
 また、変換装置100は、ステップS102の前に、表示装置200から表示装置200のディスプレイ特性情報を取得している。なお、ディスプレイ特性情報とは、表示装置200が表示できる輝度の最大値(DPL)、表示装置200の表示モード(後述参照)、入出力特性(表示装置が対応するEOTF)などの表示装置200の表示特性を示す情報である。
 また、変換装置100は、推奨表示設定情報(後述参照、以下、「設定情報」ともいう。)を表示装置200に送信してもよい。
 次に、変換装置100の逆輝度変換部103は、表示装置200の表示モードに応じた逆輝度変換を行う。これにより、逆輝度変換部103は、ディスプレイの輝度範囲に対応した輝度値を、SDRの輝度範囲(0~100〔nit〕)に対応する輝度値に変換する第2輝度変換を行う(S103)。詳細は後述する。つまり、逆輝度変換部103は、ステップS102で得られたディスプレイ輝度値について、当該ディスプレイ輝度値に予め関係付けられた、100nitを最大値とするSDRの輝度範囲に対応する第3輝度値としてのSDRに対応した輝度値(以下、「SDRの輝度値」という。)SDRの輝度値を決定し、ディスプレイの輝度範囲に対応するディスプレイ輝度値を、SDRの輝度範囲に対応するSDRの輝度値へ変換する第2輝度変換を行う。
 そして、変換装置100の逆SDRのEOTF変換部104は、逆SDRのEOTF変換を行うことで、疑似HDR映像を生成する(S104)。つまり、逆SDRのEOTF変換部104は、HDRの輝度範囲における輝度値と、複数の第3コード値とを関係付けた第3関係情報であるSDR(Standard Dynamic Range)の逆EOTF(Electro-Optical Transfer Function)を用いて、決定したSDRの輝度値を量子化し、量子化により得られた第3コード値を決定し、SDRの輝度範囲に対応するSDRの輝度値を、第3コード値を示す第3輝度信号としてのSDR信号へ変換することで、疑似HDR信号を生成する。なお、第3コード値は、SDRに対応したコード値であり、以下では、「SDRのコード値」という。つまり、SDR信号は、SDRの輝度範囲における輝度値と、複数のSDRのコード値とを関係付けたSDRの逆EOTFを用いて、映像の輝度値が量子化されることで得られたSDRのコード値で表される。そして、変換装置100は、ステップS104で生成した疑似HDR信号(SDR信号)を表示装置200へ出力する。
 変換装置100は、HDR信号を逆量子化することで得られたHDRの輝度値に対して、第1輝度変換および第2輝度変換を行うことで、疑似HDRに対応したSDRの輝度値を生成し、SDRの輝度値をSDRのEOTFを用いて量子化することで、疑似HDRに対応したSDR信号を生成する。なお、SDRの輝度値は、SDRに対応した0~100nitの輝度範囲内の数値であるが、ディスプレイの輝度範囲に基づく変換を行っているため、HDRの輝度値に対してHDRのEOTFおよびSDRのEOTFを用いた輝度変換を行うことで得られたSDRに対応した0~100nitの輝度範囲内の輝度値とは異なる数値である。
 次に、表示装置200が行う表示方法について、図38を用いて説明する。なお、表示方法は、以下で説明するステップS105~ステップS108を含む。
 まず、表示装置200の表示設定部201は、変換装置100から取得した設定情報を用いて、表示装置200の表示設定を設定する(S105)。ここで、表示装置200は、SDRTVである。設定情報は、表示装置に対して推奨する表示設定を示す情報であり、疑似HDR映像をどのようにEOTFし、どの設定で表示すれば美しい映像を表示することができるかを示す情報(つまり、表示装置200の表示設定を最適な表示設定に切り替えるための情報)である。設定情報は、例えば、表示装置における出力時のガンマカーブ特性や、リビングモード(ノーマルモード)やダイナミックモード等の表示モード、バックライト(明るさ)の数値などを含む。また、ユーザに、表示装置200の表示設定をマニュアル操作で変更することを促すようなメッセージを、表示装置200(以下、「SDRディスプレイ」ともいう)に表示してもよい。詳細は後述する。
 なお、表示装置200は、ステップS105の前に、SDR信号(疑似HDR信号)と、映像の表示にあたって表示装置200に対して推奨する表示設定を示す設定情報とを取得する。
 また、表示装置200は、SDR信号(疑似HDR信号)の取得を、ステップS106の前に行えばよく、ステップS105の後に行ってもよい。
 次に、表示装置200のSDRのEOTF変換部202は、取得した疑似HDR信号に対し、SDRのEOTF変換を行う(S106)。つまり、SDRのEOTF変換部202は、SDR信号(疑似HDR信号)を、SDRのEOTFを用いて逆量子化を行う。これにより、SDRのEOTF変換部202は、SDR信号が示すSDRのコード値を、SDRの輝度値に変換する。
 そして、表示装置200の輝度変換部203は、表示装置200に設定された表示モードに応じた輝度変換を行う。これにより、輝度変換部203は、SDRの輝度範囲(0~100〔nit〕)に対応したSDRの輝度値を、ディスプレイの輝度範囲(0~DPL〔nit〕)に対応したディスプレイ輝度値に変換する第3輝度変換を行う(S107)。詳細は後述する。
 上記のことから、表示装置200は、ステップS106およびステップS107において、取得したSDR信号(疑似HDR信号)が示す第3コード値を、ステップS105で取得した設定情報を用いて、ディスプレイの輝度範囲(0~DPL〔nit〕)に対応するディスプレイ輝度値へ変換する。
 より具体的には、SDR信号(疑似HDR信号)からディスプレイ輝度値への変換では、ステップS106において、SDRの輝度範囲における輝度値と、複数の第3コード値とを関係付けたEOTFを用いて、取得したSDR信号が示すSDRのコード値について、SDRのコード値にSDRのEOTFで関係付けられたSDRの輝度値を決定する。
 そして、ディスプレイ輝度値への変換では、ステップS107において、決定したSDRの輝度値に予め関係付けられた、ディスプレイの輝度範囲に対応するディスプレイ輝度値を決定し、SDRの輝度範囲に対応するSDRの輝度値を、ディスプレイの輝度範囲に対応するディスプレイ輝度値へ変換する第3輝度変換を行う。
 最後に、表示装置200の表示部204は、変換したディスプレイ輝度値に基づいて、疑似HDR映像を表示装置200に表示する(S108)。
 [38.第1輝度変換]
 次に、ステップS102の第1輝度変換(HPL→DPL)の詳細について、図39Aを用いて説明する。図39Aは、第1輝度変換の一例について説明するための図である。
 変換装置100の輝度変換部102は、ステップS101で得られたリニアな信号(HDRの輝度値)を、ディスプレイ特性情報と、HDR映像のコンテンツ輝度情報とを用いて変換する第1輝度変換を行う。第1輝度変換は、HDRの輝度値(入力輝度値)を、ディスプレイピーク輝度(DPL)を超えないディスプレイ輝度値(出力輝度値)に変換する。DPLは、ディスプレイ特性情報であるSDRディスプレイの最大輝度および表示モードを用いて決定する。表示モードは、例えば、SDRディスプレイに暗めに表示するシアターモードや、明るめに表示するダイナミックモード等のモード情報である。表示モードが、例えば、SDRディスプレイの最大輝度が1,500nitであり、かつ、表示モードが最大輝度の50%の明るさにするモードである場合、DPLは、750nitとなる。ここで、DPL(第2最大輝度値)とは、SDRディスプレイが現在設定されている表示モードにおいて表示できる輝度の最大値である。つまり、第1輝度変換では、SDRディスプレイの表示特性を示す情報であるディスプレイ特性情報を用いて、第2最大輝度値としてのDPLを決定する。
 また、第1輝度変換では、コンテンツ輝度情報のうちのCALとCPLとを用い、CAL付近以下の輝度値は、変換の前後で同一とし、CPL付近以上の輝度値に対してのみ輝度値を変更する。つまり、図39Aに示すように、第1輝度変換では、当該HDRの輝度値がCAL以下の場合、当該HDRの輝度値を変換せず、当該HDRの輝度値を、ディスプレイ輝度値として決定し、当該HDRの輝度値がCPL以上の場合、第2最大輝度値としてのDPLを、ディスプレイ輝度値として決定する。
 また、第1輝度変換では、輝度情報のうちのHDR映像のピーク輝度(CPL)を用い、HDRの輝度値がCPLの場合、DPLを、ディスプレイ輝度値として決定する。
 なお、第1輝度変換では、図39Bのように、ステップS101で得られたリニアな信号(HDRの輝度値)を、DPLを超えない値にクリップするように変換してもよい。このような輝度変換を行うことで、変換装置100での処理を簡素化することができ、装置の縮小化、低電力化、処理の高速化が図れる。なお、図39Bは、第1輝度変換の他の一例について説明するための図である。
 [39-1.第2輝度変換]
 次に、ステップS103の第2輝度変換(DPL→100〔nit〕)の詳細について、図40を用いて説明する。図40は、第2輝度変換について説明するための図である。
 変換装置100の逆輝度変換部103は、ステップS102の第1輝度変換で変換されたディスプレイの輝度範囲(0~DPL〔nit〕)のディスプレイ輝度値に対し、表示モードに応じた逆輝度変換を施す。逆輝度変換は、SDRディスプレイによる表示モードに応じた輝度変換処理(ステップS107)が行われた場合に、ステップS102処理後のディスプレイの輝度範囲(0~DPL〔nit〕)のディスプレイ輝度値を取得できるようにするための処理である。つまり、第2輝度変換は、第3輝度変換の逆輝度変換である。
 上記の処理により、第2輝度変換は、ディスプレイの輝度範囲のディスプレイ輝度値(入力輝度値)を、SDRの輝度範囲のSDRの輝度値(出力輝度値)に変換する。
 第2輝度変換では、SDRディスプレイの表示モードによって変換式を切り替える。例えば、SDRディスプレイの表示モードがノーマルモードの場合、ディスプレイ輝度値に正比例する正比例値に輝度変換する。また、第2輝度変換では、SDRディスプレイの表示モードがノーマルモードよりも高輝度画素をより明るく、かつ、低輝度画素をより暗くするダイナミックモードの場合、その逆関数を用いることで、低輝度画素のSDRの輝度値は、ディスプレイ輝度値に正比例する正比例値より高い値に、高輝度画素のSDRの輝度値は、ディスプレイ輝度値に正比例する正比例値より低い値に輝度変換する。つまり、第2輝度変換では、ステップS102において決定したディスプレイ輝度値について、SDRディスプレイの表示特性を示す情報であるディスプレイ特性情報に応じた輝度関係情報を用いて、当該ディスプレイ輝度値に関係付けられた輝度値をSDRの輝度値として決定し、ディスプレイ特性情報に応じて輝度変換処理を切り替える。ここで、ディスプレイ特性情報に応じた輝度関係情報とは、例えば図40に示すような、SDRディスプレイの表示パラメータ(表示モード)毎に定められた、ディスプレイ輝度値(入力輝度値)と、SDRの輝度値(出力輝度値)とを関係付けた情報である。
 [39-2.第3輝度変換]
 次に、ステップS107の第3輝度変換(100→DPL〔nit〕)の詳細について、図41を用いて説明する。図41は、第3輝度変換について説明するための図である。
 表示装置200の輝度変換部203は、SDRの輝度範囲(0~100〔nit〕)のSDRの輝度値をステップS105で設定された表示モードに応じて(0~DPL〔nit〕)に変換する。本処理はS103のモード毎の逆輝度変換の逆関数となるように処理する。
 第3輝度変換では、SDRディスプレイの表示モードによって変換式を切り替える。例えば、SDRディスプレイの表示モードがノーマルモードの場合(つまり、設定された表示パラメータがノーマルモードに対応したパラメータである場合)、ディスプレイ輝度値は、SDRの輝度値に正比例する正比例値に輝度変換する。また、第3輝度変換では、SDRディスプレイの表示モードがノーマルモードよりも高輝度画素をより明るく、かつ、低輝度画素をより暗くするダイナミックモードの場合、低輝度画素のディスプレイ輝度値は、SDRの輝度値に正比例する正比例値より低い値に、高輝度画素のディスプレイ輝度値は、SDRの輝度値に正比例する正比例値より高い値に輝度変換する。つまり、第3輝度変換では、ステップS106において決定したSDRの輝度値について、SDRディスプレイの表示設定を示す表示パラメータに応じた輝度関係情報を用いて、当該SDRの輝度値に予め関係付けられた輝度値をディスプレイ輝度値として決定し、表示パラメータに応じて輝度変換処理を切り替える。ここで、表示パラメータに応じた輝度関係情報とは、例えば図41に示すような、SDRディスプレイの表示パラメータ(表示モード)毎に定められた、SDRの輝度値(入力輝度値)と、ディスプレイ輝度値(出力輝度値)とを関係付けた情報である。
 [40.表示設定]
 次に、ステップS105の表示設定の詳細について、図42を用いて説明する。図42は、表示設定の詳細な処理を示すフローチャートである。
 SDRディスプレイの表示設定部201は、ステップS105において、下記のステップS201~ステップS208の処理を行う。
 まず、表示設定部201は、設定情報を用いて、SDRディスプレイに設定されているEOTF(SDRディスプレイ用EOTF)が、疑似HDR映像(SDR信号)の生成時に想定したEOTFと整合しているかどうかを判定する(S201)。
 表示設定部201は、SDRディスプレイに設定されているEOTFが、設定情報が示すEOTF(疑似HDR映像に整合するEOTF)と異なっていると判定した場合(S201でYes)、SDRディスプレイ用EOTFをシステム側で切り替え可能かを判定する(S202)。
 表示設定部201は、切り替え可能であると判定した場合、設定情報を用いて、SDRディスプレイ用EOTFを適切なEOTFに切り替える(S203)。
 ステップS201~ステップS203から、表示設定の設定(S105)では、SDRディスプレイに設定されているEOTFを、取得した設定情報に応じた推奨EOTFに設定する。また、これにより、ステップS105の後に行われるステップS106では、推奨EOTFを用いて、SDRの輝度値を決定することができる。
 システム側で切り替え可能でないと判定した場合(S202でNo)、EOTFをユーザがマニュアル操作で変更することを促すメッセージを画面に表示する(S204)。例えば、「表示ガンマを2.4に設定して下さい」というメッセージを画面に表示する。つまり、表示設定部201は、表示設定の設定(S105)において、SDRディスプレイに設定されているEOTFを切り替えできない場合、SDRディスプレイに設定されているEOTF(SDRディスプレイ用EOTF)を、推奨EOTFに切り替えることをユーザに促すためのメッセージを、SDRディスプレイに表示する。
 次に、SDRディスプレイでは、疑似HDR映像(SDR信号)を表示するが、表示の前に設定情報を用いてSDRディスプレイの表示パラメータが設定情報に合っているかを判定する(S205)。
 表示設定部201は、SDRディスプレイに設定されている表示パラメータが、設定情報とは異なっていると判定した場合(S205でYes)、SDRディスプレイの表示パラメータを、切り替え可能かを判定する(S206)。
 表示設定部201は、SDRディスプレイの表示パラメータを切り替え可能であると判定した場合(S206でYes)、設定情報に合わせて、SDRディスプレイの表示パラメータを切り替える(S207)。
 ステップS204~ステップS207から、表示設定の設定(S105)では、SDRディスプレイに設定されている表示パラメータを、取得した設定情報に応じた推奨表示パラメータに設定する。
 システム側で切り替え可能でないと判定した場合(S206でNo)、SDRディスプレイに設定されている表示パラメータをユーザがマニュアル操作で変更することを促すメッセージを画面に表示する(S208)。例えば、「表示モードをダイナミックモードにし、バックライトを最大にして下さい」というメッセージを画面に表示する。つまり、設定(S105)では、SDRディスプレイに設定されている表示パラメータを切り替えできない場合、SDRディスプレイに設定されている表示パラメータを、推奨表示パラメータに切り替えることをユーザに促すためのメッセージを、SDRディスプレイに表示する。
 [41.変形例1]
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態1にも適用可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下では、他の実施の形態を例示する。
 HDR映像は、例えばBlu-ray Disc、DVD、インターネットの動画配信サイト、放送、HDD内の映像である。
 変換装置100(HDR→疑似HDR変換処理部)は、ディスクプレイヤー、ディスクレコーダ、セットトップボックス、テレビ、パソコン、スマートフォンの内部に存在していてもよい。変換装置100は、インターネット内のサーバ装置の内部に存在していてもよい。
 表示装置200(SDR表示部)は、例えばテレビ、パソコン、スマートフォンである。
 変換装置100が取得するディスプレイ特性情報は、表示装置200からHDMI(登録商標)や他の通信プロトコルを用いてHDMI(登録商標)ケーブルやLANケーブルを介して取得してもよい。変換装置100が取得するディスプレイ特性情報は、インターネットを介して表示装置200の機種情報等に含まれるディスプレイ特性情報を取得してもよい。また、ユーザがマニュアル操作を行い、ディスプレイ特性情報を、変換装置100に設定してもよい。また、変換装置100のディスプレイ特性情報の取得は、疑似HDR映像生成(ステップS101~S104)時の直前でもよいし、機器の初期設定時やディスプレイ接続時のタイミングでもよい。例えば、ディスプレイ特性情報の取得は、ディスプレイ輝度値への変換の直前に行ってもよいし、変換装置100がHDMI(登録商標)ケーブルで最初に表示装置200に接続したタイミングで行ってもよい。
 また、HDR映像のCPLやCALは、コンテンツ1つに対して1つでもよいし、シーン毎に存在していてもよい。つまり、変換方法では、映像の複数のシーンのそれぞれに対応した輝度情報であって、当該シーン毎に、当該シーンを構成する複数の画像に対する輝度値のうちの最大値である第1最大輝度値と、当該シーンを構成する複数の画像に対する輝度値の平均である平均輝度値との少なくとも一方を含む輝度情報(CPL、CAL)を取得し、第1輝度変換では、複数のシーンのそれぞれについて、当該シーンに対応した輝度情報に応じてディスプレイ輝度値を決定してもよい。
 また、CPLおよびCALは、HDR映像と同じ媒体(Blu-ray Disc、DVD等)に同梱していてもよいし、変換装置100がインターネットから取得する等、HDR映像とは別の場所から取得してもよい。つまり、CPLおよびCALの少なくとも一方を含む輝度情報を映像のメタ情報として取得してもよいし、ネットワーク経由で取得してもよい。
 また、変換装置100の第1輝度変換(HPL→DPL)において、CPL、CAL、およびディスプレイピーク輝度(DPL)は使用せずに、固定値を用いてもよい。また、その固定値を外部から変更可能にしてもよい。また、CPL、CAL、およびDPLは、数種類で切り替えるようにしてもよく、例えば、DPLは200nit、400nit、800nitの3種類のみとするようにしてもよいし、ディスプレイ特性情報に最も近い値を使用するようにしてもよい。
 また、HDRのEOTFはSMPTE 2084でなくてもよく、他の種類のHDRのEOTFを用いてもよい。また、HDR映像の最大輝度(HPL)は10,000nitでなくてもよく、例えば4,000nitや1,000nitでもよい。
 また、コード値のビット幅は、例えば16,14,12,10,8bitでもよい。
 また、逆SDRのEOTF変換は、ディスプレイ特性情報から決定するが、(外部からも変更可能な)固定の変換関数を用いてもよい。逆SDRのEOTF変換は、例えばRec. ITU-R BT.1886で規定されている関数を用いてもよい。また、逆SDRのEOTF変換の種類を数種類に絞り、表示装置200の入出力特性に最も近いものを選択して使用するようにしてもよい。
 また、表示モードは、固定のモードを使うようにしてもよく、ディスプレイ特性情報の中に含めなくてもよい。
 また、変換装置100は、設定情報を送信しなくてもよく、表示装置200では固定の表示設定としてもよいし、表示設定を変更しなくてもよい。この場合、表示設定部201は不要となる。また、設定情報は、疑似HDR映像かどうかのフラグ情報でもよく、例えば、疑似HDR映像である場合は最も明るく表示する設定に変更するようにしてもよい。つまり、表示設定の設定(S105)では、取得した設定情報が、DPLを用いて変換された疑似HDR映像を示す信号であることを示す場合、表示装置200の明るさ設定を最も明るく表示する設定に切り替えてもよい。
 [42.変形例2]
 また、変換装置100の第1輝度変換(HPL→DPL)は例えば次の算式で変換する。
 ここで、Lは、0~1に正規化された輝度値を示し、S1、S2、a、b、MはCAL、CPL、およびDPLに基づいて設定する値である。lnは自然対数である。Vは0~1に正規化された変換後の輝度値である。図39Aの例のように、CALを300nitとし、CPLを2,000nitとし、DPLを750nitとし、CAL + 50nitまでは変換しないとし、350nit以上に対して変換する場合、それぞれの値は例えば次のような値となる。
  S1 =  350/10000
  S2 = 2000/10000
  M  =  750/10000
  a  = 0.023
  b  = S1 - a*ln(S1) = 0.112105
 つまり、第1輝度変換では、SDRの輝度値が、平均輝度値(CAL)と第1最大輝度値(CPL)との間である場合、自然対数を用いて、当該HDRの輝度値に対応するディスプレイ輝度値を決定する。
 [40.効果等]
 HDR映像のコンテンツピーク輝度やコンテンツ平均輝度等の情報を用いてHDR映像を変換することにより、コンテンツに応じて変換式を変えることができ、HDRの階調をなるべく保つように変換することが可能となる。また、暗すぎる、明るすぎるといった悪影響を抑制することができる。具体的には、HDR映像のコンテンツピーク輝度をディスプレイピーク輝度にマッピングすることにより、階調をなるべく保つようにしている。また、平均輝度付近以下の画素値を変えないことにより、全体的な明るさが変わらないようにしている。
 また、SDRディスプレイのピーク輝度値および表示モードを用いてHDR映像を変換することにより、SDRディスプレイの表示環境に応じて変換式を変えることができ、SDRディスプレイの性能に合わせて、HDR感のある映像(疑似HDR映像)を、元のHDR映像と同様の階調や明るさで表示することができる。具体的には、SDRディスプレイの最大輝度および表示モードによってディスプレイピーク輝度を決定し、そのピーク輝度値を超えないようにHDR映像を変換することにより、SDRディスプレイで表示可能な明るさまではHDR映像の階調をほとんど減らさずに表示し、表示不可能な明るさは表示可能な明るさまで輝度値を下げている。
 以上により、表示不可能な明るさ情報を削減し、表示可能な明るさの階調を落とさず、元のHDR映像に近い形で表示することが可能となる。例えば、ピーク輝度1,000nitのディスプレイ用には、ピーク輝度1,000nitに抑えた疑似HDR映像に変換することにより、全体的な明るさを維持し、ディスプレイの表示モードによって輝度値は変わる。このため、ディスプレイの表示モードに応じて、輝度の変換式を変更するようにしている。もし、ディスプレイのピーク輝度よりも大きな輝度を疑似HDR映像で許容すると、その大きな輝度をディスプレイ側でのピーク輝度に置き換えて表示する場合があり、その場合は元のHDR映像よりも全体的に暗くなる。逆にディスプレイのピーク輝度よりも小さな輝度を最大輝度として変換すると、その小さな輝度をディスプレイ側でのピーク輝度に置き換え、元のHDR映像よりも全体的に明るくなる。しかもディスプレイ側のピーク輝度よりも小さいためにディスプレイの階調に関する性能を最大限使っていないことになる。
 また、ディスプレイ側では、設定情報を用いて表示設定を切り替えることにより、疑似HDR映像をよりよく表示することが可能となる。例えば、明るさを暗く設定している場合には高輝度表示ができないため、HDR感が損なわれる。その場合には表示設定を変更するもしくは、変更してもらうよう促すメッセージを表示することにより、ディスプレイの性能を最大限引出し、高階調な映像を表示できるようにする。
 (全体のまとめ)
 以上、本開示の一つまたは複数の態様に係る再生方法および再生装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、異なる実施の形態における構成要素を組み合わせて構築される形態なども、本開示の一つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上記各実施の形態において、各構成要素は、回路などの専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 本開示は、コンテンツデータ生成装置、Blu-ray機器等の映像ストリーム伝送装置、又はテレビ等の映像表示装置に適用できる。
100 変換装置
101 EOTF変換部
102 輝度変換部
103 逆輝度変換部
104 逆SDRのEOTF変換部
200,510 表示装置
201 表示設定部
202 SDRのEOTF変換部
203 輝度変換部
204 表示部
400,500,500A データ出力装置
401,501 ビデオ復号部
402,502 外部メタ取得部
403,503 HDRメタ解釈部
404,504 HDR制御情報生成部
405,505,505A DR変換部
406,506 HDMI出力部
507 DC部

Claims (19)

  1.  表示装置に映像信号を伝送する再生装置における伝送方法であって、
     前記再生装置と前記表示装置とを接続する伝送プロトコルのバージョンが第1バージョンである場合、前記映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第1メタデータを前記表示装置に伝送し、前記映像信号の前記連続再生単位より細かい単位に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第2メタデータを前記表示装置に伝送せず、
     前記伝送プロトコルのバージョンが第2バージョンである場合、前記第1メタデータ及び前記第2メタデータを前記表示装置へ伝送する
     伝送方法。
  2.  前記伝送プロトコルのバージョンが前記第1バージョンである場合、前記第2メタデータを用いて前記映像信号の輝度範囲を変換する変換処理を行い、変換後の映像信号を前記表示装置に伝送する
     請求項1記載の伝送方法。
  3.  前記伝送プロトコルのバージョンが前記第2のバージョンであり、かつ、前記表示装置が前記変換処理に対応していない場合、前記変換処理を行い、前記変換後の映像信号を前記表示装置に伝送し、
     前記伝送プロトコルのバージョンが前記第2のバージョンであり、かつ、前記表示装置が前記変換処理に対応している場合、前記変換処理を行わずに前記映像信号を前記表示装置に伝送する
     請求項2記載の伝送方法。
  4.  前記再生装置が、前記第2メタデータを用いて前記映像信号の輝度範囲を変換する変換処理に対応していない場合、前記変換処理を行わず、前記第2メタデータを前記表示装置へ伝送しない
     請求項1記載の伝送方法。
  5.  前記映像信号における輝度値は、コード値として符号化されており、
     前記第1メタデータは、複数の輝度値と複数のコード値とを関係付けたEOTF(Electro-Optical Transfer Function)を特定するための情報である
     請求項1~4のいずれか1項に記載の伝送方法。
  6.  前記第2メタデータは、前記映像信号のマスタリング特性を示す
     請求項1~5のいずれか1項に記載の伝送方法。
  7.  映像信号を再生する再生方法であって、
     前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、
     前記映像信号における画面間の輝度値の変化量が予め定められた第1閾値を超えるかを判定する判定ステップと、
     前記変化量が前記第1閾値を超えると判定された場合、前記映像信号の輝度値を下げる調整処理を行う調整ステップとを含む
     再生方法。
  8.  前記調整ステップでは、前記変化量が前記第1閾値を超える画素に対して、当該画素の前記変化量が前記第1閾値以下になるように当該画素の輝度値を調整する
     請求項7記載の再生方法。
  9.  前記判定ステップでは、前記映像信号に含まれる第1画像のピーク輝度と、前記映像信号に含まれる、前記第1画像より後の第2画像に含まれる複数の画素の輝度値の各々との差分が前記第1閾値を超えるかを判定し、
     前記調整ステップでは、前記差分が前記第1閾値を超える画素に対して、当該画素の前記差分が前記第1閾値以下になるように当該画素の輝度値を調整する
     請求項7記載の再生方法。
  10.  前記判定ステップでは、前記映像信号のフレームレートの逆数の整数倍である基準時間間隔における前記輝度値の前記変化量が前記第1閾値を超えるかを判定する
     請求項7記載の再生方法。
  11.  前記判定ステップでは、前記映像信号に含まれる画像に含まれる複数の画素のうち、前記変化量が前記第1閾値を超える画素の割合が第2閾値を超えるかを判定し、
     前記調整ステップでは、前記割合が前記第2閾値を超える場合、前記割合が前記第2閾値以下になるように前記複数の画素の輝度値を調整する
     請求項7記載の再生方法。
  12.  前記判定ステップでは、画面が分割されることで得られた複数の領域毎に、当該領域の画面間の輝度値の変化量が前記第1閾値を超えるかを判定し、
     前記調整ステップでは、前記変化量が前記第1閾値を超えると判定された領域に対して、当該領域の輝度値を下げる調整処理を行う
     請求項7記載の再生方法。
  13.  映像信号を再生する再生方法であって、
     前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、
     前記映像信号に含まれる画像の輝度値が予め定められた第1閾値を超えるかを判定する判定ステップと、
     前記輝度値が前記第1閾値を超えると判定された場合、前記画像の輝度値を下げる調整処理を行う調整ステップとを含む
     再生方法。
  14.  前記判定ステップでは、前記画像に含まれる複数の画素のうち、輝度値が前記第1閾値を超える画素の数を判定し、
     前記調整ステップでは、前記画素の数が第3閾値を超える場合、前記画素の数が前記第3閾値以下になるように、前記画像の輝度値を下げる
     請求項13記載の再生方法。
  15.  前記判定ステップでは、前記画像に含まれる複数の画素のうち、輝度値が前記第1閾値を超える画素の割合を判定し、
     前記調整ステップでは、前記割合が第3閾値を超える場合、前記割合が前記第3閾値以下になるように、前記画像の輝度値を下げる
     請求項13記載の再生方法。
  16.  前記第1閾値は、前記映像信号を表示する表示装置において複数の画素に対して同時に印加できる電圧の上限値に基づいて算出される値である
     請求項7又は13記載の再生方法。
  17.  表示装置に映像信号を伝送する再生装置であって、
     前記再生装置と前記表示装置とを接続する伝送プロトコルのバージョンが第1バージョンである場合、前記映像信号の連続再生単位に含まれる複数の画像に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第1メタデータを前記表示装置に伝送し、前記映像信号の前記連続再生単位より細かい単位に対して共通に用いられ、前記映像信号の輝度範囲に関する情報である第2メタデータを前記表示装置に伝送せず、
     前記伝送プロトコルのバージョンが第2バージョンである場合、前記第1メタデータ及び前記第2メタデータを前記表示装置へ伝送する
     再生装置。
  18.  映像信号を再生する再生装置であって、
     前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、
     前記映像信号における画面間の輝度値の変化量が予め定められた第1閾値を超えるかを判定する判定部と、
     前記変化量が前記第1閾値を超えると判定された場合、前記映像信号の輝度値を下げる調整処理を行う調整部とを備える
     再生装置。
  19.  映像信号を再生する再生装置であって、
     前記映像信号の輝度は、最大輝度値が100nitを超える第1最大輝度値に定義された第1輝度範囲における第1輝度値からなり、
     前記映像信号に含まれる画像の輝度値が予め定められた第1閾値を超えるかを判定する判定部と、
     前記輝度値が前記第1閾値を超えると判定された場合、前記画像の輝度値を下げる調整処理を行う調整部とを備える
     再生装置。
PCT/JP2015/003876 2014-08-19 2015-07-31 伝送方法、再生方法及び再生装置 WO2016027423A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016543801A JP6566271B2 (ja) 2014-08-19 2015-07-31 伝送方法及び再生装置
PCT/JP2015/003876 WO2016027423A1 (ja) 2014-08-19 2015-07-31 伝送方法、再生方法及び再生装置
CN201580007932.1A CN105981396B (zh) 2014-08-19 2015-07-31 传输方法及再现装置
EP15834222.0A EP3185572B1 (en) 2014-08-19 2015-07-31 Transmission method, reproduction method and reproduction device
MX2017000432A MX366637B (es) 2014-08-19 2015-07-31 Método de transmisión, método de reproducción y dispositivo de reproducción.
US15/214,507 US10291955B2 (en) 2014-08-19 2016-07-20 Method for transmitting appropriate meta data to display device according to transmission protocol version
US16/371,607 US20190230407A1 (en) 2014-08-19 2019-04-01 Method for transmitting appropriate meta data to display device according to transmission protocol version

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462038900P 2014-08-19 2014-08-19
US62/038,900 2014-08-19
JP2015-134733 2015-07-03
JP2015134733 2015-07-03
PCT/JP2015/003876 WO2016027423A1 (ja) 2014-08-19 2015-07-31 伝送方法、再生方法及び再生装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/214,507 Continuation US10291955B2 (en) 2014-08-19 2016-07-20 Method for transmitting appropriate meta data to display device according to transmission protocol version

Publications (1)

Publication Number Publication Date
WO2016027423A1 true WO2016027423A1 (ja) 2016-02-25

Family

ID=55350392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003876 WO2016027423A1 (ja) 2014-08-19 2015-07-31 伝送方法、再生方法及び再生装置

Country Status (6)

Country Link
US (2) US10291955B2 (ja)
EP (1) EP3185572B1 (ja)
JP (1) JP6566271B2 (ja)
CN (2) CN110460792B (ja)
MX (1) MX366637B (ja)
WO (1) WO2016027423A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060084A (ja) * 2015-09-18 2017-03-23 株式会社東芝 電子機器、及び表示方法
EP3185571A1 (en) * 2015-12-22 2017-06-28 Thomson Licensing Hierarchical scene segmentation metadata transmission for content enhancement
WO2017169209A1 (ja) * 2016-03-31 2017-10-05 シャープ株式会社 コンテンツ処理装置、テレビジョン受信装置、コンテンツ処理装置における情報処理方法、プログラム
WO2018003667A1 (ja) * 2016-06-28 2018-01-04 シャープ株式会社 送信装置、受信装置、および表示装置
JP2018050121A (ja) * 2016-09-20 2018-03-29 株式会社東芝 多重化装置及び多重化方法
WO2018066482A1 (ja) * 2016-10-06 2018-04-12 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および画像処理方法
WO2018235337A1 (ja) * 2017-06-21 2018-12-27 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
WO2019008819A1 (ja) * 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
WO2019012729A1 (ja) * 2017-07-14 2019-01-17 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
WO2019053917A1 (ja) * 2017-09-13 2019-03-21 パナソニックIpマネジメント株式会社 輝度特性生成方法
WO2019059022A1 (ja) * 2017-09-21 2019-03-28 ソニー株式会社 再生装置、再生方法、プログラム、および記録媒体
WO2019069483A1 (ja) * 2017-10-06 2019-04-11 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
WO2019098054A1 (ja) * 2017-11-17 2019-05-23 ソニー株式会社 情報処理装置、情報処理方法、記録媒体、再生装置、再生方法、およびプログラム
WO2020009365A1 (ko) * 2018-07-03 2020-01-09 삼성전자(주) 디스플레이장치 및 그 제어방법과 기록매체

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948619B2 (ja) * 2014-06-10 2016-07-06 パナソニックIpマネジメント株式会社 表示システム、表示方法および表示装置
EP3196880B1 (en) * 2014-09-12 2019-08-28 Sony Corporation Playback device, playback method, information processing device, information processing method, program, and recording medium
EP3261339B1 (en) * 2015-02-16 2022-01-05 Sony Group Corporation Information processing device, information recording medium and information processing method, and program
US10735755B2 (en) * 2015-04-21 2020-08-04 Arris Enterprises Llc Adaptive perceptual mapping and signaling for video coding
KR102438199B1 (ko) * 2015-12-24 2022-08-30 삼성전자주식회사 디스플레이 장치 및 디스플레이 장치의 설정 값을 변경하는 방법
JP2017139678A (ja) * 2016-02-05 2017-08-10 Necプラットフォームズ株式会社 画像データ変換装置、画像データ変換方法、画像データ変換用プログラム、pos端末装置、及びサーバ
JP2017151308A (ja) * 2016-02-25 2017-08-31 キヤノン株式会社 情報処理装置および情報処理方法
WO2018003757A1 (ja) * 2016-06-27 2018-01-04 ソニー株式会社 信号処理装置、信号処理方法、カメラシステム、ビデオシステムおよびサーバ
KR102554379B1 (ko) * 2016-10-31 2023-07-11 엘지디스플레이 주식회사 하이 다이나믹 레인지 영상 처리 방법 및 영상 처리 모듈과 그를 이용한 표시 장치
JP7018567B2 (ja) * 2017-04-21 2022-02-14 パナソニックIpマネジメント株式会社 再生装置、再生方法、表示装置、および、表示方法
US10972767B2 (en) * 2017-11-01 2021-04-06 Realtek Semiconductor Corp. Device and method of handling multiple formats of a video sequence
KR102413839B1 (ko) * 2017-11-15 2022-06-28 삼성전자 주식회사 컨텐츠 제공장치, 그 제어방법 및 기록매체
JP6821269B2 (ja) * 2017-12-05 2021-01-27 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置および画像処理方法
US10645199B2 (en) * 2018-01-22 2020-05-05 Lattice Semiconductor Corporation Multimedia communication bridge
US10832613B2 (en) * 2018-03-07 2020-11-10 At&T Intellectual Property I, L.P. Image format conversion using luminance-adaptive dithering
CN108447083B (zh) * 2018-03-16 2020-06-02 北京虚拟映画科技有限公司 基于图像分解再组合的影像传输方法及系统
TW201946430A (zh) 2018-04-30 2019-12-01 圓剛科技股份有限公司 影像訊號轉換裝置及方法
TWI822677B (zh) * 2018-04-30 2023-11-21 圓剛科技股份有限公司 影像訊號轉換裝置
US10652512B1 (en) * 2018-11-20 2020-05-12 Qualcomm Incorporated Enhancement of high dynamic range content
KR20210065447A (ko) * 2019-11-27 2021-06-04 삼성전자주식회사 전자장치와 그의 제어방법, 및 기록매체
CN112261334B (zh) * 2020-10-21 2023-04-11 广东博华超高清创新中心有限公司 一种支持hdmi 2.1信号单路输入多路输出的传输方法和系统
US20230031245A1 (en) * 2021-07-23 2023-02-02 Teradici Co. Encoder changes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279405A (ja) * 2006-04-07 2007-10-25 Mitsubishi Electric Corp 画像表示装置
JP2008015225A (ja) * 2006-07-06 2008-01-24 Seiko Epson Corp 画像処理システム、表示装置、プログラムおよび情報記憶媒体
JP2011172146A (ja) * 2010-02-22 2011-09-01 Sharp Corp コンテンツ再生装置、設定方法、プログラム、及び、記録媒体
JP2012008497A (ja) * 2010-06-28 2012-01-12 Canon Inc 画像処理装置及びその制御方法
JP2012520050A (ja) * 2009-03-10 2012-08-30 ドルビー ラボラトリーズ ライセンシング コーポレイション 拡張ダイナミックレンジおよび拡張次元をもつ画像信号変換
WO2012172460A1 (en) * 2011-06-14 2012-12-20 Koninklijke Philips Electronics N.V. Graphics processing for high dynamic range video

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3847006B2 (ja) * 1998-08-26 2006-11-15 富士通株式会社 画像表示制御装置及び記録媒体
JP2002116732A (ja) * 2000-10-05 2002-04-19 Pioneer Electronic Corp 自発光パネル駆動方法及び装置
JP2006154756A (ja) * 2004-11-02 2006-06-15 Fujitsu Ten Ltd 映像信号処理方法、映像信号処理装置、及び、表示装置
JP4177826B2 (ja) * 2005-03-23 2008-11-05 株式会社東芝 画像処理装置および画像処理方法
JP5227502B2 (ja) * 2006-09-15 2013-07-03 株式会社半導体エネルギー研究所 液晶表示装置の駆動方法、液晶表示装置及び電子機器
US7826671B2 (en) * 2006-11-21 2010-11-02 Samsung Electronics Co., Ltd. Method and system for quantization layer reduction in digital image processing
JP5145017B2 (ja) 2006-12-05 2013-02-13 日本放送協会 画像信号処理装置
JP2010010915A (ja) * 2008-06-25 2010-01-14 Sony Corp 画像処理装置および方法、並びにプログラム
CN101710955B (zh) * 2009-11-24 2014-06-25 北京中星微电子有限公司 亮度和对比度调整的方法及设备
US8797306B2 (en) * 2010-01-08 2014-08-05 Sharp Kabushiki Kaisha Display device with optical sensors
JP5134658B2 (ja) * 2010-07-30 2013-01-30 株式会社東芝 画像表示装置
US8525933B2 (en) * 2010-08-02 2013-09-03 Dolby Laboratories Licensing Corporation System and method of creating or approving multiple video streams
US8736674B2 (en) * 2010-09-23 2014-05-27 Dolby Laboratories Licensing Corporation Method and system for 3D display calibration with feedback determined by a camera device
WO2012170898A2 (en) * 2011-06-09 2012-12-13 Utah State University Research Foundation Systems and methods for sensing occupancy
WO2012176783A1 (ja) * 2011-06-21 2012-12-27 浜松ホトニクス株式会社 光測定装置、光測定方法、及び光測定プログラム
US9451292B2 (en) * 2011-09-15 2016-09-20 Dolby Laboratories Licensing Corporation Method and system for backward compatible, extended dynamic range encoding of video
EP2745290A1 (en) * 2011-09-27 2014-06-25 Koninklijke Philips N.V. Apparatus and method for dynamic range transforming of images
WO2013070932A1 (en) * 2011-11-08 2013-05-16 Rambus Inc. Conditional-reset, temporally oversampled image sensor
MY172250A (en) * 2012-02-23 2019-11-19 Nissan Motor Three-dimensional object detection device
US9239960B2 (en) * 2012-03-02 2016-01-19 Nissan Motor Co., Ltd. Three-dimensional object detection device
US9842385B2 (en) * 2012-09-12 2017-12-12 Dolby Laboratories Licensing Corporation Display management for images with enhanced dynamic range
US9681026B2 (en) * 2013-04-15 2017-06-13 Htc Corporation System and method for lens shading compensation
US9693078B2 (en) * 2014-07-09 2017-06-27 Interra Systems, Inc. Methods and systems for detecting block errors in a video

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279405A (ja) * 2006-04-07 2007-10-25 Mitsubishi Electric Corp 画像表示装置
JP2008015225A (ja) * 2006-07-06 2008-01-24 Seiko Epson Corp 画像処理システム、表示装置、プログラムおよび情報記憶媒体
JP2012520050A (ja) * 2009-03-10 2012-08-30 ドルビー ラボラトリーズ ライセンシング コーポレイション 拡張ダイナミックレンジおよび拡張次元をもつ画像信号変換
JP2011172146A (ja) * 2010-02-22 2011-09-01 Sharp Corp コンテンツ再生装置、設定方法、プログラム、及び、記録媒体
JP2012008497A (ja) * 2010-06-28 2012-01-12 Canon Inc 画像処理装置及びその制御方法
WO2012172460A1 (en) * 2011-06-14 2012-12-20 Koninklijke Philips Electronics N.V. Graphics processing for high dynamic range video

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185572A4 *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060084A (ja) * 2015-09-18 2017-03-23 株式会社東芝 電子機器、及び表示方法
EP3185571A1 (en) * 2015-12-22 2017-06-28 Thomson Licensing Hierarchical scene segmentation metadata transmission for content enhancement
EP3439312A4 (en) * 2016-03-31 2019-02-06 Sharp Kabushiki Kaisha CONTENT PROCESSING DEVICE, TELEVISION RECEIVING DEVICE, INFORMATION PROCESSING METHOD IN CONTENT PROCESSING DEVICE, AND PROGRAM
WO2017169209A1 (ja) * 2016-03-31 2017-10-05 シャープ株式会社 コンテンツ処理装置、テレビジョン受信装置、コンテンツ処理装置における情報処理方法、プログラム
JP2017184205A (ja) * 2016-03-31 2017-10-05 シャープ株式会社 コンテンツ処理装置、テレビジョン受信装置、コンテンツ処理装置における情報処理方法、プログラム
WO2018003667A1 (ja) * 2016-06-28 2018-01-04 シャープ株式会社 送信装置、受信装置、および表示装置
JP2018050121A (ja) * 2016-09-20 2018-03-29 株式会社東芝 多重化装置及び多重化方法
WO2018066482A1 (ja) * 2016-10-06 2018-04-12 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および画像処理方法
US10733963B2 (en) 2016-10-06 2020-08-04 Sony Interactive Entertainment Inc. Information processing apparatus and image processing method
JPWO2018235337A1 (ja) * 2017-06-21 2020-04-23 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
CN109691116A (zh) * 2017-06-21 2019-04-26 松下知识产权经营株式会社 影像显示装置及影像显示方法
US11032448B2 (en) 2017-06-21 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Video display system and video display method
WO2018235337A1 (ja) * 2017-06-21 2018-12-27 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
JPWO2018235338A1 (ja) * 2017-06-21 2020-04-23 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
US11153466B2 (en) 2017-06-21 2021-10-19 Panasonic Intellectual Property Management Co., Ltd. Video display apparatus and video display method
WO2018235338A1 (ja) * 2017-06-21 2018-12-27 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
JP7117627B2 (ja) 2017-06-21 2022-08-15 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
JP7117626B2 (ja) 2017-06-21 2022-08-15 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
CN109691119A (zh) * 2017-06-21 2019-04-26 松下知识产权经营株式会社 影像显示系统及影像显示方法
JPWO2019008819A1 (ja) * 2017-07-07 2020-05-07 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
US11049225B2 (en) 2017-07-07 2021-06-29 Panasonic Intellectual Property Management Co., Ltd. Video processing system and video processing method
JP7117664B2 (ja) 2017-07-07 2022-08-15 パナソニックIpマネジメント株式会社 映像処理システム及び映像処理方法
JP7117558B2 (ja) 2017-07-07 2022-08-15 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
JPWO2019008818A1 (ja) * 2017-07-07 2020-05-07 パナソニックIpマネジメント株式会社 映像処理システム及び映像処理方法
WO2019008818A1 (ja) * 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 映像処理システム及び映像処理方法
US10984510B2 (en) 2017-07-07 2021-04-20 Panasonic Intellectual Property Management Co., Ltd. Video display apparatus and video display method for luminance conversion
WO2019008819A1 (ja) * 2017-07-07 2019-01-10 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
JP7054826B2 (ja) 2017-07-14 2022-04-15 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
JPWO2019012729A1 (ja) * 2017-07-14 2020-05-21 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
JPWO2019012728A1 (ja) * 2017-07-14 2020-05-21 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
JP7054825B2 (ja) 2017-07-14 2022-04-15 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
WO2019012728A1 (ja) * 2017-07-14 2019-01-17 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
US11039045B2 (en) 2017-07-14 2021-06-15 Panasonic Intellectual Property Management Co., Ltd. Video display system and video display method
WO2019012729A1 (ja) * 2017-07-14 2019-01-17 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
WO2019053917A1 (ja) * 2017-09-13 2019-03-21 パナソニックIpマネジメント株式会社 輝度特性生成方法
JPWO2019053917A1 (ja) * 2017-09-13 2019-11-07 パナソニックIpマネジメント株式会社 輝度特性生成方法
WO2019059022A1 (ja) * 2017-09-21 2019-03-28 ソニー株式会社 再生装置、再生方法、プログラム、および記録媒体
US11483616B2 (en) 2017-09-21 2022-10-25 Sony Corporation Reproduction apparatus, reproduction method, program, and recording medium
JPWO2019059022A1 (ja) * 2017-09-21 2020-11-12 ソニー株式会社 再生装置、再生方法、プログラム、および記録媒体
JP7207314B2 (ja) 2017-09-21 2023-01-18 ソニーグループ株式会社 再生装置、再生方法、プログラム
CN109891901A (zh) * 2017-10-06 2019-06-14 松下知识产权经营株式会社 影像显示系统及影像显示方法
JPWO2019069483A1 (ja) * 2017-10-06 2020-09-17 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
US10992877B2 (en) 2017-10-06 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Video display apparatus and video display method
US11146737B2 (en) 2017-10-06 2021-10-12 Panasonic Intellectual Property Management Co., Ltd. Video display system and video display method
JPWO2019069482A1 (ja) * 2017-10-06 2020-09-10 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
JP7133772B2 (ja) 2017-10-06 2022-09-09 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
WO2019069483A1 (ja) * 2017-10-06 2019-04-11 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
CN109891902B (zh) * 2017-10-06 2022-02-18 松下知识产权经营株式会社 影像显示系统及影像显示方法
WO2019069482A1 (ja) * 2017-10-06 2019-04-11 パナソニックIpマネジメント株式会社 映像表示システム及び映像表示方法
CN109891902A (zh) * 2017-10-06 2019-06-14 松下知识产权经营株式会社 影像显示系统及影像显示方法
JP7108880B2 (ja) 2017-10-06 2022-07-29 パナソニックIpマネジメント株式会社 映像表示装置及び映像表示方法
JPWO2019098054A1 (ja) * 2017-11-17 2020-11-26 ソニー株式会社 情報処理装置、情報処理方法、記録媒体、再生装置、再生方法、およびプログラム
WO2019098054A1 (ja) * 2017-11-17 2019-05-23 ソニー株式会社 情報処理装置、情報処理方法、記録媒体、再生装置、再生方法、およびプログラム
US11245941B2 (en) 2017-11-17 2022-02-08 Sony Corporation Information processing apparatus, information processing method, recording medium, playback apparatus, playback method, and program
CN111344787B (zh) * 2017-11-17 2021-12-17 索尼公司 信息处理装置和方法、存储介质、回放装置、及回放方法
JP7180610B2 (ja) 2017-11-17 2022-11-30 ソニーグループ株式会社 再生装置、再生方法、およびプログラム
CN111344787A (zh) * 2017-11-17 2020-06-26 索尼公司 信息处理装置、信息处理方法、记录介质、回放装置、回放方法、以及程序
JP7435704B2 (ja) 2017-11-17 2024-02-21 ソニーグループ株式会社 再生装置、再生方法、プログラム、情報処理システム
WO2020009365A1 (ko) * 2018-07-03 2020-01-09 삼성전자(주) 디스플레이장치 및 그 제어방법과 기록매체
KR20200004210A (ko) * 2018-07-03 2020-01-13 삼성전자주식회사 디스플레이장치 및 그 제어방법과 기록매체
KR102572432B1 (ko) * 2018-07-03 2023-08-30 삼성전자주식회사 디스플레이장치 및 그 제어방법과 기록매체

Also Published As

Publication number Publication date
CN105981396B (zh) 2020-07-14
EP3185572A1 (en) 2017-06-28
EP3185572A4 (en) 2018-06-06
US20190230407A1 (en) 2019-07-25
US20160330513A1 (en) 2016-11-10
CN110460792B (zh) 2022-03-08
MX366637B (es) 2019-07-17
US10291955B2 (en) 2019-05-14
JP6566271B2 (ja) 2019-08-28
CN110460792A (zh) 2019-11-15
CN105981396A (zh) 2016-09-28
JPWO2016027423A1 (ja) 2017-06-01
EP3185572B1 (en) 2023-03-08
MX2017000432A (es) 2017-05-01

Similar Documents

Publication Publication Date Title
JP6566271B2 (ja) 伝送方法及び再生装置
JP6671022B2 (ja) 表示装置、表示方法及びコンピュータプログラム
JP6566320B2 (ja) データ出力装置及びデータ出力方法
JP6573238B2 (ja) 表示装置、変換装置、表示方法、および、コンピュータプログラム
WO2015198552A1 (ja) コンテンツデータ生成方法、映像ストリーム伝送方法及び映像表示方法
JP6928885B2 (ja) 表示装置、表示方法及びコンピュータプログラム
JP7170236B2 (ja) 再生装置
JP2017139511A (ja) コンテンツデータ生成方法、映像ストリーム伝送方法及び映像表示方法
JP6751893B2 (ja) 再生方法、再生装置、表示方法及び表示装置
JP6643669B2 (ja) 表示装置および表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543801

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015834222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000432

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE