WO2016026223A1 - 发光结构、显示装置和光源装置 - Google Patents

发光结构、显示装置和光源装置 Download PDF

Info

Publication number
WO2016026223A1
WO2016026223A1 PCT/CN2014/091134 CN2014091134W WO2016026223A1 WO 2016026223 A1 WO2016026223 A1 WO 2016026223A1 CN 2014091134 W CN2014091134 W CN 2014091134W WO 2016026223 A1 WO2016026223 A1 WO 2016026223A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
light
layer
emitting structure
Prior art date
Application number
PCT/CN2014/091134
Other languages
English (en)
French (fr)
Inventor
闫光
吴长晏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/771,474 priority Critical patent/US10217801B2/en
Publication of WO2016026223A1 publication Critical patent/WO2016026223A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/84Parallel electrical configurations of multiple OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/841Applying alternating current [AC] during manufacturing or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • At least one embodiment of the present invention is directed to a light emitting structure, a display device, and a light source device.
  • the illuminating color of a light source such as an incandescent light source or a fluorescent light source falls within a predetermined spectral range, and the color of a single light source is generally not arbitrarily adjustable.
  • a control unit is used to control the illuminating intensity of these light sources.
  • an illumination source that is desired to obtain an adjustable illumination, that is, a color or intensity or both.
  • At least one embodiment of the present invention provides a light emitting structure, a display device, and a light source device that are driven by an alternating current power source, and are easy to realize color and illuminance adjustable.
  • At least one embodiment of the present invention provides a light emitting structure including a first light emitting device electrically connected and a second light emitting device, the first light emitting device including a first light emitting layer and a second light emitting layer,
  • the second light emitting device includes a third light emitting layer; the whole of the first light emitting device and the second light emitting device are electrically connected, and the first light emitting layer and the second light emitting layer cannot simultaneously emit light,
  • the third luminescent layer emits light simultaneously with the first luminescent layer or the second luminescent layer.
  • At least one embodiment of the present invention provides a light source device including a plurality of light emitting structures employing the above-described light emitting structures.
  • At least one embodiment of the present invention provides a display device including the above light source device; or
  • the method includes a plurality of pixel structures and a driving circuit coupled to the pixel structure, the pixel structure including the above-described light emitting structure.
  • FIG. 1 is a schematic structural view of a light emitting structure according to Embodiment 1 of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the AC drive of the light-emitting structure of FIG. 1;
  • FIG. 3 is a schematic diagram of AC driving of the light emitting structure of FIG. 2.
  • FIG. 3 is a schematic diagram of AC driving of the light emitting structure of FIG. 2.
  • OLED Organic Light-Emitting Diode
  • the organic electroluminescent diode has the same properties as the diode, and has a single-conduction characteristic of forward conduction and reverse cutoff. Meanwhile, the performance of the OLED is related to many factors, and its structure and driving mode are considered to be the main factors for improving the stability of the OLED. factor.
  • the technical idea of the present application is that the light-emitting structure in the embodiment of the present invention adopts an appropriate structure and driving manner (for example, AC driving), so that the OLED has unique performance (such as adjustable color), and can also make certain performance of the OLED ( As lifespan is improved.
  • the embodiment provides a light emitting structure.
  • the light emitting structure includes a first light emitting device 10 and a second light emitting device 20 electrically connected.
  • the first light emitting device 10 includes a first light emitting layer 12 and a second light emitting layer.
  • the second illuminating device 20 includes a third illuminating layer 22; the whole of the first illuminating device 10 and the second illuminating device 20 are electrically connected, and the first illuminating layer 12 and the second illuminating layer 14 cannot simultaneously emit light.
  • the three light emitting layers 22 emit light simultaneously with the first light emitting layer 12 or the second light emitting layer 14.
  • the first light emitting device 10 is a stacked organic electroluminescent diode having more than one light emitting layer; the second light emitting device 20 is a bipolar organic electroluminescent diode, which can pass Bidirectional current drive illumination.
  • the first light emitting device 10 includes a first electrode 11, a middle electrode 13 and a second electrode 15, the first light emitting layer 12 is disposed between the first electrode 11 and the intermediate electrode 13, and the second light emitting layer 14 is disposed on The first electrode 11 and the second electrode 15 are connected between the intermediate electrode 13 and the second electrode 15; the second light emitting device 20 includes a third electrode 21 and a fourth electrode 23, and the third light emitting layer 22 is disposed on the third electrode 21 Between the fourth electrode 23 and the intermediate electrode The pole 13 is connected to the fourth electrode 23.
  • the first electrode 11 and the second electrode 15 are connected by the first connection electrode 16, and the intermediate electrode 13 and the fourth electrode 23 are connected by the second connection electrode 24.
  • any of the light-emitting layers of the first light-emitting device 10 having the laminated light-emitting structure emits light only in a half cycle time
  • the second light-emitting device 20 of the single-layer light-emitting structure is in any of the entire periods.
  • the light can be illuminated at all times. Therefore, the embodiment is not only applicable to the AC driving mode, but also ensures that the color or intensity of the light emitting structure is adjustable and the life of the light emitting structure is prolonged.
  • the first electrode 11 and the second electrode 15 are disposed in different layers with an insulating layer disposed therebetween.
  • the insulating layer between the first electrode 11 and the second electrode 15 is required.
  • the second connection electrode 24 is formed by merely maintaining the pattern in which the intermediate electrode 13 and the fourth electrode 23 are formed, so that the intermediate electrode 13 is connected to the fourth electrode 23.
  • the intermediate electrode 13 is formed of a metal material including lithium (Li), magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca). At least one of magnesium-indium (Mg-In) and magnesium-silver (Mg-Ag).
  • the intermediate electrode 13 formed of a metal material has a thickness ranging from 5 to 500 nm.
  • the third electrode 21 or the fourth electrode 23 is disposed to be transparent, and the third electrode 21, the fourth electrode 23, and the second connection electrode 24 are formed of a metal material having a matching work function, or have a phase
  • the metal oxide material of the matched work function is formed, or a metal material having a matching work function is used in combination with the metal oxide material.
  • metal materials include lithium (Li), magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium- At least one of silver (Mg-Ag).
  • the third electrode 21, the fourth electrode 23, and the second connection electrode 24 formed of a metal material have a thickness ranging from 5 to 500 nm.
  • the metal oxide material includes indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), aluminum-doped zinc oxide (AZO), indium oxide (In 2 O 3 ), or tin oxide (SnO 2 ). At least one or a combination of several.
  • the third electrode 21, the fourth electrode 23 and the second connecting electrode 24 are formed by using a metal oxide material having an energy level matching work function, which can ensure that the second light emitting device 20 is in the positive half cycle and the negative half cycle during the AC driving process. Normal injection of appropriate different carriers ensures that the second illuminating device 20 can illuminate during both the positive half cycle and the negative half cycle.
  • the first electrode 11 or the second electrode 15 is disposed to be transparent, and the first electrode 11, the second electrode 15, and the first connection electrode 16 are formed of a metal material, or formed of a metal oxide material, or a metal The material is formed in combination with a metal oxide material.
  • metal materials include lithium (Li), magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium- At least one of silver (Mg-Ag).
  • the metal oxide material includes indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), aluminum-doped zinc oxide (AZO), indium oxide (In 2 O 3 ), or tin oxide (SnO 2 ). At least one or a combination of several.
  • the thickness of the first electrode, the second electrode, and the first connection electrode formed using the metal material ranges from 5 to 500 nm.
  • the metal material or the metal oxide material for forming each electrode has an energy level suitable for matching with other electrodes; and the metal material or metal Oxide materials are commonly used materials in the field of semiconductors, so it is convenient to take materials.
  • the above-mentioned metal material and/or metal oxide material having a matching work function means that the metal material and/or the metal oxide material have a small difference in work function, preferably ⁇ 0.5 ev. Better performance of the light-emitting structure.
  • the metal oxide material can be used to prepare a transparent electrode; the metal material can be used to prepare an opaque electrode, or an electrode prepared using a metal material can be designed to have a small thickness to achieve a transparent effect.
  • the thicknesses of the first to fourth electrodes and the first to second connection electrodes may be the same or different, as long as the thickness of each electrode ranges from 5 to 500 nm.
  • the first electrode 11 is connected to one end of the AC power source (also connected to the second electrode 15), and the third electrode 21 is connected to the other end of the AC power source; the first luminescent layer 12 is in the AC positive half cycle or the AC negative half cycle.
  • the second luminescent layer 14 emits light in an alternating negative half cycle or an alternating positive half cycle; the third luminescent layer 22 emits light in both the alternating positive half cycle and the alternating negative half cycle. Due to the visual staying phenomenon (duration of vision), multi-color adjustable effects such as discoloration or white can be achieved.
  • the third light emitting layer 22 is made of a matrix material doped luminescent material.
  • the matrix material includes a matrix material having a hole transporting ability and a matrix material having electron transporting ability or a matrix material having both hole transporting ability and electron transporting ability; or the third light emitting layer 22 may also have a hole transporting ability and Made of luminescent material with electron transport capability.
  • the third light-emitting layer 22 is formed by using the above materials, so that different carriers can be normally injected into the light-emitting layer in the positive half cycle and the negative half cycle during the AC driving process, and the second light-emitting device 20 is ensured in the positive half cycle. Both the period and the negative half cycle can illuminate.
  • the first light emitting device 10 further includes a first organic layer disposed between the first electrode 11 and the first light emitting layer 12
  • the fourth organic layer 34, the first organic layer, the second organic layer, the third organic layer, and the fourth organic layer are formed of a material having a hole transporting ability or a material having an electron transporting ability, respectively. That is, each of the above organic layers may be formed using a material having a hole transporting ability or a material having an electron transporting ability.
  • the second light emitting device 20 further includes a fifth organic layer 35 disposed between the third electrode 21 and the third light emitting layer 22, and a sixth portion disposed between the third light emitting layer 22 and the fourth electrode 23
  • the organic layer 36, the fifth organic layer, and the sixth organic layer are each formed of a material having a hole transporting ability or an electron transporting ability.
  • each organic layer can be appropriately set as a layer having electron transport or hole transport properties, for example, electron injection.
  • the layer, the hole blocking layer or the hole transport layer, and the electron blocking layer are not limited herein.
  • the fifth organic layer and the sixth organic layer are formed by using the above materials, which can effectively improve the injection efficiency of the carriers, and ensure that any of the light-emitting layers of the first light-emitting device 10 emits light only in a half cycle time, and the single-layer light-emitting structure
  • the second light emitting device 20 can emit light at any time throughout the period.
  • materials having hole transporting ability include, but are not limited to, aromatic diamine compounds, triphenylamine compounds, aromatic triamine compounds, biphenylenediamine derivatives or triarylamine polymers; and electron transporting ability
  • the matrix material includes metal complexes, carbazole derivatives, imidazole derivatives, phenanthroline derivatives or hydrazine derivatives; luminescent materials include, but are not limited to, phosphorescent materials based on Ir, Pt, Ru, Cu.
  • the light emitting colors of the first light emitting layer 12, the second light emitting layer 14, and the third light emitting layer 22 may be different, or partially the same, or identical.
  • the first illuminating layer 12 is a blue illuminating layer
  • the second illuminating layer 14 is a red illuminating layer
  • the third illuminating layer 22 is a green illuminating layer
  • the discoloration can be realized by driving frequencies of different alternating current power sources.
  • the first illuminating layer 12 is a blue illuminating layer
  • the second illuminating layer 14 is a blue illuminating layer
  • the third illuminating layer 22 is a yellow illuminating layer
  • the third illuminating layer 22 may have different illuminating intensity during the positive half cycle and the negative half cycle, and/or the first luminescent layer 12 and the second luminescent layer 14 may have different illuminating intensities during the respective illuminating periods, such that The illuminating intensity of the illuminating structure is different in different illuminating periods; at the same time, the illuminating structure can exhibit a varying illuminating intensity by changing the ratio of the positive half period and the negative half period to the entire illuminating period; The frequency of use of the light-emitting layer 12 and the second light-emitting layer 14 is reduced by half, and the life of the light-emitting structure is improved.
  • the lighting color of the first luminescent layer 12, the second luminescent layer 14, or the third luminescent layer 22 can be flexibly adjusted to achieve color or intensity adjustment, which is not limited herein.
  • the light-emitting structure is equivalent to two diodes D1 and D2 connected in parallel, the anode of D1 and the anode of D2 are connected to an alternating current power source AC, and the anode of D1 and the cathode of D2 are connected to the light-emitting element L.
  • the light-emitting structure can be driven by an AC power source and can be illuminated in the positive half cycle or the negative half cycle of the AC power source.
  • the first electrode 11 is taken as an anode of the first light-emitting device 10 as an example.
  • the current direction in the light emitting structure is shown by the solid line in FIG. 3: the current sequentially passes through the first electrode 11, the first light emitting layer 12, the intermediate electrode 13, the second connecting electrode 24, and the fourth The electrode 23, the third luminescent layer 22, and the third electrode 21, at this time, the color seen by the human eye is a mixture of the color of the light emitted by the first luminescent layer 12 and the color of the light emitted by the third luminescent layer 22.
  • the current direction in the light emitting structure is indicated by a broken line in FIG. 3: the current sequentially passes through the third electrode 21, the third light emitting layer 22, the fourth electrode 23, the second connecting electrode 24, and the intermediate electrode. 13.
  • the color seen by the human eye is the color of the light emitted by the second luminescent layer 14 and the third luminescent layer 22 A mix of light colors.
  • the inventors have found that the first light-emitting device 10 in the light-emitting structure emits light only in the positive half cycle or the negative half cycle of the alternating current power source by studying the characteristics of the light-emitting structure after applying a reverse voltage. In the other half cycle, no light is emitted, which reduces the frequency of use of the first light emitting device 10, thereby reducing the loss and improving the lifetime, so that the working performance of the light emitting structure is greatly improved.
  • the light-emitting structure in this embodiment can be directly driven by an alternating current power source, thereby making it Organic electroluminescent diodes have unique properties (such as adjustable color or intensity) or some performance improvements (such as increased lifetime).
  • This embodiment provides a display device, which may be an organic electroluminescent diode (OLED) display device.
  • the display device includes a plurality of pixel structures and a driving circuit connected to the pixel structure, and each of the pixel structures adopts the light emitting structure in Embodiment 1.
  • the driving circuit provides an AC drive for the entirety formed by electrically connecting the first light emitting device and the second light emitting device in the light emitting structure.
  • the display device may be a liquid crystal display device using a light source device including the above-described light emitting structure as a backlight of the liquid crystal panel.
  • the light source device refer to the following embodiments, which are not described herein.
  • the display device can be any product or component having a display function such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the light source of each pixel can be adjusted by the control of the AC power source to obtain an updated viewing experience.
  • the embodiment provides a light source device, which can be applied to the field of display technology, for example, to a liquid crystal display device as a backlight of a liquid crystal panel.
  • the light source device includes a plurality of light emitting structures using the light emitting structure of Embodiment 1.
  • the light source device can be designed as a direct-lit or side-lit backlight, and the relative position of the light source device can be appropriately set according to the application object, which is not limited herein.
  • the light source device in this embodiment is used as a backlight in the liquid crystal display device, so that the backlight in the liquid crystal display device has the advantages of adjustable brightness and long life.
  • the embodiment provides a light source device, which can be applied to the field of illumination, for example, in the field of decorative display for neon display.
  • the light source device includes a plurality of light emitting structures using the light emitting structure of Embodiment 1.
  • the neon lamp is usually made of glass, and the glass tube can be bent into any shape. Different types of glass tubes are filled with different inert gases. The glass tubes are placed under high voltage electric field by means of electrode heads arranged at both ends of the glass tube. The inert gas inside ignites, resulting in colorful, multi-colored colors Light display effect.
  • neon lamps contain heavy metals such as mercury, environmental pollution may occur, and the use of a high-voltage electric field may pose a safety hazard. Therefore, with the development of technology, the task of realizing neon display has gradually shifted to the direction of using other light sources.
  • the light source device is formed by using a plurality of light emitting structures, and the color to be set according to the neon light display is obtained.
  • the color to be set according to the neon light display is obtained.
  • the use of the light source device has the following advantages: 1. It does not contain heavy metals such as mercury, and does not cause harm to the environment; 2. As a solid light source, there is no possibility of fragmentation and injury after fragmentation; 3. As a cold light source Even if you accidentally touch it, there will be no burns.
  • each of the light-emitting structures included in the light source device is a point light source, each of the line light sources or the surface light sources formed by the plurality of point light sources is controllable, so that control of each point light source can be realized. Diversification of lighting for more beautiful lighting effects.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光结构、显示装置和光源装置,该发光结构包括电连接的第一发光器件(10)以及第二发光器件(20),该第一发光器件(10)包括第一发光层(12)和第二发光层(14),该第二发光器件(20)包括第三发光层(22);该第一发光器件(10)与该第二发光器件(20)电连接形成的整体采用交流驱动,该第一发光层(12)和该第二发光层(14)不能同时发光,该第三发光层(22)与该第一发光层(12)或该第二发光层(14)同时发光。该发光结构采用交流电源进行驱动,易于实现颜色和照度可调。

Description

发光结构、显示装置和光源装置 技术领域
本发明的至少一个实施例涉及一种发光结构、显示装置和光源装置。
背景技术
光源例如白炽光源、荧光光源的发光颜色落在预定的光谱范围内,单个光源的颜色通常不能够随意调节。在某些特定场合,为了获得可调色的发光装置,必须组装大量光源,并采用控制单元控制这些光源的发光强度。由此,一方面可能产生不实用、体积庞大的发光装置,另一方面所产生的颜色通常对于人眼而言在空间上分布不均匀。
此外,在显示技术领域中,对于包括显示装置用面照明光源和背照明光源的各种照明应用,也存在期望获得照度可调,即颜色或强度或两者均可控的照明光源。
因此,设计一种颜色或强度可调的发光装置成为目前亟待解决的技术问题。
发明内容
本发明的至少一个实施例提供一种发光结构、显示装置和光源装置,该发光结构采用交流电源进行驱动,易于实现颜色和照度可调。
本发明的至少一个实施例提供一种发光结构,该发光结构包括电连接的第一发光器件以及第二发光器件,所述第一发光器件包括第一发光层和第二发光层,所述第二发光器件包括第三发光层;所述第一发光器件与所述第二发光器件电连接形成的整体采用交流驱动,所述第一发光层和所述第二发光层不能同时发光,所述第三发光层与所述第一发光层或所述第二发光层同时发光。
本发明的至少一个实施例提供一种光源装置,其包括多个发光结构,所述发光结构采用上述的发光结构。
本发明的至少一个实施例提供一种显示装置,其包括上述光源装置;或 者包括多个像素结构以及与所述像素结构连接的驱动电路,所述像素结构包括上述的发光结构。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例1中发光结构的结构示意图;
图2为图1中发光结构交流驱动的等效电路图;
图3为图2中发光结构的交流驱动示意图。
附图标记中:
10-第一发光器件,11-第一电极,12-第一发光层,13-中间电极,14-第二发光层,15-第二电极,16-第一连接电极,
20-第二发光器件,21-第三电极,22-第三发光层,23-第四电极,24-第二连接电极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是 直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本申请的发明人注意到,随着科学技术的发展,出现了新型的有机电致发光二极管(Organic Light-Emitting Diode,简称OLED),其具有自主发光、广视角、反应时间快、发光效率高、工作电压低、制程简单及成本低廉等优点,有望获得更深广的应用。但是,有机电致发光二极管仍难以实现照度可调。究其原因,在于有机电致发光二极管通常为直流驱动,其基本工作原理是:在电场的作用下,电子从阴极注入,空穴从阳极注入,被注入的电子和空穴在发光层内传输并在层内辐射复合而发射光子。
有机电致发光二极管与二极管的性质相同,具有正向导通、反向截止的单向导通特性;同时,OLED的性能与很多因素有关,其结构与驱动方式被认为是提高OLED稳定性的主要的因素。本申请的技术构思在于,本发明实施例中的发光结构采用适当的结构和驱动方式(例如交流驱动),使得OLED具有独特的性能(如颜色可调),也可以使得OLED的某些性能(如寿命)得到提高。
实施例1
本实施例提供一种发光结构,如图1所示,该发光结构包括电连接的第一发光器件10以及第二发光器件20,第一发光器件10包括第一发光层12和第二发光层14,第二发光器件20包括第三发光层22;第一发光器件10与第二发光器件20电连接形成的整体采用交流驱动,第一发光层12和第二发光层14不能同时发光,第三发光层22与第一发光层12或第二发光层14同时发光。
在该发光结构中,第一发光器件10为叠层有机电致发光二极管,其具有一层以上的发光层;第二发光器件20为双极型(bipolar)有机电致发光二极管,其可以通过双向电流驱动发光。在一个示例中,第一发光器件10包括第一电极11、中间电极13和第二电极15,第一发光层12设置于第一电极11与中间电极13之间,第二发光层14设置于中间电极13与第二电极15之间,第一电极11与第二电极15相连接;第二发光器件20包括第三电极21和第四电极23,第三发光层22设置于第三电极21与第四电极23之间,中间电 极13与第四电极23相连接。另外,在一个示例中,第一电极11与第二电极15通过第一连接电极16相连接,中间电极13与第四电极23通过第二连接电极24相连接。采用这种连接方式,能保证具有叠层发光结构的第一发光器件10的任一发光层仅在半个周期时间内发光,而单层发光结构的第二发光器件20在整个周期的任一时刻均能发光,因此,本实施例不仅适用于交流驱动方式,而且可以保证发光结构的颜色或强度可调以及延长发光结构的寿命。
第一电极11与第二电极15设置在不同的层、且二者之间设置有绝缘层,该发光结构的制备过程中,只需使第一电极11与第二电极15之间的绝缘层形成过孔,并使二者通过过孔搭接起来即可形成第一连接电极16,使得第一电极11与第二电极15相连接;中间电极13与第四电极23形成在同一层,该发光结构的制备过程中,只需使形成中间电极13与第四电极23的图案保持连接即可形成第二连接电极24,使得中间电极13与第四电极23相连接。
在至少一个示例中,中间电极13采用金属材料形成,金属材料包括锂(Li)、镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)中的至少一种。例如,采用金属材料形成的中间电极13的厚度范围为5-500nm。
在至少一个示例中,第三电极21或第四电极23设置为透明,第三电极21、第四电极23与第二连接电极24采用具有相匹配的功函数的金属材料形成,或采用具有相匹配的功函数的金属氧化物材料形成,或采用具有相匹配的功函数的金属材料与金属氧化物材料配合形成。例如,金属材料包括锂(Li)、镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)中的至少一种。例如,采用金属材料形成的第三电极21、第四电极23与第二连接电极24的厚度范围为5-500nm。例如,金属氧化物材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、铝掺杂氧化锌(AZO)、氧化铟(In2O3)或氧化锡(SnO2)中的至少一种或几种的组合。采用具有能级匹配的功函数的金属氧化物材料形成第三电极21、第四电极23与第二连接电极24,能保证交流驱动过程中第二发光器件20在正半周期和负半周期均有适当的不同载流子的正常注入,确保第二发光器件20在正半周期和负半周期均可以发光。
在至少一个示例中,第一电极11或第二电极15设置为透明,第一电极 11、第二电极15和第一连接电极16采用金属材料形成,或采用金属氧化物材料形成,或采用金属材料与金属氧化物材料配合形成。例如,金属材料包括锂(Li)、镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)中的至少一种。例如,金属氧化物材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、铝掺杂氧化锌(AZO)、氧化铟(In2O3)或氧化锡(SnO2)中的至少一种或几种的组合。例如,采用所述金属材料形成的所述第一电极、所述第二电极与所述第一连接电极的厚度范围为5-500nm。该发光结构的第一发光器件和第二发光器件中,上述用于形成各电极的金属材料或金属氧化物材料,其能级均适合与其他电极的能级搭配;而且,上述金属材料或金属氧化物材料均为半导体领域中的常用材料,因此取材比较方便。
这里应该理解的是,上述具有相匹配的功函数的金属材料和/或金属氧化物材料,即指金属材料和/或金属氧化物材料的功函数差异较小,优选为<0.5ev,以获得更好的发光结构的性能。金属氧化物材料可以用于制备透明的电极;金属材料可以用于制备不透明的电极,或者,将采用金属材料制备的电极设计为较小的厚度,以达到透明的效果。在本实施例中,第一电极至第四电极、第一连接电极至第二连接电极的厚度可以相同,也可以各不相同,只要各电极的厚度范围在5-500nm即可。
为了实现交流驱动,第一电极11连接交流电源的一端(也同时连接第二电极15),第三电极21连接交流电源的另一端;第一发光层12在交流正半周期或交流负半周期发光,对应地,第二发光层14在交流负半周期或交流正半周期发光;第三发光层22在交流正半周期和交流负半周期均发光。由于人眼色视觉暂留效应(Visual staying phenomenon,duration of vision),这样可实现变色或白色等多色可调效果。
在第二发光器件(即双极型有机电致发光二极管)中,为了配合交流电源实现一个周期两次发光,在至少一个示例中,第三发光层22采用基质材料掺杂发光材料制成,基质材料包括具有空穴传输能力的基质材料和具有电子传输能力的基质材料或同时具有空穴传输能力和电子传输能力的基质材料;或者,第三发光层22也可以采用具有空穴传输能力和电子传输能力的发光材料制成。采用上述材料形成第三发光层22,能保证交流驱动过程中的正半周期和负半周期中不同载流子正常注入发光层,确保第二发光器件20在正半周 期和负半周期都可以发光。
为了使得第一发光器件10和第二发光器件20具有更好的发光性能,在一个示例中,第一发光器件10还包括设置于第一电极11与第一发光层12之间的第一有机层31、设置于第一发光层12与中间电极13之间的第二有机层32、设置于中间电极13与第二发光层14之间的第三有机层33、设置于第二发光层14与第二电极15之间的第四有机层34,第一有机层、第二有机层、第三有机层、第四有机层分别采用具有空穴传输能力的材料或具有电子传输能力的材料形成,即上述有机层中的每一个均可以采用具有空穴传输能力的材料或具有电子传输能力的材料形成。
在一个示例中,第二发光器件20还包括设置于第三电极21与第三发光层22之间的第五有机层35、设置于第三发光层22与第四电极23之间的第六有机层36,第五有机层、第六有机层分别采用具有空穴传输能力或电子传输能力的材料形成。根据交流电源的正极和负极与该发光结构的第一电极11与第三电极21之间的连接关系,可将各有机层适当设置为具有电子传输或空穴传输性质的层,例如:电子注入层、空穴阻挡层或空穴传输层、电子阻挡层,这里不做限定。采用上述材料形成第五有机层、第六有机层,能有效提高载流子的注入效率,保证第一发光器件10的任一发光层仅在半个周期时间内发光,而单层发光结构的第二发光器件20在整个周期的任一时刻均能发光。
在上述示例中,具有空穴传输能力的材料包括但不限于芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物或三芳胺聚合物;具有电子传输能力的基质材料包括金属配合物、咔唑类衍生物、咪唑类衍生物、邻菲罗林衍生物或蒽的衍生物;发光材料包括但不限于基于Ir、Pt、Ru、Cu的磷光材料。
在本实施例的发光结构中,第一发光层12、第二发光层14和第三发光层22的发光颜色可以各不相同,或部分相同,或完全相同。例如:作为一种示例方式,第一发光层12为蓝色发光层,第二发光层14为红色发光层,第三发光层22为绿色发光层,通过不同交流电源的驱动频率可以实现变色及白色;作为另一种示例方式,第一发光层12为蓝色发光层,第二发光层14为蓝色发光层、第三发光层22为黄色发光层,通过不同交流电源的驱动频率可 以实现白色。在发光照度调节时,可以使得第三发光层22在正半周期和负半周期发光强度不同,和/或第一发光层12与第二发光层14在各自的发光周期内发光强度不同,这样在不同的发光周期中发光结构整体的发光强度即不相同;同时,还可以通过改变正半周期和负半周期占整个发光周期的比例,使得发光结构呈现出变化的发光强度;且使得第一发光层12与第二发光层14的使用频率降低一半,提高该发光结构的寿命。
应该理解的是,根据颜色需求,第一发光层12、第二发光层14或第三发光层22的点亮颜色可进行灵活调整,从而实现颜色或强度可调,这里不做限定。
如图2所示,该发光结构等效于两个并联连接的二极管D1和D2,D1的负极和D2的正极与交流电源AC连接,D1的正极和D2的负极与发光元件L连接。这样,在交流电源的正半周期或负半周期,D1或D2任一个将导通,而L在交流电源的整个周期始终都是点亮的。可见,该发光结构可以采用交流电源驱动,且在交流电源的正半周期或负半周期均能点亮。
如图3所示,以第一电极11为第一发光器件10的阳极为例进行说明。
在交流电源的正半周期,该发光结构中的电流方向为图3中实线所示:电流依次经过第一电极11、第一发光层12、中间电极13、第二连接电极24、第四电极23、第三发光层22和第三电极21,此时,人眼看见的颜色为第一发光层12发出的光的颜色与第三发光层22发出的光的颜色的混合。
在交流电源的负半周期,该发光结构中的电流方向为图3中虚线所示:电流依次经过第三电极21、第三发光层22、第四电极23、第二连接电极24、中间电极13、第二发光层14、第二电极15、第一连接电极16和第一电极11,此时,人眼看见的颜色为第二发光层14发出的光的颜色与第三发光层22发出的光的颜色的混合。
而且,发明人通过对该发光结构在施加反向电压后的特性进行研究发现,由于该发光结构中的第一发光器件10仅在交流电源的正半周期或负半周期任一半周期发光,而在另一半周期不发光,这降低了第一发光器件10的使用频率,从而使其损耗得到了降低,寿命得到了提高,使得发光结构的工作性能得到了很大的提高。
本实施例中的发光结构,可以直接采用交流电源进行驱动,进而使得其 中的有机电致发光二极管具有独特的性能(如颜色或强度可调),或某些性能的提高(如寿命得到提高)。
实施例2
本实施例提供一种显示装置,该显示装置可以是有机电致发光二极管(OLED)显示装置。该显示装置包括多个像素结构以及与像素结构连接的驱动电路,每个像素结构采用实施例1中的发光结构。所述驱动电路为发光结构中的第一发光器件和第二发光器件电连接形成的整体提供交流驱动。例如,该显示装置也可以是液晶显示装置,其利用包括上述发光结构的光源装置作为液晶面板的背光源。所述光源装置的实施可以参见以下实施例,此处不做赘述。
该显示装置可以为:电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本实施例中的显示装置,由于采用了实施例1中的发光结构,因此各像素的光源可以通过交流电源的控制对其颜色进行调节,以获得更新的观看体验。
实施例3
本实施例提供一种光源装置,该光源装置可以应用于显示技术领域,例如应用于液晶显示装置作为液晶面板的背光源。该光源装置包括多个发光结构,该发光结构采用实施例1中的发光结构。
该光源装置可以设计为直下式或侧入式背光源,其与显示面板的相对位置可根据应用对象适当设置,这里不做限定。
采用该实施例中的光源装置作为液晶显示装置中的背光源,使得液晶显示装置中的背光源具有亮度可调,寿命长的优点。
实施例4
本实施例提供一种光源装置,该光源装置可以应用于照明领域,例如应用于装饰显示领域中作霓虹灯显示。该光源装置包括多个发光结构,该发光结构采用实施例1中的发光结构。
霓虹灯通常是由玻璃经过烧制制成的,玻璃管能弯曲成任意形状,不同类型的玻璃管内充入不同的惰性气体,依靠玻璃管两端设置的电极头,在高压电场下将玻璃灯管内的惰性气体击燃,从而得到五彩缤纷、多种颜色的彩 光显示效果。但是,由于霓虹灯含汞等重金属而可能产生环境污染,而且采用高压电场容易带来安全隐患。因此,随着技术的发展,实现霓虹灯显示的重任逐渐转移到采用别的发光光源方向。
在本实施例中,采用多个发光结构形成光源装置,根据霓虹灯显示需要设定的颜色,通过相应设置发光结构中发光层的颜色,可以在不同的发光结构中得到不同的颜色,或者进而得到不同颜色构成的不同图案,实现多种颜色的霓虹灯显示的效果,从而得到更加轻薄的霓虹灯。
采用该光源装置,具有如下优点:1.不含汞等重金属,不会对环境造成危害;2.作为一种固体光源,不存在碎裂后碎片伤人的可能;3.作为一种冷光源,即使不小心碰到,也不会出现烫伤等现象。另外,由于光源装置包括的每一发光结构是点光源,由该多个点光源形成的一个线光源或面光源中的每一个点光源都可控,所以可通过对每个点光源的控制实现照明的多样化,得到更绚丽的照明效果。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年8月20日递交的中国专利申请第201410412494.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种发光结构,包括电连接的第一发光器件以及第二发光器件,其中,
    所述第一发光器件包括第一发光层和第二发光层,所述第二发光器件包括第三发光层;所述第一发光器件与所述第二发光器件电连接形成的整体采用交流驱动,所述第一发光层和所述第二发光层不能同时发光,所述第三发光层与所述第一发光层或所述第二发光层同时发光。
  2. 根据权利要求1所述的发光结构,其中,
    所述第一发光器件还包括第一电极、中间电极和第二电极,所述第一发光层设置于所述第一电极与所述中间电极之间,所述第二发光层设置于所述中间电极与所述第二电极之间,所述第一电极与所述第二电极相连接;
    所述第二发光器件还包括第三电极和第四电极,所述第三发光层设置于所述第三电极与所述第四电极之间,所述中间电极与所述第四电极相连接。
  3. 根据权利要求2所述的发光结构,其中,所述第一电极与所述第二电极通过第一连接电极相连接,所述中间电极与所述第四电极通过第二连接电极相连接。
  4. 根据权利要求3所述的发光结构,其中,所述中间电极采用金属材料形成,所述金属材料包括锂、镁、银、铝、铝-锂、钙、镁-铟、镁-银中的至少一种。
  5. 根据权利要求3或4所述的发光结构,其中,所述中间电极的厚度范围为5-500nm。
  6. 根据权利要求3-5任一所述的发光结构,其中,
    所述第三电极或所述第四电极设置为透明,
    所述第三电极、所述第四电极与所述第二连接电极采用具有相匹配的功函数的金属材料形成,或采用具有相匹配的功函数的金属氧化物材料形成,或采用具有相匹配的功函数的金属材料与金属氧化物材料配合形成。
  7. 根据权利要求6所述的发光结构,其中,所述金属材料包括锂、镁、银、铝、铝-锂、钙、镁-铟、镁-银中的至少一种。
  8. 根据权利要求6或7所述的发光结构,其中,采用所述金属材料形成的所述第三电极、所述第四电极与所述第二连接电极的厚度范围为5-500nm。
  9. 根据权利要求6-8任一所述的发光结构,其中,所述金属氧化物材料包括氧化铟锡、氧化铟锌、氧化锌、铝掺杂氧化锌、氧化铟或氧化锡中的至少一种或几种的组合。
  10. 根据权利要求3-9任一所述的发光结构,其中,
    所述第一电极或所述第二电极设置为透明,
    所述第一电极、所述第二电极与所述第一连接电极采用金属材料形成,或采用金属氧化物材料形成,或采用金属材料与金属氧化物材料配合形成。
  11. 根据权利要求10所述的发光结构,其中,形成所述第一电极、所述第二电极与所述第一连接电极的金属材料包括锂、镁、银、铝、铝-锂、钙、镁-铟、镁-银中的至少一种。
  12. 根据权利要求10或11所述的发光结构,其中,采用所述金属材料形成的所述第一电极、所述第二电极与所述第一连接电极的厚度范围为5-500nm。
  13. 根据权利要求10-12任一所述的发光结构,其中,形成所述第一电极、所述第二电极与所述第一连接电极的所述金属氧化物材料包括氧化铟锡、氧化铟锌、氧化锌、铝掺杂氧化锌、氧化铟或氧化锡中的至少一种或几种的组合。
  14. 根据权利要求2-13任一所述的发光结构,其中,
    所述第一发光器件还包括设置于所述第一电极与所述第一发光层之间的第一有机层、设置于所述第一发光层与所述中间电极之间的第二有机层、设置于所述中间电极与所述第二发光层之间的第三有机层、设置于所述第二发光层与所述第二电极之间的第四有机层,
    所述第一有机层、所述第二有机层、所述第三有机层、所述第四有机层分别采用具有空穴传输能力的材料或具有电子传输能力的材料形成。
  15. 根据权利要求14所述的发光结构,其中,
    所述第二发光器件还包括设置于所述第三电极与所述第三发光层之间的第五有机层、设置于所述第三发光层与所述第四电极之间的第六有机层,
    所述第五有机层、所述第六有机层分别采用具有空穴传输能力或电子传输能力的材料形成。
  16. 根据权利要求2-15任一项所述的发光结构,其中,所述第一电极连 接交流电源的一端,所述第三电极连接交流电源的另一端;所述第一发光层在交流正半周期或交流负半周期发光,所述第二发光层在交流负半周期或交流正半周期发光;所述第三发光层在交流正半周期和交流负半周期均发光。
  17. 根据权利要求1-16任一所述的发光结构,其中,
    所述第三发光层采用具有空穴传输能力和电子传输能力的发光材料制成;或者,
    所述第三发光层采用基质材料掺杂发光材料制成,所述基质材料包括具有空穴传输能力的基质材料和具有电子传输能力的基质材料或同时具有空穴传输能力和电子传输能力的基质材料。
  18. 根据权利要求1-17任一项所述的发光结构,其中,所述第一发光层、所述第二发光层和所述第三发光层的发光颜色各不相同,或部分相同,或完全相同。
  19. 一种光源装置,包括多个发光结构,其中,所述发光结构采用权利要求1-18任一项所述的发光结构。
  20. 一种显示装置,包括:
    多个像素结构以及与所述像素结构连接的驱动电路,其中,所述像素结构包括如权利要求1-18任一项所述的发光结构;或者
    如权利要求19所述的光源装置。
PCT/CN2014/091134 2014-08-20 2014-11-14 发光结构、显示装置和光源装置 WO2016026223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,474 US10217801B2 (en) 2014-08-20 2014-11-14 Light-emitting structure, display device and light source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410412494.4 2014-08-20
CN201410412494.4A CN104218068A (zh) 2014-08-20 2014-08-20 一种发光结构、显示装置和光源装置

Publications (1)

Publication Number Publication Date
WO2016026223A1 true WO2016026223A1 (zh) 2016-02-25

Family

ID=52099392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091134 WO2016026223A1 (zh) 2014-08-20 2014-11-14 发光结构、显示装置和光源装置

Country Status (3)

Country Link
US (1) US10217801B2 (zh)
CN (1) CN104218068A (zh)
WO (1) WO2016026223A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104600095B (zh) * 2014-12-31 2019-01-08 北京维信诺科技有限公司 一种显示装置
CN104538553B (zh) * 2014-12-31 2017-08-04 北京维信诺科技有限公司 一种颜色可调的有机电致发光器件
CN106848104B (zh) * 2017-04-14 2019-07-26 京东方科技集团股份有限公司 顶发射型发光器件
CN110148593B (zh) * 2019-05-08 2020-09-08 深圳市华星光电半导体显示技术有限公司 有机电致发光器件
CN110505741B (zh) * 2019-09-20 2021-11-30 江苏海湾电气科技有限公司 一种检测航行信号灯状态的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080211400A1 (en) * 2005-09-30 2008-09-04 Seoul Opto Device Co., Ltd. Light Emitting Device Having Vertically Stacked Light Emitting Diodes
CN101911332A (zh) * 2007-12-28 2010-12-08 夏普株式会社 有机电致发光元件
CN103168374A (zh) * 2010-08-17 2013-06-19 株式会社Lg化学 有机发光器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080067346A (ko) * 2005-11-15 2008-07-18 신젠타 파티서페이션즈 아게 비페닐의 제조방법
US8026512B2 (en) * 2006-11-16 2011-09-27 Panasonic Corporation Mobility engineered electroluminescent devices
JP5719987B2 (ja) * 2010-04-15 2015-05-20 パナソニックIpマネジメント株式会社 駆動装置
US9299942B2 (en) * 2012-03-30 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic appliance, and lighting device
KR102034819B1 (ko) * 2013-03-26 2019-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080211400A1 (en) * 2005-09-30 2008-09-04 Seoul Opto Device Co., Ltd. Light Emitting Device Having Vertically Stacked Light Emitting Diodes
CN101911332A (zh) * 2007-12-28 2010-12-08 夏普株式会社 有机电致发光元件
CN103168374A (zh) * 2010-08-17 2013-06-19 株式会社Lg化学 有机发光器件

Also Published As

Publication number Publication date
US20160293674A1 (en) 2016-10-06
US10217801B2 (en) 2019-02-26
CN104218068A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
TWI527211B (zh) 有機發光顯示裝置及其製造方法
TWI776269B (zh) 發光裝置及照相機
WO2016026223A1 (zh) 发光结构、显示装置和光源装置
JP4895742B2 (ja) 白色有機電界発光素子
JP2009224274A (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP2012142203A (ja) 照明装置
WO2013133961A1 (en) Color mixing using the reflective properties of oleds
CN101581403B (zh) 一种led手电
KR101877195B1 (ko) 유기 일렉트로루미네센스 소자의 구동 방법
US9338855B2 (en) Lighting apparatus and light emission control method
JP2012209504A (ja) 有機el照明装置
CN110148593B (zh) 有机电致发光器件
CN103236423A (zh) 一种混合照明白光器件
JP2016006744A (ja) 照明装置
TW201306643A (zh) 交流驅動有機發光元件
CN101562234A (zh) 有机电致发光显示器件
CN112289959B (zh) 一种有机电致发光器件及提高亮度均匀性的方法
KR20070101516A (ko) 백색 유기 전계 발광 소자 및 그 제조방법
CN109545993B (zh) 有机发光器件及其制造方法、照明装置
Levermore et al. Phosphorescent OLEDs: Enabling energy‐efficient lighting with improved uniformity and longer lifetime
US20170047380A1 (en) Organic electroluminescent element and organic electroluminescent panel
TWI692863B (zh) 亮度色溫可調串聯式有機發光二極體及其用途
JP6012495B2 (ja) 有機el発光システム
CN102791051A (zh) 一种可调色有机电致发光器件
US11844230B2 (en) Spectrally tunable stacked OLED

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771474

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14900140

Country of ref document: EP

Kind code of ref document: A1