WO2016026136A1 - 立体显示装置及其制作方法 - Google Patents

立体显示装置及其制作方法 Download PDF

Info

Publication number
WO2016026136A1
WO2016026136A1 PCT/CN2014/085009 CN2014085009W WO2016026136A1 WO 2016026136 A1 WO2016026136 A1 WO 2016026136A1 CN 2014085009 W CN2014085009 W CN 2014085009W WO 2016026136 A1 WO2016026136 A1 WO 2016026136A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
sub
lens
pixels
lens units
Prior art date
Application number
PCT/CN2014/085009
Other languages
English (en)
French (fr)
Inventor
廖巧生
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/386,787 priority Critical patent/US9521402B2/en
Publication of WO2016026136A1 publication Critical patent/WO2016026136A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously

Definitions

  • the present invention relates to the field of portable electronic devices, and in particular, to a stereoscopic display device and a method of fabricating the same.
  • the existing naked-eye stereoscopic display device is mainly developed based on binocular parallax, and its main working principle is to guide two images with certain parallax to the left and right eyes of the observer through a lens array or a parallax barrier, so as to observe People feel the stereo effect.
  • Current naked eye 3D Display technology can be achieved by using a parallax barrier, a lenticular lens or a pointing light source (directional Backlight) to achieve.
  • the stereoscopic display device in the prior art generally employs a cylindrical lens array in order to solve the problem of uneven brightness distribution, so that the observer observes an image in which the brightness is uniformly distributed.
  • FIG. 1 is a schematic structural view of a stereoscopic display device in the prior art.
  • the grating lens includes 8 lens units periodically arranged in the row direction, so the resolution is seriously sacrificed in the row direction. Only the original 1/8, because the grating lens and the display panel pixel arrangement have high frequency similarity, that is, the grating lens group and the black matrix on the display panel have an equal periodic structure, which makes it easy to form a beat and generate a moiré. Therefore, in the design of the stereoscopic display device, avoiding the generation of moiré marks is the primary consideration for structural design.
  • the technical problem to be solved by the present invention is to provide a stereoscopic display device and a method of fabricating the same, which can eliminate moiré and solve crosstalk problems between adjacent pixel units.
  • the present invention provides a stereoscopic display device, including: a display panel including first row sub-pixels and second row sub-pixels adjacent to each other in a column direction, first row sub-pixels and The two rows of sub-pixels respectively include a plurality of sub-pixels periodically arranged in the row direction;
  • the display control unit acquires a plurality of viewpoint images, and divides the plurality of viewpoint images into the first group of viewpoint images and the second group of viewpoint images, and the display control unit further controls the first row of sub-pixels to periodically display the first group of viewpoints The content of each view image in the image, and controlling the second row of sub-pixels to periodically display the content of each view image in the second set of view images;
  • a grating lens comprising: a first row of lens units and a second row of lens units disposed adjacently in the column direction, the first row of lens units and the second row of lens units respectively comprising a plurality of lens units periodically arranged in a row direction,
  • the first row of lens units covers the first row of sub-pixels, and the arrangement period of the lens units in the first row of lens units coincides with the display period of the first row of sub-pixels, and the second row of lens elements covers the second row of sub-pixels
  • the arrangement period of the lens unit in the second row of lens units coincides with the display period of the second row of sub-pixels, wherein the lens unit in the first row of lens units and the lens unit in the second row of lens units are mutually in the row direction Staggered, and the amount of staggering is less than one sub-pixel period;
  • the grating lens is a liquid crystal lens, and includes a plurality of driving electrodes periodically arranged in the row direction
  • Each of the driving electrodes includes a first sub-electrode extending in a column direction and corresponding to a lens unit in the first row of lens units, a second sub-electrode extending in a column direction and corresponding to a lens unit in the second row of lens units, and a third sub-electrode connecting adjacent ends of the first sub-electrode and the second sub-electrode in a row direction, wherein the first sub-electrode and the second sub-electrode of the same driving electrode are staggered from each other in a row direction, and the amount of staggering is less than one sub- Pixel period.
  • an outer edge of the lens unit in the first row of lens units is located directly above a center line of the sub-pixels in the first row of sub-pixels
  • an outer edge of the lens unit in the second row of lens units is located in the second row of sub-pixels Directly above the centerline of the spacing region between two adjacent sub-pixels.
  • the display control unit acquires 2N view images, and the first set of view images and the second set of view images respectively include N view images, and N is a positive integer greater than or equal to 2.
  • the grating lens further comprises a first black matrix
  • the first black matrix is disposed along a line direction between the first row of lens units and the second row of lens units to avoid the first set of viewpoint images and the second set of viewpoints
  • the image is crosstalked in the column direction by the first row of lens units and the second row of lens elements.
  • the display panel further includes a second black matrix disposed along a line direction between the first row of sub-pixels and the second row of sub-pixels, and the first black matrix and the second black matrix overlap each other.
  • the present invention provides a stereoscopic display device, including: a display panel including first row sub-pixels and second row sub-pixels adjacent to each other in a column direction, first row sub-pixels and The two rows of sub-pixels respectively include a plurality of sub-pixels periodically arranged in the row direction;
  • the display control unit acquires a plurality of viewpoint images, and divides the plurality of viewpoint images into the first group of viewpoint images and the second group of viewpoint images, and the display control unit further controls the first row of sub-pixels to periodically display the first group of viewpoints The content of each view image in the image, and controlling the second row of sub-pixels to periodically display the content of each view image in the second set of view images;
  • a grating lens comprising: a first row of lens units and a second row of lens units disposed adjacently in the column direction, the first row of lens units and the second row of lens units respectively comprising a plurality of lens units periodically arranged in a row direction,
  • the first row of lens units covers the first row of sub-pixels, and the arrangement period of the lens units in the first row of lens units coincides with the display period of the first row of sub-pixels, and the second row of lens elements covers the second row of sub-pixels
  • the arrangement period of the lens unit in the second row of lens units coincides with the display period of the second row of sub-pixels, wherein the lens unit in the first row of lens units and the lens unit in the second row of lens units are mutually in the row direction Staggered, and the amount of staggering is less than one sub-pixel period.
  • the lens unit in the first row of lens units and the lens unit in the second row of lens units are shifted from each other by a half sub-pixel period in the row direction.
  • an outer edge of the lens unit in the first row of lens units is located directly above a center line of the sub-pixels in the first row of sub-pixels
  • an outer edge of the lens unit in the second row of lens units is located in the second row of sub-pixels Directly above the centerline of the spacing region between two adjacent sub-pixels.
  • the display control unit acquires 2N view images, and the first set of view images and the second set of view images respectively include N view images, and N is a positive integer greater than or equal to 2.
  • the grating lens further comprises a first black matrix
  • the first black matrix is disposed along a line direction between the first row of lens units and the second row of lens units to avoid the first set of viewpoint images and the second set of viewpoints
  • the image is crosstalked in the column direction by the first row of lens units and the second row of lens elements.
  • the display panel further includes a second black matrix disposed along a line direction between the first row of sub-pixels and the second row of sub-pixels, and the first black matrix and the second black matrix overlap each other.
  • the grating lens is a liquid crystal lens, and includes a plurality of driving electrodes periodically arranged in a row direction, each driving electrode including a first sub-electrode extending along a column direction and corresponding to a lens unit in the first row of lens units, along a second sub-electrode extending in the column direction and corresponding to the lens unit in the second row of lens units and a third sub-electrode connecting adjacent ends of the first sub-electrode and the second sub-electrode in the row direction, wherein the same driving electrode
  • the first sub-electrode and the second sub-electrode are staggered from each other in the row direction, and the amount of staggering is less than one sub-pixel period.
  • the present invention provides a control method for a stereoscopic display device, including:
  • the unit corresponds to one display period of the first row of sub-pixels
  • each of the second row of lens units corresponds to one display period of the second row of sub-pixels
  • the lens unit and the first row of lenses in the first row of lens units The lens units in the unit are staggered from each other in the row direction, and the amount of shift is less than one sub-pixel period.
  • the step of controlling the grating lens to form the first row of lens units covering the first row of sub-pixels, and controlling the grating lens to form the second row of lens elements over the second row of sub-pixels includes:
  • the lens unit in the first row lens unit and the lens unit in the first row lens unit are controlled to be shifted from each other by a half sub-pixel period in the row direction.
  • the step of acquiring a plurality of viewpoint images and dividing the plurality of viewpoint images into the first group of viewpoint images and the second group of viewpoint images includes:
  • the 2N viewpoint images are acquired, and the 2N viewpoint images are divided into a first group of viewpoint images and a second group of viewpoint images respectively include N viewpoint images, and N is a positive integer greater than or equal to 2.
  • the present invention has an advantageous effect that the display panel includes a first row of sub-pixels and a second row of sub-pixels disposed adjacently in the column direction, and the first row of sub-pixels and the second row of sub-pixels respectively include the row direction a plurality of sub-pixels arranged periodically;
  • the display control unit acquires a plurality of viewpoint images, and divides the plurality of viewpoint images into the first group of viewpoint images and the second group of viewpoint images, and the display control unit further controls the first row of sub-pixels to be periodically displayed The content of each view image in the first set of view images, and controls the second row of sub-pixels to periodically display the content of each view image in the second set of view images;
  • the lenticular lens includes a first row of lenses disposed adjacently in the column direction a unit and a second row of lens units, the first row of lens units and the second row of lens units respectively comprising a plurality of lens units periodically arranged in a row direction, the first row of lens units covering the first row of
  • FIG. 1 is a schematic structural view of a stereoscopic display device of the prior art
  • FIG. 2 is a schematic structural view of a stereoscopic display device according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a luminance distribution of a stereoscopic display device according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a grating lens in a stereoscopic display device according to a first embodiment of the present invention
  • FIG. 5 is a schematic view showing an electrode structure in a stereoscopic display device according to a first embodiment of the present invention
  • FIG. 6 is a schematic structural view of a stereoscopic display device according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a stereoscopic display device according to a third embodiment of the present invention.
  • FIG. 8 is a flow chart showing a control method of a stereoscopic display device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a stereoscopic display device according to a first embodiment of the present invention.
  • the stereoscopic display device 10 includes a display panel 11, a grating lens 12, and a display control unit 13.
  • the display panel 11 includes a first row of sub-pixels 14 and a second row of sub-pixels 15 that are adjacently disposed in the column direction.
  • the first row of sub-pixels 14 and the second row of sub-pixels 15 respectively include a plurality of sub-pixels that are periodically arranged in the row direction.
  • the display control unit 13 acquires a plurality of viewpoint images, and divides the plurality of viewpoint images into a first group viewpoint image and a second group viewpoint image.
  • the display control unit 13 further controls the first row of sub-pixels 14 to periodically display the content of each of the viewpoint images in the first group of viewpoint images, and controls the second row of sub-pixels 15 to periodically display the respective viewpoint images in the second group of viewpoint images.
  • the grating lens 12 includes a first row of lens units 16 and a second row of lens units 17 disposed adjacently in the column direction.
  • the first row lens unit 16 and the second row lens unit 17 respectively include a plurality of lens units periodically arranged in the row direction.
  • the first row of lens units 16 is overlaid on the first row of sub-pixels 14, and the arrangement period of the lens elements in the first row of lens units 16 coincides with the display period of the first row of sub-pixels 14.
  • the second row of lens units 17 is overlaid on the second row of sub-pixels 15, and the arrangement period of the lens elements in the second row of lens units 17 coincides with the display period of the second row of sub-pixels 15, wherein the first row of lens units 16
  • the lens unit and the lens unit in the second row of lens units 17 are shifted from each other in the row direction, and the amount of shift is less than one sub-pixel period.
  • the pixel structure of the display panel 11 and the grating lens 12 are deviated, and the grating lens 12 and the display panel 11 can be avoided.
  • the pixel structure completely overlaps or generates a periodic beat problem in parallel, thereby eliminating the moiré in the stereoscopic display and achieving the purpose of optimizing the visualization effect.
  • the display control unit 13 acquires 2N viewpoint images, the first group of viewpoint images and the second group of viewpoint images respectively including N viewpoint images, and N is a positive integer greater than or equal to 2.
  • the display control unit 13 divides the acquired 8 viewpoint images with labels 1, 2, 3, 4, 5, 6, 7, 8 into parity into the first group of viewpoints. Images (labeled 1, 3, 5, 7) and a second set of viewpoint images (labeled 2, 4, 6, 8), and controlling the first row of sub-pixels 14 to periodically display each viewpoint in the first set of viewpoint images
  • the content of the image controls the second row of sub-pixels 15 to periodically display the content of each of the viewpoint images in the second set of viewpoint images.
  • the lens units in 17 are staggered from each other in the row direction, and the amount of shift is less than one sub-pixel period.
  • the lens unit in the first row of lens units 16 and the lens unit in the second row of lens units are shifted from each other by half in the row direction. Pixel period.
  • the outer edge of the lens unit in the first row of lens units 16 is located directly above the center line of the sub-pixels in the first row of sub-pixels 14 and outside the lens unit in the second row of lens units 17.
  • the edge is located directly above the center line of the spacing region between two adjacent sub-pixels in the second row of sub-pixels 15. Specifically, as shown in FIG.
  • the distance of the sub-pixel 1 from the outer edge of the grating lens 12 is 1/2 sub-pixel
  • the distance of the sub-pixel 2 from the outer edge of the grating lens 12 is the distance of 1 sub-pixel
  • the sub-pixel 3 The distance from the outer edge of the lenticular lens 12 is 1.5 sub-pixels
  • the distance of the sub-pixel 4 from the outer edge of the lenticular lens 12 is the distance of 2 sub-pixels
  • the distance of the sub-pixel 5 from the outer edge of the lenticular lens 12 is 2.5 sub-pixels.
  • the distance between the sub-pixel 6 and the outer edge of the grating lens 12 is 3 sub-pixels, the distance of the sub-pixel 7 from the outer edge of the grating lens 12 is 3.5 sub-pixels, and the distance of the sub-pixel 8 from the outer edge of the grating lens 12 is 4.
  • the brightness distribution is as shown in FIG. 3 , wherein FIG. a is a schematic diagram of a brightness distribution of 8 viewpoints corresponding to the stereoscopic display device of FIG. 1 , and FIG. b is a schematic diagram of brightness distribution of 8 viewpoints corresponding to the stereoscopic display device of FIG. 2 .
  • the grating lens 12 includes a first substrate 121, a second substrate 122, and liquid crystal molecules 123 disposed in the first substrate 121 and the second substrate 122.
  • the off state in Fig. a all of the liquid crystal molecules 123 have the same refractive index, and the parallel rays are not refracted directly through the liquid crystal molecules 123.
  • the on state in FIG. 1 In the on state in FIG.
  • the liquid crystal molecules 123 are offset and oriented under the electric field between the first substrate 121 and the second substrate 122, and the parallel rays are refracted when passing through the liquid crystal molecules 123, and the refractive indices of the different liquid crystal molecules 123 are different. It may be different that different parallel rays converge after passing through different optical paths, at which time the liquid crystal molecules 123 form a grating lens for application to stereoscopic display.
  • the grating lens 12 is a liquid crystal lens, and includes a plurality of driving electrodes periodically arranged in the row direction, each driving electrode including a lens unit extending in the column direction and corresponding to the lens unit in the first row of lens units 16.
  • first sub-electrode 124, a second sub-electrode 125 extending in the column direction and corresponding to the lens unit in the second row of lens units 17, and adjacent ends of the first sub-electrode 124 and the second sub-electrode 125 connected in the row direction
  • the third sub-electrode 126 wherein the first sub-electrode 124 and the second sub-electrode 125 of the same driving electrode are staggered from each other in the row direction, and the amount of staggering is less than one sub-pixel period.
  • the display in the column direction indicated by the arrow is as shown in the right figure.
  • the light emitted by one viewpoint will crosstalk to the adjacent viewpoint, forming the crosstalk of the viewpoint, such as the viewpoint v2.
  • the emitted light will crosstalk into the display area of the viewpoint v3 to form a crosstalk of the viewpoint v3, which causes the viewing angle in the column direction to be narrowed.
  • the lenticular lens 12 further includes a first black matrix 127 disposed in a row direction on a boundary line between the first row of lens units 16 and the second row of lens units 17 to avoid A set of viewpoint images and a second set of viewpoint images are crosstalked in the column direction by the first row of lens units 16 and the second row of lens units 17.
  • the display panel 11 further includes a second black matrix 112 disposed in a row direction on a boundary line between the first row of sub-pixels 14 and the second row of sub-pixels 15, a first black matrix 127 and a second black The matrices 112 overlap each other.
  • the first black matrix 127 may be formed on the first substrate 121, as shown in FIG. 7 in FIG. 7, the first black matrix 127 is formed on the first substrate 121, and then the first black matrix 127 is formed on the first black matrix 127.
  • the electrode 124 and the second electrode 125 are the electrode patterns 18 of the third electrode 126.
  • the first black matrix 127 may also be formed on the back surface of the first substrate 121 or on the upper surface of the gap glass 19 as shown in a diagram b in FIG. Regardless of whether the first black matrix 127 is formed on the first substrate 121 or the back surface of the first substrate 121, the first black matrix 127 and the second black matrix 112 overlap each other in the row direction to ensure that the first black matrix is not viewed. To. With the above structure, it is possible to solve the crosstalk problem between adjacent pixel units while eliminating the moiré.
  • FIG. 8 is a schematic flow chart of a control method of a stereoscopic display device according to a first embodiment of the present invention. As shown in FIG. 8, the control method of the stereoscopic display device includes:
  • Step S10 Acquire a plurality of viewpoint images, and divide the plurality of viewpoint images into a first group of viewpoint images and a second group of viewpoint images.
  • 2N viewpoint images are acquired, and 2N viewpoint images are divided into a first group viewpoint image and a second group viewpoint image respectively include N viewpoint images, and N is a positive integer greater than or equal to 2.
  • Step S11 controlling the first row of sub-pixels of the display panel to periodically display the content of each view image in the first set of view images, and controlling the second row of sub-pixels of the display panel to periodically display each view point in the second set of view images. The content of the image.
  • Step S12 controlling the grating lens to form a first row of lens units covering the first row of sub-pixels, and controlling the grating lens to form a second row of lens units covering the second row of sub-pixels, wherein the first row of lens units
  • Each lens unit corresponds to one display period of the first row of sub-pixels
  • each of the second row of lens units corresponds to one display period of the second row of sub-pixels
  • the lens unit and the first row of lens units The lens units in one row of lens units are shifted from each other in the row direction, and the amount of shift is less than one sub-pixel period.
  • step S12 the lens unit in the first row of lens units and the lens unit in the first row of lens units are controlled to be shifted from each other by half a sub-pixel period in the row direction.
  • the deviation between the pixel structure of the display panel and the arrangement manner of the grating lens is formed, and the cycle difference problem caused by the arrangement manner of the grating lens and the pixel structure of the display panel completely overlapping or parallel can be avoided, thereby eliminating the moiré in the stereoscopic display. Achieve the goal of optimizing visualization.
  • the grating lens is a liquid crystal lens, and includes a plurality of driving electrodes periodically arranged in a row direction, each of the driving electrodes including a lens unit extending in a column direction and corresponding to a lens unit in the first row of lens units a sub-electrode, a second sub-electrode extending in the column direction and corresponding to the lens unit in the second row of lens units, and a third sub-electrode connecting adjacent ends of the first sub-electrode and the second sub-electrode in the row direction,
  • the first sub-electrode and the second sub-electrode of the same driving electrode are staggered from each other in the row direction, and the amount of staggering is less than one sub-pixel period.
  • a first black matrix is disposed in a row direction on a boundary line between the first row of lens units and the second row of lens units.
  • the first black matrix can avoid crosstalk of the first group of viewpoint images and the second group of viewpoint images in the column direction through the first row of lens units and the second row of lens units, so that the viewing angle of view in the column direction can be enlarged.
  • the first black matrix may be fabricated on the first substrate, and then an electrode pattern including the first electrode and the second electrode and the third electrode is formed on the first black matrix.
  • the first black matrix may also be formed on the back surface of the first substrate or on the upper surface of the gap glass. However, regardless of whether the first black matrix is formed on the first substrate or the back surface of the first substrate, the first black matrix and the second black matrix overlap each other in the row direction to ensure that the first black matrix is not seen. This can eliminate the moiré on the basis of the crosstalk problem between adjacent pixel units.
  • the present invention includes a first row of sub-pixels and a second row of sub-pixels disposed adjacently in the column direction through the display panel, and the first row of sub-pixels and the second row of sub-pixels respectively include periodic rows arranged along the row direction.
  • the grating lens includes a first row of lens units and a second row of lens units disposed adjacently in the column direction, the first row of lens units and the second row of lens units respectively including a plurality of lens units periodically arranged in a row direction, the first row The lens unit covers the first row of sub-pixels, and the arrangement period of the lens units in the first row of lens units coincides with the display period of the first row of sub-pixels, and the second row of lens units covers the second row of sub-pixels, and The arrangement period of the lens unit in the second row of lens units coincides with the display period

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种立体显示装置(10)及其制作方法,包括:显示面板(11),具有沿列方向相邻设置的第一行子像素(14)和第二行子像素(15),显示控制单元(13)获取多个视点图像,并将多个视点图像划分为第一组视点图像和第二组视点图像并控制第一行子像素(14)周期性显示第一组视点图像中的各视点图像的内容,第二行子像素(15)周期性显示第二组视点图像中的各视点图像的内容,光栅透镜(12)包括沿列方向相邻设置的第一行透镜单元(16)和第二行透镜单元(17),分别覆盖于第一行子像素(14)和第二行子像素(15)上,第一行透镜单元(16)中的透镜单元与第二行透镜单元(17)中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。其可消除摩尔纹,同时能够解决相邻像素单元之间的串扰问题。

Description

立体显示装置及其制作方法
【技术领域】
本发明涉及便携式电子设备领域,特别是涉及一种立体显示装置及其制作方法。
【背景技术】
目前,显示技术已从2D 显示发展至3D 显示。现有的裸眼立体显示装置主要基于双目视差而开发的,其主要工作原理是通过透镜阵列或视差障碍将具有一定视差的两幅图像分别导引观察者的左眼及右眼,以使观察者感受到立体效果。当前裸眼3D 显示技术可通过使用视差屏障(parallax barrier)、柱状透镜(lenticular lens)或指向光源(directional backlight)来实现。现有技术中的立体显示装置一般采用柱状透镜阵列,目的是为了解决亮度分布不均的问题使观察者观察到亮度均匀分布的图像。
图1为现有技术中的立体显示装置的结构示意图,如图1所示,以8视点为例,光栅透镜包括沿行方向周期性排列的8个透镜单元,因此在行方向上分辨率牺牲严重,只有原来的1/8,因光栅透镜与显示面板像素排列具有高频的相似度,即光栅透镜组和显示面板上的黑矩阵具有等周期性结构,使得容易形成差拍而产生摩尔纹。因此,在立体显示装置的设计中,避免摩尔纹的产生成为结构设计的首要考虑因素。
【发明内容】
本发明解决的技术问题是,提供一种立体显示装置及其制作方法,能够消除摩尔纹,同时能够解决相邻像素单元之间的串扰问题。
为解决上述技术问题,本发明提供了一种立体显示装置,包括:显示面板,显示面板包括沿列方向相邻设置的第一行子像素和第二行子像素,第一行子像素和第二行子像素分别包括沿行方向周期性排列的多个子像素;
显示控制单元,显示控制单元获取多个视点图像,并将多个视点图像划分为第一组视点图像和第二组视点图像,显示控制单元进一步控制第一行子像素周期性显示第一组视点图像中的各视点图像的内容,并控制第二行子像素周期性显示第二组视点图像中的各视点图像的内容;
光栅透镜,光栅透镜包括沿列方向相邻设置的第一行透镜单元和第二行透镜单元,第一行透镜单元和第二行透镜单元分别包括沿行方向周期性排列的多个透镜单元,第一行透镜单元覆盖于第一行子像素上,且第一行透镜单元中的透镜单元的排列周期与第一行子像素的显示周期一致,第二行透镜单元覆盖于第二行子像素上,且第二行透镜单元中的透镜单元的排列周期与第二行子像素的显示周期一致,其中第一行透镜单元中的透镜单元与第二行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期;
其中,第一行透镜单元中的透镜单元与第二行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期;光栅透镜为液晶透镜,且包括沿行方向周期性排列的多个驱动电极,每一驱动电极包括沿列方向延伸且对应于第一行透镜单元中的透镜单元的第一子电极、沿列方向延伸且对应于第二行透镜单元中的透镜单元的第二子电极以及沿行方向连接第一子电极和第二子电极的相邻端部的第三子电极,其中同一驱动电极的第一子电极和第二子电极沿行方向彼此错开,且错开量小于一个子像素周期。
其中,第一行透镜单元中的透镜单元的外边缘位于第一行子像素中的子像素的中心线的正上方,第二行透镜单元中的透镜单元的外边缘位于第二行子像素中的两个相邻子像素之间的间隔区域的中心线的正上方。
其中,显示控制单元获取2N个视点图像,第一组视点图像和第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
其中,光栅透镜进一步包括第一黑矩阵,第一黑矩阵沿行方向设置于第一行透镜单元和第二行透镜单元之间的分界线上,以避免第一组视点图像和第二组视点图像经第一行透镜单元和第二行透镜单元在列方向上的串扰。
其中,显示面板进一步包括第二黑矩阵,第二黑矩阵沿行方向设置于第一行子像素和第二行子像素之间的分界线上,第一黑矩阵和第二黑矩阵彼此重叠。
为解决上述技术问题,本发明提供了一种立体显示装置,包括:显示面板,显示面板包括沿列方向相邻设置的第一行子像素和第二行子像素,第一行子像素和第二行子像素分别包括沿行方向周期性排列的多个子像素;
显示控制单元,显示控制单元获取多个视点图像,并将多个视点图像划分为第一组视点图像和第二组视点图像,显示控制单元进一步控制第一行子像素周期性显示第一组视点图像中的各视点图像的内容,并控制第二行子像素周期性显示第二组视点图像中的各视点图像的内容;
光栅透镜,光栅透镜包括沿列方向相邻设置的第一行透镜单元和第二行透镜单元,第一行透镜单元和第二行透镜单元分别包括沿行方向周期性排列的多个透镜单元,第一行透镜单元覆盖于第一行子像素上,且第一行透镜单元中的透镜单元的排列周期与第一行子像素的显示周期一致,第二行透镜单元覆盖于第二行子像素上,且第二行透镜单元中的透镜单元的排列周期与第二行子像素的显示周期一致,其中第一行透镜单元中的透镜单元与第二行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。
其中,第一行透镜单元中的透镜单元与第二行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期。
其中,第一行透镜单元中的透镜单元的外边缘位于第一行子像素中的子像素的中心线的正上方,第二行透镜单元中的透镜单元的外边缘位于第二行子像素中的两个相邻子像素之间的间隔区域的中心线的正上方。
其中,显示控制单元获取2N个视点图像,第一组视点图像和第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
其中,光栅透镜进一步包括第一黑矩阵,第一黑矩阵沿行方向设置于第一行透镜单元和第二行透镜单元之间的分界线上,以避免第一组视点图像和第二组视点图像经第一行透镜单元和第二行透镜单元在列方向上的串扰。
其中,显示面板进一步包括第二黑矩阵,第二黑矩阵沿行方向设置于第一行子像素和第二行子像素之间的分界线上,第一黑矩阵和第二黑矩阵彼此重叠。
其中,光栅透镜为液晶透镜,且包括沿行方向周期性排列的多个驱动电极,每一驱动电极包括沿列方向延伸且对应于第一行透镜单元中的透镜单元的第一子电极、沿列方向延伸且对应于第二行透镜单元中的透镜单元的第二子电极以及沿行方向连接第一子电极和第二子电极的相邻端部的第三子电极,其中同一驱动电极的第一子电极和第二子电极沿行方向彼此错开,且错开量小于一个子像素周期。
为解决上述技术问题,本发明提供了一种立体显示装置的控制方法,包括:
获取多个视点图像,并将多个视点图像分为第一组视点图像和第二组视点图像;
控制显示面板的第一行子像素周期性显示第一组视点图像中的各视点图像的内容,并控制显示面板的第二行子像素周期性显示第二组视点图像中的各视点图像的内容;
控制光栅透镜形成覆盖于第一行子像素上的第一行透镜单元,并控制光栅透镜形成覆盖于第二行子像素上的第二行透镜单元,其中第一行透镜单元中的每个透镜单元对应于第一行子像素的一个显示周期,第二行透镜单元中的每个透镜单元对应于第二行子像素的一个显示周期,第一行透镜单元中的透镜单元与第一行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。
其中,控制光栅透镜形成覆盖于第一行子像素上的第一行透镜单元,并控制光栅透镜形成覆盖于第二行子像素上的第二行透镜单元的步骤包括:
控制第一行透镜单元中的透镜单元与第一行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期。
其中,获取多个视点图像,并将多个视点图像分为第一组视点图像和第二组视点图像的步骤包括:
获取2N个视点图像,并将2N个视点图像划分成第一组视点图像和第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
通过上述方案,本发明的有益效果是:通过显示面板包括沿列方向相邻设置的第一行子像素和第二行子像素,第一行子像素和第二行子像素分别包括沿行方向周期性排列的多个子像素;显示控制单元获取多个视点图像,并将多个视点图像划分为第一组视点图像和第二组视点图像,显示控制单元进一步控制第一行子像素周期性显示第一组视点图像中的各视点图像的内容,并控制第二行子像素周期性显示第二组视点图像中的各视点图像的内容;光栅透镜包括沿列方向相邻设置的第一行透镜单元和第二行透镜单元,第一行透镜单元和第二行透镜单元分别包括沿行方向周期性排列的多个透镜单元,第一行透镜单元覆盖于第一行子像素上,且第一行透镜单元中的透镜单元的排列周期与第一行子像素的显示周期一致,第二行透镜单元覆盖于第二行子像素上,且第二行透镜单元中的透镜单元的排列周期与第一行子像素的显示周期一致,其中第一行透镜单元中的透镜单元与第一行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期,能够消除摩尔纹,同时能够解决相邻像素单元之间的串扰问题。
【附图说明】
图1是现有技术的立体显示装置的结构示意图;
图2是本发明第一实施例的立体显示装置的结构示意图;
图3是本发明第一实施例的立体显示装置的亮度分布示意图;
图4是本发明第一实施例的立体显示装置中光栅透镜的结构示意图;
图5是本发明第一实施例的立体显示装置中电极结构的示意图;
图6是本发明第二实施例的立体显示装置的结构示意图;
图7是本发明第三实施例的立体显示装置的结构示意图;
图8是本发明第一实施例的立体显示装置的控制方法的流程示意图。
【具体实施方式】
请参阅图2,图2是本发明第一实施例的立体显示装置的结构示意图。如图2所示,立体显示装置10包括显示面板11、光栅透镜12以及显示控制单元13。显示面板11包括沿列方向相邻设置的第一行子像素14和第二行子像素15。第一行子像素14和第二行子像素15分别包括沿行方向周期性排列的多个子像素。显示控制单元13获取多个视点图像,并将多个视点图像划分为第一组视点图像和第二组视点图像。显示控制单元13进一步控制第一行子像素14周期性显示第一组视点图像中的各视点图像的内容,并控制第二行子像素15周期性显示第二组视点图像中的各视点图像的内容。光栅透镜12包括沿列方向相邻设置的第一行透镜单元16和第二行透镜单元17。第一行透镜单元16和第二行透镜单元17分别包括沿行方向周期性排列的多个透镜单元。第一行透镜单元16覆盖于第一行子像素14上,且第一行透镜单元16中的透镜单元的排列周期与第一行子像素14的显示周期一致。第二行透镜单元17覆盖于第二行子像素15上,且第二行透镜单元17中的透镜单元的排列周期与第二行子像素15的显示周期一致,其中第一行透镜单元16中的透镜单元与第二行透镜单元17中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。
通过上述结构所述立体显示装置10中光栅透镜12的设置方式,使显示面板11的像素结构与光栅透镜12之间形成偏差,可以避免光栅透镜12与显示面板11 的像素结构完全重合或平行产生的周期差拍问题,从而消除立体显示中的摩尔纹,达到优化可视化效果的目的。
具体地,显示控制单元13获取2N个视点图像,第一组视点图像和第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。在本发明实施例中,以8视点为例,显示控制单元13将获取的标号为1、2、3、4、5、6、7、8的8个视点图像按奇偶划分为第一组视点图像(标号为1、3、5、7)和第二组视点图像(标号为2、4、6、8),并控制第一行子像素14周期性显示第一组视点图像中的各视点图像的内容,控制第二行子像素15周期性显示第二组视点图像中的各视点图像的内容。由于第一行透镜单元16覆盖于第一行子像素14上,第二行透镜单元17覆盖于第二行子像素15上,并且第一行透镜单元16中的透镜单元与第二行透镜单元17中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期,优选地,第一行透镜单元16中的透镜单元与第二行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期。
在本发明实施例中,第一行透镜单元16中的透镜单元的外边缘位于第一行子像素14中的子像素的中心线的正上方,第二行透镜单元17中的透镜单元的外边缘位于第二行子像素15中的两个相邻子像素之间的间隔区域的中心线的正上方。具体地,如图2所示,子像素1距光栅透镜12外边缘的距离为1/2个子像素的距离,子像素2距光栅透镜12外边缘的距离为1个子像素的距离,子像素3距光栅透镜12外边缘的距离为1.5个子像素的距离,子像素4距光栅透镜12外边缘的距离为2个子像素的距离,子像素5距光栅透镜12外边缘的距离为2.5个子像素的距离,子像素6距光栅透镜12外边缘的距离为3个子像素的距离,子像素7距光栅透镜12外边缘的距离为3.5个子像素的距离,子像素8距光栅透镜12外边缘的距离为4个子像素的距离。亮度分布如图3所示,其中,图a是图1中的立体显示装置对应的8视点的亮度分布示意图,图b是图2中的立体显示装置对应的8视点的亮度分布示意图。可见,图a中,在列方向分辨率保持不变,而行方向分辨率牺牲严重,为原来的1/8。图b中,在列方向分辨率牺牲1/2,而行方向分辨率牺牲1/4,在行方向和列方向两者分辨率较为匹配。
图4是本发明第一实施例的立体显示装置中光栅透镜的结构示意图。如图4所示,光栅透镜12包括第一基板121、第二基板122以及置于第一基板121和第二基板122中的液晶分子123。在图a中的关闭状态时,所有液晶分子123的折射率相同,平行光线不发生折射直接通过液晶分子123。在图b中的开启状态时,液晶分子123在第一基板121和第二基板122间电场作用下发生偏移定向,平行光线在经过液晶分子123时会发生折射,不同液晶分子123的折射率可能不相同,不同的平行光线经过不同的光学路径后发生聚集,此时液晶分子123形成光栅透镜以应用于立体显示。
如图5所示,光栅透镜12为液晶透镜,且包括沿行方向周期性排列的多个驱动电极,每一驱动电极包括沿列方向延伸且对应于第一行透镜单元16中的透镜单元的第一子电极124、沿列方向延伸且对应于第二行透镜单元17中的透镜单元的第二子电极125以及沿行方向连接第一子电极124和第二子电极125的相邻端部的第三子电极126,其中同一驱动电极的第一子电极124和第二子电极125沿行方向彼此错开,且错开量小于一个子像素周期。在第一基板121和第二基板122间施加电场后,液晶分子123会根据电场的变化发生偏转,从而形成所需要的透镜效果。沿箭头所示的列方向的显示内容如右图所示,一个视点发出的光线会串扰到临近的视点内,形成该视点的串扰,如视点v2 发出的光线会串扰到视点v3的显示区域内,形成视点v3的串扰,如此会造成在列方向上的视角变窄。
如图6所示,光栅透镜12还包括第一黑矩阵127,第一黑矩阵127沿行方向设置于第一行透镜单元16和第二行透镜单元17之间的分界线上,以避免第一组视点图像和第二组视点图像经第一行透镜单元16和第二行透镜单元17在列方向上的串扰。显示面板11进一步包括第二黑矩阵112,第二黑矩阵112沿行方向设置于第一行子像素14和第二行子像素15之间的分界线上,第一黑矩阵127和第二黑矩阵112彼此重叠。对比左右图可以看出,视点v2发出的形成串扰的光线被黑矩阵127阻挡。因此通过在光栅透镜下方增加第一黑矩阵127,可以降低列方向上各视点间的串扰,从而扩大在列方向上的观看视角。第一黑矩阵127可以制作在第一基板121上,如图7中的图a所示,在第一基板121上制作第一黑矩阵127,然后再在第一黑矩阵127上制作包括第一电极124、第二电极125以第三电极126的电极图形18。第一黑矩阵127也可以制作在第一基板121的背面,或者制作在间隙玻璃19的上表面,如图7中的图b所示。不管第一黑矩阵127是制作在第一基板121上,或是第一基板121的背面,第一黑矩阵127和第二黑矩阵112在行方向上彼此重叠,以保证第一黑矩阵不被看到。通过上述结构,在消除摩尔纹在基础上,同时还能够解决相邻像素单元之间的串扰问题。
请参阅图8,图8是本发明第一实施例的立体显示装置的控制方法的流程示意图。如图8所示,立体显示装置的控制方法包括:
步骤S10:获取多个视点图像,并将多个视点图像分为第一组视点图像和第二组视点图像。
在S10中,获取2N个视点图像,并将2N个视点图像划分成第一组视点图像和第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
步骤S11:控制显示面板的第一行子像素周期性显示第一组视点图像中的各视点图像的内容,并控制显示面板的第二行子像素周期性显示第二组视点图像中的各视点图像的内容。
步骤S12:控制光栅透镜形成覆盖于第一行子像素上的第一行透镜单元,并控制光栅透镜形成覆盖于第二行子像素上的第二行透镜单元,其中第一行透镜单元中的每个透镜单元对应于第一行子像素的一个显示周期,第二行透镜单元中的每个透镜单元对应于第二行子像素的一个显示周期,第一行透镜单元中的透镜单元与第一行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。
具体地,在步骤S12中,控制第一行透镜单元中的透镜单元与第一行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期。使得显示面板的像素结构与光栅透镜的设置方式之间形成偏差,可以避免光栅透镜的设置方式与显示面板的像素结构完全重合或平行产生的周期差拍问题,从而消除立体显示中的摩尔纹,达到优化可视化效果的目的。
在本发明实施例中,光栅透镜为液晶透镜,且包括沿行方向周期性排列的多个驱动电极,每一驱动电极包括沿列方向延伸且对应于第一行透镜单元中的透镜单元的第一子电极、沿列方向延伸且对应于第二行透镜单元中的透镜单元的第二子电极以及沿行方向连接第一子电极和第二子电极的相邻端部的第三子电极,其中同一驱动电极的第一子电极和第二子电极沿行方向彼此错开,且错开量小于一个子像素周期。在第一基板和第二基板间施加电场后,液晶分子会根据电场的变化发生偏转,从而形成所需要的透镜效果。在沿列方向上,一个视点发出的光线会串扰到临近的视点内,造成在列方向上的视角变窄。为防止串扰,在第一行透镜单元和第二行透镜单元之间的分界线上沿行方向设置第一黑矩阵。第一黑矩阵可以避免第一组视点图像和第二组视点图像经第一行透镜单元和第二行透镜单元在列方向上的串扰,从而可以扩大在列方向上的观看视角。第一黑矩阵可以制作在第一基板上,然后再在第一黑矩阵上制作包括第一电极、第二电极以第三电极的电极图形。第一黑矩阵也可以制作在第一基板的背面,或者制作在间隙玻璃的上表面。但是不管第一黑矩阵是制作在第一基板上,或是第一基板的背面,第一黑矩阵和第二黑矩阵在行方向上彼此重叠,以保证第一黑矩阵不被看到。如此可以在消除摩尔纹在基础上,同时还能够解决相邻像素单元之间的串扰问题。
综上所述,本发明通过显示面板包括沿列方向相邻设置的第一行子像素和第二行子像素,第一行子像素和第二行子像素分别包括沿行方向周期性排列的多个子像素;显示控制单元获取多个视点图像,并将多个视点图像划分为第一组视点图像和第二组视点图像,显示控制单元进一步控制第一行子像素周期性显示第一组视点图像中的各视点图像的内容,并控制第二行子像素周期性显示第二组视点图像中的各视点图像的内容; 光栅透镜包括沿列方向相邻设置的第一行透镜单元和第二行透镜单元,第一行透镜单元和第二行透镜单元分别包括沿行方向周期性排列的多个透镜单元,第一行透镜单元覆盖于第一行子像素上,且第一行透镜单元中的透镜单元的排列周期与第一行子像素的显示周期一致,第二行透镜单元覆盖于第二行子像素上,且第二行透镜单元中的透镜单元的排列周期与第一行子像素的显示周期一致,其中第一行透镜单元中的透镜单元与第一行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期,能够消除摩尔纹,同时能够解决相邻像素单元之间的串扰问题。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种立体显示装置,其中,所述立体显示装置包括:
    显示面板,所述显示面板包括沿列方向相邻设置的第一行子像素和第二行子像素,所述第一行子像素和所述第二行子像素分别包括沿行方向周期性排列的多个子像素;
    显示控制单元,所述显示控制单元获取多个视点图像,并将所述多个视点图像划分为第一组视点图像和第二组视点图像,所述显示控制单元进一步控制所述第一行子像素周期性显示所述第一组视点图像中的各视点图像的内容,并控制所述第二行子像素周期性显示所述第二组视点图像中的各视点图像的内容;
    光栅透镜,所述光栅透镜包括沿列方向相邻设置的第一行透镜单元和第二行透镜单元,所述第一行透镜单元和所述第二行透镜单元分别包括沿行方向周期性排列的多个透镜单元,所述第一行透镜单元覆盖于所述第一行子像素上,且所述第一行透镜单元中的透镜单元的排列周期与所述第一行子像素的显示周期一致,所述第二行透镜单元覆盖于所述第二行子像素上,且所述第二行透镜单元中的透镜单元的排列周期与所述第二行子像素的显示周期一致,其中所述第一行透镜单元中的透镜单元与所述第二行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期;
    其中,所述第一行透镜单元中的透镜单元与所述第二行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期;所述光栅透镜为液晶透镜,且包括沿所述行方向周期性排列的多个驱动电极,每一驱动电极包括沿所述列方向延伸且对应于所述第一行透镜单元中的透镜单元的第一子电极、沿所述列方向延伸且对应于所述第二行透镜单元中的透镜单元的第二子电极以及沿所述行方向连接所述第一子电极和所述第二子电极的相邻端部的第三子电极,其中同一所述驱动电极的所述第一子电极和所述第二子电极沿所述行方向彼此错开,且错开量小于一个子像素周期。
  2. 根据权利要求1所述的装置,其中,所述第一行透镜单元中的透镜单元的外边缘位于所述第一行子像素中的子像素的中心线的正上方,所述第二行透镜单元中的透镜单元的外边缘位于所述第二行子像素中的两个相邻子像素之间的间隔区域的中心线的正上方。
  3. 根据权利要求1所述的装置,其中,所述显示控制单元获取2N个视点图像,所述第一组视点图像和所述第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
  4. 根据权利要求3所述的装置,其中,所述光栅透镜进一步包括第一黑矩阵,所述第一黑矩阵沿所述行方向设置于所述第一行透镜单元和所述第二行透镜单元之间的分界线上,以避免所述第一组视点图像和所述第二组视点图像经所述第一行透镜单元和所述第二行透镜单元在所述列方向上的串扰。
  5. 根据权利要求4所述的装置,其中,所述显示面板进一步包括第二黑矩阵,所述第二黑矩阵沿所述行方向设置于所述第一行子像素和所述第二行子像素之间的分界线上,所述第一黑矩阵和所述第二黑矩阵彼此重叠。
  6. 一种立体显示装置,其中,所述立体显示装置包括:
    显示面板,所述显示面板包括沿列方向相邻设置的第一行子像素和第二行子像素,所述第一行子像素和所述第二行子像素分别包括沿行方向周期性排列的多个子像素;
    显示控制单元,所述显示控制单元获取多个视点图像,并将所述多个视点图像划分为第一组视点图像和第二组视点图像,所述显示控制单元进一步控制所述第一行子像素周期性显示所述第一组视点图像中的各视点图像的内容,并控制所述第二行子像素周期性显示所述第二组视点图像中的各视点图像的内容;
    光栅透镜,所述光栅透镜包括沿列方向相邻设置的第一行透镜单元和第二行透镜单元,所述第一行透镜单元和所述第二行透镜单元分别包括沿行方向周期性排列的多个透镜单元,所述第一行透镜单元覆盖于所述第一行子像素上,且所述第一行透镜单元中的透镜单元的排列周期与所述第一行子像素的显示周期一致,所述第二行透镜单元覆盖于所述第二行子像素上,且所述第二行透镜单元中的透镜单元的排列周期与所述第二行子像素的显示周期一致,其中所述第一行透镜单元中的透镜单元与所述第二行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。
  7. 根据权利要求6所述的装置,其中,所述第一行透镜单元中的透镜单元与所述第二行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期。
  8. 根据权利要求7所述的装置,其中所述第一行透镜单元中的透镜单元的外边缘位于所述第一行子像素中的子像素的中心线的正上方,所述第二行透镜单元中的透镜单元的外边缘位于所述第二行子像素中的两个相邻子像素之间的间隔区域的中心线的正上方。
  9. 根据权利要求6所述的装置,其中,所述显示控制单元获取2N个视点图像,所述第一组视点图像和所述第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
  10. 根据权利要求9所述的装置,其中,所述光栅透镜进一步包括第一黑矩阵,所述第一黑矩阵沿所述行方向设置于所述第一行透镜单元和所述第二行透镜单元之间的分界线上,以避免所述第一组视点图像和所述第二组视点图像经所述第一行透镜单元和所述第二行透镜单元在所述列方向上的串扰。
  11. 根据权利要求10所述的装置,其中,所述显示面板进一步包括第二黑矩阵,所述第二黑矩阵沿所述行方向设置于所述第一行子像素和所述第二行子像素之间的分界线上,所述第一黑矩阵和所述第二黑矩阵彼此重叠。
  12. 根据权利要求6所述的装置,其中,所述光栅透镜为液晶透镜,且包括沿所述行方向周期性排列的多个驱动电极,每一驱动电极包括沿所述列方向延伸且对应于所述第一行透镜单元中的透镜单元的第一子电极、沿所述列方向延伸且对应于所述第二行透镜单元中的透镜单元的第二子电极以及沿所述行方向连接所述第一子电极和所述第二子电极的相邻端部的第三子电极,其中同一所述驱动电极的所述第一子电极和所述第二子电极沿所述行方向彼此错开,且错开量小于一个子像素周期。
  13. 一种立体显示装置的控制方法,其中,所述控制方法包括:
    获取多个视点图像,并将所述多个视点图像分为第一组视点图像和第二组视点图像;
    控制显示面板的第一行子像素周期性显示所述第一组视点图像中的各视点图像的内容,并控制所述显示面板的第二行子像素周期性显示所述第二组视点图像中的各视点图像的内容;
    控制光栅透镜形成覆盖于所述第一行子像素上的第一行透镜单元,并控制所述光栅透镜形成覆盖于所述第二行子像素上的第二行透镜单元,其中所述第一行透镜单元中的每个透镜单元对应于所述第一行子像素的一个显示周期,所述第二行透镜单元中的每个透镜单元对应于所述第二行子像素的一个显示周期,所述第一行透镜单元中的透镜单元与所述第一行透镜单元中的透镜单元沿行方向彼此错开,且错开量小于一个子像素周期。
  14. 根据权利要求13所述的方法,其中,所述控制光栅透镜形成覆盖于所述第一行子像素上的第一行透镜单元,并控制所述光栅透镜形成覆盖于所述第二行子像素上的第二行透镜单元的步骤包括:
    控制所述第一行透镜单元中的透镜单元与所述第二行透镜单元中的透镜单元沿行方向彼此错开半个子像素周期。
  15. 根据权利要求13所述的方法,其中,所述获取多个视点图像,并将所述多个视点图像分为第一组视点图像和第二组视点图像的步骤包括:
    获取2N个视点图像,并将所述2N个视点图像划分成所述第一组视点图像和所述第二组视点图像分别包括N个视点图像,N为大于或等于2的正整数。
PCT/CN2014/085009 2014-08-18 2014-08-22 立体显示装置及其制作方法 WO2016026136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/386,787 US9521402B2 (en) 2014-08-18 2014-08-22 Stereoscopic display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410407254.5 2014-08-18
CN201410407254.5A CN104267525B (zh) 2014-08-18 2014-08-18 立体显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2016026136A1 true WO2016026136A1 (zh) 2016-02-25

Family

ID=52159058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085009 WO2016026136A1 (zh) 2014-08-18 2014-08-22 立体显示装置及其制作方法

Country Status (3)

Country Link
US (1) US9521402B2 (zh)
CN (1) CN104267525B (zh)
WO (1) WO2016026136A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107203049A (zh) * 2016-03-18 2017-09-26 上海和辉光电有限公司 立体光学装置及立体显示装置
CN107040773B (zh) * 2017-04-27 2020-12-08 京东方科技集团股份有限公司 一种显示装置及其控制方法
CN108761812A (zh) * 2018-05-31 2018-11-06 北京眸合科技有限公司 一种阶梯型透镜光栅及三维显示系统
US20220350207A1 (en) * 2020-11-09 2022-11-03 Boe Technology Group Co., Ltd. Display Device
WO2022155969A1 (zh) * 2021-01-25 2022-07-28 京东方科技集团股份有限公司 显示装置及其驱动方法
US12051344B2 (en) 2021-01-25 2024-07-30 Boe Technology Group Co., Ltd. Display apparatus with light-splitting component and driving method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576661A (zh) * 2009-03-27 2009-11-11 福建华映显示科技有限公司 多视域立体显示器
CN201425676Y (zh) * 2009-06-05 2010-03-17 天马微电子股份有限公司 液晶光栅模组、二维/三维可切换式显示器
CN102096200A (zh) * 2010-12-23 2011-06-15 深圳超多维光电子有限公司 一种立体显示装置及其透镜阵列
CN102109682A (zh) * 2011-01-18 2011-06-29 友达光电股份有限公司 一种立体显示装置
WO2012169466A1 (ja) * 2011-06-10 2012-12-13 シャープ株式会社 表示装置
US20130208357A1 (en) * 2010-10-05 2013-08-15 JVC Kenwood Corporation Autostereoscopic display apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728777B1 (ko) * 2004-04-07 2007-06-19 삼성에스디아이 주식회사 패럴랙스 베리어 및 이를 구비한 입체 영상 표시장치
US20060012542A1 (en) * 2004-07-03 2006-01-19 Alden Ray M Multiple program and 3D display screen and variable resolution apparatus and process
JP5402092B2 (ja) * 2009-03-04 2014-01-29 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法および電子機器
JP5521380B2 (ja) * 2009-04-13 2014-06-11 ソニー株式会社 立体表示装置
JP2014089432A (ja) * 2012-03-01 2014-05-15 Sony Corp 固体撮像装置、固体撮像装置におけるマイクロレンズの形成方法、及び、電子機器
CN102902115B (zh) * 2012-11-06 2015-06-10 深圳市华星光电技术有限公司 一种立体显示装置及液晶透镜
US9052518B2 (en) * 2012-11-30 2015-06-09 Lumenco, Llc Slant lens interlacing with linearly arranged sets of lenses
JP6124587B2 (ja) * 2012-12-27 2017-05-10 三菱電機株式会社 表示装置
CN103676302B (zh) * 2013-12-31 2016-04-06 京东方科技集团股份有限公司 实现2d/3d显示切换的阵列基板、显示装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101576661A (zh) * 2009-03-27 2009-11-11 福建华映显示科技有限公司 多视域立体显示器
CN201425676Y (zh) * 2009-06-05 2010-03-17 天马微电子股份有限公司 液晶光栅模组、二维/三维可切换式显示器
US20130208357A1 (en) * 2010-10-05 2013-08-15 JVC Kenwood Corporation Autostereoscopic display apparatus
CN102096200A (zh) * 2010-12-23 2011-06-15 深圳超多维光电子有限公司 一种立体显示装置及其透镜阵列
CN102109682A (zh) * 2011-01-18 2011-06-29 友达光电股份有限公司 一种立体显示装置
WO2012169466A1 (ja) * 2011-06-10 2012-12-13 シャープ株式会社 表示装置

Also Published As

Publication number Publication date
US9521402B2 (en) 2016-12-13
CN104267525B (zh) 2018-05-11
CN104267525A (zh) 2015-01-07
US20160249042A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2016026136A1 (zh) 立体显示装置及其制作方法
US8553030B2 (en) Stereo display apparatus and lens array thereof
EP2813886B1 (en) 3d display device and manufacturing method therefor
US9057909B2 (en) Liquid crystal lens and 3D display device
KR20120053459A (ko) 입체 표시 장치
US10917630B2 (en) Stereoscopic image display device
WO2014071643A1 (zh) 一种立体显示装置、液晶透镜及其驱动方法
WO2013135063A1 (zh) 柱透镜光栅、液晶光栅及显示器件
KR20140115487A (ko) 무안경 방식의 입체영상 표시장치
WO2017031790A1 (zh) 阵列基板及其驱动方法
JP2014066956A (ja) 表示装置
JP2016514389A (ja) 3d表示制御方法および3d表示制御装置
US20180231694A1 (en) Display panel and display device
WO2014043924A1 (zh) 一种阵列基板及液晶显示面板
WO2014043926A1 (zh) 一种阵列基板及液晶显示面板
WO2017166795A1 (zh) 显示装置及其驱动方法
US9807376B2 (en) Stereopsis display device
US20120169964A1 (en) Display device
WO2012105817A2 (ko) 패럴랙스 배리어 및 이를 포함하는 입체 표시 장치
WO2016008173A1 (zh) 2d/3d共融显示装置及广告装置
WO2018133400A1 (zh) 一种液晶透镜及显示装置
WO2013123801A1 (zh) 裸眼3d显示方法和裸眼3d显示装置
CN102929049B (zh) 一种立体显示用阶梯格栅及应用该阶梯格栅的立体显示器
CN103472650A (zh) 液晶透镜及3d显示装置
KR20120095035A (ko) 입체영상 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14386787

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899949

Country of ref document: EP

Kind code of ref document: A1