WO2017166795A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2017166795A1
WO2017166795A1 PCT/CN2016/102995 CN2016102995W WO2017166795A1 WO 2017166795 A1 WO2017166795 A1 WO 2017166795A1 CN 2016102995 W CN2016102995 W CN 2016102995W WO 2017166795 A1 WO2017166795 A1 WO 2017166795A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
view
pixel
pixels
region
Prior art date
Application number
PCT/CN2016/102995
Other languages
English (en)
French (fr)
Inventor
吴坤
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/538,299 priority Critical patent/US10630967B2/en
Publication of WO2017166795A1 publication Critical patent/WO2017166795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/60Systems using moiré fringes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics

Definitions

  • Embodiments of the present invention relate to a display device and a method of driving the same.
  • stereoscopic display devices With the rapid development of stereoscopic display technology, stereoscopic display devices have also become more and more demanding.
  • the naked-eye stereoscopic display is favored in three-dimensional display technology because it does not require the advantage of the viewer wearing the glasses.
  • Embodiments of the present invention provide a display device and a driving method thereof for reducing moiré generated during display.
  • At least one embodiment of the present invention provides a display device including a display panel and a 3D grating disposed above the display panel and disposed along a first direction, the 3D grating including a plurality of raster units arranged in sequence, the display panel Includes multiple columns of pixels;
  • the first direction and the column direction of the pixel have a set angle, and the set angle is a non-zero value.
  • each of the pixels includes at least three sub-pixels arranged in the column direction, and the odd-numbered columns and the even-numbered columns are shifted by a set distance in the column direction.
  • the fixed distance is less than or equal to the length of one sub-pixel in the column direction.
  • the length in the row direction is, D is the distance between the human eye and the display panel, d is the distance between the grating unit and the display panel, and n is a positive integer.
  • the n is 3.
  • the display panel is divided into a first view pixel region and a second view pixel region which are spaced apart;
  • the 3D grating is a slit grating, and the grating unit includes
  • the light shielding area and the light transmission area are disposed at intervals, and the light transmission area and the light shielding area cover the first view pixel area and the second view pixel area.
  • a width ratio of a width of the light transmitting region in a row direction and a width of the light shielding region in a row direction is 1:1 to 1 :4.
  • the display panel is divided into a first view pixel region and a second view pixel region which are spaced apart; the 3D grating is a lens grating, and each of the grating units The adjacent first view pixel area and second view pixel area are covered.
  • the set angle is 10 degrees to 40 degrees.
  • the set angle is 10 degrees to 20 degrees.
  • At least one embodiment of the present invention further provides a driving method of any one of the above display devices, wherein the display panel is divided into a first view pixel area and a second view pixel area which are disposed at intervals; the method includes:
  • the sub-pixels in the first view pixel region display a first view and the sub-pixels in the second view pixel region display a second view.
  • a sub-pixel in a first view pixel region displays a first view and a sub-pixel in the second view pixel region displays a second view.
  • the method further includes: controlling brightness of the sub-pixels in the critical region of the first view pixel region and the second view pixel region to be lower than that of the other regions;
  • Displaying the first view in the sub-pixel in the first view pixel region and displaying the second view in the sub-pixel in the second view pixel region includes: controlling the sub-pixel in the first view pixel region according to the control
  • the brightness display first view and the sub-pixels in the second view pixel area display the second view according to the controlled brightness.
  • the brightness of a sub-pixel in a critical region that controls the first view pixel region and the second view pixel region is lower than that of other regions.
  • the brightness includes:
  • the ratio of the brightness of the sub-pixels in the critical region of the first view pixel region and the second view pixel region to the luminance of the sub-pixels of the other regions is less than 80%.
  • a ratio of a luminance of a sub-pixel in a critical region of the first view pixel region and the second view pixel region to a luminance of a sub-pixel of another region It is 50%.
  • FIG. 1 is a schematic structural diagram of a display substrate according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a display device according to Embodiment 2 of the present invention.
  • Figure 3 is a schematic view of the pixel arrangement of Figure 2;
  • Figure 4 is a schematic view of the grating unit of Figure 2;
  • FIG. 5 is a cross-sectional view of a display device according to Embodiment 2 of the present invention.
  • FIG. 6 is a partial structural diagram of the 3D grating of FIG. 2 as a slit grating.
  • stereoscopic display devices adopt a vertical screen design, but when the stereoscopic image is actually viewed, it is necessary to rotate the product by 90 degrees, that is, to view the stereoscopic image in a horizontal screen, so that the direction of the pixel is also rotated by 90 degrees.
  • the 3D raster in the stereoscopic display device is arranged in parallel with the black matrix pattern, so that moiré is easily generated during display.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device includes a display panel 11 and a 3D grating disposed above the display panel 11 and disposed along a first direction.
  • the 3D grating includes multiple The grating unit 12 is disposed in sequence (the area covered by two adjacent black oblique lines in FIG. 1 is a position where one grating unit is located), and the display panel includes a plurality of columns of pixels 111; the first direction and the column direction of the pixel have setting clips Angle, the set angle is ⁇ as shown in Fig. 1, and the set angle ⁇ is set to a non-zero value ( ⁇ is not zero).
  • the first direction and the column direction of the pixels are not parallel or coincident.
  • two adjacent grating elements 12 are adjacent.
  • the 3D grating disposed along the first direction means that each of the grating units extends along the first direction.
  • the grating is a slit grating
  • the light shielding area and the light transmission area of the slit grating both extend in the first direction.
  • This first direction is the direction indicated by the left arrow in FIG.
  • is a non-zero value, for example, ⁇ may be 10 to 40 degrees, and further, for example, ⁇ may be 10 to 20 degrees.
  • Each column of pixels in the display device includes a plurality of pixels 111 arranged in a column direction (longitudinal direction as shown in FIG. 1), each of the pixels 111 including at least three sub-pixels arranged in the column direction, such as including a red sub-pixel.
  • the pixel R, the green sub-pixel G, and the blue sub-pixel B are sub-pixels arranged in the column direction, such as including a red sub-pixel.
  • each pixel 111 includes a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B as an example.
  • the number and color of sub-pixels in each pixel 111 are not limited to those shown in FIG. 1 , the number of sub-pixels in each pixel 111 may be other numbers, and the color of sub-pixels may be other colors. It is not listed here one by one.
  • the pixels may be arranged in such a manner that each column of pixels is periodically and repeatedly arranged, and the nth pixel in each column of pixels is completely aligned, so that the nth sub-pixel of each column of pixels constitutes one row of sub-pixels.
  • the display panel may be arranged in a manner as shown in FIG. 1 .
  • each pixel includes at least three sub-pixels arranged in sequence along the column direction.
  • the odd column pixel and the even column pixel are staggered by a set distance in the column direction, the set distance being less than or equal to the length of one subpixel in the column direction.
  • the display panel 11 further includes a black matrix (not shown in FIG. 1), and the black matrix is arranged in a crisscross pattern. Therefore, when the first direction of the 3D grating and the column direction of the pixel have a set angle, the first direction of the 3D grating and the black matrix also have a certain angle, that is, between the extending direction of the 3D grating and the black matrix. It is non-parallel.
  • the above display device may be a stereoscopic display device.
  • the stereoscopic display device may be a naked-eye 3D display device.
  • the display panel may include a liquid crystal display panel and/or a light emitting diode display panel or the like.
  • a 3D grating arranged in a first direction is disposed above the display panel, and the first direction and the column direction of the pixel have a set angle and the set angle is a non-zero value, so the tilt
  • the 3D raster and the black matrix pattern are no longer arranged in parallel, thereby reducing the moiré generated during display.
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the display device includes a display panel 11 and a 3D grating disposed above the display panel 11 and disposed in a first direction, and the 3D grating includes a plurality of grating units 12 arranged in sequence.
  • the display panel includes a plurality of columns of pixels 111.
  • the first direction and the column direction of the pixel have a set angle ⁇ , and the set angle ⁇ is set to a non-zero value.
  • Each of the grating units 12 is arranged in parallel. And each of the grating units 12 is also disposed in the first direction. This first direction is the direction in which the solid line of the grating unit 12 is indicated in FIG.
  • FIG. 3 is a schematic diagram of the arrangement of pixels in FIG. 2.
  • the odd-numbered columns and the even-numbered columns are shifted by a set distance L in the column direction, and the set distance L is less than or equal to one sub-pixel.
  • the length of the column direction in FIG. 1, taking the first column pixel and the second column pixel as an example, the first column pixel and the second column pixel are shifted by 1/2 of the length of one sub-pixel in the column direction in the column direction.
  • the display panel is divided into a first view pixel area and a second view pixel area which are spaced apart, and the sub-pixels in the first view pixel area display the first view, and the sub-pixel display in the second view pixel area Second view.
  • "1" indicates a first view
  • "2" indicates a second view.
  • a sub-pixel identifying "1” in FIG. 2 may form a first view pixel region
  • a sub-pixel identifying "2" may form a second view.
  • Pixel area One of the first view and the second view is a left eye view and the other is a right eye view. This is not specifically limited.
  • the pitch is, for example, the width of one grating unit 12 in a direction perpendicular to the first direction. In an example of this embodiment, n is 2 to 9, and the above parameters can be used to obtain a better viewing angle and 3D display effect of the display device.
  • the grating pitch of the grating unit 12 is smaller than the length sum of the n sub-pixels in the row direction.
  • d 0.415mm
  • P 0.09443mm
  • D 380.876mm
  • the angle ⁇ can be set to be 10 to 40 degrees. In an example of this embodiment, the angle ⁇ is set to be 10 degrees to 20 degrees, and the moiré can be reduced by using the above angle.
  • the angle ⁇ is set to be 12.1 degrees to 13.22 degrees, and the effect of reducing or avoiding moiré by the above angle is better.
  • the angle ⁇ is set to be 13.19 degrees or 12.11 degrees, and the above angle can be used to reduce the moiré under the premise of ensuring the stereoscopic feeling when the display device is displayed, that is, the above angle can be used to ensure the stereoscopic effect and reduce the molarity.
  • the overall effect of the pattern is best.
  • the 3D grating is tilted to the left in the present embodiment with reference to the column direction of the pixel 11 in FIG. 2; in practical applications, the 3D grating is also tilted to the right, which is not specifically drawn.
  • the 3D grating 20 may be a slit grating, a lenticular grating, or the like.
  • FIG. 6 is a partial structural diagram of the 3D grating of FIG. 2 as a slit grating, and FIG. 6 is illustrated by taking a grating unit 12 as an example, as shown in FIG. 2 and FIG. 6, when the 3D grating is a slit grating, the grating
  • the unit 12 includes spaced-apart light-shielding regions and light-transmitting regions covering the first view pixel region and the second view pixel region. That is, the center line of the light transmitting region corresponds to the boundary line of the first view pixel region and the second view pixel region, and the boundary line may be the center line of the grating unit 12 (dashed line in the grating unit 12 in FIG. 2).
  • the projection of the center line of the light transmitting region on the display panel 11 coincides with the boundary line of the first view pixel region and the second view pixel region.
  • Each of the barrier elements 12 can cover adjacent first and second view pixel regions.
  • the width ratio of the width M1 of the light transmitting region in the row direction and the width (M2+M3) of the light shielding region in the row direction are 1:1 to 1:4, and the above width ratio can be used to obtain a display device. Good 3D display effect. As shown in FIG.
  • the width M1 of the light transmitting region in the row direction and the light shielding region in the row direction is 1:3, and the above width ratio can be used to obtain an optimum 3D display effect of the display device.
  • the 3D grating may be a lenticular grating, and each of the grating elements 12 covers adjacent first and second view pixel regions.
  • one pixel group is formed every six columns of sub-pixels, and the pixel groups are repeatedly arranged.
  • the display process of the display device will be described in detail below by taking a pixel group as an example, and the pixel group includes pixels from the first column to the sixth column from the left side.
  • the first sub-pixel to the third sub-pixel display the first view
  • the fourth sub-pixel to the twelfth sub-pixel display the second view
  • the thirteenth sub-pixel to the twenty-second sub-pixel display the first view.
  • the next 9 sub-pixels display the second view
  • the next 10 sub-pixels display the first view, and so on until the end of the column. That is: the first 3 sub-pixels display the first view; the next 9 sub-pixels display the second view, then the next 10 sub-pixels display the first view, and so on until the end of the column.
  • the first to the tenth sub-pixels display the first view
  • the eleventh to the 19th sub-pixels display the second view.
  • the next 10 sub-pixels display the first view
  • the next 9 sub-pixels display the second view, and so on until the end of the column. That is: the first 10 sub-pixels display the first view; the next 9 sub-pixels display the second view, then the next 10 sub-pixels display the first view, and so on until the end of the column.
  • the first sub-pixel to the sixth sub-pixel display a second view
  • the seventh to sixth sub-pixels display a first view
  • the 17th to 25th sub-pixels display a second view.
  • the next 10 sub-pixels display the first view
  • the next 9 sub-pixels display the second view, and so on until the end of the column. That is: the first 6 sub-pixels display the second view; the next 10 sub-pixels display the first view, then the next 9 sub-pixels display the second view, and so on until the end of the column.
  • the first sub-pixel to the third sub-pixel display the first view
  • the fourth sub-pixel to the thirteenth sub-pixel display the second view
  • the 14th to 22nd sub-pixels display the first view.
  • the next 10 sub-pixels display the second view
  • the next 9 sub-pixels display the first view, and so on until the end of the column. That is: the first 3 sub-pixels display the second view; the next 10 sub-pixels display the second view, then the next 9 sub-pixels display the first view, and so on until the end of the column.
  • the first sub-pixel to the ninth sub-pixel display the first view
  • the 10th to 19th sub-pixels display the second view
  • the 20th to 28th sub-pixels display the first view.
  • the next 10 sub-pixels display the second view
  • the next 9 sub-pixels display the first view, and so on until the end of the column. That is: the first 9 sub-pixels display the first view; the next 10 sub-pixels display the second view, then the next 9 sub-pixels display the first view, and so on until the end of the column.
  • the first sub-pixel to the seventh sub-pixel display the second view
  • the eighth sub-pixel to the sixteenth sub-pixel display the first view
  • the 17th to 26th sub-pixels display the second view.
  • the next 9 sub-pixels display the first view
  • the next 10 sub-pixels display the second view, and so on until the end of the column. That is: the first 7 sub-pixels display the second view; the next 9 sub-pixels display the first view, then the next 10 sub-pixels display the second view, and so on until the end of the column.
  • a first view pixel region is formed between one edge and a center line of the 3D raster, and the sub-pixel in the first view pixel region displays the first view; the other edge of the 3D raster
  • a second view pixel region is formed between the center line and the center pixel, and the second pixel in the second view pixel region displays the second view.
  • the sub-pixel displaying the first view and the sub-pixel displaying the second view are alternately arranged.
  • the luminance of the sub-pixels in the critical regions of the first view pixel region and the second view pixel region is lower than the luminance of the sub-pixels of the other regions.
  • the ratio of the luminance of the sub-pixels in the critical region of the first view pixel region and the second view pixel region to the luminance of the sub-pixels of the other regions is less than 80% and greater than zero.
  • the ratio of the luminance of the sub-pixels in the critical region of the first view pixel region and the second view pixel region to the luminance of the sub-pixels of the other regions is 50%.
  • the third sub-pixel and the fourth sub-pixel adjacent to the first column, the adjacent 12-th sub-pixel and the 13-th sub-pixel, and the adjacent 22-th sub-pixel and 23-th sub-pixel are located.
  • the brightness of the adjacent third and fourth sub-pixels in the first column, the brightness of the adjacent 12th and 13th sub-pixels, and the 22nd and 23rd sub-pixels adjacent to each other The brightness of the pixels is lower than the brightness of the sub-pixels of other regions.
  • the 10th sub-pixel and the 11th sub-pixel adjacent to the second column and the adjacent 19th and 20th sub-pixels are located in the critical region, and the 10th sub-pixel and the 11th sub-pixel in the second column
  • the brightness of the pixels and the brightness of the adjacent 19th sub-pixel and the 20th sub-pixel are lower than the brightness of the sub-pixels of other regions.
  • the sixth and seventh sub-pixels adjacent to the third column, the adjacent sixteenth sub-pixel and the third 17 sub-pixels and adjacent 25th sub-pixels and 26th sub-pixels are located in the critical region, then the brightness of the adjacent sixth and seventh sub-pixels in the third column, the adjacent 16th sub-pixel and the The brightness of the 17 sub-pixels and the brightness of the adjacent 25th and 26th sub-pixels are lower than those of the other sub-pixels.
  • the third sub-pixel and the fourth sub-pixel adjacent to the fourth column, the adjacent thirteenth sub-pixel and the fourteenth sub-pixel, and the adjacent twenty-second sub-pixel and the 23rd sub-pixel are located at a critical point.
  • the brightness of the adjacent third and fourth sub-pixels in the fourth column, the brightness of the adjacent thirteenth sub-pixel and the fourteenth sub-pixel, and the adjacent 22nd and 23rd sub-pixels The brightness is lower than the brightness of the sub-pixels in other areas.
  • the ninth sub-pixel and the tenth sub-pixel adjacent to the fifth column and the adjacent 19th and 20th sub-pixels are located in the critical region, and the ninth sub-pixel and the 10th sub-pixel in the fifth column
  • the brightness of the pixels and the brightness of the adjacent 19th sub-pixel and the 20th sub-pixel are lower than the brightness of the sub-pixels of other regions.
  • the seventh sub-pixel and the eighth sub-pixel adjacent to the sixth column, the adjacent sixteenth sub-pixel and the seventeenth sub-pixel, and the adjacent twenty-sixth sub-pixel and the twenty-seventh sub-pixel are located in the critical region, and the sixth
  • the brightness of the adjacent seventh and eighth sub-pixels in the column, the brightness of the adjacent 16th and 17th sub-pixels, and the brightness of the adjacent 26th and 27th sub-pixels are lower than others.
  • the brightness of the sub-pixels of the area is lower than others.
  • the brightness of the sub-pixels in the critical regions of the first view pixel region and the second view pixel region is lower than the luminance of the sub-pixels in other regions, thereby effectively reducing the 3D crosstalk of the critical region, thereby improving the 3D display effect.
  • the display panel 11 may further include black matrix patterns arranged in a crisscross pattern. Therefore, when the first direction of the 3D grating and the column direction of the pixel have a set angle, the first direction of the 3D grating and the black matrix pattern also have a certain angle. That is: the 3D grating and the black matrix pattern are not parallel.
  • the display device can be a stereoscopic display device.
  • the stereoscopic display device may be a naked-eye 3D display device.
  • a 3D grating 20 is disposed on the display panel 11, and a plurality of grating units 12 as described above are disposed on the substrate 201 of the 3D grating.
  • the base substrate 201 may not be provided, but the grating unit 12 may be disposed on the display panel 11.
  • the 3D grating can be a slit grating.
  • the 3D grating may also be an upper substrate and a lower substrate.
  • a structure in which a liquid crystal layer is interposed in which case an upper electrode may be disposed on the upper substrate, and a lower electrode may be disposed on the lower substrate to form an electric field to drive a liquid crystal in the liquid crystal layer in the 3D grating to form a lens, for example, Cylindrical lens.
  • a 3D grating arranged in a first direction is disposed above the display panel, and the column direction of the first direction and the pixel has a set angle and the set angle is a non-zero value, so the tilt
  • the 3D raster and the black matrix pattern are no longer arranged in parallel, thereby reducing the moiré generated during display.
  • the embodiment provides a driving method of the display device.
  • the display device may be the display device provided in the first embodiment or the second embodiment.
  • the display panel is divided into the first view pixel area and the second view pixel area which are spaced apart.
  • the method includes displaying a first view in a sub-pixel in a first view pixel region and a second view in a sub-pixel in a second view pixel region.
  • One of the first view and the second view is a left eye view and the other is a right eye view.
  • the displaying the first view in the sub-pixel in the first view pixel region and the displaying the second view in the sub-pixel in the second view pixel region further includes: controlling the first view pixel region and the second view
  • the brightness of the sub-pixels in the critical region of the pixel region is lower than the luminance of the sub-pixels of the other regions; the sub-pixels in the first view pixel region display the first view and the sub-pixels in the second view pixel region display the second view
  • the method includes: the sub-pixels in the first view pixel region display the first view according to the controlled brightness and the sub-pixels in the second view pixel region display the second view according to the controlled brightness.
  • the ratio of the brightness of the sub-pixels in the critical region controlling the first view pixel region and the second view pixel region to the luminance of the sub-pixels of the other regions is less than 80%.
  • the ratio of the luminance of the sub-pixels in the critical region of the first view pixel region and the second view pixel region to the luminance of the sub-pixels of the other regions is 50%.
  • a 3D grating arranged in a first direction is disposed above the display panel, and the first direction and the column direction of the pixel have a set angle and the set angle is a non-zero value,
  • the oblique 3D grating and the black matrix pattern are no longer arranged in parallel, thereby reducing the moiré generated during display.
  • the technical solution provided by the embodiment of the present invention can be combined with the human eye tracking technology to chase through the human eye.
  • the tracking technology traces the human eye to obtain a tracking result, and according to the tracking result, the display process of the display device can be realized.
  • the 3D grating is a slit grating
  • the light transmission area and the light shielding area can be manipulated according to the tracking result.
  • the view displayed by the first view pixel area and the second view pixel area may be manipulated according to the tracking result, for example, the first view pixel area may be controlled to display the second view according to the tracking result, and the second view pixel area display may be manipulated.
  • the technical solution provided by the embodiment of the present invention and the human eye tracking technology can effectively improve the viewing angle of the display device, thereby improving viewing comfort.
  • a 3D grating arranged in a first direction is disposed above the display panel, and the first direction and the column direction of the pixel have a set angle and the set angle is a non-zero value. Therefore, the oblique 3D grating and the black matrix pattern are no longer arranged in parallel, thereby reducing the moiré generated during display.

Abstract

一种显示装置及其驱动方法。显示装置包括显示面板(11)和位于显示面板(11)上方且沿第一方向设置的3D光栅(20),3D光栅(20)包括多个依次设置的光栅单元(12),显示面板(11)包括多列像素(111);第一方向和像素的列方向具有设定夹角,设定夹角为非零值。倾斜的3D光栅(20)与黑矩阵图形之间不再平行设置,从而减少了显示时产生的摩尔纹。

Description

显示装置及其驱动方法 技术领域
本发明的实施例涉及一种显示装置及其驱动方法。
背景技术
随着立体显示技术的快速发展,立体显示装置也有了越来越大的需求。在众多的实现三维立体显示的技术中,裸眼立体显示由于无需观看者佩戴眼镜的优点而在三维立体显示技术中备受青睐。
发明内容
本发明的实施例提供一种显示装置及其驱动方法,用于减少显示时产生的摩尔纹。
本发明至少一实施例提供了一种显示装置,包括显示面板和位于所述显示面板上方且沿第一方向设置的3D光栅,所述3D光栅包括多个依次设置的光栅单元,所述显示面板包括多列像素;
所述第一方向和所述像素的列方向具有设定夹角,所述设定夹角为非零值。
例如,本发明一实施例提供的显示装置中,每个所述像素包括至少三个沿列方向依次排列的子像素,奇数列像素和偶数列像素在列方向上错开设定距离,所述设定距离小于或等于一个子像素在列方向的长度。
例如,本发明一实施例提供的显示装置中,所述光栅单元的栅距P=[D/(D+d)]×S,其中,P为光栅单元的栅距,S为n个子像素在行方向上的长度和,D为人眼与显示面板之间的距离,d为光栅单元与显示面板之间的距离,n为正整数。
例如,本发明一实施例提供的显示装置中,所述n为3。
例如,本发明一实施例提供的显示装置中,所述显示面板被划分为间隔设置的第一视图像素区和第二视图像素区;所述3D光栅为狭缝式光栅,所述光栅单元包括间隔设置的遮光区和透光区,所述透光区和遮光区覆盖所述第一视图像素区和所述第二视图像素区。
例如,本发明一实施例提供的显示装置中,每个所述光栅单元中,所述透光区在行方向上的宽度和所述遮光区在行方向上的宽度的宽度比为1:1至1:4。
例如,本发明一实施例提供的显示装置中,所述显示面板被划分为间隔设置的第一视图像素区和第二视图像素区;所述3D光栅为透镜式光栅,每个所述光栅单元覆盖相邻的所述第一视图像素区和第二视图像素区。
例如,本发明一实施例提供的显示装置中,所述设定夹角为10度至40度。
例如,本发明一实施例提供的显示装置中,所述设定夹角为10度至20度。
本发明至少一实施例还提供上述任一显示装置的驱动方法,所述显示面板被划分为间隔设置的第一视图像素区和第二视图像素区;所述方法包括:
在所述第一视图像素区中的子像素显示第一视图以及在所述第二视图像素区中的子像素显示第二视图。
例如,本发明一实施例提供的显示装置的驱动方法中,在所述在第一视图像素区中的子像素显示第一视图以及在所述第二视图像素区中的子像素显示第二视图之前还包括:控制所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度;
在所述第一视图像素区中的子像素显示第一视图以及在所述第二视图像素区中的子像素显示第二视图包括:所述第一视图像素区中的子像素根据控制后的亮度显示第一视图以及所述第二视图像素区中的子像素根据控制后的亮度显示第二视图。
例如,本发明一实施例提供的显示装置的驱动方法中,所述控制所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度包括:
控制所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值小于80%。
例如,本发明一实施例提供的显示装置的驱动方法中,所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值为50%。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例一提供的一种显示基板的结构示意图;
图2为本发明实施例二提供的一种显示装置的结构示意图;
图3为图2中像素排列的示意图;
图4为图2中光栅单元的示意图;
图5为本发明实施例二提供的一种显示装置的剖视示意图;
图6为图2中3D光栅为狭缝式光栅的局部结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以 存在中间元件。
通常,多数立体显示装置均采用竖屏设计,但是实际观看立体图像时需要将产品旋转90度,即横屏观看立体图像,因此像素的方向也旋转了90度。但是立体显示装置中的3D光栅与黑矩阵图形平行排列,从而在显示时容易产生摩尔纹。
实施例一
图1为本实施例提供的一种显示装置的结构示意图,如图1所示,该显示装置包括显示面板11和位于显示面板11上方且沿第一方向设置的3D光栅,3D光栅包括多个依次设置的光栅单元12(图1中相邻两个黑色斜线所覆盖的区域为一个光栅单元所在的位置),显示面板包括多列像素111;第一方向和像素的列方向具有设定夹角,该设定夹角为如图1所示的α,设定夹角α为非零值(α不为零)。例如,第一方向和像素的列方向不平行或不重合。例如,相邻两个光栅单元12相邻接。
沿第一方向设置的3D光栅是指每个光栅单元沿第一方向延伸设置,比如,若光栅为狭缝光栅,则狭缝光栅的遮光区和透光区均沿第一方向延伸。该第一方向为图1中靠左的箭头所示的方向。
α为非零值,例如,α可以为10度至40度,进一步例如,α可以为10度至20度。
显示装置中的每列像素均包括沿列方向(如图1中所示的纵向)排列的多个像素111,每个像素111包括至少三个沿列方向依次排列的子像素,如包括红色子像素R、绿色子像素G和蓝色子像素B。
本实施例中以每个像素111包括红色子像素R、绿色子像素G和蓝色子像素B为例说明。在实际应用中,每个像素111中的子像素的数量和颜色均不限于图1中所示,每个像素111中的子像素的数量可以为其它数量且子像素的颜色可以为其它颜色,此处不再一一列举。
例如,一个示例提供的显示面板中,像素排列方式可以为:各列像素周期性重复排列,各列像素中的第n个像素完全对齐,使得每列像素的第n个子像素构成一行子像素。
例如,另一个示例提供的显示面板中,像素排列方式还可以是如图1所示的方式。如图1所示,每个像素包括至少三个沿列方向依次排列的子像素, 奇数列像素和偶数列像素在列方向上错开设定距离,该设定距离小于或等于一个子像素在列方向的长度。
例如,一个示例中,显示面板11还包括黑矩阵(图1中未示出),黑矩阵呈纵横交错形式排列。因此当3D光栅的第一方向与像素的列方向具备设定夹角时,3D光栅的第一方向与黑矩阵之间也具备一定的夹角,即,3D光栅与黑矩阵的延伸方向之间为非平行。
例如,上述显示装置可为立体显示装置。例如,该立体显示装置可以为裸眼3D显示装置。
本实施例对显示面板的类型不作限定,例如,显示面板可以包括液晶显示面板和/或发光二极管显示面板等。
本实施例提供的任一显示装置中,显示面板上方设置有沿第一方向排列的3D光栅,第一方向和像素的列方向具有设定夹角且设定夹角为非零值,因此倾斜的3D光栅与黑矩阵图形之间不再平行设置,从而减少了显示时产生的摩尔纹。
实施例二
图2为本实施例提供的一种显示装置的结构示意图。如图2所示,该显示装置包括显示面板11和位于显示面板11上方且沿第一方向设置的3D光栅,3D光栅包括多个依次设置的光栅单元12。显示面板包括多列像素111。第一方向和像素的列方向具有设定夹角α,设定夹角α为非零值。
每个光栅单元12之间平行设置。且每个光栅单元12也沿第一方向设置。该第一方向为图2中标示光栅单元12的实线所指向的方向。
图3为图2中像素排列的示意图,如图3所示,本实施例中,奇数列像素和偶数列像素在列方向上错开设定距离L,设定距离L小于或等于一个子像素在列方向的长度。图1中,以第1列像素和第2列像素为例,第1列像素和第2列像素在列方向上错开一个子像素在列方向的长度的1/2。
如图2所示,显示面板被划分为间隔设置的第一视图像素区和第二视图像素区,第一视图像素区中的子像素显示第一视图,第二视图像素区中的子像素显示第二视图。图2中“1”表示第一视图,“2”表示第二视图,则图2中标识“1”的子像素可形成第一视图像素区,标识“2”的子像素可形成第二视图像素区。第一视图和第二视图中的其中之一为左眼视图,另一为右眼视图, 在此不做具体限定。
图4为图2中光栅单元的示意图,如图3所示,光栅单元12的栅距P=[D/(D+d)]×S,其中,P为光栅单元12的栅距,S为n个子像素在行方向上的长度和,D为人眼与显示面板11之间的距离,d为光栅单元12与显示面板11之间的距离,n为正整数。栅距例如为一个光栅单元12在垂直于第一方向上的宽度。本实施例的一示例中,n为2至9,采用上述参数可使得显示装置获得较佳的观看视角和3D显示效果。从上述公式可以看出,光栅单元12的栅距小于n个子像素在行方向上的长度和。例如,d=0.415mm,P=0.09443mm,n=3,S=0.0945mm,D=380.876mm,采用上述参数可以使得显示装置获得最佳的观看视角和3D显示效果。
设定夹角α可以为10度至40度。本实施例的一示例中,设定夹角α为10度至20度,采用上述角度可以减少摩尔纹。例如,设定夹角α为12.1度至13.22度,采用上述角度减少或避免摩尔纹的效果更佳。进一步,例如,设定夹角α为13.19度或12.11度,采用上述角度可以在保证显示装置显示时立体感的前提下减少摩尔纹,也就是说,采用上述角度可以使得保证立体感和减少摩尔纹的综合效果最佳。以图2中像素11的列方向为基准,本实施例中3D光栅向左倾斜设置;在实际应用中3D光栅还以向右倾斜,此种情况不再具体画出。
例如,3D光栅20可以为狭缝式光栅、透镜式光栅等。
图6为图2中3D光栅为狭缝式光栅的局部结构示意图,图6中以一个光栅单元12为例进行说明,如图2和图6所示,3D光栅为狭缝式光栅时,光栅单元12包括间隔设置的遮光区和透光区,遮光区和透光区覆盖第一视图像素区和第二视图像素区。即,透光区的中心线对应于第一视图像素区和第二视图像素区的交界线,该交界线可以为光栅单元12的中心线(图2中光栅单元12中的虚线)。例如,透光区的中心线在显示面板11上的投影与第一视图像素区和第二视图像素区的交界线重合。每个光栅单元12可覆盖相邻的第一视图像素区和第二视图像素区。每个光栅单元12中,透光区在行方向上的宽度M1和遮光区在行方向上宽度(M2+M3)的宽度比为1:1至1:4,采用上述宽度比可使得显示装置获得较佳的3D显示效果。如图2所示,一个示例中,每个光栅单元12中,透光区在行方向上的宽度M1和遮光区在行方向 上的宽度(M2+M3)的宽度比为1:3,采用上述宽度比可使得显示装置获得最佳的3D显示效果。
如图2所示,3D光栅可为透镜式光栅,每个光栅单元12覆盖相邻的第一视图像素区和第二视图像素区。
本实施例中,每六列子像素形成一个像素组,像素组重复排列。下面以一个像素组为例对显示装置的显示过程进行详细描述,该像素组包括从左侧开始的第1列像素至第6列像素。
第1列像素中,第1个子像素至第3个子像素显示第一视图,第4个子像素至第12个子像素显示第二视图,第13个子像素至第22个子像素显示第一视图。接下来9个子像素显示第二视图,再接下来10个子像素显示第一视图,依此类推直至该列结束。即:最初3个子像素显示第一视图;接下来9个子像素显示第二视图,再接下来10个子像素显示第一视图,依此类推直至该列结束。
第2列像素中,第1个子像素至第10个子像素显示第一视图,第11个子像素至第19个子像素显示第二视图。接下来10个子像素显示第一视图,再接下来9个子像素显示第二视图,依此类推直至该列结束。即:最初10个子像素显示第一视图;接下来9个子像素显示第二视图,再接下来10个子像素显示第一视图,依此类推直至该列结束。
第3列像素中,第1个子像素至第6个子像素显示第二视图,第7个子像素至第16个子像素显示第一视图,第17个子像素至第25个子像素显示第二视图。接下来10个子像素显示第一视图,再接下来9个子像素显示第二视图,依此类推直至该列结束。即:最初6个子像素显示第二视图;接下来10个子像素显示第一视图,再接下来9个子像素显示第二视图,依此类推直至该列结束。
第4列像素中,第1个子像素至第3个子像素显示第一视图,第4个子像素至第13个子像素显示第二视图,第14个子像素至第22个子像素显示第一视图。接下来10个子像素显示第二视图,再接下来9个子像素显示第一视图,依此类推直至该列结束。即:最初3个子像素显示第二视图;接下来10个子像素显示第二视图,再接下来9个子像素显示第一视图,依此类推直至该列结束。
第5列像素中,第1个子像素至第9个子像素显示第一视图,第10个子像素至第19个子像素显示第二视图,第20个子像素至第28个子像素显示第一视图。接下来10个子像素显示第二视图,再接下来9个子像素显示第一视图,依此类推直至该列结束。即:最初9个子像素显示第一视图;接下来10个子像素显示第二视图,再接下来9个子像素显示第一视图,依此类推直至该列结束。
第6列像素中,第1个子像素至第7个子像素显示第二视图,第8个子像素至第16个子像素显示第一视图,第17个子像素至第26个子像素显示第二视图。接下来9个子像素显示第一视图,再接下来10个子像素显示第二视图,依此类推直至该列结束。即:最初7个子像素显示第二视图;接下来9个子像素显示第一视图,再接下来10个子像素显示第二视图,依此类推直至该列结束。
综上所述,从图1可以看出,3D光栅的一个边缘和中心线之间形成第一视图像素区,该第一视图像素区中的子像素显示第一视图;3D光栅的另一个边缘和中心线之间形成第二视图像素区,该第二视图像素区中的子像素显示第二视图。且显示第一视图的子像素和显示第二视图的子像素交替设置。
本实施例中,第一视图像素区和第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度。例如,第一视图像素区和第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值小于80%且大于0。例如,第一视图像素区和第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值为50%。
如图2所示,第1列中相邻的第3个子像素和第4个子像素、相邻的第12个子像素和第13个子像素以及相邻的第22个子像素和第23个子像素均位于临界区域中,则第1列中相邻的第3个子像素和第4个子像素的亮度、相邻的第12个子像素和第13个子像素的亮度以及相邻的第22个子像素和第23个子像素的亮度均低于其他区域的子像素的亮度。第2列中相邻的第10个子像素和第11个子像素以及相邻的第19个子像素和第20个子像素位于临界区域中,则第2列中相邻的第10个子像素和第11个子像素的亮度以及相邻的第19个子像素和第20个子像素的亮度均低于其他区域的子像素的亮度。第3列中相邻的第6个子像素和第7个子像素、相邻的第16个子像素和第 17个子像素以及相邻的第25个子像素和第26个子像素位于临界区域中,则第3列中相邻的第6个子像素和第7个子像素的亮度、相邻的第16个子像素和第17个子像素的亮度以及相邻的第25个子像素和第26个子像素的亮度均低于其他区域的子像素的亮度。
如图2所示,第4列中相邻的第3个子像素和第4个子像素、相邻的第13个子像素和第14个子像素以及相邻的第22个子像素和第23个子像素位于临界区域中,则第4列中相邻的第3个子像素和第4个子像素的亮度、相邻的第13个子像素和第14个子像素的亮度以及相邻的第22个子像素和第23个子像素的亮度均低于其他区域的子像素的亮度。第5列中相邻的第9个子像素和第10个子像素以及相邻的第19个子像素和第20个子像素位于临界区域中,则第5列中相邻的第9个子像素和第10个子像素的亮度以及相邻的第19个子像素和第20个子像素的亮度均低于其他区域的子像素的亮度。第6列中相邻的第7个子像素和第8个子像素、相邻的第16个子像素和第17个子像素以及相邻的第26个子像素和第27个子像素位于临界区域中,则第6列中相邻的第7个子像素和第8个子像素的亮度、相邻的第16个子像素和第17个子像素的亮度以及相邻的第26个子像素和第27个子像素的亮度均低于其他区域的子像素的亮度。
本实施例中,第一视图像素区和第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度,有效减弱了临界区域的3D串扰,从而提升了3D显示效果。
例如,显示面板11还可包括黑矩阵图形,黑矩阵图形呈纵横交错形式排列。因此当3D光栅的第一方向与像素的列方向具备设定夹角时,3D光栅的第一方向与黑矩阵图形之间也具备一定的夹角。即:3D光栅与黑矩阵图形之间不平行。
例如,显示装置可为立体显示装置。例如,该立体显示装置可以为裸眼3D显示装置。
如图5所示,3D光栅20设置在显示面板11上,3D光栅的衬底基板201上设置有多个如上所述的光栅单元12。当然,也可以不设置衬底基板201,而是将光栅单元12设置在显示面板11上。此情况下,3D光栅可为狭缝式光栅。当3D光栅为透镜式光栅时,3D光栅还可以为上衬底基板和下衬底基板 之间夹设液晶层的结构,此情况下,可在上衬底基板上设置上电极,在下衬底基板上设置下电极以形成电场驱动3D光栅中的液晶层中的液晶形成透镜,例如形成柱透镜。
例如,本实施例提供的显示装置中,显示面板上方设置有沿第一方向排列的3D光栅,第一方向和像素的列方向具有设定夹角且设定夹角为非零值,因此倾斜的3D光栅与黑矩阵图形之间不再平行设置,从而减少了显示时产生的摩尔纹。
实施例三
本实施例提供了一种显示装置的驱动方法,该显示装置可采用上述实施例一或者实施例二提供的显示装置,显示面板被划分为间隔设置的第一视图像素区和第二视图像素区。该方法包括:在第一视图像素区中的子像素显示第一视图以及在第二视图像素区中的子像素显示第二视图。第一视图和第二视图中的其中之一为左眼视图,另一个为右眼视图。
例如,本实施例中,在第一视图像素区中的子像素显示第一视图以及在第二视图像素区中的子像素显示第二视图之前还包括:控制第一视图像素区和第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度;在第一视图像素区中的子像素显示第一视图以及在第二视图像素区中的子像素显示第二视图包括:第一视图像素区中的子像素根据控制后的亮度显示第一视图以及第二视图像素区中的子像素根据控制后的亮度显示第二视图。例如,控制第一视图像素区和第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值小于80%。例如,第一视图像素区和第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值为50%。
对显示装置的显示过程的具体描述可参见实施例二中的描述,此处不再赘述。
本实施例提供的显示装置的驱动方法中,显示面板上方设置有沿第一方向排列的3D光栅,第一方向和像素的列方向具有设定夹角且设定夹角为非零值,因此倾斜的3D光栅与黑矩阵图形之间不再平行设置,从而减少了显示时产生的摩尔纹。
本发明实施例提供的技术方案可以和人眼追踪技术相结合,通过人眼追 踪技术对人眼进行追踪得出追踪结果,根据该追踪结果可以实现对显示装置显示过程的操控。例如,当3D光栅为狭缝式光栅时,可根据追踪结果对透光区和遮光区进行操控。又例如,可根据追踪结果对第一视图像素区和第二视图像素区显示的视图进行操控,例如,可根据追踪结果操控第一视图像素区显示第二视图以及操控第二视图像素区显示第一视图,或者,根据追踪结果操控第一视图像素区显示第一视图以及操控第二视图像素区显示第二视图。综上所述,本发明实施例提供的技术方案和人眼追踪技术相结合,可以有效提升显示装置的观看角度,从而提高了观看舒适度。
本发明的实施例具有以下有益效果:
本发明的实施提供的显示装置及其驱动方法中,显示面板上方设置有沿第一方向排列的3D光栅,第一方向和像素的列方向具有设定夹角且设定夹角为非零值,因此倾斜的3D光栅与黑矩阵图形之间不再平行设置,从而减少了显示时产生的摩尔纹。
在不冲突的情况下,本发明的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本专利申请要求于2016年4月1日递交的中国专利申请第201610203051.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种显示装置,包括显示面板和位于所述显示面板上方且沿第一方向设置的3D光栅,所述3D光栅包括多个依次设置的光栅单元,所述显示面板包括多列像素;其中,
    所述第一方向和所述像素的列方向具有设定夹角,所述设定夹角为非零值。
  2. 根据权利要求1所述的显示装置,其中,每个所述像素包括至少三个沿列方向依次排列的子像素,奇数列像素和偶数列像素在列方向上错开设定距离,所述设定距离小于或等于一个子像素在列方向的长度。
  3. 根据权利要求1或2所述的显示装置,其中,所述光栅单元的栅距满足公式:P=[D/(D+d)]×S;
    其中,P为光栅单元的栅距,S为n个子像素在行方向上的长度之和,D为人眼与显示面板之间的距离,d为光栅单元与显示面板之间的距离,n为正整数。
  4. 根据权利要求3所述的显示装置,其中,所述n为3。
  5. 根据权利要求1或2所述的显示装置,其中,所述显示面板的各像素被划分为间隔设置的第一视图像素区和第二视图像素区;所述3D光栅为狭缝式光栅,所述光栅单元包括间隔设置的遮光区和透光区,所述透光区和所述遮光区覆盖所述第一视图像素区和所述第二视图像素区。
  6. 根据权利要求5所述的显示装置,其中,每个所述光栅单元中,所述透光区和所述遮光区在行方向上的宽度之比的范围为1:1至1:4。
  7. 根据权利要求6所述的显示装置,其中,每个所述光栅单元中,所述透光区和所述遮光区在行方向上的宽度之比为1:3。
  8. 根据权利要求1或2所述的显示装置,其中,所述显示面板被划分为间隔设置的第一视图像素区和第二视图像素区;所述3D光栅为透镜式光栅,每个所述光栅单元覆盖相邻的所述第一视图像素区和第二视图像素区。
  9. 根据权利要求1至8任一所述的显示装置,其中,所述设定夹角为10度至40度。
  10. 根据权利要求9所述的显示装置,其中,所述设定夹角为10度至 20度。
  11. 根据权利要求10所述的显示装置,其中,所述设定夹角为12.1度至13.22度。
  12. 一种权利要求1至11任一所述的显示装置的驱动方法,其中,所述显示面板被划分为间隔设置的第一视图像素区和第二视图像素区;所述方法包括:
    在所述第一视图像素区中的子像素显示第一视图以及在所述第二视图像素区中的子像素显示第二视图。
  13. 根据权利要求12所述的显示装置的驱动方法,其中,在所述在第一视图像素区中的子像素显示第一视图以及在所述第二视图像素区中的子像素显示第二视图之前还包括:控制所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度;
    在所述第一视图像素区中的子像素显示第一视图以及在所述第二视图像素区中的子像素显示第二视图包括:所述第一视图像素区中的子像素根据控制后的亮度显示第一视图以及所述第二视图像素区中的子像素根据控制后的亮度显示第二视图。
  14. 根据权利要求13所述的显示装置的驱动方法,其中,所述控制所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度低于其他区域的子像素的亮度包括:
    控制所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值小于80%。
  15. 根据权利要求14所述的显示装置的驱动方法,其中,所述第一视图像素区和所述第二视图像素区的临界区域中的子像素的亮度与其他区域的子像素的亮度的比值为50%。
PCT/CN2016/102995 2016-04-01 2016-10-24 显示装置及其驱动方法 WO2017166795A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/538,299 US10630967B2 (en) 2016-04-01 2016-10-24 Display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610203051.3A CN105629490A (zh) 2016-04-01 2016-04-01 显示装置及其驱动方法
CN201610203051.3 2016-04-01

Publications (1)

Publication Number Publication Date
WO2017166795A1 true WO2017166795A1 (zh) 2017-10-05

Family

ID=56044585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102995 WO2017166795A1 (zh) 2016-04-01 2016-10-24 显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10630967B2 (zh)
CN (1) CN105629490A (zh)
WO (1) WO2017166795A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629490A (zh) 2016-04-01 2016-06-01 京东方科技集团股份有限公司 显示装置及其驱动方法
JP6924637B2 (ja) * 2017-07-05 2021-08-25 京セラ株式会社 3次元表示装置、3次元表示システム、移動体、および3次元表示方法
CN107942525B (zh) * 2017-12-22 2021-02-02 张家港康得新光电材料有限公司 显示装置
CN108469682A (zh) * 2018-03-30 2018-08-31 京东方科技集团股份有限公司 一种三维显示装置及其三维显示方法
US11212513B2 (en) * 2019-07-03 2021-12-28 Innolux Corporation Method for displaying a stereoscopic image on a display device
KR20210086354A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 렌티큘러 렌즈들을 포함하는 입체 영상 표시 장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087815A (zh) * 2010-08-10 2011-06-08 湖南创图视维科技有限公司 平板立体数码相框
CN102707448A (zh) * 2012-03-23 2012-10-03 友达光电股份有限公司 立体显示装置
CN103424874A (zh) * 2013-08-19 2013-12-04 京东方科技集团股份有限公司 3d显示驱动方法
CN104423052A (zh) * 2013-09-06 2015-03-18 张家港康得新光电材料有限公司 一种3d影像显示装置
CN104581131A (zh) * 2015-01-30 2015-04-29 京东方科技集团股份有限公司 像素结构、阵列基板及其控制方法和显示器件
CN105445949A (zh) * 2016-01-26 2016-03-30 京东方科技集团股份有限公司 一种三维显示装置
CN105445948A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种裸眼3d显示装置及显示方法
CN105629490A (zh) * 2016-04-01 2016-06-01 京东方科技集团股份有限公司 显示装置及其驱动方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918897A (ja) * 1995-07-03 1997-01-17 Canon Inc 立体画像表示装置
US9888231B2 (en) * 2013-09-11 2018-02-06 Boe Technology Group Co., Ltd. Three-dimensional display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087815A (zh) * 2010-08-10 2011-06-08 湖南创图视维科技有限公司 平板立体数码相框
CN102707448A (zh) * 2012-03-23 2012-10-03 友达光电股份有限公司 立体显示装置
CN103424874A (zh) * 2013-08-19 2013-12-04 京东方科技集团股份有限公司 3d显示驱动方法
CN104423052A (zh) * 2013-09-06 2015-03-18 张家港康得新光电材料有限公司 一种3d影像显示装置
CN104581131A (zh) * 2015-01-30 2015-04-29 京东方科技集团股份有限公司 像素结构、阵列基板及其控制方法和显示器件
CN105445948A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种裸眼3d显示装置及显示方法
CN105445949A (zh) * 2016-01-26 2016-03-30 京东方科技集团股份有限公司 一种三维显示装置
CN105629490A (zh) * 2016-04-01 2016-06-01 京东方科技集团股份有限公司 显示装置及其驱动方法

Also Published As

Publication number Publication date
CN105629490A (zh) 2016-06-01
US10630967B2 (en) 2020-04-21
US20180109778A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2017166795A1 (zh) 显示装置及其驱动方法
KR102308388B1 (ko) 무안경식 디스플레이 디바이스
US8436953B2 (en) Stereoscopic display
TWI601980B (zh) 自動立體顯示裝置
US9213203B2 (en) Three-dimensional image display
WO2016123910A1 (zh) 一种立体显示装置及其制作方法
US9165491B2 (en) Display device having multiple viewing zones and converting horizontally-arranged RGB subpixel data for output on square-shaped vertically-arranged RGB subpixels
WO2017020473A1 (zh) 三维显示装置及其显示方法
US20140002897A1 (en) Autostereoscopic display device
US10432924B2 (en) Three-dimensional display device and driving method thereof
US20120162194A1 (en) Stereo display apparatus and lens array thereof
WO2019185063A1 (zh) 显示装置及其三维显示方法
CN105445949B (zh) 一种三维显示装置
TWI471665B (zh) 可切換二維與三維顯示模式之顯示裝置
TW201437685A (zh) 裸眼式立體影像顯示裝置
JP2010282090A (ja) 立体表示装置
US20150237334A1 (en) Stereoscopic display device
WO2016141711A1 (zh) 显示装置及光栅控制方法
WO2015165170A1 (zh) 液晶光栅及显示设备
WO2017036040A1 (zh) 像素阵列、显示驱动装置及其驱动方法、显示装置
JP5449238B2 (ja) 三次元映像表示装置
WO2017016194A1 (zh) 一种多视角显示装置及显示装置的驱动方法
JP2004264762A (ja) 立体映像表示装置
WO2013123801A1 (zh) 裸眼3d显示方法和裸眼3d显示装置
TW201323926A (zh) 立體影像顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15538299

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896565

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896565

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/02/2019)