WO2014071643A1 - 一种立体显示装置、液晶透镜及其驱动方法 - Google Patents
一种立体显示装置、液晶透镜及其驱动方法 Download PDFInfo
- Publication number
- WO2014071643A1 WO2014071643A1 PCT/CN2012/084647 CN2012084647W WO2014071643A1 WO 2014071643 A1 WO2014071643 A1 WO 2014071643A1 CN 2012084647 W CN2012084647 W CN 2012084647W WO 2014071643 A1 WO2014071643 A1 WO 2014071643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- liquid crystal
- disposed
- display mode
- voltage
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1347—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
- G02F1/13471—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
- G02B30/28—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
- G02B30/29—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134336—Matrix
Definitions
- the present invention relates to the field of liquid crystal display technology, and in particular, to a stereoscopic display device, a liquid crystal lens, and a driving method thereof.
- stereoscopic display technology is mainly divided into two types: glasses type and naked eye type.
- the glasses-type stereoscopic display technology usually requires the user to wear special glasses to view the stereoscopic image, which not only requires the user to spend extra money to purchase the glasses, but also wears the glasses to affect the comfort of the user, and for promoting the popularity of the stereoscopic display, Glasses are undoubtedly a major obstacle.
- the naked-eye stereoscopic display technology is free from the constraints of glasses, and allows users to view stereoscopic images without additional equipment, so it is more popular with users and businesses.
- the naked-eye stereoscopic display generally adopts an oblique cylindrical lens array to realize stereoscopic display. Since the cylindrical lens does not block the backlight, the uniformity of the stereoscopic display brightness distribution can be improved, and the display effect is better.
- a liquid crystal lens is generally used to form an oblique lenticular lens.
- the liquid crystal lens forms a plurality of oblique lenticular lenses 12 on the display screen 11, so that the image required for the left eye is refracted by the oblique lenticular lens 12 to the direction of the left eye and the image required for the right eye passes.
- the oblique lenticular lens 12 is refracted to the direction of the right eye to achieve a 3D display effect.
- the liquid crystal lens For a stereoscopic display of a liquid crystal lens, the liquid crystal lens generally operates only in the 3D display mode, and in the 2D display mode, the liquid crystal lens functions as a plane mirror, and the light of the 2D image is emitted from the display screen 11, It needs to pass through the liquid crystal lens to emit, which will increase the light loss to a certain extent, so that the brightness of the 2D display mode is reduced.
- the technical problem to be solved by the present invention is to provide a stereoscopic display device, a liquid crystal lens, and a driving method thereof, which can improve the brightness in the 2D display mode while improving the display effect while satisfying the requirements of the existing 3D display mode.
- the present invention adopts a technical solution to provide a stereoscopic display device including a display panel including a plurality of arrays arranged in an array in a first direction and a second direction perpendicular to the first direction.
- a liquid crystal lens disposed above the plurality of pixel units and including a first electrode layer and a second electrode layer disposed opposite to each other and a liquid crystal layer disposed between the first electrode layer and the second electrode layer, first The electrode layer includes a plurality of first electrode strips extending in the first direction or the second direction and disposed in parallel with each other
- the second electrode layer includes a plurality of second electrode strips extending obliquely with respect to the first electrode strip and disposed in parallel with each other.
- the liquid crystal lens further includes a voltage supply device that applies a first common voltage on the plurality of first electrode strips in the 3D display mode and applies a first driving voltage on the second electrode strip to form the liquid crystal layer a plurality of first lenticular lens units disposed along the second electrode strip, the voltage supply device applying a second driving voltage on the plurality of first electrode strips in the 2D display mode, and applying a second common voltage on the second electrode strip,
- the liquid crystal layer is formed into a plurality of second lenticular lens units disposed along the first electrode strip.
- the voltage values of the first driving voltages applied to the adjacent two second electrode strips are different from each other, and in the 2D display mode, the first applied to the two adjacent first electrode strips The voltage values of the two driving voltages are different from each other.
- the first direction is a row direction of the display panel
- the second direction is a column direction of the display panel.
- the plurality of first electrode strips extend in the row direction.
- the angle of inclination of the extending direction of the plurality of second electrode strips with respect to the column direction is less than 45 degrees.
- a liquid crystal lens including a first electrode layer and a second electrode layer disposed opposite to each other and disposed between the first electrode layer and the second electrode layer.
- the liquid crystal layer, the first electrode layer includes a plurality of first electrode strips extending in a predetermined direction and disposed in parallel with each other, and the second electrode layer includes a plurality of second electrode strips extending obliquely with respect to the first electrode strip and disposed in parallel with each other.
- the liquid crystal lens further includes a voltage supply device that applies a first common voltage on the plurality of first electrode strips in the 3D display mode and applies a first driving voltage on the second electrode strip to form the liquid crystal layer a plurality of first lenticular lens units disposed along the second electrode strip, the voltage supply device applying a second driving voltage on the plurality of first electrode strips in the 2D display mode, and applying a second common voltage on the second electrode strip,
- the liquid crystal layer is formed into a plurality of second lenticular lens units disposed along the first electrode strip.
- the voltage values of the first driving voltages applied to the adjacent two second electrode strips are different from each other, and in the 2D display mode, the first applied to the two adjacent first electrode strips The voltage values of the two driving voltages are different from each other.
- a driving method of a liquid crystal lens including a first electrode layer and a second electrode layer disposed opposite to each other, and a first electrode layer and a second electrode layer.
- the driving method comprises: applying a first common voltage on the plurality of first electrode strips in the 3D display mode, and applying a first driving voltage on the second electrode strip to form the liquid crystal layer along the second electrode a plurality of first lenticular lens units disposed in the strip; applying a second driving voltage on the plurality of first electrode strips in the 2D display mode, and applying a second common voltage on the second electrode strips to form the liquid crystal layer along the A plurality of second
- the first electrode layer and the second electrode layer of the liquid crystal lens respectively include a plurality of first electrode strips and a plurality of second electrode strips which extend obliquely to each other.
- FIG. 1 is a schematic structural view of a stereoscopic display device in the prior art
- FIG. 2 is a plan view showing an embodiment of a stereoscopic display device of the present invention.
- Figure 3 is a cross-sectional view of the stereoscopic display device of Figure 2 taken along the line AA';
- FIG. 4 is a schematic view showing an embodiment of a first lenticular lens unit formed by the liquid crystal lens of FIG. 2 in a 3D display mode;
- Figure 5 is a schematic view showing the formation of the first lenticular lens unit of Figure 4.
- Figure 6 is a cross-sectional view of the stereoscopic display device of Figure 2 taken along the BB' direction;
- FIG. 7 is a schematic view showing an embodiment of a second lenticular lens unit formed by the liquid crystal lens of FIG. 2 in a 2D display mode;
- Figure 8 is a schematic view showing the formation of the second lenticular lens unit of Figure 7;
- Fig. 9 is a plan view showing another embodiment of the stereoscopic display device of the present invention.
- the stereoscopic display device includes a display panel 101 and a liquid crystal lens 102.
- the display panel 101 includes a plurality of pixel units 1011 arranged in an array in a first direction x and a second direction y perpendicular to the first direction x.
- the first direction x is the row direction of the display panel 101
- the second direction y is the column direction of the display panel 101.
- the liquid crystal lens 102 is disposed on one side of the display surface of the display panel 101 above the plurality of pixel units 1011 such that image light of the display panel 101 is emitted through the liquid crystal lens 102.
- the liquid crystal lens 102 includes a first substrate 1021 and a second substrate 1022 disposed opposite to each other, and a first electrode layer 1023 and a second electrode layer 1024 disposed opposite to each other.
- the first electrode layer 1023 is located on the first substrate 1021 facing the second substrate 1022.
- the second electrode layer 1024 is located on a side of the second substrate 1022 facing the first substrate 1021.
- the liquid crystal lens 102 further includes a liquid crystal layer 1025 disposed between the first electrode layer 1023 and the second electrode layer 1024.
- the first electrode layer 1023 includes a plurality of first electrode strips 10231 extending in the first direction x and arranged in parallel with each other in the second direction y
- the second electrode layer 1024 includes an oblique extension with respect to the first electrode strip 10231 and along the first A plurality of second electrode strips 10241 arranged in parallel with each other in a direction x.
- a plurality of first electrode strips 10231 extend along a first direction x and are located at a line boundary of a corresponding pixel unit 1011, and two adjacent first electrode strips 10231 are spaced apart by one pixel in a second direction y.
- Unit 1011 Unit 1011
- the plurality of second electrode strips 10241 are inclined with respect to the second direction y, and the inclination angle thereof is preferably less than 45 degrees.
- the angle of inclination of the second electrode strip 10241 with respect to the second direction y is 30 degrees. In other embodiments, other angle values may be used, such as 25 degrees, 28 degrees, or 35 degrees, etc. Specific restrictions can be adjusted according to the actual display needs.
- the user can view the 3D stereoscopic display effect without wearing the glasses, and can also improve the brightness in the 2D display mode.
- the liquid crystal lens 102 further includes a voltage supply device 1026.
- the voltage supply device 1026 applies a first common voltage Vc1 required for 3D display on the plurality of first electrode strips 10231, and applies a first driving voltage required for 3D display on the second electrode strip 10241.
- the voltage values of the first driving voltages of the adjacent two second electrode strips 1041 are different from each other, so that different voltage differences are formed between the adjacent two second electrode strips 10241 and the first electrode strip 10231.
- a plurality of first lenticular lens units 103 disposed along the second electrode strip 10241 can be formed in the liquid crystal layer 1025 by applying the above voltage.
- the voltage value V0 of the first driving voltage of the second electrode strip 1041 in the middle is smaller than the second voltage of the left and right sides adjacent thereto.
- a voltage value V1 of the first driving voltage of the electrode strip 1041 thereby causing a voltage difference between the first electrode strip 10231 and the intermediate second electrode strip 10241 to be smaller than the first electrode strip 10231 and the second electrode strips 10241 on the left and right sides
- This voltage difference generates a centrally symmetrical electric field in the liquid crystal layer 1025 centering on the intermediate second electrode strip 10241 and having the second electrode strips 10241 on the left and right sides as edges.
- the liquid crystal molecules 10251 in the liquid crystal layer 1025 are arranged in the electric field direction by the electric field, so that a plurality of first lenticular lens units 103, a first lenticular lens unit 103 and a second as shown in FIG. 4 are formed in the liquid crystal layer 1025.
- the inclination angle and the extending direction of the electrode strip 10241 with respect to the first electrode strip 10231 are the same.
- the first lenticular lens unit 103 When the display panel 101 displays a 3D image, when the image corresponding to each of the first lenticular lens units 103 passes through the first lenticular lens unit 103, the first lenticular lens unit 103 refracts an image signal required for the left eye to the left eye. The direction is to refract the image signal required by the right eye to the direction of the right eye, thereby realizing 3D display, so that the viewer can view the stereoscopic image without wearing glasses. At the same time, since the first lenticular lens unit 103 is obliquely disposed, the phenomenon of uneven brightness distribution can be effectively solved.
- the voltage supply device 1026 applies a second driving voltage required for 2D display on the plurality of first electrode strips 10231, and in the second electrode strip.
- a second common voltage Vc2 required for 2D display is applied to 1024.
- voltage values of the second driving voltages of the adjacent two first electrode strips 10231 are different from each other, so that different voltage differences are formed between the adjacent two first electrode strips 10231 and the second electrode strip 10241.
- a plurality of second lenticular lens units 104 disposed along the first electrode strip 10231 as shown in FIG. 7 are formed in the liquid crystal layer 1025.
- the voltage value V2 of the second driving voltage of the first first electrode strip 10231 is smaller than the second voltage of the first electrode strip 10231 adjacent to the left and right sides thereof.
- the voltage value V3 of the driving voltage is such that the voltage difference between the second electrode strip 10241 and the intermediate first electrode strip 10231 is smaller than the voltage difference between the second electrode strip 10241 and the first electrode strip 10231 on the left and right sides.
- This voltage difference generates a centrally symmetrical electric field in the liquid crystal layer 1025 centering on the intermediate first electrode strip 10231 and having the first electrode strips 10231 on the left and right sides as edges.
- the liquid crystal molecules 10251 in the liquid crystal layer 1025 are arranged in the electric field direction by the electric field in a manner as shown in FIG. 8, so that a plurality of second lenticular lens units 104 as shown in FIG. 7 are formed in the liquid crystal layer 1025.
- the second lenticular lens unit 104 is parallel to the first direction x.
- the display panel 101 displays a 2D image
- the 2D image corresponding to each of the second lenticular lens units 104 passes through the second lenticular lens unit 104
- the second lenticular lens unit 104 refracts the originally parallel projected 2D image to the same viewing angle. A clearer 2D image can be seen at this viewing angle, thereby increasing the brightness of the 2D display.
- the plurality of first electrode strips 10231 of the present embodiment may also be located at the position of the corresponding pixel unit 1011 and not limited to the position at the row boundary of the corresponding pixel unit 1011, and the adjacent two first electrode strips 10231 A plurality of pixel units 1011 may be spaced apart in the second direction y, and no specific limitation is imposed herein.
- the stereoscopic display device of the present embodiment by applying a corresponding voltage to the first electrode strip 10231 and the second electrode strip 10241, it is possible to improve the brightness in the 2D display mode while satisfying the demand of the 3D display mode.
- the main difference from the above embodiment is that the plurality of first electrode strips 20231 of the liquid crystal lens 202 extend in the second direction y and are in the first direction x with each other. Parallel to each other, the first electrode strip 20231 is located at a position corresponding to the column boundary of the pixel unit 2011, and the adjacent two first electrode strips 20231 are spaced apart by one pixel unit 2011 in the first direction x.
- the first electrode strip 20231 may also be located at other locations, and the plurality of pixel units 2011 may also be spaced apart in the first direction x.
- the two lenticular lens unit 204 enhances the brightness of the 2D display mode while satisfying the demand of the 3D display mode.
- the specific driving process can be referred to the foregoing implementation manner, and details are not described herein.
- the present invention also provides an embodiment of a liquid crystal lens comprising a first electrode layer and a second electrode layer disposed opposite to each other and a liquid crystal layer disposed between the first electrode layer and the second electrode layer.
- the first electrode layer includes a plurality of first electrode strips extending in a predetermined direction and disposed in parallel with each other
- the second electrode layer includes a plurality of second electrode strips extending obliquely with respect to the first electrode strip and disposed in parallel with each other.
- the present invention also provides an embodiment of a method of driving a liquid crystal lens, wherein the liquid crystal lens is the liquid crystal lens in each of the above embodiments.
- the liquid crystal lens shown in FIG. 2 is taken as an example for description.
- the driving method includes:
- a first common voltage is applied to the plurality of first electrode strips 10231 in the 3D display mode, and a first driving voltage is applied to the second electrode strip 1041 such that the liquid crystal layer 1025 is formed along the plurality of second electrode strips 10241.
- a first lenticular lens unit to achieve a 3D stereoscopic display effect
- a second driving voltage is applied to the plurality of first electrode strips 10231 in the 2D display mode, and a second common voltage is applied to the second electrode strip 1041 such that the liquid crystal layer 1025 is formed along the plurality of first electrode strips 10231.
- the second lenticular lens unit is to increase the brightness in the 2D display mode.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Liquid Crystal (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
一种立体显示装置,包括显示面板(101)和液晶透镜(102)。液晶透镜(102)的第一电极层(1023)包括沿像素单元(1011)排列的第一方向或第二方向延伸且彼此平行设置的多个第一电极条(10231),第二电极层(1024)包括相对第一电极条(10231)倾斜延伸且彼此平行设置的多个第二电极条(10241)。还提供一种液晶透镜及其驱动方法。通过上述方式,显示装置能够对应于3D显示模式和2D显示模式分别产生沿第二电极条(10241)设置的第一柱状透镜单元(103)以及沿第一电极条(10231)设置的第二柱状透镜单元(104),在满足现有3D显示模式需求的同时,提高2D显示模式下的亮度。
Description
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种立体显示装置、液晶透镜及其驱动方法。
【背景技术】
随着液晶显示技术的日益成熟,立体显示技术也得到了蓬勃发展。立体显示技术主要分为眼镜式和裸眼式两大类。眼镜式立体显示技术通常需要用户佩戴特制的眼镜才能观看到立体影像,这不仅使用户需要额外花费金钱购买眼镜,并且佩戴眼镜也会影响用户观看的舒适度,对于推动立体显示的普及而言,眼镜无疑是一大障碍。而裸眼式立体显示技术则摆脱了眼镜的束缚,不需要额外的设备即可使用户观看到立体影像,因此更受用户和商家的欢迎。
裸眼式立体显示器一般采用斜向柱状透镜阵列实现立体显示,由于柱状透镜不会遮挡背光,因此能提高立体显示亮度分布的均匀性,显示效果更佳。
现有技术中,为了使立体显示器兼容2D和3D显示,通常使用液晶透镜来形成斜向柱状透镜。如图1所示,液晶透镜在显示屏11上形成多个斜向柱状透镜12,从而使左眼所需的图像经过斜向柱状透镜12折射至左眼的方向而右眼所需的图像经过斜向柱状透镜12折射至右眼的方向,以达到3D显示效果。对于液晶透镜的立体显示器而言,其液晶透镜一般只在3D显示模式下才工作,在2D显示模式下液晶透镜的作用如同平面镜的作用一样,而2D图像的光线从显示屏11射出后,还需经过液晶透镜才射出,在一定程度上会增加光损耗,使得2D显示模式的亮度有所降低。
【发明内容】
本发明主要解决的技术问题是提供一种立体显示装置、液晶透镜及其驱动方法,能够在满足现有3D显示模式需求的同时,提高2D显示模式下的亮度,进而提高显示效果。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种立体显示装置,包括显示面板,显示面板包括沿第一方向和与第一方向垂直的第二方向以阵列方式排列的多个像素单元;液晶透镜,液晶透镜设置于多个像素单元上方,且包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层,第一电极层包括沿第一方向或第二方向延伸且彼此平行设置的多个第一电极条,第二电极层包括相对第一电极条倾斜延伸且彼此平行设置的多个第二电极条。
其中,液晶透镜进一步包括电压供给装置,电压供给装置在3D显示模式下在多个第一电极条上施加第一公共电压,并在第二电极条上施加第一驱动电压,以使液晶层形成沿第二电极条设置的多个第一柱状透镜单元,电压供给装置在2D显示模式下在多个第一电极条上施加第二驱动电压,并在第二电极条上施加第二公共电压,以使液晶层形成沿第一电极条设置的多个第二柱状透镜单元。
其中,在3D显示模式下,施加于相邻两个第二电极条上的第一驱动电压的电压值互不相同,在2D显示模式下,施加于相邻两个第一电极条上的第二驱动电压的电压值互不相同。
其中,第一方向为显示面板的行方向,第二方向为显示面板的列方向。
其中,多个第一电极条沿行方向延伸。
其中,多个第二电极条的延伸方向相对于列方向的倾斜角度小于45度。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶透镜,包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层,第一电极层包括沿预定方向延伸且彼此平行设置的多个第一电极条,第二电极层包括相对第一电极条倾斜延伸且彼此平行设置的多个第二电极条。
其中,液晶透镜进一步包括电压供给装置,电压供给装置在3D显示模式下在多个第一电极条上施加第一公共电压,并在第二电极条上施加第一驱动电压,以使液晶层形成沿第二电极条设置的多个第一柱状透镜单元,电压供给装置在2D显示模式下在多个第一电极条上施加第二驱动电压,并在第二电极条上施加第二公共电压,以使液晶层形成沿第一电极条设置的多个第二柱状透镜单元。
其中,在3D显示模式下,施加于相邻两个第二电极条上的第一驱动电压的电压值互不相同,在2D显示模式下,施加于相邻两个第一电极条上的第二驱动电压的电压值互不相同。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶透镜的驱动方法,液晶透镜包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层,第一电极层包括沿预定方向延伸且彼此平行设置的多个第一电极条,第二电极层包括相对第一电极条倾斜延伸且彼此平行设置的多个第二电极条,其中,驱动方法包括:在3D显示模式下在多个第一电极条上施加第一公共电压,并在第二电极条上施加第一驱动电压,以使液晶层形成沿第二电极条设置的多个第一柱状透镜单元;在2D显示模式下在多个第一电极条上施加第二驱动电压,并在第二电极条上施加第二公共电压,以使液晶层形成沿第一电极条设置的多个第二柱状透镜单元。
本发明的有益效果是:本发明的立体显示装置中,由于液晶透镜的第一电极层和第二电极层分别包括彼此倾斜延伸的多个第一电极条和多个第二电极条。通过上述结构,能够对应于3D显示模式和2D显示模式分别产生沿第二电极条设置的第一柱状透镜单元以及沿第一电极条设置的第二柱状透镜单元,在满足现有3D显示模式需求的同时,提高2D显示模式下的亮度。
【附图说明】
图1是现有技术中一种立体显示装置的结构示意图;
图2是本发明立体显示装置的一实施方式的俯视图;
图3是图2中的立体显示装置沿AA’方向的截面示意图;
图4是图2中的液晶透镜在3D显示模式下形成的第一柱状透镜单元的一实施方式的示意图;
图5是图4中的第一柱状透镜单元的形成原理图;
图6是图2中的立体显示装置沿BB’方向的截面示意图;
图7是图2中的液晶透镜在2D显示模式下形成的第二柱状透镜单元的一实施方式的示意图;
图8是图7中的第二柱状透镜单元的形成原理图;
图9是本发明立体显示装置的另一实施方式的俯视图。
【具体实施方式】
下面结合附图和实施方式对本发明进行详细描述。
参阅图2和图3,本发明立体显示装置的一实施方式中,立体显示装置包括显示面板101和液晶透镜102。其中,显示面板101包括沿第一方向x和与第一方向x垂直的第二方向y以阵列方式排列的多个像素单元1011。本实施方式中,第一方向x为显示面板101的行方向,第二方向y为显示面板101的列方向。液晶透镜102设置在显示面板101显示面的一侧,位于多个像素单元1011的上方,以使得显示面板101的图像光线经过液晶透镜102射出。液晶透镜102包括相对设置的第一基板1021和第二基板1022,以及相对设置的第一电极层1023和第二电极层1024,第一电极层1023位于第一基板1021面对第二基板1022一侧,第二电极层1024位于第二基板1022面对第一基板1021一侧。液晶透镜102还包括设置在第一电极层1023和第二电极层1024之间的液晶层1025。
其中,第一电极层1023包括沿第一方向x延伸并且沿第二方向y彼此平行排列的多个第一电极条10231,第二电极层1024包括相对于第一电极条10231倾斜延伸并且沿第一方向x彼此平行排列的多个第二电极条10241。如图2所示,多个第一电极条10231沿第一方向x延伸且位于对应像素单元1011的行分界处的位置,相邻两个第一电极条10231在第二方向y上间隔一个像素单元1011。多个第二电极条10241(图中只示出部分的第二电极条10241)相对于第二方向y倾斜,并且其倾斜角度优选小于45度。本实施方式中,第二电极条10241相对于第二方向y的倾斜角度为30度,在其他实施方式中,可以是其他的角度值,如25度、28度或35度等,此处不进行具体限制,可根据实际显示需要进行调整。
本实施方式的液晶透镜102,既可以使用户无需佩戴眼镜即可观看到3D立体显示效果,同时也能提高2D显示模式下的亮度。
具体地,液晶透镜102进一步还包括电压供给装置1026。在3D显示模式下,电压供给装置1026在多个第一电极条10231上施加3D显示所需的第一公共电压Vc1,并在第二电极条10241上施加3D显示所需的第一驱动电压。并且,优选地,相邻两个第二电极条10241的第一驱动电压的电压值互不相同,以使得相邻两个第二电极条10241与第一电极条10231之间形成不同的电压差。进一步如图4所示,通过施加上述电压可在液晶层1025形成沿第二电极条10241设置的多个第一柱状透镜单元103。举例而言,如图5所示,对于依序排列的三条第二电极条10241,使中间的第二电极条10241的第一驱动电压的电压值V0小于与其相邻的左右两侧的第二电极条10241的第一驱动电压的电压值V1,由此使得第一电极条10231与中间的第二电极条10241之间的电压差小于第一电极条10231与左右两侧的第二电极条10241之间的电压差。该电压差在液晶层1025内产生以中间的第二电极条10241为中心且以左右两侧的第二电极条10241为边缘的呈中心对称的电场。液晶层1025内的液晶分子10251在该电场的作用下沿电场方向排列,使得在液晶层1025内形成如图4所示的多个第一柱状透镜单元103,第一柱状透镜单元103和第二电极条10241相对第一电极条10231的倾斜角度和延伸方向相同。
在显示面板101显示3D图像时,对应于每个第一柱状透镜单元103的图像在经过第一柱状透镜单元103时,第一柱状透镜单元103将左眼所需的图像信号折射至左眼的方向,将右眼所需的图像信号折射至右眼的方向,以此实现3D显示,使观看者无需佩戴眼镜也能观看到立体图像。同时,由于第一柱状透镜单元103倾斜设置可以有效解决亮度分布不均的现象。
请继续参阅图2,并结合图6-图8,在2D显示模式下,电压供给装置1026在多个第一电极条10231上施加2D显示所需的第二驱动电压,并在第二电极条1024上施加2D显示所需的第二公共电压Vc2。并且,优选使相邻两个第一电极条10231的第二驱动电压的电压值互不相同,以使得相邻两个第一电极条10231与第二电极条10241之间形成不同的电压差,以在液晶层1025形成如图7所示的沿第一电极条10231设置的多个第二柱状透镜单元104。举例而言,对于依序排列的三条第一电极条10231,使中间的第一电极条10231的第二驱动电压的电压值V2小于与其相邻的左右两侧的第一电极条10231的第二驱动电压的电压值V3,由此使得第二电极条10241与中间的第一电极条10231之间的电压差小于第二电极条10241与左右两侧的第一电极条10231之间的电压差。该电压差在液晶层1025内产生以中间的第一电极条10231为中心且以左右两侧的第一电极条10231为边缘的呈中心对称的电场。液晶层1025内的液晶分子10251在该电场的作用下沿电场方向以如图8所示的方式进行排列,使得在液晶层1025内形成如图7所示的多个第二柱状透镜单元104,第二柱状透镜单元104与第一方向x平行。
当显示面板101显示2D图像时,对应于每个第二柱状透镜单元104的2D图像在经过第二柱状透镜单元104时,第二柱状透镜单元104将原本平行射出的2D图像折射至同一个视角,在该视角上能看到更清晰的2D图像,由此提高了2D显示的亮度。
值得注意的是,本实施方式的多个第一电极条10231还可以位于对应像素单元1011的位置而不仅限于在对应像素单元1011的行分界处的位置,并且相邻两个第一电极条10231在第二方向y上也可以间隔多个像素单元1011,在此不进行具体限制。
综上所述,本实施方式的立体显示装置,通过对第一电极条10231和第二电极条10241施加相应的电压,能够在满足3D显示模式需求的同时提高2D显示模式下的亮度。
参阅图9,本发明的立体显示装置的另一实施方式中,与上述实施方式的主要区别在于,液晶透镜202的多个第一电极条20231沿第二方向y延伸并且沿第一方向x彼此平行排列,第一电极条20231位于对应像素单元2011的列分界处的位置,相邻两个第一电极条20231在第一方向x上间隔一个像素单元2011。当然,第一电极条20231也可以位于其他的位置,并且在第一方向x上也可以间隔多个像素单元2011。
在3D显示模式下和2D显示模式下,通过对第一电极条20231和第二电极条20241施加相应的电压,使得对应形成3D显示模式下的第一柱状透镜单元203和2D显示模式下的第二柱状透镜单元204,以满足3D显示模式的需求的同时提高2D显示模式的亮度。具体的驱动过程可参考上述实施方式进行,在此不进行一一赘述。
本发明还提供液晶透镜的一实施方式,液晶透镜包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层。其中,第一电极层包括沿预定方向延伸且彼此平行设置的多个第一电极条,第二电极层包括相对所述第一电极条倾斜延伸且彼此平行设置的多个第二电极条。
本发明还提供液晶透镜的驱动方法的一实施方式,其中液晶透镜为上述各实施方式中的液晶透镜。以图2所示的液晶透镜为例进行说明,该驱动方法包括:
在3D显示模式下在多个第一电极条10231上施加第一公共电压,并在第二电极条10241上施加第一驱动电压,以使得液晶层1025形成沿第二电极条10241设置的多个第一柱状透镜单元,以实现3D立体显示效果;
在2D显示模式下在多个第一电极条10231上施加第二驱动电压,并在第二电极条10241上施加第二公共电压,以使得液晶层1025形成沿第一电极条10231设置的多个第二柱状透镜单元,以提高2D显示模式下的亮度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (10)
- 一种立体显示装置,其中,所述立体显示装置包括:显示面板,所述显示面板包括沿第一方向和与所述第一方向垂直的第二方向以阵列方式排列的多个像素单元;液晶透镜,所述液晶透镜设置于所述多个像素单元上方,且包括相对设置的第一电极层和第二电极层以及设置于所述第一电极层和所述第二电极层之间的液晶层,所述第一电极层包括沿所述第一方向或所述第二方向延伸且彼此平行设置的多个第一电极条,所述第二电极层包括相对所述第一电极条倾斜延伸且彼此平行设置的多个第二电极条。
- 根据权利要求1所述的装置,其中,所述液晶透镜进一步包括电压供给装置,所述电压供给装置在3D显示模式下在所述多个第一电极条上施加第一公共电压,并在所述第二电极条上施加第一驱动电压,以使所述液晶层形成沿所述第二电极条设置的多个第一柱状透镜单元,所述电压供给装置在2D显示模式下在所述多个第一电极条上施加第二驱动电压,并在所述第二电极条上施加第二公共电压,以使所述液晶层形成沿所述第一电极条设置的多个第二柱状透镜单元。
- 根据权利要求2所述的装置,其中,在所述3D显示模式下,施加于相邻两个所述第二电极条上的所述第一驱动电压的电压值互不相同,在所述2D显示模式下,施加于相邻两个所述第一电极条上的所述第二驱动电压的电压值互不相同。
- 根据权利要求1所述的装置,其中,所述第一方向为所述显示面板的行方向,所述第二方向为所述显示面板的列方向。
- 根据权利要求1所述的装置,其中,所述多个第一电极条沿所述行方向延伸。
- 根据权利要求1所述的装置,其中,所述多个第二电极条的延伸方向相对于所述列方向的倾斜角度小于45度。
- 一种液晶透镜,其中,所述液晶透镜包括相对设置的第一电极层和第二电极层以及设置于所述第一电极层和所述第二电极层之间的液晶层,所述第一电极层包括沿预定方向延伸且彼此平行设置的多个第一电极条,所述第二电极层包括相对所述第一电极条倾斜延伸且彼此平行设置的多个第二电极条。
- 根据权利要求7所述的液晶透镜,其中,所述液晶透镜进一步包括电压供给装置,所述电压供给装置在3D显示模式下在所述多个第一电极条上施加第一公共电压,并在所述第二电极条上施加第一驱动电压,以使所述液晶层形成沿所述第二电极条设置的多个第一柱状透镜单元,所述电压供给装置在2D显示模式下在所述多个第一电极条上施加第二驱动电压,并在所述第二电极条上施加第二公共电压,以使所述液晶层形成沿所述第一电极条设置的多个第二柱状透镜单元。
- 根据权利要求8所述的液晶透镜,其中,在所述3D显示模式下,施加于相邻两个所述第二电极条上的所述第一驱动电压的电压值互不相同,在所述2D显示模式下,施加于相邻两个所述第一电极条上的所述第二驱动电压的电压值互不相同。
- 一种液晶透镜的驱动方法,所述液晶透镜包括相对设置的第一电极层和第二电极层以及设置于所述第一电极层和所述第二电极层之间的液晶层,所述第一电极层包括沿预定方向延伸且彼此平行设置的多个第一电极条,所述第二电极层包括相对所述第一电极条倾斜延伸且彼此平行设置的多个第二电极条,其中,所述驱动方法包括:在3D显示模式下在所述多个第一电极条上施加第一公共电压,并在所述第二电极条上施加第一驱动电压,以使所述液晶层形成沿所述第二电极条设置的多个第一柱状透镜单元;在2D显示模式下在所述多个第一电极条上施加第二驱动电压,并在所述第二电极条上施加第二公共电压,以使所述液晶层形成沿所述第一电极条设置的多个第二柱状透镜单元。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/701,067 US8854560B2 (en) | 2012-11-06 | 2012-11-15 | Auto-stereoscopic display device, liquid crystal lens, and driving method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210438500.4A CN102928988B (zh) | 2012-11-06 | 2012-11-06 | 一种立体显示装置、液晶透镜及其驱动方法 |
CN201210438500.4 | 2012-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014071643A1 true WO2014071643A1 (zh) | 2014-05-15 |
Family
ID=47643824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/084647 WO2014071643A1 (zh) | 2012-11-06 | 2012-11-15 | 一种立体显示装置、液晶透镜及其驱动方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102928988B (zh) |
WO (1) | WO2014071643A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9645399B2 (en) | 2010-10-19 | 2017-05-09 | Superd Co. Ltd. | Autostereoscopic display apparatus and method |
CN103293688B (zh) * | 2013-05-10 | 2015-11-25 | 昆山龙腾光电有限公司 | 二维/三维切换的显示器及其显示方法 |
JP6292464B2 (ja) * | 2013-06-20 | 2018-03-14 | Tianma Japan株式会社 | 表示装置 |
CN103454825B (zh) * | 2013-09-30 | 2015-07-08 | 深圳超多维光电子有限公司 | 液晶透镜及2d/3d图像显示装置 |
CN104049372B (zh) * | 2014-06-24 | 2016-02-17 | 深圳超多维光电子有限公司 | 2d/3d可切换显示装置 |
CN105785575B (zh) * | 2014-12-24 | 2018-01-12 | 深圳超多维光电子有限公司 | 立体显示装置 |
CN104656337A (zh) * | 2015-03-20 | 2015-05-27 | 京东方科技集团股份有限公司 | 一种液晶透镜及显示装置 |
CN104849937A (zh) * | 2015-05-19 | 2015-08-19 | 汕头超声显示器(二厂)有限公司 | 一种用于裸眼立体显示的电驱动液晶透镜及其裸眼立体显示装置 |
CN104950544A (zh) * | 2015-07-30 | 2015-09-30 | 重庆卓美华视光电有限公司 | 裸眼3d显示装置 |
CN106559661B (zh) * | 2015-09-30 | 2018-10-02 | 汕头超声显示器(二厂)有限公司 | 一种基于3d液晶透镜的立体视觉图像产生方法 |
WO2019242208A1 (zh) * | 2018-06-22 | 2019-12-26 | 张家港康得新光电材料有限公司 | 实现裸眼3d、2d/3d可切换的结构及方法 |
CN113514988B (zh) * | 2021-04-28 | 2022-09-13 | 南昌虚拟现实研究院股份有限公司 | 变焦液晶透镜及其驱动方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101025490A (zh) * | 2006-02-20 | 2007-08-29 | 三星电子株式会社 | 立体图像转换面板和具有其的立体图像显示设备 |
US20110205342A1 (en) * | 2010-02-24 | 2011-08-25 | Chunghwa Picture Tubes, Ltd., | Electrically-driven liquid crystal lens and stereoscopic display using the same |
CN102323701A (zh) * | 2011-10-12 | 2012-01-18 | 福州华映视讯有限公司 | 立体显示装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5521380B2 (ja) * | 2009-04-13 | 2014-06-11 | ソニー株式会社 | 立体表示装置 |
CN102141714B (zh) * | 2011-03-31 | 2013-10-23 | 昆山龙腾光电有限公司 | 显示装置 |
-
2012
- 2012-11-06 CN CN201210438500.4A patent/CN102928988B/zh active Active
- 2012-11-15 WO PCT/CN2012/084647 patent/WO2014071643A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101025490A (zh) * | 2006-02-20 | 2007-08-29 | 三星电子株式会社 | 立体图像转换面板和具有其的立体图像显示设备 |
US20110205342A1 (en) * | 2010-02-24 | 2011-08-25 | Chunghwa Picture Tubes, Ltd., | Electrically-driven liquid crystal lens and stereoscopic display using the same |
CN102323701A (zh) * | 2011-10-12 | 2012-01-18 | 福州华映视讯有限公司 | 立体显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102928988A (zh) | 2013-02-13 |
CN102928988B (zh) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014071643A1 (zh) | 一种立体显示装置、液晶透镜及其驱动方法 | |
US9578317B2 (en) | Two-dimensional/three-dimensional switchable display apparatus | |
KR101419234B1 (ko) | 액정 전계 렌즈 및 이를 이용한 입체 표시 장치 | |
JP5841131B2 (ja) | 切り替え可能なシングル−マルチビュー・モード表示装置 | |
US8553030B2 (en) | Stereo display apparatus and lens array thereof | |
EP2456222A2 (en) | Stereoscopic Display Device | |
KR20110077709A (ko) | 액정 전계 렌즈 및 이를 이용한 입체 표시 장치 | |
KR20120106295A (ko) | 표시 장치 및 표시 장치의 구동 방법 | |
CN103454825B (zh) | 液晶透镜及2d/3d图像显示装置 | |
CN102830495A (zh) | 一种3d显示装置 | |
US20120169964A1 (en) | Display device | |
KR101362160B1 (ko) | 액정 전계 렌즈, 이를 이용한 입체 표시 장치 및 이의 구동방법 | |
EP3067733B1 (en) | Stereopsis display device | |
WO2016026136A1 (zh) | 立体显示装置及其制作方法 | |
WO2014117410A1 (zh) | 一种液晶透镜和立体显示装置 | |
CN102854694A (zh) | 2d/3d切换的液晶透镜组件 | |
WO2015078033A1 (zh) | 显示装置及液晶盒透镜面板 | |
US8570451B2 (en) | Display apparatus and liquid crystal lens | |
CN106681079A (zh) | 一种液晶透镜及显示装置 | |
US9069178B2 (en) | Display device and liquid crystal prism cell panel | |
US20150146115A1 (en) | Dispaly device and liquid crystal prism cell panel | |
WO2014071644A1 (zh) | 一种立体显示装置及液晶透镜 | |
KR101910963B1 (ko) | 편광안경방식 입체영상표시장치 | |
WO2014007534A1 (ko) | 광학필름, 이를 포함하는 서브 패널, 및 이를 포함하는 입체영상 표시장치 | |
WO2017082458A1 (ko) | 백라이트 유닛 및 이를 포함하는 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13701067 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12888079 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12888079 Country of ref document: EP Kind code of ref document: A1 |