WO2019242208A1 - 实现裸眼3d、2d/3d可切换的结构及方法 - Google Patents

实现裸眼3d、2d/3d可切换的结构及方法 Download PDF

Info

Publication number
WO2019242208A1
WO2019242208A1 PCT/CN2018/114110 CN2018114110W WO2019242208A1 WO 2019242208 A1 WO2019242208 A1 WO 2019242208A1 CN 2018114110 W CN2018114110 W CN 2018114110W WO 2019242208 A1 WO2019242208 A1 WO 2019242208A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
polarization
prism
birefringent material
incident
Prior art date
Application number
PCT/CN2018/114110
Other languages
English (en)
French (fr)
Inventor
段晓玲
闫文龙
Original Assignee
张家港康得新光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810654616.9A external-priority patent/CN109358429B/zh
Priority claimed from CN201810654615.4A external-priority patent/CN108983429A/zh
Application filed by 张家港康得新光电材料有限公司 filed Critical 张家港康得新光电材料有限公司
Publication of WO2019242208A1 publication Critical patent/WO2019242208A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • the present disclosure relates to the field of naked-eye three-dimensional (3D) display, for example, to a structure and method for implementing naked-eye 3D through a directional backlight, and a two-dimensional (2D) / 3D switchable structure and method.
  • 3D three-dimensional
  • the related art discloses a solution for implementing naked eye 3D through a directional backlight structure.
  • the first LED 34 light source is turned on and the light is more deflected in the direction of the first eye 1a after passing through the structure 40;
  • the second LED 32 light source is turned on, the light is more deflected in the direction of the second eye 1b after passing through the structure 40.
  • naked-eye 3D is achieved by frequency-controlling the LED switches on both sides.
  • the related technology also proposes a 2D / 3D switchable solution that realizes the lens function by switching the liquid crystal state through an electric field, but this solution causes a reduction in display quality due to insufficient liquid crystal switching.
  • the present disclosure provides a structure and method for realizing naked eye 3D and a 2D / 3D switchable structure and method, so as to solve the problems of low display quality and inability to perform 2D / 3D switchability in related technologies.
  • the present disclosure provides a structure for realizing naked eye 3D, including a linearly polarized light module, a first prism layer and a second prism layer which are arranged in a stack;
  • the linearly polarized light module is configured to switch between a first polarization mode that can pass a first polarization light and a second polarization mode that can pass a second polarization light; the first polarization light and the second polarization light Different polarization directions;
  • the first prism layer includes a first prism array and a first birefringent material
  • the second prism layer includes a second prism array and a second birefringent material
  • the structure is configured to direct the first polarized light to a first direction when the first polarized light passes through the structure, and to direct the second polarized light to a first direction when the second polarized light passes through the structure. Two directions, the first direction is different from the second direction.
  • the first prism layer is configured to deflect the first polarized light to the first direction through the first prism array and the first birefringent material, and to deflect the second polarized light Polarized light keeps the direction of incidence;
  • the second prism layer is configured to maintain the first polarized light in an incident direction through the second prism array and the second birefringent material, and deflect the second polarized light to the second direction.
  • the refractive index of the first prism array is equal to the refractive index in the optical axis direction of the first birefringent material
  • a refractive index of the second prism array is equal to a refractive index in an optical axis direction of the second birefringent material
  • An optical axis direction of the first birefringent material is different from an optical axis direction of the second birefringent material
  • the polarization direction of the first polarized light is the optical axis direction of the second birefringent material
  • the polarization direction of the second polarized light is the optical axis direction of the first birefringent material
  • an optical axis direction of the first birefringent material is along an arrangement direction of the first prism array
  • An optical axis direction of the second birefringent material is perpendicular to an arrangement direction of the second prism array
  • the arrangement direction of the first prism array is the same as the arrangement direction of the second prism array.
  • the linearly polarized light module switches between the first polarization mode and the second polarization mode by mechanical or electrical switching.
  • the linearly polarized light module includes a polarizer and a polarization rotation switch
  • the polarizer is configured to convert incident light into linearly polarized light, and the linearly polarized light includes a first polarized light or a second polarized light;
  • the polarization rotation switch is configured to maintain the incident direction of the linearly polarized light, deflect the direction of the first polarized light to the direction of the second polarized light, or deflect the direction of the second polarized light to the direction The direction of the first polarized light.
  • the refractive index of the first prism array is the same as the refractive index of the second prism array.
  • the first birefringent material is a liquid crystal molecule cured on the first prism layer and / or the second birefringent material is a liquid crystal molecule cured on the second prism layer.
  • the present disclosure also provides a method for implementing naked eye 3D, which is applied to the structure for implementing naked eye 3D as described above, the method includes:
  • the step 1 includes: obtaining a first polarized light through a linearly polarized light module, and the first polarized light is incident on the second prism layer and the first prism layer and guided to the first direction;
  • the step 2 includes: obtaining a second polarized light through the linearly polarized light module, and the second polarized light is incident on the second prism layer and the first prism layer and guided to a second direction;
  • the first direction is different from the second direction.
  • the linearly polarized light module includes a polarizer and a polarization rotation switch
  • the polarizer obtains the first polarized light or the second polarized light
  • the polarization rotation switch maintaining the first polarized light in the incident direction, maintaining the second polarized light in the incident direction, and deflecting the direction of the first polarized light to the second polarization A direction of light and a direction of deflecting the direction of the second polarized light to the direction of the first polarized light.
  • the present disclosure also provides a 2D / 3D switchable structure, including: a first linearly polarized light module, a first prism layer, a second linearly polarized light module, and a second prism layer;
  • the first linearly polarized light module, the second prism layer, the second linearly polarized light module, and the first prism layer are sequentially arranged according to a direction in which the light passes;
  • the first linearly polarized light module and the second linearly polarized light module are both configured to switch between a first polarization mode that can pass the first polarized light and a second polarization mode that can pass the second polarized light; the first The polarization directions of the polarized light and the second polarized light are different;
  • the first prism layer includes a first prism array and a first birefringent material
  • the second prism layer includes a second prism array and a second birefringent material
  • the structure is configured to switch the polarization modes of the first linearly polarized light module and the second linearly polarized module, and when the first linearly polarized light module and the second linearly polarized module are in the same polarization mode, when When the first polarized light passes through the structure, the first polarized light is directed to a first direction, and when the second polarized light passes through the structure, the second polarized light is directed to a second direction, and the first One direction is different from the second direction;
  • the structure is further configured that when the first linearly polarized light module and the second linearly polarized module are in different polarization modes, when the first polarized light or the second polarized light passes through the structure, Both maintain the original propagation direction of the polarized light.
  • the first prism layer is configured to deflect the first polarized light to the first direction through the first prism array and the first birefringent material, and to deflect the second polarized light Polarized light keeps the direction of incidence;
  • the second prism layer is configured to maintain the first polarized light in an incident direction through the second prism array and the second birefringent material, and deflect the second polarized light to the second direction.
  • the refractive index of the first prism array is equal to the refractive index in the optical axis direction of the first birefringent material
  • a refractive index of the second prism array is equal to a refractive index in an optical axis direction of the second birefringent material
  • An optical axis direction of the first birefringent material is different from an optical axis direction of the second birefringent material
  • the polarization direction of the first polarized light is the optical axis direction of the second birefringent material
  • the polarization direction of the second polarized light is the optical axis direction of the first birefringent material
  • an optical axis direction of the first birefringent material is along an arrangement direction of the first prism array
  • An optical axis direction of the second birefringent material is perpendicular to an arrangement direction of the second prism array
  • the arrangement direction of the first prism array is the same as the arrangement direction of the second prism array.
  • the first linearly polarized light module switches between the first polarization mode and the second polarization mode by mechanical or electrical switching
  • the second linearly polarized light module switches between the first polarization mode and the second polarization mode in a mechanical or electrical switching manner.
  • the first linearly polarized light module includes a polarizer and a first polarization rotation switch
  • the polarizer is configured to convert incident light into linearly polarized light, and the linearly polarized light includes a first polarized light or a second polarized light;
  • the first polarization rotation switch is configured to maintain the incident direction of the linearly polarized light and deflect the direction of the first polarized light to the direction of the second polarized light or the direction of the second polarized light. Switching in a mode to the direction of the first polarized light;
  • the second linearly polarized light module includes a second polarization rotary switch configured to maintain an incident direction of the linearly polarized light and deflect the direction of the first polarized light to the second polarized light. The direction is switched in a mode that deflects the direction of the second polarized light to the direction of the first polarized light.
  • the refractive index of the first prism array is the same as the refractive index of the second prism array.
  • the first birefringent material is a liquid crystal molecule cured on the first prism layer and / or the second birefringent material is a liquid crystal molecule cured on the second prism layer.
  • the present disclosure further provides a method for implementing 2D / 3D switchability, which is applied to the structure described above, and the method includes:
  • the step 1 includes: obtaining a first polarized light through a first linearly polarized light module, the first polarized light is incident on the second prism layer, and incident on the first prism layer through a second linearly polarized light module; Lead in the first direction
  • the step 2 includes: obtaining a second polarized light through the first linearly polarized light module, the second polarized light is incident on the second prism layer, and incident on the first linear polarized light module through the second linearly polarized light module.
  • the prism layer is guided to a second direction; wherein the first direction is different from the second direction;
  • the second polarized light is obtained through the first linearly polarized light module, and the second polarized light is transmitted in the original direction after incident on the second prism layer, and passes through the second linear polarization.
  • the optical module converts the second polarized light into the first polarized light and enters the first prism layer to continue to transmit in the original direction.
  • the first linearly polarized light module includes a polarizer and a first polarization rotation switch
  • the polarizer obtains the first polarized light or the second polarized light
  • the first polarization rotation switch maintaining the first polarized light in an incident direction, maintaining the second polarized light in an incident direction, and deflecting the direction of the first polarized light to the first A direction of the two polarized lights and a direction of deflecting the direction of the second polarized light to the direction of the first polarized light.
  • FIG. 1 is a structural diagram of a naked-eye 3D device of the related art
  • FIG. 2 is a first-direction deflection state diagram of a naked eye 3D structure provided by an embodiment of the present disclosure
  • FIG. 3 is a second-direction deflection state diagram of a naked eye 3D structure provided by an embodiment of the present disclosure
  • FIG. 4 is a left-eye view state of a first time slot according to an embodiment of the present disclosure
  • FIG. 5 is a right-eye view state of a second time slot according to an embodiment of the present disclosure.
  • FIG. 7 is another first-direction deflection state diagram for implementing 3D display according to an embodiment of the present disclosure.
  • FIG. 8 is another second-direction deflection state diagram for implementing 3D display according to an embodiment of the present disclosure.
  • FIG. 9 is a state diagram for implementing 2D display according to an embodiment of the present disclosure.
  • FIG. 10 is a left-eye view state of another first time slot according to an embodiment of the present disclosure.
  • 11 is a right-eye view state of another second time slot according to an embodiment of the present disclosure.
  • FIG. 12 is another state diagram for implementing 2D display provided by an embodiment of the present disclosure.
  • FIG. 13 is a method for implementing 2D / 3D switching according to an embodiment of the present disclosure.
  • the present disclosure provides a structure for realizing naked eye 3D, including a linearly polarized light module, a first prism layer and a second prism layer that are stacked; the linearly polarized light module is configured to pass through the first polarization Switching between a first polarization mode of light and a second polarization mode that can pass a second polarization light; the polarization directions of the first polarization light and the second polarization light are different;
  • the first prism layer includes a first prism array and a first birefringent material
  • the second prism layer includes a second prism array and a second birefringent material
  • the structure as a whole is configured to direct the first polarized light to a first direction when the first polarized light passes through the structure, and to direct the second polarized light when the second polarized light passes through the structure.
  • a second direction is directed, the first direction being different from the second direction.
  • the structure as a whole is configured to direct the first polarized light to a first direction when the first polarized light passes through the structure, which can be understood as when the first polarized light passes through the structure.
  • the second prism array, the second birefringent material, the first prism array, and the first birefringent material guide the first polarized light in a first direction.
  • the structure as a whole is configured to guide the second polarized light to a second direction when the second polarized light passes through the structure, which can be understood as when the second polarized light passes through the structure.
  • the second prism array, the second birefringent material, the first prism array, and the first birefringent material are structured, the second polarized light is directed to a second direction.
  • the present disclosure provides a double prism layer and each prism layer has birefringence characteristics.
  • the linear polarization module is used to switch between polarized light in two polarization directions, and the overall structure is set to deflect different polarized light to different directions, thereby achieving naked eye 3D.
  • the first prism layer is configured to deflect the first polarized light to a first direction through the first prism array and the first birefringent material, and to deflect the second polarized light Maintaining the incident direction
  • the second prism layer is configured to maintain the first polarized light in the incident direction through the second prism array and the second birefringent material, and deflect the second polarized light to a second direction .
  • the present disclosure sets the refractive index of the first prism array to be equal to the refractive index in the optical axis direction of the first birefringent material; the refractive index of the second prism array is equal to the second The refractive index of the birefringent material in the optical axis direction; the optical axis direction of the first birefringent material is different from the optical axis direction of the second birefringent material.
  • the first birefringent material is The optical axis direction of is perpendicular to the optical axis direction of the second birefringent material.
  • the optical axis direction of the first birefringent material is along the arrangement direction of the first prism array; the optical axis direction of the second birefringent material is along the second prism array.
  • the arrangement direction is vertical; wherein, the arrangement direction of the first prism array and the arrangement direction of the second prism array are the same.
  • the polarization direction of the first polarized light is the optical axis direction of the second birefringent material, and the polarization direction of the second polarized light is the optical axis direction of the first birefringent material.
  • the linearly polarized light module can be switched between the first polarization mode and the second polarization mode by mechanical or electrical switching.
  • the linearly polarized light module includes a polarizer and a polarization rotation switch; the polarizer is configured to convert incident light into linearly polarized light, and the linearly polarized light includes a first polarized light or a second polarized light.
  • the polarization rotation switch is configured to maintain the incident direction of the linearly polarized light or deflect the direction of the linearly polarized light to another polarized light direction (ie, deflect the direction of the first polarized light to The direction of the second polarized light or the direction of the second polarized light is deflected to the direction of the first polarized light).
  • the refractive indices of the first prism array and the second prism array may be the same or different, and the first birefringent material and the second birefringent material may be the same or different.
  • the first birefringent material may be liquid crystal molecules cured on the first prism layer and / or the second birefringent material may be liquid crystal molecules cured on the second prism layer.
  • the above-mentioned birefringent material is liquid crystal molecules, and the liquid crystal molecules are pre-cured, and the arrangement direction of the long axis direction of the molecules can be pre-configured.
  • the liquid crystal molecules cured in the upper prism structure that is, the first prism layer
  • the long axis direction of the first birefringent material 12 is arranged along the arrangement direction of the prism array (as shown in the figure, horizontally on the paper surface)
  • the liquid crystal molecules i.e., The major axis direction of the second birefringent material 13
  • the prism extension direction as shown in the figure, it is arranged along the direction perpendicular to the paper surface.
  • the output light of the backlight unit is linearly polarized with the polarization direction in the horizontal direction of the paper through the polarizer 15.
  • the polarization rotation switch 16 is set to not rotate the polarization direction of the incident light in the first working state.
  • the polarization direction of the incident light at the time of reaching the lower prism structure component is still maintained along the paper surface horizontal direction.
  • the refractive index of the second prism array 14 in the lower prism structure component is polyisotropic n2, and in this embodiment, n2 is set to correspond to the long axis direction of the liquid crystal molecules 13.
  • the refractive index ne is the same.
  • the refractive index of the first prism array 11 in the upper prism structure component is polyisotropic n1, and in this embodiment, n1 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 12.
  • polyisotropy can be understood as the property that the physical and chemical properties of a substance do not change due to different directions, that is, the measured performance values of the substance in different directions are exactly the same. Said homogeneity.
  • Second working state Only the upper prism structure component deflects the incident light.
  • the output light of the backlight unit is linearly polarized with the polarization direction in the horizontal direction of the paper through the polarizer 15.
  • the polarization rotation switch 16 is set to rotate the polarization direction of the incident light by 90 degrees in the second working state.
  • the polarization direction of the incident light when entering the lower prism structure component becomes perpendicular to the paper surface direction.
  • the refractive index of the second prism array 14 in the lower prism structure component is polyisotropic n2, and in this embodiment, n2 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 13.
  • n2 ne
  • the refractive index of the first prism array 11 in the upper prism structure component is polyisotropic n1, and in this embodiment, n1 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 12.
  • n1 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 12.
  • An embodiment of the present disclosure provides a 3D display device implemented by using the structure of the foregoing embodiment.
  • the structure of the above embodiment is applied to the field of 3D display, and a display panel such as a liquid crystal display (Liquid Crystal Display, LCD).
  • a display panel such as a liquid crystal display (Liquid Crystal Display, LCD).
  • LCD Liquid Crystal Display
  • the left and right eye views can be displayed in a time-sharing manner by controlling the above two states to be switched, as shown in FIGS. 4 to 5, thereby achieving the purpose of directional backlight 3D display.
  • FIG. 6 a method for implementing naked eye 3D by using the structure disclosed in the foregoing embodiment is shown in FIG. 6.
  • the method includes:
  • the step 610 includes: obtaining the first polarized light through the linearly polarized light module, and the first polarized light is incident on the second prism layer and the first prism layer and guided to the first direction;
  • the step 620 includes: obtaining the second polarized light through the linearly polarized light module, and the second polarized light is incident on the second prism layer and the first prism array of the first prism layer and is then guided to the first prism array. Two directions
  • the first direction is different from the second direction.
  • the first polarized light is incident on the second prism layer and the first prism array of the first prism layer and is guided to the first direction. It can be understood that the first polarized light is incident on the second prism layer.
  • the second prism array and the second birefringent material, and the first prism array and the first birefringent material of the first prism layer are guided to the first direction.
  • the second polarized light is incident on the second prism layer and the first prism layer and is guided to a second direction. It can be understood that the second polarized light is incident on the second prism layer.
  • the second prism array and the second birefringent material, and the first prism array and the first birefringent material of the first prism layer are guided to the second direction.
  • the linearly polarized light module includes a polarizer and a polarization rotation switch; linear polarized light of the first polarized light or the second polarized light is obtained through the polarizer; and the polarized light passes through the polarized light.
  • the rotary switch maintains the incident direction of the linearly polarized light or deflects the direction of another polarized light (that is, maintains the incident direction of the second polarized light and deflects the direction of the first polarized light to the second polarization The direction of the light and the direction of the second polarized light to the direction of the first polarized light).
  • the arrangement direction of the two-layer prism array is the same, and the extending direction of the prism is also the same.
  • the two prism layers have birefringence characteristics.
  • the linearly polarized light module switches between a first polarization mode that can pass a first polarized light and a second polarization mode that can pass a second polarized light.
  • Each prism layer deflects or maintains different polarized light, thereby obtaining differently-directed outgoing light, and achieving naked-eye 3D display.
  • the present disclosure does not need to switch liquid crystals and does not need a double-sided light source.
  • the polarized light module can be realized by obtaining linearly polarized light in different directions, which is simple and easy to operate and has high display quality.
  • the present disclosure provides a structure for realizing 2D / 3D switching, including a first linearly polarized light module, a first prism layer, a second linearly polarized light module, and a second prism layer;
  • the first linearly polarized light module, the second prism layer, the second linearly polarized light module, and the first prism layer are sequentially arranged according to a direction in which the light passes;
  • the first linearly polarized light module is configured to switch between a first polarization mode that can pass a first polarized light and a second polarization mode that can pass a second polarized light; the first polarized light and the second polarized light Polarized light has different polarization directions;
  • the first prism layer includes a first prism array and a first birefringent material
  • the second prism layer includes a second prism array and a second birefringent material
  • the second linearly polarized light module is configured to switch between a first polarization mode that can pass the first polarized light and a second polarization mode that can pass the second polarized light;
  • the structure as a whole is configured to guide the first polarized light when the first polarized light passes through the structure.
  • the structure as a whole is configured such that when the first polarized light or the second polarized light passes through the structure, The original propagation direction of the polarized light is maintained.
  • the structure as a whole is configured to change the first polarized light when the first polarized light passes through the structure.
  • the first polarized light is directed to the first direction, it can be understood that when the first polarized light passes through the second prism array, the second birefringent material, the first prism array, and the first birefringent material The first polarized light is directed to a first direction.
  • the structure as a whole is configured to direct the second polarized light to a second direction when the second polarized light passes through the structure, which can be understood as when the second polarized light passes through the second prism array of the structure,
  • the second birefringent material, the first prism array, and the first birefringent material guide the second polarized light to a second direction.
  • the structure as a whole is configured such that when the first polarized light or the second polarized light passes through In the structure, the original propagation direction of the polarized light is maintained, and it can be understood that when the first polarized light or the second polarized light passes through a second prism array, the second birefringent material, the first When a prism array and the first birefringent material are used, the original propagation direction of the polarized light is maintained.
  • the present disclosure provides a double prism layer and each prism layer has birefringence characteristics.
  • Different prism layers deflect different polarized light, and switch between polarized light in two polarization directions through a first linear polarization module and a second linear polarization module.
  • the first and second linear polarization modules are set in the same mode, and only one polarization direction of light passes through the overall structure.
  • the first and second linear polarization modules are set to have different modes, so that the polarized light passing through the first prism layer and the second prism layer is different, so that no deflection occurs.
  • the first prism layer is configured to deflect the first polarized light to a first direction through the first prism array and the first birefringent material, and to deflect the second polarized light Maintaining the incident direction
  • the second prism layer is configured to maintain the first polarized light in the incident direction through the second prism array and the second birefringent material, and deflect the second polarized light to a second direction.
  • the present disclosure sets the refractive index of the first prism array to be equal to the refractive index in the optical axis direction of the first birefringent material; the refractive index of the second prism array is equal to the second The refractive index in the optical axis direction of the birefringent material; the optical axis direction of the first birefringent material is different from the optical axis direction of the second birefringent material.
  • the optical axis direction of the first birefringent material and the optical axis direction of the second birefringent material are in a vertical relationship.
  • the optical axis direction of the first birefringent material is along the arrangement direction of the first prism array; the optical axis direction of the second birefringent material is along with the arrangement of the second prism array.
  • the arrangement direction is vertical; wherein the arrangement direction of the first prism array and the arrangement direction of the second prism array are the same.
  • the polarization direction of the first polarized light is the optical axis direction of the second birefringent material, and the polarization direction of the second polarized light is the optical axis direction of the first birefringent material.
  • the first linearly polarized light module and the second linearly polarized light module can be switched between the first polarization mode and the second polarization mode through mechanical or electrical switching.
  • the first linearly polarized light module includes a polarizer and a polarization rotation switch; the polarizer is configured to convert incident light into linearly polarized light, and the linearly polarized light includes the first polarized light or Second polarized light; the first polarization rotation switch is configured to maintain the incident direction of the linearly polarized light or deflect the direction of the linearly polarized light to another polarized light direction (i.e., the first polarization The direction of light is deflected to the direction of the second polarized light or the direction of the second polarized light is deflected to the direction of the first polarized light).
  • the second linearly polarized light module includes a second polarization rotary switch configured to maintain an incident direction of the linearly polarized light and deflect the direction of the linearly polarized light to a direction of another polarized light. (Ie, deflect the direction of the first polarized light to the direction of the second polarized light or deflect the direction of the second polarized light to the direction of the first polarized light).
  • the refractive indices of the first prism array and the second prism array may be the same or different, and the first birefringent material and the second birefringent material may be the same or different.
  • the first birefringent material may be liquid crystal molecules cured on the first prism layer and / or the second birefringent material may be liquid crystal molecules cured on the second prism layer.
  • the above-mentioned birefringent material is liquid crystal molecules, and the liquid crystal molecules are pre-cured, and the arrangement direction of the long axis direction of the molecules can be pre-configured.
  • the liquid crystal molecules cured in the upper prism structure that is, the first prism layer
  • the long axis direction of the first birefringent material 12 is arranged along the arrangement direction of the prism array (as shown in the figure, horizontally on the paper surface)
  • the liquid crystal molecules i.e., The major axis direction of the second birefringent material 13
  • the prism extension direction as shown in the figure, it is arranged along the direction perpendicular to the paper surface.
  • the output light of the backlight unit is linearly polarized in the horizontal direction of the paper through the polarizer 15.
  • the first polarization rotation switch 17 is set to not rotate the polarization direction of the incident light in the first working state. Therefore, the polarization direction of the incident light when incident on the lower prism structure component is still maintained along the paper surface horizontal direction.
  • the switch At the second polarization rotation switch 18 of the two-layer prism structure component, in this state, the switch is in the OFF state, and the polarization direction of the incident light is not rotated.
  • the refractive index of the second prism array 14 in the lower prism structure component is polyisotropic n2, and in this embodiment, n2 is set to correspond to the long axis direction of the liquid crystal molecules 13.
  • the refractive index ne is the same.
  • the refractive index of the first prism array 11 in the upper prism structure component is polyisotropic n1, and in this embodiment, n1 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 12.
  • Second working state Only the upper prism structure component deflects the incident light.
  • the output light of the backlight unit is linearly polarized in the horizontal direction of the paper through the polarizer 15.
  • the first polarization rotation switch 17 is set to rotate the polarization direction of the incident light by 90 degrees in the second working state. Therefore, the polarization direction of the incident light when entering the lower prism structure component becomes perpendicular to the paper surface direction.
  • the refractive index of the second prism array 14 in the lower prism structure component is polyisotropic n2, and in this embodiment, n2 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 13.
  • n2 ne
  • the switch At the second polarization rotation switch 18 of the two-layer prism structure component, the switch is in the OFF state in this state, and the polarization direction of the incident light is not rotated.
  • the refractive index of the first prism array 11 in the upper prism structure component is polyisotropic n1, and in this embodiment, n1 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 12.
  • n1 is set to be the same as the refractive index ne corresponding to the long axis direction of the liquid crystal molecules 12.
  • the third working state the two-layer prism structure does not deflect incident light.
  • the output light of the backlight unit is linearly polarized in the horizontal direction of the paper through the polarizer 15.
  • the first polarization rotation switch 17 is set to rotate the polarization direction of the incident light by 90 degrees in the second working state. Therefore, the polarization direction of the incident light when entering the lower prism structure component becomes perpendicular to the paper surface direction.
  • the refractive index of the prism array in the lower prism structure component is n2, which is isotropic, and in this embodiment, the refractive index ne corresponding to the long axis direction of the liquid crystal molecules is set to n2.
  • the switch At the second polarization rotation switch 18 of the two-layer prism structure component, the switch is in the ON state in this state, and rotates the polarization direction of the incident light by 90 degrees. Therefore, the polarization direction of the outgoing light is transformed into a horizontal direction parallel to the paper surface.
  • the refractive index of the prism array in the upper prism structure component is n1, which is isotropic, and in this embodiment, n1 is set to have the same refractive index ne corresponding to the long axis direction of the liquid crystal molecules.
  • n1 ne, so the incident light will also be transmitted in the original direction in the upper prism structure component.
  • the embodiment of the present disclosure provides a 2D / 3D display device implemented by using the structure of the above embodiment.
  • the structure of the above embodiment is applied to the field of 3D display, and a display panel, such as an LCD, can be provided on the light emitting side of the entire structure.
  • a display panel such as an LCD
  • the first state and the second state can be controlled to switch to realize the left-eye view and the right-eye view in a time-sharing manner, as shown in FIG. 10 to FIG. 11, thereby achieving directional backlight 3D display. purpose.
  • the structure can be placed in a third state by controlling the second polarization rotation switch 18 to implement 2D display.
  • FIG. 13 a method for implementing 2D / 3D by using the structure disclosed in the foregoing embodiment is shown in FIG. 13.
  • the method includes:
  • Step 1310 includes: obtaining a first polarized light through a first linearly polarized light module, the first polarized light is incident on the second prism layer, and then incident on the first prism layer through the second linearly polarized light module and guided to the first prism layer.
  • Step 1320 Obtain a second polarized light through the first linearly polarized light module, the second polarized light is incident on the second prism layer, and enters the first prism layer through the second linearly polarized light module. Leading to a second direction; wherein the first direction is different from the second direction;
  • Step 1330 Obtain the second polarized light through the first linearly polarized light module.
  • the second polarized light is transmitted in the original direction after entering the second prism layer, and passes through the second linearly polarized light module. After the second polarized light is converted into the first polarized light and incident on the first prism layer, transmission continues in the original direction.
  • the first polarized light is incident on the first and second prism layers, and is guided by the second linearly polarized light module and incident on the second first prism layer.
  • the first direction can be understood as the first polarized light incident on the second prism array and the second birefringent material of the second prism layer, and incident on the first prism layer through the second linearly polarized light module.
  • a prism array and a first birefringent material are guided in a first direction.
  • the second polarized light is incident on the second prism layer, and is guided to the second direction after entering the first prism layer through the second linearly polarized light module. It can be understood that the second polarized light is incident on the second prism layer.
  • the second prism array and the second birefringent material of the second prism layer are guided into the second direction after entering the first prism array and the first birefringent material of the first prism layer through the second linearly polarized light module.
  • the second polarized light is transmitted in the original direction after entering the second prism layer, and the second polarized light is converted into the first polarized light through the second linearly polarized light module.
  • the second polarized light After entering the first prism layer and continuing to maintain transmission in the original direction, it can be understood that the second polarized light enters the second prism array and the second birefringent material of the second prism layer to maintain transmission in the original direction. And pass through the second linearly polarized light module to convert the second polarized light into the first polarized light and enter the first prism array and the first birefringent material of the first prism layer and continue to maintain the original direction transmission.
  • the first linearly polarized light module includes a polarizer and a first polarization rotary switch; and obtaining linearly polarized light of the first polarized light or the second polarized light through the polarizer;
  • the linearly polarized light is maintained in an incident direction or deflected to another polarized light direction through the polarization rotation switch, that is, one of the following is achieved through the first polarization rotation switch: the first polarized light is kept incident Direction, keeping the second polarized light incident direction, deflecting the direction of the first polarized light to the direction of the second polarized light, and deflecting the direction of the second polarized light to the first polarized light Direction.
  • the arrangement direction of the two-layer prism array is the same, and the extending direction of the prism is also the same.
  • two prism layers have birefringence characteristics, and two linearly polarized light modules are performed between a first polarization mode capable of passing a first polarized light and a second polarization mode capable of passing a second polarized light.
  • the two prism layers deflect or hold different polarized light respectively, so as to obtain outgoing light with different directions, realize naked eye 3D display and further realize 2D / 3D switchability.
  • the present disclosure does not require liquid crystal. Switching is also possible without the need for a double-sided light source, which can be achieved by using a linearly polarized light module to obtain linearly polarized light in different directions, which is simple and easy to operate and has high display quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种实现裸眼3D以及2D/3D切换的结构和方法,包括线偏振光模块、层叠设置的第一棱镜层和第二棱镜层;线偏振光模块设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;结构设置为当通过第一偏振光时,将第一偏振光导向第一方向,当通过第二偏振光时,将第二偏振光导向第二方向,第一方向不同于第二方向。

Description

[根据细则37.2由ISA制定的发明名称] 实现裸眼3D、2D/3D可切换的结构及方法
本申请要求在2018年6月22日提交中国专利局、申请号为201810654615.4以及在2018年6月22日提交中国专利局、申请号为201810654616.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及裸眼三维(three-dimensional,3D)显示领域,例如涉及一种通过指向型背光实现裸眼3D的结构及方法、二维(two-dimensional,2D)/3D可切换的结构及方法。
背景技术
相关技术中公开了通过指向型背光结构实现裸眼3D的方案。如图1所示,通过分别控制两侧发光二极管(Light Emitting Diode,LED)结合光转向结构实现:第一LED 34灯源开启后光线经过结构40后更多的往第一眼睛1a方向偏转;第二LED 32灯源开启后光线经过结构40后更多的往第二眼睛1b方向偏转。从而通过频率控制两侧LED开关实现裸眼3D。
但该指向型背光实现难度较大,存在量产性问题,且由于双侧、单边入光的导光板难以保证两侧光源的一致,因此存在画面不均匀的问题,而且该方案不能实现2D/3D的可切换。
相关技术还提出了通过电场切换液晶状态实现透镜作用的2D/3D可切换方案,但该方案因液晶切换不够彻底导致显示质量的下降。
发明内容
本公开提供一种实现裸眼3D的结构及方法、2D/3D可切换的结构及方法,以解决相关技术中显示质量低、无法进行2D/3D可切换的问题。
在一实施例中,,本公开提供了一种实现裸眼3D的结构,包括线偏振光模块、层叠设置的第一棱镜层和第二棱镜层;
所述线偏振光模块设置为在可通过第一偏振光的第一偏振模式和可通过第 二偏振光的第二偏振模式之间进行切换;所述第一偏振光和所述第二偏振光的偏振方向不同;
所述第一棱镜层包括第一棱镜阵列和第一双折射材料;所述第二棱镜层包括第二棱镜阵列和第二双折射材料;
所述结构设置为当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,所述第一方向不同于所述第二方向。
在一实施例中,所述第一棱镜层设置为通过所述第一棱镜阵列和所述第一双折射材料将所述第一偏振光偏转至所述第一方向,以及将所述第二偏振光保持入射方向;
所述第二棱镜层设置为通过所述第二棱镜阵列和所述第二双折射材料将所述第一偏振光保持入射方向,以及将所述第二偏振光偏转至所述第二方向。
在一实施例中,所述第一棱镜阵列的折射率等于所述第一双折射率材料的光轴方向的折射率;
所述第二棱镜阵列的折射率等于所述第二双折射率材料的光轴方向的折射率;
所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向不同;
所述第一偏振光的偏振方向为所述第二双折射材料的光轴方向,所述第二偏振光的偏振方向为所述第一双折射材料的光轴方向。
在一实施例中,所述第一双折射材料的光轴方向沿着所述第一棱镜阵列的排布方向;
所述第二双折射材料的光轴方向与所述第二棱镜阵列的排布方向垂直;
其中,所述第一棱镜阵列的排布方向和所述第二棱镜阵列的排布方向相同。
在一实施例中,所述线偏振光模块通过机械或电切换的方式在所述第一偏振模式和所述第二偏振模式之间进行切换。
在一实施例中,所述线偏振光模块包括起偏器和偏振旋转开关;
所述起偏器设置为将入射光转变为线偏振光,所述线偏振光包括第一偏振光或第二偏振光;
所述偏振旋转开关设置为保持所述线偏振光的入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向。
在一实施例中,所述第一棱镜阵列的折射率与所述第二棱镜阵列的折射率相同。
在一实施例中,所述第一双折射材料为固化在所述第一棱镜层的液晶分子和/或所述第二双折射材料为固化在所述第二棱镜层的液晶分子。
在一实施例中,本公开还提供一种实现裸眼3D的方法,应用于如上所述的实现裸眼3D的结构中,所述方法包括:
交替进行下述步骤1和步骤2:
所述步骤1包括:通过线偏振光模块获得第一偏振光,所述第一偏振光入射至第二棱镜层和第一棱镜层后导向第一方向;
所述步骤2包括:通过所述线偏振光模块获得第二偏振光,所述第二偏振光入射至所述第二棱镜层和所述第一棱镜层后导向第二方向;
其中,所述第一方向与所述第二方向不相同。
在一实施例中,所述线偏振光模块包括起偏器和偏振旋转开关;
所述起偏器获得所述第一偏振光或所述第二偏振光;
通过所述偏振旋转开关实现下述之一:将所述第一偏振光保持入射方向、将所述第二偏振光保持入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向以及将所述第二偏振光的方向偏转至所述第一偏振光的方向。
在一实施例中,本公开还提供了2D/3D可切换结构,包括:第一线偏振光模块、第一棱镜层、第二线偏振光模块和第二棱镜层;
按照光线经过的方向,所述第一线偏振光模块、所述第二棱镜层、所述第二线偏振光模块以及所述第一棱镜层依次排列;
所述第一线偏振光模块和第二线偏振光模块均设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;所述第一偏振光和所述第二偏振光的偏振方向不同;
所述第一棱镜层包括第一棱镜阵列和第一双折射材料,所述第二棱镜层包 括第二棱镜阵列和第二双折射材料;
所述结构设置为切换所述第一线偏振光模块和所述第二线偏振模块的偏振模式,在所述第一线偏振光模块和所述第二线偏振模块处于相同偏振模式的情况下,当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,所述第一方向不同于所述第二方向;
所述结构还设置为在所述第一线偏振光模块和所述第二线偏振模块处于不同偏振模式的情况下,当所述第一偏振光或所述第二偏振光通过所述结构时,均保持所述偏振光的原传播方向。
在一实施例中,所述第一棱镜层设置为通过所述第一棱镜阵列和所述第一双折射材料将所述第一偏振光偏转至所述第一方向,以及将所述第二偏振光保持入射方向;
所述第二棱镜层设置为通过所述第二棱镜阵列和所述第二双折射材料将所述第一偏振光保持入射方向,以及将所述第二偏振光偏转至所述第二方向。
在一实施例中,所述第一棱镜阵列的折射率等于所述第一双折射率材料的光轴方向的折射率;
所述第二棱镜阵列的折射率等于所述第二双折射率材料的光轴方向的折射率;
所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向不同;
所述第一偏振光的偏振方向为所述第二双折射材料的光轴方向,所述第二偏振光的偏振方向为所述第一双折射材料的光轴方向。
在一实施例中,所述第一双折射材料的光轴方向沿着所述第一棱镜阵列的排布方向;
所述第二双折射材料的光轴方向与所述第二棱镜阵列的排布方向垂直;
其中,所述第一棱镜阵列的排布方向和所述第二棱镜阵列的排布方向相同。
在一实施例中,所述第一线偏振光模块通过机械或电切换的方式在所述第一偏振模式和所述第二偏振模式之间进行切换;
所述第二线偏振光模块通过机械或电切换的方式在所述第一偏振模式和所 述第二偏振模式之间进行切换。
在一实施例中,所述第一线偏振光模块包括起偏器和第一偏振旋转开关;
所述起偏器设置为将入射光转变为线偏振光,所述线偏振光包括第一偏振光或第二偏振光;
所述第一偏振旋转开关设置为在保持所述线偏振光的入射方向和将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向的模式中进行切换;
所述第二线偏振光模块包括第二偏振旋转开关,第二偏振旋转开关设置为在保持所述线偏振光的入射方向和将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向的模式中进行切换。
在一实施例中,所述第一棱镜阵列的折射率与所述第二棱镜阵列的折射率相同。
在一实施例中,所述第一双折射材料为固化在第一棱镜层的液晶分子和/或所述第二双折射材料为固化在第二棱镜层的液晶分子。
在一实施例中,本公开还提供一种实现2D/3D可切换的方法,应用于如上所述的结构中,所述方法包括:
当进行3D显示时,交替进行下述步骤1和步骤2:
所述步骤1包括:通过第一线偏振光模块获得第一偏振光,所述第一偏振光入射至所述第二棱镜层,并经过第二线偏振光模块入射至所述第一棱镜层后导向第一方向;
所述步骤2包括:通过所述第一线偏振光模块获得第二偏振光,所述第二偏振光入射至所述第二棱镜层,并经过所述第二线偏振光模块入射所述第一棱镜层后导向第二方向;其中,所述第一方向与所述第二方向不相同;
当进行2D显示时,通过所述第一线偏振光模块获得所述第二偏振光,所述第二偏振光入射至所述第二棱镜层后保持原方向透射,并经过所述第二线偏振光模块将所述第二偏振光转换为所述第一偏振光并入射至所述第一棱镜层后继续保持原方向透射。
在一实施例中,所述第一线偏振光模块包括起偏器和第一偏振旋转开关;
所述起偏器获得所述第一偏振光或所述第二偏振光;
通过所述第一偏振旋转开关实现下述之一:将所述第一偏振光保持入射方向、将所述第二偏振光保持入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向以及将所述第二偏振光的方向偏转至所述第一偏振光的方向。
附图说明
图1为相关技术的裸眼3D装置结构图;
图2为本公开实施例提供的一种实现裸眼3D结构的第一方向偏转状态图;
图3为本公开实施例提供的一种实现裸眼3D结构的第二方向偏转状态图;
图4为本公开实施例提供的一种第一时隙的左眼视图状态;
图5为本公开实施例提供的一种第二时隙的右眼视图状态;
图6为本公开实施例提供的一种实现裸眼3D的方法;
图7为本公开实施例提供的另一种实现3D显示的第一方向偏转状态图;
图8为本公开实施例提供的另一种实现3D显示的第二方向偏转状态图;
图9为本公开实施例提供的一种实现2D显示的状态图;
图10为本公开实施例提供的另一种第一时隙的左眼视图状态;
图11为本公开实施例提供的另一种第二时隙的右眼视图状态;
图12为本公开实施例提供的另一种实现2D显示的状态图;
图13为本公开实施例提供的一种实现2D/3D切换的方法。
附图标记:
第一棱镜阵列11,第一双折射材料12,第二双折射材料13,第二棱镜阵列14,起偏器15,偏转旋转开关16,第一偏转旋转开关17,第二偏转旋转开关18。
具体实施方式
下面将参考附图并结合实施例来说明本公开。
在一实施例中,本公开提供一种实现裸眼3D的结构,包括线偏振光模块、层叠设置的第一棱镜层和第二棱镜层;所述线偏振光模块设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;所述第一偏振光和所述第二偏振光的偏振方向不同;
所述第一棱镜层包括第一棱镜阵列和第一双折射材料;所述第二棱镜层包括第二棱镜阵列和第二双折射材料;
所述结构整体被设置为当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,所述第一方向不同于所述第二方向。
在一实施例中,所述结构整体被设置为当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,可以理解为当所述第一偏振光通过所述第二棱镜阵列、所述第二双折射材料、所述第一棱镜阵列以及所述第一双折射材料时将所述第一偏振光导向第一方向。
在一实施例中,所述结构整体被设置为当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,可以理解为当所述第二偏振光通过所述结构第二棱镜阵列、所述第二双折射材料、所述第一棱镜阵列以及所述第一双折射材料时将所述第二偏振光导向第二方向。
本公开设置双棱镜层且每一棱镜层具有双折射特性,通过线偏振模块在两个偏振方向的偏振光之间切换,设置整体结构对不同偏振光偏转至不同方向,从而实现裸眼3D。
在一实施例中,所述第一棱镜层设置为通过所述第一棱镜阵列和所述第一双折射材料将所述第一偏振光偏转至第一方向,以及将所述第二偏振光保持入射方向,所述第二棱镜层设置为通过所述第二棱镜阵列和所述第二双折射材料将所述第一偏振光保持入射方向,将所述第二偏振光偏转至第二方向。
为实现上述对偏振光的偏转,在一实施例中,本公开设置第一棱镜阵列的折射率等于第一双折射率材料的光轴方向的折射率;第二棱镜阵列的折射率等于第二双折射率材料的光轴方向的折射率;所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向不同,在一实施例中,所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向为垂直关系。在一实施例中,所述第一双折射材料的光轴方向沿着所述第一棱镜阵列的排布方向;所述第二双折 射材料的光轴方向沿着所述第二棱镜阵列的排布方向垂直;其中,所述第一棱镜阵列的排布方向和所述第二棱镜阵列的排布方向相同。所述第一偏振光的偏振方向为第二双折射材料的光轴方向,所述第二偏振光的偏振方向为第一双折射材料的光轴方向。
本公开中,线偏振光模块可通过机械或电切换的方式在第一偏振模式和第二偏振模式之间进行切换。在一实施例中,所述线偏振光模块包括起偏器和偏振旋转开关;所述起偏器设置为将入射光转变为线偏振光,所述线偏振光包括第一偏振光或第二偏振光;所述偏振旋转开关设置为保持所述线偏振光的入射方向或将所述线偏振光的方向偏转至另一偏振光的方向(即,将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向)。
本公开中,所述第一棱镜阵列与所述第二棱镜阵列的折射率可以相同或不同,第一双折射材料与第二双折射材料可以相同或不同。
所述第一双折射材料可以为固化在第一棱镜层的液晶分子和/或所述第二双折射材料为固化在第二棱镜层的液晶分子。
实施例一
上述双折射率材料为液晶分子,液晶分子被预先固化,其分子长轴方向排列方向可以被预先配置,在本实施例中,上层棱镜结构(即第一棱镜层)中被固化的液晶分子(即第一双折射材料12)的长轴方向沿棱镜阵列的排列方向排列(如图中沿纸面水平方向排列),而下层棱镜结构(即第二棱镜层)中被固化的液晶分子(即第二双折射材料13)的长轴方向沿棱镜延伸方向排列(如图中沿垂直于纸面方向排列)。
以下说明本公开实施例的实现裸眼3D结构的几种工作状态。
第一工作状态:仅下层棱镜结构组件对入射光进行偏折。
如图2所示,背光单元输出光经起偏器15得到偏振方向沿纸面水平方向的线偏振光,偏振旋转开关16设置为在第一工作状态不对入射光的偏振方向进行旋转,因此入射到下层棱镜结构组件时的入射光的偏振方向仍然维持沿纸面水平方向。
在下层棱镜结构(即第二棱镜层)中,下层棱镜结构组件中的第二棱镜阵列14的折射率为多向同性的n2,而本实施例中设置n2与液晶分子13长轴方向对应的折射率ne相同。入射光在经过棱镜阵列14与液晶分子13的交界面时,入射光的偏振方向与下层棱镜结构组件中的液晶分子13长轴方向垂直,故入射光在液晶分子中的折射率为no,而no<ne,故入射光将在下层棱镜结构组件内发生偏折。
在上层棱镜结构组件中,上层棱镜结构组件中的第一棱镜阵列11的折射率为多向同性的n1,而本实施例中设置n1与液晶分子12长轴方向对应的折射率ne相同。入射光在经过该层的棱镜阵列11与液晶分子12的交界面时,入射光的偏振方向与上层棱镜结构组件中的液晶分子长轴方向平行,故入射光在液晶分子中的折射率为ne,而n1=ne,故入射光将在上层棱镜结构组件内保持原方向透射。
在一实施例中,多向同性可以理解为物质的物理、化学等方面的性质不会因方向的不同而有所变化的特性,即物质在不同的方向所测得的性能数值完全相同,也称均质性。
第二工作状态:仅上层棱镜结构组件对入射光进行偏折。
如图3所示,背光单元输出光经起偏器15得到偏振方向沿纸面水平方向的线偏振光,偏振旋转开关16设置为在第二工作状态对入射光的偏振方向旋转90度,因此入射到下层棱镜结构组件时的入射光的偏振方向变为垂直于纸面方向。
在下层棱镜结构组件中,下层棱镜结构组件中的第二棱镜阵列14的折射率为多向同性的n2,而本实施例中设置n2与液晶分子13长轴方向对应的折射率ne相同。入射光在经过棱镜阵列14与液晶分子13的交界面时,入射光的偏振方向与下层棱镜结构组件中的液晶分子13长轴方向平行,故入射光在液晶分子13中的折射率为ne,而n2=ne,故入射光将在下层棱镜结构组件内保护原方向透射。
在上层棱镜结构组件中,上层棱镜结构组件中的第一棱镜阵列11的折射率为多向同性的n1,而本实施例中设置n1与液晶分子12长轴方向对应的折射率ne相同。入射光在经过该层的棱镜阵列11与液晶分子12的交界面时,入射光的偏振方向与上层棱镜结构组件中的液晶分子12长轴方向垂直,故入射光在液晶分子中的折射率为no,而no<ne,故入射光将在上层棱镜结构组件内发生偏折。
实施例二
本公开实施例提供一种利用上述实施例结构实现的3D显示装置,将上述实施例的结构应用到3D显示领域中,可在整个结构的出光侧设置显示面板,比如液晶显示器(Liquid Crystal Display,LCD)。利用该结构可以实现向LCD提供整体导向的背光,进而实现3D显示。
在一实施例中,可以通过控制上述两种状态进行切换,实现分时显示左眼视图和右眼视图,如图4-图5所示,进而达到指向性背光式3D显示的目的。
实施例三
在一实施例中,利用上述实施例公开的结构实现裸眼3D的方法,如图6所示,所述方法包括:
交替进行下述步骤610和步骤620:
所述步骤610包括:通过所述线偏振光模块获得所述第一偏振光,所述第一偏振光入射至第二棱镜层和第一棱镜层后导向第一方向;
所述步骤620包括:通过所述线偏振光模块获得所述第二偏振光,所述第二偏振光入射至所述第二棱镜层和所述第一棱镜层的第一棱镜阵列后导向第二方向;
其中,所述第一方向与所述第二方向不相同。
在一实施例中,所述第一偏振光入射至第二棱镜层和第一棱镜层的第一棱镜阵列后导向第一方向,可以理解为所述第一偏振光入射至第二棱镜层的第二棱镜阵列和第二双折射材料以及第一棱镜层的第一棱镜阵列和第一双折射材料后导向第一方向。
在一实施例中,所述第二偏振光入射至所述第二棱镜层和所述第一棱镜层后导向第二方向,可以理解为所述第二偏振光入射至所述第二棱镜层的第二棱镜阵列和第二双折射材料以及所述第一棱镜层的第一棱镜阵列和第一双折射材料后导向第二方向。
在一实施例中,所述线偏振光模块包括起偏器和偏振旋转开关;通过所述起偏器获得所述第一偏振光或所述第二偏振光的线偏振光;通过所述偏振旋转 开关将所述线偏振光保持入射方向或偏转至另一偏振光的方向(即:将所述第二偏振光保持入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向以及将所述第二偏振光的方向偏转至所述第一偏振光的方向)。
在一实施例中,两层棱镜阵列的排列方向相同,棱镜的延伸方向也相同。
本公开提供的技术方案,两个棱镜层具有双折射特性,线偏振光模块在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换,两个棱镜层分别对不同偏振光进行偏转或保持,从而获得不同指向的出射光,实现了裸眼3D显示,相比于相关技术,本公开无需进行液晶的切换,也无需双侧光源,通过利用线偏振光模块获得不同方向的线偏振光即可实现,简单易操作,且显示质量高。
实施例四
在一实施例中,本公开提供一种实现2D/3D切换的结构,包括第一线偏振光模块、第一棱镜层、第二线偏振光模块和第二棱镜层;
按照光线经过的方向,所述第一线偏振光模块、所述第二棱镜层、所述第二线偏振光模块以及所述第一棱镜层依次排列;
所述第一线偏振光模块设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;所述第一偏振光和所述第二偏振光的偏振方向不同;
所述第一棱镜层包括第一棱镜阵列和第一双折射材料;所述第二棱镜层包括第二棱镜阵列和第二双折射材料;
所述第二线偏振光模块设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;
当所述第一线偏振光模块和所述第二线偏振模块处于相同偏振模式时,所述结构整体被设置为当所述第一偏振光通过所述结构时,将所述第一偏振光导向第一方向,当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,所述第一方向不同于所述第二方向;
当所述第一线偏振光模块和所述第二线偏振模块处于不同偏振模式时,所述结构整体被设置为当所述第一偏振光或所述第二偏振光通过所述结构时,均 保持所述偏振光的原传播方向。
在一实施例中,当所述第一线偏振光模块和所述第二线偏振模块处于相同偏振模式时,所述结构整体被设置为当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,可以理解为当所述第一偏振光通过所述第二棱镜阵列、所述第二双折射材料、所述第一棱镜阵列以及所述第一双折射材料时将所述第一偏振光导向第一方向。所述结构整体被设置为当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,可以理解为当所述第二偏振光通过所述结构第二棱镜阵列、所述第二双折射材料、所述第一棱镜阵列以及所述第一双折射材料时将所述第二偏振光导向第二方向。
在一实施例中,当所述第一线偏振光模块和所述第二线偏振模块处于不同偏振模式时,所述结构整体被设置为当所述第一偏振光或所述第二偏振光通过所述结构时,均保持所述偏振光的原传播方向,可以理解为当所述第一偏振光或所述第二偏振光通过第二棱镜阵列、所述第二双折射材料、所述第一棱镜阵列以及所述第一双折射材料时,均保持所述偏振光的原传播方向。
本公开设置双棱镜层且每一棱镜层具有双折射特性,不同棱镜层对不同的偏振光进行偏转,通过第一线偏振模块和第二线偏振模块在两个偏振方向的偏振光之间切换,在实现3D显示时,设置第一和第二线偏振模块模式相同,只有一个偏振方向的光通过整体结构,通过设置整体结构对不同偏振光偏转至不同方向,从而实现裸眼3D;在实现2D显示时,设置第一和第二线偏振模块模式不同,使得通过第一棱镜层和第二棱镜层的偏振光不同,从而均不发生偏转。
在一实施例中,所述第一棱镜层设置为通过所述第一棱镜阵列和所述第一双折射材料将所述第一偏振光偏转至第一方向,以及将所述第二偏振光保持入射方向,所述第二棱镜层设置为通过所述第二棱镜阵列和所述第二双折射材料将所述第一偏振光保持入射方向,以及将所述第二偏振光偏转至第二方向。
为实现上述对偏振光的偏转,在一实施例中,本公开设置第一棱镜阵列的折射率等于第一双折射率材料的光轴方向的折射率;第二棱镜阵列的折射率等于第二双折射率材料的光轴方向的折射率;所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向不同。在一实施例中,所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向为垂直关系。在一实施例中,所述第一双折射材料的光轴方向沿着所述第一棱镜阵列的排布方向;所述第二双折 射材料的光轴方向与所述第二棱镜阵列的排布方向垂直;其中,所述第一棱镜阵列的排布方向和所述第二棱镜阵列的排布方向相同。所述第一偏振光的偏振方向为第二双折射材料的光轴方向,所述第二偏振光的偏振方向为第一双折射材料的光轴方向。
本公开中,第一线偏振光模块、第二线偏振光模块可通过机械或电切换的方式在第一偏振模式和第二偏振模式之间进行切换。在一实施例中,所述第一线偏振光模块包括起偏器和偏振旋转开关;所述起偏器设置为将入射光转变为线偏振光,所述线偏振光包括第一偏振光或第二偏振光;所述第一偏振旋转开关设置为在保持所述线偏振光的入射方向或将所述线偏振光的方向偏转至另一偏振光的方向(即,将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向)。所述第二线偏振光模块包括第二偏振旋转开关,所述第二偏振旋转开关设置为在保持所述线偏振光的入射方向和将所述线偏振光的方向偏转至另一偏振光的方向的模式中进行切换(即,将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向)。
本公开中,所述第一棱镜阵列与所述第二棱镜阵列的折射率可以相同或不同,第一双折射材料与第二双折射材料可以相同或不同。
所述第一双折射材料可以为固化在第一棱镜层的液晶分子和/或所述第二双折射材料为固化在第二棱镜层的液晶分子。
实施例五
上述双折射率材料为液晶分子,液晶分子被预先固化,其分子长轴方向排列方向可以被预先配置,在本实施例中,上层棱镜结构(即第一棱镜层)中被固化的液晶分子(即第一双折射材料12)的长轴方向沿棱镜阵列的排列方向排列(如图中沿纸面水平方向排列),而下层棱镜结构(即第二棱镜层)中被固化的液晶分子(即第二双折射材料13)的长轴方向沿棱镜延伸方向排列(如图中沿垂直于纸面方向排列)。
以下说明本公开实施例的实现裸眼3D的几种工作状态。
第一工作状态:仅下层棱镜结构组件对入射光进行偏折。
如图7所示,背光单元输出光经起偏器15得到偏振方向沿纸面水平方向的线偏振光,第一偏振旋转开关17设置为在第一工作状态不对入射光的偏振方向进行旋转,因此入射到下层棱镜结构组件时的入射光的偏振方向仍然维持沿纸面水平方向。
在两层棱镜结构组件的第二偏振旋转开关18处,此状态下该开关处于关闭OFF状态,不对入射光的偏振方向进行旋转。
在下层棱镜结构(即第二棱镜层)中,下层棱镜结构组件中的第二棱镜阵列14的折射率为多向同性的n2,而本实施例中设置n2与液晶分子13长轴方向对应的折射率ne相同。入射光在经过棱镜阵列14与液晶分子13的交界面时,入射光的偏振方向与下层棱镜结构组件中的液晶分子13长轴方向垂直,故入射光在液晶分子中的折射率为no,而no<ne,故入射光将在下层棱镜结构组件内发生偏折。
在上层棱镜结构组件中,上层棱镜结构组件中的第一棱镜阵列11的折射率为多向同性的n1,而本实施例中设置n1与液晶分子12长轴方向对应的折射率ne相同。入射光在经过该层的棱镜阵列11与液晶分子12的交界面时,入射光的偏振方向与上层棱镜结构组件中的液晶分子长轴方向平行,故入射光在液晶分子中的折射率为ne,而n1=ne,故入射光将在上层棱镜结构组件内保持原方向透射。
第二工作状态:仅上层棱镜结构组件对入射光进行偏折。
如图8所示,背光单元输出光经起偏器15得到偏振方向沿纸面水平方向的线偏振光,第一偏振旋转开关17设置为在第二工作状态对入射光的偏振方向旋转90度,因此入射到下层棱镜结构组件时的入射光的偏振方向变为垂直于纸面方向。
在下层棱镜结构组件中,下层棱镜结构组件中的第二棱镜阵列14的折射率为多向同性的n2,而本实施例中设置n2与液晶分子13长轴方向对应的折射率ne相同。入射光在经过棱镜阵列14与液晶分子13的交界面时,入射光的偏振方向与下层棱镜结构组件中的液晶分子13长轴方向平行,故入射光在液晶分子13中的折射率为ne,而n2=ne,故入射光将在下层棱镜结构组件内保护原方向透射。
在两层棱镜结构组件的第二偏振旋转开关18处,此状态下该开关处于OFF状态,不对入射光的偏振方向进行旋转。
在上层棱镜结构组件中,上层棱镜结构组件中的第一棱镜阵列11的折射率为多向同性的n1,而本实施例中设置n1与液晶分子12长轴方向对应的折射率ne相同。入射光在经过该层的棱镜阵列11与液晶分子12的交界面时,入射光的偏振方向与上层棱镜结构组件中的液晶分子12长轴方向垂直,故入射光在液晶分子中的折射率为no,而no<ne,故入射光将在上层棱镜结构组件内发生偏折。
以下为实现2D显示的工作状态:
第三工作状态:两层棱镜结构组件对入射光均不进行偏折。
如图9所示,背光单元输出光经起偏器15得到偏振方向沿纸面水平方向的线偏振光,第一偏振旋转开关17设置为在第二工作状态对入射光的偏振方向旋转90度,因此入射到下层棱镜结构组件时的入射光的偏振方向变为垂直于纸面方向。
在下层棱镜结构组件中,下层棱镜结构组件中的棱镜阵列的折射率为多向同性的n2,而本实施例中设置n2与液晶分子长轴方向对应的折射率ne相同。入射光在经过棱镜阵列与液晶分子的交界面时,入射光的偏振方向与下层棱镜结构组件中的液晶分子长轴方向平行,故入射光在液晶分子中的折射率为ne,而n2=ne,故入射光将在下层棱镜结构组件内保护原方向透射。
在两层棱镜结构组件的第二偏振旋转开关18处,此状态下该开关处于开启ON状态,对入射光的偏振方向旋转90度。故出射光的偏振方向变换为平行于纸面的水平方向。
在上层棱镜结构组件中,上层棱镜结构组件中的棱镜阵列的折射率为多向同性的n1,而本实施例中设置n1与液晶分子长轴方向对应的折射率ne相同。入射光在经过该层的棱镜阵列与液晶分子的交界面时,入射光的偏振方向与上层棱镜结构组件中的液晶分子长轴方向平行,故入射光在液晶分子中的折射率为ne,而n1=ne,故入射光将在上层棱镜结构组件内也保持原方向透射。
实施例六
本公开实施例提供一种利用上述实施例结构实现的2D/3D显示装置,将上 述实施例的结构应用到3D显示领域中,可在整个结构的出光侧设置显示面板,比如LCD。而利用该结构可以实现向LCD提供整体导向的背光,进而实现2D/3D显示。
在一实施例中,可以通过控制上述第一状态和第二状态进行切换,实现分时显示左眼视图和右眼视图,如图10-图11所示,进而达到指向性背光式3D显示的目的。
在一实施例中,参见图12,可以通过控制第二偏振旋转开关18使得结构处于第三状态,从而实现2D显示。
实施例七
在一实施例中,利用上述实施例公开的结构实现2D/3D的方法,如图13所示,所述方法包括:
当进行3D显示时,交替进行下述步骤1310和步骤1320:
步骤1310包括:通过第一线偏振光模块获得第一偏振光,所述第一偏振光入射至所述第二棱镜层,并经过第二线偏振光模块入射至所述第一棱镜层后导向第一方向;
步骤1320:通过所述第一线偏振光模块获得第二偏振光,所述第二偏振光入射至所述第二棱镜层,并经过所述第二线偏振光模块入射所述第一棱镜层后导向第二方向;其中,所述第一方向与所述第二方向不相同;
当进行2D显示时,执行步骤1330;
步骤1330:通过所述第一线偏振光模块获得所述第二偏振光,所述第二偏振光入射至所述第二棱镜层后保持原方向透射,并经过所述第二线偏振光模块将所述第二偏振光转换为所述第一偏振光并入射至所述第一棱镜层后继续保持原方向透射。
在一实施例中,当进行3D显示时,所述第一偏振光入射至所述第一第二棱镜层,并经过所述第二线偏振光模块入射至所述第二第一棱镜层后导向第一方向,可以理解为所述第一偏振光入射至所述第二棱镜层的第二棱镜阵列和第二双折射材料,并经过第二线偏振光模块入射至所述第一棱镜层的第一棱镜阵列和第一双折射材料后导向第一方向。所述第二偏振光入射至所述第二棱镜层, 并经过所述第二线偏振光模块入射所述第一棱镜层后导向第二方向,可以理解为,所述第二偏振光入射至所述第二棱镜层的第二棱镜阵列和第二双折射材料,并经过所述第二线偏振光模块入射所述第一棱镜层的第一棱镜阵列和第一双折射材料后导向第二方向。
在一实施例中,所述第二偏振光入射至所述第二棱镜层后保持原方向透射,并经过所述第二线偏振光模块将所述第二偏振光转换为所述第一偏振光并入射至所述第一棱镜层后继续保持原方向透射,可以理解为,所述第二偏振光入射至所述第二棱镜层的第二棱镜阵列和第二双折射材料后保持原方向透射,并经过所述第二线偏振光模块将所述第二偏振光转换为所述第一偏振光并入射至所述第一棱镜层的第一棱镜阵列和第一双折射材料后继续保持原方向透射。
在一实施例中,所述第一线偏振光模块包括起偏器和第一偏振旋转开关;通过所述起偏器获得所述第一偏振光或所述第二偏振光的线偏振光;通过所述偏振旋转开关将所述线偏振光保持入射方向或偏转至另一偏振光的方向,即:通过所述第一偏振旋转开关实现下述之一:将所述第一偏振光保持入射方向、将所述第二偏振光保持入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向以及将所述第二偏振光的方向偏转至所述第一偏振光的方向。
在一实施例中,两层棱镜阵列的排列方向相同,棱镜的延伸方向也相同。
本公开提供的技术方案,两个棱镜层具有双折射特性,两个线偏振光模块均在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换,两个棱镜层分别对不同偏振光进行偏转或保持,从而获得不同指向的出射光,实现了裸眼3D显示并进一步实现了2D/3D可切换,相比于相关技术,本公开无需进行液晶的切换,也无需双侧光源,通过利用线偏振光模块获得不同方向的线偏振光即可实现,简单易操作,且显示质量高。

Claims (20)

  1. 一种实现裸眼三维3D的结构,包括:线偏振光模块、层叠设置的第一棱镜层和第二棱镜层;
    所述线偏振光模块设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;所述第一偏振光和所述第二偏振光的偏振方向不同;
    所述第一棱镜层包括第一棱镜阵列和第一双折射材料;所述第二棱镜层包括第二棱镜阵列和第二双折射材料;
    所述结构设置为当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,所述第一方向不同于所述第二方向。
  2. 如权利要求1所述的结构,其中:
    所述第一棱镜层设置为通过所述第一棱镜阵列和所述第一双折射材料将所述第一偏振光偏转至所述第一方向,以及将所述第二偏振光保持入射方向;
    所述第二棱镜层设置为通过所述第二棱镜阵列和所述第二双折射材料将所述第一偏振光保持入射方向,以及将所述第二偏振光偏转至所述第二方向。
  3. 如权利要求1或2所述的结构,其中:
    所述第一棱镜阵列的折射率等于所述第一双折射率材料的光轴方向的折射率;
    所述第二棱镜阵列的折射率等于所述第二双折射率材料的光轴方向的折射率;
    所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向不同;
    所述第一偏振光的偏振方向为所述第二双折射材料的光轴方向,所述第二偏振光的偏振方向为所述第一双折射材料的光轴方向。
  4. 如权利要求3所述的结构,其中:
    所述第一双折射材料的光轴方向沿着所述第一棱镜阵列的排布方向;
    所述第二双折射材料的光轴方向与所述第二棱镜阵列的排布方向垂直;
    其中,所述第一棱镜阵列的排布方向和所述第二棱镜阵列的排布方向相同。
  5. 如权利要求1所述的结构,其中:
    所述线偏振光模块通过机械或电切换的方式在所述第一偏振模式和所述第二偏振模式之间进行切换。
  6. 如权利要求1所述的结构,其中:所述线偏振光模块包括起偏器和偏振旋转开关;
    所述起偏器设置为将入射光转变为线偏振光,所述线偏振光包括第一偏振光或第二偏振光;
    所述偏振旋转开关设置为保持所述线偏振光的入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向。
  7. 如权利要求1-3任一项所述的结构,其中,所述第一棱镜阵列的折射率与所述第二棱镜阵列的折射率相同。
  8. 如权利要求1-4任一项所述的结构,还包括下述至少一项:
    所述第一双折射材料为固化在所述第一棱镜层的液晶分子;
    所述第二双折射材料为固化在所述第二棱镜层的液晶分子。
  9. 一种实现裸眼三维3D的方法,应用于如权利要求1-8任一项所述的实现裸眼3D的结构中,所述方法包括:
    交替进行下述步骤1和步骤2:
    所述步骤1包括:通过线偏振光模块获得第一偏振光,所述第一偏振光入射至第二棱镜层和第一棱镜层后导向第一方向;
    所述步骤2包括:通过所述线偏振光模块获得第二偏振光,所述第二偏振光入射至所述第二棱镜层和所述第一棱镜层后导向第二方向;
    其中,所述第一方向与所述第二方向不相同。
  10. 如权利要求9所述的方法,其中,所述线偏振光模块包括起偏器和偏振旋转开关;
    通过所述起偏器获得所述第一偏振光或所述第二偏振光;
    通过所述偏振旋转开关实现下述之一:将所述第一偏振光保持入射方向、 将所述第二偏振光保持入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向以及将所述第二偏振光的方向偏转至所述第一偏振光的方向。
  11. 一种实现二维2D/三维3D切换的结构,包括:第一线偏振光模块、第一棱镜层、第二线偏振光模块和第二棱镜层;
    按照光线经过的方向,所述第一线偏振光模块、所述第二棱镜层、所述第二线偏振光模块以及所述第一棱镜层依次排列;
    所述第一线偏振光模块和第二线偏振光模块均设置为在可通过第一偏振光的第一偏振模式和可通过第二偏振光的第二偏振模式之间进行切换;所述第一偏振光和所述第二偏振光的偏振方向不同;
    所述第一棱镜层包括第一棱镜阵列和第一双折射材料;所述第二棱镜层包括第二棱镜阵列和第二双折射材料;所述结构设置为切换所述第一线偏振光模块和所述第二线偏振模块的偏振模式,在所述第一线偏振光模块和所述第二线偏振模块处于相同偏振模式的情况下,当所述第一偏振光通过所述结构时将所述第一偏振光导向第一方向,当所述第二偏振光通过所述结构时将所述第二偏振光导向第二方向,所述第一方向不同于所述第二方向;
    所述结构还设置为在所述第一线偏振光模块和所述第二线偏振模块处于不同偏振模式的情况下,当所述第一偏振光或所述第二偏振光通过所述结构时,均保持所述偏振光的原传播方向。
  12. 如权利要求11所述的结构,其中:
    所述第一棱镜层设置为通过所述第一棱镜阵列和所述第一双折射材料将所述第一偏振光偏转至所述第一方向,以及将所述第二偏振光保持入射方向;
    所述第二棱镜层设置为通过所述第二棱镜阵列和所述第二双折射材料将所述第一偏振光保持入射方向,以及将所述第二偏振光偏转至所述第二方向。
  13. 如权利要求11或12所述的结构,其中:
    所述第一棱镜阵列的折射率等于所述第一双折射率材料的光轴方向的折射率;
    所述第二棱镜阵列的折射率等于所述第二双折射率材料的光轴方向的折射率;
    所述第一双折射材料的光轴方向与所述第二双折射材料的光轴方向不同;
    所述第一偏振光的偏振方向为所述第二双折射材料的光轴方向,所述第二偏振光的偏振方向为所述第一双折射材料的光轴方向。
  14. 如权利要求13所述的结构,其中:
    所述第一双折射材料的光轴方向沿着所述第一棱镜阵列的排布方向;
    所述第二双折射材料的光轴方向与所述第二棱镜阵列的排布方向垂直;
    其中,所述第一棱镜阵列的排布方向和所述第二棱镜阵列的排布方向相同。
  15. 如权利要求11所述的结构,其中:
    所述第一线偏振光模块通过机械或电切换的方式在所述第一偏振模式和所述第二偏振模式之间进行切换;
    所述第二线偏振光模块通过机械或电切换的方式在所述第一偏振模式和所述第二偏振模式之间进行切换。
  16. 如权利要求11所述的结构,其中:
    所述第一线偏振光模块包括起偏器和第一偏振旋转开关;
    所述起偏器设置为将入射光转变为线偏振光,所述线偏振光包括第一偏振光或第二偏振光;
    所述第一偏振旋转开关设置为在保持所述线偏振光的入射方向和将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向的模式中进行切换;
    所述第二线偏振光模块包括第二偏振旋转开关,所述第二偏振旋转开关设置为在保持所述线偏振光的入射方向和将所述第一偏振光的方向偏转至所述第二偏振光的方向或将所述第二偏振光的方向偏转至所述第一偏振光的方向的模式中进行切换。
  17. 如权利要求11-13任一项所述的结构,其中,所述第一棱镜阵列的折射率与所述第二棱镜阵列的折射率相同。
  18. 如权利要求11-14任一项所述的结构,还包括下述至少一项:
    所述第一双折射材料为固化在所述第一棱镜层的液晶分子;
    所述第二双折射材料为固化在所述第二棱镜层的液晶分子。
  19. 一种实现二维2D/三维3D切换的方法,应用于如权利要求11-18任一项所述的实现2D/3D切换的结构中,所述方法包括:
    当进行3D显示时,交替进行下述步骤1和步骤2:
    所述步骤1包括:通过第一线偏振光模块获得第一偏振光,所述第一偏振光入射至第二棱镜层,并经过第二线偏振光模块入射至所述第一棱镜层后导向第一方向;
    所述步骤2包括:通过所述第一线偏振光模块获得第二偏振光,所述第二偏振光入射至所述第二棱镜层,并经过所述第二线偏振光模块入射所述第一棱镜层后导向第二方向;其中,所述第一方向与所述第二方向不相同;
    当进行2D显示时,通过所述第一线偏振光模块获得所述第二偏振光,所述第二偏振光入射至所述第二棱镜层后保持原方向透射,并经过所述第二线偏振光模块将所述第二偏振光转换为所述第一偏振光并入射至所述第一棱镜层后继续保持原方向透射。
  20. 如权利要求19所述的方法,其中,所述第一线偏振光模块包括起偏器和第一偏振旋转开关;
    通过所述起偏器获得所述第一偏振光或所述第二偏振光;
    通过所述第一偏振旋转开关实现下述之一:将所述第一偏振光保持入射方向、将所述第二偏振光保持入射方向、将所述第一偏振光的方向偏转至所述第二偏振光的方向以及将所述第二偏振光的方向偏转至所述第一偏振光的方向。
PCT/CN2018/114110 2018-06-22 2018-11-06 实现裸眼3d、2d/3d可切换的结构及方法 WO2019242208A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810654616.9 2018-06-22
CN201810654616.9A CN109358429B (zh) 2018-06-22 2018-06-22 实现2d/3d可切换的结构及方法
CN201810654615.4 2018-06-22
CN201810654615.4A CN108983429A (zh) 2018-06-22 2018-06-22 实现裸眼3d的结构及方法

Publications (1)

Publication Number Publication Date
WO2019242208A1 true WO2019242208A1 (zh) 2019-12-26

Family

ID=68982582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114110 WO2019242208A1 (zh) 2018-06-22 2018-11-06 实现裸眼3d、2d/3d可切换的结构及方法

Country Status (1)

Country Link
WO (1) WO2019242208A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075540A1 (en) * 2010-09-27 2012-03-29 Au Optronics Corporation Stereo display and image display method thereof
CN102928988A (zh) * 2012-11-06 2013-02-13 深圳市华星光电技术有限公司 一种立体显示装置、液晶透镜及其驱动方法
TW201337333A (zh) * 2012-03-06 2013-09-16 Johnphil Technology Corp 用於將2d圖像轉換成3d圖像的轉換裝置
US20140043377A1 (en) * 2011-04-22 2014-02-13 Sharp Kabushiki Kaisha Backlight unit and display device
CN103698930A (zh) * 2013-12-09 2014-04-02 深圳超多维光电子有限公司 一种立体显示装置
CN104950544A (zh) * 2015-07-30 2015-09-30 重庆卓美华视光电有限公司 裸眼3d显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075540A1 (en) * 2010-09-27 2012-03-29 Au Optronics Corporation Stereo display and image display method thereof
US20140043377A1 (en) * 2011-04-22 2014-02-13 Sharp Kabushiki Kaisha Backlight unit and display device
TW201337333A (zh) * 2012-03-06 2013-09-16 Johnphil Technology Corp 用於將2d圖像轉換成3d圖像的轉換裝置
CN102928988A (zh) * 2012-11-06 2013-02-13 深圳市华星光电技术有限公司 一种立体显示装置、液晶透镜及其驱动方法
CN103698930A (zh) * 2013-12-09 2014-04-02 深圳超多维光电子有限公司 一种立体显示装置
CN104950544A (zh) * 2015-07-30 2015-09-30 重庆卓美华视光电有限公司 裸眼3d显示装置

Similar Documents

Publication Publication Date Title
KR101122199B1 (ko) 2차원/3차원 영상 호환용 입체영상 디스플레이 장치
US10527862B2 (en) Multiview display device
KR101241770B1 (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
US9223160B2 (en) Display
KR101128519B1 (ko) 고해상도 오토스테레오스코픽 디스플레이
CN108490670B (zh) 一种显示组件、显示装置及其控制方法
JP2011107589A (ja) 立体表示装置
US20150022746A1 (en) Backlight device and image display apparatus using the same
US10678090B2 (en) Liquid crystal display module and liquid crystal display
JP2013137454A5 (zh)
KR101298874B1 (ko) 편광 안경
US8941801B2 (en) In-plane switched active retarder for stereoscopic display systems
WO2019242208A1 (zh) 实现裸眼3d、2d/3d可切换的结构及方法
EP4220614A1 (en) Led screen pixel structure, led display module, and led display screen
KR20160039101A (ko) 스위처블 편광렌즈 및 그 제조방법과, 그를 이용한 2d/3d 영상 표시장치
CN109358429B (zh) 实现2d/3d可切换的结构及方法
JP4893846B2 (ja) 表示装置
CN114415391A (zh) 立体显示装置
KR101387784B1 (ko) 서브패널 및 이를 포함하는 입체영상 표시장치
KR20130053997A (ko) 편광 어셈블리 및 입체 영상 표시 장치
CN108983429A (zh) 实现裸眼3d的结构及方法
JP6013176B2 (ja) 3dディスプレイおよびディスプレイの駆動方法
KR20070082646A (ko) 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
TWM421514U (en) Panel apparatus having 2D and 3D display modes
TW202334708A (zh) 顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923656

Country of ref document: EP

Kind code of ref document: A1