WO2014071644A1 - 一种立体显示装置及液晶透镜 - Google Patents

一种立体显示装置及液晶透镜 Download PDF

Info

Publication number
WO2014071644A1
WO2014071644A1 PCT/CN2012/084660 CN2012084660W WO2014071644A1 WO 2014071644 A1 WO2014071644 A1 WO 2014071644A1 CN 2012084660 W CN2012084660 W CN 2012084660W WO 2014071644 A1 WO2014071644 A1 WO 2014071644A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
branches
electrode layer
pixel units
Prior art date
Application number
PCT/CN2012/084660
Other languages
English (en)
French (fr)
Inventor
陈峙彣
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/700,705 priority Critical patent/US8953108B2/en
Publication of WO2014071644A1 publication Critical patent/WO2014071644A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a stereoscopic display device and a liquid crystal lens.
  • stereoscopic display technology is mainly divided into two types: glasses type and naked eye type.
  • the glasses-type stereoscopic display technology usually requires the user to wear special glasses to view the stereoscopic image, which not only requires the user to spend extra money to purchase the glasses, but also wears the glasses to affect the comfort of the user, and for promoting the popularity of the stereoscopic display, Glasses are undoubtedly a major obstacle.
  • the naked-eye stereoscopic display technology is free from the constraints of glasses, and allows users to view stereoscopic images without additional equipment, so it is more popular with users and businesses.
  • the naked-eye stereoscopic display generally adopts an oblique cylindrical lens array to realize stereoscopic display. Since the cylindrical lens does not block the backlight, the uniformity of the brightness distribution can be improved, and the display effect is better.
  • a stereoscopic display using a lenticular lens array mainly uses a lenticular lens array to respectively turn an image required for a left eye and an image required for a right eye to a left eye and a right eye of a viewer to achieve a 3D display effect, but The lenticular lens array is liable to cause crosstalk of both eyes. As shown in FIG.
  • the image provided by the display screen 101 includes a left eye image 1 and a right eye image 2, and when the left eye image 1 and the right eye image 2 pass through the lenticular lens 102, for the lenticular lens
  • a specific angle 103 both the left eye image 1 and the right eye image 2 are simultaneously projected to the specific angle 103, causing the left eye image 1 and the right eye image 2 to overlap, when the user is at a viewing angle corresponding to the specific angle 103.
  • the left eye image 1 and the right eye image 2 are simultaneously seen and a clear stereoscopic image cannot be viewed.
  • the technical problem to be solved by the present invention is to provide a stereoscopic display device and a liquid crystal lens, which can reduce the binocular signal crosstalk of the stereoscopic display device in the 3D display mode.
  • the stereoscopic display device includes: a display panel including an array in a first direction and a second direction perpendicular to the first direction a plurality of pixel units arranged; a liquid crystal lens disposed above the plurality of pixel units, and including a first electrode layer and a second electrode layer disposed opposite to each other and a liquid crystal disposed between the first electrode layer and the second electrode layer a layer, the first electrode layer includes a plurality of electrode strips arranged in a first direction and extending stepwise in the second direction, so that the liquid crystal layer forms a plurality of lenticular lens units arranged in a stepwise manner in the second direction;
  • One direction is a row direction of the display panel, and the second direction is a column direction of the display panel; each electrode strip includes a plurality of first electrode branches and a plurality of second electrode branches alternately connected, and the plurality of first electrode branches are along the second The directions
  • each first electrode branch covers the first positive integer number of pixel units in the second direction.
  • the adjacent two first electrode branches are spaced apart from each other by a second positive integer number of pixel units in the first direction.
  • the first positive integer and the second positive integer are respectively 1.
  • the second electrode branch extends in the first direction or obliquely extends relative to the first direction.
  • the display panel further comprises a black matrix between the pixel units, and the position of the second electrode branch corresponds to the position of the black matrix.
  • the stereoscopic display device includes: a display panel including an array in a first direction and a second direction perpendicular to the first direction a plurality of pixel units arranged in a manner; a liquid crystal lens disposed above the plurality of pixel units, and including a first electrode layer and a second electrode layer disposed opposite to each other and disposed between the first electrode layer and the second electrode layer
  • the first electrode layer includes a plurality of electrode strips arranged in the first direction and extending stepwise in the second direction such that the liquid crystal layer forms a plurality of lenticular lens units arranged in a stepwise manner in the second direction.
  • the first direction is a row direction of the display panel
  • the second direction is a column direction of the display panel.
  • Each of the electrode strips includes a plurality of first electrode branches and a plurality of second electrode branches alternately connected, the plurality of first electrode branches sequentially extending in the second direction and spaced apart in the first direction, the plurality of second electrodes The branches are respectively connected between adjacent ends of the adjacent two first electrode branches.
  • each first electrode branch covers the first positive integer number of pixel units in the second direction.
  • the adjacent two first electrode branches are spaced apart from each other by a second positive integer number of pixel units in the first direction.
  • the first positive integer and the second positive integer are respectively 1.
  • the second electrode branch extends in the first direction or obliquely extends relative to the first direction.
  • the display panel further comprises a black matrix between the pixel units, and the position of the second electrode branch corresponds to the position of the black matrix.
  • a liquid crystal lens including a first electrode layer and a second electrode layer disposed opposite to each other and disposed on the first electrode layer and the second electrode layer.
  • a first liquid crystal layer the first electrode layer includes a plurality of electrode strips arranged in a predetermined first direction and extending in a stepwise direction in a second direction perpendicular to the first direction, so that the liquid crystal layer is stepped in the second direction A plurality of lenticular lens units distributed.
  • Each of the electrode strips includes a plurality of first electrode branches and a plurality of second electrode branches alternately connected, the plurality of first electrode branches sequentially extending in the second direction and spaced apart in the first direction, the plurality of second electrodes The branches are respectively connected between adjacent ends of the adjacent two first electrode branches.
  • the first electrode layer of the liquid crystal lens includes a plurality of electrode strips arranged in the first direction and extending stepwise in the second direction, when a driving voltage is applied to the electrode strip
  • the liquid crystal layer is formed in a plurality of lenticular lens units arranged in a stepwise manner in the second direction, and the three-dimensional display effect is achieved by the action of the plurality of lenticular lens units arranged in a stepwise manner, thereby effectively reducing the binocular in the 3D display mode.
  • FIG. 1 is a schematic structural view of a naked eye stereoscopic display in the prior art
  • FIG. 2 is a plan view showing an embodiment of a stereoscopic display device of the present invention.
  • Figure 3 is a cross-sectional view of the stereoscopic display device of Figure 2 taken along the line AA';
  • FIG. 4 is a schematic view of a lenticular lens unit formed in the 3D display mode of the stereoscopic display device of FIG. 2;
  • Figure 5 is a plan view showing still another embodiment of the stereoscopic display device of the present invention.
  • FIG. 6 is a schematic diagram of the stereoscopic display device of FIG. 5 forming a lenticular lens unit in a 3D display mode;
  • Fig. 7 is a plan view showing still another embodiment of the stereoscopic display device of the present invention.
  • the stereoscopic display device is a 2-view stereoscopic display device, which includes a display panel 11 and a liquid crystal lens 12.
  • the display panel 11 includes a plurality of pixel units 111 arranged in an array in a first direction x and a second direction y perpendicular to the first direction x.
  • the first direction x is the row direction of the display panel 11
  • the second direction y is the column direction of the display panel 11.
  • the liquid crystal lens 12 is disposed on one side of the display surface of the display panel 11 above the plurality of pixel units 111 such that image light of the display panel 11 is emitted through the liquid crystal lens 12.
  • the liquid crystal lens 12 includes a first substrate 121 and a second substrate 122 disposed opposite to each other, and a first electrode layer 123 and a second electrode layer 124 disposed opposite to each other.
  • the first electrode layer 123 is located at the first substrate 121 facing the second substrate 122.
  • the second electrode layer 124 is located on a side of the second substrate 122 facing the first substrate 121.
  • the liquid crystal lens 12 further includes a liquid crystal layer 125 disposed between the first electrode layer 123 and the second electrode layer 124.
  • the second electrode layer 124 includes a common electrode 1241.
  • the first electrode layer 123 includes a plurality of electrode strips 1231 (only partial electrode strips 1231 are shown in FIG. 2) arranged in the first direction x and distributed in a stepwise manner in the second direction y.
  • each of the electrode strips 1231 includes a plurality of first electrode branches 12311 and a plurality of second electrode branches 12312 alternately connected, and the plurality of first electrode branches 12311 are sequentially extended in the second direction y and spaced along the first direction x Arranged, a plurality of second electrode branches 12312 are respectively connected between adjacent end portions of the adjacent two first electrode branches 12311, and the second electrode branch 12312 extends in the first direction x.
  • each of the first electrode branches 12311 covers the first positive integer number of pixel units 111 in the second direction y, and the adjacent two first electrode branches 12311 are spaced apart from each other in the first direction x. Two positive integer number of pixel units 111.
  • the first positive integer and the second positive integer are both 1, that is, each first electrode branch 12311 covers one pixel unit 111 in the second direction y, and two adjacent first electrode branches 12311 One pixel unit 111 is spaced apart from each other in the first direction x.
  • the display panel 11 further includes a black matrix (not shown) between the pixel units 111, the position of the first electrode branch 12311 corresponds to the position of the black matrix between the column pixel units 111, and the position of the second electrode branch 12312 is The positions of the black matrices between the row pixel units 111 correspond to each other, whereby the transmittance of the stereoscopic display device can be improved to some extent.
  • a driving voltage is applied to the plurality of electrode strips 1231 in the 3D display mode by the stepped structure of the electrode strips 1231, so that the liquid crystal layer 125 forms a plurality of lenticular lenses having a stepped distribution as shown in FIG. 4 in the second direction y.
  • the unit 13 and the plurality of lenticular lens units 13 can realize a 3D stereoscopic display effect, and at the same time reduce the phenomenon of double-eye signal crosstalk in the 3D display mode, so that the viewer can see a clearer 3D stereoscopic image.
  • the voltage supply device 126 applies a common voltage Vc to the common electrode 1241 on the first electrode layer 124, and applies a 3D display to the adjacent two electrode strips 1231.
  • Drive voltage preferably, the driving voltage values of the adjacent two electrode strips 1231 are different from each other such that different voltage differences are formed between the adjacent two electrode strips 1231 and the common electrode.
  • the voltage value V0 of the driving voltage of the intermediate electrode strip 1231 is made smaller than the driving voltage of the electrode strips 1231 on the left and right sides adjacent thereto.
  • the voltage value V1 is such that the voltage difference between the common electrode 1241 and the intermediate electrode strip 1231 is smaller than the voltage difference between the common electrode 1241 and the electrode strips 1231 on the left and right sides.
  • This voltage difference generates a center-symmetric electric field in the liquid crystal layer 125 centering on the electrode strip 1231 in the middle and the electrode strips 1231 on the left and right sides as edges.
  • the liquid crystal molecules in the liquid crystal layer 125 are arranged along the electric field by the electric field, so that a plurality of lenticular lens units 13 as shown in FIG. 4 are formed in the liquid crystal layer 125. Since the electrode strips 1231 extend stepwise in the second direction y, the plurality of lenticular lens units 13 are also arranged in a stepwise manner in the second direction y.
  • the plurality of pixel units 111 of the display panel 11 alternately display the image 1 and the image 2 in the first direction x, and the adjacent identical images are spaced apart by one pixel unit 111 in the second direction y.
  • the lenticular lens unit 13 sends the image required for the left eye to the left eye, and the image required for the right eye is sent to the right eye so that the viewer does not need to wear the glasses.
  • the 3D stereoscopic image is viewed, thereby realizing 3D stereoscopic display.
  • the plurality of lenticular lens units 13 are arranged in a stepwise manner in the second direction y, and each of the lenticular lens units 13 covers the two pixel units 111 corresponding to the image 1 and the image 2 in the first direction x, and the adjacent two
  • the lenticular lens unit 13 is staggered by one pixel unit 111 in the second direction y, whereby the same image corresponding to the different position pixel unit 111 always corresponds to the same position of the lenticular lens unit 13, for example, the image 1 in the second direction y
  • the position a1 always projects only the image 1 without projecting the image 2.
  • the second electrode branch 12312 of the electrode strip 1231 extends in the first direction x, and its direction is parallel to the first direction x.
  • the liquid crystal lens 22 is disposed above the plurality of pixel units 211 of the display panel 21, and the second electrode branch 22312 of the electrode strips 2231 in the liquid crystal lens 22 is inclined with respect to the first direction x.
  • the first electrode branch 22311 extends in the second direction y.
  • the inclination angle of the second electrode branch 22312 with respect to the first direction x is less than 10 degrees, and the position of the second electrode branch 22312 corresponds to the black matrix position of the pixel unit 211.
  • the tilt with respect to the first direction x does not have a large influence on the display effect, and a driving voltage is applied to the plurality of electrode strips 2231 to form a figure.
  • the plurality of lenticular lens units 23 which are arranged in a stepwise manner in the second direction y shown in FIG. 6 can effectively reduce crosstalk between left and right images in the 3D display mode.
  • the present invention further provides another embodiment of the stereoscopic display device.
  • the stereoscopic display device of the present embodiment is an 8-view stereoscopic display device, including a display panel 31 and a liquid crystal lens 32.
  • the first electrode branch 32311 of each electrode strip 3231 covers the two pixel units 311 of the display panel 31 in the second direction y, adjacent to each other.
  • the two first electrode branches 32311 are still spaced apart from each other by one pixel unit 311 in the first direction x.
  • the adjacent two electrode strips 3231 are spaced apart from each other by two (relative to the first electrode branch 32311) pixel unit 311 in the first direction x.
  • the liquid crystal lens is driven by the driving method as in the above embodiment, so that the voltage values of the driving voltages of the adjacent two electrode strips 3231 are different from each other, so that the adjacent two electrode strips 3231 and the common electrode are Different voltage differences are formed to form a plurality of lenticular lens units 33 as shown in FIG. 7 in the liquid crystal layer.
  • the plurality of lenticular lens units 33 are arranged in a stepwise manner in the second direction y, and each of the lenticular lens units 33 covers the four pixel units 311 in the first direction x and covers the two pixel units 311 in the second direction y.
  • the adjacent two rows of pixel units 311 alternately display four images in the first direction x, which are respectively images 1-4 and 5-8, and the same image is shifted by one pixel unit 311 in the second direction y. Since the plurality of lenticular lens units 33 are arranged in a stepwise manner in the second direction y, the adjacent two lenticular lens units 33 are staggered by one pixel unit in the second direction y such that the same image corresponding to the different position pixel units 311 always corresponds.
  • the same position of the lenticular lens unit 33 for example, the image 1 in the second direction y corresponds to the same position a2 of the lenticular lens unit 33, which always projects only the image 1 without projecting other images, that is, each column
  • the position a2 of the lens unit 33 projects only the same image, whereby crosstalk between left and right images can be effectively reduced.
  • the present invention also provides an embodiment of a liquid crystal lens.
  • the liquid crystal lens includes a first electrode layer and a second electrode layer disposed opposite to each other and a liquid crystal layer disposed between the first electrode layer and the second electrode layer.
  • the first electrode layer comprises a plurality of electrode strips arranged in a predetermined first direction and extending stepwise in a second direction perpendicular to the first direction, so that the liquid crystal layer is formed in a stepwise manner in the second direction.
  • a cylindrical lens unit is arranged in a predetermined first direction and extending stepwise in a second direction perpendicular to the first direction, so that the liquid crystal layer is formed in a stepwise manner in the second direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种立体显示装置和液晶透镜(12),立体显示装置包括显示面板(11)和液晶透镜,液晶透镜的第一电极层(123)包括沿第一方向(x)排列且沿第二方向(y)呈阶梯状延伸的多个电极条(1231)。通过这种方式,可以在3D显示模式下使液晶层(125)产生在第二方向上呈阶梯状分布的多个柱状透镜单元(13),在实现3D立体显示效果的同时,有效降低3D显示模式下的双眼信号串扰。

Description

一种立体显示装置及液晶透镜
【技术领域】
本发明涉及液晶显示技术领域,特别是涉及一种立体显示装置及液晶透镜。
【背景技术】
随着液晶显示技术的日益成熟,立体显示技术也得到了蓬勃发展。立体显示技术主要分为眼镜式和裸眼式两大类。眼镜式立体显示技术通常需要用户佩戴特制的眼镜才能观看到立体影像,这不仅使用户需要额外花费金钱购买眼镜,并且佩戴眼镜也会影响用户观看的舒适度,对于推动立体显示的普及而言,眼镜无疑是一大障碍。而裸眼式立体显示技术则摆脱了眼镜的束缚,不需要额外的设备即可使用户观看到立体影像,因此更受用户和商家的欢迎。
裸眼式立体显示器一般采用斜向柱状透镜阵列实现立体显示,由于柱状透镜不会遮挡背光,因此能提高亮度分布的均匀性,显示效果更佳。
采用柱状透镜阵列的立体显示器,其主要是通过柱状透镜阵列将左眼所需的图像和右眼所需的图像分别转向至观看者的左眼和右眼,以达到3D显示效果,但是,斜向柱状透镜阵列却容易造成双眼信号串扰。如图1所示,以2视图的立体显示器为例,显示屏101提供的图像包括左眼图像1和右眼图像2,左眼图像1和右眼图像2经过柱状透镜102时,对于柱状透镜的一特定角度103而言,会同时将左眼图像1和右眼图像2均投射至该特定角度103,导致左眼图像1和右眼图像2重叠,当用户在对应于特定角度103的视角观看时则会同时看到左眼图像1和右眼图像2而无法观看到清晰的立体图像。
【发明内容】
本发明主要解决的技术问题是提供一种立体显示装置及液晶透镜,能够降低立体显示装置在3D显示模式下的双眼信号串扰。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种立体显示装置,立体显示装置包括:显示面板,显示面板包括沿第一方向和与第一方向垂直的第二方向以阵列方式排列的多个像素单元;液晶透镜,液晶透镜设置于多个像素单元上方,且包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层,第一电极层包括沿第一方向排列且沿第二方向呈阶梯状延伸的多个电极条,以使液晶层在第二方向上形成阶梯状分布的多个柱状透镜单元;其中,第一方向为显示面板的行方向,第二方向为显示面板的列方向;每一电极条包括交替连接的多个第一电极分支和多个第二电极分支,多个第一电极分支沿第二方向顺次延伸且沿第一方向间隔排列,多个第二电极分支分别连接于相邻的两个第一电极分支的相邻端部之间。
其中,每一第一电极分支在第二方向上覆盖第一正整数个像素单元。
其中,相邻的两个第一电极分支在第一方向上彼此间隔第二正整数个像素单元。
其中,第一正整数和第二正整数分别为1。
其中,第二电极分支沿第一方向延伸或相对第一方向倾斜延伸。
其中,显示面板进一步包括位于像素单元之间的黑矩阵,第二电极分支的位置与黑矩阵的位置对应。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种立体显示装置,立体显示装置包括:显示面板,显示面板包括沿第一方向和与第一方向垂直的第二方向以阵列方式排列的多个像素单元;液晶透镜,液晶透镜设置于多个像素单元上方,且包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层,第一电极层包括沿第一方向排列且沿第二方向呈阶梯状延伸的多个电极条,以使液晶层在第二方向上形成阶梯状分布的多个柱状透镜单元。
其中,第一方向为显示面板的行方向,第二方向为显示面板的列方向。
其中,每一电极条包括交替连接的多个第一电极分支和多个第二电极分支,多个第一电极分支沿第二方向顺次延伸且沿第一方向间隔排列,多个第二电极分支分别连接于相邻的两个第一电极分支的相邻端部之间。
其中,每一第一电极分支在第二方向上覆盖第一正整数个像素单元。
其中,相邻的两个第一电极分支在第一方向上彼此间隔第二正整数个像素单元。
其中,第一正整数和第二正整数分别为1。
其中,第二电极分支沿第一方向延伸或相对第一方向倾斜延伸。
其中,显示面板进一步包括位于像素单元之间的黑矩阵,第二电极分支的位置与黑矩阵的位置对应。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种液晶透镜,液晶透镜包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层,第一电极层包括沿预定的第一方向排列且沿与第一方向垂直的第二方向呈阶梯状延伸的多个电极条,以使液晶层在第二方向上形成阶梯状分布的多个柱状透镜单元。
其中,每一电极条包括交替连接的多个第一电极分支和多个第二电极分支,多个第一电极分支沿第二方向顺次延伸且沿第一方向间隔排列,多个第二电极分支分别连接于相邻的两个第一电极分支的相邻端部之间。
本发明的有益效果是:本发明立体显示装置中,液晶透镜的第一电极层包括沿第一方向排列且沿第二方向呈阶梯状延伸的多个电极条,在对电极条施加驱动电压时使得液晶层在第二方向上形成阶梯状分布的多个柱状透镜单元,通过阶梯状分布的多个柱状透镜单元的作用,在实现3D立体显示效果的同时,有效地降低3D显示模式下的双眼信号串扰。
【附图说明】
图1是现有技术中一种裸眼式立体显示器的结构示意图;
图2是本发明立体显示装置的一实施方式的俯视图;
图3是图2的立体显示装置沿AA’方向的截面示意图;
图4是图2的立体显示装置在3D显示模式下形成的柱状透镜单元的示意图;
图5是本发明立体显示装置的又一实施方式的俯视图;
图6是图5的立体显示装置在3D显示模式下形成柱状透镜单元的示意图;
图7是本发明立体显示装置的又一实施方式的俯视图。
【具体实施方式】
下面结合附图和实施方式对本发明进行详细描述。
参阅图2和图3,本发明立体显示装置一实施方式中,立体显示装置为2视图立体显示装置,其包括显示面板11和液晶透镜12。其中,显示面板11包括沿第一方向x和与第一方向x垂直的第二方向y以阵列方式排列的多个像素单元111。本实施方式中,第一方向x为显示面板11的行方向,第二方向y为显示面板11的列方向。液晶透镜12设置在显示面板11显示面的一侧,位于多个像素单元111的上方,以使得显示面板11的图像光线经过液晶透镜12射出。液晶透镜12包括相对设置的第一基板121和第二基板122,以及相对设置的第一电极层123和第二电极层124,第一电极层123位于第一基板121面对第二基板122一侧,第二电极层124位于第二基板122面对第一基板121一侧。液晶透镜12还包括设置在第一电极层123和第二电极层124之间的液晶层125。
其中,第二电极层124包括公共电极1241。第一电极层123包括沿第一方向x排列且沿第二方向y呈阶梯状分布的多个电极条1231(图2中只示出了部分电极条1231)。具体为,每个电极条1231包括交替连接的多个第一电极分支12311和多个第二电极分支12312,多个第一电极分支12311沿第二方向y顺次延伸且沿第一方向x间隔排列,多个第二电极分支12312分别连接于相邻的两个第一电极分支12311的相邻端部之间,并且第二电极分支12312沿第一方向x延伸。在一个电极条1231中,每个第一电极分支12311在第二方向y上覆盖第一正整数个像素单元111,而相邻的两个第一电极分支12311在第一方向x上彼此间隔第二正整数个像素单元111。
本实施方式中,第一正整数和第二正整数均为1,即每个第一电极分支12311在第二方向y上覆盖了1个像素单元111,相邻的两个第一电极分支12311在第一方向x上彼此间隔1个像素单元111。显示面板11进一步还包括位于像素单元111之间的黑矩阵(图未示),第一电极分支12311的位置与列像素单元111之间的黑矩阵的位置对应,第二电极分支12312的位置与行像素单元111之间的黑矩阵的位置对应,由此可在一定程度上提高立体显示装置的穿透率。
通过电极条1231的阶梯状结构,在3D显示模式下对多个电极条1231施加驱动电压,以使得液晶层125在第二方向y上形成如图4所示的阶梯状分布的多个柱状透镜单元13,多个柱状透镜单元13能够实现3D立体显示效果,同时减少3D显示模式下的双眼信号串扰现象,使观看者能看到更清晰的3D立体影像。
具体地,请一并参阅图4,在3D显示模式下,电压供给装置126在第一电极层124上的公共电极1241施加公共电压Vc,并在相邻两个电极条1231施加3D显示所需的驱动电压。并且,优选地,相邻两个电极条1231的驱动电压值互不相同,以使得相邻两个电极条1231与公共电极之间形成不同的电压差。例如,如图3和图4所示,对于依序排列的三个电极条1231,使中间的电极条1231的驱动电压的电压值V0小于与其相邻的左右两侧的电极条1231的驱动电压的电压值V1,由此使得公共电极1241与中间的电极条1231之间的电压差小于公共电极1241与左右两侧的电极条1231之间的电压差。该电压差在液晶层125内产生以中间的电极条1231为中心且左右两侧的电极条1231为边缘的呈中心对称的电场。液晶层125内的液晶分子在该电场的作用下沿电场排列,使得在液晶层125内形成如图4所示的多个柱状透镜单元13。而由于电极条1231沿第二方向y呈阶梯状延伸,因此所形成的多个柱状透镜单元13也在第二方向y上呈阶梯状分布。
显示面板11的多个像素单元111在第一方向x上交替显示图像1和图像2,并且相邻的同一图像在第二方向y上间隔一个像素单元111。图像1和图像2在经过柱状透镜单元13时,柱状透镜单元13将左眼所需的图像送至左眼,将右眼所需的图像送至右眼,以使观看者无需佩戴眼镜即可观看到3D立体图像,由此实现了3D立体显示。而多个柱状透镜单元13在第二方向y上呈阶梯状分布,每个柱状透镜单元13在第一方向x上覆盖两个分别对应图像1和图像2的像素单元111,相邻的两个柱状透镜单元13在第二方向y上错开一个像素单元111,由此使得对应不同位置像素单元111的同一图像始终对应柱状透镜单元13的同一个位置,例如在第二方向y上的图像1均对应柱状透镜单元13的同一个位置a1,该位置a1始终只投射图像1而不会投射图像2。可以理解为,对于多个柱状透镜单元13的同一出射角度而言,只会投射同一图像,而不会同时将不同的两个图像投射出去,有效地降低3D显示模式下左右图像间的串扰,进而能获得更好的立体显示效果。
值得注意的是,本实施方式中,电极条1231的第二电极分支12312沿第一方向x延伸,其方向与第一方向x平行。在另一实施方式中,如图5所示,液晶透镜22设置于显示面板21的多个像素单元211上方,液晶透镜22中的电极条2231的第二电极分支22312相对于第一方向x倾斜延伸,而第一电极分支22311沿第二方向y延伸。优选地,第二电极分支22312相对于第一方向x的倾斜角度小于10度,并且第二电极分支22312的位置与像素单元211的黑矩阵位置相对应。而由于第二电极分支22312的位置与黑矩阵的位置对应,其相对第一方向x的倾斜对显示效果并不会造成较大的影响,通过对多个电极条2231施加驱动电压以形成如图6所示的在第二方向y上呈阶梯状分布的多个柱状透镜单元23,由此能够有效地降低3D显示模式下左右图像间的串扰。具体的驱动方式可参考上述实施方式进行,此处不进行一一赘述。
为了更好地理解本发明的技术方案,本发明还提供立体显示装置的另一实施方式,参阅图7,本实施方式的立体显示装置为8视图立体显示装置,包括显示面板31和液晶透镜32,与上述实施方式的主要区别在于,本实施方式的立体显示装中,每个电极条3231的第一电极分支32311在第二方向y上覆盖显示面板31的两个像素单元311,相邻的两个第一电极分支32311在第一方向x上仍是彼此间隔一个像素单元311。相邻的两个电极条3231在第一方向x上间隔两个(相对于第一电极分支32311而言)像素单元311。
在3D显示模式下,采用如上述实施方式的驱动方式驱动液晶透镜工作,使相邻的两个电极条3231的驱动电压的电压值互不相同,使得相邻两个电极条3231与公共电极之间形成不同的电压差,以在液晶层形成如图7所示的多个柱状透镜单元33。多个柱状透镜单元33在第二方向y上呈阶梯状分布,并且每个柱状透镜单元33在第一方向x上覆盖四个像素单元311,在第二方向y上覆盖两个像素单元311。相邻两行像素单元311在第一方向x上分别交替显示四幅图像,分别为图像1-4和图像5-8,在第二方向y上同一图像错开一个像素单元311。由于多个柱状透镜单元33在第二方向y上呈阶梯状分布,相邻的两个柱状透镜单元33在第二方向y上错开一个像素单元,使得对应不同位置像素单元311的同一图像始终对应柱状透镜单元33的同一个位置,例如在第二方向y上的图像1均对应柱状透镜单元33的同一个位置a2,该位置a2始终只投射图像1而不会投射其他图像,即每个柱状透镜单元33的位置a2只投射同一图像,由此能够有效地降低左右图像间的串扰。
本发明还提供液晶透镜的一实施方式,在该实施方式中,液晶透镜包括相对设置的第一电极层和第二电极层以及设置于第一电极层和第二电极层之间的液晶层。其中,第一电极层包括沿预定的第一方向排列且沿与第一方向垂直的第二方向呈阶梯状延伸的多个电极条,以使液晶层在第二方向上形成阶梯状分布的多个柱状透镜单元。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种立体显示装置,其中,所述立体显示装置包括:
    显示面板,所述显示面板包括沿第一方向和与所述第一方向垂直的第二方向以阵列方式排列的多个像素单元;
    液晶透镜,所述液晶透镜设置于所述多个像素单元上方,且包括相对设置的第一电极层和第二电极层以及设置于所述第一电极层和所述第二电极层之间的液晶层,所述第一电极层包括沿所述第一方向排列且沿所述第二方向呈阶梯状延伸的多个电极条,以使所述液晶层在所述第二方向上形成阶梯状分布的多个柱状透镜单元;
    其中,所述第一方向为所述显示面板的行方向,所述第二方向为所述显示面板的列方向;
    每一所述电极条包括交替连接的多个第一电极分支和多个第二电极分支,所述多个第一电极分支沿所述第二方向顺次延伸且沿所述第一方向间隔排列,所述多个第二电极分支分别连接于相邻的两个所述第一电极分支的相邻端部之间。
  2. 根据权利要求1所述的装置,其中,每一所述第一电极分支在所述第二方向上覆盖第一正整数个所述像素单元。
  3. 根据权利要求2所述的装置,其中,相邻的两个所述第一电极分支在所述第一方向上彼此间隔第二正整数个所述像素单元。
  4. 根据权利要求3所述的装置,其中,所述第一正整数和所述第二正整数分别为1。
  5. 根据权利要求1所述的装置,其中,所述第二电极分支沿所述第一方向延伸或相对所述第一方向倾斜延伸。
  6. 根据权利要求1所述的装置,其中,所述显示面板进一步包括位于所述像素单元之间的黑矩阵,所述第二电极分支的位置与所述黑矩阵的位置对应。
  7. 一种立体显示装置,其中,所述立体显示装置包括:
    显示面板,所述显示面板包括沿第一方向和与所述第一方向垂直的第二方向以阵列方式排列的多个像素单元;
    液晶透镜,所述液晶透镜设置于所述多个像素单元上方,且包括相对设置的第一电极层和第二电极层以及设置于所述第一电极层和所述第二电极层之间的液晶层,所述第一电极层包括沿所述第一方向排列且沿所述第二方向呈阶梯状延伸的多个电极条,以使所述液晶层在所述第二方向上形成阶梯状分布的多个柱状透镜单元。
  8. 根据权利要求7所述的装置,其中,所述第一方向为所述显示面板的行方向,所述第二方向为所述显示面板的列方向。
  9. 根据权利要求7所述的装置,其中,每一所述电极条包括交替连接的多个第一电极分支和多个第二电极分支,所述多个第一电极分支沿所述第二方向顺次延伸且沿所述第一方向间隔排列,所述多个第二电极分支分别连接于相邻的两个所述第一电极分支的相邻端部之间。
  10. 根据权利要求9所述的装置,其中,每一所述第一电极分支在所述第二方向上覆盖第一正整数个所述像素单元。
  11. 根据权利要求10所述的装置,其中,相邻的两个所述第一电极分支在所述第一方向上彼此间隔第二正整数个所述像素单元。
  12. 根据权利要求11所述的装置,其中,所述第一正整数和所述第二正整数分别为1。
  13. 根据权利要求9所述的装置,其中,所述第二电极分支沿所述第一方向延伸或相对所述第一方向倾斜延伸。
  14. 根据权利要求9所述的装置,其中,所述显示面板进一步包括位于所述像素单元之间的黑矩阵,所述第二电极分支的位置与所述黑矩阵的位置对应。
  15. 一种液晶透镜,其中,所述液晶透镜包括相对设置的第一电极层和第二电极层以及设置于所述第一电极层和所述第二电极层之间的液晶层,所述第一电极层包括沿预定的第一方向排列且沿与所述第一方向垂直的第二方向呈阶梯状延伸的多个电极条,以使所述液晶层在所述第二方向上形成阶梯状分布的多个柱状透镜单元。
  16. 根据权利要求15所述的液晶透镜,其中,每一所述电极条包括交替连接的多个第一电极分支和多个第二电极分支,所述多个第一电极分支沿所述第二方向顺次延伸且沿所述第一方向间隔排列,所述多个第二电极分支分别连接于相邻的两个所述第一电极分支的相邻端部之间。
PCT/CN2012/084660 2012-11-06 2012-11-15 一种立体显示装置及液晶透镜 WO2014071644A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/700,705 US8953108B2 (en) 2012-11-06 2012-11-15 Stereoscopic display apparatus and liquid crystal lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210438361.5 2012-11-06
CN201210438361.5A CN102902115B (zh) 2012-11-06 2012-11-06 一种立体显示装置及液晶透镜

Publications (1)

Publication Number Publication Date
WO2014071644A1 true WO2014071644A1 (zh) 2014-05-15

Family

ID=47574435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084660 WO2014071644A1 (zh) 2012-11-06 2012-11-15 一种立体显示装置及液晶透镜

Country Status (2)

Country Link
CN (1) CN102902115B (zh)
WO (1) WO2014071644A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267525B (zh) * 2014-08-18 2018-05-11 深圳市华星光电技术有限公司 立体显示装置及其制作方法
CN108761812A (zh) * 2018-05-31 2018-11-06 北京眸合科技有限公司 一种阶梯型透镜光栅及三维显示系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296896A1 (en) * 2006-06-27 2007-12-27 Lg.Philips Lcd Co., Ltd. Lenticular lens array and image display device including the same
CN101923257A (zh) * 2010-08-06 2010-12-22 友达光电股份有限公司 视差控制元件、显示装置及自动立体影像的形成方法
CN102096200A (zh) * 2010-12-23 2011-06-15 深圳超多维光电子有限公司 一种立体显示装置及其透镜阵列
CN102402096A (zh) * 2011-11-11 2012-04-04 昆山龙腾光电有限公司 液晶透镜、液晶显示面板及液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070296896A1 (en) * 2006-06-27 2007-12-27 Lg.Philips Lcd Co., Ltd. Lenticular lens array and image display device including the same
CN101923257A (zh) * 2010-08-06 2010-12-22 友达光电股份有限公司 视差控制元件、显示装置及自动立体影像的形成方法
CN102096200A (zh) * 2010-12-23 2011-06-15 深圳超多维光电子有限公司 一种立体显示装置及其透镜阵列
CN102402096A (zh) * 2011-11-11 2012-04-04 昆山龙腾光电有限公司 液晶透镜、液晶显示面板及液晶显示装置

Also Published As

Publication number Publication date
CN102902115A (zh) 2013-01-30
CN102902115B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2014071643A1 (zh) 一种立体显示装置、液晶透镜及其驱动方法
US8553030B2 (en) Stereo display apparatus and lens array thereof
US9578317B2 (en) Two-dimensional/three-dimensional switchable display apparatus
JP5449770B2 (ja) 裸眼立体視ディスプレイ装置
EP2456222A2 (en) Stereoscopic Display Device
WO2014059690A1 (zh) 一种阵列基板及液晶显示装置
US8587737B2 (en) Display device
KR20130046116A (ko) 2차원/3차원 전환 가능한 디스플레이 장치
EP2676447A1 (en) Autostereoscopic display device
KR20090065934A (ko) 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
KR20140115487A (ko) 무안경 방식의 입체영상 표시장치
KR20130013959A (ko) 무 안경식 3d 또는 2d/3d 전환 가능한 화소 배치를 가지는 디스플레이 장치
WO2014043924A1 (zh) 一种阵列基板及液晶显示面板
US20140152925A1 (en) Liquid crystal lens module and 3d display device
KR20140006288A (ko) 입체영상 표시장치 및 그 제조 방법
CN103576408A (zh) 立体显示装置
WO2015165155A1 (zh) 液晶透镜电子光栅和裸眼立体显示装置
US20120169964A1 (en) Display device
EP3067733B1 (en) Stereopsis display device
WO2016026136A1 (zh) 立体显示装置及其制作方法
WO2014117410A1 (zh) 一种液晶透镜和立体显示装置
WO2014071644A1 (zh) 一种立体显示装置及液晶透镜
KR20120095035A (ko) 입체영상 표시장치
WO2013159372A1 (zh) 立体显示装置及其驱动方法
KR101910963B1 (ko) 편광안경방식 입체영상표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13700705

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888154

Country of ref document: EP

Kind code of ref document: A1