WO2013135063A1 - 柱透镜光栅、液晶光栅及显示器件 - Google Patents

柱透镜光栅、液晶光栅及显示器件 Download PDF

Info

Publication number
WO2013135063A1
WO2013135063A1 PCT/CN2012/084238 CN2012084238W WO2013135063A1 WO 2013135063 A1 WO2013135063 A1 WO 2013135063A1 CN 2012084238 W CN2012084238 W CN 2012084238W WO 2013135063 A1 WO2013135063 A1 WO 2013135063A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical lens
electrode
grating
liquid crystal
width
Prior art date
Application number
PCT/CN2012/084238
Other languages
English (en)
French (fr)
Inventor
魏伟
武延兵
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP12832704.6A priority Critical patent/EP2662725B1/en
Priority to KR1020137009791A priority patent/KR101512578B1/ko
Priority to US13/824,626 priority patent/US10215895B2/en
Priority to JP2014561262A priority patent/JP6262671B2/ja
Publication of WO2013135063A1 publication Critical patent/WO2013135063A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Definitions

  • Embodiments of the present invention relate to a cylindrical lens grating, a liquid crystal grating, and a display device. Background technique
  • 3D display has become a major trend in the display industry.
  • the current 3D display is based on "parallax" to create a three-dimensional effect, that is, through a certain facility or technology, the viewer can see different images in both eyes, the left eye only sees the left eye image, and the right eye only sees the right eye.
  • the image, the left eye image and the right eye image are respectively taken from two different angles for an object, and are therefore also referred to as stereoscopic image pairs.
  • the viewer's brain combines the two images seen by both eyes to produce a 3D effect.
  • the way to obtain a 3D display through the 3D eyepiece requires the user to wear a 3D eyepiece, but this seriously affects the user experience, limits the user's freedom, and does not work well for myopia or farsighted users. Therefore, the eye 3D display is increasingly becoming a more popular choice for users.
  • the eye 3D display technology can be divided into two main technologies: parallax barrier (also known as slit grating) and cylindrical lens lenticular lens.
  • the parallax barrier is a baffle plate with a series of slit gratings arranged in front of the display screen so that the user can see different images separately.
  • the baffle due to the presence of the baffle, it will inevitably block a portion of the light from the display. This not only fails to make full use of the light of the display screen, but also causes energy loss, and the light transmittance is limited, which also has a certain negative impact on the display effect. Therefore, although the technique of slit grating appears earlier, its popularity is not high.
  • a cylindrical lens grating is a cylindrical lens (column lens that can be either a convex lens or a concave lens) placed in front of the display screen. Some sub-pixel units on the display show the left eye image, and the other part shows the right eye image. Because of the refraction of the lens on the cylindrical lens grating, the light emitted by the left and right eye sub-pixel units passes through the cylindrical lens grating, and the light propagation direction is deflected, so that the light emitted by the left-eye pixel is incident on the viewer's left eye, right eye. The light emitted by the pixel enters the viewer's right eye.
  • the cylindrical lens grating shown in FIG. 1(a) has a convex lens structure, and a plurality of semi-cylindrical lenses are arranged in parallel and closely to refract light;
  • FIG. 1(b) Column
  • the lens grating has a concave lens structure, and a plurality of concave cylindrical lenses are arranged in parallel and closely arranged to refract light. Since the lens principle is used to deflect the light, the black matrix existing between the sub-pixel units of the color filter is deformed under the action of the lens, and the deformed black matrix forms moiré in the image seen by the user (ie, interference). Stripes), which seriously affects the visual effect of the image. Summary of the invention
  • the embodiment of the present invention solves the problem that the moiré affects the display effect when the cylindrical lens grating is imaged in the prior art, and provides a cylindrical lens grating, a liquid crystal grating and a display device, which effectively reduces the phenomenon of mole during display.
  • One aspect of the invention provides a cylindrical lens grating comprising a plurality of cylindrical lenses arranged in parallel. Between at least two adjacent cylindrical lenses having a spacing portion, the spacing portion being a first plane perpendicular to a central axis of the cylindrical lens, and/or an intermediate portion of an upper surface of the at least one cylindrical lens being A cylindrical second axis of the cylindrical lens is perpendicular to the central axis of the cylindrical lens.
  • the cylindrical lens is a convex lens or an IHJ lens.
  • the upper surface of the cylindrical lens is a smooth curved surface or a surface irregular surface.
  • Another aspect of the present invention provides a display device comprising a display panel, a cylindrical lens grating as described above, wherein the cylindrical lens grating is disposed over an outer surface of the color filter substrate of the display panel.
  • the cylindrical lens grating is mounted with the upper surface facing the display panel of the display member or the display panel with the upper surface facing away from the display device.
  • the pitch P of the cylindrical lens grating is:
  • S p is the width of the color filter sub-pixel unit
  • L is the half pitch of the user.
  • the display device may further include a polarizing plate, the cylindrical lens The light is disposed on the polarizing plate, and the polarizing plate is disposed on an outer surface of the color filter substrate of the display panel.
  • Still another aspect of the present invention provides a liquid crystal grating including an upper and a lower substrate, a liquid crystal layer disposed between the upper and lower substrates, a first electrode layer disposed on an inner surface of the upper substrate, and a set a second electrode layer on the inner surface of the lower substrate.
  • the first electrode layer is a planar electrode
  • the second electrode layer comprises a plurality of electrode units, and the electrode unit is composed of two or more strip electrode structures which are parallel in phase in the same plane; or
  • the second electrode layer is a planar electrode
  • the first electrode layer includes a plurality of electrode units, and the electrode unit is composed of two or more strip electrode structures which are parallel in phase in the same plane.
  • the electrode unit is composed of two parallel strips of equal-width single-layer strip electrodes; or the electrode unit is composed of two or more parallel-separated single-layer strip electrodes And the width of the strip electrode common to any two adjacent electrode units is larger than the width of the other strip electrodes in each electrode unit.
  • the electrode unit is composed of two upper and lower electrode structures separated by a transparent insulating layer, and the width of the upper electrode is smaller than the width of the lower electrode.
  • the lens formed by the liquid crystal grating is a convex lens or an IHJ lens.
  • Still another aspect of the present invention provides a display device comprising: a display panel, the liquid crystal grating as described above, wherein the liquid crystal light is disposed on an outer surface of the color filter substrate of the display panel on.
  • the pitch P of the cylindrical lens grating is:
  • S p is the width of the color filter sub-pixel unit
  • L is the half pitch of the user.
  • the display device may further include a polarizing plate, the cylindrical lens light is disposed on the polarizing plate, and the polarizing plate is disposed outside the color filter substrate of the display panel Above the surface.
  • the black matrix pattern on the color filter is not refracted by the cylindrical lens, effectively suppressing the moiré phenomenon, and significantly improving the 3D display effect.
  • the cylindrical lens grating of the embodiment of the invention can flexibly adjust the grating parameters according to the structural characteristics of the display and the actual process to achieve an ideal display effect, thereby greatly reducing the process. Difficulties in development, streamlining the development process and increasing product yield. DRAWINGS
  • FIG. 1(a) is a schematic diagram showing the principle of moiré generation of a convex cylindrical lens grating in the prior art
  • FIG. 1(b) is a schematic diagram showing the principle of moiré generation of a concave cylindrical lens grating in the prior art
  • FIG. 2(a) is a view of the present invention
  • FIG. 2(b) is a partially enlarged view showing a cross-sectional structure of a concave cylindrical lens grating in Embodiment 2 of the present invention
  • FIG. 3(a) is a partial enlarged view of the first embodiment of the present invention
  • FIG. 3(b) is a schematic view showing the principle of suppressing the moiré of the concave cylindrical lens grating of the embodiment 2
  • FIG. 4 is a schematic structural view showing the outward mounting of the cylindrical lens grating surface of the present invention
  • Figure 5 is a schematic structural view showing the surface of the cylindrical lens grating of the present invention installed inward;
  • Figure 6 is a schematic view showing the structure of an electrode of a liquid crystal grating in Embodiment 3 of the present invention.
  • Figure 7 is a schematic view showing the equivalent formation of a cylindrical lens grating in a liquid crystal layer after applying a voltage to an electrode of a liquid crystal grating in Embodiment 3;
  • Figure 8 is a schematic view showing the structure of an electrode of a liquid crystal grating according to Embodiment 4 of the present invention.
  • Figure 9 is a schematic view showing the equivalent formation of a cylindrical lens grating in a liquid crystal layer after applying a voltage to an electrode of a liquid crystal grating in Embodiment 4;
  • Figure 10 is a light path diagram of a 3D display of a convex cylindrical lens grating of the present invention.
  • Figure 11 is a light path diagram of a single cylindrical lens of a convex cylindrical lens grating mounted inwardly in the present invention. detailed description
  • the embodiment of the present invention further improves the structure of the lens, so that the cylindrical lens grating The black matrix is not refracted and deformed at the time of image formation, thereby effectively suppressing the generation of moiré.
  • Fig. 2 is a partially enlarged plan view showing a cross section of the cylindrical lens grating of the first embodiment.
  • the cylindrical lens grating in the first embodiment changes the manner in which the cylindrical lenses are closely arranged in the prior art, and the column lens grating is also disposed in the column lens grating.
  • a plurality of planar portions of the lens whose central axis is perpendicular.
  • the central axis of the cylindrical lens refers to the line connecting the focal points on both sides of the lens, usually in the middle of the lens, and the light passing through the lens in this direction is not deflected.
  • a plurality of convex cylindrical lenses 104 are arranged in parallel on the substrate 103, and each of the two cylindrical lenses 104 is separated by a first plane 101, and the first plane 101 is perpendicular to the central axis of the cylindrical lens, and the width of the first plane 101 is Or; the intermediate portion of the upper surface 105 of each cylindrical lens 104 is formed with a second plane 102, which is perpendicular to the central axis of the cylindrical lens 104 and symmetric about the central axis of the cylindrical lens, the second plane 102 The width is N 2 .
  • the corresponding color filter refers to a color filter of a display panel used in conjunction with the cylindrical lens grating.
  • Fig. 2(a) illustrates a convex lens as an example, and in the embodiment 2 of Fig. 2(b), a cylindrical lens grating formed by an IHJ lens in the present embodiment is further shown.
  • a plurality of concave cylindrical lenses 104 are formed in parallel on the substrate 103, and the concave cylindrical lens grating further includes a plurality of planar portions perpendicular to the central axis of the cylindrical lens 104'.
  • Each of the two concave cylindrical lenses 104 is separated by a first plane 101, the first plane 101 is perpendicular to the central axis of the cylindrical lens, and the width of the first plane 101 is; or, the upper surface 105 of each concave cylindrical lens 104,
  • the second portion 102 is formed with a second plane 102, and the second plane 102 is perpendicular to the central axis and symmetric about the central axis of the cylindrical lens.
  • the width of the second plane 102 is N 2 .
  • the preferred width of each plane may be the same as the embodiment of the above-described convex lens.
  • the height of the first plane 101 between the two cylindrical lenses is flush with the substrate at the bottom of the lens, which is only a preferred embodiment, in fact, only the first plane is guaranteed.
  • the top of the 101 is a plane perpendicular to the central axis of the cylindrical lens, and the actual height can be adjusted according to the needs of the preparation process.
  • every two cylindrical lenses are separated by the first plane 101.
  • the intermediate portion of the upper surface 105 or 105 of each of the cylindrical lenses (the convex lens 104 or the concave lens 104) may be simultaneously formed with the second plane 102, that is, the first plane 101 and the second plane 102 may be At the same time, it is disposed in the cylindrical lens grating.
  • the cylinder faces of the cylindrical lenses in the respective figures are smooth curved surfaces
  • those skilled in the art should understand that the smooth curved surfaces are merely examples for the convenience of drawing, and in the embodiment of the present invention, as long as the lens as a whole can make the light
  • a cylindrical lens with a cylindrical surface that is irregular in surface can be applied in the same manner.
  • Figure 3 further illustrates the operation of the cylindrical lens grating with the structure of Figure 2 to suppress moiré.
  • Fig. 3(a) is an optical path diagram of the convex cylindrical lens grating of the first embodiment
  • Fig. 3(b) is an optical path diagram of the second embodiment of the IHJ surface cylindrical lens grating.
  • FIG. 3 when the 3D display of the eye is realized by the cylindrical lens grating shown in FIG. 2 of the embodiment of the present invention, the two planes of the cylindrical lens grating are obtained due to the presence of the first and second planes. The light passing through is not deflected.
  • the imaging of the black matrix between the pixels in the user's eye is not amplified, and only stripes that are substantially equivalent to the actual width of the black matrix are formed. Since the actual width of the black matrix is very small, the stripes are caused. Actual impact can be ignored Slightly, the moiré is effectively suppressed.
  • the cylindrical lens grating there are various mounting methods for the cylindrical lens grating in the embodiment of the present invention. As shown in FIG. 4, the mounting method of the upper surface of the cylindrical lens grating facing away from the display panel can be used; or as shown in FIG. 5, the cylindrical lens can be used. The upper surface of the grating faces the mounting of the display panel.
  • the column of the cylindrical lens grating 1 faces outward, and the bottom surface is bonded to the polarizing plate 3 by, for example, an optical clear adhesive (OCA) 2 and is kept at a distance from the polarizing plate 3.
  • OCA optical clear adhesive
  • the column of the cylindrical lens grating 1 faces inward toward the polarizing plate 3, and is also bonded to the polarizing plate 3 of the display panel 4 by, for example, OCA optical glue 2 and kept at a certain distance from the polarizing plate 3, and the polarizing plate 3 is formed on Above the display panel 4; ⁇ Mounting inwardly with the surface of Figure 5 further protects the cylindrical lens grating film layer.
  • Embodiment 3 of the present invention An embodiment of a liquid crystal grating is also disclosed in Embodiment 3 of the present invention shown in FIG.
  • the degree of deflection of the liquid crystal molecules in each region is controlled mainly by applying a voltage to the electrodes on the inner surface of the substrate on both sides of the liquid crystal layer, thereby equivalently forming the cylindrical lens grating and the first plane to treat the light in the liquid crystal layer. Therefore, the light has different deflection directions when passing through various regions of the liquid crystal layer.
  • the liquid crystal grating 100 includes an upper substrate 106, a lower substrate 107, and a liquid crystal layer 108 disposed between the upper and lower substrates.
  • a first electrode layer 109 is disposed on an inner surface of the upper substrate 106
  • a second electrode layer 110 is disposed on an inner surface of the lower substrate 107.
  • the first electrode layer 109 is a planar electrode
  • the second electrode layer 110 includes a plurality of strip electrodes arranged in parallel at equal intervals
  • the first electrode layer 109 includes a plurality of parallel equidistantly arranged
  • the strip electrode, the second electrode layer 110 is a planar electrode.
  • the first electrode layer 109 is a planar electrode
  • the second electrode layer 110 includes a plurality of strip electrodes arranged in parallel at equal intervals.
  • the second electrode layer 110 is a plurality of strip electrodes arranged periodically and equidistantly, and at least two adjacent strip electrodes constitute one electrode unit.
  • the width of the two strip electrodes in each electrode unit is the same, and when the width of the first plane 10 ⁇ to be formed is N, the width A of the strip electrodes is larger than the first flat to be formed.
  • the embodiment is described as an example. As shown in FIG. 6, the width of the strip electrode 110' shared by any adjacent two electrode units is larger than the width of the other strip electrodes 110" in each electrode unit, and when needed When the width of the first plane 10 ⁇ formed is N, the width A of the strip electrode 110' is larger than the width N of the first plane 10 ⁇ to be formed.
  • a voltage is applied to the first electrode layer 109 and the second electrode layer 110 while the liquid crystal grating is in an active state.
  • the voltage applied to the strip electrode strip located in the intermediate portion of any one of the second electrode layers is zero or lower than the threshold voltage of the liquid crystal deflection, as shown in FIG. 6, which is the strip electrode 110" Applying a voltage of zero volts or a threshold voltage lower than the deflection of the liquid crystal.
  • the strip electrode has the highest voltage, as shown in Fig.
  • the strip electrode 110 located in the first electrode layer 109 and the second electrode layer 110 is controlled by the applied voltage.
  • the liquid crystal molecules between the deflections are such that the direction of propagation of the light passing through the portion of the liquid crystal molecules does not change, thereby equivalently forming the first plane, and controlling the deflection of the liquid crystal molecules of other portions, so that the liquid crystal molecules pass through the portion
  • the direction of propagation of the light is changed, so that the plurality of cylindrical lenses arranged in parallel are equivalently formed in the portion of the liquid crystal region.
  • the electrode unit of the second electrode layer is composed of two strip-shaped electrodes of equal width which are periodically parallel and equally spaced.
  • a voltage is applied to the first electrode layer and the second electrode layer when the liquid crystal grating is in an operating state. Applying a voltage to the strip electrodes in any one of the second electrode layers, thereby controlling liquid crystal molecules directly above the strip electrodes to be deflected, so that the direction of propagation of light passing through the liquid crystal molecules does not change, thereby Equivalently forming the first plane, controlling deflection of liquid crystal molecules of other portions, such that a direction of propagation of light passing through the portion of the liquid crystal molecules is changed, thereby forming the plurality of cylindrical lenses arranged in parallel in the portion of the liquid crystal region .
  • Those skilled in the art can arbitrarily set the number of strip electrodes according to design requirements without any creative work.
  • Example 4 Another embodiment of a liquid crystal grating is also disclosed in Embodiment 4 of FIG. The main difference between this embodiment 4 and the embodiment 3 of FIG. 6 is that the strip electrode structure of the second electrode layer 110 is a two-layer electrode structure.
  • the first electrode layer 109 on the inner surface of the upper substrate 106 is a planar electrode
  • the second electrode layer 110 on the inner surface of the lower substrate 107 is a plurality of double-layer strip electrode structures arranged in parallel at equal intervals. That is, each strip-shaped double electrode is an upper and lower two-layer electrode structure separated by a transparent insulating layer 111 (such as silicon nitride or the like).
  • a transparent insulating layer 111 such as silicon nitride or the like.
  • the width A of the upper electrode structure 110-1 of the second electrode layer 110 is smaller than the width B of the lower layer electrode 110-2.
  • a plurality of cylindrical lenses arranged in parallel are alternately formed between any two adjacent strip electrodes 110 in the liquid crystal layer 108, at least two An adjacent plane lens is equivalently formed with a first plane 10 ⁇ perpendicular to the central axis of the cylindrical lens; when the width of the first plane 10 ⁇ to be formed is N, the width of the electrode is 110-1 A is greater than the width N of the first plane 10 ⁇ that needs to be formed.
  • Fig. 9 further shows an effect view of the equivalent formation of the convex cylindrical lens grating 104, and the first plane 101 in the liquid crystal layer of Embodiment 4.
  • the electrodes of the liquid crystal grating are provided in various manners. As shown in FIG. 6 and FIG. 8, the electrodes on the inner surface of the upper substrate can be used as planar electrodes, and the electrodes on the inner surface of the lower substrate are more. The arrangement of strip electrode structures arranged in parallel and equally spaced. At this time, a liquid crystal molecule is deflected by applying a voltage to the electrode, and a plurality of convex lenses arranged in parallel are formed in the liquid crystal layer. Alternatively, the electrode on the inner surface of the upper substrate may be a plurality of strips arranged in parallel at equal intervals. The electrode structure, the electrode on the inner surface of the lower substrate is a planar electrode arrangement (not shown in the drawing). At this time, liquid crystal molecules are deflected by applying a voltage to the electrodes, and a plurality of iHJ lenses arranged in parallel are equivalently formed in the liquid crystal layer.
  • the grating design process when performing 3D display is complicated and can only be targeted to a specific display device, and the present invention
  • the fabrication process of the above-mentioned cylindrical lens grating is further disclosed. According to the process, the cylindrical lens grating can be adjusted for display devices with different parameters, thereby simplifying the design process of 3D display by the cylindrical lens grating.
  • Figure 10 shows an optical path diagram of a convex cylindrical lens grating 3D display.
  • the distance from the grating to the color filter is h
  • the width of the color filter sub-pixel unit is S p (not shown)
  • the grating pitch (the distance between the central axes of adjacent two cylindrical lenses is the phase
  • the distance between the center points of two adjacent first planes, Or the distance between the center points of two adjacent second planes is P
  • the user's lay length is 2L (that is, L is half the lay length - half of the lay length, which is an approximate value selected according to the statistical result.
  • the optimal viewing distance for 3D display is S, according to the relationship between the geometric figures shown in the optical path diagram:
  • Figure 11 is an optical path diagram of a cylindrical lens of a cylindrical lens grating mounted inwardly. If the display device is to be optimally displayed, the focus of the cylindrical lens needs to be set at the light transmission of the color filter 5 (ie, the actual light emission after the filter glass).
  • the relationship between the law of refraction and the trigonometric function is:
  • the optimal viewing distance S is calculated by the above formula (3), and the cylindrical lens cylinder circle can be obtained.
  • embodiments of the present invention also provide a display device for performing 3D display using the above-described cylindrical lens grating or liquid crystal grating.
  • the display device may be any product or component having a display function such as a liquid crystal panel, an electronic paper, an organic light emitting diode (OLED) display panel, a plasma panel (PDP), a liquid crystal television, a liquid crystal display, a digital photo frame, a mobile phone, a tablet computer, or the like.
  • a polarizing plate may not be provided, for example, a polarizing plate is not required for the OLED and the PDP.
  • the black matrix pattern on the color filter is not deformed by the deflection of the light by the cylindrical lens, effectively suppressing the moiré phenomenon, and significantly improving the 3D display. effect.
  • the embodiment of the present invention further discloses a method for manufacturing a cylindrical lens grating, which can flexibly adjust the grating parameters according to the structural characteristics of the display and the actual process to achieve an ideal display effect, greatly reduce the difficulty of process development, simplify the development process, and improve the product yield. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种柱透镜光栅、液晶光栅及显示器件,其中所属柱透镜光栅包括:平行排列的多个柱透镜(104)。至少两个相邻的柱透镜(104)之间具有一间隔部,该间隔部为与柱透镜(104)中心轴垂直的第一平面(101),和/或至少一个柱透镜(101)的上表面的中间部分为与柱透镜中心轴垂直且以柱透镜中心轴为对称轴对称的第二平面(102)。本发明可以防止彩色滤光片上的黑矩阵图形被柱透镜折射而变形,抑制莫尔条纹产生。

Description

柱透镜光栅、 液晶光栅及显示器件 技术领域
本发明的实施例涉及一种柱透镜光栅、 液晶光栅及显示器件。 背景技术
随着数字图像处理技术和设备制造水平的进步, 3D显示已经成为显示行 业的一大趋势。 现在的 3D显示是基于 "视差" 来产生立体感的, 即通过一 定的设施或技术使观看者两目艮看到不同的图像, 左眼只看到左眼图像, 右眼 只看到右眼图像, 左眼图像和右眼图像分别是针对某一对象从两个不同的角 度拍摄而得, 因此也被称为立体图像对。 观看者的大脑会把两目艮看到的这两 幅图融合起来, 从而产生 3D效果。
通过 3D目艮镜获得 3D显示效果的方式需要用户佩戴 3D目艮镜,但是这严 重影响了用户体验,限制了用户的自由, 同时对近视或远视的用户效果不佳。 因而,棵眼 3D显示日益成为更受用户青睐的选择。棵眼 3D显示技术可以分 为视差挡板 ( parallax barrier, 又称狭缝光栅)和柱透镜光栅 ( lenticular lens ) 两种主流技术。
视差挡板是通过在显示屏前方设置的具有一系列狭缝光栅的挡板使得用 户双眼分别看到不同的图像。 然而由于挡板的存在, 其必然会将显示屏发出 的光线遮挡住一部分。 这不但不能充分利用显示屏的光线而造成能量损耗, 而且透光率受限, 也会对显示效果造成一定负面影响。 因而虽然狭缝光栅的 技术出现较早, 但其普及率并不高。
柱透镜光栅是在显示屏前方设置紧密排列的柱透镜(柱透镜, 可以为凸 透镜也可以为凹透镜) 。 显示屏上一部分子像素单元显示左眼图像, 另一部 分显示右眼图像。 因为柱透镜光栅上透镜的折射作用, 左右眼子像素单元所 发出的光经过柱透镜光栅后, 光线传播方向发生偏折, 从而使左眼像素发出 的光射入观看者的左眼, 右眼像素发出的光射入观看者的右眼。
在现有技术的柱透镜光栅中,图 1(a)所示的柱透镜光栅釆用凸透镜结构, 多个半圓柱透镜平行且紧密地排列在一起对光线进行折射; 图 1(b)所示的柱 透镜光栅釆用凹透镜结构, 多个凹面柱透镜平行且紧密地排列在一起对光线 进行折射。 由于使用透镜原理使光线偏折, 彩色滤光片各子像素单元之间存 在的黑矩阵在透镜的作用下会变形, 这些变形的黑矩阵在用户看到的图像中 会形成摩尔紋(即干扰条紋) , 从而严重影响了图像的视觉效果。 发明内容
本发明的实施例解决了现有技术中柱透镜光栅成像时摩尔紋影响显示效 果的问题, 提供了一种柱透镜光栅、 液晶光栅及显示器件, 有效降低了显示 时的摩尔故现象。
本发明的一个方面提供了一种柱透镜光栅,包括平行排列的多个柱透镜。 至少两个相邻的柱透镜之间具有一间隔部, 所述间隔部为与所述柱透镜中心 轴垂直的第一平面,和 /或至少一个柱透镜的上表面的中间部分为与所述柱透 镜中心轴垂直且以所述柱透镜中心轴为对称轴对称的第二平面。
在该柱透镜光栅之中,例如,所述第一平面的宽度 等于相应的彩色滤 光片上彩色子像素单元之间的黑矩阵的宽度 W; 和 /或,所述第二平面的宽度 N2=S/(S+h)*W, 其中, h为光栅距离彩色滤光片的距离, S为 3D显示时的最 佳观看距离。
在该柱透镜光栅之中, 例如, 所述柱透镜为凸透镜或 IHJ透镜。
在该柱透镜光栅之中, 例如, 所述柱透镜的上表面为光滑的曲面或表面 不规则的曲面。
本发明另一方面还提供了一种显示器件, 包括显示面板、 如上所述的柱 透镜光栅, 其中, 所述柱透镜光栅设置于所述显示面板的彩色滤光片基板的 外表面之上。
在该显示器件之中, 例如, 所述柱透镜光栅釆用上表面朝向所述显示器 件的显示面板或者釆用上表面背向所述显示器件的显示面板的安装方式。
在该显示器件之中, 例如, 所述柱透镜光栅的栅距 P为:
Figure imgf000004_0001
其中, Sp为彩色滤光片子像素单元的宽度, L为用户的半瞳距。
在该显示器件之中, 例如, 该显示器件还可以包括偏振片, 所述柱透镜 光 *殳置在所述偏振片上, 所述偏振片设置于所述显示面板的彩色滤光片基 板的外表面之上。
本发明的再一方面还提供了一种液晶光栅, 包括上、 下基板、 设置在所 述上、 下基板之间的液晶层、 设置在所述上基板内表面的第一电极层和设置 在所述下基板内表面的第二电极层。 所述第一电极层为面状电极, 所述第二 电极层包括多个电极单元, 所述电极单元由两个或两个以上在同一平面内平 行相间的条状电极结构组成; 或, 所述第二电极层为面状电极, 所述第一电 极层包括多个电极单元, 所述电极单元由两个或两个以上在同一平面内平行 相间的条状电极结构组成。
在该液晶光栅之中, 例如, 所述电极单元由两个平行等间距的等宽度的 单层条状电极组成; 或者, 所述电极单元由两个以上平行等间距的单层条状 电极组成, 且任意相邻两个电极单元所共用的那个条状电极的宽度大于每个 电极单元中的其它条状电极的宽度。
在该液晶光栅之中, 例如, 所述电极单元由两个被透明绝缘层隔离的上 下两层电极结构组成, 且上层电极的宽度小于下层电极的宽度。
例如, 所述液晶光栅所形成的透镜为凸透镜或 IHJ透镜。
本发明的再一个方面还提供了一种显示器件, 包括, 显示面板、 如上所 述的液晶光栅, 其中, 所述液晶光 *殳置于所述显示面板的彩色滤光片基板 的外表面之上。
在该显示器件之中, 例如, 所述柱透镜光栅的栅距 P为:
Figure imgf000005_0001
其中, Sp为彩色滤光片子像素单元的宽度, L为用户的半瞳距。
在该显示器件之中, 例如, 该显示器件还可以包括偏振片, 所述柱透镜 光 *殳置在所述偏振片上, 所述偏振片设置于所述显示面板的彩色滤光片基 板的外表面之上。
在本发明的实施例中, 通过改进柱透镜光栅的结构使得彩色滤光片上的 黑矩阵图形不会被柱透镜折射变形,有效抑制了摩尔紋现象,显著提高了 3D 显示效果。 此外, 本发明实施例的柱透镜光栅在制作时, 可以根据显示器结 构特点和实际工艺灵活调节光栅参数达到理想的显示效果, 大大降低了工艺 开发难度, 简化开发流程也提高产品良率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1 (a)为现有技术中凸面柱透镜光栅的摩尔紋产生原理示意图; 图 1(b)为现有技术中凹面柱透镜光栅的摩尔紋产生原理示意图; 图 2(a)为本发明的实施例 1中凸面柱透镜光栅的截面结构局部放大图; 图 2(b)为本发明的实施例 2中凹面柱透镜光栅的截面结构局部放大图; 图 3(a)为实施例 1的凸面柱透镜光栅抑制摩尔紋的原理示意图; 图 3(b)为实施例 2的凹面柱透镜光栅抑制摩尔紋的原理示意图; 图 4为本发明的柱透镜光栅表面向外安装的结构示意图;
图 5为本发明的柱透镜光栅表面向内安装的结构示意图;
图 6为本发明的实施例 3中液晶光栅的电极结构示意图;
图 7为实施例 3中对液晶光栅的电极施加电压后在液晶层中等效形成柱 透镜光栅的示意图;
图 8为本发明的实施例 4中液晶光栅的电极结构示意图;
图 9为实施例 4中对液晶光栅的电极施加电压后在液晶层中等效形成柱 透镜光栅的示意图;
图 10为本发明的凸面柱透镜光栅 3D显示的光路图;
图 11为本发明中表面向内安装的凸面柱透镜光栅单个柱透镜的光路图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用于表示相对位置关系, 当被描述对 象的绝对位置改变后, 则该相对位置关系也可能相应地改变。
由于现有技术中的柱透镜光栅的圓柱透镜在对光线进行偏折的同时也会 放大用户看到的黑矩阵区域, 因而本发明的实施例对透镜的结构做了进一步 改进, 使得柱透镜光栅在成像时不会对黑矩阵折射而变形, 从而有效地抑制 了摩尔紋的产生。
实施例 1
图 2是本实施例 1的柱透镜光栅的截面的局部放大图。 为了抑制凸透镜 效应对显示面板中各个像素之间的黑矩阵的放大作用, 在实施例 1中的柱透 镜光栅变更了现有技术中圓柱透镜紧密排列的方式, 在柱透镜光栅中还设置 与柱透镜的中心轴相垂直的多个平面部分。 柱透镜的中心轴是指连接透镜两 侧焦点的直线, 通常位于透镜的正中间, 在此方向上穿过透镜的光线不会发 生偏折。
具体地, 多个凸面柱透镜 104平行排列形成在衬底 103上, 每两个柱透 镜 104之间由第一平面 101相隔, 第一平面 101与柱透镜中心轴垂直, 第一 平面 101的宽度为 ; 或者, 每个柱透镜 104的上表面 105的中间部分形成 有第二平面 102, 第二平面 102与柱透镜 104中心轴垂直且以柱透镜中心轴 为对称轴对称, 第二平面 102的宽度为 N2
更进一步的,上述第一平面的宽度 可以等于相应彩色滤光片上彩色子 像素单元之间的黑矩阵的宽度 W; 第二平面的宽度 N2=S/(S+h)*W, 其中, h 为光栅距离彩色滤光片的距离, S为 3D显示时的最佳观看距离。 相应彩色 滤光片是指与该柱透镜光栅配合使用的显示面板的彩色滤光片。 实施例 2
图 2(a)以凸透镜为例进行说明, 而图 2(b)的实施例 2中进一步展示了本 实施例中以 IHJ透镜形成的柱透镜光栅。
该实施例 2中, 多个凹面柱透镜 104,平行排列形成在衬底 103上, 在凹 面柱透镜光栅中还包括与柱透镜 104'的中心轴相垂直的多个平面部分。 每两 个凹面柱透镜 104,之间由第一平面 101相隔, 第一平面 101与柱透镜中心轴 垂直, 第一平面 101的宽度为 ; 或者,每个凹面柱透镜 104,的上表面 105, 的中间部分形成有第二平面 102, 第二平面 102与凹面柱透镜 104,中心轴垂 直且以柱透镜中心轴为对称轴对称, 第二平面 102的宽度为 N2。 各平面的优 选宽度可以与上述釆用凸透镜的实施例相同。
本领域相关技术人员应能理解, 上述凸透镜或凹透镜的实施例中, 两柱 透镜之间的第一平面 101 的高度与透镜底部的基板齐平只是优选的实施方 式, 事实上只要保证第一平面 101顶部是与柱透镜中心轴垂直的平面即可, 其实际高度可以根据制备工艺的需要进行调整。
需要说明的是, 在上述凸透镜或凹透镜的实施例(实施例 1或实施例 2 ) 所涉及的技术方案中, 每两个柱透镜 (凸透镜 104或凹透镜 104, )之间由第 一平面 101相隔的同时, 每个柱透镜 (凸透镜 104或凹透镜 104, )的上表面 105或 105,的中间部分还可以同时形成有第二平面 102,即所述第一平面 101 和所述第二平面 102可以同时设置在所述柱透镜光栅之中。
此外, 虽然各图中柱透镜的柱面均为光滑曲面, 但本领域相关技术人员 应能理解, 光滑曲面只是为绘图方便进行的示例, 在本发明的实施例中, 只 要透镜整体能让光线发生预期的折射即可, 柱面为表面不规则 (如表面有波 浪形、三角形或其他任意形状的凸起或 IHJ陷的)的曲面的柱透镜可同样应用。
图 3进一步展示了具有图 2结构的柱透镜光栅抑制摩尔紋的工作原理。 图 3(a)是凸面柱透镜光栅实施例 1的光路图, 图 3(b)是 IHJ面柱透镜光栅实施 例 2的光路图。 从图 3可以看出, 当釆用本发明实施例的如图 2所示的柱透 镜光栅实现棵眼 3D显示时, 由于第一、 第二平面的存在, 从柱透镜光栅的 这两个平面处经过的光线并不发生偏折变形。 这样, 在这些方向上, 像素之 间的黑矩阵在用户眼中的成像不会被放大, 只会形成与黑矩阵实际宽度基本 相当的条紋, 由于黑矩阵的实际宽度非常小, 该条紋造成的实际影响可被忽 略, 因而摩尔紋得到了有效的抑制。
本发明实施例中的柱透镜光栅存在多种安装方式, 如图 4所示, 可以釆 用柱透镜光栅的上表面背向显示面板的安装方式; 或者如图 5所示, 可以釆 用柱透镜光栅的上表面面向显示面板的安装方式。
在图 4中, 柱透镜光栅 1的柱面向外, 底面通过例如 OCA ( optical clear adhesive )光学胶 2粘接在偏振片 3上并与偏振片 3保持一定距离, 偏振片 3 形成于显示面板 4之上。
在图 5中, 柱透镜光栅 1的柱面向内面向偏振片 3 , 同样通过例如 OCA 光学胶 2粘接在显示面板 4的偏振片 3上并与偏振片 3保持一定距离, 偏振 片 3形成于显示面板 4之上; 釆用图 5的表面向内的方式安装可以进一步地 保护柱透镜光栅膜层。
实施例 3
图 6所示的本发明的实施例 3中还公开了液晶光栅的实施方式。 在液晶 光栅中, 主要通过对液晶层两侧的基板内表面的电极施加电压来控制各个区 域内液晶分子的偏转程度, 从而在液晶层中等效形成柱透镜光栅和第一平面 对光线的处理效果,使得光线在经过液晶层的各个区域时有不同的偏转方向。
具体地, 在图 6的实施例 3中, 液晶光栅 100包括上基板 106、 下基板 107以及设置在上、下基板之间的液晶层 108。在所述上基板 106内表面设置 有第一电极层 109, 在所述下基板 107内表面设置有第二电极层 110。 例如, 所述第一电极层 109为面状电极, 所述第二电极层 110包括多个平行等间距 布置的条状电极, 或者, 所述第一电极层 109包括多个平行等间距布置的条 状电极, 所述第二电极层 110为面状电极, 本实施例以所述第一电极层 109 为面状电极, 所述第二电极层 110包括多个平行等间距布置的条状电极为例 进行说明。
结合图 7所示, 通过对所述第一电极层 109和第二电极层 110施加电压 从而在上下基板之间形成驱动电场, 引起液晶分子偏转。 由此, 在所述液晶 层 108中等效形成平行排列的多个柱透镜 104", 至少两个相邻的柱透镜之间 等效形成一与所述柱透镜中心轴垂直的第一平面 101,。 具体的, 所述第二电 极层 110为多个周期性平行等间距布置的条状电极, 至少两个相邻的所述条 状电极组成一个电极单元。当所述电极单元由两个相邻所述条状电极构成时, 每个电极单元内的两条所述条状电极的宽度相同, 且当需要形成的所述第一 平面 10Γ的宽度为 N时, 所述条状电极的宽度 A大于所需要形成的第一平 实施例为例进行说明, 如图 6所示, 任意相邻两个电极单元所共用的那个条 状电极 110'的宽度大于每个电极单元中的其它条状电极 110"的宽度,且当需 要形成的所述第一平面 10Γ的宽度为 N时, 所述条状电极 110'的宽度 A大 于所需要形成的第一平面 10Γ的宽度 N。
下面以本实施例为例对所述液晶光栅的工作方法进行说明。 在所述液晶 光栅处于工作状态时, 对所述第一电极层 109和第二电极层 110施加电压。 为位于所述第二电极层中任意一个电极单元内中间区域的条状电极条所施加 的电压为零或者低于液晶偏转的阔值电压, 如图 6所示, 即为条状电极 110" 施加零伏电压或者低于液晶偏转的阔值电压。 由所述位于电极单元中间区域 的条状电极开始, 位于其两侧的条状电极的电压逐渐增大, 位于任意所述电 极单元共用的条状电极的电压最高, 如图 6所示, 即为条状电极 110,所施加 的电压最高。 通过所施加的电压控制位于第一电极层 109和第二电极层 110 之中条状电极 110'之间的液晶分子进行偏转, 使得通过该部分液晶分子的光 线的传播方向不发生改变, 从而等效形成所述第一平面, 并且控制其它部分 的液晶分子的偏转, 使得通过该部分液晶分子的光线的传播方向发生改变, 从而在该部分液晶区域等效形成所述平行排列的多个柱透镜。
所述第二电极层的电极单元由两个周期性平行等间距的等宽度的条状电 极组成。 在所述液晶光栅处于工作状态时, 对所述第一电极层和第二电极层 施加电压。为所述第二电极层中任意一个电极单元内的条状电极施加一电压, 从而控制条状电极正上方的液晶分子进行偏转, 使得通过该部分液晶分子的 光线的传播方向不发生改变, 从而等效形成所述第一平面, 控制其它部分的 液晶分子的偏转, 使得通过该部分液晶分子的光线的传播方向发生改变, 从 而在该部分液晶区域等效形成所述平行排列的多个柱透镜。 本领域技术人员根据设计需要在不付出创造性劳动的情况下可以对该条状电 极的数目进行任意设置。
实施例 4 图 8的实施例 4中还公开了另一种液晶光栅的实施方式。 该实施例 4与 图 6的实施例 3的主要区别在于, 第二电极层 110的条状电极结构为双层电 极结构。
具体地, 实施例 4中,上基板 106内表面的第一电极层 109为面状电极, 下基板 107内表面的第二电极层 110为多个平行等间距布置的双层条状电极 结构, 即每一条状双电极都是被一透明绝缘层 111 (如氮化硅等) 隔离的上 下两层电极结构。如图 8和图 9所示,第二电极层 110的上层电极结构 110-1 的宽度 A (指条状电极矩形图案短边的长度)小于下层电极 110-2的宽度 B。 通过控制双层条状电极的宽度和调整第一、 二电极层的电压, 在液晶层 108 中任意相邻的两个条状电极 110之间等效形成平行排列的多个柱透镜, 至少 两个相邻的柱透镜之间等效形成一与柱透镜中心轴垂直的第一平面 10Γ; 当 需要形成的所述第一平面 10Γ的宽度为 N时, 所述电极的宽度 110-1的宽度 A大于所需要形成的第一平面 10Γ的宽度 N。 图 9进一步展示了实施例 4在 液晶层中等效形成凸面柱透镜光栅 104,,和第一平面 101,的实施效果图。
本发明的实施例中, 液晶光栅的电极设置有多种方式, 如图 6和图 8所 示, 可以釆用位于上基板内表面的电极为面状电极, 位于下基板内表面的电 极为多个平行等间距布置的条状电极结构的设置方式。 此时, 通过对所述电 极施加电压引起液晶分子偏转,在液晶层中等效形成平行排列的多个凸透镜; 或者, 可以釆用位于上基板内表面的电极为多个平行等间距布置的条状电极 结构,位于下基板内表面的电极为面状电极的设置方式(附图中并未示出)。 此时, 通过对所述电极施加电压引起液晶分子偏转, 在液晶层中等效形成平 行排列的多个 iHJ透镜。
此外, 考虑到现有技术中各显示器件的尺寸、 分辨率、 玻璃厚度、 边框 厚度等参数完全不同, 进行 3D显示时的光栅设计工艺复杂且只能针对某一 特定的显示器件, 本发明的实施例中进一步公开了上述柱透镜光栅的制作工 艺, 根据该工艺可以针对不同参数的显示器件对柱透镜光栅进行调整, 从而 简化了通过柱透镜光栅进行 3D显示的设计工艺。
图 10显示了凸面柱透镜光栅 3D显示的光路图。光栅距离彩色滤光片的 距离为 h, 彩色滤光片子像素单元的宽度为 Sp (图中未示出), 光栅栅距 (相 邻两柱透镜中心轴之间的距离,即为相邻两个第一平面的中心点之间的距离、 或相邻两个第二平面的中心点之间的距离)为 P, 用户的瞳距为 2L (即 L为 半瞳距——瞳距的一半, 该瞳距是根据统计结果选取的近似值, 并非某一用 户的真实瞳距值), 3D显示时的最佳观看距离为 S, 根据光路图中所示的几 何图形之间的关系可以有:
S~ L ( 1 )
P s
2SP S + h ( 2 ) 由式( 1 )可以求出光栅距离彩色滤光片的距离 h, 将式( 1 )代入式(2) 后可以求出光栅栅距 P:
IS"
P
i+V (3) 图 11为表面向内安装的柱透镜光栅单个柱透镜的光路图。如果想要显示 器件的显示效果最佳,需要将柱透镜的焦点设置在彩色滤光片 5的透光处(即 滤光片玻璃之后的实际光线发出处) 。 彩色滤光片玻璃 5和偏振片 3的厚度 合计为 e, 光栅距离偏振片 3的距离为 t, 从焦点发出的光线出射角为 Θ, 经 彩色滤光片玻璃折射后角度为 α, 入射到柱透镜时入射角为 β, 经柱透镜折 射后角度为 δ, 玻璃(彩色滤光片及柱透镜) 的折射率为 η, 其倒数 =1/", 由折射定律及三角函数关系有:
sin α = ^ sin θ ( 4 )
Figure imgf000012_0001
1 + cot2 = csc2 a ( )
Figure imgf000012_0002
随后, 再由图形之间的几何关系可得:
etan& + ttana = P/2 (8)
Figure imgf000012_0003
由式(9)可求出出射角 θ。 因为 sine=n*sina, sinp=sin(a+5)=nsin5 , 可 求出角度 δ, 再由式(10 )可求出柱透镜圓弧的半径 r, 即半径 r可以由栅距 P、 光栅距离偏振片的距 t、 彩色滤光片玻璃和偏振片的合计厚度 e、 彩色 滤光片及柱透镜的折射率 n表示。
根据上面的公式, 再结合显示器件设计及使用时的具体参数, 如光栅距 离偏振片的距离 t (该距离会影响显示器件的整体厚度) , 最佳观看距离 S, 最佳观看距离处连续水平观看距离 (指人站在最佳观看距离 S处可以看到正 常 3D图像时, 人眼的水平距离)等计算出的光栅栅距 P, 即上式(3 ) , 可 以得到柱透镜柱面圓弧的半径的实际值, 从而实现该具体参数下柱透镜光栅 的设计。
最后, 本发明的实施例还提供了一种显示器件, 釆用上述柱透镜光栅或 液晶光栅进行 3D显示。 所述显示器件可以为液晶面板、 电子纸、 有机发光 二极管 (OLED )显示面板、 等离子体面板 ( PDP ) 、 液晶电视、 液晶显示 器、 数码相框、 手机、 平板电脑等任何具有显示功能的产品或部件。
在使用柱透镜光栅的实施例中, 也可以没有提供偏振片, 例如, 对于 OLED与 PDP而言, 偏振片就不是需要的。
在本发明的实施例中, 通过改进柱透镜光栅的结构使得彩色滤光片上的 黑矩阵图形不会因柱透镜对光线的偏折而变形, 有效抑制了摩尔紋现象, 显 著提高了 3D显示效果。
此外, 本发明的实施例进一步公开了柱透镜光栅的制作方式, 可以根据 显示器结构特点和实际工艺灵活调节光栅参数达到理想的显示效果, 大大降 低了工艺开发难度, 简化开发流程也提高产品良率。
以上实施方式仅用于说明本发明, 本发明的实际保护范围应由权利要求 限定。

Claims

权利要求书
1、 一种柱透镜光栅, 包括平行排列的多个柱透镜,
其中, 至少两个相邻的柱透镜之间具有一间隔部, 所述间隔部为与所述 柱透镜中心轴垂直的第一平面, 和 /或
至少一个柱透镜的上表面的中间部分为与所述柱透镜中心轴垂直且以所 述柱透镜中心轴为对称轴对称的第二平面。
2、 根据权利要求 1所述的柱透镜光栅, 其中, 所述第一平面的宽度 等于相应的彩色滤光片上彩色子像素单元之间的黑矩阵的宽度 W; 和 /或 所述第二平面的宽度 N2=S/(S+h)*W, 其中, h为光栅距离彩色滤光片的 距离, S为 3D显示时的最佳观看距离。
3、根据权利要求 1或 2所述的柱透镜光栅, 其中, 所述柱透镜为凸透镜 或凹透镜。
4、 根据权利要求 1-3任一所述的柱透镜光栅, 其中, 所述柱透镜的上表 面为光滑的曲面或表面不规则的曲面。
5、 一种显示器件, 包括显示面板、 如权利要求 1-4中任一项所述的柱透 镜光栅,
其中, 所述柱透镜光 *殳置于所述显示面板的彩色滤光片基板的外表面 之上。
6、根据权利要求 5所述的显示器件, 其中, 所述柱透镜光栅釆用上表面 朝向所述显示器件的显示面板或者釆用上表面背向所述显示器件的显示面板 的安装方式。
7、根据权利要求 5或 6所述的显示器件, 其中, 所述柱透镜光栅的栅距
P为:
2SD
P = p
1+V ;
其中, Sp为彩色滤光片子像素单元的宽度, L为用户的半瞳距。
8、 根据权利要求 5-7任一所述的显示器件, 还包括偏振片, 其中, 所述 柱透镜光 *殳置在所述偏振片上, 所述偏振片设置于所述显示面板的彩色滤 光片基板的外表面之上。
9、 一种液晶光栅, 包括:
上、 下基板;
设置在所述上、 下基板之间的液晶层;
设置在所述上基板内表面的第一电极层和设置在所述下基板内表面的第 二电极层,
其中,所述第一电极层为面状电极,所述第二电极层包括多个电极单元, 所述电极单元由两个或两个以上在同一平面内平行相间的条状电极结构组 成; 或,
所述第二电极层为面状电极, 所述第一电极层包括多个电极单元, 所述 电极单元由两个或两个以上在同一平面内平行相间的条状电极结构组成。
10、 根据权利要求 9所述的液晶光栅, 其中, 所述电极单元由两个平行 等间距的等宽度的单层条状电极组成; 或者,
所述电极单元由两个以上平行等间距的单层条状电极组成, 且任意相邻 两个电极单元所共用的那个条状电极的宽度大于每个电极单元中的其它条状 电极的宽度。
11、 根据权利要求 9所述的液晶光栅, 其中, 所述电极单元由两个被透 明绝缘层隔离的上下两层电极结构组成, 且上层电极的宽度小于下层电极的 宽度。
12、 根据权利要求 9-11任一项所述的液晶光栅, 其中, 所述液晶光栅所 形成的透镜为凸透镜或 IHJ透镜。
13、 一种显示器件, 包括显示面板、 如权利要求 9-12中任一项所述的液 晶光栅,
其中, 所述液晶光栅设置于所述显示面板的彩色滤光片基板的外表面之 上。
14、 根据权利要求 12所述的显示器件, 其中, 所述柱透镜光栅的栅距 P 为:
Figure imgf000015_0001
其中, Sp为彩色滤光片子像素单元的宽度, L为用户的半瞳距。
15、 根据权利要求 13或 14所述的显示器件, 还包括偏振片, 其中, 所 述液晶光 *殳置在所述偏振片上, 所述偏振片设置于所述显示面板的彩色滤 光片基板的外表面之上。
PCT/CN2012/084238 2012-03-15 2012-11-07 柱透镜光栅、液晶光栅及显示器件 WO2013135063A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12832704.6A EP2662725B1 (en) 2012-03-15 2012-11-07 Lenticular lens, liquid crystal lens, and display component
KR1020137009791A KR101512578B1 (ko) 2012-03-15 2012-11-07 렌티큘라 렌즈 격자, 액정 격자 및 디스플레이 장치
US13/824,626 US10215895B2 (en) 2012-03-15 2012-11-07 Liquid crystal grating forming lenticular lenses
JP2014561262A JP6262671B2 (ja) 2012-03-15 2012-11-07 レンチキュラーレンズ、液晶回折格子及びディスプレー装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210069353.8 2012-03-15
CN201210069353 2012-03-15
CN201210156961.2 2012-05-18
CN201210156961.2A CN102662208B (zh) 2012-03-15 2012-05-18 柱透镜光栅、液晶光栅及显示器件

Publications (1)

Publication Number Publication Date
WO2013135063A1 true WO2013135063A1 (zh) 2013-09-19

Family

ID=46771733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084238 WO2013135063A1 (zh) 2012-03-15 2012-11-07 柱透镜光栅、液晶光栅及显示器件

Country Status (5)

Country Link
EP (1) EP2662725B1 (zh)
JP (1) JP6262671B2 (zh)
KR (1) KR101512578B1 (zh)
CN (1) CN102662208B (zh)
WO (1) WO2013135063A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215895B2 (en) 2012-03-15 2019-02-26 Boe Technology Group Co., Ltd. Liquid crystal grating forming lenticular lenses
CN102662208B (zh) * 2012-03-15 2015-05-20 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件
CN102928904B (zh) 2012-11-16 2015-09-23 京东方科技集团股份有限公司 透镜光栅及显示装置
CN102998729B (zh) * 2012-12-07 2015-11-25 深圳超多维光电子有限公司 一种透镜光栅及立体显示装置
CN102981196A (zh) * 2012-12-11 2013-03-20 南京中电熊猫液晶显示科技有限公司 柱透镜光栅、光栅视差屏障式立体显示装置及视差屏障
CN103926704A (zh) * 2013-06-09 2014-07-16 天马微电子股份有限公司 透镜显示设备、液晶显示设备和驱动显示的方法
CN103345068B (zh) * 2013-07-10 2016-01-20 京东方科技集团股份有限公司 一种立体显示装置
CN103558704B (zh) * 2013-11-22 2016-05-11 深圳超多维光电子有限公司 液晶透镜的驱动方法和相应的立体显示装置
CN105892069B (zh) * 2014-05-15 2018-06-15 北京康得新三维科技有限责任公司 动态电子光栅
CN104064123B (zh) * 2014-07-05 2016-02-24 福州大学 一种无莫尔条纹的3d-led显示系统
KR102166502B1 (ko) 2014-09-16 2020-10-16 삼성디스플레이 주식회사 유기 발광 표시 장치
CN104597607A (zh) * 2014-12-29 2015-05-06 咏巨科技有限公司 3d显示层、3d显示结构及其制作方法
CN104808850B (zh) * 2015-04-24 2017-11-28 咏巨科技有限公司 触控装置及其制作方法
CN104898321A (zh) * 2015-06-25 2015-09-09 京东方科技集团股份有限公司 显示面板及显示设备
CN104898292B (zh) * 2015-06-30 2018-02-13 京东方科技集团股份有限公司 3d显示基板及其制作方法、3d显示装置
KR102556848B1 (ko) 2016-02-11 2023-07-18 삼성디스플레이 주식회사 표시 장치
CN105866865A (zh) * 2016-05-27 2016-08-17 京东方科技集团股份有限公司 一种显示面板、显示装置
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN105824159B (zh) * 2016-06-02 2020-04-03 京东方科技集团股份有限公司 辅助面板和显示装置
DE102019100066A1 (de) * 2019-01-03 2020-07-09 Psholix Ag Autostereoskopisches Display mit Integral-Imaging ähnlichen optischen Elementen
CN114545650B (zh) * 2020-11-24 2024-07-26 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
CN112485921B (zh) * 2021-01-11 2022-05-17 成都工业学院 基于偏振光栅的双视3d显示装置
CN112596261B (zh) * 2021-01-27 2022-06-03 成都工业学院 一种基于双光栅的多视区立体显示装置
CN113031299A (zh) * 2021-03-29 2021-06-25 四川虹微技术有限公司 一种桌面真三维显示方法
WO2022217489A1 (zh) * 2021-04-14 2022-10-20 深圳市立体通科技有限公司 基于斜排光栅的裸眼3d显示模组
CN115113416B (zh) * 2022-07-22 2023-08-25 吉林省钜鸿智能技术有限公司 一种户外裸眼3d显示屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339345A (zh) * 2007-07-05 2009-01-07 乐金显示有限公司 电驱动液晶透镜以及使用该电驱动液晶透镜的显示装置
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
CN102062965A (zh) * 2009-11-12 2011-05-18 乐金显示有限公司 具有触摸面板的立体液晶显示器及其制造方法
CN102109729A (zh) * 2009-12-24 2011-06-29 乐金显示有限公司 电场驱动液晶透镜单元及使用该透镜单元的立体图像显示装置
CN102289016A (zh) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 一种显示装置、液晶面板、彩色滤光片及其制造方法
CN102662208A (zh) * 2012-03-15 2012-09-12 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994965B2 (ja) * 1994-08-19 1999-12-27 三洋電機株式会社 立体表示装置
JP3200335B2 (ja) * 1995-08-04 2001-08-20 キヤノン株式会社 光学変調装置及びそれを用いたカラー画像表示装置
JPH0973077A (ja) * 1995-09-06 1997-03-18 Matsushita Electric Ind Co Ltd 液晶表示パネル
JP2966780B2 (ja) * 1995-11-09 1999-10-25 三洋電機株式会社 レンチキュラレンズ及びこれを用いた立体表示装置
WO2001020386A2 (en) * 1999-09-17 2001-03-22 Mems Optical, Inc. An autostereoscopic display and method of displaying three-dimensional images, especially color images
DE10252830B3 (de) * 2002-11-13 2004-05-27 Albert Maly-Motta Autostereoskopischer Adapter
JP4968655B2 (ja) * 2003-11-06 2012-07-04 Nltテクノロジー株式会社 立体画像表示装置、携帯端末装置
JP3708112B2 (ja) * 2003-12-09 2005-10-19 シャープ株式会社 マイクロレンズアレイ付き表示パネルの製造方法および表示装置
KR101201848B1 (ko) * 2006-02-20 2012-11-15 삼성디스플레이 주식회사 입체영상 변환패널 및 이를 갖는 입체영상 표시장치
US8614782B2 (en) * 2006-06-27 2013-12-24 Lg Display Co., Ltd. Liquid crystal lens and image display device including the same
JP2008026654A (ja) * 2006-07-21 2008-02-07 Hitachi Displays Ltd 立体表示装置
JP4981394B2 (ja) 2006-09-28 2012-07-18 株式会社ジャパンディスプレイイースト 表示装置
JP4967731B2 (ja) * 2007-03-15 2012-07-04 セイコーエプソン株式会社 画像表示装置及びそのための光学部材
JP2009157302A (ja) * 2007-12-28 2009-07-16 Seiko Epson Corp 光学部材、光学部材の製造方法、表示装置及び電子機器
US8558961B2 (en) * 2008-04-22 2013-10-15 Samsung Display Co., Ltd. Display device and lenticular sheet of the display device
KR101451933B1 (ko) * 2008-04-22 2014-10-16 삼성디스플레이 주식회사 표시 장치 및 그에 포함되는 렌티큘러 시트
JP2010231010A (ja) * 2009-03-27 2010-10-14 Seiko Epson Corp 電気光学装置
JP5439686B2 (ja) * 2010-07-07 2014-03-12 国立大学法人東京農工大学 立体画像表示装置及び立体画像表示方法
CN102109706A (zh) * 2011-02-11 2011-06-29 深圳超多维光电子有限公司 一种立体显示器及其光栅
CN202183086U (zh) * 2011-07-04 2012-04-04 天马微电子股份有限公司 一种触控式三维立体显示装置及其显示面板
CN102289113B (zh) * 2011-07-20 2014-06-04 深圳超多维光电子有限公司 液晶显示装置、液晶显示装置的制造方法及其驱动方法
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102305984A (zh) * 2011-08-26 2012-01-04 深圳市华星光电技术有限公司 液晶透镜及液晶显示装置
CN102279500A (zh) * 2011-08-26 2011-12-14 深圳市华星光电技术有限公司 液晶透镜及3d显示装置
CN102707471B (zh) * 2012-05-03 2013-11-27 北京京东方光电科技有限公司 液晶光栅、其制作方法、3d显示器件及3d显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339345A (zh) * 2007-07-05 2009-01-07 乐金显示有限公司 电驱动液晶透镜以及使用该电驱动液晶透镜的显示装置
CN101419351A (zh) * 2007-10-24 2009-04-29 乐金显示有限公司 显示装置
CN102062965A (zh) * 2009-11-12 2011-05-18 乐金显示有限公司 具有触摸面板的立体液晶显示器及其制造方法
CN102109729A (zh) * 2009-12-24 2011-06-29 乐金显示有限公司 电场驱动液晶透镜单元及使用该透镜单元的立体图像显示装置
CN102289016A (zh) * 2011-09-19 2011-12-21 深圳超多维光电子有限公司 一种显示装置、液晶面板、彩色滤光片及其制造方法
CN102662208A (zh) * 2012-03-15 2012-09-12 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662725A4 *

Also Published As

Publication number Publication date
CN102662208A (zh) 2012-09-12
JP6262671B2 (ja) 2018-01-17
EP2662725A1 (en) 2013-11-13
EP2662725B1 (en) 2020-03-04
EP2662725A4 (en) 2015-11-25
KR101512578B1 (ko) 2015-04-15
CN102662208B (zh) 2015-05-20
JP2015511730A (ja) 2015-04-20
KR20130124488A (ko) 2013-11-14

Similar Documents

Publication Publication Date Title
WO2013135063A1 (zh) 柱透镜光栅、液晶光栅及显示器件
JP5993595B2 (ja) 無メガネ方式の2次元/3次元ディスプレイ用レンチキュラーユニット
US9578317B2 (en) Two-dimensional/three-dimensional switchable display apparatus
TWI472802B (zh) 顯示裝置
US9057909B2 (en) Liquid crystal lens and 3D display device
US9869870B2 (en) 3D display device with adjustable grating layer
US8520062B2 (en) Display apparatus
TWI591382B (zh) 自動立體顯示裝置及製造該自動立體顯示裝置之方法及顯示自動立體影像之方法
TWI674440B (zh) 自動立體顯示裝置
CN103941469B (zh) 显示面板及其制作方法、显示装置
US10215895B2 (en) Liquid crystal grating forming lenticular lenses
WO2015143870A1 (zh) 液晶光栅基板、液晶光栅和立体显示装置
US20140152925A1 (en) Liquid crystal lens module and 3d display device
CN103513311B (zh) 一种立体光栅和裸眼3d显示装置
WO2014153878A1 (zh) 显示面板及3d显示装置
CN102830495A (zh) 一种3d显示装置
CN102749769A (zh) 基于双层液晶透镜的2d/3d可切换自由立体显示装置
TWI453465B (zh) 立體顯示裝置
US10520778B2 (en) Liquid crystal lens and display device
US20100066654A1 (en) Three-dimensional display device
TWI467245B (zh) 顯示裝置及液晶透鏡
EP3004967A1 (en) Multi-view display device
TWI477816B (zh) 裸眼式立體顯示裝置及其液晶透鏡
US9575326B2 (en) Stereoscopic image display apparatus
TWI432782B (zh) 立體顯示器以及用於立體顯示器之切換面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13824626

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012832704

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137009791

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014561262

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE