WO2022217489A1 - 基于斜排光栅的裸眼3d显示模组 - Google Patents
基于斜排光栅的裸眼3d显示模组 Download PDFInfo
- Publication number
- WO2022217489A1 WO2022217489A1 PCT/CN2021/087157 CN2021087157W WO2022217489A1 WO 2022217489 A1 WO2022217489 A1 WO 2022217489A1 CN 2021087157 W CN2021087157 W CN 2021087157W WO 2022217489 A1 WO2022217489 A1 WO 2022217489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refraction
- lens
- eye
- unit
- naked
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 64
- 230000000694 effects Effects 0.000 abstract description 22
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
- G02B30/29—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
Definitions
- the present invention relates to the technical field of naked-eye 3D, in particular to a naked-eye 3D display module based on oblique gratings.
- the mainstream naked-eye 3D products on the market are mainly based on the lenticular grating technology.
- a layer of special 3D optical components such as optical splitting gratings, etc., made of glass and high molecular polymers are actually added to the display screen. It uses the light-splitting effect of the grating and the 3D imaging principle of the human eye to see the world, effectively separates the 3D image information processed by the layout into left and right views according to preset rules, and makes the left and right eyes correspond to each other in a certain area. Received, eventually forming a 3D image in the brain.
- the 2D/3D display effect is usually optimized by adjusting the size of the grating pitch.
- the grating pitch is enlarged, the display effect will be significantly improved in the 3D display state.
- the lack of part of the image information seriously affects the user's viewing experience.
- the grating pitch is reduced, the 3D display effect will be degraded, thereby losing its commercial value. Therefore, this technology can only optimize its 3D display effect, and cannot ensure the viewing experience of both 2D and 3D display effects at the same time.
- the technical problem to be solved by the present invention is to provide a naked-eye 3D display module that can simultaneously improve the viewing effect of 2D and 3D based on the slanted grating, aiming at the defects of the prior art.
- a naked-eye 3D display module based on an oblique grating includes a display panel and a grating lens covering the display panel for refracting light.
- the display panel has several pixel units arranged in a rectangular array, and is characterized in that , the grating lens includes several lens columns arranged in parallel, the lens columns and the column direction of the pixel unit are placed at a first angle, and the first angle is greater than 0° and less than 180°;
- the lens column comprises a first refraction mechanism and a second refraction mechanism for refracting light in opposite directions, and a non-refractive area for direct light is further provided between the first refraction mechanism and the second refraction mechanism;
- the non-refractive area for direct light is also provided between two adjacent lens columns.
- the first refraction mechanism and the second refraction mechanism are symmetrically arranged and have the same refractive index.
- the first refracting mechanism includes at least one first refracting unit, and the first refracting unit is provided with a first refracting surface for emitting the refracted light;
- the second refracting mechanism includes at least one second refracting unit, and the second refracting unit is provided with a second refracting surface for emitting the refracted light;
- the first refraction surface and the second refraction surface are arranged symmetrically one by one.
- the first refraction unit and the second refraction unit are both triangular prisms, the cross section of the triangular prism is a right triangle, and the first refraction surface and the second refraction surface are arranged in the right triangle on the hypotenuse;
- the first refraction unit and the second refraction unit are both triangular-like prisms
- the cross-section of the triangular-like prisms is a right-angled triangle
- the hypotenuse opposite to the right angle is an arc
- the first refraction surface and The second refracting surface is arranged on the arc-shaped hypotenuse of the right-angled triangle.
- the first refraction mechanism at least two of the first refraction units are consecutively arranged in sequence;
- the second refraction mechanism at least two of the second refraction units are consecutively arranged in sequence;
- the arrangement direction of the first refraction unit and the second refraction unit is consistent with the arrangement direction of the lens column.
- At least two of the first refraction surfaces are parallel to each other or have the same curvature or continuous curvature;
- At least two of the second refraction surfaces are parallel to each other or have the same curvature or continuous curvature.
- At least one of the first refraction units and the at least one of the second refraction units have the same height.
- the lens column is a discontinuous lens column
- the first refraction mechanism and the second refraction mechanism are arranged at intervals
- the non-refractive area is a blank area.
- the first refraction mechanism and the second refraction mechanism are connected together through a first connection surface, and the non-refractive region includes the first connection surface;
- the first connection surface is a direct plane disposed parallel to the display panel, and two ends of the direct plane are respectively connected to the first refraction unit and the second refraction unit.
- the grating lens is a discontinuous lens, and the two adjacent lens columns are arranged at intervals;
- the adjacent lens columns are connected together by a second connecting surface
- the non-refractive region includes the second connecting surface
- the second connecting surface is a direct plane parallel to the display panel.
- the pixels corresponding to the non-refractive area can be seen by the left and right eyes at the same time in 2D mode due to the direct light in the non-refractive area, reducing the image in 2D mode.
- the missing ratio caused by refraction so as to improve the viewing effect in 2D mode on the premise of ensuring the 3D viewing effect.
- FIG. 1 is a schematic front view structure of an embodiment of a naked-eye 3D display module based on an oblique grating of the present invention
- FIG. 2 is a schematic top view of the corresponding cooperation between the display panel and the grating lens in an embodiment of the naked-eye 3D display module based on the oblique grating of the present invention
- FIG. 3 is a schematic structural diagram of a grating lens in the first embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a grating lens in a second embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a grating lens in a third embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a grating lens in a fourth embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a grating lens in a fifth embodiment of the present invention.
- FIG. 8 is a schematic structural diagram of a grating lens in a sixth embodiment of the present invention.
- FIG. 9 is a schematic structural diagram of a grating lens in a seventh embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of a grating lens in an eighth embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of a grating lens in a ninth embodiment of the present invention.
- FIG. 12 is a schematic structural diagram of a grating lens in a tenth embodiment of the present invention.
- FIG. 13 is a schematic diagram of a grating before improvement, a display panel, and the corresponding arrangement of the grating before improvement and a pixel unit in the display panel;
- FIG. 14 is a schematic diagram of a grating provided by the present invention after improvement, a display panel, and the corresponding arrangement of the improved grating and a pixel unit in the display panel.
- the present invention provides a naked-eye 3D display module based on an oblique grating.
- it may include a display panel 1 and a grating lens 2 covering the display panel 1 for refracting light.
- the grating lens 2 is used for displaying
- the image displayed on the panel 1 is split, and the grating lens 2 refracts the light to refract different display contents to different places in the space, so that the contents of the left and right eyes of people are different, thus producing a 3D effect.
- the display panel 1 has a plurality of pixel units 10 arranged in a rectangular array, and the grating lens 2 includes a plurality of lens columns 20 arranged in parallel.
- the first included angle is placed, specifically, the first included angle ranges from 0° to 180°, that is, the lens column 20 is placed obliquely on the pixel units 10 arranged in a matrix.
- the lens column 20 includes a first refraction mechanism 21 and a second refraction mechanism 22 for refracting light in opposite directions, wherein, between the first refraction mechanism 21 and the second refraction mechanism 22, and adjacent to A non-refractive area 23 for direct light rays is also provided between the two lens columns 20, that is, on the non-refractive area 23, the light rays exit along a straight line without any refraction.
- the non-refractive area 23 is not in a one-to-one correspondence with any pixel unit 10, so the width of the non-refractive area 23 is not limited in the present invention. without any restrictions.
- the column direction of the lens column 20 and the pixel unit 10 is a first sandwich.
- Angle setting, on the display panel 1, the L area is correspondingly covered by the first refraction mechanism 21, so that the image presented by the pixel unit 10 in the L area can enter the viewer's left eye after being refracted by the first refraction mechanism 21;
- the two refraction units 22 are covered, so that the image presented by the pixel unit 10 in the R region is refracted by the second refraction mechanism 22 and then enters the viewer's right eye.
- the x and y areas are crosstalk areas.
- the corresponding pixel units were covered by the first refraction mechanism 21 and the second refraction mechanism 22 at the same time, and then the corresponding pixel units were partially seen by the left eye, and the other part was seen by the right eye.
- the refraction mechanism corresponding to the area is set as the non-refractive area 23, and the pixel unit 10 corresponding to the non-refractive area 23 can be seen by the left and right eyes at the same time, so the present invention can directly use the existing related technology in the 3D mode to ensure that it is in the 3D mode. The viewing effect will not be repeated here.
- the pixel units corresponding to the non-refractive area 23 can be viewed by the left and right eyes at the same time in the 2D mode, in the 2D mode, the non-refractive area 23 can perform visual compensation for the image displayed on the display panel 1, thereby reducing the need for visual compensation in the 2D mode. Absence of the image seen by the human eye.
- the first refraction mechanism 21 includes at least one first refraction unit 211 , and the first refraction unit 211 is provided with a first refraction surface 2111 for emitting refracted light rays. Further, in some embodiments, referring to FIG. 3 and FIG.
- the first refraction unit 211 may be in the shape of a triangular prism, that is, the cross section of the first refraction unit 211 is a triangle, specifically a right-angled triangle, and the first refraction surface 2111 is The hypotenuse of the right-angled triangle, in this embodiment, one right-angled side of the right-angled triangle is placed parallel to the display panel 1, and the other right-angled side is placed perpendicular to the display panel 1, so that the light is refracted and then exits through the first refracting surface 2111; In some embodiments, referring to FIGS.
- the first refraction unit 211 is in the shape of a triangular prism, that is, the cross section of the first refraction unit 211 is a triangle-like, specifically a right-angled triangle.
- the triangle includes two mutually perpendicular right-angled sides and an arc-shaped hypotenuse, and the first refracting surface 2111 is the arc-shaped hypotenuse.
- one of the right-angled sides of the quasi-right-angled triangle is placed parallel to the display panel 1, the other right-angled side is placed perpendicular to the display panel 1, and the arc-shaped hypotenuse is used as the first refracting surface 2111 for outgoing refracted light.
- each first refraction mechanism 21 may include one first refraction unit 211, or may include a plurality of first refraction units 211, when each refraction mechanism includes a plurality of first refraction units 211, refer to FIG. 4 and In FIG. 6 , the plurality of first refraction units 211 are arranged in sequence along the arrangement direction of the lens column 20 .
- the first refraction surface 2111 may be an inclined plane or an arc surface. When the first refraction surface 2111 is an inclined plane, as shown in FIG. 4 , a plurality of first refraction surfaces 2111 are arranged in parallel; when the first refraction surface 2111 is an arc surface, as shown in FIG. 6 , a plurality of first refraction surfaces 2111 are arranged in parallel. 2111 The curvature is the same or the curvature is continuous.
- the second refraction mechanism 22 includes at least one second refraction unit 221 , and the second refraction unit 221 is provided with a second refraction surface 2211 for emitting refracted light. Further, in some embodiments, referring to FIGS.
- the second refraction unit 221 may be in the shape of a triangular prism, that is, the cross section of the second refraction unit 221 is a triangle, specifically a right-angled triangle, and the second refraction surface 2211 is The hypotenuse of the right-angled triangle, in this embodiment, one right-angled side of the right-angled triangle is placed parallel to the display panel 1, and the other right-angled side is placed perpendicular to the display panel 1, so that the light is refracted and then exits through the second refracting surface 2211; In some embodiments, referring to FIGS.
- the second refraction unit 221 is in the shape of a triangular prism, that is, the cross section of the second refraction unit 221 is a triangle-like, specifically a right-angled triangle.
- the triangle includes two mutually perpendicular right-angled sides and an arc-shaped hypotenuse, and the second refracting surface 2211 is the arc-shaped hypotenuse.
- one of the right-angled sides of the quasi-right-angled triangle is placed parallel to the display panel 1
- the other right-angled side is placed perpendicular to the display panel 1
- the arc-shaped hypotenuse is used as the second refracting surface 2211 for outgoing refracted light.
- each second refraction mechanism 22 may include one second refraction unit 221, or may include a plurality of second refraction units 221, when each refraction mechanism includes a plurality of second refraction units 221, a plurality of second refraction units 221.
- the refraction units 221 are sequentially and continuously arranged along the arrangement direction of the lens column 20 .
- the second refraction surface 2211 may be an inclined plane or an arc surface. When the second refraction surface 2211 is an inclined plane, the plurality of second refraction surfaces 2211 are arranged in parallel; when the second refraction surface 2211 is an arc surface, the plurality of second refraction surfaces 2211 have the same curvature or continuous curvature.
- the number of the first refraction units 211 and the second refraction units 221 are the same and correspond one-to-one, while the first refraction surfaces 2111 and the second refraction surfaces 2211 are symmetrically arranged one-to-one, that is, the mutually symmetrical first refraction surfaces
- the 2111 and the second refraction surface 2211 may both be inclined planes or arc surfaces, which are not limited herein.
- the heights of the first refraction unit 211 and the second refraction unit 221 are kept the same.
- the lens column 20 may be a discontinuous lens column 20, that is, the first refraction mechanism 21 and the second refraction mechanism 22 are arranged at intervals.
- the non-refractive area 23 is blank
- the first refraction mechanism 21 and the second refraction mechanism 22 are connected as a whole through the first connection surface 231
- the non-refractive area 23 includes the first connection surface 231
- the first connection surface 231 is specifically a direct plane, and its material may be the same as that of the first refraction mechanism 21 and the second refraction mechanism 22, or may be different, which is not limited herein.
- the direct plane is arranged in parallel with the display panel 1, and two ends of the direct plane are respectively connected with the first refraction unit 211 and the second refraction unit 221, so as to connect the lens column 20 as a whole.
- both ends of the direct plane can be connected at any height of the first refraction unit 211 and the second refraction unit 221 at the same time, which is not limited here.
- the first connection surface 231 can be connected with the first refraction unit 231
- the unit 211 and the second refraction unit 221 are integrally provided. Only two specific embodiments of the non-refractive region 23 are listed above, and it can be understood that any region that can direct light rays can be regarded as the non-refractive region 23 according to the present invention.
- the grating lens 2 provided by the present invention can be either a discontinuous grating or a continuous grating.
- the grating lens 2 is a discontinuous grating
- adjacent lens columns 20 may be spaced apart, so that a non-refractive region 23 is also formed between the gratings of the two lens columns 20, and the pixels corresponding to the non-refractive region 23
- the image formed by the unit 10 directly enters the human eye.
- adjacent lenses can be connected end to end through the second connecting surface 232 to form an integral lens.
- the non-refractive region includes the second connecting surface 232 , which can also be a direct plane.
- the second connecting surface 232 can be made of the same material as the lens column 20 or different, which is not limited here. When the material of the second connecting surface 232 is the same as that of the lens column 20, it can be integrally provided, so as to realize a complete grating lens.
- the direct plane is arranged in parallel with the display panel 1, and the two ends of the direct plane are connected to any same height of the adjacent lens columns 20, so as to ensure that no refraction occurs when the light exits from the direct plane.
- the first connection surface 231 and the second connection surface 232 can be arranged at the same height or at different heights, which is not limited herein.
- the display panel 1 may specifically be any product or component with display function, such as a liquid crystal panel, an OLED panel, a mobile phone, a tablet, etc., which is not limited here.
- Figures 13 and 14 show the comparison diagrams before and after the improvement of the present invention.
- the left view area of the grating covers part of the pixels on the display panel, and the right view area of the grating Some pixels are covered on the display panel, so that the boundary line between the left and right view areas of the grating is the view area dividing line, and the pixels correspondingly divided by the viewing area dividing line can be seen by the left and right eyes at the same time.
- the present invention sets the crosstalk part on the grating that can be seen by the left and right eyes at the same time as a plane parallel to the bottom surface, or sets the left viewing area and the right viewing area at intervals to form a non-refractive area, so as to not change the 3D mode.
- the plane or non-refractive area can directly illuminate the light, the pixels corresponding to this part can directly enter the left and right eyes of the human being, so the display effect can be effectively improved in the 2D mode.
- the naked-eye 3D display module based on the oblique grating can be switched between the 2D mode and the 3D mode.
- the left-view image is refracted by the first refraction mechanism 21 and enters the viewer's left eye
- the right-view image is refracted by the second refraction mechanism 22 and then enters the viewer's right eye
- the pixel unit 10 divided by the non-refractive area 23 can be processed according to the processing method for the crosstalk area in the prior art, thereby avoiding the formation of ghost images;
- the grating pitch can be enlarged in this way, Thereby enhancing the 3D display effect.
- the pixel unit 10 divided by the non-refracting area 23 displays a normal image, and the light is not refracted, and can enter the left and right eyes of the viewer at the same time, so as to compensate the displayed image to a certain extent and avoid the human eye in the 2D mode.
- the observed image loss is severe, further improving viewing in 2D mode.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Geometry (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种基于斜排光栅的裸眼3D显示模组,包括显示面板(1)以及覆于显示面板(1)上的用于折射光线的光栅透镜(2),光栅透镜(2)包括数个平行排列的透镜柱(20),透镜柱(20)与像素单元(10)的列方向呈第一夹角放置;透镜柱(20)包括第一折射机构(21)和第二折射机构(22),第一折射机构(21)和第二折射机构(22)之间还设有用于直射光线的非折射区域(23);相邻两透镜柱(20)之间也设有用于直射光线的非折射区域(23)。通过在串扰区域设置非折射区域(23),在不影响3D观看效果的同时,由于非折射区域(23)的光线直射,从而在2D模式下非折射区域(23)对应的像素能够同时被左右眼看到,减小2D模式下的图像缺失比例,从而在保证3D观看效果的前提下,提升2D模式下的观看效果。
Description
本发明涉及裸眼3D技术领域,尤其涉及一种基于斜排光栅的裸眼3D显示模组。
目前市面上的主流裸眼3D产品均以柱镜光栅技术为主,简单地说,实际是在显示屏上增加了一层特制的3D光学组件(如光学分光光栅等,由玻璃和高分子聚合物组成的光学器件),利用光栅的分光作用以及人眼看世界的3D成像原理,将经排图处理的3D图像信息按预设规则有效地分离成左右视图,并在一定区域内分别让左右眼对应接收,最终在大脑中形成3D图像。
传统的柱镜光栅技术方案有两种,一种光栅与像素平行排列布局,这里称平置光栅技术,该技术对显示效果好,对LCD屏较为友好,不太兼容现在主流OLED展示屏,且对光栅的加工及安装精度要求极高,成本昂贵,推广困难,并不适合大面积商用。另一种则是现在市面上的主流——斜置光栅技术,该技术兼容性极好,可适应市面上所有主流显示屏,且加工及安装难度也较低,成本低廉,易推广,但要同时满足2D/3D两种显示效果的观看体验,依旧是目前行业的难题。
现有技术通常用调节光栅节距的大小对2D/3D显示效果进行优化,当扩大光栅节距时,在3D显示状态下,显示效果会明显提升,但由于折射区域增大,造成用户观看2D图像时,图像部分信息的缺失,严重影响用户的观看体验。当缩小光栅节距时,3D显示效果会下降,从而失去其商业价值。故该技术仅能优化其3D显示效果,并不能同时确保2D/3D两种显示效果的观看体验。
本发明要解决的技术问题在于,针对现有技术的缺陷,基于斜排光栅提供一种可同时改善2D和3D观看效果的裸眼3D显示模组。
本发明解决其技术问题所采用的技术方案是:
基于斜排光栅的裸眼3D显示模组,包括显示面板以及覆于所述显示面板上的用于折射光线的光栅透镜,所述显示面板具有呈矩形阵列排布的数个像素单元,其特征在于,所述光栅透镜包括数个平行排列的透镜柱,所述透镜柱与像素单元的列方向呈第一夹角放置,所述第一夹角大于0°且小于180°;
所述透镜柱包括用于沿相反方向折射光线的第一折射机构和第二折射机构,所述第一折射机构和所述第二折射机构之间还设有用于直射光线的非折射区域;
相邻两所述透镜柱之间也设有用于直射光线的所述非折射区域。
优选地,所述第一折射机构和所述第二折射机构对称设置,且折射率相同。
优选地,所述第一折射机构包括至少一个第一折射单元,所述第一折射单元上设有用于出射折射后光线的第一折射面;
所述第二折射机构包括至少一个第二折射单元,所述第二折射单元上设有用于出射折射后光线的第二折射面;
所述第一折射面与所述第二折射面一一对称设置。
优选地,所述第一折射单元和所述第二折射单元均为三棱柱,所述三棱柱的截面为直角三角形,所述第一折射面和所述第二折射面设置在所述直角三角形的斜边上;
或者,所述第一折射单元和所述第二折射单元均为类三棱柱,所述类三棱柱的截面为类直角三角形,与直角相对的斜边为弧形,所述第一折射面和所述第二折射面设置在所述类直角三角形的弧形斜边上。
优选地,所述第一折射机构中,至少两个所述第一折射单元依次连续排列;
所述第二折射机构中,至少两个所述第二折射单元依次连续排列;
所述第一折射单元、所述第二折射单元的排列方向与所述透镜柱的排列方向一致。
优选地,所述第一折射机构中,至少两个所述第一折射面相互平行或曲率相同或曲率连续;
所述第二折射机构中,至少两个所述第二折射面相互平行或曲率相同或曲率连续。
优选地,至少一个所述第一折射单元和所述至少一个所述第二折射单元高度相同。
优选地,所述透镜柱为非连续透镜柱,所述第一折射机构和所述第二折射机构间隔设置,所述非折射区域为空白区域。
优选地,所述第一折射机构和所述第二折射机构通过第一连接面连接为一体,所述非折射区域包括所述第一连接面;
所述第一连接面为与所述显示面板平行设置的直射平面,所述直射平面两端分别与第一折射单元和第二折射单元连接。
优选地,所述光栅透镜为不连续透镜,相邻两所述透镜柱之间间隔设置;
或者,相邻所述透镜柱之间通过第二连接面连接为一体,所述非折射区域包括所述第二连接面,所述第二连接面为与所述显示面板平行设置的直射平面。
通过在串扰区域设置非折射区域,在不影响3D观看效果的同时,由于非折射区域的光线直射,从而在2D模式下非折射区域对应的像素能够同时被左右眼看到,减小2D模式下图像被折射导致的缺失比例,从而在保证3D观看效果的前提下,提升2D模式下的观看效果。
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明基于斜排光栅的裸眼3D显示模组的一个实施例的正视面结构示意图;
图2是本发明基于斜排光栅的裸眼3D显示模组的一个实施例中显示面板与光栅透镜对应配合的俯视示意图;
图3是本发明第一个实施例中光栅透镜的结构示意图;
图4是本发明第二个实施例中光栅透镜的结构示意图;
图5是本发明第三个实施例中光栅透镜的结构示意图;
图6是本发明第四个实施例中光栅透镜的结构示意图;
图7是本发明第五个实施例中光栅透镜的结构示意图;
图8是本发明第六个实施例中光栅透镜的结构示意图;
图9是本发明第七个实施例中光栅透镜的结构示意图;
图10是本发明第八个实施例中光栅透镜的结构示意图;
图11是本发明第九个实施例中光栅透镜的结构示意图;
图12是本发明第十个实施例中光栅透镜的结构示意图;
图13是改进前的光栅、显示面板以及该改进前光栅与显示面板中的像素单元对应设置的示意图;
图14是改进后本发明提供的光栅、显示面板以及该改进后的光栅与显示面板中的像素单元对应设置的示意图。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明提供一种基于斜排光栅的裸眼3D显示模组,参考图1,其可包括显示面板1以及覆于显示面板1上的用于折射光线的光栅透镜2,光栅透镜2用于对显示面板1显示的图像进行分光,通过光栅透镜2对光的折射作用,将不同的显示内容折射到空间中的不同地方,从而到达人的左右眼的内容不同,这样便产生了3D效果。
在本发明中,显示面板1具有呈矩形阵列排布的数个像素单元10,光栅透镜2包括数个平行排列的透镜柱20,在本发明中,透镜柱20与像素单元10的列方向呈第一夹角放置,具体的,该第一夹角范围在0°-180°,即,透镜柱20斜置在矩阵排布的像素单元10上。
进一步的,参考图3,透镜柱20包括用于沿相反方向折射光线的第一折射机构21和第二折射机构22,其中,第一折射机构21和第二折射机构22之间,以及相邻两透镜柱20之间还设有用于直射光线的非折射区域23,即,在非折射区域23上,光线沿直线出射,不发生任何折射。在本发明中,由于透镜柱20与像素单元10的列方向呈第一夹角放置,从而非折射区域23不与任何像素单元10呈一一对应关系,故非折射区域23的宽度在本发明中可不做任何限制。
图1及图2示出了本发明在一些实施例中透镜柱20与像素单元10之间的对应关系,参考图2,俯视角度看,透镜柱20与像素单元10的列方向呈第一夹角设置,在显示面板1上,L区域对应被第一折射机构21覆盖,从而L区域的像素单元10呈现的图像被第一折射机构21折射后可进入观看者左眼;R区域对应被第二折射单元22覆盖,从而R区域的像素单元10呈现的图像被第二折射机构22折射后进入观看者的右眼。x和y区域为串扰区域,在改进前,其对应像素单元被第一折射机构21和第二折射机构22同时覆盖,进而与其对应的像素单元部分被左眼看到,另一部分被右眼看到,现已有对该串扰区域进行改进的相关技术,通过关闭与串扰区域对应的像素单元10的亮度,来减小该串扰区域对左右视区的影响,从而提高3D显示效果,本发明将与串扰区域对应的折射机构设置为非折射区域23,非折射区域23对应的像素单元10能被左右眼同时看到,故本发明在3D模式下可直接利用现有相关技术,保证其在3D模式下的观看效果,在此不做赘述。而由于非折射区域23对应的像素单元在2D模式下能够同时被左右眼同时观看,从而在2D模式下,非折射区域23能对显示面板1显示的图像进行视觉补偿,从而减少在2D模式下人眼观看到的图像的缺失。
在本发明中,参考图3至图6,第一折射机构21包括至少一个第一折射单元211,第一折射单元211上设有用于出射折射后光线的第一折射面2111。进一步的,在一些实施例中,参考图3及图4,第一折射单元211具体可呈三棱柱状,即第一折射单元211的截面为三角形,具体为直角三角形,第一折射面2111为该直角三角形的斜边,在本实施例中,直角三角形的一个直角边与显示面板1平行放置,另一直角边垂直显示面板1放置,从而光线折射后经第一折射面2111出射;在另一些实施例中,参考图5及图6,第一折射单元211具体呈类三棱柱状,即第一折射单元211的截面为类三角形,具体为类直角三角形,在本实施例中,类直角三角形包括两相互垂直的直角边,以及呈弧形的斜边,第一折射面2111为该弧形斜边。在本实施例中,与上述实施例相同,类直角三角形的其中一个直角边与显示面板1平行放置,另一直角边垂直显示面板1放置,弧形斜边作为第一折射面2111用于出射经折射后的光线。
更进一步的,每个第一折射机构21可包括一个第一折射单元211,也可包括多个第一折射单元211,当每个折射机构包括多个第一折射单元211时,参考图4及图6,多个第一折射单元211沿透镜柱20的排列方向依次连续排列。在本实施例中,如上述实施例所述,第一折射面2111可为斜平面或弧面。当第一折射面2111为斜平面时,如图4所示,多个第一折射面2111平行设置;当第一折射面2111为弧面时,如图6所示,多个第一折射面2111曲率相同或曲率连续。
同理,再次参考图3至图6,在本发明中,第二折射机构22包括至少一个第二折射单元221,第二折射单元221上设有用于出射折射后光线的第二折射面2211。进一步的,在一些实施例中,参考图3及图4,第二折射单元221具体可呈三棱柱状,即第二折射单元221的截面为三角形,具体为直角三角形,第二折射面2211为该直角三角形的斜边,在本实施例中,直角三角形的一个直角边与显示面板1平行放置,另一直角边垂直显示面板1放置,从而光线折射后经第二折射面2211出射;在另一些实施例中,参考图5及图6,第二折射单元221具体呈类三棱柱状,即第二折射单元221的截面为类三角形,具体为类直角三角形,在本实施例中,类直角三角形包括两相互垂直的直角边,以及呈弧形的斜边,第二折射面2211为该弧形斜边。在本实施例中,与上述实施例相同,类直角三角形的其中一个直角边与显示面板1平行放置,另一直角边垂直显示面板1放置,弧形斜边作为第二折射面2211用于出射经折射后的光线。
更进一步的,每个第二折射机构22可包括一个第二折射单元221,也可包括多个第二折射单元221,当每个折射机构包括多个第二折射单元221时,多个第二折射单元221沿透镜柱20的排列方向依次连续排列。在本实施例中,如上述实施例所述,第二折射面2211可为斜平面或弧面。当第二折射面2211为斜平面时,多个第二折射面2211平行设置;当第二折射面2211为弧面时,多个第二折射面2211曲率相同或曲率连续。
在本发明中,优选第一折射单元211和第二折射单元221数量相同,一一对应,同时第一折射面2111与第二折射面2211一一对称设置,即,相互对称的第一折射面2111和第二折射面2211可同为斜平面,也可同为弧面,在此不做限定。在一些实施例中,第一折射单元211和第二折射单元221的高度保持一致。
通过在第一折射机构21中设置多个连续排布的第一折射单元211,在第二折射机构22中设置多个连续排布的第二折射单元221,从而扩大透镜柱20的节距,能够进一步提升该透镜柱20在显示面板1上的3D显示效果。
在本发明中,参考图3-图6,透镜柱20可为非连续透镜柱20,即第一折射机构21和第二折射机构22间隔设置,在本实施例中,非折射区域23为空白区域;在另一些实施例中,参考图7,第一折射机构21和第二折射机构22通过第一连接面231连接为一体,在本实施例中,非折射区域23包括第一连接面231,第一连接面231具体为直射平面,其材料可与第一折射机构21和第二折射机构22相同,也可以不同,在此不做限制。直射平面与显示面板1平行设置,直射平面的两端分别与第一折射单元211和第二折射单元221连接,从而将透镜柱20连接为一个整体。在本实施例中,直射平面两端可同时连接在第一折射单元211和第二折射单元221的任一高度处,在此不做限制,进一步的,第一连接面231可与第一折射单元211和第二折射单元221一体设置。以上仅列出非折射区域23的两种具体实施例,可以理解的是,只要能够使光线直射的区域均可认为是本发明所述的非折射区域23。
进一步的,本发明提供的光栅透镜2,其可为非连续光栅,也可为连续光栅。当光栅透镜2为非连续光栅时,参考图7,相邻透镜柱20之间可间隔设置,从而在两透镜柱20光栅之间同样形成非折射区域23,与该非折射区域23对应的像素单元10形成的图像直射进入人眼。参考图8及图9,当光栅透镜2为连续光栅时,相邻透镜可通过第二连接面232将透镜首尾依次相连,从而形成一整体透镜。即,非折射区域包括第二连接面232,第二连接面232同样可为直射平面,第二连接面232可与透镜柱20材料相同,也可以不同,在此不做限制。当第二连接面232与透镜柱20材料相同时,其可一体设置,从而实现完整的光栅透镜。该直射平面与显示面板1平行设置,此处的直射平面两端分别连接相邻的透镜柱20的任意同一高度,从而保证光线自直射平面出射时不发生任何折射。
参考图10-图12,在本发明中,第一连接面231和第二连接面232可设置在同一高度,也可设于不同高度,在此不做限制。
本发明提供的基于斜排光栅的裸眼3D显示模组,其显示面板1具体可为:液晶面板、OLED面板、手机、平板等任何具有显示功能的产品或部件,在此不做限制。
可以理解的是,附图1-12仅为本发明的部分实现形式,而非穷举式列举,任何上述技术特征的排列组合均可认为落入本发明的保护范围内。
图13及图14示出了本发明改进前后的对比图,改进前,参考图13,当光栅放置在显示面板上时,光栅的左视区在显示面板上覆盖部分像素,光栅的右视区在显示面板上覆盖部分像素,从而光栅的左右视区交界线为视区分割线,被视区分割线对应分割的像素能同时被左右眼看到。参考图14,本发明将光栅上能被左右眼同时看到的串扰部分设为与底面平行的平面或将左视区和右视区间隔设置形成非折射区域,从而在不改变3D模式下的显示效果的同时,由于平面或非折射区域可直射光线,与该部分对应的像素可直射从而同时进入人的左右眼,故在2D模式下可有效改善显示效果。在本发明中,基于斜排光栅的裸眼3D显示模组可在2D模式和3D模式之间进行切换,在3D模式下,左视图像经第一折射机构21折射后进入观看者的左眼,右视图像经第二折射机构22折射后进入观看者的右眼,而被非折射区域23分割的像素单元10可按现有技术中对串扰区域的处理方法进行处理,从而避免形成重影;进一步的,可通过在第一折射机构21中设置若干依次排列的第一折射单元211,在第二折射机构22中设置若干依次排列的第二折射单元221,以此种方式扩大光栅节距,从而提升3D显示效果。在2D模式下,被非折射区域23分割的像素单元10显示正常图像,且光线未经折射,可同时进入观看者的左右眼,从而对显示图像进行一定程度的补偿,避免2D模式下人眼观察到的图像缺失严重,从而进一步改善2D模式下的观看效果。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 基于斜排光栅的裸眼3D显示模组,包括显示面板(1)以及覆于所述显示面板(1)上的用于折射光线的光栅透镜(2),所述显示面板(1)具有呈矩形阵列排布的数个像素单元(10),其特征在于,所述光栅透镜(2)包括数个平行排列的透镜柱(20),所述透镜柱(20)与像素单元(10)的列方向呈第一夹角放置,所述第一夹角大于0°且小于180°;所述透镜柱(20)包括用于沿相反方向折射光线的第一折射机构(21)和第二折射机构(22),所述第一折射机构(21)和所述第二折射机构(22)之间还设有用于直射光线的非折射区域(23);相邻两所述透镜柱(20)之间也设有用于直射光线的所述非折射区域(23)。
- 根据权利要求1所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述第一折射机构(21)和所述第二折射机构(22)对称设置,且折射率相同。
- 根据权利要求2所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述第一折射机构(21)包括至少一个第一折射单元(211),所述第一折射单元(211)上设有用于出射折射后光线的第一折射面(2111);所述第二折射机构(22)包括至少一个第二折射单元(221),所述第二折射单元(221)上设有用于出射折射后光线的第二折射面(2211);所述第一折射面(2111)与所述第二折射面(2211)一一对称设置。
- 根据权利要求3所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述第一折射单元(211)和所述第二折射单元(221)均为三棱柱,所述三棱柱的截面为直角三角形,所述第一折射面(2111)和所述第二折射面(2211)设置在所述直角三角形的斜边上;或者,所述第一折射单元(211)和所述第二折射单元(221)均为类三棱柱,所述类三棱柱的截面为类直角三角形,与直角相对的斜边为弧形,所述第一折射面(2111)和所述第二折射面(2211)设置在所述类直角三角形的弧形斜边上。
- 根据权利要求4所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述第一折射机构(21)中,至少两个所述第一折射单元(211)依次连续排列;所述第二折射机构(22)中,至少两个所述第二折射单元(221)依次连续排列;所述第一折射单元(211)、所述第二折射单元(221)的排列方向与所述透镜柱(20)的排列方向一致。
- 根据权利要求5所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述第一折射机构(21)中,至少两个所述第一折射面(2111)相互平行或曲率相同或曲率连续;所述第二折射机构(22)中,至少两个所述第二折射面(2211)相互平行或曲率相同或曲率连续。
- 根据权利要求6所述的基于斜排光栅的裸眼3D显示模组,其特征在于,至少一个所述第一折射单元(211)和所述至少一个所述第二折射单元(221)高度相同。
- 根据权利要求1所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述透镜柱(20)为非连续透镜柱(20),所述第一折射机构(21)和所述第二折射机构(22)间隔设置,所述非折射区域(23)为空白区域。
- 根据权利要求1所述的基于斜排光栅的裸眼3D显示模组,其特征在意,所述第一折射机构(21)和所述第二折射机构(22)通过第一连接面(231)连接为一体,所述非折射区域(23)包括所述第一连接面(231);所述第一连接面(231)为与所述显示面板(1)平行设置的直射平面,所述直射平面两端分别与第一折射单元(211)和第二折射单元(221)连接。
- 根据权利要求1所述的基于斜排光栅的裸眼3D显示模组,其特征在于,所述光栅透镜(2)为不连续透镜,相邻两所述透镜柱(20)之间间隔设置;或者,相邻所述透镜柱(20)之间通过第二连接面(232)连接为一体,所述非折射区域(23)包括所述第二连接面(232),所述第二连接面(232)为与所述显示面板(1)平行设置的直射平面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/087157 WO2022217489A1 (zh) | 2021-04-14 | 2021-04-14 | 基于斜排光栅的裸眼3d显示模组 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/087157 WO2022217489A1 (zh) | 2021-04-14 | 2021-04-14 | 基于斜排光栅的裸眼3d显示模组 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022217489A1 true WO2022217489A1 (zh) | 2022-10-20 |
Family
ID=83639936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/087157 WO2022217489A1 (zh) | 2021-04-14 | 2021-04-14 | 基于斜排光栅的裸眼3d显示模组 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022217489A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101512414A (zh) * | 2006-08-31 | 2009-08-19 | 皇家飞利浦电子股份有限公司 | 自动立体显示设备 |
CN101895777A (zh) * | 2010-07-14 | 2010-11-24 | 深圳超多维光电子有限公司 | 立体显示模组及立体显示装置 |
CN102662208A (zh) * | 2012-03-15 | 2012-09-12 | 京东方科技集团股份有限公司 | 柱透镜光栅、液晶光栅及显示器件 |
CN102928904A (zh) * | 2012-11-16 | 2013-02-13 | 京东方科技集团股份有限公司 | 透镜光栅及显示装置 |
US20140071118A1 (en) * | 2012-09-11 | 2014-03-13 | Qualcomm Mems Technologies, Inc. | Autostereoscopic display with preconvergence |
CN113156660A (zh) * | 2021-04-14 | 2021-07-23 | 深圳市立体通科技有限公司 | 基于斜排光栅的裸眼3d显示模组 |
-
2021
- 2021-04-14 WO PCT/CN2021/087157 patent/WO2022217489A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101512414A (zh) * | 2006-08-31 | 2009-08-19 | 皇家飞利浦电子股份有限公司 | 自动立体显示设备 |
CN101895777A (zh) * | 2010-07-14 | 2010-11-24 | 深圳超多维光电子有限公司 | 立体显示模组及立体显示装置 |
CN102662208A (zh) * | 2012-03-15 | 2012-09-12 | 京东方科技集团股份有限公司 | 柱透镜光栅、液晶光栅及显示器件 |
US20140071118A1 (en) * | 2012-09-11 | 2014-03-13 | Qualcomm Mems Technologies, Inc. | Autostereoscopic display with preconvergence |
CN102928904A (zh) * | 2012-11-16 | 2013-02-13 | 京东方科技集团股份有限公司 | 透镜光栅及显示装置 |
CN113156660A (zh) * | 2021-04-14 | 2021-07-23 | 深圳市立体通科技有限公司 | 基于斜排光栅的裸眼3d显示模组 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11693255B2 (en) | 3D display device and display method thereof | |
CN101697596B (zh) | 图像显示设备 | |
CN101479643B (zh) | 显示面板,显示装置和终端装置 | |
US9344708B2 (en) | Non-glasses type stereoscopic image display device | |
TWI398669B (zh) | 立體顯示器 | |
CN102997133B (zh) | 双视背光模组及液晶显示装置 | |
US20130114007A1 (en) | Auto-stereoscopic multi-dimensional display component and display thereof | |
US9229240B2 (en) | Lens grating and display device | |
CN101196615A (zh) | 偏振光栅立体显示器 | |
CN103403607A (zh) | 多视点图像显示装置 | |
CN104459856B (zh) | 一种光栅图形膜、立体光栅和裸眼3d显示装置 | |
JP2010518429A (ja) | 多重視点立体視ディスプレイ | |
KR101818253B1 (ko) | 입체영상표시장치 | |
JP5943747B2 (ja) | 立体映像表示装置 | |
CN107966825B (zh) | 一种拼接型指向性背光源及使用该背光源的显示系统 | |
CN110133781B (zh) | 一种柱透镜光栅和显示装置 | |
EP1938592A2 (en) | A 3d display with an improved pixel structure (pixelsplitting) | |
CN103513311A (zh) | 一种立体光栅和裸眼3d显示装置 | |
CN202929230U (zh) | 透镜光栅及显示装置 | |
US10264244B2 (en) | Display panel and a display driving method thereof, a display driving device and a display device | |
US8988618B2 (en) | Stereoscopic display comprising a phase retarder having a plurality of first and second strip shapes and a plurality of board-like structures disposed in a liquid-crystal layer | |
JP2011128636A (ja) | カラー立体表示装置 | |
WO2022217489A1 (zh) | 基于斜排光栅的裸眼3d显示模组 | |
CN110018573A (zh) | 组合式显示面板 | |
CN113156660A (zh) | 基于斜排光栅的裸眼3d显示模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21936382 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21936382 Country of ref document: EP Kind code of ref document: A1 |