WO2016023416A1 - 有机金属催化聚合的聚金属碳硅烷及其应用 - Google Patents

有机金属催化聚合的聚金属碳硅烷及其应用 Download PDF

Info

Publication number
WO2016023416A1
WO2016023416A1 PCT/CN2015/085508 CN2015085508W WO2016023416A1 WO 2016023416 A1 WO2016023416 A1 WO 2016023416A1 CN 2015085508 W CN2015085508 W CN 2015085508W WO 2016023416 A1 WO2016023416 A1 WO 2016023416A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
sic
carbosilane
temperature
polymetallic
Prior art date
Application number
PCT/CN2015/085508
Other languages
English (en)
French (fr)
Inventor
张伟刚
戈敏
田跃龙
于守泉
吕晓旭
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410398745.8A external-priority patent/CN104211967B/zh
Priority claimed from CN201410493930.5A external-priority patent/CN104233512B/zh
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to US15/310,951 priority Critical patent/US20170088674A1/en
Publication of WO2016023416A1 publication Critical patent/WO2016023416A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • C04B35/62281Fibres based on carbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the invention generally relates to a polymetallic carbosilane and a preparation method and application thereof, in particular to a polymetal (Ti, Zr, Hf) carbosilane and a preparation method and application thereof.
  • SiC ceramics have excellent properties such as high strength, high modulus, high temperature resistance, corrosion resistance, oxidation resistance, low density, high thermal conductivity, small thermal expansion coefficient and good wear resistance. They are used in civil industry, as well as in aerospace, aviation, weapons and other defense fields. Has a wide range of applications.
  • the preparation of SiC mainly has inorganic methods and organic precursor methods.
  • the main steps in the preparation of SiC by the organic precursor method are: preparing a polydimethylsilane or a six-membered ring by an alkali metal or alkaline earth metal condensation method, and then the polydimethylsilane and the six-membered ring in an argon atmosphere. After 450-470 ° C, 8-10 MPa high temperature and high pressure treatment, an insertion reaction occurs, CH 2 is inserted into the Si-Si bond to become a polycarbosilane, and the yield of the precursor is about 45-52 wt%, which is used for preparing SiC ceramics. This method was discovered by S. Yajima and is widely used.
  • the preparation of polycarbosilane in the above organic precursor method requires first synthesis of polysilane, such as polydimethylsilane, polymethylphenylsilane, etc., and then converted to soluble in the methyl group by high temperature and high pressure.
  • the polycarbosilane of a polar organic solvent has a yield of about 45 wt% of the obtained polycarbosilane.
  • the introduction of elements such as titanium, zirconium and aluminum into SiC ceramics can improve the heat resistance and oxidation resistance.
  • the introduction of metal elements is generally carried out by reacting with a polycarbosilane such as a metal alkoxide or a metal oxane to prepare an oxygen-containing polymer. Titanium zirconium carbosilane, and removes oxygen by a carbothermal reaction or the like at a high temperature pyrolysis.
  • the content of metal elements such as titanium zirconium generally does not exceed 3%.
  • High-performance ceramic fiber combines the textile processing properties of fiber with the high strength, high modulus, high temperature resistance, corrosion resistance, oxidation resistance and low density of ceramics. It is widely used in composite reinforcements for the preparation of metals.
  • Composite materials such as ceramic base.
  • high-temperature non-oxide ceramic fibers are mainly composed of SiC fibers, including organic polymer precursor conversion SiC fibers, chemical vapor deposition SiC fibers, and carbon template conversion SiC fibers.
  • the organic precursor method for preparing SiC fibers is organic.
  • the silicon polymer compound is a raw material, and the inorganic ceramic fiber having a ⁇ -SiC structure is obtained by spinning, infusing and ceramization, and is a relatively mature and industrialized production method.
  • the main consideration is how to reduce the content of oxygen and free carbon in SiC fibers, and prepare SiC fibers with near stoichiometric ratio and high density.
  • the published patent by introducing a small amount of heterogeneous elements such as Al, B, Ti, Zr, etc. into the fiber, a ceramic microcrystalline co-melt is formed in the fiber cracking process, and the excessive growth of crystal grains at a high temperature is suppressed. good effect.
  • Japan Ube produces Tyranno ZM with 1.0% Zr, Tyranno Lox-E with 1.9% Ti, and Sylramic fiber with 2.1% Ti from Dow Corning.
  • the oxidation temperature can reach 1500 °C.
  • other types of SiC fiber have a small Ti/Zr content, which is mainly due to the introduction of metal elements such as Zr/Ti/Al. decided. That is, the above fibers are made of an organic polymer containing Si-H bonds such as polysilicocarbosilane (PSCS), polysilane (PS), polycarbosilane (PCS), etc., and an oxygen-containing organic compound of Zr/Ti/Al is added.
  • PSCS polysilicocarbosilane
  • PS polysilane
  • PCS polycarbosilane
  • Metal compounds such as their acetylacetonate compounds, carbonyl compounds, and ketone compounds are reaction additives to form an organic polymer containing Zr/Ti/Al. Due to the limitation of the oxygen-containing structure in the Zr/Ti/Al organometallic compound and the degree of reaction with the Si-H bond in the organosilicon precursor, it is difficult to form a high-doped multiphase ceramic structure, and the Ti/Zr content is introduced. Rarely, the quality score is generally less than 3%.
  • the melting point of ZrC is 3540 ° C
  • the melting point of ZrB 2 is 3245 ° C.
  • the high temperature resistance and oxidation resistance have been successfully prepared by powder hot pressing technology for multiphase ceramic materials with oxidation resistance exceeding 2500 °C.
  • the crystallization temperature of the composite ceramics obtained by the precursor pyrolysis is about 500 °C higher than that of the pyrogenic SiC. It is expected that the multiphase composite ceramic fibers containing SiC and MC and/or MB 2 will be satisfied. The need to prepare higher temperature resistant composites.
  • One of the objects of the present invention is to provide a novel polymetallic carbosilane in which the metal content is adjustable, and the metallocene and carbosilane are present in the form of a chemically bonded polymer.
  • the polymetallic carbosilane according to the present invention has the following structural formula:
  • R is methyl, ethyl, propyl, vinyl, chloromethyl, phenyl or phenethyl
  • M is Ti, Zr or Hf
  • m is an integer equal to or greater than 1
  • n is equal to or greater than 0.
  • An integer of Cp 1 and Cp 2 each is a cyclopentadienyl or substituted cyclopentadienyl group.
  • the polymetallic carbosilane has the following structural formula:
  • R is methyl, ethyl, propyl, vinyl, chloromethyl, phenyl or phenethyl;
  • R' is Cl, CH 2 -MCp 1 Cp 2 Cl, Si(Me) 3 , CH 3 , C 2 H 5 , OH, OCH 3 or OC 2 H 5 .
  • Another object of the present invention is to provide a process for preparing the above polymetallic carbosilane, which is mildly and controllable in preparation conditions.
  • a method of preparing a polymetallic carbosilane according to the present invention comprising the steps of:
  • the reactant 1 and the reactant 2 are added to the organic solvent in a ratio, and the reactant 3 is dropped into the reaction system at a reaction temperature of 0-160 ° C, and the reaction is sufficiently carried out until the reaction system is neutral, and cooled to Room temperature.
  • the reactant 1 is dichlorodimorph M or dichlorodisubstituted molybdenum M
  • M is Ti, Zr or Hf
  • the reactant 2 is an alkali metal
  • the organic solvent is a non-polar solvent
  • the reactant 3 The structure is as follows:
  • R 1 is methyl
  • R 2 is methyl, ethyl, propyl, vinyl, chloromethyl, phenyl or phenethyl
  • the ratio of the amount of the reactant 1 to the amount of the reactant 3 is 1:50 to 1:1, and the ratio of the amount of the substance of the reactant 2 contained in the reactant 2 and the reactant 1 and the reactant 3 is 1- 1.25 (for example, when the reactant 2 is 1 mol, the sum of the amounts of the Cl element contained in both the reactant 1 and the reactant 3 is 1-1.25 mol), and the mass of the organic solvent is the mass of the reactant 3 3-10 times;
  • steps (1) and (2) are carried out under anhydrous and anaerobic conditions, and are protected with an inert gas.
  • the ratio of the amount of the reactants contained in the reactant 2 to the reactant 1 and the reactant 3 is from 1 to 1.1.
  • the reaction temperature is from 90 to 110 °C.
  • the non-polar solvent is toluene or xylene.
  • the alkali metal is a sodium, potassium or sodium potassium alloy.
  • the inert gas is nitrogen or argon.
  • the product obtained by removing the solvent in the solution G is subjected to reforming at a reforming temperature of 90 to 350 ° C to obtain the Polymetallic carbosilane.
  • a third object of the present invention is to provide a composite carbide and a preparation method thereof, wherein each of the carbides in the composite carbide has a uniform dispersion distribution.
  • a method of preparing a composite carbide according to the present invention comprising the steps of:
  • the polymetallic carbosilane described in one of the objects of the present invention is used as a precursor, and after heat treatment at a temperature of 1100 ° C or higher under an inert gas atmosphere, a SiC ⁇ MC composite carbide is obtained.
  • the preferred process conditions are a heating rate of 1-5 ° C / min, a heat treatment temperature of 1100-1600 ° C, and a temperature of 1-4 hours.
  • a fourth object of the present invention is to provide a novel carbide and/or boride multiphase ceramic fiber and a process for the preparation thereof.
  • a multiphase ceramic fiber comprising SiC and MC and/or MB 2 in a composition, wherein SiC is uniformly dispersed with MC and/or MB 2 , wherein M is Ti, Zr, Hf One or more of them. That is, the multiphase ceramic fiber must contain SiC, and further contains at least one of MC and MB 2 ; MC may be formed by one or a combination of TiC, ZrC and HfC, and MB 2 may be TiB 2 , ZrB 2 and HfB 2 are formed by one or a combination of several.
  • MC and/or MB 2 are dispersed in the SiC continuous phase at a particle size of from 2 to 200 nm.
  • MC and/or MB 2 have a particle size of from 2 to 50 nm.
  • M represents the mass fraction of the entire multiphase ceramic fiber from 3% to 30%.
  • a single or complex organic polymeric precursor comprising M, Si, C, H and optionally B elements is used as a starting material.
  • a single or composite organic polymer precursor containing M, Si, C, H and optional B elements is added to a melt spinning tank, melted at 90-180 ° C and defoamed, and pressurized. Melt spinning to 0.1-0.7 MPa to obtain fibrils;
  • the polymer precursor in the step (1) may be a polymetallic carbosilane single precursor as described in one of the objects of the present invention, and may also be a polymetallic carbosilane and a polyborazane as described in one of the objects of the present invention.
  • the melt defoaming treatment temperature of the organic polymer in the step (1) is 155-165 ° C; and the spinning pressure is 0.3-0.5 MPa.
  • the ripening stabilization treatment in the step (2) is carried out by crosslinking or ultraviolet crosslinking in air or another oxidizing atmosphere to cure the surface of the fiber.
  • the heat treatment process in the step (2) can apply a certain drafting force.
  • a novel polymetallic carbosilane is provided, which does not contain oxygen, and the metallocene and carbosilane are present in a chemically bonded form, and the metal content is adjustable.
  • the invention adopts a metallocene-catalyzed organosilane addition polymerization reaction to form a polymetallic carbosilane.
  • the raw materials and the synthesis process are free of oxygen, and can be carried out under normal pressure toluene reflux temperature, at normal pressure and lower.
  • the Si-CH 2 -Si bond can be formed at a temperature ( ⁇ 110 ° C), and a Si-H bond is formed at the same time, the reaction step is simple, the reaction conditions are mild, the preparation cost is low, and the product conversion rate is high.
  • the ceramic transition temperature is low, and the ceramic mass yield is 20-65%.
  • the obtained multiphase ceramic is a nano-scale dispersed multiphase SiC ⁇ MC ceramic.
  • the multi-component ceramics of the multi-component multiphase ceramic fiber formed by combining MC and/or MB 2 and SiC provided by the present invention has a nanometer-scale dispersion distribution, and can effectively suppress grain growth of each component, especially SiC, It is beneficial to improve the high temperature creep resistance of the fiber.
  • Example 1 is an infrared spectrum of a polyzirconium carbosilane prepared in Example 1.
  • Example 2 is a thermograviogram of the polyzirconium carbosilane prepared in Example 1.
  • Example 3 is an infrared spectrum of the polyzirconium carbosilane prepared in Example 2.
  • Example 4 is an XRD spectrum of a ceramic product obtained by heat treatment of the polyzirconium carbosilane prepared in Example 1.
  • Example 5 is a scanning electron micrograph of a ceramic product obtained by heat treatment of the polyzirconium carbosilane prepared in Example 1.
  • Figure 6 is a SEM photograph of the fibrils prepared in Example 13.
  • Figure 7 is a backscatter SEM photograph of a cross section of a multiphase ceramic fiber prepared in Example 13.
  • Figure 8 is a TEM photograph of a multiphase ceramic fiber prepared in Example 13.
  • Figure 9 is a SEM photograph of the fibrils prepared in Example 14.
  • Figure 10 is an XRD chart of the multiphase ceramic fiber prepared in Example 14. as well as
  • Figure 11 is a TEM photograph of a multiphase ceramic fiber prepared in Example 14.
  • the toluene solvent in solution G1 was removed by a rotary evaporator at -0.1 MPa and 60 ° C to obtain 24.35 g of a black-brown viscous polymer, i.e., polyzirconium carbosilane A1, in a yield of 88.03 wt% (to obtain the obtained polymetal).
  • the theoretical yield of carbosilane is calculated on a baseline basis).
  • the solid product A1 was subjected to infrared spectrum analysis by KBr tableting method, and the results are shown in Fig. 1.
  • the wave number of 1452 cm -1 and 1080 cm -1 corresponds to the absorption peak of the zirconium pentadienyl group; the absorption peak at the wave number of 2089 cm -1 and the wave number of 877 cm -1 corresponds to the absorption peak of the Si-H bond; the wave number is 1368 cm.
  • the absorption peak at -1 , wave number 1018 cm -1 corresponds to the absorption peak of Si-CH 2 -Si bond; the absorption peak at wave number 1398 cm -1 at wavenumber 1248 cm -1 corresponds to the absorption peak of Si-CH 3 bond .
  • Figure 2 shows the thermogravimetric curve of the product H1 heated to 1100 °C at 10 °C/min under Ar conditions. As can be seen from Figure 2, the product begins to lose weight slowly at 200 ° C, loses about 40% at 250-600 ° C, loses weight after 600 ° C, and has a ceramic yield of about 62% at 1100 ° C.
  • the viscous polymer A2 was subjected to infrared spectrum analysis by KBr tableting method. As shown in Fig. 3, the absorption peak at a wave number of 1448 cm -1 and a wave number of 1080 cm -1 corresponds to the absorption peak of the cyclopentadienyl group in zirconium.
  • a weak absorption peak at a wave number of 1488 cm -1 , a wave number of 1815 cm -1 , 1879 cm -1 , and 1950 cm -1 corresponds to an absorption peak of a phenyl group, and a strong absorption peak corresponding to a phenyl group at a wave number of 2946 cm -1 .
  • the above analysis shows that Si-CH 3 in dichloromethylphenylsilane undergoes addition polymerization under the synergistic action of metal K and zirconocene dichloride, forming Si-CH 2 -Si, Si- H, Si-CH 3 , Si-Ph polycarbazosilane.
  • the infrared spectrum of the solid product A3 was analyzed by KBr tableting method.
  • the results show that the absorption peak at wave number 1452 cm -1 and wave number 1080 cm -1 corresponds to the absorption peak of cyclopentadienyl group in zirconium; the wave number is 2089 cm -1 , the absorption peak wave number of 877cm -1 at the corresponding to the absorption peak of Si-H bonds; wavenumber 1368cm -1, the absorption peak wavenumber 1018cm -1 at corresponding Si-CH absorption peak 2 -Si bonds; 1398cm wave number
  • the absorption peak at -1 and the wave number of 1248 cm -1 corresponds to the absorption peak of the Si-CH 3 bond.
  • the infrared spectrum of the solid product A4 was analyzed by KBr tableting method. The results show that the absorption peak at the wave number of 1452 cm -1 and the wave number of 1080 cm -1 corresponds to the absorption peak of the cyclopentadienyl group in dichloromethane.
  • the absorption peak at 2089cm -1, 877cm -1 an absorption peak at a wavenumber of the absorption peak corresponding to Si-H bonds; at the wavenumber 1368cm -1, an absorption peak at a wavenumber 1018cm -1 corresponding to the Si-CH 2 -Si bond absorption peak;
  • the absorption peak at a wave number of 1398 cm -1 and a wave number of 1248 cm -1 corresponds to an absorption peak of the Si-CH 3 bond.
  • the absorption peak at a wave number of 1488 cm -1 and wave numbers of 1815 cm -1 , 1879 cm -1 and 1950 cm -1 corresponds to an absorption peak of a phenyl group.
  • Elemental analysis of the solid product A4 revealed: Si (26.81 wt%), C (55.45 wt%), Hf (8.5 wt%), H (7.18 wt%), O (0.02 wt%), Cl (3.28 wt) %), a small amount of oxygen may be caused by oxidation of the polymer during the measurement, and thus the chemical formula of the product is Si 20 C 54 HfH 90 Cl 1.23 .
  • Elemental analysis of the solid product A5 revealed: Si (43.10 wt%), C (42.11 wt%), Zr (2.80 wt%), H (9.79 wt%), Cl (2.15 wt%), O (0.03 wt) %), a small amount of oxygen may be caused by oxidation of the polymer during the measurement, and thus the chemical formula of the product is Si 50 C 114 ZrH 318 Cl 1.9 .
  • Elemental analysis of the solid product A6 revealed: Si (50.28 wt%), C (30.30 wt%), Zr (8.23 wt%), H (6.67 wt%), Cl (4.48 wt%), O (0.04 wt) %), a small amount of oxygen may be caused by oxidation of the polymer during the measurement, and thus the chemical formula of the product is Si 19.9 C 28 ZrH 74 Cl 1.4 .
  • the crystalline product C7 was analyzed by KBr tableting method, which was consistent with the infrared absorption peak of the standard zirconocene zirconocene, indicating that the product was mixed with the dichlorozirconocene raw material which was not involved in the reaction.
  • the pale yellow solid product A7 was washed with chloroform to remove the zirconium dichloride, to give a white polymer A7*.
  • KBr tablet method using the product as a white solid A7 * IR spectroscopy showed wavenumber 1488cm -1 at a wave number of 1815cm -1, 1879cm -1 and 1950cm -1 of the absorption peak corresponding to the absorption peaks of phenyl; No Si-H absorption peak was observed in the infrared absorption peak.
  • zirconocene dichloride does not have catalytic rearrangement properties for dichlorodiphenyl monomers and does not participate in the formation of polymers.
  • the polymers obtained in Examples 1 to 6 were each taken in 5 g, and the solubility in a solvent of toluene and xylene at room temperature was measured, and the solubility was excellent when 100 g or more of the polymer was dissolved per 100 g of the solvent, per 100 g. Solvent when solvent is dissolved below 50g of polymer The solution is good, and the results are shown in Table 1.
  • Example 1 to Example 7 it can be seen from Example 1 to Example 7 that one or more dichloroalkylsilane monomers containing Si-CH 3 are used as raw materials, dichlorodimetallocene (titanium, zirconium or hafnium) or dichlorodisubstituted molybdenyl groups.
  • Metal zirconium, titanium or hafnium
  • metal synergistically effected by alkali metal Li, Na or K to achieve methyl rearrangement and metallocene addition polymerization to obtain polymetallic carbosilane, which is in a non-polar solvent such as toluene, Excellent solubility in toluene.
  • polymetallic carbosilanes having different levels of metals can be formed. If the starting material is a dichloroalkylsilane monomer which does not contain Si-CH 3 , such as dichlorodiphenylsilane, a similar addition polymerization reaction does not occur.
  • the target product in the preparation method of the present invention is a polycarbosilane containing an element such as titanium zirconium, etc., avoiding the process of first preparing polymethylsilane in the S. Yajima method and then preparing the polycarbosilane through a complicated methyl rearrangement reaction. .
  • the invention does not require complicated steps such as separation, purification and drying of polydimethylsilane from sodium metal and sodium chloride, and the reaction process is shortened. No need to carry out high temperature (>450 °C) and high pressure (>8MPa) thermal rearrangement, the preparation process conditions are more mild, the reaction conditions are more relaxed (normal pressure, 0-160 ° C); product conversion rate is greatly improved (more than 85%) .
  • the polymetallic carbosilanes obtained in Examples 1 to 6 were heated to 1100 ° C at 10 ° C / min under Ar atmosphere and held for 1 hour, and then cooled to room temperature. After the above heat treatment, the ceramic yield of the obtained polymetallic carbosilane was measured. (i.e., the weight ratio of the finally obtained composite ceramic to the polymetallic carbosilane used), and the results are shown in Table 2.
  • Zirconium dichloride and dichlorodimethylsilane are partially or completely dechlorinated under the action of sodium to form free radicals. Taking the removal of only one chlorine from zirconium dichloride, the reaction mechanism is as follows:
  • the zirconia radical reacts with the dimethylsilyl radical to form a Zr-C bond:
  • the polymetallic carbosilane of the present invention is used as a raw material by way of specific examples. To prepare composite carbides.
  • the obtained ceramic product was analyzed by backscattered electron imaging technology, and the test results are shown in FIG. 5.
  • the white-containing bright spot (Zr) is uniformly dispersed in the gray matrix (Si) in a nanometer order.
  • the obtained SiC ⁇ ZrC is a multi-phase ceramic uniformly distributed in a nanometer order.
  • Example 4 2 g of the polymer obtained in Example 4 was heated in an Ar atmosphere, and the temperature was raised to 1400 ° C at 2 ° C / min, and after 4 hours of heat retention, the temperature was lowered at 10 ° C / min to obtain about 0.58 g of a gray-black solid.
  • the obtained polymer can be converted into a nano-scale uniformly distributed SiC ⁇ MC composite at a lower temperature (1100 ° C) after heat treatment.
  • the heat treatment temperature reaches 1600 ° C, the diffraction peaks of SiC and MC can be observed more clearly from the XRD pattern, that is, the ceramic product crystallizes well.
  • a polyzirconium carbosilane (containing Zr, Si, C, H) having a softening point of 70 ° C and a molecular weight of 1500 and a molecular weight distribution of 1.2 was added to a melt spinning can, melted at 160 ° C, and kept at a constant temperature for 4 hours for defoaming. After the treatment, the temperature was lowered to 120 ° C, and the mixture was pressurized to 0.5 MPa with nitrogen gas, and spun on a spinning machine to obtain fibrils at a wire take-up rate of 2 m/s.
  • the microscopic morphology of the prepared fibrils is shown in Fig. 6. As can be seen from the figure, the obtained fibrils have a smooth surface and a diameter of about 20 ⁇ m.
  • Example 2 2 g of the fibril obtained in Example 1 was aged in oxygen at 200 ° C for 20 min, and then heated to 1100 ° C at 0.5 ° C / min under Ar atmosphere, and protected. After 1 h of temperature, 1.25 g of gray-black solid fiber was obtained by cooling.
  • the content of Zr element in the obtained fiber was measured by inductively coupled plasma atomic emission spectrometry, and the test result was 16.2%.
  • the phase composition of the obtained fiber was examined by XRD (X-ray diffraction method), and it was found that the obtained fiber contained a ZrC and SiC crystal phase.
  • the cross section of the obtained fiber was observed by a backscattered scanning electron microscope (SEM). As a result, as shown in Fig. 7, the obtained fiber was grayish black in cross section, and there was no obvious bright spot, indicating that the Zr element was uniformly dispersed in the fiber.
  • a transmission electron microscope (TEM) photograph of the obtained fiber cross section is shown in Fig.
  • the ZrC grain size is between 10 and 50 nm, and is dispersed in the nanometer order between the SiC grains to form a ZrC ⁇ SiC composite ceramic fiber.
  • a polyzirconium carbosilane-polyborazane (containing Zr, Si, C, B, H) composite precursor having a softening point of 75 ° C and a molecular weight of 2400 and a molecular weight distribution of 1.3 was added to the melt spinning tank at 180 The mixture was melted at ° C for 6 hours, and subjected to defoaming treatment. Then, after cooling to 110 ° C, it was pressurized to 0.7 MPa with nitrogen gas, and spun on a spinning machine to obtain fibrils at a wire take-up rate of 2.5 m/s. The microfibrous morphology of the prepared fibrils is shown in Fig. 9.
  • the obtained fibrils have a smooth surface and a diameter of about 25 ⁇ m.
  • 2 g of the obtained fibril was aged in oxygen at 150 ° C for 40 min, and then heated to 1400 ° C at 1.5 ° C / min under Ar atmosphere, and after holding for 1 h, the temperature was lowered to obtain 1.30 g of gray-black solid fiber.
  • the content of Zr element in the fiber was measured by inductively coupled plasma atomic emission spectrometry, and the test result was 8.5%.
  • the phase composition of the obtained fiber was examined by XRD, and the results are shown in Fig. 10.
  • the results showed that the obtained fiber contained ZrC, ZrB 2 , SiC and C crystal phases.
  • the transmission electron micrograph of the obtained ceramic fiber is shown in Fig. 11, and it can be seen from the figure that the interplanar spacing Corresponding to the (101) crystal plane of SiC, the interplanar spacing Corresponding to the (200) crystal plane of ZrC, the interplanar spacing Corresponds to the (100) crystal plane of ZrB 2 .
  • the ZrC and ZrB 2 grains have a size of 20-60 nm and are dispersed in the nano-scale between the SiC grains to form a ZrC ⁇ ZrB 2 ⁇ SiC composite ceramic fiber.
  • a polytitanium carbosilane (containing Ti, Si, C, H) having a softening point of 80 ° C and a molecular weight of 1850 and a molecular weight distribution of 1.2 was added to a melt spinning can and melted at 140 ° C. After constant temperature for 8 h, defoaming treatment was carried out, and then the temperature was lowered to 100 ° C, and then pressurized to 0.3 MPa with nitrogen gas, and spun on a spinning machine to obtain fibrils at a wire take-up rate of 2.8 m/s, and the obtained fibril diameter was about 18 microns.
  • the content of Ti in the obtained fiber was measured by inductively coupled plasma atomic emission spectrometry, and the test result was 12.2%.
  • the results of XRD showed that the obtained fiber contained TiC and SiC crystal phases.
  • the fiber size was analyzed by transmission electron microscopy. The size of TiC grains was in the range of 35-50 nm, and it was dispersed in the nano-scale between SiC grains to form TiC ⁇ SiC composite ceramic fibers.
  • a polyfluorene carbosilane (containing Hf, Si, C, H) having a softening point of 70 ° C and a molecular weight of 1400 and a molecular weight distribution of 1.2 was added to a melt spinning can, melted at 200 ° C, and kept at a constant temperature for 6 hours for defoaming. After the treatment, the temperature was lowered to 100 ° C, and the mixture was pressed to 0.5 MPa with nitrogen, and spun on a spinning machine to obtain fibrils at a wire take-up rate of 3 m/s, and the obtained fibrils were about 12 ⁇ m in diameter.
  • the content of Hf in the obtained fiber was measured by inductively coupled plasma atomic emission spectrometry, and the test result was 25.2%.
  • the results of XRD showed that the obtained fiber contained HfC and SiC crystal phases.
  • the fiber grain size was analyzed by transmission electron microscopy. The size of HfC crystal grains was in the range of 50-150 nm, and dispersed in the nano-scale between SiC grains to form HfC ⁇ SiC composite ceramic fibers.
  • the spinning temperature and the aging temperature of the fibrils prepared by the melt spinning method are between 110 and 200 ° C, which is much lower than the spinning temperature and the aging temperature of the polycarbosilane.
  • polymetallic carbosilane/polyborazane containing different metal elements can be used as a raw material to obtain a multi-component multiphase ceramic fiber formed by combining MC and/or MB 2 with SiC.
  • the obtained ZrC, TiC, HfC, ZrB 2 can form a nano-scale dispersed binary or ternary multiphase ceramic fiber with SiC.
  • the size of the nanocrystals in the fiber grows.
  • the ceramic grain size in the fiber is still in the nanometer at the heat treatment temperature of 1600 °C. Grade, so it can effectively improve the high temperature creep resistance of the fiber and ensure that the mechanical properties of the fiber do not change much.
  • the interface between MC/MB 2 and SiC has no obvious orientation.
  • the complex phase ceramic formed by this interface structure is beneficial to improve the high temperature mechanical properties of ceramic fibers.
  • the mass percentage of Ti, Zr and Hf elements in the fiber is more than 3%, and the cermet phase can be uniformly dispersed in the SiC phase without cermet phase. Defects in performance unevenness caused by local aggregation.
  • the multiphase ceramic fiber prepared by the invention has excellent high temperature and oxidation resistance and maintains stable mechanical properties at 2200 °C.
  • the use of the multiphase ceramic fiber of the present invention can be used as a reinforcement for preparing a ceramic fiber reinforced composite material.
  • the polymetallic carbosilane of the present invention is excellent in solubility in a nonpolar solvent (benzene solvent), it can be easily incorporated into a carbon fiber (C f ) or a silicon carbide fiber preform by liquid phase impregnation, and then After high temperature cracking to form a carbon fiber or silicon carbide fiber reinforced composite phase ceramic composite material, the temperature and oxidation resistance of the composite phase ceramic composite material will be significantly higher than the original C f /C or C f /SiC Composite material.
  • a nonpolar solvent benzene solvent

Abstract

本发明公开了一种有机金属催化聚合的聚金属碳硅烷及其应用,所述聚金属碳硅烷的结构式如(I)。其中,R为甲基、乙基、丙基、乙烯基、氯甲基、苯基或苯乙基;M为Ti、Zr或Hf;m为等于或大于1的整数,n为等于或大于0的整数,Cp1与Cp2各自为环戊二烯基或取代环戊二烯基。本发明采用茂金属催化有机硅烷加成聚合反应生成聚金属碳硅烷的方法,聚合物中金属含量可调,反应步骤简单,反应条件温和,制备成本低。

Description

有机金属催化聚合的聚金属碳硅烷及其应用
本申请要求于2014年8月14日提交的申请号为201410398745.8、名称为“聚金属碳硅烷及其制备方法和应用”的中国发明专利申请以及于2014年9月25日提交的申请号为201410493930.5、名称为“复相陶瓷纤维及其制备方法”的中国发明专利申请的优先权。
技术领域
本发明总体涉及聚金属碳硅烷及其制备方法和应用,具体涉及聚金属(Ti、Zr、Hf)碳硅烷及其制备方法和应用。
背景技术
SiC陶瓷具有高强度、高模量、耐高温、抗腐蚀、抗氧化、低密度、导热系数高、热膨胀系数小、耐磨性能好等优异性能,在民用工业以及航天、航空、兵器等国防领域具有广泛的应用。
制备SiC主要有无机法和有机前驱体法。其中有机前驱体法制备SiC的主要步骤为:通过碱金属或碱土金属缩合法,制备聚二甲基硅烷或六元环体,然后将聚二甲基硅烷及六元环体在氩气气氛中经过450-470℃、8-10MPa的高温高压处理,发生插入反应,CH2插入Si-Si键中成为聚碳硅烷,前驱体的收率约为45-52wt%,用于制备SiC陶瓷。该方法由S.Yajima发现,并获得广泛应用。
其中,在上述有机前驱体法中制备聚碳硅烷需要首先合成聚硅烷,如聚二甲基硅烷、聚甲基苯基硅烷等,然后在高温高压下经甲基重排转化为可溶于非极性有机溶剂的聚碳硅烷,所得聚碳硅烷的收率约为45wt%。主要存在反应流程长,耗时长,工艺条件苛刻且形成大量的副产物的缺陷。
在SiC陶瓷中引入钛、锆、铝等元素可以提高耐热和抗氧化性能,但是目前金属元素的引入一般通过金属醇盐或金属氧杂烷等与聚碳硅烷反应,以制备含氧的聚钛锆碳硅烷,并在高温热解时通过碳热反应等去除氧。钛锆等金属元素含量一般不超过3%。
高性能陶瓷纤维结合了纤维的可纺织加工特性和陶瓷的高强度、高模量、耐高温、抗腐蚀、抗氧化、低密度等优异性能,广泛应用于复合材料的增强体,用于制备金属和陶瓷基等复合材料。目前高温非氧化物陶瓷纤维主要以SiC纤维为主,包含有机高分子前驱体转化法SiC纤维、化学气相沉积法SiC纤维以及炭模板转化SiC纤维等,其中有机前驱体法制备SiC纤维是以有机硅高分子化合物为原料,经纺丝、不熔化和陶瓷化制得具有β-SiC结构的无机陶瓷纤维,是目前比较成熟且已实现工业化生产的方法。
为了制备耐高温和抗氧化的SiC纤维,主要考虑的是如何降低SiC纤维中氧和游离碳的含量,制备具有近化学计量比、高致密度的SiC纤维。已公开的专利中,通过在纤维中引入少量异质元素如Al、B、Ti、Zr等,在纤维裂解过程中形成陶瓷微晶共熔体,抑制高温下的晶粒过分长大,取得了良好的效果。如日本宇部公司生产含有1.0%Zr的Tyranno ZM、含有1.9%Ti的Tyranno Lox-E,以及道康宁公司含有2.1%Ti的Sylramic纤维,抗氧化温度可达到1500℃左右。德国Bayer公司研制的Siboramic纤维(SiBN3C),则可以在1800℃的惰性气氛中稳定存在,耐1500℃氧化。但是,除了Siboramic纤维中引入较高含量的B、N元素外,其他类型的碳化硅纤维引入的Ti/Zr含量都很少,这主要是由于其中Zr/Ti/Al等金属元素的引入方式所决定的。也即,上述纤维以含有Si-H键的有机聚合物如聚硅碳硅烷(PSCS)、聚硅烷(PS)、聚碳硅烷(PCS)等为原料,加入Zr/Ti/Al的含氧有机金属化合物如它们的乙酰丙酮化合物、羰基化合物、酮基化合物为反应添加剂,形成含Zr/Ti/Al的有机聚合物。受Zr/Ti/Al有机金属化合物中含氧结构的限制以及与有机硅前驱体中Si-H键反应程度的限制,难以形成高掺杂含量的复相陶瓷结构,引入的Ti/Zr含量都很少,质量分数一般都低于3%。
MC·MB2·SiC(M=Ti、Zr、Hf)三元复相陶瓷中陶瓷组分均具有极高的熔点,例如,ZrC的熔点为3540℃,ZrB2的熔点为3245℃,具有优良的耐高温和抗氧化性能,通过粉末热压技术已经成功制备了抗氧化温度超过2500℃的复相陶瓷材料。特别是由于晶界阻止的作用,前驱体法热解所得复相陶瓷的析晶温度比热解SiC提高500℃ 左右,制备含有SiC以及MC和/或MB2的多元复相陶瓷纤维将有望满足制备耐更高温度复合材料的需求。
发明内容
本发明的目的之一是提供一种新型的聚金属碳硅烷,所述聚金属碳硅烷中金属含量可调,茂金属和碳硅烷以化学键结合的高分子形式存在。
根据本发明的聚金属碳硅烷,其结构式如下:
Figure PCTCN2015085508-appb-000001
其中,R为甲基、乙基、丙基、乙烯基、氯甲基、苯基或苯乙基;M为Ti、Zr或Hf;m为等于或大于1的整数,n为等于或大于0的整数,Cp1与Cp2各自为环戊二烯基或取代环戊二烯基。
在本发明的一个优选实施例中,所述的聚金属碳硅烷其结构式如下:
Figure PCTCN2015085508-appb-000002
其中R为甲基、乙基、丙基、乙烯基、氯甲基、苯基或苯乙基;R’为Cl、CH2-MCp1Cp2Cl、Si(Me)3、CH3、C2H5、OH、OCH3或OC2H5
本发明的目的之二是提供一种制备上述聚金属碳硅烷的方法,其制备条件温和可控。
根据本发明的制备聚金属碳硅烷的方法,包括步骤:
(1)将反应物1与反应物2按比例加入到有机溶剂中,在0-160℃的反应温度下将反应物3滴入到反应体系中,充分反应直至反应体系为中性,冷却至室温。
(2)脱除反应体系中的沉淀得到溶液G,将溶液G中的溶剂脱除,得到所述的聚金属碳硅烷;
其中,步骤(1)中反应物1为二氯二茂M或者二氯二取代茂基M,M为Ti、Zr或Hf,反应物2为碱金属,有机溶剂为非极性溶剂,反应物3的结构式如下所示:
SiR1R2Cl2
其中,R1为甲基;R2为甲基、乙基、丙基、乙烯基、氯甲基、苯基或苯乙基;
其中,反应物1与反应物3的物质的量的比为1:50~1:1,反应物2与反应物1和反应物3二者共含有的Cl的物质的量的比为1-1.25(例如,当反应物2为1摩尔时,反应物1和反应物3二者中含有的Cl元素的物质的量之和则为1-1.25摩尔),有机溶剂的质量为反应物3质量的3-10倍;
其中,步骤(1)和(2)均在无水无氧条件下进行,使用惰性气体保护。
在本发明的一个优选实施例中,反应物2与反应物1和反应物3二者共含有的Cl的物质的量的比为1-1.1。
在本发明的另一个优选实施例中,所述的反应温度为90-110℃。
在本发明的又一个优选实施例中,所述非极性溶剂为甲苯或二甲苯。
在本发明的又一个优选实施例中,所述碱金属为钠、钾或钠钾合金。
在本发明的又一个优选实施例中,所述惰性气体为氮气或氩气。
在本发明的又一个优选实施例中,在反应步骤(2)中,将溶液G中的溶剂脱除后所得到的产物,在90-350℃重整温度下进行重整后再得到所述的聚金属碳硅烷。
本发明的目的之三是提供一种复合碳化物及其制备方法,其中复合碳化物中各碳化物呈均匀弥散分布。
根据本发明的制备复合碳化物的方法,包括步骤:
采用本发明目的之一中所述的聚金属碳硅烷为前驱体,在惰性气体保护下经1100℃以上高温热处理后,得到SiC·MC复合碳化物。优选的工艺条件为升温速率为1-5℃/min,热处理温度1100-1600℃,保温1-4小时。
针对现有技术中SiC纤维引入钛、锆等金属元素质量分数较低、含氧量高,难以实现均匀弥散、不能形成复相陶瓷结构,因而无法获得抗氧化性能更高的陶瓷纤维的缺陷,本发明的目的之四是提供一种新型的碳化物和/或硼化物复相陶瓷纤维及其制备方法。
根据本发明的一个方面,提供一种复相陶瓷纤维,其组分中含有SiC以及MC和/或MB2,SiC与MC和/或MB2呈均匀弥散分布,其中M为Ti、Zr、Hf中的一种或多种。也就是说,复相陶瓷纤维必含有SiC,还含有MC和MB2二者中的至少一种;MC可由TiC、ZrC和HfC中的一种或几种组合形成,MB2可由TiB2、ZrB2和HfB2中的一种或几种组合形成。
在本发明的一个具体实施例中,其中SiC为不完全结晶的连续相,MC和/或MB2以2-200nm的粒径分散在SiC连续相中。优选情况下,其中MC和/或MB2的粒径为2-50nm。
在本发明的一个优选实施例中,其中M占整个复相陶瓷纤维的质量分数为3%-30%。
在本发明的另一个具体实施例中,以含有M、Si、C、H以及可选择的B元素的单一或复合有机高分子前驱体为原料制得。
根据本发明的另一方面,提供一种上述复相陶瓷纤维的制备方法,包括步骤:
(1)将含有M、Si、C、H以及可选择的B元素的单一或复合有机高分子前驱体加入熔融纺丝料罐中,在90-180℃下熔融并脱泡处理后,加压至0.1-0.7MPa,进行熔融纺丝,得到原纤维;
(2)将所得原纤维进行熟化稳定化,然后以0.5-3℃/min的升温速率升温至1100-1600℃,热处理后(陶瓷化)得到复相陶瓷纤维。
步骤(1)中的高分子前驱体可以是本发明目的之一中所述的聚金属碳硅烷单一前驱体,还可以是本发明目的之一中所述的聚金属碳硅烷与聚硼氮烷混合形成的复合前驱体。
优选情况下,其中,步骤(1)中有机高分子的熔融脱泡处理温度为155-165℃;纺丝压力为0.3-0.5MPa。
优选情况下,其中,步骤(2)中的熟化稳定化处理,采用在空气或其他氧化气氛中交联或紫外线交联方式,使得纤维表面固化。 为了提高纤维的力学性能,步骤(2)中的热处理过程可以施加一定的牵伸力。
本发明的有益效果如下:
(1)提供了一种新型的聚金属碳硅烷,所述聚金属碳硅烷中不含氧,茂金属和碳硅烷以化学键结合的形式存在,且金属含量可调。
(2)本发明采用茂金属催化有机硅烷加成聚合反应生成聚金属碳硅烷的方法,使用的原料和合成过程均不含氧,可在常压甲苯回流温度下进行,在常压和较低温度下(<110℃)即可形成Si-CH2-Si键,同时形成Si-H键,反应步骤简单,反应条件温和,制备成本低,产物转化率高。
(3)本发明提供的聚金属碳硅烷能够在1100℃以上惰性气氛中热处理即可转化为高纯度的SiC·MC复相陶瓷(M=Ti、Zr或Hf)。其陶瓷化转变温度较低,陶瓷质量收率为20-65%,所得的复相陶瓷为纳米级分散的复相SiC·MC陶瓷。
(4)本发明提供的聚金属碳硅烷中含有活性官能基Si-H,可与含有B-Cl、-NHCH3、C=C官能基的前驱体发生聚合反应,引入相应的B、N、C等元素,可用于制备MC·MB2·SiC多元复相陶瓷(M=Ti、Zr或Hf)。
(5)本发明提供的由MC和/或MB2与SiC组合形成的多元复相陶瓷纤维,其中M的质量含量大于3%,MC和/或MB2均匀分散于SiC连续相中,极大地扩展了复相陶瓷纤维的组分和配比选择范围。
(6)本发明提供的由MC和/或MB2与SiC组合形成的多元复相陶瓷纤维中多元陶瓷呈纳米级弥散分布,能够有效地抑制各组元特别是SiC的晶粒长大,有利于提高纤维的抗高温蠕变性能。
(7)本发明提供的由MC和/或MB2与SiC组合形成的多元复相陶瓷纤维的制备方法,前驱体的熔融纺丝温度和不熔化温度更低,拓宽了前驱体种类和基体的使用范围,更为经济适用。
附图说明
图1为实施例1所制备的聚锆碳硅烷的红外谱图。
图2为实施例1所制备聚锆碳硅烷的热重图谱。
图3为实施例2所制备的聚锆碳硅烷的红外谱图。
图4为实施例1所制备的聚锆碳硅烷经热处理所得陶瓷产物的XRD谱图。
图5为实施例1所制备的聚锆碳硅烷经热处理后所得陶瓷产物的扫描电镜照片。
图6为实施例13所制备的原纤维的SEM照片。
图7为实施例13所制备的复相陶瓷纤维横截面的背散射SEM照片。
图8为实施例13所制备的复相陶瓷纤维的TEM照片。
图9为实施例14所制备的原纤维的SEM照片。
图10为实施例14所制备的复相陶瓷纤维的XRD谱图。以及
图11为实施例14所制备的复相陶瓷纤维的TEM照片。
具体实施方式
下面通过具体实施例并结合附图对本发明进一步进行描述。本领域技术人员应当理解,以下描述仅用于解释本发明而非用于对其作出任何限制。
首先,通过具体实施例来描述本发明的聚金属碳硅烷及其制备方法。
实施例1
在室温、氮气保护下,将12克Na片、250mL甲苯加入500mL四口烧瓶中,于110℃高速搅拌5分钟将钠片打成钠砂,停止搅拌,降温至100℃,加入20.46克(0.07mol)二氯二茂锆,缓慢滴入27.10克(0.21mol)二氯二甲基硅烷,然后在氮气保护、100℃加热条件下搅拌5小时至溶液为中性,停止加热,自然冷却至室温,得到溶液G1。在-0.1MPa、60℃下,采用旋转蒸发仪脱除溶液G1中的甲苯溶剂,得到24.35克黑棕色粘稠聚合物,即聚锆碳硅烷A1,产率为88.03wt%(以所得聚金属碳硅烷的理论产量为基准进行计算)。
采用KBr压片法对固体产物A1进行红外光谱分析,结果如图1所示。其中波数1452cm-1、1080cm-1处对应于茂锆中环戊二烯基的 吸收峰;在波数2089cm-1处、波数877cm-1处的吸收峰对应于Si-H键的吸收峰;波数1368cm-1处、波数1018cm-1处的吸收峰对应于Si-CH2-Si键的吸收峰;在波数1398cm-1处、波数1248cm-1处的吸收峰对应于Si-CH3键的吸收峰。通过上述分析表明,二氯二甲基硅烷中的Si-CH3在碱金属Na和二氯二茂锆的协同作用下发生了加成聚合反应,形成了含有Si-CH2-Si、Si-H、Si-CH3的聚锆碳硅烷。
对固体产物A1进行元素分析,结果为:Si(19.50wt%)、C(44.58wt%)、Zr(21.20wt%)、H(6.50wt%)、Cl(10.74wt%),O(0.01wt%)。其中Cl为端基,可通过引入其它的封端剂如ClSi(CH3)3、LiCH3、HOCH3等而将氯端基置换掉;少量的氧可能由于测量过程中聚合物氧化所致。由此可知所述产物的化学式为Si3C16ZrH28Cl1.34
通过凝胶渗透色谱(GPC)测试聚合物A1的分子量及分子量分布,分别为:Mn=1200和MW/Mn=1.2,分子量分布较为均一。
图2所示为所述产物H1在Ar条件下,以10℃/min升温至1100℃的热重曲线。由图2可知,所述产物在200℃开始缓慢失重,在250-600℃范围失重约40%,600℃之后失重变缓,1100℃时所述产物的陶瓷收率约62%。
实施例2
在室温、氮气保护下,将12.88克金属K、150mL二甲苯加入500mL四口烧瓶中,在60℃、搅拌条件下加入4.38克(0.015mol)二氯二茂锆,并缓慢滴入28.67克(0.15mol)二氯甲基苯基硅烷,然后在60℃加热条件下搅拌5小时至清液为中性,停止加热,自然冷却至室温,得到溶液G2。脱除溶液G2中的溶剂,得到20.24克粘稠聚合物,即聚锆碳硅烷A2,产率为87.13%。
采用KBr压片法对该粘稠聚合物A2进行红外光谱分析,结果如图3所示,在波数1448cm-1、波数1080cm-1处的吸收峰对应于茂锆中环戊二烯基的吸收峰;在波数2091cm-1处、波数879cm-1处的吸收峰对应于Si-H键的吸收峰;波数1368cm-1处、波数1018cm-1处的吸收峰对应于Si-CH2-Si键的吸收峰;在波数1398cm-1处、波数1248cm-1处的吸收峰对应于Si-CH3键的吸收峰。波数1488cm-1处、 波数1815cm-1、1879cm-1及1950cm-1处很弱的吸收峰对应于苯基的吸收峰,以及波数2946cm-1处对应于苯基的强吸收峰。通过上述分析表明,二氯甲基苯基硅烷中的Si-CH3在金属K和二氯二茂锆的协同作用下发生了加成聚合反应,形成了含有Si-CH2-Si、Si-H、Si-CH3、Si-Ph的聚碳锆硅烷。
对固体产物A2进行元素分析,结果为:Si(19.65wt%)、C(67.45wt%)、Zr(6.40wt%)、H(6.23wt%)、Cl(0.27wt%),由此可知所述产物的化学式为Si9.8C80ZrH90Cl1.50
通过凝胶渗透色谱(GPC)测试聚合物A2的分子量及分子量分布,测得Mn=1000和MW/Mn=1.5,表明产物的分子量分布较为均一。
实施例3
在室温、氮气保护下,将11.5克Na、280mL二甲苯加入500mL四口烧瓶中,在110℃、搅拌条件下加入2.49克(0.01mol)二氯二茂钛,并缓慢滴入25.81克(0.2mol)二氯二甲基硅烷,然后在140℃加热条件下搅拌8小时至溶液为中性,停止加热,自然冷却至室温,得到溶液G3。脱除溶液G3中的溶剂,得到10.2克粘稠聚合物,即聚钛碳硅烷A3,产率为76.23%。
采用KBr压片法对该固体产物A3进行红外光谱分析,结果显示,在波数1452cm-1、波数1080cm-1处的吸收峰对应于茂锆中环戊二烯基的吸收峰;在波数2089cm-1处、波数877cm-1处的吸收峰对应于Si-H键的吸收峰;波数1368cm-1处、波数1018cm-1处的吸收峰对应于Si-CH2-Si键的吸收峰;在波数1398cm-1处、波数1248cm-1处的吸收峰对应于Si-CH3键的吸收峰。通过上述分析表明,二氯二甲基硅烷中的Si-CH3在金属Na和二氯二茂钛的协同作用下发生了加成聚合反应,形成了含有Si-CH2-Si、Si-H、Si-CH3的聚钛碳硅烷。
对固体产物A3进行元素分析,结果为:Si(34.76wt%)、C(46.34wt%)、Ti(6.62wt%)、H(8.83wt%)、O(0.02wt%)、Cl(3.43wt%),少量的氧可能由于测量过程中聚合物氧化所致。由此可知所述产物的化学式为Si19.9C28TiH64Cl。
通过凝胶渗透色谱(GPC)测试聚合物A3的分子量及分子量分布,测得Mn=800和MW/Mn=1.4,表明产物的分子量分布较为均一。
实施例4
在室温、氮气保护下,将3.0克金属锂片、300mL三甲苯、3.80克(0.01mol)二氯二茂铪加入500mL四口烧瓶中,然后在搅拌条件下升温至160℃,缓慢滴入12.90克(0.1mol)二氯二甲基硅烷与19.11克(0.1mol)二氯甲基苯基硅烷,然后在氮气保护、160℃加热条件下搅拌5小时至溶液为中性,停止加热,自然冷却至室温,得到溶液G4。脱除溶液G4中的溶剂,得到18.76克粘稠聚合物,即聚铪碳硅烷A,产率为93.75%。
采用KBr压片法对固体产物A4进行红外光谱分析,结果显示,其中在波数1452cm-1、波数1080cm-1处的吸收峰对应于二氯二茂铪中环戊二烯基的吸收峰;在波数2089cm-1处、波数877cm-1处的吸收峰对应于Si-H键的吸收峰;波数1368cm-1处、波数1018cm-1处的吸收峰对应于Si-CH2-Si键的吸收峰;在波数1398cm-1处、波数1248cm-1处的吸收峰对应于Si-CH3键的吸收峰。波数1488cm-1处、波数1815cm-1、1879cm-1及1950cm-1处的吸收峰对应于苯基的吸收峰。通过上述分析表明,二氯二甲基硅烷与二氯甲基苯基硅烷中的Si-CH3在金属Li和二氯二茂铪的协同作用下发生了加成聚合反应,形成了含有Si-CH2-Si、Si-H、Si-CH3、Si-Ph的聚铪碳硅烷。
对固体产物A4进行元素分析,结果为:Si(26.81wt%)、C(55.45wt%)、Hf(8.5wt%)、H(7.18wt%)、O(0.02wt%)、Cl(3.28wt%),少量的氧可能由于测量过程中聚合物氧化所致,由此可知所述产物的化学式为Si20C54HfH90Cl1.23
通过凝胶渗透色谱(GPC)测试聚合物A4的分子量及分子量分布,测得Mn=600和MW/Mn=1.5,产物的分子量分布较为均一。
实施例5
室温下,在氮气保护下,将10.0克Na、300mL甲苯加入500mL四口烧瓶中,于110℃高速搅拌10分钟后,停止搅拌,降温至95℃,加入1.39克(0.004mol)二氯二乙基取代茂锆((η5-C2H5C5H4)2ZrCl2),缓慢滴入25.81克(0.2mol)二氯二甲基硅烷中,然后在氮气保护、100℃加热条件下搅拌15小时,停止加热,自然冷却至室温,得到溶液G5。脱除溶液G5中的溶剂,得到8.05克粘稠聚合物,即聚锆 碳硅烷A5,产率为56.02%。
采用KBr压片法对固体产物A5进行红外光谱分析,结果显示,其中在波数1452cm-1、波数1080cm-1处的吸收峰对应于二氯二乙基取代茂锆中环戊二烯基的吸收峰;在波数2089cm-1处、波数877cm-1处的吸收峰对应于Si-H键的吸收峰;波数1368cm-1处、波数1018cm-1处的吸收峰对应于Si-CH2-Si键的吸收峰;在波数1398cm-1处、波数1248cm-1处的吸收峰对应于Si-CH3键的吸收峰。通过上述分析表明,二氯二甲基硅烷中的Si-CH3在金属Na和二氯二乙基取代茂锆的协同作用下发生了加成聚合反应,形成了含有Si-CH2-Si、Si-H、Si-CH3的聚锆碳硅烷。
对固体产物A5进行元素分析,结果为:Si(43.10wt%)、C(42.11wt%)、Zr(2.80wt%)、H(9.79wt%)、Cl(2.15wt%)、O(0.03wt%),少量的氧可能由于测量过程中聚合物氧化所致,由此可知所述产物的化学式为Si50C114ZrH318Cl1.9
通过凝胶渗透色谱(GPC)测试聚合物A5的分子量及分子量分布,分别为Mn=790和MW/Mn=1.3,表明产物的分子量分布较为均一。
实施例6
在0℃、氮气保护下,将10.0克Na-K合金、300mL甲苯加入500mL四口烧瓶中,加入2.92克(0.01mol)二氯二茂锆,然后缓慢滴入25.81克(0.2mol)二氯二甲基硅烷,搅拌42小时至溶液为中性,停止冷却和搅拌,自然升温至室温,得到溶液G6。脱除溶液G6中的溶剂,得到9.00克粘稠聚合物,即聚锆碳硅烷A6,产率为61.0%。
采用KBr压片法对固体产物A6进行红外光谱分析,结果显示,其中在波数1452cm-1、波数1080cm-1处的吸收峰对应于二氯二乙基取代茂锆中环戊二烯基的吸收峰;在波数2089cm-1处、波数877cm-1处的吸收峰对应于Si-H键的吸收峰;波数1368cm-1处、波数1018cm-1处的吸收峰对应于Si-CH2-Si键的吸收峰;在波数1398cm-1处、波数1248cm-1处的吸收峰对应于Si-CH3键的吸收峰。通过上述分析表明,二氯二甲基硅烷中的Si-CH3在Na-K合金和二氯二茂锆的协同作用 下,在低温即可发生加成聚合反应,形成含有Si-CH2-Si、Si-H、Si-CH3的聚锆碳硅烷。
对固体产物A6进行元素分析,结果为:Si(50.28wt%)、C(30.30wt%)、Zr(8.23wt%)、H(6.67wt%)、Cl(4.48wt%)、O(0.04wt%),少量的氧可能由于测量过程中聚合物氧化所致,由此可知所述产物的化学式为Si19.9C28ZrH74Cl1.4
通过凝胶渗透色谱(GPC)测试聚合物A6的分子量及分子量分布,分别为Mn=680和MW/Mn=1.3,表明产物的分子量分布较为均一。
实例7
在室温、氮气保护下,将7.60克Na、150mL二甲苯加入500mL四口烧瓶中,于110℃高速搅拌10分钟后,停止搅拌,降温至95℃,加入2.92克(0.015mol)二氯二茂锆,缓慢滴入25.3克(0.15mol)二氯二苯基硅烷,在100℃加热条件下搅拌4小时,停止加热,自然冷却至室温,得到溶液G7。脱除溶液G7中的溶剂,得到9.1克淡黄色固体聚合物A7,同时在器壁上可观察到结晶产物C7。
采用KBr压片法对该结晶产物C7进行分析,其与标准二氯二茂锆的红外吸收峰一致,表明产物中混有未参与反应的二氯二茂锆原料。
用氯仿对淡黄色固体产物A7进行洗涤除去其中的二氯二茂锆,得到白色聚合物A7*。采用KBr压片法对该白色固体产物A7*进行红外光谱分析,结果显示,波数1488cm-1处、波数1815cm-1、1879cm-1及1950cm-1处的吸收峰对应于苯基的吸收峰;红外吸收峰中未观察到Si-H吸收峰。对A7*进行元素分析,结果为:Si(15.40wt%)、C(79.11wt%)、H(5.45wt%)、O(0.03wt%),由此可知所述产物的化学式为SiC12H10O0.01,与聚二苯基硅烷结构相近。
结果表明,二氯二茂锆对二氯二苯基单体不具有催化重排性能,并且不参与形成聚合物。
将实施例1至实施例6所得聚合物分别取5克,测量其在室温下、甲苯以及二甲苯溶剂中的溶解性,当每100g溶剂可溶解50g以上聚合物时为溶解性优异,每100g溶剂溶解低于50g聚合物时为溶 解性良,结果如表1所示。
表1聚合物在溶剂中的溶解性
样品 甲苯中溶解性 二甲苯中的溶解性
实例1 优异 优异
实例2 优异 优异
实例3 优异 优异
实例4 优异 优异
实例5 优异 优异
实例6 优异 优异
由实施例1至实施例7可知,以一种或几种含有Si-CH3的二氯烷基硅烷单体为原料,二氯二茂金属(钛、锆或铪)或者二氯二取代茂基金属(锆、钛或铪)为催化剂,经碱金属Li、Na或K协同作用,实现甲基重排和茂金属的加成聚合得到聚金属碳硅烷,其在非极性溶剂如甲苯、二甲苯中溶解性优异。通过调节茂金属反应物的含量,可以形成具有不同含量金属的聚金属碳硅烷。若原料为不含Si-CH3的二氯烷基硅烷单体,如二氯二苯基硅烷,则不会发生类似的加成聚合反应。
本发明的制备方法中目标产物即为含钛锆铪等元素的聚碳硅烷,避免了S.Yajima法中首先制备聚甲基硅烷,然后通过复杂的甲基重排反应制备聚碳硅烷的过程。本发明不需要进行聚二甲基硅烷与金属钠及氯化钠分离和纯化、干燥等繁琐步骤,反应流程缩短。无需进行高温(>450℃)和高压(>8MPa)热重排,制备的工艺条件更为温和、反应条件更宽松(常压、0-160℃);产物转化率大大提高(大于85%)。
将实例1至实例6所得的聚金属碳硅烷在Ar气氛下,以10℃/min升温至1100℃并保温1小时后降至室温,通过上述热处理后,测量所得聚金属碳硅烷的陶瓷收率(即最终得到的复合陶瓷与采用的聚金属碳硅烷的重量比),结果如表2所示。
表2不同聚合物的陶瓷收率比较
样品 数均分子量 Si/M摩尔比 陶瓷收率
A1 1200 3:1 62%
A2 1000 10:1 36%
A3 800 20:1 26%
A4 600 20:1 31%
A5 790 50:1 24%
A6 680 20:1 32%
由表2可知,含Si反应物与含茂金属反应物的摩尔比较大时,所得聚合物的陶瓷收率降低至25%左右,为了提高此类聚合物的陶瓷收率,发明人将实施例2所得聚合物在不同条件下先进行重整处理,然后再进行高温热处理(Ar气氛下,以10℃/min升温至1100℃后保温1小时后降至室温),测量所得陶瓷产率,结果如表3所示。
表3不同处理条件下所得聚合物性能的比较
样品 压力 温度/℃ 分子量 分子量分布 陶瓷收率
A2-1 常压 240 860 1.3 50%
A2-2 -0.098MPa 200 750 1.3 55%
A2-3 3MPa 240 880 1.3 60%
由表3可知,在溶液G2脱除溶剂之后,将得到所述的产物在一定温度、压力条件下的进行重整处理,经过重整处理后,所得的聚金属碳硅烷A2的陶瓷收率(最高60%)比未经过重整处理的A2的陶瓷收率(36%)出乎预料地得到了大大提高。这可能是因为重整处理可以脱除部分小分子,减少了聚合物中Si-Si键的含量。
下面以二氯二茂锆与二氯二甲基硅烷在钠作用下的反应为例,阐述本发明所述聚金属碳硅烷前驱体可能的合成反应机理如下:
1)自由基引发
二氯二茂锆与二氯二甲基硅烷在钠的作用下,部分或全部脱氯,形成自由基。以二氯二茂锆仅脱一个氯为例,阐述反应机理如下所示:
Figure PCTCN2015085508-appb-000003
Figure PCTCN2015085508-appb-000004
2)碳锆化学键的生成
一氯二茂锆自由基和二甲基硅自由基反应,形成Zr-C键:
Figure PCTCN2015085508-appb-000005
3)催化加成及链增长
Figure PCTCN2015085508-appb-000006
4)链封端
Figure PCTCN2015085508-appb-000007
Figure PCTCN2015085508-appb-000008
下面通过具体实施例来描述采用本发明的聚金属碳硅烷为原料 来制备复合碳化物。
实施例8
将实施例1所得聚合物2g在Ar气氛下加热,以2℃/min升温至1600℃,并保温1h后,以10℃/min降温,得到灰黑色固体约1.3g。采用XRD(X-射线衍射)进行测量,结果如图4所示,在2θ角为33.074°、38.386°、55.377°、66.049°、69.337°、82.208°处出现衍射峰,其与面心立方ZrC的特征峰吻合;在35.744°、60.026°、72.033°处出现衍射峰,其与面心立方SiC的特征峰吻合,证明所得固体为SiC·ZrC复合物。
由于Si、Zr的原子序数差别较大,因此在背散射电子成像时会有明显的差别。原子序数较大的部分图像较亮,原子序数较小的部分图像较暗。通过明暗对比即可明显区分出两种元素的分布状态。因此,对所得陶瓷产物采用背散射电子成像技术进行分析,测试结果如图5所示。由图5可知,含白色亮点(Zr)呈纳米级均匀分散于灰色基质(Si)中。结合图4分析可知,所得SiC·ZrC为纳米级均匀分布的复相陶瓷。
实施例9
将实施例2所得聚合物2g在Ar气氛下加热,以2℃/min升温至1000℃,并保温2h后,以10℃/min降温,得到灰黑色固体约0.72g。采用XRD进行测量,观察不到明显的衍射峰。将该灰黑色固体0.50g在Ar气、1100℃下保温热处理1h后,以10℃/min降温,得到灰黑色固体0.5g。再采用XRD进行测量,结果显示:在2θ角为33.074°、38.386°、55.377°、66.049°、69.337°处出现较弱衍射峰,其与面心立方ZrC的特征峰吻合;在2θ角为35.744°、60.026°、72.033°处出现较弱衍射峰,其与面心立方SiC的特征峰吻合,证明所得固体为SiC·ZrC复合物。
实施例10
将实施例3所得聚合物2g在Ar气氛下加热,以2℃/min升温至1200℃,并保温1h后,以10℃/min降温,得到灰黑色固体约0.49g。采用XRD进行测量,结果显示:在2θ角为36.040°、41.987°、60.899°、72.673°处出现较弱衍射峰,其与面心立方TiC的特征峰吻合;在2θ 角为35.744°、60.026°、72.033°处出现较弱衍射峰,其与面心立方SiC的特征峰吻合,证明所得固体为SiC·TiC复合物。
实施例11
将实施例4所得聚合物2g在Ar气氛下加热,以2℃/min升温至1400℃,并保温4h后,以10℃/min降温,得到灰黑色固体约0.58g。采用XRD进行测量,结果显示:在2θ角为33.402°、38.786°、56.025°、66.750°、70.168°、83.212°处出现较弱衍射峰,其与面心立方HfC的特征峰吻合;在2θ角为35.744°、60.026°、72.033°处出现较弱衍射峰,其与面心立方SiC的特征峰吻合,证明所得固体为SiC·HfC复合物。
实施例12
将实施例5所得聚合物2g在Ar气氛下加热,以2℃/min升温至1500℃,并保温1h后,以10℃/min降温,得到灰黑色固体约0.43g。采用XRD进行测量,采用XRD进行测量,结果显示:在2θ角为33.076°、38.380°、55.367°、66.039°、69.307°、82.198°处出现衍射峰,其与面心立方ZrC的特征峰吻合;在2θ角为35.744°、60.026°、72.033°处出现衍射峰,其与面心立方SiC的特征峰吻合,证明所得固体为SiC·ZrC复合物。
由实施例8至12可知,所得聚合物经过热处理后,能够在较低温度(1100℃)转化为纳米级均匀分布SiC·MC复合物。当热处理温度达1600℃时,从XRD图谱上可以较明显地观察到SiC和MC的衍射峰,也即陶瓷产物结晶良好。
下面通过具体实施例来描述采用本发明的聚金属碳硅烷为原料来制备复相陶瓷纤维。
实施例13
将软化点为70℃,分子量为1500,分子量分布为1.2的聚锆碳硅烷(含有Zr、Si、C、H)加入熔融纺丝料罐中,在160℃下熔融,恒温4h,进行脱泡处理,然后降温至120℃后,利用氮气加压至0.5MPa,在纺丝机上进行纺丝,在收丝速率为2m/s下得到原纤维。所制备的原纤维的微观形貌如图6所示,由图可知,所得原纤维表面光滑,直径约20微米。将实施例1所得原纤维2g在氧气、200℃下熟化20min,然后在Ar气氛下以0.5℃/min升温至1100℃,并保 温1h后,降温得到灰黑色固体纤维1.25g。
采用电感耦合等离子体原子发射光谱仪测量所得纤维中Zr元素的含量,测试结果为16.2%。采用XRD(X射线衍射法)对所得纤维的相组成进行检测,结果表明所得纤维含有ZrC和SiC晶相。所得纤维的截面通过背散射扫面电子显微镜(SEM)进行观察,结果如图7所示,所得纤维截面呈灰黑色,没有明显的亮点,表明Zr元素在纤维中均匀弥散分布。所得纤维截面的透射电子显微镜(TEM)照片如图8所示,晶面间距
Figure PCTCN2015085508-appb-000009
对应于SiC的(102)晶面,晶面间距
Figure PCTCN2015085508-appb-000010
对应于ZrC的(111)晶面,晶面间距
Figure PCTCN2015085508-appb-000011
对应于SiC的(101)晶面。ZrC晶粒尺寸在10-50nm,呈纳米级分散于SiC晶粒之间,形成了ZrC·SiC复相陶瓷纤维。
实施例14
将软化点为75℃,分子量为2400,分子量分布为1.3的聚锆碳硅烷-聚硼氮烷(含有Zr、Si、C、B、H)复合前驱体加入熔融纺丝料罐中,在180℃下熔融,恒温6h,进行脱泡处理,然后降温至110℃后,利用氮气加压至0.7MPa,在纺丝机上进行纺丝,在收丝速率为2.5m/s下得到原纤维。所制备的原纤维微观形貌如图9所示,由图可知,所得原纤维表面光滑,直径约25微米。将所得原纤维2g在氧气、150℃下熟化40min,然后在Ar气氛下以1.5℃/min升温至1400℃,并保温1h后,降温得到灰黑色固体纤维1.30g。
采用电感耦合等离子体原子发射光谱仪测量纤维中Zr元素的含量,测试结果为8.5%。采用XRD对所得纤维的相组成进行检测,结果如图10所示,结果表明所得纤维含有ZrC、ZrB2、SiC和C晶相。所得陶瓷纤维的透射电子显微镜照片如图11所示,由图可知,晶面间距
Figure PCTCN2015085508-appb-000012
对应于SiC的(101)晶面,晶面间距
Figure PCTCN2015085508-appb-000013
对应于ZrC的(200)晶面,晶面间距
Figure PCTCN2015085508-appb-000014
对应于ZrB2的(100)晶面。ZrC、ZrB2晶粒的尺寸在20-60nm范围内,呈纳米级分散于SiC晶粒之间,形成了ZrC·ZrB2·SiC复相陶瓷纤维。
实施例15
将软化点为80℃,分子量为1850,分子量分布为1.2的聚钛碳硅烷(含有Ti、Si、C、H)加入熔融纺丝料罐中,在140℃下熔融, 恒温8h,进行脱泡处理,然后降温至100℃后,利用氮气加压至0.3MPa,在纺丝机上进行纺丝,在收丝速率为2.8m/s下得到原纤维,所得原纤维直径约18微米。将所得原纤维2g在氧气、110℃下熟化60min,然后在Ar气氛下以3℃/min升温至1500℃,并保温1h后,降温得到灰黑色固体纤维0.92g。
采用电感耦合等离子体原子发射光谱仪测量所得纤维中Ti元素的含量,测试结果为12.2%。采用XRD进行检测,结果表明所得纤维含有TiC和SiC晶相。采用透射电子显微镜分析纤维晶粒尺寸,TiC晶粒的尺寸大小在35-50nm范围内,呈纳米级分散于SiC晶粒之间,形成了TiC·SiC复相陶瓷纤维。
实施例16
将软化点为70℃,分子量为1400,分子量分布为1.2的聚铪碳硅烷(含有Hf、Si、C、H)加入熔融纺丝料罐中,在200℃下熔融,恒温6h,进行脱泡处理,然后降温至100℃后,利用氮气加压至0.5MPa,在纺丝机上进行纺丝,在收丝速率为3m/s下得到原纤维,所得原纤维直径约12微米。将所得原纤维2g在氧气、140℃下熟化40min,然后在Ar气氛下以2℃/min升温至1600℃,并保温1h后,降温得到灰黑色固体纤维约1.35g。
采用电感耦合等离子体原子发射光谱仪测量所得纤维中Hf元素的含量,测试结果为25.2%。采用XRD进行检测,结果表明所得纤维含有HfC和SiC晶相。采用透射电子显微镜分析纤维晶粒尺寸,HfC晶粒的尺寸大小在50-150nm范围内,呈纳米级分散于SiC晶粒之间,形成了HfC·SiC复相陶瓷纤维。
由以上实例可知,采用熔融纺丝法制备原纤维的纺丝温度、熟化温度在110-200℃之间,远低于聚碳硅烷的纺丝温度与熟化温度。而且可采用含有不同金属元素的聚金属碳硅烷/聚硼氮烷为原料,得到MC和/或MB2与SiC组合形成的多元复相陶瓷纤维。
所得到的ZrC、TiC、HfC、ZrB2可与SiC形成纳米级分散的二元或三元复相陶瓷纤维。随着热处理温度的升高,纤维中的纳米晶粒尺寸长大,然而由于纳米级弥散分布的各组元的相互抑制,在热处理温度为1600℃时,纤维中陶瓷晶粒的尺度仍然在纳米级,因此 能够有效提高纤维的抗高温蠕变性能,确保纤维力学性能变化不大。MC/MB2与SiC的界面没有明显的取向,这种界面结构形成的复相陶瓷有利于提高陶瓷纤维的高温力学性能。
同时,由于采用合成的聚金属碳硅烷为原料,因此纤维中Ti、Zr、Hf元素的质量百分数尽管大于3%,各金属陶瓷相仍能够均匀分散于SiC相中,不会出现金属陶瓷相的局部聚集而导致的性能不均匀的缺陷。
本发明所制备的复相陶瓷纤维具有优异的耐高温抗氧化性能,在2200℃下保持力学性能稳定。使用本发明的复相陶瓷纤维可以作为制备陶瓷纤维增强复合材料的增强体。
另外,本发明的聚金属碳硅烷在非极性溶剂(苯系溶剂)中溶解性优异,因此可容易地通过液相浸渍的方式进入到碳纤维(Cf)或碳化硅纤维预制体中,再经高温裂解后形成碳纤维或碳化硅纤维增强的复相陶瓷基复合材料,这种复相陶瓷基复合材料的使用温度和抗氧化性能将明显高于原有的Cf/C或Cf/SiC复合材料。

Claims (15)

  1. 一种聚金属碳硅烷,其结构式如下:
    Figure PCTCN2015085508-appb-100001
    其中,R为甲基、乙基、丙基、乙烯基、氯甲基、苯基或苯乙基;M为Ti、Zr或Hf;m为等于或大于1的整数,n为等于或大于0的整数,Cp1与Cp2各自为环戊二烯基或取代环戊二烯基。
  2. 根据权利要求1所述的聚金属碳硅烷,其结构式如下:
    Figure PCTCN2015085508-appb-100002
    其中R’为Cl、CH2-MCp1Cp2Cl、Si(Me)3、CH3、C2H5、OH、OCH3或OC2H5
  3. 一种制备如权利要求1或2所述的聚金属碳硅烷的方法,包括步骤:
    (1)将反应物1与反应物2按比例加入到有机溶剂中,在0-160℃的反应温度下将反应物3滴入到反应体系中,充分反应直至反应体系为中性,冷却至室温;
    (2)脱除反应体系中的沉淀得到溶液G,将溶液G中的溶剂脱除,得到所述的聚金属碳硅烷;
    其中,步骤(1)中反应物1为二氯二茂M或者二氯二取代茂基M,M为Ti、Zr或Hf,反应物2为碱金属,有机溶剂为非极性溶剂,反应物3的结构式如下所示:
    SiR1R2Cl2
    其中,R1为甲基;R2为甲基、乙基、丙基、乙烯基、氯甲基、苯基或苯乙基;
    其中,反应物1与反应物3的物质的量的比为1:50~1:1,反应 物2与反应物1和反应物3二者共含有的Cl的物质的量的比为1-1.25,有机溶剂的质量为反应物3质量的3-10倍;
    其中,步骤(1)和(2)均在无水无氧条件下进行,使用惰性气体保护。
  4. 根据权利要求3所述的方法,反应物2与反应物1和反应物3二者共含有的Cl的物质的量的比为1-1.1。
  5. 根据权利要求3所述的方法,所述的反应温度为90-110℃。
  6. 根据权利要求3所述的方法,所述非极性溶剂为甲苯或二甲苯。
  7. 根据权利要求3所述的方法,所述碱金属为钠、钾或钠钾合金。
  8. 根据权利要求3所述的方法,所述惰性气体为氮气或氩气。
  9. 一种复合碳化物或复相陶瓷纤维,以权利要求1或2所述的聚金属碳硅烷为原料制得。
  10. 根据权利要求9所述的复合碳化物或复相陶瓷纤维,其中复合碳化物的制备步骤如下:
    采用所述的聚金属碳硅烷为前驱体,在惰性气体保护下经1100℃以上高温热处理后,得到SiC·MC复合碳化物。
  11. 根据权利要求10所述的复合碳化物或复相陶瓷纤维,其中热处理的工艺条件为升温速率为1-5℃/min,热处理温度1100-1600℃,保温1-4小时。
  12. 根据权利要求9所述的复合碳化物或复相陶瓷纤维,其中复相陶瓷纤维组分中含有SiC以及MC和/或MB2,SiC与MC和/或MB2呈均匀弥散分布。
  13. 根据权利要求12所述的复合碳化物或复相陶瓷纤维,其中SiC为连续相,MC和/或MB2以2-200nm的粒径分散在SiC连续相中。
  14. 根据权利要求13所述的复合碳化物或复相陶瓷纤维,其中MC和/或MB2的粒径为2-50nm。
  15. 根据权利要求12所述的复合碳化物或复相陶瓷纤维,其中M占整个复相陶瓷纤维的质量分数为3%-30%。
PCT/CN2015/085508 2014-08-14 2015-07-30 有机金属催化聚合的聚金属碳硅烷及其应用 WO2016023416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/310,951 US20170088674A1 (en) 2014-08-14 2015-07-30 Polymetallocarbosilane from organic metal catalyzed polymerization and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410398745.8A CN104211967B (zh) 2014-08-14 2014-08-14 聚金属碳硅烷及其制备方法和应用
CN201410398745.8 2014-08-14
CN201410493930.5A CN104233512B (zh) 2014-09-24 2014-09-24 复相陶瓷纤维及其制备方法
CN201410493930.5 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016023416A1 true WO2016023416A1 (zh) 2016-02-18

Family

ID=55303866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085508 WO2016023416A1 (zh) 2014-08-14 2015-07-30 有机金属催化聚合的聚金属碳硅烷及其应用

Country Status (2)

Country Link
US (1) US20170088674A1 (zh)
WO (1) WO2016023416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106339A (zh) * 2021-12-06 2022-03-01 长沙达菲新材料科技有限公司 一种聚金属碳硅烷先驱体的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021369794A1 (en) * 2020-10-30 2023-06-15 Starfire Systems, Inc. Composition and preparation for hafnium carbide ceramic precursor
JP2023087663A (ja) * 2021-12-13 2023-06-23 Ube株式会社 結晶性炭化ケイ素繊維、及びその製造方法、並びにセラミックス複合基材
CN115180950B (zh) * 2022-07-28 2023-05-19 中南大学 一种多元碳化物/碳化硅纳米复相陶瓷及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102315A1 (de) * 1991-01-26 1992-07-30 Solvay Deutschland Heteroelement enthaltende polycarbosilane
US20030134736A1 (en) * 1997-03-14 2003-07-17 Keller Teddy M. Novel linear metallocene polymers containing acetylenic and inorganic units and thermosets and ceramics therefrom
US20060171873A1 (en) * 2005-01-28 2006-08-03 Canon Kabushiki Kaisha Method of manufacturing silicon carbide
CN102093055A (zh) * 2010-12-31 2011-06-15 厦门大学 一种碳化硅/碳化钛复相陶瓷的制备方法
CN102268135A (zh) * 2011-06-16 2011-12-07 中国人民解放军国防科学技术大学 一种Zr-C-Si聚合物陶瓷先驱体及其制备方法与应用
CN103275326A (zh) * 2013-06-15 2013-09-04 厦门大学 一种制备液态无氧型聚锆碳硅烷的方法
CN103275327A (zh) * 2013-06-15 2013-09-04 厦门大学 一种制备液态无氧型聚钛碳硅烷的方法
CN103588484A (zh) * 2013-10-23 2014-02-19 航天材料及工艺研究所 一种可加工Si/C/Zr陶瓷前驱体及其制备方法
CN103772709A (zh) * 2014-01-03 2014-05-07 航天材料及工艺研究所 一种Si/C/Zr陶瓷前驱体及其制备方法
CN104211967A (zh) * 2014-08-14 2014-12-17 中国科学院过程工程研究所 聚金属碳硅烷及其制备方法和应用
CN104233512A (zh) * 2014-09-24 2014-12-24 中国科学院过程工程研究所 复相陶瓷纤维及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102315A1 (de) * 1991-01-26 1992-07-30 Solvay Deutschland Heteroelement enthaltende polycarbosilane
US20030134736A1 (en) * 1997-03-14 2003-07-17 Keller Teddy M. Novel linear metallocene polymers containing acetylenic and inorganic units and thermosets and ceramics therefrom
US20060171873A1 (en) * 2005-01-28 2006-08-03 Canon Kabushiki Kaisha Method of manufacturing silicon carbide
CN102093055A (zh) * 2010-12-31 2011-06-15 厦门大学 一种碳化硅/碳化钛复相陶瓷的制备方法
CN102268135A (zh) * 2011-06-16 2011-12-07 中国人民解放军国防科学技术大学 一种Zr-C-Si聚合物陶瓷先驱体及其制备方法与应用
CN103275326A (zh) * 2013-06-15 2013-09-04 厦门大学 一种制备液态无氧型聚锆碳硅烷的方法
CN103275327A (zh) * 2013-06-15 2013-09-04 厦门大学 一种制备液态无氧型聚钛碳硅烷的方法
CN103588484A (zh) * 2013-10-23 2014-02-19 航天材料及工艺研究所 一种可加工Si/C/Zr陶瓷前驱体及其制备方法
CN103772709A (zh) * 2014-01-03 2014-05-07 航天材料及工艺研究所 一种Si/C/Zr陶瓷前驱体及其制备方法
CN104211967A (zh) * 2014-08-14 2014-12-17 中国科学院过程工程研究所 聚金属碳硅烷及其制备方法和应用
CN104233512A (zh) * 2014-09-24 2014-12-24 中国科学院过程工程研究所 复相陶瓷纤维及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106339A (zh) * 2021-12-06 2022-03-01 长沙达菲新材料科技有限公司 一种聚金属碳硅烷先驱体的制备方法
CN114106339B (zh) * 2021-12-06 2022-11-25 长沙达菲新材料科技有限公司 一种聚金属碳硅烷先驱体的制备方法

Also Published As

Publication number Publication date
US20170088674A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
KR102267106B1 (ko) 폴리실로카브 계열 탄화 규소 물질, 이의 응용 및 장치
CN110629324B (zh) 一种含硼碳化硅纤维及其制备方法
WO2016023416A1 (zh) 有机金属催化聚合的聚金属碳硅烷及其应用
CN101240070B (zh) 陶瓷先驱体聚碳硅烷的超临界流体合成方法
CN104211967B (zh) 聚金属碳硅烷及其制备方法和应用
CN104233512B (zh) 复相陶瓷纤维及其制备方法
JP3760855B2 (ja) 窒化ホウ素被覆炭化ケイ素系セラミックス繊維及びその製造方法並びに該繊維で強化されたセラミックス基複合材料
CN110776320A (zh) 一种C/SiC-ZrC复相陶瓷基复合材料及其制备方法
US6133396A (en) Highly processable hyperbranched polymer precursors to controlled chemical and phase purity fully dense SiC
Yu et al. Single-source-precursor synthesis, microstructure and high temperature behavior of TiC-TiB2-SiC ceramic nanocomposites
CA2000221A1 (en) Silicon carbide fibre and production thereof
JP2011190169A (ja) 炭素繊維複合材、及びこの炭素繊維複合材を用いたブレーキ用部材、半導体用構造部材、耐熱性パネル、ヒートシンク
CN107226910B (zh) 一种以8-羟基喹啉铝为铝源制备聚铝碳硅烷先驱体的方法及其应用
Amoros et al. Synthesis and characterization of SiC/MC/C ceramics (M= Ti, Zr, Hf) starting from totally non-oxidic precursors
Long et al. Synthesis of soluble and meltable pre‐ceramic polymers for Zr‐containing ceramic nanocomposites
Gao et al. Synthesis of a meltable polyzirconosilane precursor for SiZrNC multinary ceramics
CN102093055B (zh) 一种碳化硅/碳化钛复相陶瓷的制备方法
WO2020032067A1 (ja) 結晶性炭化ケイ素繊維、及びその製造方法、並びにセラミックス複合基材
Anand et al. Structural evolution and oxidation resistance of polysilazane‐derived SiCN–HfO2 ceramics
Song et al. Fabrication and characterization of ZrC nano-ceramics derived from a single-source precursor and its feasibility as ZrC/C fibers in structure and function
Song et al. Facile synthesis of a carbon-rich SiAlCN precursor and investigation of its structural evolution during the polymer-ceramic conversion process
JP2003113537A (ja) 窒化ホウ素層を繊維表面に有する炭化珪素繊維及びその製造方法
Storozhenko et al. Synthesis of nanozirconooligocarbosilanes
KR20110016776A (ko) 지르코늄실리사이드들을 전구체로 하는 나노크기를 갖는 ZrB2-SiC 조성물 및 그 제조방법
JP3767170B2 (ja) 焼結SiC繊維結合体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310951

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831848

Country of ref document: EP

Kind code of ref document: A1