WO2016020885A1 - Vacuna en vector recombinante de adenovirus aviar serotipo 9 - Google Patents

Vacuna en vector recombinante de adenovirus aviar serotipo 9 Download PDF

Info

Publication number
WO2016020885A1
WO2016020885A1 PCT/IB2015/055994 IB2015055994W WO2016020885A1 WO 2016020885 A1 WO2016020885 A1 WO 2016020885A1 IB 2015055994 W IB2015055994 W IB 2015055994W WO 2016020885 A1 WO2016020885 A1 WO 2016020885A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
recombinant
disease
virus
further characterized
Prior art date
Application number
PCT/IB2015/055994
Other languages
English (en)
French (fr)
Inventor
Bernardo Lozano-Dubernard
Ernesto Soto-Priante
David Sarfati-Mizrahi
Original Assignee
Laboratorio Avi-Mex, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112017002577-9A priority Critical patent/BR112017002577A2/pt
Application filed by Laboratorio Avi-Mex, S.A. De C.V. filed Critical Laboratorio Avi-Mex, S.A. De C.V.
Priority to PE2022001034A priority patent/PE20221792A1/es
Priority to MX2017001742A priority patent/MX2017001742A/es
Priority to JP2017526775A priority patent/JP2017526737A/ja
Priority to EP15829016.3A priority patent/EP3178938A4/en
Priority to CN201580042608.3A priority patent/CN106661592A/zh
Priority to EA201790296A priority patent/EA038951B1/ru
Priority to CA2956997A priority patent/CA2956997A1/en
Priority to US15/502,443 priority patent/US10758608B2/en
Priority to KR1020177006378A priority patent/KR20170063552A/ko
Publication of WO2016020885A1 publication Critical patent/WO2016020885A1/es
Priority to PH12017500216A priority patent/PH12017500216B1/en
Priority to CONC2017/0001614A priority patent/CO2017001614A2/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/245Herpetoviridae, e.g. herpes simplex virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10221Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10234Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10241Use of virus, viral particle or viral elements as a vector
    • C12N2710/10243Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10211Aviadenovirus, e.g. fowl adenovirus A
    • C12N2710/10271Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16071Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16171Demonstrated in vivo effect

Definitions

  • the present invention is related to vaccines based on viral vectors, and more particularly is related to a vaccine based on recombinant vector of avian adenovirus serotype 9.
  • Adenoviruses are linear double-stranded DNA viruses, 70-90 nm in diameter, without envelope and with a icosahedral shaped capsid, which is formed by 240 hexons, 12 pentons and fibers that extend from each of the vertices from icosahedro. These hexons, pentons and fibers represent the main antigens of adenoviruses, and those that determine their serotype.
  • the adenovirus genome is approximately 30-45 kb in size, and contains four early regions (E1, E2, E3 and E4), and five late regions (L1-L5).
  • Adenoviruses have been isolated from different species, the two main genera being Aviadenovirus isolated from birds, and Mastadenovirus isolated from mammals.
  • Adenoviruses are considered good candidates as recombinant vectors for vaccine production because they are highly infectious and many of them are not pathogenic.
  • the vectors of Adenoviruses can transduce large genes efficiently and generate a prolonged immune response in animals.
  • the specific structure of adenoviruses requires the study of specific heterologous gene insertion sites for each species and that it is practically impossible to generalize about the biological behavior of the various adenoviruses known to be converted into a viral vector. recombinant
  • WO94 / 24268 describes recombinant FAdV vectors that have at least one heterologous nucleotide sequence inserted, and which are useful for generating an immune response in disease susceptible birds.
  • the non-essential regions of the adenoviral genome that may be suitable to replace or insert the heterologous gene are those located at the right end of the genome, preferably the region located between 97 and 99.9 um.
  • the recombinant vaccine could apparently be used in combination with vaccines against other viruses such as Marek's disease or Newcastle's disease, without this being proven. Additionally, this document also does not illustrate the behavior of adenovirus obtained after successive passes in cell lines for large-scale production.
  • US Patent No. 6,296,852 describes vectors of FAdV serotype 9 (FAdV-9) in which heterologous nucleotide sequence insertion is made in non-essential regions of the viral genome. These regions may be non-coding regions located at the left and / or right end of the genome, preferably in the region located at the right end (3 ' ), between 60 and 100u.m. As in the case of WO94 / 24268, this patent, although it identifies another wider region for the potential insertion of exogenous genes, does not illustrate its behavior, and especially its integrity, after successive passes in cell lines.
  • the non-essential left end region of the fowl adenovirus 9 genome is suitable for foreign gene insertion / replacement.
  • Virus Research. Vol 149, 167-174; 2010 it is disclosed that the non-essential region of the 5 'end of the genome of a FAdV-9 could also be a suitable site for insertion or replacement by exogenous genes to produce recombinant vectors.
  • one of the vectors was obtained by replacing the nonessential region located between nucleotides 491-282 with the gene encoding an enhanced green fluorescent protein (EGFP.
  • EGFP enhanced green fluorescent protein
  • non-essential regions of the FAdV genome represent potential sites where an exogenous nucleotide sequence can be inserted or replaced.
  • the vectors described in the state of the art have the disadvantage of not being stable at the time of producing recombinant vaccines on an industrial scale, because they lose the heterologous gene inserted after several passes in cell cultures.
  • WO94 / 24268 raise the possibility of using adenovirus in combination with Marek vaccines; Subsequent studies have shown that adenovirus vaccines and Marek virus vaccines have serious interference in the field when analyzing the mortality rate and injuries caused by both diseases in birds, preferably long-lived, such as chickens trading posture
  • maternal antibodies are another factor that can potentially cause interference with a vaccine. Although maternal antibodies confer protection to newborn animals, their presence may inhibit or diminish the effects of vaccines, causing the immune response produced by them to not be optimal.
  • a vaccine that provides lasting, or long-term, protection will take longer to achieve protection (late protection), although such protection will be given for a longer time, usually requiring less revaccination to achieve a desired protective effect.
  • early protection vaccines normally grants rapid or early protection, because it achieves an acceptable but not lasting level of protection in a short period of time.
  • inactivated virus vaccines grant more lasting protection than active virus vaccines, but require long times to achieve it, that is, protection is late, and in many cases, they also require revaccination although with less frequency.
  • Stine et al. Evaluation of inactivated newcastle disease, avian diseases, Vol. 24, No. 1 (Jan. - Mar., 1980), pp. 99-1 1
  • Toro et. al (Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine, Avian Diseases 55: 43-47, 201 1) evaluated the protection conferred by a competent adenovirus free recombinant adenovirus vaccine for replication expressing the H5 gene of Avian influenza optimized in its codons, which was applied in laying type birds at 5 days of age, and in some cases with revaccination at 15 days of age. The results showed that only birds that were revaccinated developed high antibody titers. These titles could be detected from 9 days of age, reaching its maximum at 32 days of age.
  • Marek virus there are some active viruses that, extraordinarily provide both early and lasting protection, such as the Marek virus.
  • Marek virus when Marek virus is used as a vector, it has been demonstrated in the state of the art that it achieves early and lasting protection against Marek's disease with a single application, but for the inserted exogenous antigen, it does not achieve early protection , but only presents late and lasting protection.
  • adenoviruses and in particular, avian adenovirus serotype 9, FAdV-9, have not been successfully used in the state of the art as a recombinant vaccine for birds with some gene exogenous to industrial scale, although various insertion sites have been described, on the one hand because stability is not achieved adequate in its reproduction in cell lines after successive passes, and on the other hand because the Marek's disease vaccine interferes with the mechanism of action of adenoviruses or vice versa, which is why in the state of the art it has been The use of adenovirus in combination with Marek's disease vaccines was expressly avoided. Moreover, it has not been possible to obtain a recombinant viral vaccine that achieves both early and lasting protection for an exogenous antigen inserted in the viral vector used with a single application.
  • a further object of the present invention is to provide a recombinant vaccine whose effectiveness is not affected by maternal antibodies, and induces an optimal immune response.
  • Figure 1A is the DNA restriction map of a recombinant FAdV-9 virus with avian influenza HA insert, constructed in accordance with the present invention.
  • Figure 1B is an agarose gel in which DNA fragments of the FAdV-9 recombinant virus with avian influenza HA insert, constructed in accordance with the present invention, obtained by restriction enzyme digestion are shown.
  • Figure 1C is a culture of uninfected CeLi cells, and infected with a recombinant FAdV-9 virus with avian influenza HA insert, constructed in accordance with the present invention.
  • Figure 2A is the DNA restriction map of a recombinant FAdV-9 virus with hepatitis 4 fiber insert with inclusion bodies, constructed in accordance with the present invention.
  • Figure 2B is an agarose gel in which DNA fragments of the recombinant FAdV-9 virus with hepatitis 4 fiber insert with inclusion bodies, constructed in accordance with the present invention, obtained by digestion with restriction enzymes are shown .
  • Figure 2C is a culture of uninfected CeLi cells, and infected with a recombinant FAdV-9 virus with hepatitis 4 fiber insert with inclusion bodies, constructed in accordance with the present invention.
  • Figure 3A is the DNA restriction map of a recombinant FAdV-9 virus with a glycoprotein B insert from the infectious bird laryngotracheitis virus, constructed in accordance with the present invention.
  • Figure 3B is an agarose gel in which DNA fragments of the recombinant FAdV-9 virus with glycoprotein B insert of the infectious bird laryngotracheitis virus, constructed in accordance with the present invention, obtained by digestion with restriction enzymes.
  • Figure 3C is a culture of uninfected CeLi cells, and infected with a recombinant FAdV-9 virus with glycoprotein B insert of infectious bird laryngotracheitis virus, constructed in accordance with the present invention.
  • Figure 4A is the DNA restriction map of a recombinant FAdV-9 virus with Newcastle disease virus HN protein insert, constructed in accordance with the present invention.
  • Figure 4B is an agarose gel in which DNA fragments of the recombinant FAdV-9 virus with HN protein insert of Newcastle disease virus, constructed in accordance with the present invention, obtained by digestion with enzymes of enzymes are shown. restriction.
  • Figure 4C is a culture of uninfected CeLi cells, and infected with a recombinant FAdV-9 virus with Newcastle disease virus HN protein insert, constructed in accordance with the present invention.
  • Figure 5A is the DNA restriction map of a recombinant FAdV-9 vector with Newcastle disease HN insert between nucleotides 38,807 and 40,561 of the genome.
  • Figure 5B is an agarose gel in which DNA fragments of the recombinant FAdV-9 virus with Newcastle disease HN insert between nucleotides 38,807 and 40,561 of the genome, obtained by restriction enzyme digestion, are shown.
  • Figure 5C is an agarose gel in which DNA fragments of the recombinant FAdV-9 virus with Newcastle disease HN insert between nucleotides 38,807 and 40,561 of the genome are shown after 2 passes in CeLi cell culture, obtained by digestion with restriction enzymes.
  • Figure 6 is a graph showing the results of hemagglutination (IH) inhibition of commercial light-weight (CRL) chicks immunized in ovo, with sera taken at 1 day of age (SD).
  • Figure 7 is a graph showing the results of IH of CRL chicks immunized in ovo, with sera taken at 10 DE.
  • Figure 8 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 days of incubation (DI) or at 1 DE, with sera taken at 19 DE.
  • Figure 9 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 DI or at 1 DE and revaccinated at 10 DE, with sera taken at 19 DE.
  • Figure 10 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 DI or at 1 DE, with sera taken at 31 DE.
  • Figure 1 1 is a graph showing the IH results of CRL chicks immunized in ovo at 18 DI or at 1 DE and revaccinated at 10 DE, with sera taken at 31 DE.
  • Figure 12 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 DI or at 1 DE, with sera taken at 38 DE.
  • Figure 13 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 DI or at 1 DE and revaccinated at 10 DE, with sera taken at 38 DE.
  • Figure 14 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 DI or at 1 DE, with sera taken at 45 DE.
  • Figure 15 is a graph showing the results of IH of CRL chicks immunized in ovo at 18 DI or 1 DE and revaccinated at 10 DE, with sera taken at 45 DE.
  • Figure 16 is a graph showing the potency results of CRL chicks immunized at 1 DE, with or without revaccination at 10 DE and challenged at 19 DE.
  • Figure 17 is a graph showing the potency results of CRL chicks immunized at 1 DE, with or without revaccination at 10 DE and challenged at 31 DE.
  • Figure 18 is a graph showing the potency results of CRL chicks immunized at 1 DE, with or without revaccination at 10 DE and challenged at 93 DE.
  • Figure 19 is a graph showing the results of IH of CRL chicks immunized at 1 DE, with or without revaccination at 10 DE, with sera taken at 19 DE.
  • Figure 20 is a graph showing the results of IH of CRL chicks immunized at 1 DE, with or without revaccination at 10 DE, with sera taken at 31 DE.
  • Figure 21 is a graph showing the results of IH of CRL chicks immunized at 1 DE, with or without revaccination at 10 DE, with sera taken at 93 DE.
  • Figure 22 is a graph showing the potency results of Chicks Free of Specific Pathogens (LPE) immunized at 1 and 10 DE, and challenged at 31 DE.
  • LPE Chicks Free of Specific Pathogens
  • Figure 23 is a graph showing the results of IH of LPE chicks immunized at 1 and 10 DE, with sera taken at 31 DE.
  • a recombinant vaccine comprising a serotype 9 avian adenovirus vector (FAdV-9) that has inserted at least one exogenous nucleotide sequence encoding at least one antigen from a a disease of interest and that replaces the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282 and a pharmaceutically acceptable vehicle, adjuvant and / or excipient, provides adequate protection against said disease of interest, being also stable when produced on an industrial scale because the adenovirus vector does not lose the exogenous nucleotide sequence inserted when successive passes are made in cell cultures.
  • FAdV-9 serotype 9 avian adenovirus vector
  • this recombinant vaccine does not lose its effectiveness in vaccinated birds even if it is administered in combination with a complete virus vaccine against Marek's disease, and that the Marek vaccine does not lose its effectiveness when administered with this recombinant vaccine .
  • the recombinant vaccine of the present invention has the advantage that its effectiveness is not affected by maternal antibodies in newborn animals and provides, with a single application, early and lasting protection.
  • the adenovirus vector used may be alive (active) or inactivated. Live or active is understood to mean that the recombinant vector maintains its ability to replicate, while inactivated means that the recombinant adenovirus vector containing the exogenous nucleotide sequence has lost the property of replication.
  • the inactivation of the recombinant vector is performed using physical or chemical procedures that are already well known in the state of the art, such as chemical inactivation with formaldehyde or beta-propiolactone (Office International des Epizooties 2008). Newcastle disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 576-589).
  • the vector used is an avian adenovirus serotype 9 (FAdV-9), which includes any strain.
  • the FAdV-9 is selected from the strains with GenBank accession numbers EU979376, AF083975, HQ697594, AF508958, AF339923, EU847634, EU847629, EU847628, DQ323986, AY683550, EU847635, NC_00813, and AC_00813.
  • the exogenous nucleotide sequence encodes for at least one antigen of a disease of interest, preferably said antigen being at least one disease selected from avian influenza, hepatitis with inclusion bodies, Infectious bird laryngotracheitis, Newcastle disease, Fabrizio pouch infection, infectious bronchitis, metapneumovirus (MPNV) disease, Marek's disease, infectious bird anemia, or any other gene whose size allows insertion into the adenovirus vector. More preferably, an avian influenza gene is used.
  • the exogenous nucleotide sequence consists of the gene that codes for the group comprising the hemoagglutinin (HA) of the avian influenza virus, selected from the 18 subtypes of hemoagglutinin or immunogenic variant of the influenza virus , which more preferably codes for at least one of the subtypes H1, H2, H3, H5, H6, H7 or H9 of said protein; Hepatitis virus fiber and hexon with inclusion bodies, serotypes 4 and 8; glycoprotein B (gB) and glycoprotein D (gD) of the infectious bird laryngotracheitis virus (LTI); HN and F proteins of Newcastle disease virus; VP2 protein from Fabrizio's infection virus; S1 and S2 protein of infectious bronchitis virus; metapneumovirus F protein (MPNV); and VP1, VP2 and VP3 protein of infectious bird anemia.
  • HA hemoagglutinin
  • avian influenza virus selected from the 18 subtypes of hemoagglutinin or immunogenic
  • the exogenous nucleotide sequence may comprise a gene that encodes at least one antigen from an avian adenovirus other than FAdV-9 used as a viral vector.
  • the adenovirus vector of the vaccine containing the exogenous gene of interest of the present invention can be prepared by PCR amplifying the nucleotide sequence of interest to be able to subsequently insert it, already amplified, into the adenovirus vector to which the region has been removed. non-essential genome located between nucleotides 491-282. The insertion of the exogenous gene and the deletion of the non-essential region of the adenovirus are performed using standard molecular biology cloning techniques. Clone Infectious thus produced is transfected in a cell culture for the generation of the recombinant virus.
  • the virus replicates in any system suitable for growth, such as immortalized liver cells of avian origin (CeLi), commercial cell lines or specifically designed to grow adenovirus, until at least the concentration of the virus required to achieve the antigenic response is achieved. , preferably at least 10 5 0 DICC50% per dose, more preferably at least 10 6 0 DICC50% per dose.
  • the recombinant virus can be replicated in CeLi line cells grown with specific culture medium, using static growth systems, in bottles for cell culture, in microcarriers or microcarriers, in large-scale cell production systems, or in Roller bottle systems, until a minimum immunoperoxidase test titre of 10 6 0 DICC50% per dose is achieved.
  • This titer can be achieved after performing 5 to 10 blind passes in the same type of cells.
  • the crop can be centrifuged, fractionated and preserved in deep freezing, thus obtaining what is identified as a master seed (SM).
  • SM master seed
  • the present invention includes a master seed of a recombinant avian adenovirus serotype 9 virus (FAdV-9) that has an exogenous nucleotide sequence inserted that codes for a disease antigen of interest and that replaces the non-essential region of the genome. of the adenovirus, specifically located between nucleotides 491-282; said master seed is obtained after 6 to 1 1 passes in cell culture.
  • FAdV-9 avian adenovirus serotype 9 virus
  • the vaccine in the modality in which the vaccine is live or active, it is an active virus, preferably selected among naturally occurring avian adenoviruses, of low pathogenicity or attenuated by methods already known in the state of the art.
  • the vaccine when the vaccine is inactivated, once the viral concentration required to achieve the antigenic response is reached, the virus is inactivated.
  • the inactivation is carried out by physical or chemical procedures well known in the state of the art, preferably by chemical inactivation with formaldehyde or beta-propiolactone.
  • aqueous solutions preferably selected from the group consisting of aqueous solutions comprising TPGA stabilizer (trehalose, phosphate, glutamate, albumin); aqueous solutions comprising stabilizer of peptones; and aqueous solutions comprising skim milk.
  • TPGA stabilizer trehalose, phosphate, glutamate, albumin
  • aqueous solutions comprising stabilizer of peptones
  • skim milk aqueous solutions
  • pharmaceutically acceptable carriers are preferably aqueous solutions or emulsions. More particularly, it is preferred that the vehicle used be a water-oil, oil-water or water-oil-water (WOW) emulsion, preferably a water-oil-water emulsion.
  • WOW water-oil-water
  • the live or active vaccine can be performed intramuscularly, intranasally, subcutaneously, spraying, fogging, oral through drinking water, or in ovo using the means and forms appropriate to each case. If it is an inactivated vaccine, it is administered intramuscularly or subcutaneously, preferably subcutaneously.
  • the recombinant vaccine of the present invention can be administered in a single dose, in two doses or in more doses, either alone or in conjunction with other recombinant or non-recombinant, live (active) or inactivated vaccines, such as the vaccine against Marek's disease.
  • the vaccine of the present invention when administered in a single dose or application, it achieves both early and lasting protection for the disease of interest related to the antigen encoded by the exogenous nucleotide sequence inserted into the viral vector contained in said vaccine.
  • a multivalent recombinant vaccine comprising a serotype 9 avian adenovirus vector (FAdV-9) in accordance with the present invention, which has inserted at least two exogenous nucleotide sequences encoding at least two antigens of either the same disease of interest or of different diseases of interest, and which replace the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282.
  • FAdV-9 avian adenovirus vector
  • a multivalent vaccine which comprises a first vaccine based on a serotype 9 avian adenovirus vector (FAdV-9) in accordance with the present invention, which has at least one exogenous nucleotide sequence inserted that encodes at least one antigen of a disease of interest and replaces the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282; and at least a second vaccine based on a serotype 9 avian adenovirus vector (FAdV-9) in accordance with the present invention, which has inserted at least one exogenous nucleotide sequence encoding at least one antigen other than that of the first vaccine, either of the same disease of interest or of a different one, and which replaces the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282.
  • the multivalent vaccine can be found live or active, or inactivated.
  • the present invention contemplates a multivalent vaccine comprising a complete virus vaccine against Marek's disease in combination with at least one vaccine based on a serotype 9 avian adenovirus vector (FAdV-9) in accordance with the present invention, which has an exogenous nucleotide sequence inserted that codes for an antigen of a disease of interest and that replaces the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282.
  • the multivalent vaccine can be found live or active, or inactivated
  • a method of vaccination against diseases in animals comprises providing an animal with a recombinant vaccine in accordance with the present invention, comprising a serotype 9 avian adenovirus vector (FAdV-9) which has an exogenous nucleotide sequence inserted that encodes an antigen from a disease of interest and replacing the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282; and a pharmaceutically acceptable carrier, adjuvant and / or excipient; wherein said vaccine is capable of generating an immune response in animals.
  • a serotype 9 avian adenovirus vector FAdV-9
  • FAdV-9 which has an exogenous nucleotide sequence inserted that encodes an antigen from a disease of interest and replacing the non-essential region of the adenovirus genome, specifically located between nucleotides 491-282
  • a pharmaceutically acceptable carrier, adjuvant and / or excipient wherein said vaccine is capable of generating an immune response
  • the exogenous nucleotide sequence encodes for an antigen of a disease of interest, preferably of at least one disease selected from avian influenza, hepatitis with inclusion bodies, infectious bird laryngotracheitis, Newcastle disease, Fabrizio Bag infection, Infectious bronchitis, disease caused by metapneumovirus (MPNV), Marek's disease, infectious bird anemia or any other gene whose size allows insertion into the adenovirus vector. More preferably, an avian influenza antigen is used.
  • the exogenous nucleotide sequence consists of the gene that codes for the group comprising hemoagglutinin (HA) of avian influenza virus, selected from the 18 subtypes of hemoagglutinin or immunogenic variant of influenza virus, which most preferably encodes for at least one of the subtypes H1, H2, H3, H5, H6, H7 or H9 of said protein; Hepatitis virus fiber and hexon with inclusion bodies of birds, serotypes 4 or 8; glycoprotein B (gB) and glycoprotein D (gD) of infectious bird laryngotracheitis virus; HN and F proteins of Newcastle disease virus; VP2 protein from Fabrizio's infection virus; S1 and S2 protein of infectious bronchitis virus; metapneumovirus F protein (MPNV); and VP1, VP2 and VP3 protein of infectious bird anemia.
  • the concentration of the recombinant vaccine required to achieve adequate protection is at least O 5 0 DICC 50% per dose, more preferably at least 10
  • the live or active recombinant vaccine can be administered intramuscularly, intranasally, subcutaneously, aspersion, nebulization, orally through drinking water, or in ovo, using the appropriate means and forms for each case. If it is an inactivated vaccine, it is administered intramuscularly or subcutaneously, preferably subcutaneously.
  • the recombinant vaccine of the present invention can be administered in a single dose or in two or more doses, either alone or in conjunction with other recombinant or non-recombinant, live (active) or inactivated vaccines, such as the vaccine against Marek's disease
  • the vaccine of the present invention when administered in a single dose or application, it achieves both early and lasting protection for the disease of interest related to the antigen encoded by the exogenous nucleotide sequence inserted into the viral vector contained in said vaccine.
  • the genome of a 45 kb FAdV-9 comprising SEQ ID NO: 1, generated by reverse genetics and containing the regions FV1 (comprised between nucleotide 1-491) and FV2 (comprised between nucleotide 2,782- 7,453), the 2,291 bp non-essential region between nucleotide 491-2,782 was removed, ie at the 5 ' end of the genome; also, a unique Swal site for genes of interest was inserted at site 491.
  • This genome was subcloned into the plasmid pBg to acquire the unique restriction sites at its ends and to generate viruses in culture.
  • a pVAX expression cassette was cloned, using CMV, polyLinker and PoliA, and which also contained a unique Pmel site to clone the gene of interest, thereby obtaining the infectious clone of interest. Transfection of the infectious clone in cell culture generates the recombinant virus of interest.
  • Example 2 Generation of a rFAdV9-435 recombinant virus in cell culture
  • an infectious clone of FAdV-9 was obtained with insertion of the H5 gene of the low pathogenic avian influenza virus VIABP-H5N2, strain 435 (rFAdV9-435 virus), with access number GenBank FJ864690, and which comprises the sequence SEQ ID NO: 2.
  • the rFAdV9-435 virus was replicated in CeLi line cells grown with DMEM F12 + Glutamax culture medium, in bottles for cell culture (static system). After performing 7 blind passes in the same type of cells, a degree in immunoperoxidase tests of 10 6 0 DICC50% was achieved. The crop was centrifuged at 500 g for 20 minutes, and fractionated into 1.5 mL cryovials, which were stored in deep freezing at a temperature between -70 ° C and - 80 ° C.
  • the SM was tested to rule out the presence of bacteria, avian mycoplasmas, fungi and yeasts, as well as to verify that said SM was free of avian viruses.
  • SM pathogen-free
  • Example 3 Generation of other recombinant viruses Following the same methodology described above, additional FAdV-9 recombinant viruses were obtained as shown in Table 1: Table 1. Recombinant FAdV-9 viruses generated with different inserts.
  • recombinant vectors were characterized by digestion with Xhol.
  • the restriction map of the rFAdV9-H7IA recombinant vector DNA is shown in Fig. 1A;
  • the 4.7 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 1 B a band of 3629 bp can be observed, which corresponds to the avian influenza HA gene, demonstrating that the rFAdV9-H7IA recombinant vector effectively has this gene inserted and that said vector is also stable after 10 passes in cell culture.
  • Fig. 1A The restriction map of the rFAdV9-H7IA recombinant vector DNA is shown in Fig. 1A;
  • the 4.7 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 1 B a band of 3629 bp can be observed, which corresponds to the avian influenza HA gene, demonstrating that the
  • Fig. 2A the restriction map of the rFAdV9-Fib HCI recombinant vector DNA is shown in Fig. 2A; the 1.4 kb band shows the restriction fragment where the heterologous gene is cloned, while in Fig. 2B a band of 1652 bp is observed, which corresponds to the Fib4 gene of hepatitis with serotype 4 inclusion bodies, demonstrating that the recombinant vector rFAdV9-Fib HCI effectively has this gene inserted and that said vector is also stable after 10 passes in cell culture.
  • Fig. 2A the restriction map of the rFAdV9-Fib HCI recombinant vector DNA is shown in Fig. 2A; the 1.4 kb band shows the restriction fragment where the heterologous gene is cloned, while in Fig. 2B a band of 1652 bp is observed, which corresponds to the Fib4 gene of hepatitis with serotype 4 inclusion bodies, demonstrating that the
  • Fig. 3A The restriction map of the rFAdV9-gBLT recombinant vector DNA is shown in Fig. 3A; the 5.6 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 3B shows a band of 4,573 bp, corresponding to the gB gene of infectious laryngotracheitis of birds, demonstrating that the recombinant vector rFAdV9-gBLT effectively has this gene inserted and that said vector is also stable after 10 passes in cell culture.
  • Fig. 3A The restriction map of the rFAdV9-gBLT recombinant vector DNA is shown in Fig. 3A; the 5.6 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 3B shows a band of 4,573 bp, corresponding to the gB gene of infectious laryngotracheitis of birds, demonstrating that the recombinant vector rFAd
  • 3C a culture of uninfected CeLi cells can be observed on the left side, while on the right side the cytopathic effect caused by the propagation of the rFAdV9-gBLT recombinant vector is shown in CeLi cells with a viral titer of 2.6 x 10 6 PFU. This indicates that this recombinant vector behaves stably in culture in CeLi cells.
  • Fig. 4A The restriction map of the DNA of the recombinant vector rFAdV9-HN is shown in Fig. 4A;
  • the 4.8 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 4B shows a band of 996 bp, corresponding to the Newcastle disease HN gene, which demonstrates that the rFAdV9-HN recombinant vector effectively has this gene inserted and that said vector is also stable after 10 passes in culture mobile.
  • Fig. 4A The restriction map of the DNA of the recombinant vector rFAdV9-HN is shown in Fig. 4A;
  • the 4.8 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 4B shows a band of 996 bp, corresponding to the Newcastle disease HN gene, which demonstrates that the rFAdV9-HN recombinant vector effectively has this gene inserted and that said vector
  • the 45 kb FAdV-9 genome was cloned into plasmid pWE-15; This genome contains two blocks of tandem repeats called TR-1 (located between nucleotides 37,648 and 37,812) and TR-2 (located between nucleotides 38,707 and 40,561, that is, between 60 and 100 mu) at the 3 ' end , which are not necessary for viral replication. Subsequently, this genome in pWE-15 was subcloned into plasmid pBg to add Pac ⁇ sites at the ends of the genome, which are useful for linearizing DNA during virus generation in cell culture.
  • the TR-2 region was amplified by PCR and cloned into the bacterial plasmid pTRE-2 with unique I-Ceul and Pl-Scel sites at the ends.
  • An expression cassette containing CMV-polilinker was subsequently introduced to direct the expression of the Newcastle disease virus HN gene, obtaining the infectious clone pFATR2-CMV HN.
  • the recombinant rFATR2-CMV HN virus was obtained by transfection of the infectious clone in CeLi cell culture.
  • Fig. 5A it is possible to observe restriction map of the DNA of the recombinant vector rFATR2-CMV HN;
  • the 3,473 kb band shows the restriction fragment where the heterologous gene is cloned.
  • Fig. 5B shows a DNA digestion band with Xhol, indicating 3,473 bp, corresponding to the Newcastle virus HN gene, thereby demonstrating that the recombinant vector rFATR2-CMV HN effectively has this gene inserted.
  • Example 5 Method of elaboration of the active vaccine with recombinant virus of
  • BCT Working Cell Bank
  • the bottles with their contents were frozen at -70 ° C for 24 hours. Subsequently, they were thawed, the contents were recovered and centrifuged at 500 g for 20 minutes. It was packed according to the volume produced.
  • the crop was titrated by immunoperoxidase, and was formulated by adding harvested fluid, plus TPGA cbp as a stabilizer, to reach 10 5 3 DICC50% / dose.
  • the experimental vaccine was kept freezing at a temperature between -20 ° C and -30 ° C until use.
  • Example 6 In vivo evaluation of the recombinant active vaccine rFAcN 9-435 applied with or without Marek's disease vaccine A study was conducted with the purpose of determining the effectiveness of the active vaccine of the present invention and demonstrating that it does not It is affected or affected when administered to birds in combination with a vaccine against Marek's disease. The vaccine was administered in ovo and subcutaneously. To this end, 270 commercial 1-day-old Leghorn (CRL) light-weight chicks (SD) were used, divided into 9 groups of 30 chicks each, according to what is shown in Table 2.
  • CTL 1-day-old Leghorn
  • SD light-weight chicks
  • the active vaccine rFAdV9-435 was applied in ovo after 18 days of incubation (DI) by allantoic cavity (Ai) at the rate of 10 6 1 DICC50% / 0.2 mi ⁇ only for groups 2 and 6, and mixed and applied in conjunction with the Marek strain HVT vaccine for groups 1 and 5.
  • experiments were carried out by applying the vaccine at day of age (ED), subcutaneously (SC) in the middle and posterior portion of the neck for immunization with the rFAdV9-435 vaccine, at the rate of 10 6 1 DICC50% / 0.2 ml_.
  • the vaccine alone was administered for groups 4 and 8; and, mixed and applied together with Marek strain HVT vaccine for groups 3 and 7.
  • 10 DE groups 5 to 8 were revaccinated by SC route with 10 6 5 DICC50% / 0.5 mL of rFAdV9- 435 vaccine.
  • the animals were housed in isolation units, where they were challenged at 1, 9, 31 and 45DE by subdividing the groups into three subgroups of 10 chicks each, for each challenge.
  • the challenge virus was a high pathogenic avian influenza virus, VIAAP-H5N2, strain A / chicken / Querétaro, which was adjusted with PBS pH 7.2, to apply to each chicken 10 7 5 DIEP50% in 0.3 mL, volume that He received each chicken by applying 0.06 ml (two drops) in each eye and 0.09 ml (3 drops) in each nostril.
  • Example 6 Potency assessment All groups were observed daily for 10 days after the challenges to assess the clinical picture; Each chicken was checked individually and scored with a numerical value in accordance with the provisions of Table 3.
  • the maximum value of the severity of the clinical picture (SMCC) of each experimental group corresponded to the average of the sum of the individual values.
  • Mortality (M) was estimated in cumulative form during the 10 days of observation, adjusting the maximum value of clinical sinology to 100%.
  • the maximum morbidity of the group (MM) was equal to the maximum percentage of sick birds in one of the 10 days of observation.
  • the morbidity index (IMb) was calculated as follows:
  • G2 90 100 100 26.7 6.5 7.1
  • G3 100 100 100 3.9 1 .5 1 .0
  • G4 100 100 100 1 .2 1 .2 0.9
  • G5 100 100 9.1 9.7 7.6
  • G6 100 100 100 10.2 8.8 5.0
  • G7 100 100 100 0.1 1 .2 0.6
  • G8 100 100 100 0.5 0.6 0.1
  • the potency results confirm the effectiveness of the rFAdV9-435 vaccine of the present invention for use in the control of H5N2 avian influenza, and suggest that it could be used for the control of other subtypes of avian influenza.
  • the rFAdV9-435 vaccine prepared in accordance with the present invention, had the ability to induce levels of antibodies detectable by the IH test, for groups vaccinated in ovo with detection after 31 DE for groups immunized in ovo and revaccination at 10 DE.
  • the detection was also from the 31 DE, but with a higher title than for the group vaccinated in ovo and revaccinated at the 10 DE; for the group vaccinated at ED and revaccinated at 10 SD, the levels of antibodies detected did not reveal at this time an important anamnestic response.
  • Example 7 In vivo evaluation of the rFAcN '9-435 recombinant active vaccine applied alone or in combination with Marek's disease vaccine, with challenge at 93 SD
  • the vaccine was administered by SC a180 CRL chicks, divided into 6 groups of 30 chicks each, according to what is shown in Table 5;
  • the HVT vaccine against Marek's disease used in combination with the vaccine of the present invention was a commercial vaccine with a titre of 4,200 PFU / mL and was used according to the indications of the commercial laboratory.
  • 1 chicken dose corresponds to the dose exponent in logarithmic scale administered to each bird, expressed in DICC50%; for example, if a dose of 1 0 7 1 DICC50% is administered, this is equivalent to 7.1 DP.
  • the animals were housed in isolation units, where they were challenged at 1, 9, 31 and 93 SD by eye and nostrils with 0.3 mL of VIAAP-H5N2 (strain A / chicken / Querétaro / 14588-19 / 95), applying to each chicken 10 8 0 DIEP50% in 0.3 mL.
  • Serum samples were obtained from all groups at 19, 31 and 93 SD, which were stored at -20 ° C until use. Serial double dilutions of the sera were faced with 4 hemagglutinating units (UHA) of VIABP-435 in HI test.
  • UHA hemagglutinating units
  • Example 8 Efficacy of the rFAdV9-435 recombinant active vaccine applied via IM, compared with application via SC, and detection of Marek's disease HVT virus in the feather follicle
  • 330 LPE chicks were used, divided into 22 groups of 15 birds each, according to what is shown in Table 6.
  • the vaccines were administered at 1 DE, as well as at different hours of age (HE) and DE (with exception of the unvaccinated control group), alone or in combination with a commercial HVT vaccine against Marek, which had a titer of 4,200 PFU / mL and was used according to the indications of the commercial laboratory.
  • the birds were housed in isolation units, where they were challenged at 31 DE by ocular route and nostrils with 0.3 mL of VIAAP-H5N2 (strain A / chicken / Querétaro / 14588-1 9/95), applying to each chicken a dose of 1 0 8 0 DIEP50% / mL.
  • VIAAP-H5N2 strain A / chicken / Querétaro / 14588-1 9/95
  • Example 8A Detection of Marek virus HVT strain
  • three pen follicles of five chickens were obtained from each of the immunized groups and from the unvaccinated control group with which a 1: 5 macerated was prepared with PBS pH 7.2, and PCR and PCRtr tests were performed on the samples.
  • the test results are shown in Table 7.
  • the result for the group vaccinated only with the HVT vaccine was 9.7 x 10 6 0
  • the results were negative.
  • the potency results indicate that the rFAdV9-435 vaccine applied by SC or IM route, with and without HVT vaccine and with the different vaccination schedules, was able to generate an excellent PM of 1 00% and a virtually nil IMb for all cases, in contrast to the unvaccinated control for which the PM was 0% with a maximum IMb of 100%.
  • Marek disease strain HVT vaccine and the rFAdV9-435 IAAP-H5N2 vaccine can be used together without affecting the immune response of any of The two vaccines.
  • Example 9 Efficacy of the rFAdV9-435 recombinant active vaccine applied by IM route, compared to application via SC. 5 groups of 1 0 LPE chickens each were formed, 4 of which were vaccinated and 1 was left as an unvaccinated control, according to Table 8.
  • the chickens were housed in isolation units and challenged at 31 DE by ocular route and nostrils with 0.3 mL of VIAAP-H5N2 (strain A / chicken / Querétaro / 14588-1 9/95), applying 7.5 DP to each chicken.
  • G1 rFAdV9-435 IM (6.1 DP / 0.2 mL) 10
  • G2 rFAdV9-435 IM (6.5 DP / 0.5 mL) 10
  • Example 9 A Power evaluation All groups were observed daily during the 10 days PD. In order to evaluate the clinical picture, each chicken was reviewed individually and given a numerical value according to the clinical changes observed, according to Table 3.
  • Serum samples were obtained from all groups at 31 DE, which were stored at -20 ° C until use. Serial double dilutions of the sera were faced with 4 hemagglutinating units (UHA) of VIABP-435 in an IH test. The results of the IH tests are shown in Fig. 23.
  • the sera taken at 31 DE reflect an average of 2 46 , 2 5 1 , 2 45 and 2 48 for the G1, G2, G3 and G4 respectively, indicating a high correlation with the protection of birds to the challenge.
  • Example 10 In vivo evaluation of the rFAcN9-gB recombinant active vaccine against avian infectious laryngotragueitis
  • rFAdV9-gB vaccine a recombinant avian adenovirus vector vaccine with an avian infectious laryngotracheitis B (LTI) insert, called the rFAdV9-gB vaccine, was prepared and its effectiveness tested.
  • LTI avian infectious laryngotracheitis B
  • the animals were housed in isolation units, and were challenged at 31 DE with a high virulence LTI virus (vvLTI), USA strain 63,140, which was applied to each chicken at a dose of 3.9 DP in 0.3 mL , applying two drops in each eye and 3 drops in each nostril.
  • vvLTI high virulence LTI virus
  • the recombinant vaccine in serotype 9 avian adenovirus vector has been devised to have a stable, effective recombinant vaccine even when administered in combination with a vaccine against Marek's disease, and whose effectiveness is not affected by the presence of maternal antibodies, and it will be apparent to any person skilled in the art that the modalities of the recombinant vaccine in vector of adenovirus avian serotype vector 9 and the use thereof, as described above and illustrated in the accompanying drawings, are only illustrative but not limiting of the present invention, since numerous changes of consideration in their details are possible without departing from the scope of the invention. . For example, it has been shown experimentally that it is possible to achieve stability in successive passes of cell cultures with various exogenous genes and that it is possible to use various types of acceptable vehicles for vaccine formulation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

Se describe una vacuna recombinante que comprende un vector de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada por lo menos una secuencia de nucleótidos exógena que codifica para por lo menos un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable, en donde la por lo menos una secuencia de nucleótidos exógena que codifica para por lo menos un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus se localiza entre los nucleótidos 491-2782. El vector de esta vacuna es estable para producción a escala industrial. Asimismo, aún cuando esta vacuna se administra en combinación con una vacuna contra la enfermedad de Marek, ambas producen una respuesta inmune adecuada que no se ve afectada por la interferencia entre ellas. De la misma manera, la efectividad de la vacuna recombinante no se ve afectada por los anticuerpos maternos, y es capaz de inducir una respuesta protectora tanto temprana como duradera, aún con una sola aplicación.

Description

VACUNA EN VECTOR RECOMBINANTE DE
ADENOVIRUS AVIAR SEROTIPO 9
CAMPO DE LA INVENCION
La presente invención está relacionada con vacunas basadas en vectores virales, y más particularmente está relacionada con una vacuna basada en vector recombinante de adenovirus aviar serotipo 9.
ANTECEDENTES DE LA INVENCION
Los adenovirus son virus de ADN lineal de doble cadena, un diámetro de 70-90 nm, sin envoltura y con una cápside de forma icosahédrica, la cual está formada por 240 hexones, 12 pentones y fibras que se prolongan desde cada uno de los vértices del icosahedro. Estos hexones, pentones y fibras representan los principales antígenos de los adenovirus, y los que determinan el serotipo de los mismos.
El genoma de los adenovirus tiene un tamaño aproximado de 30-45 kb, y contiene cuatro regiones tempranas (E1 , E2, E3 y E4), y cinco regiones tardías (L1 -L5).
Los adenovirus han sido aislados de diferentes especies, siendo los dos principales géneros los Aviadenovirus aislados de aves, y los Mastadenovirus aislados de mamíferos.
Los adenovirus son considerados buenos candidatos como vectores recombinantes para la producción de vacunas debido a que son altamente infecciosos y muchos de ellos no son patogénicos. Además, los vectores de adenovirus pueden transducir genes de gran tamaño con eficiencia y generar una respuesta inmune prolongada en animales. No obstante, se sabe también que la estructura específica de los adenovirus requiere del estudio de los sitios específicos de inserción de genes heterólogos para cada especie y que resulta prácticamente imposible generalizar sobre el comportamiento biológico de los diversos adenovirus conocidos al ser convertidos en un vector viral recombinante.
Hasta el momento se han utilizado adenovirus humanos, de simio, aviares, porcinos, entre otros, como vectores para su uso potencial como vacunas recombinantes. En particular, se sabe que los adenovirus aviares (FAdV) son candidatos potenciales para la elaboración de vacunas recombinantes. No obstante, como se describirá a continuación, la posibilidad de utilizarlos exitosamente a nivel comercial, en particular en la industria veterinaria, se ha visto generalmente inhibida debido a la imposibilidad de lograr su producción en gran escala con la estabilidad requerida, toda vez que la producción de los adenovirus se realiza a partir de líneas celulares cuyos rendimientos típicamente son muy pobres, o bien, cuya naturaleza impide el logro de una estabilidad del vector viral en pases sucesivos, por lo que es fácil entender que actualmente no existe ninguna vacuna vectorizada en Adenovirus aviares.
Por ejemplo, la Publicación Internacional No. WO94/24268 describe vectores recombinantes de FAdV que tienen insertados por lo menos una secuencia de nucleotidos heterologa, y los cuales son útiles para generar una respuesta inmune en aves susceptibles a enfermedades. De acuerdo a este documento, las regiones no esenciales del genoma adenoviral que pueden resultar adecuadas para reemplazar o insertar el gen heterólogo son aquellas localizadas en el extremo terminal derecho del genoma, preferiblemente la región localizada entre 97 y 99.9 u.m.. La vacuna recombinante, según dicho documento, aparentemente podría utilizarse en combinación con vacunas contra otros virus tales como el de la enfermedad de Marek o el de la enfermedad de Newcastle, sin que esto se compruebe. Adicionalmente, en este documento tampoco se ilustra el comportamiento del adenovirus obtenido después de pases sucesivos en líneas celulares para la producción en gran escala.
Asimismo, la Patente No. US 6,296,852 describe vectores de FAdV serotipo 9 (FAdV-9) en los que se hace una inserción de secuencias heterólogas de nucleótidos en regiones no esenciales del genoma viral. Estas regiones pueden ser regiones no codificantes localizadas en el extremo izquierdo y/o derecho del genoma, preferiblemente en la región localizada en el extremo derecho (3'), entre 60 y 100u.m. Al igual que en el caso del documento WO94/24268, esta patente, pese a que identifica otra región más amplia para la potencial inserción de genes exógenos, tampoco ilustra su comportamiento, y sobre todo su integridad, después de pases sucesivos en líneas celulares.
En otro documento (Corredor, J.C. y Nagy, E., The non -essential left end región of the fowl adenovirus 9 genome is suitable for foreign gene insertion/replacement. Virus Research. Vol 149, 167-174; 2010), se divulga que la región no esencial del extremo 5' del genoma de un FAdV-9, también podría ser un sitio adecuado para la inserción o reemplazo por genes exógenos para producir vectores recombinantes. Por ejemplo, uno de los vectores fue obtenido al reemplazar la región no esencial localizada entre los nucleótidos 491 -2782 con el gen que codifica para una proteína verde fluorescente mejorada (EGFP. No obstante, este documento, al igual que los otros, no muestra si efectivamente los vectores virales construidos resultarían estables al insertarles un gen exógeno que codifique para el antígeno de una enfermedad, y replicarlos en sistemas celulares adecuados para obtener una vacuna recombinante, ya que solo muestran la expresión de un gen reportero y no muestran ensayos in vivo, ni tampoco la composición ni los niveles de protección contra una enfermedad de interés.
Tal como se puede observar, es conocido que las regiones no esenciales del genoma de los FAdV representan sitios potenciales en donde se puede insertar o reemplazar una secuencia de nucleótidos exógena. Sin embargo, los vectores descritos en el estado de la técnica presentan la desventaja de no ser estables al momento de producir vacunas recombinantes a escala industrial, debido a que pierden el gen heterólogo insertado después de varios pases en cultivos celulares.
Aunado a lo anterior, en el estado de la técnica se ha evitado el uso de vectores adenovirales en el tratamiento de aves, principalmente de corral, debido a su interferencia con las vacunas contra la enfermedad de Marek, vacunas que son ampliamente utilizadas en la industria avícola. La enfermedad de Marek (EM) es un padecimiento causado por un herpesvirus que afecta a las aves domésticas, causándoles una enfermedad linfoproliferativa que causa parálisis en las patas o alas, y tumores linfoides, así como mortalidad. A fin de evitar esta enfermedad, se aplican vacunas activas monovalentes o polivalentes, principalmente por vía subcutánea o in ovo. A fin de disminuir costos y lograr una mayor eficiencia a la hora de la aplicación, en ocasiones se prefiere la coadministración de al menos dos vacunas. No obstante, aunque documentos como el antes mencionado de la Publicación Internacional No. WO94/24268 plantean la posibilidad de utilizar adenovirus en combinación con vacunas de Marek; estudios posteriores han demostrado que las vacunas de adenovirus y las vacunas contra el virus de Marek presentan interferencias graves en el campo cuando se analizan la tasa de mortalidad y las lesiones producidas por ambas enfermedades en las aves preferentemente de larga vida, como son las gallinas de postura comercial.
Actualmente se sabe que al aplicar una vacuna de virus completo contra EM de forma simultánea con una vacuna recombinante en vector de adenovirus, la vacuna contra EM podría interferir con la vacuna recombinante debido a los siguientes mecanismos: a) diferentes cinéticas de replicacion; b) las vacunas compiten por el mismo tipo de células para su replicacion en las aves; y c) el virus de EM provoca inmunodepresión en las aves. Aparentemente, si se quiere superar esta interferencia y lograr una vacunación efectiva contra la enfermedad relacionada con el gen exógeno de la vacuna recombinante, sería necesario administrar una dosis mayor de dicha vacuna recombinante o bien reducir la dosis de la vacuna contra EM (Breedlove et al., Avian influenza adenovirus-vectored in ovo vaccination; target embryo tissues and combination with Marek's disease vaccine. Avian Disease. Vol. 55, 667-673; 201 1 ). No obstante, la misma referencia de Breedlove et al., demuestra que, al incrementarse la dosis de la vacuna recombinante de adenovirus, ésta podría causar una interferencia temporal con la vacuna contra EM que la hace inefectiva, provocando graves problemas en el campo. Esto quiere decir que, hasta la fecha, no se ha logrado formular una vacuna basada en un vector viral de adenovirus recombinante con un gen exógeno que no interfiera con la protección conferida por la vacuna de la enfermedad de Marek o viceversa.
Asimismo, los anticuerpos maternos son otro factor que potencialmente puede causar interferencia con una vacuna. Si bien los anticuerpos maternos confieren protección a los animales recién nacidos, su presencia puede inhibir o disminuir los efectos de las vacunas, provocando que la respuesta inmune producida por éstas no sea la óptima.
Otro de los retos que se encuentran en el desarrollo de vacunas en general es el tiempo en el que se logra una protección y la duración de dicha protección, en función de la fórmula que se utiliza para la vacuna.
Una vacuna que otorga protección temprana, es decir, en muy corto tiempo a partir de su aplicación, tendrá también un efecto de corto plazo pues los niveles de protección caerán rápidamente, haciendo necesaria una revacunación periódica. En contraposición, una vacuna que otorga protección duradera, o de largo plazo, tardará más tiempo en lograr la protección (protección tardía), aunque dicha protección se dará por un tiempo más prolongado, requiriendo normalmente menos revacunación para lograr un efecto protector deseado. Normalmente para lograr en un grupo de animales una protección duradera, es necesario aplicar vacunas de protección temprana en combinación con vacunas de protección tardía para evitar la posibilidad de que los animales se enfermen a lo largo de todo su desarrollo. Se conoce en el estado de la técnica que una vacuna de virus activo, normalmente otorga una protección rápida, o temprana, debido a que logra en un intervalo de tiempo corto a partir de su aplicación un nivel de protección aceptable pero no duradero. Por otra parte, también se conoce que las vacunas de virus inactivados otorgan una protección más duradera que las de virus activo, pero requieren tiempos largos para lograrla, es decir, la protección es tardía, y en muchos casos, también requieren revacunación aunque con menos frecuencia.
Por ejemplo, Stine et al. (Evaluation of inactivated newcastle disease, avian diseases, Vol. 24, No. 1 (Jan. - Mar., 1980), pp. 99-1 1 1 ) evaluaron tres vacunas contra NDV: una vacuna inactivada en emulsión, una vacuna inactivada adsorbida en AI(OH)3 y una vacuna comercial viva, encontrando que la vacuna viva produce títulos Hl en pollos una semana antes que las vacunas inactivadas, mientras que la vacuna inactivada en emulsión produce una respuesta inmune sostenida.
Asimismo, Folitse et al. (Efficacy of combined killed-in-oil emulsión and live newcastle disease vaccines in chickens, Avian Diseases, Vol. 42, No. 1 (Jan. - Mar., 1998), pp. 173-178) mencionan que existen reportes de que las vacunas inactivadas de NDV, emulsionadas en aceite, inducen niveles de anticuerpos circulantes altos y duraderos en aves que fueron vacunadas previamente con vacunas activas. Asimismo, mencionan que la razón por la cual se obtiene una respuesta de anticuerpos alta al administrar una vacuna inactivada de NDV en combinación con una vacuna activa contra la misma enfermedad, podría deberse a que al principio, el virus vivo replica rápidamente, elicitando una respuesta inmune primaria, lo cual es seguido por una liberación continua pero lenta del antígeno de una vacuna inactivada, el cual se comporta como una dosis de refuerzo.
Igualmente, Toro et. al (Avian influenza mucosal vaccination in chickens with replication-defective recombinant adenovirus vaccine, Avian Diseases 55:43-47, 201 1 ) evaluaron la protección conferida por una vacuna de adenovirus recombinante libre de adenovirus competentes para la replicación que expresaba el gen H5 de influenza aviar optimizado en sus codones, la cual fue aplicada en aves tipo ponedoras a los 5 días de edad, y en algunos casos con revacunación a los 15 días de edad. Los resultados mostraron que únicamente las aves que fueron revacunadas desarrollaron títulos de anticuerpos altos. Estos títulos pudieron detectarse a partir de los 9 días de edad, alcanzando su máximo a los 32 días de edad.
De la misma manera, existen algunos virus activos que, extraordinariamente proveen protección tanto temprana como duradera, tal como el virus de Marek. No obstante, el virus de Marek al utilizarse como vector, se ha demostrado en el estado de la técnica que logra una protección temprana y duradera contra la enfermedad de Marek con una sola aplicación, pero para el antígeno exógeno insertado, no logra una protección temprana, sino que únicamente presenta protección tardía y duradera.
Como puede observarse a partir del estado de la técnica, los adenovirus, y en particular, el adenovirus aviar serotipo 9, FAdV-9, no se han podido utilizar exitosamente en el estado de la técnica como vacuna recombinante para aves con algún gen exógeno a escala industrial, pese a que se han descrito diversos sitios de inserción, por un lado debido a que no se logra una estabilidad adecuada en su reproducción en líneas celulares después de pases sucesivos, y por otro lado debido a que la vacuna de la enfermedad de Marek interfiere con el mecanismo de acción de los adenovirus o viceversa, motivo por el cual en el estado de la técnica se ha evitado expresamente el uso de adenovirus en combinación con vacunas de la enfermedad de Marek. Más aún, no se ha logrado obtener una vacuna recombinante viral que logre una protección tanto temprana como duradera para un antígeno exógeno insertado en el vector viral utilizado con una sola aplicación. OBJETOS DE LA INVENCION
Teniendo en cuenta los defectos de la técnica anterior, es un objeto de la presente invención proporcionar una vacuna recombinante en vector de adenovirus aviar serotipo 9, en donde dicho vector sea estable cuando se produzca a escala industrial.
Es un objeto más de la presente invención el proporcionar una vacuna recombinante que, aún al ser administrada en combinación con una vacuna contra la enfermedad de Marek, ambas vacunas produzcan una respuesta inmune adecuada que no se vea afectada por la interferencia entre ellas.
Un objeto adicional de la presente invención es proveer una vacuna recombinante cuya efectividad no se vea afectada por los anticuerpos maternos, e induzca una respuesta inmune óptima.
Es todavía un objeto de la presente invención el contar con una vacuna recombinante que induzca una respuesta protectora tanto temprana, es decir dentro de los 19 días a partir de su aplicación, como duradera, es decir hasta por lo menos 90 días después de su aplicación.
Es todavía otro objeto de la presente invención el contar con una vacuna recombinante que logre con una sola aplicación una protección tanto temprana como duradera para una enfermedad relacionada con el antígeno exógeno insertado en un vector viral contenido en dicha vacuna.
BREVE DESCRIPCION DE LAS FIGURAS
Los aspectos novedosos que se consideran característicos de la presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, algunas modalidades, características y algunos objetos y ventajas de la misma, se comprenderán mejor en la descripción detallada, cuando se lea en relación con los dibujos anexos, en los cuales:
La figura 1 A es el mapa de restricción del DNA de un virus recombinante de FAdV-9 con inserto de HA de influenza aviar, construido de conformidad con la presente invención.
La figura 1 B es un gel de agarosa en el que se muestran fragmentos de ADN del virus recombinante de FAdV-9 con inserto de HA de influenza aviar, construido de conformidad con la presente invención, obtenidos por digestión con enzimas de restricción.
La figura 1 C es un cultivo de células CeLi sin infectar, e infectado con un virus recombinante de FAdV-9 con inserto de HA de influenza aviar, construido de conformidad con la presente invención. La figura 2A es el mapa de restricción del DNA de un virus recombinante de FAdV-9 con inserto de Fibra 4 de hepatitis con cuerpos de inclusión, construido de conformidad con la presente invención.
La figura 2B es un gel de agarosa en el que se muestran fragmentos de ADN del virus recombinante de FAdV-9 con inserto de Fibra 4 de hepatitis con cuerpos de inclusión, construido de conformidad con la presente invención, obtenidos por digestión con enzimas de restricción.
La figura 2C es un cultivo de células CeLi sin infectar, e infectado con un virus recombinante de FAdV-9 con inserto de Fibra 4 de hepatitis con cuerpos de inclusión, construido de conformidad con la presente invención.
La figura 3A es el mapa de restricción del DNA de un virus recombinante de FAdV-9 con inserto de glicoproteína B del virus de la laringotraqueitis infecciosa de las aves, construido de conformidad con la presente invención.
La figura 3B es un gel de agarosa en el que se muestran fragmentos de ADN del virus recombinante de FAdV-9 con inserto de glicoproteína B del virus de la laringotraqueitis infecciosas de las aves, construido de conformidad con la presente invención, obtenidos por digestión con enzimas de restricción.
La figura 3C es un cultivo de células CeLi sin infectar, e infectado con un virus recombinante de FAdV-9 con inserto de glicoproteína B del virus de la laringotraqueitis infecciosa de las aves, construido de conformidad con la presente invención. La figura 4A es el mapa de restricción del DNA de un virus recombinante de FAdV-9 con inserto de proteína HN del virus de la enfermedad de Newcastle, construido de conformidad con la presente invención.
La figura 4B es un gel de agarosa en el que se muestran fragmentos de ADN del virus recombinante de FAdV-9 con inserto de proteína HN del virus de la enfermedad de Newcastle, construido de conformidad con la presente invención, obtenidos por digestión con enzimas de restricción.
La figura 4C es un cultivo de células CeLi sin infectar, e infectado con un virus recombinante de FAdV-9 con inserto de proteína HN del virus de la enfermedad de Newcastle, construido de conformidad con la presente invención.
La figura 5A es el mapa de restricción del DNA de un vector recombinante de FAdV-9 con inserto de HN de enfermedad de Newcastle entre los nucleótidos 38,807 y 40,561 del genoma.
La figura 5B es un gel de agarosa en el que se muestran fragmentos de ADN del virus recombinante de FAdV-9 con inserto de HN de enfermedad de Newcastle entre los nucleótidos 38,807 y 40,561 del genoma, obtenidos por digestión con enzimas de restricción.
La figura 5C es un gel de agarosa en el que se muestran fragmentos de ADN del virus recombinante de FAdV-9 con inserto de HN de enfermedad de Newcastle entre los nucleótidos 38,807 y 40,561 del genoma después de 2 pases en cultivo de células CeLi, obtenidos por digestión con enzimas de restricción.
La figura 6 es una gráfica que muestra los resultados de inhibición de la hemoaglutinación (IH) de pollitas comerciales de raza ligera (CRL) inmunizadas in ovo, con sueros tomados a 1 día de edad (DE). La figura 7 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo, con sueros tomados a 10 DE.
La figura 8 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 días de incubación (DI) o a 1 DE, con sueros tomados a 19 DE.
La figura 9 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE y revacunadas a 10 DE, con sueros tomados a 19 DE.
La figura 10 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE, con sueros tomados a 31 DE.
La figura 1 1 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE y revacunadas a 10 DE, con sueros tomados a 31 DE.
La figura 12 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE, con sueros tomados a 38 DE.
La figura 13 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE y revacunadas a 10 DE, con sueros tomados a 38 DE.
La figura 14 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE, con sueros tomados a 45 DE.
La figura 15 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas in ovo a 18 DI o a 1 DE y revacunadas a 10 DE, con sueros tomados a 45 DE. La figura 16 es una gráfica que muestra los resultados de potencia de pollitas CRL inmunizadas a 1 DE, con o sin revacunación a 10 DE y desafiadas a 19 DE.
La figura 17 es una gráfica que muestra los resultados de potencia de pollitas CRL inmunizadas a 1 DE, con o sin revacunación a 10 DE y desafiadas a 31 DE.
La figura 18 es una gráfica que muestra los resultados de potencia de pollitas CRL inmunizadas a 1 DE, con o sin revacunación a 10 DE y desafiadas a 93 DE.
La figura 19 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas a 1 DE, con o sin revacunación a 10 DE, con sueros tomados a 19 DE.
La figura 20 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas a 1 DE, con o sin revacunación a 10 DE, con sueros tomados a 31 DE.
La figura 21 es una gráfica que muestra los resultados de IH de pollitas CRL inmunizadas a 1 DE, con o sin revacunación a 10 DE, con sueros tomados a 93 DE.
La figura 22 es una gráfica que muestra los resultados de potencia de pollitos Libres de Patógenos Específicos (LPE) inmunizados a 1 y 10 DE, y desafiados a 31 DE.
La figura 23 es una gráfica que muestra los resultados de IH de pollitos LPE inmunizados a 1 y 10 DE, con sueros tomados a 31 DE. DESCRIPCION DETALLADA DE LA INVENCIÓN
Durante el desarrollo de la presente invención, se ha encontrado que una vacuna recombinante que comprende un vector de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada por lo menos una secuencia de nucleotidos exógena que codifica para por lo menos un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleotidos 491 -2782 y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable, brinda una protección adecuada contra dicha enfermedad de interés, resultando además estable al producirse a escala industrial debido a que el vector de adenovirus no pierde la secuencia de nucleotidos exógena insertada al realizar pases sucesivos en cultivos celulares. Asimismo, resulta sorprendente que esta vacuna recombinante no pierda su efectividad en las aves vacunadas aún si se administra en combinación con una vacuna de virus completo contra la enfermedad de Marek, y que tampoco la vacuna de Marek pierda su efectividad al administrarse con esta vacuna recombinante. Igualmente, la vacuna recombinante de la presente invención presenta la ventaja de que su efectividad no se ve afectada por los anticuerpos maternos en animales recién nacidos y provee, con una sola aplicación, protección temprana y duradera.
En este sentido, para efectos de la presente invención se considera que protección temprana es aquella que se logra dentro de los 19 días a partir de la aplicación de la vacuna, mientras que protección duradera es aquella que se logra hasta por lo menos 90 días después de la aplicación de la vacuna. El vector de adenovirus utilizado puede estar vivo (activo) o inactivado. Se entiende por vivo o activo que el vector recombinante mantiene su capacidad para replicarse, mientras que inactivado significa que el vector recombinante de adenovirus que contiene la secuencia de nucleotidos exógena ha perdido la propiedad de replicarse. La inactivación del vector recombinante se realiza utilizando procedimientos físicos o químicos que ya son bien conocidos en el estado de la técnica, tales como inactivación química con formaldehído o beta- propiolactona (Office International des Epizooties 2008). Newcastle Disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 576-589).
Tal como se mencionó anteriormente, el vector utilizado es un adenovirus aviar serotipo 9 (FAdV-9), el cual incluye cualquier cepa. Preferiblemente, el FAdV-9 se selecciona entre las cepas con números de acceso GenBank EU979376, AF083975, HQ697594, AF508958, AF339923, EU847634, EU847629, EU847628, DQ323986, AY683550, EU847635, NC_000899, y AC_000013.
Ahora bien, por lo que se refiere a la secuencia de nucleotidos exógena, ésta codifica para por lo menos un antígeno de una enfermedad de interés, preferiblemente dicho antígeno siendo de por lo menos una enfermedad seleccionada entre influenza aviar, hepatitis con cuerpos de inclusión, laringotraqueitis infecciosa de las aves, enfermedad de Newcastle, infección de la bolsa de Fabricio, bronquitis infecciosa, enfermedad causada por metapneumovirus (MPNV), enfermedad de Marek, anemia infecciosa de las aves, o cualquier otro gen cuyo tamaño permita su inserción en el vector de adenovirus. Más preferiblemente, se utiliza un gen de influenza aviar.
En una modalidad específica de la presente invención, la secuencia de nucleotidos exógena consiste en el gen que codifica para el grupo que comprende la hemoaglutinina (HA) del virus de influenza aviar, seleccionado entre los 18 subtipos de hemoaglutinina o variante inmunogénica del virus de influenza, el cual más preferiblemente codifica para por lo menos uno de los subtipos H1 , H2, H3, H5, H6, H7 o H9 de dicha proteína; fibra y hexón de virus de hepatitis con cuerpos de inclusión, serotipos 4 y 8; glicoproteína B (gB) y glicoproteína D (gD) del virus de laringotraqueitis infecciosa de las aves(LTI); proteínas HN y F del virus de la enfermedad de Newcastle; proteína VP2 de virus de infección de la Bolsa de Fabricio; proteína S1 y S2 de virus de bronquitis infecciosa; proteína F de metapneumovirus (MPNV); y proteína VP1 , VP2 y VP3 de anemia infecciosa de las aves.
Asimismo, la secuencia de nucleotidos exógena puede comprender un gen que codifica para por lo menos un antígeno de un adenovirus aviar diferente al FAdV-9 utilizado como vector viral.
El vector de adenovirus de la vacuna conteniendo el gen exógeno de interés de la presente invención se puede preparar amplificando mediante PCR la secuencia de nucleotidos de interés para poder insertarla posteriormente, ya amplificada, dentro del vector de adenovirus al cual se le ha eliminado la región no esencial del genoma localizada entre los nucleotidos 491 -2782. La inserción del gen exógeno y la deleción de la región no esencial del adenovirus se realizan utilizando técnicas estándares de clonación de biología molecular. La clona infecciosa así producida es transfectada en un cultivo celular para la generación del virus recombinante.
El virus se replica en cualquier sistema adecuado para su crecimiento, tales como células hepáticas inmortalizadas de origen aviar (CeLi), líneas celulares comerciales o diseñadas expresamente para hacer crecer adenovirus, hasta alcanzar por lo menos la concentración del virus requerida para lograr la respuesta antigénica, preferiblemente por lo menos de 105 0DICC50% por dosis, más preferiblemente por lo menos 106 0DICC50% por dosis.
Por ejemplo, el virus recombinante se puede replicar en células de línea CeLi crecidas con medio de cultivo específico, utilizando sistemas de crecimiento estático, en botellas para cultivo celular, en microacarreadores o microcarriers, en sistemas de producción de células a gran escala, o en sistemas de botellas Roller, hasta alcanzar un título en pruebas de inmunoperoxidasa mínimo de 106 0DICC50% por dosis. Este título se puede alcanzar después de realizar de 5 a 10 pases ciegos en el mismo tipo de células. Posteriormente, la cosecha se puede centrifugar, fraccionar y conservar en ultracongelación, obteniéndose así lo que se identifica como semilla maestra (SM).
Con la semilla maestra se realiza un pase más en las mismas células para elaboración de semilla de producción (SP) y de ésta uno más para elaboración de vacunas.
Así, la presente invención incluye una semilla maestra de un virus recombinante de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada una secuencia de nucleotidos exógena que codifica para un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleotidos 491 -2782; dicha semilla maestra es obtenida después de 6 a 1 1 pases en cultivo celular.
Ahora bien, en la modalidad en la que la vacuna es viva o activa, se trata de un virus activo, preferiblemente seleccionado entre adenovirus aviar naturalmente apatógenos, de baja patogenicidad o atenuados mediante procedimientos ya conocidos en el estado de la técnica. Por otro lado, cuando la vacuna es inactivada, una vez alcanzada la concentración viral requerida para lograr la respuesta antigénica, se procede a inactivar el virus. De manera preferida, la inactivación se realiza mediante procedimientos físicos o químicos bien conocidos en el estado de la técnica, preferiblemente mediante inactivación química con formaldehído o beta-propiolactona.
En el caso en que la vacuna de la presente invención se encuentra viva o activa, los vehículos farmacéuticamente aceptables son soluciones acuosas, preferiblemente seleccionadas del grupo que consiste de soluciones acuosas que comprenden estabilizador TPGA (trehalosa, fosfato, glutamato, albúmina); soluciones acuosas que comprenden estabilizador de peptonas; y soluciones acuosas que comprenden leche descremada.
Cuando la vacuna de la presente invención se encuentra inactivada, los vehículos farmacéuticamente aceptables son preferentemente soluciones acuosas o emulsiones. Más particularmente, se prefiere que el vehículo utilizado sea una emulsión agua-aceite, aceite-agua o agua-aceite-agua (WOW, por sus siglas en inglés), preferiblemente una emulsión agua-aceite-agua.
Por lo que se refiere a la administración de la vacuna viva o activa, ésta puede realizarse por vía intramuscular, vía intranasal, vía subcutánea, aspersión, nebulización, oral a través del agua de bebida, o in ovo utilizando los medios y formas adecuados a cada caso. Si se trata de una vacuna inactivada, ésta se administra por vía intramuscular o subcutánea, preferiblemente por vía subcutánea.
Asimismo, la vacuna recombinante de la presente invención puede administrarse en una sola dosis, en dos dosis o en más dosis, ya sea sola o de manera conjunta con otras vacunas recombinantes o no recombinantes, vivas (activas) o inactivadas, tales como la vacuna contra la enfermedad de Marek.
Igualmente, aún cuando la vacuna de la presente invención se administre en una sola dosis o aplicación, ésta logra una protección tanto temprana como duradera para la enfermedad de interés relacionada con el antígeno codificado por la secuencia de nucleotidos exógena insertada en el vector viral contenido en dicha vacuna.
En una modalidad adicional, se describe una vacuna recombinante multivalente que comprende un vector de adenovirus aviar serotipo 9 (FAdV-9) de conformidad con la presente invención, que tiene insertada por lo menos dos secuencias de nucleotidos exógenas que codifican para por lo menos dos antígenos ya sea de la misma enfermedad de interés o de enfermedades de interés diferentes, y que reemplazan la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleotidos 491 -2782.
En una modalidad de la presente invención, se describe una vacuna multivalente que comprende una primera vacuna basada en un vector de adenovirus aviar serotipo 9 (FAdV-9) de conformidad con la presente invención, que tiene insertada por lo menos una secuencia de nucleotidos exógena que codifica para por lo menos un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleotidos 491 -2782; y por lo menos una segunda vacuna basada en un vector de adenovirus aviar serotipo 9 (FAdV-9) de conformidad con la presente invención, que tiene insertada por lo menos una secuencia de nucleotidos exógena que codifica para por lo menos un antígeno diferente al de la primera vacuna, ya sea de la misma enfermedad de interés o de una diferente, y que reemplaza la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleotidos 491 -2782. La vacuna multivalente puede encontrarse en forma viva o activa, o inactivada.
Igualmente, la presente invención contempla una vacuna multivalente que comprende una vacuna de virus completo contra la enfermedad de Marek en combinación con por lo menos una vacuna basada en un vector de adenovirus aviar serotipo 9 (FAdV-9) de conformidad con la presente invención, que tiene insertada una secuencia de nucleotidos exógena que codifica para un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleotidos 491 - 2782. La vacuna multivalente puede encontrarse en forma viva o activa, o inactivada.
Asimismo, en otro aspecto de la invención se describe un método de vacunación contra enfermedades en animales, el cual comprende suministrar a un animal una vacuna recombinante de conformidad con la presente invención, que comprende un vector de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada una secuencia de nucleotidos exógena que codifica para un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, específicamente localizada entre los nucleótidos 491 -2782; y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable; en donde dicha vacuna es capaz de generar una respuesta inmune en animales.
La secuencia de nucleótidos exógena codifica para un antígeno de una enfermedad de interés, preferiblemente de por lo menos una enfermedad seleccionada entre influenza aviar, hepatitis con cuerpos de inclusión, laringotraqueitis infecciosa de las aves, enfermedad de Newcastle, infección de la Bolsa de Fabricio, bronquitis infecciosa, enfermedad causada por metapneumovirus (MPNV), enfermedad de Marek, anemia infecciosa de las aves o cualquier otro gen cuyo tamaño permita su inserción en el vector de adenovirus. Más preferiblemente, se utiliza un antígeno de influenza aviar.
De manera preferida, la secuencia de nucleótidos exógena consiste en el gen que codifica para el grupo que comprende hemoaglutinina (HA) del virus de influenza aviar, seleccionado entre los 18 subtipos de hemoaglutinina o variante inmunogénica del virus de influenza, el cual más preferiblemente codifica para por lo menos uno de los subtipos H1 , H2, H3, H5, H6, H7 o H9 de dicha proteína; fibra y hexón de virus de hepatitis con cuerpos de inclusión de las aves, serotipos 4 u 8; glicoproteína B (gB) y glicoproteína D (gD) de virus de laringotraqueitis infecciosa de las aves; proteínas HN y F del virus de la enfermedad de Newcastle; proteína VP2 de virus de infección de la Bolsa de Fabricio; proteína S1 y S2 de virus de bronquitis infecciosa; proteína F de metapneumovirus (MPNV); y proteína VP1 , VP2 y VP3 de anemia infecciosa de las aves. Asimismo, la concentración de la vacuna recombinante requerida para lograr una protección adecuada es de por lo menosl O5 0 DICC50% por dosis, más preferiblemente de por lo menos 106 0 DICC50% por dosis.
La vacuna recombinante viva o activa puede administrarse por vía intramuscular, vía intranasal, vía subcutánea, aspersión, nebulización, oral a través del agua de bebida, o in ovo, utilizando los medios y formas adecuados a cada caso. Si se trata de una vacuna inactivada, ésta se administra por vía intramuscular o subcutánea, preferiblemente por vía subcutánea. Asimismo, la vacuna recombinante de la presente invención puede administrarse en una sola dosis o en dos o más dosis, ya sea sola o de manera conjunta con otras vacunas recombinantes o no recombinantes, vivas (activas) o inactivadas, tales como la vacuna contra la enfermedad de Marek.
Así, aún cuando la vacuna de la presente invención se administre en una sola dosis o aplicación, ésta logra una protección tanto temprana como duradera para la enfermedad de interés relacionada con el antígeno codificado por la secuencia de nucleótidos exógena insertada en el vector viral contenido en dicha vacuna.
La presente invención será mejor entendida a partir de los siguientes ejemplos, los cuales se presentan únicamente con fines ilustrativos para permitir la comprensión cabal de las modalidades preferidas de la presente invención, sin que por ello se implique que no existen otras modalidades no ilustradas que puedan llevarse a la práctica con base en la descripción detallada arriba realizada. EJEMPLOS
Ejemplo 1. Generación de un vector de FAdV-9
En primer lugar, al genoma de un FAdV-9 de 45 kb que comprende la SEQ ID NO:1 , generado mediante genética reversa y conteniendo las regiones FV1 (comprendida entre el nucleótido 1 -491 ) y FV2 (comprendida entre el nucleótido 2,782-7,453), le fue removida la región no esencial de 2,291 pb comprendida entre el nucleótido 491 -2,782, es decir en el extremo 5' del genoma; asimismo, se insertó en el sitio 491 un sitio Swal único para genes de interés.
Este genoma fue subclonado en el plásmido pBg para adquirir los sitios de restricción únicos en sus extremos y poder generar virus en cultivo.
Posteriormente, mediante el uso de un oligonucléotido con la técnica de PCR se introdujo un sitio EcoRV en FV-2, obteniéndose el intermediario ρΔΙ_2.4. En este intermediario, se deletó un fragmento del genoma original comprendido entre los nucleotidos 4,391 y 7,453, quedando un brazo de recombinación de 2,100 pb. Asimismo, el fragmento de PCR EcoRV-EcoRV fue clonado romo en pShuttle de AdEASY, cortando con EcoRV-Pmel. El sitio EcoRI se conservó.
En el sitio Swal en el nucléotido 491 se clonó un cassette de expresión de pVAX, usando CMV, poliLinker y PoliA, y el cual contenía además un sitio Pmel único para clonar el gen de interés, obteniéndose de esta manera la clona infecciosa de interés. La transfección de la clona infecciosa en cultivo celular genera el virus recombinante de interés.
Ejemplo 2. Generación de un virus recombinante rFAdV9-435 en cultivo celular De acuerdo a la metodología descrita en el ejemplo 1 , se obtuvo una clona infecciosa de FAdV-9 con inserción del gen H5 del virus de influenza aviar de baja patogenicidad VIABP-H5N2, cepa 435 (virus rFAdV9-435), con número de acceso GenBank FJ864690, y el cual comprende la secuencia SEQ ID NO:2.
En primer lugar, para obtener la semilla maestra (SM), el virus rFAdV9-435 fue replicado en células de línea CeLi crecidas con medio de cultivo DMEM F12 + Glutamax, en botellas para cultivo celular (sistema estático). Después de realizar 7 pases ciegos en el mismo tipo de células, se alcanzó un titulo en pruebas de inmunoperoxidasa de 106 0 DICC50%. La cosecha se centrifugó a 500 g durante 20 minutos, y se fraccionó en crioviales de 1 .5 mL, los cuales se conservaron en ultracongelación a una temperatura de entre -70°C y - 80°C.
Se hicieron pruebas a la SM para descartar la presencia de bacterias, micoplasmas aviares, hongos y levaduras, así para comprobar que dicha SM estuviera libre de virus aviares.
Asimismo, la SM se probó en pollos libres de patógenos específicos (SPF) para determinar su inocuidad, su potencia, su inmunogenicidad y la dosis mínima requerida para generar una adecuada protección e inmunogenicidad.
Con la semilla maestra se realizó un pase más en las mismas células (CeLi) para la elaboración de la semilla de producción.
Ejemplo 3. Generación de otros virus recombinantes Siguiendo la misma metodología descrita anteriormente, se obtuvieron virus recombinantes de FAdV-9 adicionales de acuerdo a lo mostrado en la Tabla 1 : Tabla 1 . Virus recombinantes de FAdV-9 generados con diferentes insertos.
Figure imgf000028_0001
Estos vectores recombinantes fueron caracterizados por digestión con Xhol. En la Fig. 1 A se muestra el mapa de restricción del DNA del vector recombinante rFAdV9-H7IA; la banda de 4.7 kb muestra el fragmento de restricción donde queda clonado el gen heterólogo. En la Fig. 1 B se puede observar una banda de 3629 pb, la cual corresponde al gen de HA de influenza aviar, demostrando que el vector recombinante rFAdV9-H7IA efectivamente tiene insertado este gen y que además dicho vector es estable después de 10 pases en cultivo celular. En la Fig. 1 C se observa, del lado izquierdo, un cultivo de células CeLi sin infectar, mientras que del lado derecho se observa el efecto citopático causado por la propagación del vector recombinante rFAdV9-H7IA en células CeLi con un título viral de 1 .1 x 106 UFP, indicando que genera un buen efecto citopático debido a que dicho vector recombinante se comporta estable y normal en cultivo en células CeLi.
Asimismo, en la Fig. 2A se muestra el mapa de restricción del DNA del vector recombinante rFAdV9-Fib HCI; la banda de 1 .4 kb muestra el fragmento de restricción donde queda clonado el gen heterólogo, mientras que en la Fig. 2B se observa una banda de 1652 pb, la cual corresponde al gen Fib4 de hepatitis con cuerpos de inclusión serotipo 4, demostrando que el vector recombinante rFAdV9-Fib HCI efectivamente tiene insertado este gen y que además dicho vector es estable después de 10 pases en cultivo celular. Finalmente, en la Fig. 2C se observa, del lado izquierdo, un cultivo de células CeLi sin infectar, mientras que del lado derecho se observa el efecto citopático causado por la propagación del vector recombinante rFAdV9-Fib HCI en células CeLi con un título viral de 1 .4 x 105UFP, indicando que genera un buen efecto citopático debido a que dicho vector recombinante se comporta estable y normal en cultivo en células CeLi.
En la Fig. 3A se muestra el mapa de restricción del DNA del vector recombinante rFAdV9-gBLT; la banda de 5.6 kb muestra el fragmento de restricción donde queda clonado el gen heterólogo. La Fig. 3B muestra una banda de 4,573 pb, correspondiente al gen gB de laringotraqueitis infecciosa de las aves, demostrando que el vector recombinante rFAdV9-gBLT efectivamente tiene insertado este gen y que además dicho vector es estable después de 10 pases en cultivo celular. En la Fig. 3C se puede observar, del lado izquierdo, un cultivo de células CeLi sin infectar, mientras que del lado derecho se muestra el efecto citopático causado por la propagación del vector recombinante rFAdV9-gBLT en células CeLi con un título viral de 2.6 x 106UFP. Esto indica que este vector recombinante se comporta de forma estable en cultivo en células CeLi.
En la Fig. 4A se muestra el mapa de restricción del DNA del vector recombinante rFAdV9-HN; la banda de 4.8 kb muestra el fragmento de restricción donde queda clonado el gen heterólogo. La Fig. 4B muestra una banda de 996pb, correspondiente al gen HN de la enfermedad de Newcastle, con lo cual se demuestra que el vector recombinante rFAdV9-HN efectivamente tiene insertado este gen y que además dicho vector es estable después de 10 pases en cultivo celular. En la Fig.4C se puede observar, del lado izquierdo, un cultivo de células CeLi sin infectar, mientras que del lado derecho se muestra el efecto citopático causado por la propagación del vector recombinante rFAdV9-HN en células CeLi con un título viral de 1 .3 x 106 UFP. Esto indica que este vector recombinante se comporta de forma estable en cultivo en células CeLi. Ejemplo 4. Generación de un vector recombinante de FAdV-9 conforme a otros vectores adenovirales conocidos
El genoma de FAdV-9 de 45 kb fue clonado en el plásmido pWE-15; este genoma contiene dos bloques de repeticiones en tándem llamadas TR-1 (localizada entre los nucleótidos 37,648 y 37,812) y TR-2 (localizada entre los nucleótidos 38,707 y 40,561 , es decir, entre los 60 y 100 mu) en el extremo 3', los cuales no son necesarios para su replicacion viral. Posteriormente, este genoma en pWE-15 fue subclonado en el plásmido pBg para añadir sitios Pací en los extremos del genoma, los cuales son útiles para linearizar el ADN durante la generación de virus en cultivo celular. Para generar el intermediario, la región TR-2 fue amplificada mediante PCR y clonada en el plásmido bacteriano pTRE-2 con sitios únicos I- Ceul y Pl-Scel en los extremos. Posteriormente se introdujo un cassette de expresión conteniendo CMV-polilinker para dirigir la expresión del gen HN del virus de la enfermedad de Newcastle, obteniéndose la clona infecciosa pFATR2- CMV HN.
El virus recombinante rFATR2-CMV HN fue obtenido mediante transfección de la clona infecciosa en cultivo de células CeLi.
En la Fig.5A es posible observar mapa de restricción del DNA del vector recombinante rFATR2-CMV HN; la banda de 3,473 kb muestra el fragmento de restricción donde queda clonado el gen heterólogo. La Fig.5B muestra una banda de digestión del ADN con Xhol, indicando los 3,473 pb, correspondiente al gen HN de virus de Newcastle, con lo cual se demuestra que el vector recombinante rFATR2-CMV HN efectivamente tiene insertado este gen. No obstante, en la Fig.5C se puede observar que la banda de 3,473 pb correspondiente al gen HN ha desaparecido después de 2 pases en cultivo de células CeLi, con un título viral de 1 .1 x 104UFP, lo cual demuestra que el vector rFATR2-CMV HN perdió el inserto del gen exógeno con los pases en cultivo celular, resultando por lo tanto inestable e inadecuado para la producción industrial de vacunas recombinantes.
Ejemplo 5. Método de elaboración de la vacuna activa con virus recombinante de
FAdV-9 con inserto de H5 de influenza aviar: rFAdV9-435 Se cultivaron células de línea CeLi en forma estática en sistema Roller. Para ello, se descongeló un vial del Banco Celular de Trabajo (BCT) pase 32 en una botella de T25. Se realizaron 3 pases consecutivos con relación 1 :3 cada 2-3 días a fin de recuperar la velocidad de crecimiento (TD=24 horas). Una vez recuperada la velocidad de crecimiento, se propagaron las células en una caja T75 y T225 (relación 1 :3) y cuando se tuvo confluencia al 80% se infectaron con la semilla de producción obtenida conforme al Ejemplo 2 con una multiplicidad de infección (moi) de 0.1 DICC50%/ml_. A los 5 días post infección, se congelaron las botellas con su contenido a -70°C durante 24 horas. Posteriormente, se descongelaron, se recuperó el contenido y se centrifugó a 500 g durante 20 minutos. Se envasó de acuerdo al volumen elaborado.
Se tituló la cosecha por inmunoperoxidasa, y se formuló adicionando fluido cosechado, más TPGA cbp como estabilizador, para alcanzar 105 3DICC50%/dosis. La vacuna experimental se conservó en congelación a una temperatura de entre -20°C y -30°C hasta su uso.
Ejemplo 6. Evaluación in vivo de la vacuna activa recombinante rFAcN 9-435 aplicada con o sin vacuna contra la enfermedad de Marek Se realizó un estudio con el propósito de determinar la efectividad de la vacuna activa de la presente invención y demostrar que la misma no es afectada ni afecta cuando se administra a las aves en combinación con una vacuna contra la enfermedad de Marek. La vacuna fue administrada por vía in ovo y subcutánea. Para ello, se emplearon 270 pollitas comerciales de raza ligera Leghorn (CRL) de 1 día de edad (DE), divididas en 9 grupos de 30 pollitas cada uno, conforme a lo que se muestra en la Tabla 2.
La vacuna activa rFAdV9-435 se aplicó in ovo a los 18 días de incubación (DI) por vía cavidad alantoidea (Ai) a razón de 106 1 DICC50%/0.2 mi¬ sóla para los grupos 2 y 6, y mezclada y aplicada conjuntamente con la vacuna contra Marek cepa HVT para los grupos 1 y 5. Por otro lado, se realizaron experimentos aplicando la vacuna al día de edad (DE), por vía subcutánea (SC) en la porción media y posterior del cuello para inmunización con la vacuna rFAdV9-435, a razón de 106 1 DICC50%/0.2 ml_. La vacuna sola fue administrada para los grupos 4 y 8; y, mezclada y aplicada conjuntamente con vacuna contra Marek cepa HVT para los grupos 3 y 7. Finalmente, a los 10 DE los grupos 5 al 8 fueron revacunados por vía SC con 106 5DICC50%/0.5 mL de vacuna rFAdV9- 435.
Tabla 2. Grupos de tratamiento con la vacuna rFAdV9-435.
Días aplicación y vía Desafíos con \ ΊΑΑΡ- de administración de H5N2 a días de
Grupo Vacunas vacunas edad(DE
18- DI 1-DE 10-DE 19 DE 31 DE 45 DE rFAdV9-435 +
G1 Ai 10 10 10
HVT
G2 rFAdV9-435 Ai 10 10 10
rFAdV9-435 +
G3 SC 10 10 10
HVT
G4 rFAdV9-435 SC 10 10 10
rFAdV9-435 +
G5 HVT + rFAdV9- Ai SC 10 10 10
435
rFAdV9-435 +
G6 Ai SC 10 10 10
rFAdV9-435 rFAdV9-435 +
G7 HVT + rFAdV9- SC SC 10 10 10
435
rFAdV9-435 +
G8 SC SC 10 10 10
rFAdV9-435
Control (no
G9 — - 10 10 10
vacunado)
Los animales fueron alojados en unidades de aislamiento, en donde fueron desafiados a los 1 9, 31 y 45DE subdividiendo los grupos en tres subgrupos de 10 pollitas cada uno, para cada desafío.
El virus de desafío fue un virus de influenza aviar de alta patogenicidad, VIAAP-H5N2, cepa A/chicken/Querétaro, el cual se ajustó con PBS pH 7.2, para aplicar a cada pollo 107 5DIEP50% en 0.3 mL, volumen que recibió cada pollo aplicando 0.06 mi (dos gotas) en cada ojo y 0.09 mi (3 gotas) en cada narina.
Ejemplo 6 A. Evaluación de potencia Todos los grupos se observaron diariamente durante 10 días después de los desafíos para evaluar el cuadro clínico; cada pollo se revisó individualmente y se calificó con un valor numérico conforme a lo establecido en la Tabla 3.
Tabla 3. Evaluación diaria del cuadro clínico pos-desafíos con VIAAP-H5N2.
Signos clínicos Ligero Severo
Conjuntivitis 1 2
Conjuntivitis + pluma erizada 3 4 Conjuntivitis + pluma erizada +
5 6
postración
Muerte 7 -
El valor máximo de la severidad del cuadro clínico (SMCC) de cada grupo experimental correspondió al promedio de la suma de los valores individuales. La mortalidad (M) se estimó en forma acumulada durante los 10 días de observación, ajustando el valor máximo de la sinología clínica a 100%.
La morbilidad máxima del grupo (MM) fue igual al porcentaje máximo de aves enfermas en uno de los 10 días de observación. El índice de morbilidad (IMb) fue calculado de la siguiente forma:
(SMCC) (MM)
IMb=
100
Por ejemplo:
(56%) (80%)
IMb= IMb = 44.8 %
100
Los resultados de la protección hacia mortalidad (PM) e IMb en pollos desafiados con el VIAAP-H5N2 a los 19, 31 y 45 DE se presentan en la Tabla 4.
Tabla 4. Resultados de potencia en pollitas CRL vacunadas con rFAdV9-435 y desafiadas con VIAAP-H5N2.
Grupo PM (%) IMb (%) 19 DE 31 DE 45 DE 19 DE 31 DE 45 DE
G1 90 100 100 16.8 12.7 8.2
G2 90 100 100 26.7 6.5 7.1
G3 100 100 100 3.9 1 .5 1 .0
G4 100 100 100 1 .2 1 .2 0.9
G5 100 100 100 9.1 9.7 7.6
G6 100 100 100 10.2 8.8 5.0
G7 100 100 100 0.1 1 .2 0.6
G8 100 100 100 0.5 0.6 0.1
G9 0 0 0 100 100 100
Como se puede observar, los resultados de potencia confirman la efectividad de la vacuna rFAdV9-435 de la presente invención para su uso en el control de la influenza aviar H5N2, y sugieren que podría usarse para el control de otros subtipos de influenza aviar.
Igualmente, estos resultados confirman que la mezcla y aplicación de la vacuna contra la enfermedad de Marek no interfiere en la efectividad de la vacuna activa rFAdV9-435 cuando se aplican en conjunto.
Ejemplo 6B. Evaluación de inmunogenicidad
Los resultados de las pruebas de inhibición de la hemoaglutinación (IH) mostraron que los niveles de anticuerpos contra el antígeno (Ag) de VIA-435, tanto de los grupos vacunados como del control, mostraron niveles muy altos de anticuerpos maternos, de 29 0 a 29 3en los sueros de las aves obtenidos a 1 DE (Fig. 6), y de 28'6 a 2a8, para los sueros obtenidos a los 1 0 DE (Fig. 7).
En el caso de los sueros obtenidos a los 1 9 DE de todos los grupos (tanto grupo control como los grupos vacunados, inclusive los que fueron inmunizados in ovo o al DE con revacunación de rFAdV9-435 a los 1 0 DE, los niveles de anticuerpos detectados fueron desde 23,6 a 24 6 (Fig. 8 y 9). Los resultados anteriores indican que los niveles de anticuerpos detectados corresponden a anticuerpos maternos y no inducidos por la aplicación de la vacuna rFAdV9-435. Sin embargo, tal como se mencionó más arriba, la PM conferida para el desafío temprano a 19 DE fue para los diferentes grupos de entre 90% y 100%, lo que indica que la efectividad de la vacuna de la presente invención no se vio afectada por los anticuerpos maternos contra el VIA-435. Además, sugieren que fue capaz de estimular una respuesta inmune específica de tipo celular, generando protección ante el desafío, lo que concuerda con la literatura científica que señala que la inmunidad celular es de importancia para el control de las enfermedades virales.
Ahora bien, como se puede observar en la Fig. 10 para los sueros obtenidos a los 31 DE, los resultados indican que los grupos inmunizados in ovo no presentaron una repuesta de anticuerpos detectables por la prueba de IH, mientras que para los grupos inmunizados al DE sí se detectaron niveles de anticuerpos atribuibles a la vacuna rFAdV9-435 con un título de 26 3 y 25 8 para los grupos 5 y 6, en contraste con el grupo control no vacunado que resultó con una media de 22 1.
Tal como se muestra en la Fig. 1 1 , para el caso de los grupos inmunizados in ovo con revacunación a los 10 DE, se detectaron niveles moderados de anticuerpos inducidos por la vacuna rFAdV9-435, con un título de 244 y 240 para el grupo 5 y 6, respectivamente. En forma comparativa, el grupo control no vacunado resultó con una media de títulos de anticuerpos IH de 102 1 , que técnicamente se consideran títulos negativos. Para el caso de los grupos inmunizados al DE, con revacunación a los 10 DE, el resultado fue de 26 9 y26 8 para los grupos 7 y 8 respectivamente, sugiriendo que se presentó una respuesta inmune anamnésica.
En el caso de los sueros obtenidos a los 38 DE7 los resultados de la Fig. 12 indican, para los grupos inmunizados in ovo, que la vacuna rFAdV9-435 permitió detectar por primera vez en dichos grupos anticuerpos contra Ag de VIA- 435; más específicamente, para el grupol de 244 y para el grupo 2 de 24 1. Por otro lado, para los grupos inmunizados al DE, los niveles de anticuerpos resultaron con un título de 28 8 y 28 4 para los grupos 3 y 4, respectivamente, en contraste con el grupo control no vacunado que resultó con una media de 21 2.
Por lo que se refiere a los grupos inmunizados in ovo con revacunación a los 10 DE (Fig. 13), se detectaron niveles de anticuerpos inducidos por la vacuna rFAdV9-435, con un título de 25 5 y 26 1 para el grupo 3 y 4, respectivamente, comparativamente al grupo control no vacunado que resultó con una media de 101 2. Para el caso de los grupos inmunizados al DE, con revacunación a los 10 DE, el resultado fue de 28 9 y28 4 para los grupos 7 y 8, respectivamente, lo que señala que aún a los 38 DE el nivel de anticuerpos continuó en ascenso para todos los grupos.
Finalmente, para los sueros obtenidos a los 45 DE, los resultados indican, tal como se puede apreciar en la Fig. 14, para los grupos inmunizados in ovo, que la vacuna rFAdV9-435 permitió detectar anticuerpos contra Ag de VIA- 435, para el grupo 1 de 24 3 y para el grupo 2 de 24 6, mientras que para los grupos 3 y 4 los niveles de anticuerpos resultaron con un título de 28 4 y 28 1 , respectivamente, en contraste con el grupo control no vacunado que resultó con una media de 20,8. En los grupos inmunizados in ovo con revacunación a los 10 DE(Fig. 15), se detectaron niveles de anticuerpos inducidos por la vacuna rFAdV9-435, con un título de 26 6 y 26 8, para el grupo 5 y grupo 6, respectivamente, comparativamente al grupo control no vacunado que resultó con una media de 100 8. Para el caso de los grupos inmunizados al DE, con revacunación a los 10 DE, el resultado fue de 29 6 y210 0 para los grupos 7 y 8, respectivamente; esto señala que aún a los 45 DE el nivel de anticuerpos permaneció en el mismo nivel para los grupos 5 y 6, mientras que para los grupos 7 y 8 este nivel de anticuerpos continuó incrementándose.
Como se puede observar a partir de lo anterior, estos resultados indican que la vacuna rFAdV9-435, elaborada de conformidad con la presente invención, tuvo la capacidad de inducir niveles de anticuerpos detectables por la prueba de IH, para los grupos vacunados in ovo con detección a partir de los 31 DE para los grupos inmunizados in ovo y revacunación a los 10 DE. Mientras que para los grupos vacunados al DE, sin revacunación, la detección también fue a partir de los 31 DE, pero con un título superior que para el grupo vacunado in ovo y revacunado a los 10 DE; para el grupo vacunado al DE y revacunada a los 10 DE, los niveles de anticuerpos detectados no revelaron a este tiempo una respuesta anamnésica importante.
A los 38 DE se detectaron por primera vez niveles de anticuerpos para el grupo 1 (vacunación in ovo), y para el grupo 3 (vacunación al DE) se detecta un incremento en el nivel de anticuerpos, lo que indica que la vacuna rFAdV9-435 continúa incrementando la respuesta humoral aún a los 38 DE. Asimismo, a los 38 DE, para el grupo vacunado in ovo con revacunación a los 10 DE, se nota un incremento en el nivel de anticuerpos, superior al del grupo que solamente recibió la dosis in ovo; mientras que para el grupo vacunado al DE, con revacunación a los 10 DE, el incremento en anticuerpos a los 38 DE no fue significativo en comparación al grupo que solamente recibió una dosis al DE.
A los 45 DE, tanto para el grupo con una sola dosis de vacuna in ovo y el grupo con una sola dosis de vacuna al DE, los niveles de anticuerpos se mantuvieron prácticamente iguales que a los 38 DE lo que indica que para estos grupos el máximo nivel de anticuerpos circulantes detectables por medio de la prueba de IH se logró a los 38 DE. Mientras que para los grupos vacunados in ovo y al día de edad, con revacunación a los 10 DE, todavía se detectó un incremento importante en los niveles de anticuerpos.
Ejemplo 7. Evaluación in vivo de la vacuna activa recombinante rFAcN '9-435 aplicada sola o en combinación con vacuna contra la enfermedad de Marek, con desafío a los 93 DE
Se realizó un segundo estudio para determinar la efectividad de la vacuna activa de la presente invención.
La vacuna fue administrada por vía SC a180 pollitas CRL, divididas en 6 grupos de 30 pollitas cada uno, conforme a lo que se muestra en la Tabla 5; la vacuna HVT contra la enfermedad de Marek utilizada en combinación con la vacuna de la presente invención, fue una vacuna comercial con un título de 4,200 UFP/mL y fue empleada de acuerdo a las indicaciones del laboratorio comercial.
Para efectos de los siguientes ejemplos, se considera que 1 dosis pollo (DP) corresponde al exponente de la dosis en escala logarítmica administrada a cada ave, expresada en DICC50%; por ejemplo, si se administra una dosis de 1 07 1 DICC50%, ésta equivale a 7.1 DP.
Los animales fueron alojados en unidades de aislamiento, en donde fueron desafiados a los 1 9, 31 y 93 DE por vía ocular y narinas con 0.3 mL de VIAAP-H5N2 (cepa A/chicken/Querétaro/14588-19/95), aplicando a cada pollo 108 0DIEP50% en 0.3 mL.
Tabla 5. Grupos de tratamiento con la vacuna rFAdV9-435.
Figure imgf000041_0001
Ejemplo 7 A. Evaluación de potencia
Todos los grupos fueron observaron diariamente durante 1 0 días posteriores a cada desafío. A fin de evaluar el cuadro clínico, cada pollo se revisó individualmente y se le dio un valor numérico de acuerdo a los cambios clínicos observados, de acuerdo a la Tabla 3.
La M y el IMb se calcularon conforme a lo indicado en el Ejemplo 6A. Los resultados se muestran en las Fig. 1 6 a 1 8.
Los resultados de potencia ante un desafío temprano a los 1 9 DE, señalaron que la vacuna vectorizada rFAdV9-435 aplicadas por vía SC a razón 0.2 mL con 7.1 DP combinada con la vacuna HVT en el propio diluente de la vacuna de Marek o sola, generó protecciones a mortalidad (PM) del 70% con IMb bajos, de 18.4% y 19.3% respectivamente. Este resultado corrobora que el potencial inmunogénico de la vacuna rFAdV9-435 no se ve afectado por la vacuna HVT contra Marek.
Los resultados de potencia ante un desafío temprano a los 19 DE muestran que la vacuna vectorizada rFAdV9-435 aplicada junto con la vacuna HVT de Marek o sola, genera PM de entre 70% y 90% e IMb bajos(ver Fig. 16). Este resultado corrobora que el potencial inmunogénico de la vacuna rFAdV9-435 no se ve afectado por la vacuna HVT contra Marek.
Asimismo, estos resultados indican que una sola aplicación de 6.1 DP al día de edad de la vacuna rFAdV9-435, confiere en las aves una protección similar que cuando se administra una sola aplicación de 7.1 DP, o que cuando se administra una segunda dosis a los 10 DE.
En el caso del desafío a los 31 DE, los resultados observados en la Fig.17 señalan que la vacuna vectorizada rFAdV9-435 aplicada por vía SC, sola o en combinación con la vacuna HVT contra Marek, generó una PM del 100% con IMb prácticamente nulos en todos los grupos inmunizados, con lo cual se corrobora también que el potencial inmunogénico de la vacuna rFAdV9-435 no se ve afectado por la vacuna HVT contra Marek.
Igualmente, se observa que una sola aplicación de 6.1 DP de la vacuna rFAdV9-435 es suficiente para conferir una excelente protección al desafío a los 31 DE.
De la misma manera, en la Fig. 18 los resultados de potencia ante un desafío tardío a los 93 DE, indican que la vacuna sectorizada de la presente invención, aplicada sola o en conjunto con la vacuna HVT contra Marek, generó una PM del 100% e IMb prácticamente nulos. Con ello, se muestra que la vacuna rFAdV9-435 conserva el mismo potencial inmunogénico al menos hasta los 93 DE, aún utilizando una sola dosis de 6.1 DP administrada al día de edad.
Ejemplo 7B. Evaluación de inmunogenicidad
Se obtuvieron muestras de suero de todos los grupos a los 19, 31 y 93 DE, las cuales se conservaron a -20°C hasta su uso. Se enfrentaron diluciones dobles seriadas de los sueros a 4 unidades hemoaglutinantes (UHA) de VIABP- 435 en prueba de IH.
Los resultados se resumen en las Fig. 19 a 21 , en donde se puede observar una analogía con los resultados de PM e IMb, ya que los niveles de anticuerpos medidos en los grupos inmunizados para los desafíos realizados a los 19, 31 y 93 DE son similares para todas las vacunas probadas.
Ejemplo8. Eficacia de la vacuna activa recombinante rFAdV9-435 aplicada por vía IM, en comparación con aplicación vía SC, y detección de virus HVT de la enfermedad de Marek en el folículo de las plumas
Se emplearon 330 pollitos LPE, divididos en 22 grupos de 15 aves cada uno, conforme a lo que se muestra en la Tabla 6. Las vacunas fueron administradas a 1 DE, así como a diferentes horas de edad (HE) y DE (con excepción del grupo control no vacunado), solas o en combinación con una vacuna comercial HVT contra Marek, la cual tenía un título de 4,200 UFP/mL y fue empleada de acuerdo a las indicaciones del laboratorio comercial. Las aves fueron alojadas en unidades de aislamiento, en donde fueron desafiados a los 31 DE por vía ocular y narinas con 0.3 mL de VIAAP- H5N2 (cepa A/chicken/Querétaro/14588-1 9/95), aplicando a cada pollo una dosis de 1 08 0 DIEP50%/mL.
Tabla 6. Grupos de tratamiento con la vacuna rFAdV9-435 y/o HVT
Figure imgf000044_0001
Figure imgf000045_0001
Ejemplo 8A. Detección de virus de Marek cepa HVT A los 15 días posvacunación (PV), se obtuvieron tres folículos de pluma de cinco pollos de cada uno de los grupos inmunizados y del grupo control no vacunado con los que se preparó un macerado en proporción 1 :5 con PBS pH 7.2, y se realizaron pruebas de PCR y PCRtr a las muestras. Los resultados de las pruebas se muestran en la Tabla 7. Tabla 7. Resultados obtenidos para los grupos de tratamiento con la vacuna rFAdV9-435 y/o HVT.
Figure imgf000046_0001
Como se puede observar, todos los grupos vacunados con vacuna contra Marek cepa HVT sola o con rFAdV9-435 con los diferentes calendarios de vacunación, resultaron positivos a la prueba de PCR específica para detección de virus HVT en folículo de la pluma. En contraste, los grupos inmunizados solamente con rFAdV9-435 y el control no vacunado resultaron negativos por la misma prueba de PCR/HVT.
En cuanto a los resultados de PCRtr, el resultado para el grupo vacunado solamente con la vacuna HVT fue de 9.7 x 106 0, mientras que para todos los grupos vacunados con los diferentes calendarios con aplicación de HVT y rFAdV9-435, los resultados variaron desde 1 .6 x 106 0 hasta 8.3 x 106 0. En el caso de los grupos vacunados exclusivamente con rFAdV9-435 y el grupo control no vacunado, los resultados fueron negativos.
De acuerdo con la vía de aplicación de la vacuna rFAdV9-435 (SC o
IM) y a la patogenia del virus HVT de la enfermedad de Marek (SC), los resultados tanto de PCR como de PCRtr indican que el virus de la vacuna HVT pudo replicarse adecuadamente en los diferentes órganos y finalmente se alojó en los folículos de las plumas, por lo que las diferencias (no significativas) en logaritmo base 10 detectadas en la prueba de PCRtr no son indicativas de que la vacuna rFAdV9-435 haya interferido con la replicación del virus de HVT, o su viremia o circulación en el organismo al grado de evitar una adecuada respuesta inmune de la vacuna HVT. Ejemplo 8B. Evaluación de potencia
Todos los grupos fueron observaron diariamente durante 10 días posteriores al desafío (PD). A fin de evaluar el cuadro clínico, cada pollo se revisó individualmente y se le dio un valor numérico de acuerdo a los cambios clínicos observados, de acuerdo a la Tabla 3. La PM y el IMb se calcularon conforme a lo indicado en el Ejemplo 6A. Los resultados se muestran también en la Tabla 7.
Los resultados de potencia indican que la vacuna rFAdV9-435 aplicada por vía SC o IM, con y sin vacuna HVT y con los diferentes calendarios de vacunación, fue capaz de generar una excelente PM de 1 00% y un IMb prácticamente nulo para todos los casos, en contraste al control no vacunado para el cual la PM fue del 0% con un IMb máximo del 100%.
Con base en los resultados de los ejemplos 8A y 8B, se puede decir que la vacuna contra la enfermedad de Marek cepa HVT y la vacuna rFAdV9-435 contra la IAAP-H5N2, pueden emplearse conjuntamente sin que se afecte la respuesta inmune de ninguna de las dos vacunas.
Ejemplo 9. Eficacia de la vacuna activa recombinante rFAdV9-435 aplicada por vía IM, en comparación con aplicación vía SC. Se formaron 5 grupos de 1 0 pollos LPE cada uno, 4 de los cuales fueron vacunados y 1 se dejó como control no vacunado, de acuerdo a la Tabla 8.
Los pollos fueron alojados en unidades de aislamiento y desafiados a los 31 DE por vía ocular y narinas con 0.3 mL de VIAAP-H5N2 (cepa A/chicken/Querétaro/14588-1 9/95), aplicando a cada pollo 7.5 DP.
Tabla 8. Grupos de tratamiento con la vacuna rFAdV9-435
Días aplicación, dosis y vía de Desafíos con
Grupo Vacunas administración de vacunas VIAAP-H5N2
1 DE 10 DE 31 DE
G1 rFAdV9-435 IM (6.1 DP/0.2 mL) 10 G2 rFAdV9-435 IM (6.5 DP/0.5 mL) 10
G3 rFAdV9-435 SC (6.1 DP/0.2 mL) 10
G4 rFAdV9-435 SC (6.5 DP/0.5 mL) 10
Control no
G5 — - 10
vacunado
Ejemplo 9 A. Evaluación de potencia Todos los grupos fueron observaron diariamente durante los 10 días PD. A fin de evaluar el cuadro clínico, cada pollo se revisó individualmente y se le dio un valor numérico de acuerdo a los cambios clínicos observados, conforme a la Tabla 3.
La PM y el IMb se calcularon conforme a lo indicado en el Ejemplo 6A. Los resultados se muestran en la Fig. 22.
Los resultados de potencia ante el desafío a los 31 DE con VIAAP- H5N2, indican que la vacuna vectorizada rFAdV9-435 aplicada por vía IM al día de edad al G1 y al G2 confirieron una PM del 100%, con IMb de 1 .2 y 2.3 respectivamente. Los resultados de los G3 y G4, inmunizados por vía SC, fueron de 100% de PM e IMb de 1 .3 y 2.6, lo que confirma la viabilidad del empleo de la vía SC, así como de la vía IM, para la administración de la vacuna rFAdV9-435. Ejemplo 9B. Evaluación de inmunogenicidad
Se obtuvieron muestras de suero de todos los grupos a los 31 DE, las cuales se conservaron a -20°C hasta su uso. Se enfrentaron diluciones dobles seriadas de los sueros a 4 unidades hemoaglutinantes (UHA) de VIABP-435 en prueba de IH. Los resultados de las pruebas de IH se muestran en la Fig. 23. Los sueros tomados a los 31 DE reflejan una media de 246, 25 1 , 245 y 248 para los G1 , G2, G3 y G4 respectivamente, indicando una alta correlación con la protección de las aves al desafío.
Estos resultados confirman que la vacuna de la presente invención es igualmente efectiva en la inducción de anticuerpos circulantes cuando se administra por vía IM que cuando se administra por vía SC.
Ejemplo 10. Evaluación in vivo de la vacuna activa recombinante rFAcN9-gB contra laringotragueitis infecciosa aviar
De manera similar a lo descrito en el Ejemplo 5, se elaboró una vacuna recombinante en vector de adenovirus aviar con inserto de glicoproteína B de laringotraqueitis infecciosa aviar (LTI), denominada vacuna rFAdV9-gB, y se probó su efectividad.
Se emplearon 90 pollitos LPE, divididos en 9 grupos de 10 aves cada uno, 1 grupo control no vacunado, 1 grupo control no vacunado y no desafiado, y 7 grupos inmunizados con las siguientes vacunas: a) vacuna rFAdV9-gB; y b) vacuna comercial con virus activo modificado en embrión de pollo (CEP-LTI). Los grupos fueron inmunizados conforme a lo mostrado en la Tabla 9.
Los animales fueron alojados en unidades de aislamiento, y fueron desafiados a los 31 DE con un virus de LTI de alta virulencia (vvLTI), cepa USA 63,140, el cual se aplicó a cada pollo a razón de una dosis de 3.9 DP en 0.3 mL, aplicando dos gotas en cada ojo y 3 gotas en cada narina.
Tabla 9. Grupos de tratamiento con la vacuna rFAdV9-gB.
Figure imgf000051_0001
o vacuna o y no esa a o
Ejemplo 10 A. Evaluación de potencia
Los grupos fueron observaron diariamente durante 9 días PD. A fin de evaluar el cuadro clínico, cada pollo se revisó individualmente y se le dio un valor numérico de acuerdo a los cambios clínicos observados, de acuerdo a la Tabla 3.
La M y el IMb se calcularon conforme a lo indicado en el Ejemplo 6A. Los resultados se muestran en la Tabla 1 0.
Los resultados de IMb observados en los diferentes grupos de pollos LPE vacunados, indicaron a 9 días PD con el vvLTI, que los signos clínicos fueron en general de baja a moderada intensidad, inferiores a los observados para el G8, control no vacunado.
Para los G1 , G2 y G3, inmunizados con 7.1 y/o 7.5 DP de la vacuna rFAd9-gB vía SC, los IMb fueron de 6.2, 6.1 y 3.5 respectivamente, mientras que para los grupos G4, G5 y G6, inmunizados con dosis 10 veces menor de la vacuna rFAdV9-gB (6.1 y/o 6.5 DP), se obtuvieron IMb similares, de 6.5, 6.3 y 5.2 respectivamente (Tabla 10). Estos resultados indican que el uso de una dosis 1 0 veces menor de vacuna vectorizada rFAdV9-gB no marcó una diferencia significativa para proteger a las aves vacunadas contra la presentación de signos clínicos de LT en las aves inmunizadas. Por otra parte, muestran que la vacuna recombinante de la presente invención, con inserto del gen gB del virus de LTI, rFAdV9-gB, mostró un resultado para prevenir las lesiones en laringe y tráquea ligeramente inferior a la vacuna comercial CEP-LTI.
Por lo que se refiere a M, ésta no se observó en ninguno de los grupos.
Tabla 10. Eficacia de la vacuna rFAdV-gB
Grado de lesiones
Gpo IMb macroscópicas del
grupo
G1 6.2 ++
G2 6.1 ++
G3 3.5 ++
G4 6.5 ++
G5 6.3 ++
G6 5.2 ++
G7 2.4 +
G8 37.0 +++++
G9 0 - Ejemplo 10B. Evaluación de la potencia a prevención
de lesiones macroscópicas.
Nueve días después de los desafíos se sacrificaron las aves de todos los grupos, se revisaron laringes y tráqueas de las aves de cada grupo para determinar si había lesiones macroscópicas (presencia de exudado seroso y hemorragias petequiales en la submucosa de laringe y tráquea), comparando el grado de los cambios macroscópicos con el G8 no vacunado pero desafiado al que se le asignó un valor de cinco (+++++), y el grupo control no vacunado y no desafiado (denominado G9)al que se le confirió el valor de cero (-).
Los resultados de prevención a lesiones macroscópicas observados en los diferentes grupos de pollos LPE vacunados, mostrados también en la Tabla 10, indican que todos los grupos inmunizados con la vacuna rFAdV9-gB, (incluso para G4, G5 y G6 a los que se les aplicó una dosis 10 veces menor de esta vacuna), mostraron índices de protección a lesiones macroscópicas similares, muy cercanos a la protección generada por la vacuna comercial CEP-LTI.
Estos resultados confirman que el uso de 10 veces menos la dosis de rFAdV9-gB no marcó una diferencia significativa para reducir la presentación de lesiones macroscópicas en las aves inmunizadas, y que con ella es posible obtener resultados cercanos a los obtenidos con una vacuna comercial elaborada con virus completo y propagada en embrión de pollo, sin correr los riegos que ésta conlleva.
De conformidad con lo anteriormente descrito, se podrá observar que la vacuna recombinante en vector de adenovirus aviar serotipo 9, ha sido ideada para contar con una vacuna recombinante estable, que resulte efectiva aún al administrarse en combinación con una vacuna contra la enfermedad de Marek, y cuya efectividad no se vea afectada por la presencia de anticuerpos maternos, y será evidente para cualquier experto en la materia que las modalidades de la vacuna recombinante en vector de adenovirus aviar serotipo 9 y el uso de la misma, según se describió anteriormente e ilustró en los dibujos que se acompañan, son únicamente ilustrativas más no limitativas de la presente invención, ya que son posibles numerosos cambios de consideración en sus detalles sin apartarse del alcance de la invención. Por ejemplo, se ha mostrado experimentalmente que es posible lograr la estabilidad en pases sucesivos de cultivos celulares con diversos genes exógenos y que es posible utilizar diversos tipos de vehículos aceptables para la formulación de las vacunas.
Por lo tanto, la presente invención no deberá considerarse como restringida excepto por lo que exija la técnica anterior y por el alcance de las reivindicaciones anexas.

Claims

NOVEDAD DE LA INVENCION REIVINDICACIONES
1 . Una vacuna recombinante que comprende un vector de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada por lo menos una secuencia de nucleotidos exogena que codifica para por lo menos un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, y un vehículo, adyuvante y/o excipiente farmacéuticamente aceptable, caracterizada porque la secuencia de nucleotidos exogena se localiza entre los nucleotidos 491 -2782.
2. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque el vector de FAdV-9 se encuentra vivo (activo) o inactivado.
3. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque el vector de FAdV-9 comprende la secuencia SEQ ID NO:1 .
4. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque la secuencia de nucleotidos exogena codifica para por lo menos un antígeno de una enfermedad de interés, seleccionado entre influenza aviar, hepatitis con cuerpos de inclusión, laringotraqueitis infecciosa de las aves, enfermedad de Newcastle, infección de la bolsa de Fabricio, bronquitis infecciosa, enfermedad causada por metapneumovirus (MPNV), enfermedad de Marek, anemia infecciosa de las aves, o cualquier otro gen cuyo tamaño permita su inserción en el vector de FAdV-9.
5. La vacuna recombinante de conformidad con la reivindicación 4, caracterizada además porque la secuencia de nucleotidos exógena codifica para un antígeno del grupo que comprende hemoaglutinina (HA) del virus de influenza aviar; fibra y hexón de virus de hepatitis con cuerpos de inclusión, serotipos 4 y 8; glicoproteína B (gB) y glicoproteína D (gD) del virus de laringotraqueitis infecciosa de las aves(LTI);proteínas HN y F del virus de la enfermedad de Newcastle; proteína VP2 de virus de infección de la bolsa de Fabricio; proteína S1 y S2 de virus de bronquitis infecciosa; proteína F de metapneumovirus (MPNV); y proteína VP1 , VP2 y VP3 de anemia infecciosa de las aves.
6. La vacuna recombinante de conformidad con la reivindicación 5, caracterizada además porque la HA del virus de influenza aviar se selecciona de por lo menos uno de los subtipos H1 , H2, H3, H5, H6, H7 o H9 de dicha proteína.
7. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque la secuencia de nucleotidos exógena comprende un gen que codifica para por lo menos un antígeno de un adenovirus aviar diferente al FAdV-9 utilizado como vector viral.
8. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque la concentración del virus requerida para lograr la respuesta antigénica es de por lo menos de 105 0DICC50% por dosis.
9. La vacuna recombinante de conformidad con la reivindicación 8, caracterizada además porque la concentración del virus requerida para lograr la respuesta antigénica es de por lo menos 106 0DICC50% por dosis.
10. La vacuna recombinante de conformidad con la reivindicación 2, caracterizada además porque cuando la vacuna se encuentra viva (activa), los vehículos farmacéuticamente aceptables son soluciones acuosas, preferiblemente seleccionadas del grupo que consiste de soluciones acuosas que comprenden estabilizador TPGA (trehalosa, fosfato, glutamato, albúmina); soluciones acuosas que comprenden estabilizador de peptonas; y soluciones acuosas que comprenden leche descremada.
1 1 . La vacuna recombinante de conformidad con la reivindicación 2, caracterizada además porque cuando la vacuna se encuentra inactivada, los vehículos farmacéuticamente aceptables son soluciones acuosas o emulsiones.
12. La vacuna recombinante de conformidad con la reivindicación 1 1 , caracterizada además porque el vehículo farmacéuticamente aceptable es una emulsión agua-aceite; una emulsión aceite-agua; o una emulsión agua- aceite-agua.
13. La vacuna recombinante de conformidad con la reivindicación 2, caracterizada además porque la vacuna viva o activa está preparada para administrarse por vía intramuscular, vía intranasal, vía subcutánea, aspersión, nebulización, oral a través del agua de bebida, o in ovo.
14. La vacuna recombinante de conformidad con la reivindicación 2, caracterizada además porque la vacuna inactivada está preparada para administrarse por vía intramuscular o subcutánea, preferiblemente por vía subcutánea.
15. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque comprende una vacuna de virus completo contra la enfermedad de Marek.
16. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada porque comprende un vector de FAdV-9 que tiene insertada por lo menos dos secuencias de nucleotidos exógenas que codifican para por lo menos dos antígenos ya sea de la misma enfermedad de interés o de enfermedades de interés diferentes, y que reemplazan la región no esencial del genoma del adenovirus que se localiza entre los nucleotidos 491 -2782.
17. La vacuna recombinante de conformidad con la reivindicación 1 , caracterizada además porque comprende por lo menos una segunda vacuna basada en un vector de FAdV-9 que tiene insertada por lo menos una secuencia de nucleotidos exógena que codifica para por lo menos un antígeno diferente al de la primera vacuna, ya sea de la misma enfermedad de interés o de una diferente, y que reemplaza la región no esencial del genoma del adenovirus localizada entre los nucleotidos 491 -2782.
18. Una semilla maestra de un virus recombinante de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada una secuencia de nucleotidos exógena que codifica para un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus, localizada entre los nucleotidos 491 -2782, caracterizada porque es obtenida después de 6 a 1 1 pases en cultivo celular.
19. El uso de un vector de adenovirus aviar serotipo 9 (FAdV-9) que tiene insertada una secuencia de nucleotidos exógena que codifica para un antígeno de una enfermedad de interés y que reemplaza la región no esencial del genoma del adenovirus localizada entre los nucleotidos 491 -2782, para la elaboración de una vacuna recombinante capaz de generar una respuesta inmune en animales.
20. El uso de conformidad con la reivindicación 19, caracterizada además porque la vacuna recombinante se administra en una sola dosis o en dos o más dosis.
21 . El uso de conformidad con la reivindicación 20, caracterizada además porque la vacuna recombinante se administra en una sola dosis.
22. El uso de conformidad con la reivindicación 21 , caracterizada además porque la vacuna recombinante se administra sola o de manera conjunta con otras vacunas recombinantes o no recombinantes, vivas (activas) o inactivadas.
23. El uso de conformidad con la reivindicación 22, caracterizada además porque la vacuna recombinante se administra de manera conjunta con una vacuna contra la enfermedad de Marek.
PCT/IB2015/055994 2014-08-08 2015-08-06 Vacuna en vector recombinante de adenovirus aviar serotipo 9 WO2016020885A1 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN201580042608.3A CN106661592A (zh) 2014-08-08 2015-08-06 以重组血清型9禽腺病毒载体形式的疫苗
PE2022001034A PE20221792A1 (es) 2014-08-08 2015-08-06 Vacuna en vector recombinante de adenovirus aviar serotipo 9
MX2017001742A MX2017001742A (es) 2014-08-08 2015-08-06 Vacuna en vector recombinante de adenovirus aviar serotipo 9.
JP2017526775A JP2017526737A (ja) 2014-08-08 2015-08-06 組み換え血清型9トリアデノウイルスベクター形式でのワクチン
EP15829016.3A EP3178938A4 (en) 2014-08-08 2015-08-06 Vaccine in the form of a recombinant sero type 9 avian adenovirus vector
BR112017002577-9A BR112017002577A2 (pt) 2014-08-08 2015-08-06 vacina recombinante, semente-mãe de um vírus recombinante do adenovírus aviário e uso de um vetor de adenovírus aviário
EA201790296A EA038951B1 (ru) 2014-08-08 2015-08-06 Вакцина в виде рекомбинантного вектора на основе птичьего аденовируса серотипа 9
KR1020177006378A KR20170063552A (ko) 2014-08-08 2015-08-06 재조합 혈청형 9 조류 아데노바이러스 벡터 형태의 백신
US15/502,443 US10758608B2 (en) 2014-08-08 2015-08-06 Vaccine in the form of a recombinant sero type 9 avian adenovirus vector
CA2956997A CA2956997A1 (en) 2014-08-08 2015-08-06 Vaccine in the form of a recombinant sero type 9 avian adenovirus vector
PH12017500216A PH12017500216B1 (en) 2014-08-08 2017-02-03 Vaccine in serotype-9 fowl adenovirus recombinant vector
CONC2017/0001614A CO2017001614A2 (es) 2014-08-08 2017-02-20 Vacuna en vector recombinante de adenovirus aviar serotipo 9

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2014/063809 WO2016020730A1 (es) 2014-08-08 2014-08-08 Vacuna en vector recombinante de adenovirus aviar serotipo 9
IBPCT/IB2014/063809 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016020885A1 true WO2016020885A1 (es) 2016-02-11

Family

ID=55263220

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2014/063809 WO2016020730A1 (es) 2014-08-08 2014-08-08 Vacuna en vector recombinante de adenovirus aviar serotipo 9
PCT/IB2015/055994 WO2016020885A1 (es) 2014-08-08 2015-08-06 Vacuna en vector recombinante de adenovirus aviar serotipo 9

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/063809 WO2016020730A1 (es) 2014-08-08 2014-08-08 Vacuna en vector recombinante de adenovirus aviar serotipo 9

Country Status (14)

Country Link
US (1) US10758608B2 (es)
EP (1) EP3178938A4 (es)
JP (1) JP2017526737A (es)
KR (1) KR20170063552A (es)
CN (1) CN106661592A (es)
AR (1) AR101468A1 (es)
BR (1) BR112017002577A2 (es)
CA (1) CA2956997A1 (es)
CO (1) CO2017001614A2 (es)
EA (1) EA038951B1 (es)
MX (3) MX2017001742A (es)
PE (2) PE20221792A1 (es)
PH (1) PH12017500216B1 (es)
WO (2) WO2016020730A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10130702B2 (en) * 2016-12-01 2018-11-20 Pulike Biological Engineering, Inc. Vaccine composition and preparation method and use thereof
US10821172B2 (en) * 2017-04-01 2020-11-03 Pulike Biological Engineering, Inc. Vaccine composition and preparation method and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010017087A1 (en) 2008-08-08 2010-02-11 3M Innovative Properties Company Lightguide having a viscoelastic layer for managing light
WO2016020730A1 (es) * 2014-08-08 2016-02-11 Laboratorio Avi-Mex, S.A. De C.V. Vacuna en vector recombinante de adenovirus aviar serotipo 9
CN110680914B (zh) * 2019-09-23 2021-11-26 洛阳职业技术学院 一种三联灭活疫苗及其制备方法
CN111494617A (zh) * 2020-04-08 2020-08-07 扬州优邦生物药品有限公司 一种四联灭活疫苗及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296852B1 (en) * 1993-04-14 2001-10-02 Commonwealth Scientific And Industrial Research Organisation Recombinant avian adenovirus vector
WO2010058236A1 (es) * 2008-11-19 2010-05-27 Laboratorio Avi-Mex, S.A. De C.V. Vacuna recombinante de vector viral inactivado

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL103939A (en) * 1992-12-01 1996-09-12 Abic Ltd An anti-DBI vaccine in birds containing attenuated live DBI virus
NZ263772A (en) 1993-04-14 1996-12-20 Webster Arthur Pty Ltd Recombinant avian adenovirus with heterologous nucleotide sequence; use as vector; vaccine
US6048535A (en) * 1997-06-12 2000-04-11 Regents Of The University Of Minnesota Multivalent in ovo avian vaccine
WO2007072916A1 (ja) * 2005-12-22 2007-06-28 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute 卵内接種用ワクチン
KR20110081222A (ko) * 2008-09-26 2011-07-13 어번 유니버시티 비복제성 벡터화된 백신의 점막 투여에 의한 조류의 면역화
WO2016020730A1 (es) * 2014-08-08 2016-02-11 Laboratorio Avi-Mex, S.A. De C.V. Vacuna en vector recombinante de adenovirus aviar serotipo 9
MX2018000353A (es) * 2015-07-10 2018-03-14 Univ Guelph Sistema vector de adenovirus aviar 9 (fadv-9) y metodos asociados.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296852B1 (en) * 1993-04-14 2001-10-02 Commonwealth Scientific And Industrial Research Organisation Recombinant avian adenovirus vector
WO2010058236A1 (es) * 2008-11-19 2010-05-27 Laboratorio Avi-Mex, S.A. De C.V. Vacuna recombinante de vector viral inactivado

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CORREDOR, J. C. ET AL.: "The non-essential left end región of the fowl adenovirus 9 genome is suitable for foreign gene insertion/replacement.", VIRUS RESEARCH, vol. 149, no. 2, 2010, pages 167 - 174, XP026966202, ISSN: 0168-1702 *
CORREDOR, J.C. ET AL.: "Antibody response and virus shedding of chickens inoculated with left end deleted fowl adenovirus 9-based recombinant viruses.", AVIAN DIS., vol. 55, no. 3, 2011, pages 443 - 446, XP055392816 *
DENG, L ET AL.: "Oral inoculation of chickens with a candidate fowl adenovirus 9 vector", CLIN. VACCINE IMMUNOL., vol. 20, no. 8, 2013, pages 1189 - 1196, XP055392819 *
JOHNSON, M. A. ET AL.: "A recombinant fowl adenovirus expressing S1 gene of infectiuos bronchitis virus protects against challenge with infectious bronchitis virus", VACCINE, vol. 21, no. 21-22, 2003, pages 2730 - 2736, XP004429667, ISSN: 0264-410X, DOI: doi:10.1016/S0264-410X(03)00227-5 *
SHEPPARD, M. ET AL.: "Fowl adenovirus recombinant expressing VP2 of infectious bursal disease virus induces protective immunity against bursal disease", ARCHIVES OF VIROLOGY, vol. 143, no. 5, 1998, pages 915 - 930, XP001064108, ISSN: 0304-8608, DOI: doi:10.1007/s007050050342 *
YANG, D.H. ET AL.: "Development of fowl adenovirus 9 based vector vaccine expressing the hemagglutinin gene of an H5N1 influenza virus", PROGRAMME AND PROCEEDINGS, P. 48. ORAL PRESENTATIONS - VACCINES AND VIRAL IMMUNOLOGY. ESW - 8TH INTERNATIONAL CONGRESS OF VETERINARY VIROLOGY, August 2009 (2009-08-01), Budapest - Hungary, XP008185177 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10130702B2 (en) * 2016-12-01 2018-11-20 Pulike Biological Engineering, Inc. Vaccine composition and preparation method and use thereof
US10821172B2 (en) * 2017-04-01 2020-11-03 Pulike Biological Engineering, Inc. Vaccine composition and preparation method and use thereof

Also Published As

Publication number Publication date
KR20170063552A (ko) 2017-06-08
PE20221792A1 (es) 2022-11-25
CA2956997A1 (en) 2016-02-11
MX2022000718A (es) 2022-02-24
US10758608B2 (en) 2020-09-01
MX2017001742A (es) 2017-05-15
AR101468A1 (es) 2016-12-21
WO2016020730A1 (es) 2016-02-11
PE20170429A1 (es) 2017-05-11
EA038951B1 (ru) 2021-11-15
BR112017002577A2 (pt) 2018-02-27
EP3178938A1 (en) 2017-06-14
PH12017500216A1 (en) 2017-07-03
EP3178938A4 (en) 2018-03-21
EA201790296A1 (ru) 2017-06-30
US20170232096A1 (en) 2017-08-17
JP2017526737A (ja) 2017-09-14
PH12017500216B1 (en) 2017-07-03
CN106661592A (zh) 2017-05-10
CO2017001614A2 (es) 2017-07-28
MX2022003590A (es) 2022-05-26

Similar Documents

Publication Publication Date Title
ES2700243T3 (es) Construcciones del virus de la enfermedad de Marek recombinantes no patógenas que codifican antígenos del virus de la laringotraqueitis infecciosa y del virus de la enfermedad de Newcastle
Baron et al. Recent advances in viral vectors in veterinary vaccinology
ES2648672T3 (es) Vacuna ND-IBD vectorizada con HVT mejorada
WO2016020885A1 (es) Vacuna en vector recombinante de adenovirus aviar serotipo 9
ES2719409T5 (es) Vectores recombinantes de Gallid herpesvirus 3 (mdv serotipo 2) que expresan antígenos de patógenos aviares y usos de los mismos
Basavarajappa et al. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens
ES2620789T3 (es) Inmunización de aves por administración de vacunas con vectores no replicantes
ES2807952T3 (es) Herpesvirus aviares recombinantes multivalentes y vacunas para inmunizar especies aviares
Zhou et al. Protection of chickens, with or without maternal antibodies, against IBDV infection by a recombinant IBDV-VP2 protein
ES2867457T3 (es) Vacuna recombinante contra paramyxovirus aviar y procedimiento de fabricación y utilización de la misma
ES2732828T3 (es) Virus de la enfermedad de Marek recombinantes y usos de los mismos
Gao et al. Expression of HA of HPAI H5N1 virus at US2 gene insertion site of turkey herpesvirus induced better protection than that at US10 gene insertion site
JP2020517307A (ja) 異種鳥類病原菌抗原をコードする遺伝子組換えガリドヘルペスウイルス3ワクチン
BR112020007213A2 (pt) construtos de vírus da doença de marek não patogênico recombinante que codificam múltiplos antígenos heterólogos
ES2935643T3 (es) Construcciones de virus de la enfermedad de Marek no patógeno recombinante que codifican antígenos del virus de la laringotraqueítis infecciosa y del virus de la bursitis infecciosa
RU2528750C2 (ru) Рекомбинантная вакцина на основе инактивированного вирусного вектора
JP2018519826A (ja) アヒル腸炎ウイルス及びその使用
CN116648259A (zh) 多价hvt载体疫苗
WO2021229311A1 (es) Vacuna recombinante contra covid-19 en vector viral de paramixovirus
ES2557315T3 (es) Nuevo virus de la gripe
WO2012067483A2 (es) Virus de la enfermedad de newcastle y su uso como vacuna
Basavarajappa Improved infectious laryngotracheitis virus vaccines using Newcastle disease virus vector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829016

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2956997

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12017500216

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 000180-2017

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2017526775

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/001742

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: NC2017/0001614

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002577

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: A201701870

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 201790296

Country of ref document: EA

REEP Request for entry into the european phase

Ref document number: 2015829016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829016

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177006378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017002577

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170208