WO2010058236A1 - Vacuna recombinante de vector viral inactivado - Google Patents

Vacuna recombinante de vector viral inactivado Download PDF

Info

Publication number
WO2010058236A1
WO2010058236A1 PCT/IB2008/003150 IB2008003150W WO2010058236A1 WO 2010058236 A1 WO2010058236 A1 WO 2010058236A1 IB 2008003150 W IB2008003150 W IB 2008003150W WO 2010058236 A1 WO2010058236 A1 WO 2010058236A1
Authority
WO
WIPO (PCT)
Prior art keywords
vaccine
virus
further characterized
recombinant
recombinant vaccine
Prior art date
Application number
PCT/IB2008/003150
Other languages
English (en)
French (fr)
Inventor
Bernardo Lozano-Dubernard
David Sarfati-Mizrahi
Jesús Alejandro SUÁREZ-MARTÍNEZ
Manuel Joaquín GAY-GUTIÉRREZ
Ernesto Soto-Priante
Original Assignee
Laboratorio Avi-Mex, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42197871&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010058236(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA2744348A priority Critical patent/CA2744348C/en
Priority to AU2008364200A priority patent/AU2008364200B2/en
Priority to MX2011005231A priority patent/MX2011005231A/es
Priority to RU2011119976/10A priority patent/RU2528750C2/ru
Priority to EP08878230.5A priority patent/EP2353610A4/en
Priority to JP2011536958A priority patent/JP2012509308A/ja
Priority to KR1020117014230A priority patent/KR20110092316A/ko
Application filed by Laboratorio Avi-Mex, S.A. De C.V. filed Critical Laboratorio Avi-Mex, S.A. De C.V.
Priority to BRPI0822947A priority patent/BRPI0822947B1/pt
Priority to PCT/IB2008/003150 priority patent/WO2010058236A1/es
Priority to CN2008801326877A priority patent/CN102281896A/zh
Publication of WO2010058236A1 publication Critical patent/WO2010058236A1/es
Priority to US13/111,759 priority patent/US20110311578A1/en
Priority to ZA2011/04013A priority patent/ZA201104013B/en
Priority to US14/475,751 priority patent/US20150056245A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/145Orthomyxoviridae, e.g. influenza virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • C12N2710/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18141Use of virus, viral particle or viral elements as a vector
    • C12N2760/18143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18111Avulavirus, e.g. Newcastle disease virus
    • C12N2760/18161Methods of inactivation or attenuation
    • C12N2760/18163Methods of inactivation or attenuation by chemical treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2790/00Viroids or subviral agents
    • C12N2790/00011Details
    • C12N2790/00034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention is related to the techniques used in the prevention and treatment of diseases, preferably of the avian type and more particularly, it is related to recombinant vaccines comprising an inactivated viral vector, which has inserted an exogenous nucleotide sequence that encodes a protein with antigenic activity of a disease; and, a pharmaceutically acceptable carrier, adjuvant or excipient.
  • vaccines against viral pathogens are formulated by isolating the corresponding virus for later use for the production of a vaccine, administering it to animals or humans by various formulations.
  • vaccine formulations that use complete and active viruses that have shown low pathogenicity in the field, or whose pathogenicity has been attenuated in the laboratory, but which, however, when supplied, cause a sufficient antigenic reaction to provide protection against viral strains of the same species with greater pathogenicity.
  • Newcastle disease is of viral origin and highly contagious, and can even be lethal. This disease affects domestic and wild birds causing high morbidity and mortality.
  • ENC is caused by a virus of the family Paramyxoviridae, of the genus Avulavirus. According to their degree of pathogenicity and virulence, the strains are classified as: lentogenic, mesogenic and velogenic, that is, low, moderate and high pathogenicity respectively (Office International des Epizooties (2008). Newcastle Disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis, Office International des Epizooties, France, p. 576-589). The sources of transmission of the ENC virus are multiple.
  • velogenic type ENC viruses WENC
  • the incubation period for velogenic type ENC viruses (WENC) causing high mortality is approximately 21 days, and with respiratory and / or nervous signology such as gasping and sneezing and incoordination, wings bristling, dragging of the legs, crooked head, neck, tics, circle displacements, depression, lack of appetite and complete paralysis.
  • respiratory and / or nervous signology such as gasping and sneezing and incoordination, wings bristling, dragging of the legs, crooked head, neck, tics, circle displacements, depression, lack of appetite and complete paralysis.
  • One of the strategies used for the control and prevention of ENC is precisely the use of active virus vaccines, normally made from lentogenic strains.
  • Live vaccines against ENC induce protection at the level of the respiratory mucosa and have been used by industry for more than 50 years.
  • These active virus vaccines are mainly based on the use of the lentogenic viruses of the Hitchner B1 and LaSota strains, the latter being the most popular vaccine (Op. Cit, Office International des Epizooties (2008), Newcastle).
  • the active viruses may be inactivated due to the components of an emulsion
  • the stability of emulsion active vaccines is limited, so they are normally used in other types of formulations, or are supplied by mixtures. in situ, which hinders its application in large-scale poultry farming.
  • influenza virus The main problem with active viruses is that it is not always possible to use them as vaccines because of their high capacity for genetic variation, recombination with other active viruses or predisposition to changes in their pathogenicity, such as influenza virus.
  • Influenza is a respiratory disease that affects both mammals and birds. The appearance of an influenza virus strain in a given population can have serious consequences for individuals, both for domestic birds as well as for humans or other mammals. The virus, when it infects domestic chickens and mammals, mutates rapidly to adapt to this new population and during that evolutionary process of adaptation can result in very important biological changes in the same virus that give rise to fatal results for the host and the animal or human population.
  • AI avian influenza
  • VIA AI viruses
  • VABP low pathogenicity AI virus
  • the VIA can be classified according to two of the virus's external proteins: the first one is the hemoagglutinin that is of great importance, since it is responsible for the response of neutralizing antibodies in infected or vaccinated birds and for which 16 different subtypes or serotypes have been reported; The second protein is the neuraminidase of which 9 different subtypes have been reported. Particularly, the most important viruses for birds are those whose hemoagglutinin contains serotypes H5 and H7 that when mutated at high pathogenicity are capable of producing mortality close to 100%.
  • AI disease in birds has two forms of clinical presentation: the first one is low pathogenic avian influenza (IABP) that can cause mild disease, sometimes expressed by poor appearance of the plumage, reduction in egg production; but mainly the IA is important in birds due to the high mutagenic capacity of the virus that in these birds invariably gives rise to the second presentation that is high pathogenic avian influenza (IAAP) capable of causing mortalities close to 100%.
  • IABP low pathogenic avian influenza
  • IAAP high pathogenic avian influenza
  • the clinical signs of AI are variable and are influenced by the subtype of virus involved, the pathogenicity thereof, the immune status and the affected avian species.
  • the incubation period for VIAAP is 21 days and the clinical signs range from conjunctivitis, elevation of the temperature characterized by feathering, depression, prostration and death.
  • the most frequently described lesions are: pulmonary congestion, hemorrhages and edema.
  • the VIA Once the VIA has been introduced into a poultry farm, it is excreted into the environment by feces and respiratory fluids. The transmission and dissemination of the virus to other birds occurs primarily through direct contact with the secretions of infected birds, especially feces, food, water, contaminated equipment and clothing. The susceptibility to infection and the manifestation of clinical signology of the disease is very variable.
  • inactivated virus vaccines usually in emulsion.
  • vaccines made with inactivated AI virus stimulate a strong immune response at the systemic level and have had positive results for the control of both forms of AI.
  • Vaccination is used not only to prevent the clinical signs of the disease, but also, to reduce, as far as possible, the viral excretion of infected birds into the environment. The reduction of viral excretion decreases the opportunity for the spread of the virus from vaccinated birds that become infected to susceptible uninfected birds (Swayne, D. and Kapczynski, D. (2008). Vaccines, Vaccination and Immunology for avian influenza viruses in poultry .In Avian Influenza. Ed. By David Swayne. Blackwell Publishing, USA, p. 407-451.)
  • the emulsion inactivated virus vaccines have greater stability, which allows a better handling of the vaccine and a longer shelf life of the vaccine. It is for this reason that ENC vaccines have also been formulated with virus inactivated in emulsion.
  • inactivated virus vaccines require a concentration of virus much higher than an active virus, usually at least 10 times more, to achieve the same antigenic activity, since precisely the virus has been manipulated to eliminate its ability to replicate, so that the totality of the antigen that will be required to cause the immune response should be present from the moment the vaccine is given, since the organism will not replicate normally to the virus and consequently, its quantity will not be increased .
  • the use of recombinant vaccines is one of the most significant advances in the field of biotechnology.
  • the ability to isolate and splice (or recombine) specific fragments of DNA from an organism, the size of a gene and transfer them to another by means of a DNA vector or plasmid to produce an antigen capable of inducing the formation of antibodies protectors has led to the introduction of new vaccines.
  • the recombinant technology provides very important advantages in the case of diseases, such as the AI described above, in which there is no possibility of using complete active viruses due to its high mutagenic capacity and where the use of the virus Complete inactivation always constitutes a risk if the inactivation process was inadequate.
  • the recombinant vaccines in their active form, by having inserted the nucleotides necessary for the expression of the antigens against the disease of interest, can be safely administered to induce local immunity at the level of the respiratory mucosa in an active viral vector of a disease of low pathogenicity, which would be impossible to perform by using the non-recombinant live virus because of the risks that this would entail.
  • recombinant vaccines Another advantage of recombinant vaccines is that the viral vector that is used does not normally correspond to the disease with respect to the one they protect, which facilitates its use in the veterinary area of diagnostic and prevention techniques of the type that allow vaccinated animals to be differentiated of infected animals, better known as DIVA (Capua, I. et. al. "Development of a DIVA (differentiating infected from vaccinated animáis) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza".
  • DIVA Capua, I. et. al. "Development of a DIVA (differentiating infected from vaccinated animáis) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza.
  • the vaccines that are currently used for the control of AI completely inactivated and emulsified viruses in oil
  • other similar diseases prevent the mortality caused by VIAAP but do not prevent infection and replication of VIA in birds, by Therefore, the decrease in excretion and spread of the virus is partially achieved.
  • recombinant active virus vaccines are traditionally formulated with virus concentrations approximately 10 times higher than that used for the non-recombinant active virus vaccine corresponding to the viral vector used, in order to achieve adequate exposure of the antigenic sites of the microorganism of interest.
  • recombinant vaccines have not been used nactivated, as this would imply achieving viral vector concentrations 100 times higher than those required for the normal virus (10 times higher than that of the active recombinant virus), which is industrially very complicated. Consequently, these active recombinant virus vaccines have also not been widely used in emulsion, because the stability is limited and the emulsion does not represent advantages in this aspect due to the active nature of the active viral vector.
  • a vaccine comprising an inactivated recombinant viral vector, which has inserted an exogenous nucleotide sequence that codes for an antigenic site of a disease of interest; and, a pharmaceutically acceptable emulsion vehicle, adjuvant or excipient, provides adequate protection against said disease of interest by using a viral vector titer similar to that required for a recombinant active virus vaccine based on the same viral vector.
  • the exogenous nucleotide sequence is selected from sequences for antigenic sites against influenza, infectious laryngotracheitis, infectious bronchitis, infection of the Fabrizio pouch
  • an antigen selected from avian influenza, laryngotracheitis, infectious bronchitis, infection of the pouch is used.
  • Fabrizio (Gumboro), hepatitis, PRRS and circovirus.
  • the exogenous nucleotide sequence consists of the gene that codes for the hemoagglutinin (HA) of the avian influenza virus, selected from the 16 subtypes of hemoagglutinin or immunogenic variant of the influenza virus, which more preferably it codes for at least one of the subtypes H1, H2, H3, H5, H6, H7 or H9 of said protein.
  • HA hemoagglutinin
  • the H5 protein gene is obtained from the Mexican H5N2 subtype avian influenza virus or the H5N1 subtype of Asian origin, with excellent protection of both modalities being observed towards the mortality generated by VIAAP subtype H5N2.
  • said viral vector in the preferred embodiment in which said viral vector where the exogenous nucleotide sequence is inserted, is the Newcastle disease virus (rNDV), said viral vector It is preferably selected from vaccine strains, such as the LaSota, Ulster, QV4, B1, CA 2002, Roakin, Komarov, Clone 30, VGGA strains or strains of genetic groups I to V of Newcastle disease.
  • the recombinant virus is from the LaSota strain (rNDV / LS).
  • the adenovirus is selected from avian and porcine adenoviruses, and more preferably between type 9 avian adenovirus (rFAdV / 9) and type 5 porcine adenovirus (rSAdV / 5).
  • the result achieved by the vaccine of the present invention is unexpected, since in the case of recombinant vaccines in the viral vector, it is traditionally thought that replication of the viral vector in the host cells is necessary for that the recombinant protein is expressed in a sufficient amount in order to stimulate an adequate immunogenic response, however, in the present invention, the result obtained indicates that the antigenic protein of the disease of interest is adequately expressed and in sufficient quantity on the surface of the vector virus, and its inactive presence alone makes possible an adequate antigenic and protective response against said disease of interest.
  • the recombinant vaccine of the present invention achieves a local immune response at the level of the respiratory mucosa of the birds, as well as an immune response at the systemic level, which can be differentiated by specific laboratory tests, from immune responses induced by the contact of birds with complete viruses, whether they are vaccines or field, which represents an important advance for epidemiological effects.
  • the vaccine is formulated to be administered subcutaneously, however any systemic route such as intramuscular or intradermal could be used successfully.
  • the vehicle preferably used for the vaccine is a liquid vehicle, more preferably, a water-in-oil emulsion is used, but it is also possible to successfully use other types of adjuvants or modulators of the immune response.
  • Figure 1 is a graph of the results of mortality (M) and morbidity index (IM) of Example 6A generated by the challenge with a velogenic ENC virus (WENC).
  • Figure 2 is a graph of the mortality (M) and morbidity index (IM) results of Example 6A generated by the challenge with a high pathogenic AI virus (VIAAP) subtype H5N2.
  • Figure 3 is a graph of the mortality (M) and morbidity index (IM) results of Example 6B, generated by the challenge with a WENC.
  • Figure 4 is a graph of the mortality (M) and morbidity index (IM) results of Example 6B, generated by the challenge with a VIAAP subtype H5N2.
  • Figure 5 is a graph of the mortality (M) and morbidity index (IM) results of Example 6C, generated by the challenge with a WENC.
  • Figure 6 is a graph of the mortality (M) and morbidity index (IM) results of Example 6C, generated by the challenge with a VIAAP subtype H5N2.
  • Figure 7 is a graph of the mortality (M) and morbidity index (IM) results of Example 6D, generated by the challenge with a WENC.
  • Figure 8 is a graph of the mortality results (M) and morbidity index (MI) of the
  • Example 6D generated by the challenge with a VIAAP subtype H5N2.
  • a vaccine comprising an inactivated viral vector, which has inserted a nucleotide sequence that codes for a disease of interest; and, a pharmaceutically acceptable carrier, adjuvant or excipient, provides adequate protection against the disease of interest by using a viral vector titer similar to that required for an active virus vaccine based on the same viral vector.
  • the viral vector is inactivated, being understood as inactivated that the recombinant virus that functions as a viral vector and contains the nucleotide sequence that codes for the antigenic site of the disease of interest has lost the property of replicating.
  • Inactivation is achieved by physical or chemical procedures well known in the state of the art, preferably by chemical inactivation with formaldehyde or beta-propiolactone (Office International des Epizooties (2008). Newcastle Disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis Office International des Epizooties, France, p. 576-589). In the opposite sense, it is understood that an active or live virus maintains its ability to replicate.
  • the viral vector preferably selected from adenovirus or paramyxovirus, is inactivated and has an exogenous nucleotide sequence inserted that encodes at least one antigenic site of a disease of interest, preferably at least one disease selected from influenza, infectious laryngotracheitis. , infectious bronchitis, infection of the Fabrizio (Gumboro) bag, hepatitis, viral rhinotracheitis, infectious coryza, Mycoplasma hyopneumoniae, pasterellosis, Porcine Reproductive and Respiratory Syndrome (PRRS), circovirus, bordeteliosis, parainfluenza or any other antigen whose size allows its insertion in the corresponding viral vector.
  • a disease of interest preferably at least one disease selected from influenza, infectious laryngotracheitis.
  • infectious bronchitis infection of the Fabrizio (Gumboro) bag
  • hepatitis viral rhinotracheitis
  • infectious coryza infectious coryza
  • an antigen selected from avian influenza, laryngotracheitis, infectious bronchitis, infection of the Fabrizio pouch (Gumboro), hepatitis, PRRS and circovirus is used.
  • the exogenous nucleotide sequence consists of the gene that codes for the hemoagglutinin (HA) of the avian influenza virus, selected from the 16 subtypes of hemoagglutinin or immunogenic variant of the influenza virus, which more preferably it codes for at least one of the subtypes H1, H2, H3, H5, H6, H7 or H9 of said protein.
  • HA hemoagglutinin
  • said viral vector in the preferred embodiment in which said viral vector where the sequence of inserts is inserted exogenous nucleotides, is the Newcastle disease virus (rNDV), said viral vector is preferably selected from vaccine strains, such as strains LaSota, Ulster, QV4, B1, CA 2002, Roakin, Komarov, Clone 30, VGGA or strains of genetic groups I to V of Newcastle disease.
  • the recombinant virus is from the LaSota strain (rNDV / LS).
  • the adenovirus is selected from aviary and porcine adenoviruses, and more preferably from the avian adenovirus type 9 (rFAdV / 9) and the porcine adenovirus type 5 (rSAdV /5).
  • the antigenic site when the disease of interest is influenza, it is preferred that it be that corresponding to the hemoagglutinin (HA) protein of avian influenza, the gene preferably being obtained from the avian influenza virus, and encodes for any of the 16 existing subtypes, preferably H5, H7 and H9, preferably encode for subtype H5, which is preferably obtained from the strains: Bive, 435 and Viet (VT) 1 described below.
  • HA hemoagglutinin
  • the gene preferably being obtained from the avian influenza virus, and encodes for any of the 16 existing subtypes, preferably H5, H7 and H9, preferably encode for subtype H5, which is preferably obtained from the strains: Bive, 435 and Viet (VT) 1 described below.
  • the source strain of the gene coding for the HA of subtype H5 is not critical for the present invention since the experimental results show that any strain can provide the genetic material to achieve the objective of the present invention.
  • H5 gene of the Bive strain corresponds to a VIABP-H5N2 isolated in Mexico in 1994 from biological samples of broilers and that has been identified by the Mexican government like (A / chicken / Mexico / 232 / CPA).
  • Said virus strain is authorized by the Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) for use in the preparation of inactivated emulsion vaccines, so that in this way recombining this virus with the gene of interest also ensures biosecurity in the recombinant vaccine of the present invention.
  • SAGARPA Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food
  • the genetic material that is the H5-435 gene was obtained from an isolation of VIABP-H5N2 isolated in Mexico in 2005 from biological samples of broilers.
  • the viral vector of the vaccine of the present invention can be prepared by amplifying by PCR the sequence of nucleotides of interest, from the identification of the antigenic sites of an isolation of the pathogen of origin, to be able to insert them later, amplified within the viral vector , preferably selected from adenovirus or paramyxovirus.
  • the insertion is done using standard molecular biology techniques such as restriction enzymes and DNA ligases, among other.
  • the infectious clone thus produced is introduced into a cell line for the generation of the recombinant virus according to the viral vector.
  • the virus replicates in any system suitable for its growth, such as SPF chicken embryo, or commercial cell lines or expressly designed to grow viruses.
  • the virus is inactivated.
  • the inactivation is carried out by physical or chemical procedures well known in the state of the art, preferably by chemical inactivation with formaldehyde or beta-propiolactone.
  • Pharmaceutically acceptable carriers for the vaccines of the present invention are preferably aqueous solutions or emulsions. More particularly, it is preferred that the vehicle used is a water-oil emulsion.
  • the specific formulation of the vaccine will depend on the viral vector used, as well as on the exogenous nucleotide sequence that has been inserted. However, in the preferred embodiment in which the viral vector is a Newcastle disease virus, it is preferred that the dose be between 10 4 and 10 10 DIEP50% / ml. In the embodiment in which the viral vector is an adenovirus, it is preferred that the dose be between 10 2 and 10 8 DIEP50% / ml. As regards the application of the vaccine, it is preferably performed subcutaneously in the middle and posterior part of the neck of the birds.
  • the vaccine of the present invention is applied in poultry, such as broilers, laying birds, breeding birds, turkeys, fighting roosters, guinea fowl, partridges, quails, ducks, geese, swans or ostriches.
  • the vaccine is applied subcutaneously, although in certain species it can be intramuscularly in birds of any age.
  • the vaccine When the vaccine is applied in chickens in Newcastle vector in emulsion, the vaccine preferably contains 10 8 to 10 9 DIEP50% / 0.5 ml per chicken, and more preferably the vaccine contains 10 85 DIEP50% / 0.5 ml per chicken. Vaccination in chickens can be performed more easily at 10 days of age.
  • the present invention provides very important competitive advantages.
  • the inactive recombinant vaccine of the present invention makes it possible to establish vaccination programs with the exclusive use of recombinant vaccines in viral vector and with insertion of genes of pathogens difficult to control, which gives rise to a method of identifying infected animals of animals that only received one vaccine (DIVA), useful in the control and eradication of diseases, characterized in that it comprises: a) Subject to a first method of detecting antibodies, at least a sample of at least one animal to which a recombinant vaccine was applied of an inactivated viral vector that has an exogenous nucleotide sequence inserted that codes for an antigen of a disease caused by a pathogen, to detect if there are antibodies present in said sample corresponding to said antigen; b) Submit a second antibody detection method, at least one sample of the same animal whose sample was subjected to the first antibody detection method, to detect if there are antibodies present in said sample that correspond to the pathogen causing the disease; c
  • the pathogen has a difficult control, such as VIA, mainly H5 and H7, which are the cause of high mortality in poultry
  • VIA mainly H5 and H7
  • excellent protection is achieved at systemic level , which also offers a high degree of biosafety comparatively to the use of complete AI viruses that constitute a serious risk if they have not been properly inactivated. This risk is increased during the elaboration process in which the viruses are active.
  • the present invention also allows the epidemiological differentiation of vaccinated birds with respect to other birds exposed to complete viruses (DIVA system) since when only the hemoagglutinin (HA) gene of the avian influenza virus is inserted, the laboratory test that is used to detect antibodies induced by the vaccine against avian influenza is the inhibition of hemagglutination (Hl).
  • Current immunological tests such as ELISA and other tests such as agar gel diffusion, are negative for the detection of antibodies against avian influenza induced by the recombinant vaccine of the present invention, since they are designed to detect antibodies induced by another type of antigens contained in complete viruses.
  • the birds vaccinated with the recombinant vaccine of the present invention are infected with the field virus, the latter tests are positive for the detection of antibodies against avian influenza, with which the infected birds can be distinguished.
  • the present invention allows programs with exclusive use of recombinant vaccines to be established in an inactive and active manner, the first that will provide the systemic immunity already indicated and the recombinant active vaccine that it will complement the immunity at the level of the mucous membranes leading to protections equal to or close to 100% at the field level.
  • This program also uses the DIVA system discussed above.
  • the recombinant vector of the inactivated emulsion vaccine is Newcastle with an influenza gene inserted, both for challenges with WENC and VIAAP, it can be applied simultaneously with an active vaccine with the same vector and antigen, directly in the respiratory mucosa, either by the ocular route, by spraying, or in drinking water, so that the response is strongly stimulated at the local level (in the respiratory and digestive mucous membranes) generating the production of immunoglobulins Type A secretaries (IgA), with which the field virus replication is significantly reduced and its excretion and dissemination is significantly reduced.
  • IgA immunoglobulins Type A secretaries
  • the vaccine of the present invention allows to establish control programs and possible eradication by differentiation of vaccinated birds from infected, since when applying the inactivated recombinant vaccines of the present invention it is possible the differentiation of birds vaccinated from birds infected with virus field (DIVA System) since the recombinant vaccines only contain the hemoagglutinin of the VIA as an antigen making it possible to use diagnostic tests such as ELISA that detect antibodies induced by other virus antigens and not those induced solely by hemoagglutinin.
  • DIVA System virus field
  • pNDV / LS an intermediate vector called "pNDV / LS" was developed.
  • the extraction of total viral RNA from Newcastle strain LaSota was carried out by the triazole method.
  • the synthesis of cDNA (complementary DNA) of the viral genome was carried out, using as a template the total RNA purified above.
  • all the Newcastle genome genes (15, 183 base pairs (bp)
  • 7 fragments with "overlapping" ends and cohesive restriction sites were amplified by PCR.
  • Fragment 1 comprises nucleotide (nt) 1-1755, F2 goes from nt 1-3321, F3 comprises from nt 1755-6580, F4 goes from 6,151-10, 210, F5 covers nt 7,381-11, 351, F6 ranges from 1 1, 351 -14,995 and F7 comprises nt 14,701-15, 186.
  • the assembly of the 7 fragments was performed within a cloning vector called pGEM-T using techniques ligation standards, which allowed the reconstruction of the Newcastle LaSota genome, which after cloning contains a unique Sacll restriction site, between the P and M genes, which serves to clone any gene of interest in this viral region of the vector.
  • Example 2 Cloning of the HA gene of the VIA subtype H5N2 strain 435.
  • the extraction of total viral RNA was carried out by the Triazole method. This purified total RNA was subsequently used to synthesize cDNA (complementary DNA) and through the use of specific oligonucleotides with the PCR technique, the AI virus HA gene was amplified.
  • the HA gene of 435 was subsequently inserted into the pGEM-T vector using standard cloning techniques and thus generating the plasmid: pGEMT-435.
  • pSacllGE / GS was constructed, by initial PCR amplification of the GE / GS sequences taking as molds the genome of Newcaslte and the subsequent insertion of these sequences in pGEM-T.
  • Plasmid pGEMT-435 was digested with Hpal-Ndel and subsequently cloned into pSacllGE / GS, to generate plasmid pSacllGE / GS-HA435.
  • Hep-2 and A-549 cells were dressingalmente infected with MAV-7 virus at a multiplicity of infection (MOI) of 1. After Inora incubation at 37 0 C under CO 2 5%, the cells were transfected with 1 microgram ( ⁇ g) of DNA from the clone pNDVLS-435, together with 0.2 ⁇ g of DNA from the expression plasmids: pNP, pP and pL which code for the viral proteins P, NP and L, necessary for the generation of the recombinant in both cell types. 12 hours after the transfection, the recombinant virus generated in both cell types was harvested and injected into 10-day-old SPF chicken embryos to amplify the generated virus. The allantoic liquid harvested 48 hours later, was titrated by plaque assay in Vero cells, thus generating the final recombinant virus, used in the preparation of the vaccine.
  • MOI multiplicity of infection
  • the recombinant viruses containing the genes obtained from the Bive and Viet strains were generated in the manner described above.
  • Example 5 Method of making an emulsified vaccine inactivated with recombinant Newcastle LaSota virus with H5 insert of the Avian Influenza virus. rNDV / LS-H5. Antigen elaboration
  • the vaccine was prepared in an emulsion of the water-in-oil type.
  • mineral oil and surfactants of the Span 80 and Tween 80 type were used.
  • the aqueous phase the FAA was mixed with a conservative solution (thimerosal).
  • the Ia was slowly added aqueous phase to the oil phase under constant stirring.
  • a homogenizer or a colloid mill was used. Antigenic content.
  • the vaccine was formulated to provide a minimum of 10 85 DIEP 50% /0.5 ml in order to use a dose per bird of 0.5 ml.
  • H5-Bive gene which was obtained from the VIABP subtype H5N2 strain (A / chicken / Mexico / 232 / CPA), isolated in Mexico in 1994 from biological samples of broilers, and corresponding to the strain of virus authorized by SAGARPA for the preparation of inactivated emulsion vaccines.
  • Gene H5-435 It was obtained from an isolation of VIABP subtype H5N2 isolated in Mexico in 2005 from biological samples of broilers. Strain 435 demonstrated to have differential antigenic characteristics in tests of inhibition of hemagglutination (Hl) with the Bive strain and in nucleotide sequencing studies showed important changes.
  • H5-Vt gene This gene was isolated in Vietnam and corresponds to the H5 gene of an H5N1 subtype AI virus.
  • Example 5 a recombinant experimental vector vaccine (rNDV / LS) with anchor (Rd) with inactivated and emulsified H5-Bive gene in pharmaceutical formula water / oil, which was called Emi Rd, was developed. -Bive.
  • Example 5 a recombinant experimental vector vaccine (rNDV / LS) with anchor (Rd) with inactivated and emulsified H5-435 gene in a water / oil pharmaceutical formula, called Emi Rd-435, was prepared.
  • rNDV / LS experimental vector vaccine
  • Rd anchor
  • Emi Rd-435 water / oil pharmaceutical formula
  • Example 5 a recombinant experimental vector vaccine (rNDV / LS) was prepared with an anchor with inactivated and emulsified H5-Vt gene in water / oil pharmaceutical formula, which was called Emi Rd-Vt.
  • rNDV / LS recombinant experimental vector vaccine
  • rNDV / LS recombinant experimental vector vaccine without anchorage with inactivated and emulsified H5-Bive gene in pharmaceutical formula water / oil, which was called Emi Re-Bive, was prepared.
  • rNDV / LS recombinant experimental vector vaccine without anchorage with inactivated and emulsified H5-435 gene in a water / oil pharmaceutical formula, called Emi Re-435
  • rNDV / LS recombinant experimental vector vaccine without anchoring with inactivated and emulsified H5-Vt gene in the water / oil pharmaceutical formula, called Emi Re-Vt, was prepared.
  • WENC virus Chimalhuacán strain containing 8 0 DIEP50% / ml, equivalent to 10 6 - 5 DIEP50% / 0.03ml / chicken.
  • the challenges were made at 35 days of age of the birds (21 days post-vaccination -DPV-) in isolation units of the INIFAP-CENID-Microbiology, in level 3 biosecurity acrylic insulating cabinets. It was subdivided into two subgroups and each subgroup was placed in the corresponding isolation units following the pre-established biosecurity procedures.
  • the VIAAP-H5N2 was diluted in a 1: 10 ratio with PBS pH 7.2 and 0.06 ml (2 drops) was applied to each chicken in each eye and 0.09 ml (3 drops) in each nostril, equivalent 0.3 ml or 100 DLP50%.
  • the challenge with WENC virus was performed by applying to each chicken by eye 0.03 ml of a viral suspension containing 10 8 0 DIEP50% / mi, equivalent to 10 6 5 DIEP50% / bird.
  • the PD assessment with WENC was carried out for 14 days, while the PD assessment with VIAAP-H5N2 was performed for 10 days according to the guidelines suggested by the OIE.
  • the morbidity index (MI) of each group was calculated using an equation obtained by taking the data of the day in which it showed the greatest severity of clinical signology during the PD observation period.
  • the three recombinant inactivated rNDV / LS-H5 vaccines with anchorage of the present invention are capable of conferring in SPF chickens 100% protection against mortality (M) induced by the WENC challenge virus ( Figure 1).
  • the three inactivated recombinant vaccines also conferred 100% protection against mortality (M) induced by VIAAP-H5N2 ( Figure 2) as well as conventional vaccines.
  • ENC and IA inactivated elaborated with complete viruses that are currently authorized worldwide for use in the control of ENC and IA, which are elaborated containing normally the LaSota strain Newcastle disease virus with a titre of 10 86 DIEP50% / ml and avian influenza virus of low pathogenicity with a titre of 10 80 DIEP50% / ml, chemically inactivated with formaldehyde and emulsified in oil.
  • the protection results indicate that the rNDV / LS-H5 inactivated recombinant vaccines with anchorage comply with Mexican and international standards for use in the control of ENC and IA, which demonstrates that the present invention proved successful for This is the recombinant version with anchor.
  • the three inactivated recombinant vaccines also conferred 100% protection against mortality (M) induced by VIAAP-H5N2 as well as the rNDV / LS-H5 inactivated recombinant vaccines with anchorage and Conventional emulsified vaccines made with complete inactivated ENC / IA-Bive and ENC / IA-435 viruses.
  • examples 6A and 6B indicate that the inactivated recombinant vaccines made in vector with anchorage or without anchorage and with VIA H5 genes of different origin and antigenic characteristics in the Hl tests (H5N2 or H5N1), are capable of conferring a same protection towards the challenge with VIAAP-H5N2.
  • the results suggest that the inactivated recombinant vaccines elaborated with any VIA H5 gene can confer protection towards the challenge with VIAAP with any of the influenza virus subtypes that contain hemoagglutinin H5, the type of neuraminidase not being relevant.
  • ENC / IA-Bive as well as the inactivated vaccines of the present invention obtained according to Examples 5A (Emi Rd-Bive), 5B (Emi-Rd-435) and 5C (Emi- Rd- Vt). TABLE 4. Potency in commercial broilers with maternal immunity to ENC and IA, immunized with inactivated vaccines made with the recombinant rNDV / LS-H5 virus with anchorage (Rd)
  • the three recombinant inactivated rNDV / LS-H5 vaccines with anchorage of the present invention are capable of conferring in commercial broilers with maternal immunity towards the ENC and IA viruses, protections equal to or greater than 90% a The mortality (M) induced by the WENC challenge virus ( Figure 5). Additionally, and independently of the H5 gene with which they were cloned, the three inactivated recombinant vaccines also conferred protections equal to or greater than 80% protection against mortality (M) induced by VIAAP-H5N2, as well as conventional emulsified vaccines made with complete inactivated viruses for use in the control of ENC and IA.
  • inactivated vaccines are essential to achieve adequate protection at the field level to prevent the mortality generated by VIAAP and WENC virus, since under field conditions in industrial poultry farms only the use of conventional active vaccines against ENC or recombinant active against Ia
  • AI may not be enough.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Se describe una vacuna que comprende un vector viral inactivado, que tiene insertada una secuencia de nucleótidos exógena que codifica para una enfermedad de interés; y, un vehículo, adyuvante o excipiente farmacéuticamente aceptable, la cual brinda la debida protección en contra de la enfermedad de interés mediante el uso de un título del vector viral similar al requerido para una vacuna de virus activo basada en el mismo vector viral. Principalmente se describen vectores virales de paramixovirus o adenovirus.

Description

"VACUNA RECOMBINANTE DE VECTOR VIRAL INACTIVADO" CAMPO DE LA INVENCIÓN
La presente invención está relacionada con las técnicas utilizadas en Ia prevención y tratamiento de enfermedades, preferiblemente del tipo aviar y más particularmente, está relacionada con vacunas recombinantes que comprenden un vector viral inactivado, que tiene insertada una secuencia de nucleótidos exógena que codifica para una proteína con actividad antigénica de una enfermedad; y, un vehículo, adyuvante o excipiente farmacéuticamente aceptable.
ANTECEDENTES DE LA INVENCIÓN
Es conocido que las vacunas contra agentes patógenos virales se formulan mediante el aislamiento del virus que corresponda para su posterior utilización para Ia producción de una vacuna, administrándola a animales o humanos mediante diversas formulaciones.
Por una parte, existen formulaciones de vacuna que utilizan virus completos y activos que en el campo han mostrado una baja patogenicidad, o bien, cuya patogenicidad se ha atenuado en el laboratorio, pero que sin embargo, al ser suministradas provocan una reacción antigénica suficiente para proveer Ia protección contra cepas virales de su misma especie de mayor patogenicidad.
Por ejemplo, Ia enfermedad de Newcastle (ENC) es de origen viral y altamente contagiosa, e inclusive puede ser letal. Dicha enfermedad afecta a las aves domésticas y silvestres causándoles alta morbilidad y mortalidad. La ENC es causada por un virus de Ia familia Paramyxoviridae, del género Avulavirus. De acuerdo con su grado de patogenicidad y virulencia, las cepas se clasifican en: lentogénicas, mesogénicas y velogénicas, es decir, de baja, moderada y alta patogenicidad respectivamente (Office International des Epizooties (2008). Newcastle Disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 576- 589). Las fuentes de transmisión del virus de Ia ENC son múltiples. Por ejemplo, directamente a través de aves vivas o muertas y sus productos o subproductos, o indirectamente a través de vectores como insectos u otros animales infectados, incluyendo al hombre. El período de incubación para los virus de Ia ENC de tipo velogénico (WENC) causantes de alta mortalidad es de 21 días aproximadamente, y con signología respiratoria y/o nerviosa como jadeo y estornudo e incoordinación, alas erizadas, arrastre de las patas, cabeza, cuello torcidos, tics, desplazamientos en círculos, depresión, inapetencia y parálisis completa. Además, se presenta: interrupción parcial o completa de Ia producción de huevos, huevos deformes o de cascara rugosa y fina, que contienen albúmina acuosa. Una de las estrategias utilizadas para el control y prevención de Ia ENC es precisamente el uso de vacunas de virus activos, normalmente elaboradas a partir de cepas lentogénicas. Las vacunas vivas contra ENC inducen protección a nivel de Ia mucosa respiratoria y han sido usadas por Ia industria durante más de 50 años. Estas vacunas de virus activo están basadas principalmente en el uso de los virus lentogénicos de las cepas Hitchner B1 y LaSota, esta última siendo Ia vacuna más popular (Op. Cit, Office International des Epizooties (2008), Newcastle).
No obstante, debido a que los virus activos pueden quedar ¡nactivados debido a los componentes de una emulsión, Ia estabilidad de vacunas activas en emulsión es limitada, por Io que normalmente se utilizan en otro tipo de formulaciones, o bien, se suministran mediante mezclas in situ, Io cual dificulta su aplicación en avicultura de gran escala.
El problema principal que presentan los virus activos es que no siempre es posible utilizarlos como vacunas por su alta capacidad de variación genética, recombinación con otros virus activos o predisposición a cambios en su patogenicidad, tales como el virus de influenza. La influenza es una enfermedad respiratoria que afecta tanto a mamíferos como a aves. La aparición de una cepa del virus de influenza en una determinada población puede traer consecuencias graves para los individuos, tanto para las aves domésticas así como para los humanos u otros mamíferos. El virus, cuando infecta a gallinas domésticas y mamíferos, muta con rapidez para adaptarse a esta nueva población y durante ese proceso evolutivo de adaptación puede traer como consecuencia cambios biológicos muy importantes en el mismo virus que dan lugar a resultados fatales para el huésped y Ia población animal o humana.
Particularmente, Ia influenza aviar (IA) es una enfermedad de etiología viral altamente contagiosa causada por virus que pertenecen al tipo A de Ia familia Orthomyxoviridae. La mayoría de los virus de IA (VIA) han sido aislados a partir de aves silvestres, particularmente de aves acuáticas que sirven como reservorio y son portadoras del virus de IA de baja patogenicidad (VIABP). Cuando estos virus infectan a huéspedes no naturales para el virus, como las aves de corral, principalmente las gallináceas (gallinas, pavos y codornices, entre otras), el virus sufre mutaciones que Io hacen cambiar a Ia forma altamente patogénica (VIAAP) mediante un proceso de adaptación. Los VIA se pueden clasificar de acuerdo a dos de las proteínas externas del virus: Ia primera de ellas es Ia hemoaglutinina que reviste gran importancia, toda vez que es Ia responsable de Ia respuesta de anticuerpos neutralizantes en las aves infectadas o vacunadas y de Ia cual se han reportado 16 subtipos o serotipos diferentes; Ia segunda proteína es Ia neuraminidasa de Ia cual se han reportado 9 subtipos diferentes. Particularmente, los virus de mayor importancia para las aves son aquellos cuya hemoaglutinina contiene los serotipos H5 y H7 que al mutar a alta patogenicidad son capaces de producir mortalidades cercanas al 100%.
Asimismo, Ia enfermedad de IA en aves tiene dos formas de presentación clínica: Ia primera de ellas es influenza aviar de baja patogenicidad (IABP) que puede causar enfermedad leve, a veces expresada por mal aspecto del plumaje, reducción en Ia producción de huevo; pero principalmente Ia IA reviste importancia en las aves debido a Ia alta capacidad mutagénica del virus que en estas aves, invariablemente da lugar a Ia segunda presentación que es Ia influenza aviar de alta patogenicidad (IAAP) capaz de causar mortalidades cercanas al 100%.
Particularmente, los signos clínicos de Ia IA son variables y están influenciados por el subtipo de virus implicado, Ia patogenicidad del mismo, el estado inmune y las especies aviares afectadas. El periodo de incubación para el VIAAP es de 21 días y los signos clínicos van desde conjuntivitis, elevación de Ia temperatura caracterizada por erizamiento de pluma, depresión, postración y muerte. Las lesiones más frecuentemente descritas son: congestión pulmonar, hemorragias y edemas.
Una vez introducido el VIA dentro de una granja avícola, éste es excretado al medio ambiente por las heces y fluidos respiratorios. La transmisión y difusión del virus a otras aves se produce fundamentalmente mediante el contacto directo con las secreciones de aves infectadas, especialmente heces, alimentos, agua, equipo y ropa contaminados. La susceptibilidad a Ia infección y Ia manifestación de signología clínica de Ia enfermedad es muy variable.
Para este tipo de enfermedades, que tienen un control difícil y en las cuales una vacuna de virus activo puede representar un riesgo para los animales e Inclusive un riesgo para Ia salud humana en caso de perderse el control de Ia misma durante su aplicación, se prefiere utilizar vacunas de virus inactivado, normalmente en emulsión.
En el arte previo, numerosas vacunas han sido desarrolladas para Ia prevención de diversas enfermedades virales, tales como Ia IA que se describió arriba. Respecto de esta última enfermedad, existen vacunas emulsionadas que incluyen al virus completo de IA y se producen en embriones de pollo. Este virus es inactivado y emulsionado en agua- aceite para su aplicación vía subcutánea o intramuscular en las aves comerciales (Office International des Epizooties (2008). Avian influenza. OIE Manual of Diagnostic Tests and
Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 465-481 ).
Más particularmente, las vacunas elaboradas con virus inactivado de IA estimulan una fuerte respuesta inmune a nivel sistémico y han tenido resultados positivos para el control de ambas formas de IA. La vacunación es utilizada no únicamente para prevenir los signos clínicos de Ia enfermedad, sino también, para reducir, en Ia medida de Io posible Ia excreción viral de las aves infectadas al medio ambiente. La reducción de Ia excreción viral disminuye Ia oportunidad de Ia diseminación del virus de aves vacunadas que se infectan hacia aves susceptibles no infectadas (Swayne, D. y Kapczynski, D. (2008). Vaccines, Vaccination and Immunology for avian influenza viruses in poultry. In Avian Influenza. Ed. By David Swayne. Blackwell Publishing, USA, p. 407-451.)
Adicionalmente, las vacunas de virus inactivado en emulsión tienen una mayor estabilidad, Io cual permite un mejor manejo de Ia vacuna y una mayor vida de anaquel de Ia vacuna. Es por este motivo que también las vacunas de Ia ENC han sido formuladas con virus inactivados en emulsión.
Es importante considerar que una de las diferencias principales entre una vacuna de virus activo y una de virus inactivado, es Ia cantidad de virus que se requiere para lograr una respuesta antigénica al ser suministradas.
Debido a que los virus activos tienen intacta su capacidad de replicar en las células, se requiere en Ia vacuna cantidades menores del virus en cuestión a Ia dosis que genere Ia actividad antigénica, para evitar que los individuos a los que se aplica Ia vacuna se enfermen, considerando que el virus se replicará de manera natural y alcanzará una vez dentro del organismo cantidades suficientes para lograr Ia respuesta antigénica esperada. Por su parte, las vacunas de virus inactivado requieren una concentración de virus mucho mayor que un virus activo, normalmente de por Io menos 10 veces más, para lograr Ia misma actividad antigénica, puesto que precisamente el virus ha sido manipulado para eliminar su capacidad de replicarse, de manera que Ia totalidad del antígeno que se requerirá para provocar Ia respuesta inmune debería estar presente desde el momento en el que se suministra Ia vacuna, pues el organismo no replicará de manera normal al virus y en consecuencia, no se incrementará su cantidad.
En otro orden de ideas, el uso de vacunas recombinantes es uno de los avances más significativos en el campo de Ia biotecnología. La habilidad para aislar y empalmar (o recombinar) fragmentos específicos de ADN de un organismo, del tamaño de un gen y transferirlos a otro por medio de un vector o plásmido de ADN para hacer que se produzca un antígeno capaz de inducir Ia formación de anticuerpos protectores ha conducido a Ia introducción de nuevas vacunas. A diferencia de las vacunas convencionales, Ia tecnología recombinante proporciona ventajas muy importantes para el caso de enfermedades, como Ia IA anteriormente descrita, en las que no existe Ia posibilidad de emplear virus activos completos debido a su alta capacidad mutagénica y donde el uso del virus completo inactivado constituye siempre un riesgo si el proceso de inactivación fue inadecuado. Precisamente las vacunas recombinantes, en su forma activa, al tener insertados los nucleótidos necesarios para Ia expresión de los antígenos en contra de Ia enfermedad de interés, pueden ser administradas con seguridad para inducir inmunidad local a nivel de Ia mucosa respiratoria en un vector viral activo de una enfermedad de baja patogenicidad, Io cual resultaría imposible de realizar mediante el uso del virus vivo no recombinante por los riesgos que esto conllevaría.
Otra ventaja de las vacunas recombinantes es que, el vector viral que se utiliza, normalmente no corresponde a Ia enfermedad respecto de Ia que protegen, Io cual facilita su utilización en el área veterinaria de técnicas de diagnóstico y prevención del tipo que permiten diferenciar animales vacunados de animales infectados, mejor conocidas como DIVA (Capua, I. et. al. "Development of a DIVA (differentiating infected from vaccinated animáis) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza". Avian Pathology 32(1 ) pp. 47-55)
Así pues, las vacunas que actualmente se usan para el control de Ia IA (virus completos inactivados y emulsionados en aceite) y otras enfermedades similares, previenen Ia mortalidad causada por VIAAP pero no evitan Ia infección y replicacíón de los VIA en las aves, por Io que Ia disminución de Ia excreción y diseminación del virus se logran parcialmente.
Por este motivo, se han desarrollado en el arte previo vectores virales de enfermedades de baja patogenicidad, como Newcastle, que tienen insertados genes que codifican para sitios antigénicos de enfermedades de difícil control, como Ia influenza aviar. Tal es el caso del documento de Ge, Deng, Tian et al. "Newcastle disease virus- based live attenuated vaccine completely protects chickens and mice", J. Vir. VoI. 81 , No. 1 , p. 150-158, que describe una vacuna recombinante que se encuentra en forma activa. Particularmente dicho documento describe el resultado de pruebas clínicas utilizando Ia cepa LaSota con un gen de influenza aviar subtipo H5N1.
Otro documento del arte previo, perteneciente a este campo es aquel de Park, Man Seong et al. "Engineered viral vaccine constructs with dual specificity: Avian Influenza and Newcastle disease". PNAS VoI. 103, No. 21, May 12, 2006 p. 8203-8208. Dicho documento se refiere a una tecnología para incrementar Ia expresión de genes de influenza aviar, tecnología que será denominada en adelante como "anclaje". Aunque algunas vacunas recombinantes han sustituido a vacunas de virus activo dadas las ventajas arriba mencionadas, las vacunas recombinantes aún no han logrado las ventajas de las vacunas inactivadas de virus completo, y sobre todo, no han logrado inducir Ia inmunidad adecuada respecto del gen exógeno insertado, principalmente debido a que las vacunas recombinantes, como Ia arriba descrita de Newcastle con influenza, provocan actividad antigénica contra ambas enfermedades, pero requieren de una exposición mayor de los sitios antigénicos exógenos que se encuentran insertados en el vector. De ahí que se haya intentado el desarrollo de tecnologías, como Ia del anclaje, que mediante modificaciones genéticas, como el caso de Ia influenza arriba descrito, logren una mejor expresión del antígeno en el vector viral, tecnologías que no han tenido el éxito esperado.
Por este motivo, las vacunas recombinantes de virus activo tradicionalmente se formulan con concentraciones de virus aproximadamente 10 veces mayores a Ia utilizada para Ia vacuna no recombinante de virus activo correspondiente al vector viral que se utiliza, con Ia finalidad de lograr una exposición adecuada de los sitios antigénicos del microorganismo de interés.
De igual manera, las vacunas recombinantes no se han utilizado ¡nactivadas, pues ello implicaría el lograr concentraciones de vector viral 100 veces mayores a las que se requieren para el virus normal (10 veces mayor a Ia del virus recombinante activo), Io cual es industrialmente muy complicado. Consecuentemente, estas vacunas de virus recombinante activo tampoco se han utilizado en emulsión de manera generalizada, debido a que Ia estabilidad está limitada y Ia emulsión no representa ventajas en este aspecto debido a Ia naturaleza activa del vector viral activo.
En resumen, se puede apreciar de Io anterior que existe una gran necesidad de vacunas para combatir enfermedades diversas mediante tecnología recombinante, de una manera más segura y eficiente, de manera que se logre una mayor estabilidad en las vacunas obtenidas con resultados de control y eficacia adecuados.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
Durante el desarrollo de Ia presente Invención, se descubrió de manera inesperada que una vacuna que comprende un vector viral recombinante inactivado, que tiene insertada una secuencia de nucleótidos exógena que codifica para un sitio antigénico de una enfermedad de interés; y, un vehículo, adyuvante o excipiente farmacéuticamente aceptable en emulsión, brinda Ia debida protección en contra de dicha enfermedad de interés mediante el uso de un título del vector viral similar al requerido para una vacuna recombinante de virus activo basada en el mismo vector viral.
En una modalidad de Ia invención, Ia secuencia de nucleótidos exógena se selecciona entre secuencias para sitios antigénicos en contra de influenza, laringotraqueitis infecciosa, bronquitis infecciosa, infección de Ia bolsa de Fabricio
(Gumboro), hepatitis, rinotraqueítis viral, coriza infecciosa, Mycoplasma hyopneumoniae, pasterelosis, Síndrome Reproductivo y Respiratorio Porcino (PRRS), circovirus, bordeteliosis, parainfluenza o cualquier otro antígeno cuyo tamaño permita su inserción en el vector viral correspondiente. Preferiblemente, se utiliza un antígeno seleccionado entre influenza aviar, laringotraqueitis, bronquitis infecciosa, infección de Ia bolsa de
Fabricio (Gumboro), hepatitis, PRRS y circovirus.
En una modalidad específica de Ia presente invención, Ia secuencia de nucleótidos exógena consiste en el gen que codifica para Ia hemoaglutinina (HA) del virus de influenza aviar, seleccionado entre los 16 subtipos de hemoaglutinina o variante inmunogénica del virus de influenza, el cual más preferiblemente codifica para por Io menos uno de los subtipos H1 , H2, H3, H5, H6, H7 o H9 de dicha proteína.
En una modalidad específica de Ia invención, el gen de Ia proteína H5 se obtiene del virus de influenza aviar subtipo H5N2 mexicano o del subtipo H5N1 de origen asiático, observándose excelente protección de ambas modalidades hacia Ia mortalidad generada por VIAAP subtipo H5N2.
Para Ia presente invención, por Io que se refiere al vector viral, en Ia modalidad preferida en Ia que dicho vector viral en donde se encuentra insertada Ia secuencia de nucleótidos exógena, es el virus de Ia enfermedad de Newcastle (rNDV), dicho vector viral se selecciona preferiblemente de cepas vacunales, tal como las cepas LaSota, Ulster, QV4, B1 , CA 2002, Roakin, Komarov, Clone 30, VGGA o cepas de los grupos genéticos I a V de Ia enfermedad de Newcastle. De manera preferida, el virus recombinante es de Ia cepa LaSota (rNDV/LS).
De igual manera, en otra modalidad específica en Ia que el vector viral es un adenovirus, el adenovirus se selecciona entre adenovirus aviares y porcinos, y más preferiblemente entre el adenovirus aviar tipo 9 (rFAdV/9) y el adenovirus porcino tipo 5 (rSAdV/5).
De acuerdo con los resultados obtenidos y que se detallarán más adelante, se deduce que mediante Ia presente invención es posible emplear una secuencia de nucleótidos exógena que codifica para determinantes antigénicas específicas de una enfermedad de interés en un vector viral para obtener una vacuna de virus inactivado recombinante en emulsión u otros adyuvantes farmacéuticamente aceptables.
El resultado logrado mediante Ia vacuna de Ia presente invención (rNDV/LS-H5) es inesperado, toda vez que en el caso de vacunas recombinantes en vector viral, tradicionalmente se piensa que es necesaria Ia replicación del vector viral en las células del hospedador para que se exprese Ia proteína recombinante en una cantidad suficiente a fin de estimular una adecuada respuesta inmunogénica, sin embargo, en Ia presente invención, el resultado obtenido indica que Ia proteína antigénica de Ia enfermedad de interés se expresa adecuadamente y en cantidad suficiente en Ia superficie del virus vector, y su sola presencia en forma inactiva hace posible una adecuada respuesta antigénica y protectiva contra dicha enfermedad de interés.
Particularmente, para el caso de enfermedades de difícil control y alta patogenicidad, tal como Ia influenza aviar, una las ventajas de Ia vacuna recombinante de Ia presente invención es que no se utiliza el virus completo, eliminando el riesgo de un brote debido a una inadecuada inactivación del virus vacunal. Asimismo, Ia vacuna de Ia presente invención logra una respuesta inmune local a nivel de Ia mucosa respiratoria de Ia aves, así como una respuesta inmune a nivel sistémico, que puede ser diferenciada mediante pruebas específicas de laboratorio, de respuestas inmunes inducidas por el contacto de las aves con virus completos, sean vacunales o de campo, Io que representa un avance importante para efectos epidemiológicos.
La vacuna está formulada para ser administrada por vía subcutánea, sin embargo cualquier vía sistémica como intramuscular o intradérmica podría ser utilizada con éxito. El vehículo utilizado preferiblemente para Ia vacuna es un vehículo líquido, más preferiblemente, se utiliza una emulsión agua en aceite, pero también es posible emplear con éxito otros tipos de adyuvantes o moduladores de Ia respuesta inmune.
Con Ia vacuna recombinante de Ia presente invención, Ia excreción de virus de campo al medio ambiente se reduce, contribuyendo de esta manera a disminuir radicalmente Ia diseminación del virus. BREVE DESCRIPCIÓN DE LAS FIGURAS
Los aspectos novedosos que se consideran característicos de Ia presente invención, se establecerán con particularidad en las reivindicaciones anexas. Sin embargo, Ia vacuna de Ia presente invención, conjuntamente con otros objetos y ventajas de Ia misma, se comprenderá mejor en Ia siguiente descripción detallada de ciertas modalidades específicas, cuando se lea en relación con los dibujos anexos, en los cuales:
La Figura 1 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6A generada por el desafío con un virus velogénico de Ia ENC (WENC).
La Figura 2 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6A generada por el desafío con un virus de IA de alta patogenicidad (VIAAP) subtipo H5N2. La Figura 3 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6B, generada por el desafío con un WENC.
La Figura 4 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6B, generada por el desafío con un VIAAP subtipo H5N2.
La Figura 5 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6C, generada por el desafío con un WENC.
La Figura 6 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6C, generada por el desafío con un VIAAP subtipo H5N2.
La Figura 7 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del Ejemplo 6D, generada por el desafío con un WENC. La Figura 8 es una gráfica de los resultados de mortalidad (M) y del índice de morbilidad (IM) del
Ejemplo 6D, generada por el desafío con un VIAAP subtipo H5N2.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Durante el desarrollo de Ia presente invención, se verificó de manera inesperada que una vacuna que comprende un vector viral inactivado, que tiene insertada una secuencia de nucleótidos que codifica para una enfermedad de interés; y, un vehículo, adyuvante o excipiente farmacéuticamente aceptable, brinda Ia debida protección en contra de Ia enfermedad de interés mediante el uso de un título del vector viral similar al requerido para una vacuna de virus activo basada en el mismo vector viral.
En Ia presente invención es básico que el vector viral se encuentre inactivado, entendiéndose por inactivado que el virus recombinante que funciona como vector viral y contiene Ia secuencia de nucleótidos que codifica para el sitio antigénico de Ia enfermedad de interés haya perdido Ia propiedad de replicarse. La inactivación se logra mediante procedimientos físicos o químicos bien conocidos en el estado de Ia técnica, preferiblemente mediante inactivación química con formaldehído o beta-propiolactona (Office International des Epizooties (2008). Newcastle Disease. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animáis. Office International des Epizooties. France, p. 576-589). En el sentido opuesto, se entiende que un virus activo o vivo, mantiene su capacidad para replicarse.
El vector viral, preferiblemente seleccionado entre adenovirus o paramixovirus, se encuentra inactivado y tiene insertada una secuencia de nucleótidos exógena que codifica para por Io menos un sitio antigénico de una enfermedad de interés, preferiblemente de por Io menos una enfermedad seleccionada entre influenza, laríngotraqueitis infecciosa, bronquitis infecciosa, infección de Ia bolsa de Fabricio (Gumboro), hepatitis, rinotraqueítis viral, coriza infecciosa, Mycoplasma hyopneumoniae, pasterelosis, Síndrome Reproductivo y Respiratorio Porcino (PRRS), circovirus, bordeteliosis, parainfluenza o cualquier otro antígeno cuyo tamaño permita su inserción en el vector viral correspondiente. Más preferiblemente, se utiliza un antígeno seleccionado entre influenza aviar, laringotraqueítis, bronquitis infecciosa, infección de Ia bolsa de Fabricio (Gumboro), hepatitis, PRRS y circovirus. En una modalidad específica de Ia presente invención, Ia secuencia de nucleótidos exógena consiste en el gen que codifica para Ia hemoaglutinina (HA) del virus de influenza aviar, seleccionado entre los 16 subtipos de hemoaglutinina o variante inmunogénica del virus de influenza, el cual más preferiblemente codifica para por Io menos uno de los subtipos H1 , H2, H3, H5, H6, H7 o H9 de dicha proteína. Para Ia presente invención, por Io que se refiere al vector viral, en Ia modalidad preferida en Ia que dicho vector viral en donde se encuentra insertada Ia secuencia de nucleótidos exógena, es el virus de Ia enfermedad de Newcastle (rNDV), dicho vector viral se selecciona preferiblemente de cepas vacunales, tal como las cepas LaSota, Ulster, QV4, B1 , CA 2002, Roakin, Komarov, Clone 30, VGGA o cepas de los grupos genéticos I a V de Ia enfermedad de Newcastle. De manera preferida, el virus recombinante es de Ia cepa LaSota (rNDV/LS).
De igual manera, en otra modalidad específica en Ia que el vector viral es un adenovirus, el adenovirus se selecciona entre adenovirus aviares y porcinos, y más preferiblemente entre el adenovirus aviar tipo 9 (rFAdV/9) y el adenovirus porcino tipo 5 (rSAdV/5). Por Io que se refiere al sitio antigénico, cuando Ia enfermedad de interés es influenza, se prefiere que sea el correspondiente a Ia proteína de hemoaglutinina (HA) de influenza aviar, obteniéndose el gen preferiblemente del virus de influenza aviar, y codifica para cualquiera de los 16 subtipos existentes, preferiblemente H5, H7 y H9, preferiblemente codifica para el subtipo H5, el cual se obtiene preferiblemente de las cepas: Bive, 435 y Viet (VT)1 que se describen más adelante. En este sentido, se puede inferir que Ia cepa fuente del gen que codifica para Ia HA del subtipo H5, no es crítica para Ia presente invención puesto que los resultados experimentales muestran que cualquier cepa puede proporcionar el material genético para lograr el objetivo de Ia presente invención. Volviendo a las fuentes del gen preferidas, se puede mencionar con respecto al gen H5 de Ia cepa Bive, que Ia misma corresponde a un VIABP-H5N2 aislado en México en 1994 a partir de muestras biológicas de pollos de engorda y que ha sido identificado por el gobierno mexicano como (A/chicken/Mexico/232/CPA). Dicha cepa de virus se encuentra autorizada por Ia Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) para su uso en Ia elaboración de vacunas inactivadas en emulsión, por Io que de esta manera el recombinar este virus con el gen de interés también asegura una bioseguridad en Ia vacuna recombinante de Ia presente invención.
Con referencia a Ia segunda fuente preferida del material genético que es el gen H5-435, el mismo se obtuvo de un aislamiento de VIABP-H5N2 aislado en México en 2005 a partir de muestras biológicas de pollo de engorda.
El vector viral de Ia vacuna de Ia presente invención se puede preparar amplificando mediante PCR Ia secuencia de nucleótidos de interés, a partir de Ia identificación de los sitios antigénicos de un aislamiento del patógeno de origen, para poder insertarlos posteriormente, amplificados dentro del vector viral, preferiblemente seleccionado entre adenovirus o paramixovirus. La inserción se realiza utilizando técnicas estándares de biología molecular tales como enzimas de restricción y ligasas de ADN, entre otras. La clona infecciosa así producida es introducida en una línea celular para Ia generación del virus recombinante de acuerdo con el vector viral.
Dependiendo de Ia naturaleza del vector viral, el virus se replica en cualquier sistema adecuado para su crecimiento, tales como embrión de pollo SPF, o líneas celulares comerciales o diseñadas expresamente para hacer crecer virus.
Una vez alcanzada Ia concentración del virus que se requiere para lograr Ia respuesta antigénica, preferiblemente entre 102 y 1010 DI50%/ml, dependiendo del vector viral utilizado, se procede con Ia inactivación del virus. Preferiblemente Ia inactivación se realiza mediante procedimientos físicos o químicos bien conocidos en el estado de Ia técnica, preferiblemente mediante inactivación química con formaldehído o beta- propiolactona.
Los vehículos farmacéuticamente aceptables para Ia vacunas de Ia presente invención son preferentemente soluciones acuosas o emulsiones. Más particularmente, se prefiere que el vehículo utilizado sea una emulsión agua-aceite. La formulación específica de Ia vacuna dependerá del vector viral utilizado, así como de Ia secuencia de nucleótidos exógena que se Ie haya insertado. Sin embargo, en Ia modalidad preferida en Ia que el vector viral es un virus de Ia enfermedad de Newcastle se prefiere que Ia dosis sea entre 104 y 1010 DIEP50%/ml. En Ia modalidad en Ia que el vector viral es un adenovirus, se prefiere que Ia dosis sea entre 102 y 108 DIEP50%/ml. Por Io que se refiere a Ia aplicación de Ia vacuna, ésta se realiza preferiblemente vía subcutánea en Ia parte media y posterior del cuello de las aves. La vacuna de Ia presente invención se aplica en aves de corral, tales como pollos de engorda, aves de postura, aves reproductoras, pavos, gallos de pelea, gallinas de Guinea, perdices, codornices, patos, gansos, cisnes o avestruces. Preferiblemente, Ia vacuna se aplica por vía subcutánea, aunque en ciertas especies puede ser por vía intramuscular en aves de cualquier edad.
Cuando Ia vacuna se aplica en pollos en vector de Newcastle en emulsión, Ia vacuna preferiblemente contiene 108 a 109 DIEP50%/0.5 mi por pollo, y más preferiblemente Ia vacuna contiene 1085 DIEP50%/0.5 mi por pollo. La vacunación en pollos puede ser realizada con mayor facilidad a los 10 días de edad.
La presente invención brinda ventajas competitivas muy importantes. La vacuna recombinante inactiva de Ia presente invención, hace posible instaurar programas de vacunación con el uso exclusivo de vacunas recombinantes en vector viral y con inserción de genes de agentes patógenos de difícil control, Io que da lugar a un método de identificación de animales infectados de animales que solamente recibieron una vacuna (DIVA), útil en el control y Ia erradicación de enfermedades, caracterizado porque comprende: a) Someter a un primer método de detección de anticuerpos, por Io menos una muestra de por Io menos un animal al que Ie fue aplicada una vacuna recombinante de vector viral inactivado que tiene insertada una secuencia de nucleótidos exógena que codifica para un antígeno de una enfermedad provocada por un patógeno, para detectar si existen anticuerpos presentes en dicha muestra que correspondan a dicho antígeno; b) Someter a un segundo método de detección de anticuerpos, por Io menos una muestra del mismo animal cuya muestra se sometió al primer método de detección de anticuerpos, para detectar si existen anticuerpos presentes en dicha muestra que correspondan al patógeno que causa Ia enfermedad; c) Determinar si el animal está infectado o vacunado a partir del resultado del primer y segundo métodos de detección de antígenos.
Por ejemplo, cuando el patógeno tiene un difícil control, tal como el VIA, principalmente H5 y H7, que son causa de alta mortalidad en aves de corral, con Ia vacuna ¡nactivada recombinante de Ia presente invención se logra una excelente protección a nivel sistémico, que ofrece además un alto grado de bioseguridad comparativamente al uso de virus completos de IA que constituyen un grave riesgo en caso de que no hayan sido inactivados adecuadamente. Este riesgo se incrementa durante el proceso de elaboración en que los virus se encuentran activos. La presente invención permite además Ia diferenciación epidemiológica de aves vacunadas con respecto a otras aves expuestas a virus completos (sistema DIVA) ya que cuando únicamente se inserta el gen de Ia hemoaglutinina (HA) del virus de influenza aviar, Ia prueba de laboratorio que se utiliza para detectar los anticuerpos inducidos por Ia vacuna contra Ia influenza aviar es Ia inhibición de Ia hemoaglutinación (Hl). Las pruebas inmunológicas actuales, tales como ELISA y otras pruebas como Ia difusión en gel de agar, resultan negativas a Ia detección de anticuerpos contra Ia influenza aviar inducidos por Ia vacuna recombinante de Ia presente invención, ya que están diseñadas para detectar anticuerpos inducidos por otro tipo de antígenos contenidos en los virus completos. Cuando las aves vacunadas con Ia vacuna recombinante de Ia presente invención, se infectan con el virus de campo, estas últimas pruebas resultan positivas a Ia detección de anticuerpos contra Ia influenza aviar, con Io cual se puede distinguir a las aves infectadas.
De manera adicional, Ia presente invención permite establecer programas con uso exclusivo conjunto de vacunas recombinantes en forma inactiva y activa, Ia primera que brindará Ia inmunidad sistémica ya señalada y Ia vacuna activa recombinante que complementará Ia inmunidad a nivel de las mucosas llevándola a protecciones iguales o cercanas al 100% a nivel de campo. Con este programa también se utiliza el sistema DIVA comentado anteriormente.
En Ia modalidad preferida de Ia invención en Ia que el vector recombinante de Ia vacuna inactivada en emulsión es Newcastle con un gen de influenza insertado, tanto para desafíos con WENC como de VIAAP, ésta se puede aplicar de manera simultánea con una vacuna activa con el mismo vector y antígeno, directamente en Ia mucosa respiratoria, ya sea por vía ocular, por aspersión, o en agua de bebida, de manera que se estimule fuertemente Ia respuesta a nivel local (en las mucosas respiratoria y digestiva) generando Ia producción de inmunoglobulinas secretorias de tipo A (IgA), con Io que se disminuye de forma importante Ia replicación de virus de campo y se reduce significativamente su excreción y diseminación.
Por otra parte, Ia vacuna de Ia presente invención permite establecer programas de control y posible erradicación por diferenciación de aves vacunadas de infectadas, ya que al aplicar las vacunas recombinantes inactivadas de Ia presente invención es posible Ia diferenciación de aves vacunadas de aves infectadas con virus de campo (Sistema DIVA) ya que las vacunas recombinantes solamente contienen como antígeno a Ia hemoaglutinina de los VIA haciendo posible el uso de pruebas de diagnóstico como ELISA que detectan anticuerpos inducidos por otros antígenos del virus y no los inducidos únicamente por Ia hemoaglutinina.
La vacuna recombinante contra influenza de Ia presente invención, será más claramente ilustrada por medio de los ejemplos que a continuación se describen, los cuales se presentan con propósitos meramente ilustrativos, pero no limitativos de Ia invención. EJEMPLOS
Ejemplo 1
Generación del vector Newcastle LaSota.
Para clonar el genoma del virus de Newcastle cepa LaSota y generar así un vector viral, primeramente se elaboró un vector intermedio denominado "pNDV/LS". Para ello se llevó a cabo Ia extracción de ARN viral total de Newcastle cepa LaSota por el método de triazol. A partir del ARN purificado, se llevó a cabo Ia síntesis de ADNc (ADN complementario) del genoma viral, usando como molde el ARN total purificado anteriormente. Con el objetivo de clonar todos los genes del genoma de Newcastle (15, 183 pares de bases (pb)), se amplificaron por PCR, 7 fragmentos con extremos "traslapantes" y sitios de restricción cohesivos. El fragmento 1(F1 ) abarca del nucleótido (nt) 1-1755, F2 va de nt 1-3321 , F3 comprende del nt 1755-6580, F4 va de 6,151-10, 210, F5 abarca del nt 7,381-11 ,351 , F6 va de 1 1 ,351 -14,995 y F7 comprende del nt 14,701- 15, 186. El ensamble de los 7 fragmentos fue realizado dentro de un vector de clonación denominado pGEM-T usando técnicas estándares de ligación, Io que permitió reconstruir el genoma de Newcastle LaSota, el cual después de Ia clonación contiene un sitio de restricción único Sacll, entre los genes P y M, el cual sirve para Ia clonación de cualquier gen de interés en esta región viral del vector.
Ejemplo 2 Clonación del gen HA del VIA subtipo H5N2 cepa 435. Para clonar el gen HA del VIA cepa 435, se llevó a cabo Ia extracción de ARN total viral, por el método de Triazol. Este ARN total purificado fue usado posteriormente para sintetizar ADNc (ADN complementario) y mediante el uso de oligonucleótídos específicos con Ia técnica de PCR se amplificó el gen HA de virus de IA. El gen HA de 435, fue posteriormente insertado en el vector pGEM-T usando técnicas estándares de clonación y generando así el plásmido: pGEMT-435.
Ejemplo 3
Clonación del gen HA de IA 435 dentro del sitio Sacll del vector pNDV/LS para Ia generación del plásmido: pNDV/LS-435. A: Generación del vector intermediario pSacllGE/GS :
Con el objeto de introducir las secuencias de transcripción de Newcastle denominadas GE/GS en el extremo 5 prima del gen HA 435, se construyó un nuevo vector intermediario denominado pSacllGE/GS, mediante Ia amplificación inicial por PCR de las secuencias GE/GS tomando como molde el genoma de Newcaslte y Ia posterior inserción de estas secuencias en pGEM-T.
B; Subclonación del gen HA al vector pSacllGE/GS :
El plásmido pGEMT-435 fue digerido con Hpal-Ndel y posteriormente clonado dentro del pSacllGE/GS, para generar el plásmido pSacllGE/GS-HA435.
C: Subclonación de GE/GS-HA435 al vector: pNDV-LS. Ambos plásmidos: pSacllGE/GS-HA435 y pNDV/LS, fueron digeridos con Sacll, los productos de Ia digestión fueron purificados y Ia región GE/GS-HA435, fue purificada e insertada dentro del sitio Sacll de pNDV/LS, generando así Ia clona infectiva denominada: pNDV/LS-435. Ejemplo 4 Generación del virus recombinante rNDV/LS-HA435 en cultivo celular.
Células Hep-2 y A-549 fueron ¡nicialmente infectadas con virus MAV-7 a una multiplicidad de infección (MOI) de 1. Después de Inora de incubación a 370C en atmósfera de CO2 al 5%, las células fueron transfectadas con 1 microgramo (μg) de ADN de Ia clona pNDVLS-435, junto con 0.2 μg de ADN de los plásmidos de expresión: pNP, pP y pL los cuales codifican para las proteínas virales P, NP y L, necesarias para Ia generación del recombinante en ambos tipos celulares. 12 horas después de Ia transfección, el virus recombinante generado en ambos tipos celulares fue cosechado e inyectado a embriones de pollo SPF de 10 días de edad para amplificar el virus generado. El líquido alantoideo cosechado 48 horas después, fue titulado por ensayo en placa en células Vero, generando de esta manera el virus recombinante final, utilizado en Ia preparación de Ia vacuna.
Los virus recombinantes conteniendo los genes obtenidos de las cepas Bive y Viet fueron generados de Ia forma descrita anteriormente.
Ejemplo 5 Método de elaboración de vacuna emulsionada inactivada con virus recombinante de Newcastle LaSota con inserto H5 del virus de Ia Influenza Aviar. rNDV/LS-H5. Elaboración del antígeno
A partir de Ia semilla de producción, se inocularon huevos embrionados de pollo, libres de patógenos específicos (SPF), con Ia dosis infectante previamente determinada. Los embriones se incubaron a 370C por un periodo de 72 horas, revisando diariamente Ia mortalidad. Transcurrido este periodo, se refrigeran los embriones vivos de un día para otro, preferentemente 24 horas, y se cosechó el fluido amnioalantoideo (FAA) en condiciones asépticas. El FAA se clarificó por centrifugación y se procedió a su inactivación con formaldehído aunque también se puede usar cualquier otro agente inactivante conocido, regularmente utilizado en Ia producción de vacunas de este tipo. El FAA es sometido a pruebas que determinen su inactivación, pureza, esterilidad y título tanto DIEP como HA.
Elaboración de Ia emulsión
La vacuna se preparó en una emulsión del tipo agua en aceite. Para Ia preparación de Ia fase oleosa se utilizó aceite mineral y surfactantes del tipo Span 80 y Tween 80. Para Ia preparación de Ia fase acuosa se mezcló el FAA con una solución conservadora (timerosal). Para Ia elaboración de Ia emulsión, se agregó lentamente Ia fase acuosa a Ia fase oleosa bajo agitación constante. Para alcanzar el tamaño de partícula especificado, se utilizó un homogenizador o un molino coloidal. Contenido antigénico.
La vacuna se formuló para aportar un mínimo de 1085 DIEP50%/0.5 mi a fin de utilizar una dosis por ave de 0.5 mi.
Con base en este procedimiento se elaboraron seis vacunas recombinantes: tres con el vector Newcastle cepa LaSota (rNDV/LS) con anclaje para Ia HA de los virus de IA denominadas (Rd) y tres más con el mismo vector pero sin anclaje denominadas (Re); el genoma de cada uno de los dos vectores Rd y Re fue clonado con tres diferentes genes de HA que se indican a continuación para obtener las 6 vacunas:
1. Gen H5-Bive: El cual se obtuvo del VIABP subtipo H5N2 cepa (A/chicken/Mexico/232/CPA), aislado en México en 1994 a partir de muestras biológicas de pollos de engorda, y que corresponde a Ia cepa de virus autorizada por SAGARPA para Ia elaboración de vacunas inactivadas en emulsión.
2. Gen H5-435: Se obtuvo de un aislamiento de VIABP subtipo H5N2 aislado en México en 2005 a partir de muestras biológicas de pollo de engorda. La cepa 435 demostró tener características antigénicas diferenciales en pruebas de inhibición de Ia hemoaglutinación (Hl) con Ia cepa Bive y en estudios de secuenciación de nucleótidos mostró cambios importantes.
3. Gen H5-Vt: Este gen fue aislado en Vietnam y corresponde al gen H5 de un virus de IA subtipo H5N1.
Ejemplo 5A
De conformidad con el método descrito en el ejemplo 5, se elaboró una vacuna experimental recombinante en vector (rNDV/LS) con anclaje (Rd) con gen H5-Bive inactivada y emulsionada en fórmula farmacéutica agua/aceite, Ia cual se denominó Emi Rd-Bive.
Ejemplo 5B
De acuerdo al método descrito en el ejemplo 5, fue elaborada una vacuna experimental recombinante en vector (rNDV/LS) con anclaje (Rd) con gen H5-435 inactivada y emulsionada en fórmula farmacéutica agua/aceite, denominada Emi Rd-435. Ejemplo 5C
De conformidad con el método descrito en el ejemplo 5, se elaboró una vacuna experimental recombinante en vector (rNDV/LS) con anclaje con gen H5-Vt inactivada y emulsionada en fórmula farmacéutica agua/aceite, Ia cual se denominó Emi Rd-Vt. Ejemplo 5D
De conformidad con el método descrito en el ejemplo 5, se elaboró una vacuna experimental recombinante en vector (rNDV/LS) sin anclaje con gen H5-Bive inactivada y emulsionada en fórmula farmacéutica agua/aceite, Ia cual fue denominada Emi Re-Bive.
Ejemplo 5E
De acuerdo al método descrito en el ejemplo 5, fue elaborada una vacuna experimental recombinante en vector (rNDV/LS) sin anclaje con gen H5-435 inactivada y emulsionada en fórmula farmacéutica agua/aceite, denominada Emi Re-435.
Ejemplo 5F
De conformidad con el método descrito en el ejemplo 5, se elaboró una vacuna experimental recombinante en vector (rNDV/LS) sin anclaje con gen H5-Vt inactivada y emulsionada en fórmula farmacéutica agua/aceite, denominada Emi Re-Vt.
Ejemplo 6
Evaluación in vivo de Ia potencia de las vacunas recombinantes en vector ENC-LaSota con y sin anclaje para el gen HA de virus de IA Con el propósito de determinar Ia efectividad de las vacunas recomblnantes inactivadas en emulsión de Ia presente invención y demostrar que las mismas pueden ser elaboradas con diferentes genes de hemoaglutinina clonados a partir de diferentes subtipos y variantes antigénicas de los virus de IA, se probó Ia efectividad de las mismas para prevenir Ia mortalidad generada por virus de IAAP subtipo H5N2 y WENC en aves SPF y por otra parte en pollos comerciales de engorda con inmunidad materna hacia los VIA y Ia ENC.
Las cepas utilizadas para desafío en los diferentes experimentos a fin de medir Ia efectividad de las vacunas fueron las siguientes:
1. Influenza Aviar (VIAAP-H5N2): Virus de alta patogenicidad subtipo-H5N2 cepa A/chicken/Querétaro/14588-19/95 con título 108 0 DIEP50%/ml, equivalentes a
100 DLP50%/0.3ml/pollo.
2. Virus WENC: cepa Chimalhuacán conteniéndolo8 0 DIEP50%/ml, equivalentes a 106-5 DIEP50%/0.03ml/pollo. Los desafíos se realizaron a los 35 días de edad de las aves (21 días posvacunación -DPV-) en unidades de aislamiento del INIFAP-CENID-Microbiología, en gabinetes aisladores de acrílico de bioseguridad nivel 3. Para realizar los desafíos cada grupo experimental se subdividió en dos subgrupos y cada subgrupo se colocó en las unidades de aislamiento correspondientes siguiendo los procedimientos de bioseguridad preestablecidos.
El VIAAP-H5N2 se diluyó en proporción 1 :10 con PBS pH 7.2 y se aplicó a cada pollo 0.06 mi (2 gotas) en cada ojo y 0.09 mi (3 gotas) en cada narina, equivalente 0.3 mi o 100 DLP50%.
El desafío con virus WENC se realizó aplicando a cada pollo por vía ocular 0.03 mi de una suspensión viral conteniendo 108 0 DIEP50% / mi, equivalente a 106 5 DIEP50% / ave.
Para realizar Ia evaluación pos-desafío (PD), todos los grupos se observaron diariamente para registrar Ia mortalidad y Ia morbilidad que incluyó Ia severidad del cuadro clínico, por Io que cada día PD (DPD) se revisaron individualmente las aves de cada grupo, dándoles un valor numérico de acuerdo al criterio de Ia tabla 1 : TABLA 1 - Valores para registro de mortalidad y morbilidad
Figure imgf000020_0001
La valoración PD con WENC fue realizada durante 14 días, mientras que Ia valoración PD con VIAAP-H5N2 fue realizada durante 10 días de acuerdo a los lineamientos sugeridos por Ia OIE.
El índice de morbilidad (IM) de cada grupo se calculó mediante una ecuación que se obtiene tomando los datos del día en que mostró Ia mayor gravedad de signología clínica durante el periodo de observación PD. (A) (I OO)
IM=
B Donde A= Suma de todos los valores individuales de Ia severidad de las lesiones en el día de observación.
B= Valor de Ia severidad máxima posible del cuadro clínico en un día. A continuación se describen los experimentos realizados.
Ejemplo 6A
Se llevaron a cabo desafíos con un WENC y VIAAP-H5N2 a 21 DPV en grupos de aves SPF, las cuales fueron inmunizadas, como se indica en Ia Tabla 2, con las vacunas inactivadas de Ia presente invención obtenidas conforme a los Ejemplos 5A (Emi Rd-Bive), 5B (Emi-Rd-435) y 5C (Emi-Rd-Vt). Para fines de comparación, otros dos grupos fueron inmunizados con dos vacunas comerciales emulsionadas contra Ia influenza aviar y Ia enfermedad de Newcastle elaboradas con virus completos inactivados y emulsionados, que fueron denominadas como E. ENC/IA-435 y E. ENC/IA-Bive, respectivamente.
TABLA 2 - Potencia en aves SPF inmunizadas con vacunas inactivadas elaboradas con el virus recombinante rNDV/LS-H5 con anclaje (Rd)
Figure imgf000021_0001
Los resultados de potencia hacia WENC y VIAAP-H5N2 se muestran gráficamente en las Figuras 1 y 2 respectivamente.
Los resultados indican que las tres vacunas recombinantes inactivadas rNDV/LS- H5 con anclaje de Ia presente invención son capaces de conferir en pollos SPF 100% de protección a Ia mortalidad (M) inducida por el virus de desafío WENC (Figura 1). Asimismo, e independientemente del gen H5 con que fueron clonadas, las tres vacunas recombinantes inactivadas confirieron también 100% de protección a Ia mortalidad (M) inducida por el VIAAP-H5N2 (Figura 2) al igual que las vacunas convencionales inactivadas elaboradas con virus completos que actualmente están autorizadas a nivel mundial para su uso en el control de Ia ENC y Ia IA, las cuales están elaborados conteniendo en su fórmula normalmente virus de Ia enfermedad de Newcastle cepa LaSota con un título de 10 86 DIEP50%/ml y virus de Ia influenza aviar de baja patogenicidad con un título de 10 80 DIEP50%/ml, inactivados químicamente con formaldehído y emulsionados en aceite. Los resultados de protección indican que las vacunas recombinantes inactivadas rNDV/LS-H5 con anclaje cumplen con las Normas Mexicanas e internacionales para su uso en el control de Ia ENC y Ia IA, con Io que se demuestra que Ia presente invención resultó ser exitosa para esta Ia versión recombinante con anclaje.
Ejemplo 6B
Con Ia finalidad de determinar el efecto del anclaje, como un segundo diseño experimental, se llevaron a cabo desafíos con un WENC y un VIAAP-H5N2 a 21 DPV en grupos de aves SPF, las cuales fueron inmunizadas, como se indica en Ia Tabla 3, con dos vacunas comerciales emulsionadas contra Ia influenza aviar y Ia enfermedad de Newcastle elaboradas con virus completos inactivados y emulsionados que fueron denominadas como E. ENC/IA-435 y E. ENC/IA-Bive, así como con tres vacunas inactivadas en emulsión de Ia presente invención, sin anclaje, obtenidos a partir de los ejemplos 5D (Emi-Re-Bive), 5E (Emi-Re-435) y 5F (Emi-Re-Vt).
TABLA 3. Potencia en aves SPF inmunizadas con vacunas inactivadas elaboradas con el virus recombinante rNDV/LS-H5 sin anclaje (Re)
Figure imgf000022_0001
Los resultados de potencia hacia WENC y VIAAP-H5N2 se- muestran gráficamente en las Figuras 3 y 4 respectivamente. Los resultados indican que, inesperadamente, las tres vacunas recombinantes inactivadas rNDV/LS-H5 sin anclaje de Ia presente invención son también capaces de conferir en aves SPF 100% de protección a Ia mortalidad (M) inducida por el virus de desafío WENC (Figura 3). Igualmente, e independientemente del gen H5 con que fueron clonadas, las tres vacunas recombinantes inactivadas confirieron también 100% de protección a Ia mortalidad (M) inducida por el VIAAP-H5N2 al igual que las vacunas recombinantes inactivadas rNDV/LS-H5 con anclaje y las vacunas emulsionadas convencionales elaboradas con virus completos inactivados ENC/IA-Bive y ENC/IA-435.
Los resultados de los ejemplos 6A y 6B indican que las vacunas recombinantes inactivadas elaboradas en vector con anclaje o sin anclaje y con genes del VIA H5 de diferente origen y características antigénicas en las pruebas de Hl (H5N2 o H5N1 ), son capaces de conferir una misma protección hacia el desafío con VIAAP-H5N2. Los resultados sugieren que las vacunas recombinantes inactivadas elaboradas con cualquier gen H5 del VIA pueden conferir protección hacia el desafío con VIAAP con cualquiera de los subtipos de virus de influenza que contengan Ia hemoaglutinina H5, no siendo relevante el tipo de neuraminidasa.
Por Io tanto, queda demostrado que Ia presente invención es efectiva inclusive para diversos tipos de neuraminidasa, Io cual es consistente con Io encontrado para vacunas de virus completo inactivado tradicionales (Soto et al., Inactivated mexican H5N2 avian influenza vaccíne protects chickens from the asiatic highly pathogenic H5N1 avian influenza virus. Proceedings of the 56th Western Poultry Disease Conference (WPDC). USA, p. 79. (2007) y Swayne, D. and Kapczynski, D. (2008). Vaccines, Vaccination and Immunology for avian influenza viruses in poultry. In Avian Influenza. Ed. By David Swayne. Blackwell Publishing, USA, p. 407-451 ). Ejemplo 6C
Con Ia finalidad de probar las vacunas de Ia presente invención en aves comerciales para simular condiciones de campo, se realizó un tercer experimento en el cual se llevaron a cabo desafíos con un WENC y un VIAAP-H5N2 a 21 DPV en grupos de pollos de engorda comerciales con inmunidad materna hacia Ia ENC y Ia IA, los cuales fueron inmunizados, como se indica en Ia Tabla 4, con dos vacunas comerciales emulsionadas contra Ia influenza aviar y Ia enfermedad de Newcastle elaboradas con virus completos inactivados y emulsionados que fueron denominadas como E. ENC/IA- 435 y E. ENC/IA-Bive, así como las vacunas inactivadas de Ia presente invención obtenidas conforme a los Ejemplos 5A (Emi Rd-Bive), 5B (Emi-Rd-435) y 5C (Emi-Rd- Vt). TABLA 4. Potencia en pollos de engorda comerciales con inmunidad materna hacia Ia ENC y Ia IA, inmunizados con vacunas inactivadas elaboradas con el virus recombinante rNDV/LS-H5 con anclaje (Rd)
Figure imgf000024_0001
Los resultados de potencia hacia WENC y VIAAP-H5N2 se ilustran gráficamente en las Figuras 5 y 6 respectivamente.
Los resultados indican que las tres vacunas recombinantes inactivadas rNDV/LS- H5 con anclaje de Ia presente invención son capaces de conferir en pollos de engorda comerciales con inmunidad materna hacia los virus de Ia ENC y Ia IA, protecciones iguales o superiores al 90% a Ia mortalidad (M) inducida por el virus de desafío WENC (Figura 5). De manera adicional, e independientemente del gen H5 con que fueron clonadas, las tres vacunas recombinantes inactivadas confirieron también protecciones iguales o superiores al 80% de protección a Ia mortalidad (M) inducida por el VIAAP- H5N2, al igual que las vacunas convencionales emulsionadas elaboradas con virus completos inactivados para su uso en el control de Ia ENC y Ia IA. Los resultados de protección indican que las vacunas recombinantes inactivadas rNDV/LS-H5 con anclaje de Ia presente invención, pueden ser empleadas con éxito para el control de Ia IAAP en pollos de engorda comerciales con inmunidad materna hacia los virus de IA y de Ia ENC con protecciones similares a las conferidas por vacunas convencionales elaboradas con virus completos inactivados de Ia IA, pero además con las ventajas de que al usar exclusivamente vacunas recombinantes activas e inactivas Ia bioseguridad es total y se puede establecer el sistema DIVA posibilitando el uso conjunto de programas de vacunación y erradicación de Ia IA. Ejemplo 6D
Con Ia finalidad de determinar el efecto del anclaje en condiciones reales de campo, se llevaron a cabo desafíos con un WENC y un VIAAP-H5N2 a 21 DPV en grupos de pollos de engorda comerciales con inmunidad materna hacia Ia ENC y Ia IA, los cuales fueron inmunizados, como se indica en Ia Tabla 5, con dos vacunas comerciales emulsionadas contra Ia influenza aviar y Ia enfermedad de Newcastle elaboradas con virus completos inactivados y emulsionados que fueron denominadas como E. ENC/IA-435 y E. ENC/IA-Bive, tres vacunas inactivadas en emulsión de Ia presente invención, sin anclaje, obtenidos a partir de los ejemplos 5D (Emi-Re-Bive), 5E (Emi-Re-435) y 5F (Emi-Re-Vt).
TABLA 5. Potencia en pollos de engorda comerciales con inmunidad materna hacia Ia ENC y Ia IA, inmunizados con vacunas inactivadas elaboradas con el virus recombinante rNDV/LS-H5 sin anclaje (Re)
Figure imgf000025_0001
Los resultados de potencia hacia WENC y VIAAP-H5N2 se ilustran gráficamente en las Figuras 7 y 8 respectivamente.
Los resultados indican que las tres vacunas recombinantes inactivadas rNDV/LS- H5 sin anclaje, inesperadamente, fueron también capaces de conferir en pollos de engorda comerciales con inmunidad materna protecciones iguales o superiores al 90% a Ia mortalidad (M) inducida por el virus de desafío WENC (Figura 7), igualmente, e independientemente del gen H5 con que fueron clonadas las tres vacunas recombinantes inactivadas, todas confirieron también protecciones iguales o superiores al 80% a Ia mortalidad (M) inducida por el VIAAP-H5N2 al igual que las vacunas recombinantes inactivadas rNDV/LS-H5 con anclaje y las vacunas emulsionadas convencionales elaboradas con virus completos inactivados ENC/IA-Bive y ENC/IA-435.
Estos estudios ratifican el éxito de Ia presente invención ya que se demuestra que las vacunas recombinantes contra Ia IA en forma inactivada empleando una emulsión o vehículo, adyuvante o excipiente farmacéutico aceptable para su uso en aves susceptibles permite una excelente respuesta de inmunidad capaz de conferir protecciones del 100% hacia desafíos con VIAAP en pollos SPF y superiores al 80% en pollos de engorda con inmunidad materna hacia los virus de Ia ENC y Ia IA, Io cual es algo contrario y de manera no sugerida por Io que se pensaba en relación a que se considera indispensable Ia replicación del virus recombinante en el ave inmunizada para que Ia proteína de interés se expresara en cantidad suficiente para poder inducir una respuesta inmune adecuada en el ave.
El uso de vacunas inactivadas es indispensable para alcanzar una adecuada protección a nivel de campo para prevenir Ia mortalidad generada por VIAAP y virus WENC, ya que bajo condiciones de campo en explotaciones avícolas industriales el sólo uso de vacunas activas convencionales contra Ia ENC o activas recombinantes contra Ia
IA pueden no ser suficientes.
Aún cuando se ha ilustrado y descrito modalidades específicas de Ia invención, debe hacerse hincapié en que son posibles numerosas modificaciones a Ia misma, como puede ser Ia cepa utilizada del virus de IA, el tipo de emulsión o vehículos ocupada. Por
Io tanto, Ia presente invención no deberá considerarse como restringida excepto por Io que exija Ia técnica anterior y las reivindicaciones anexas.

Claims

REIVINDICACIONES
1. Una vacuna recombinante que comprende un vector viral y un vehículo, adyuvante o excipiente farmacéuticamente aceptable, caracterizada porque el vector viral se encuentra inactivado y tiene insertada una secuencia de nucleótidos exógena que codifica para un antígeno de una enfermedad de interés.
2. Una vacuna recombinante, de conformidad con Ia reivindicación 1 , caracterizada además porque Ia secuencia de nucleótidos exógena codifica para un antígeno seleccionado entre influenza, laringotraqueitis infecciosa, bronquitis infecciosa, infección de Ia bolsa de Fabricio (Gumboro), hepatitis, rinotraqueítis viral, coriza infecciosa, Mycoplasma hyopneumoniae, pasterelosis, Síndrome Reproductivo y Respiratorio Porcino (PRRS), circovirus, bordeteliosis o parainfluenza.
.
3. Una vacuna recombinante, de conformidad con Ia reivindicación 2, caracterizada además porque Ia secuencia de nucleótidos exógena consiste en el gen que codifica para Ia hemoaglutinina (HA) del virus de influenza aviar.
4. Una vacuna recombinante, de conformidad con Ia reivindicación 3, caracterizada además porque el gen que codifica para Ia hemoaglutinina (HA) se selecciona entre por Io menos uno de los subtipos H1 , H2, H3, H5, H6, H7 o H9 de Ia hemoaglutinina (HA) del virus de influenza aviar.
5. Una vacuna recombinante, de conformidad con Ia reivindicación 4, caracterizada además porque el gen que codifica para Ia hemoaglutinina (HA) es el del subtipo H5.
6. Una vacuna recombinante, de conformidad con Ia reivindicación 1 , caracterizada además porque el vector viral es seleccionado entre adenovirus o paramíxovirus.
7. Una vacuna recombinante, de conformidad con Ia reivindicación 6, caracterizada además porque el vector viral es seleccionado entre paramixovirus.
8. Una vacuna recombinante, de conformidad con Ia reivindicación 7, caracterizada además porque el paramixovirus es el virus de Ia enfermedad de Newcastle.
9. Una vacuna recombinante, de conformidad con Ia reivindicación 8, caracterizada además el virus de Ia enfermedad de Newcastle se selecciona entre las cepas LaSota, Ulster, QV4, B1 , CA 2002, Roakin, Komarov, Clone 30, VGGA o cepas de los grupos genéticos I a V de Ia enfermedad de Newcastle.
10. Una vacuna recombinante, de conformidad con Ia reivindicación 6, caracterizada además porque el vector viral se selecciona entre adenovirus.
1 1. Una vacuna recombinante, de conformidad con Ia reivindicación 1 O1 caracterizada además porque el adenovirus se selecciona entre adenovirus aviares o porcinos.
12. Una vacuna recombinante, de conformidad con Ia reivindicación 11 , caracterizada además porque el adenovirus es un adenovirus aviar del tipo 9.
13. Una vacuna recombinante, de conformidad con Ia reivindicación 1 1 , caracterizada además porque el adenovirus es un adenovirus porcino del tipo 5.
14. Una vacuna recombinante, de conformidad con Ia reivindicación 1 , caracterizada además porque los vehículos farmacéuticamente aceptables para Ia vacuna son preferentemente soluciones acuosas o emulsiones.
15. Una vacuna recombinante, de conformidad con Ia reivindicación 14, caracterizada además porque se utiliza como vehículo una emulsión agua-aceite.
16. Una vacuna recombinante, de conformidad con Ia reivindicación 1 , caracterizada además porque el título requerido para el vector viral es similar al requerido para una vacuna recombinante de virus activo.
17. Una vacuna recombinante, de conformidad con Ia reivindicación 16, caracterizada además porque Ia concentración del virus que se requiere para lograr Ia respuesta antigénica es de entre 102 y 1010 DI50%/ml.
18. Una vacuna recombinante, de conformidad con Ia reivindicación 7, caracterizada además porque Ia concentración del virus que se requiere para lograr Ia respuesta antigénica es de entre 104 y 1010 DIEP50%/ml.
19. Una vacuna recombinante de conformidad con Ia reivindicación 18, caracterizada además porque, cuando Ia vacuna se prepara para su aplicación en pollos, Ia concentración del virus es entre 108 a 109 DIEP50%/0.5 mi por pollo.
20. Una vacuna recombinante, de conformidad con Ia reivindicación 19, caracterizada además porque Ia vacuna contiene 108 5 DIEP50%/0.5 mi por pollo.
21. Una vacuna recombinante, de conformidad con Ia reivindicación 10, caracterizada además porque Ia concentración del virus que se requiere para lograr Ia respuesta antigénica es de entre 102 y 108 DIEP50%/ml.
22. Una vacuna recombinante, de conformidad con Ia reivindicación 1 , caracterizada además porque Ia vacuna está preparada para aplicarse por vía subcutánea o por vía intramuscular.
23. Un método de vacunación contra enfermedades en animales, caracterizado porque comprende suministrar a un animal una vacuna recombinante que comprende un vector viral inactivado que tiene insertada una secuencia de nucleótidos exógena que codifica para un antígeno de dicha enfermedad.
24. Un método de vacunación contra enfermedades en animales, de conformidad con Ia reivindicación 23, caracterizado además porque se suministra al animal adicionalmente una vacuna recombinante que comprende un vector viral activo idéntico al vector viral inactivado, que tiene insertada una secuencia de nucleótidos exógena que codifica para un antígeno de dicha enfermedad.
25. Un método para Ia identificación de animales infectados de animales vacunados, útil en el control y Ia erradicación de enfermedades, caracterizado porque comprende: a) Someter a un primer método de detección de anticuerpos, por Io menos una muestra de por Io menos un animal al que Ie fue aplicada una vacuna recombinante de vector viral inactivado que tiene insertada una secuencia de nucleótidos exógena que codifica para un antígeno de una enfermedad provocada por un patógeno, para detectar si existen anticuerpos presentes en dicha muestra que correspondan a dicho antígeno; b) Someter a un segundo método de detección de anticuerpos, por Io menos una muestra del mismo animal cuya muestra se sometió al primer método de detección de anticuerpos, para detectar si existen anticuerpos presentes en dicha muestra que correspondan al patógeno que causa Ia enfermedad; c) Determinar si el animal está infectado o vacunado a partir del resultado del primer y segundo métodos de detección de antígenos.
PCT/IB2008/003150 2008-11-19 2008-11-19 Vacuna recombinante de vector viral inactivado WO2010058236A1 (es)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN2008801326877A CN102281896A (zh) 2008-11-19 2008-11-19 重组失活病毒载体疫苗
KR1020117014230A KR20110092316A (ko) 2008-11-19 2008-11-19 재조합 불활성화 바이러스 벡터 백신
MX2011005231A MX2011005231A (es) 2008-11-19 2008-11-19 Vacuna recombinante de vector viral inactivado.
RU2011119976/10A RU2528750C2 (ru) 2008-11-19 2008-11-19 Рекомбинантная вакцина на основе инактивированного вирусного вектора
EP08878230.5A EP2353610A4 (en) 2008-11-19 2008-11-19 RECOMBINANT INACTIVATED VIRUS VECTOR VACCINE
JP2011536958A JP2012509308A (ja) 2008-11-19 2008-11-19 遺伝子組み換え不活性化ウィルスベクターワクチン
BRPI0822947A BRPI0822947B1 (pt) 2008-11-19 2008-11-19 vacina recombinante.
CA2744348A CA2744348C (en) 2008-11-19 2008-11-19 Recombinant inactivated viral vector vaccine
AU2008364200A AU2008364200B2 (en) 2008-11-19 2008-11-19 Recombinant inactivated viral vector vaccine
PCT/IB2008/003150 WO2010058236A1 (es) 2008-11-19 2008-11-19 Vacuna recombinante de vector viral inactivado
US13/111,759 US20110311578A1 (en) 2008-11-19 2011-05-19 Recombinant inactivated viral vector vaccine
ZA2011/04013A ZA201104013B (en) 2008-11-19 2011-05-31 Recombinant inactivated viral vector vaccine
US14/475,751 US20150056245A1 (en) 2008-11-19 2014-09-03 Recombinant inactivated viral vector vaccine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2008/003150 WO2010058236A1 (es) 2008-11-19 2008-11-19 Vacuna recombinante de vector viral inactivado

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/111,759 Continuation-In-Part US20110311578A1 (en) 2008-11-19 2011-05-19 Recombinant inactivated viral vector vaccine

Publications (1)

Publication Number Publication Date
WO2010058236A1 true WO2010058236A1 (es) 2010-05-27

Family

ID=42197871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/003150 WO2010058236A1 (es) 2008-11-19 2008-11-19 Vacuna recombinante de vector viral inactivado

Country Status (12)

Country Link
US (2) US20110311578A1 (es)
EP (1) EP2353610A4 (es)
JP (1) JP2012509308A (es)
KR (1) KR20110092316A (es)
CN (1) CN102281896A (es)
AU (1) AU2008364200B2 (es)
BR (1) BRPI0822947B1 (es)
CA (1) CA2744348C (es)
MX (1) MX2011005231A (es)
RU (1) RU2528750C2 (es)
WO (1) WO2010058236A1 (es)
ZA (1) ZA201104013B (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153160A1 (es) * 2011-05-07 2012-11-15 Laboratorio Avi-Mex, S.A. De C.V. Vacuna recombinante contra prrs en vector viral
WO2016020885A1 (es) * 2014-08-08 2016-02-11 Laboratorio Avi-Mex, S.A. De C.V. Vacuna en vector recombinante de adenovirus aviar serotipo 9
WO2017008154A1 (en) * 2015-07-10 2017-01-19 University Of Guelph Fowl adenovirus 9 (fadv-9) vector system and associated methods
RU2713722C1 (ru) * 2018-11-01 2020-02-06 федеральное государственное бюджетное учреждение "Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации Штамм рекомбинантной псевдоаденовирусной частицы на основе генома аденовируса человека 5 серотипа Ad5-tetOFF-E3-HA125, несущей ген консенсусной последовательности гемагглютинина вируса гриппа А субтипов H1, H2, H5 для создания противогриппозных иммуногенных препаратов, способ получения гена

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830225B (zh) * 2012-09-24 2014-06-04 中国动物疫病预防控制中心 一种源于禽流感病毒自然弱毒株的血凝素和免疫抗原
CN103146751A (zh) * 2013-02-04 2013-06-12 扬州大学 新城疫病毒株rLX/H9HA及其构建方法和应用
CN115710317B (zh) * 2022-11-03 2024-02-20 江苏帆博生物制品有限公司 一种二抗血清免疫方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025420A1 (fr) * 2005-09-02 2007-03-08 Zhigao Bu Souche de faible virulence du vaccin recombinant lasota de la maladie de newcastle exprimant la protéine ha du virus h5 de la grippe aviaire

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382425A (en) * 1992-01-13 1995-01-17 Syntro Corporation Recombinant swinepox virus
ES2109189B1 (es) * 1996-03-14 1998-05-16 Iberica Cyanamid Vectores basados en genomas virales defectivos recombinantes y su empleo en la formulacion de vacunas.
EP0974660A1 (en) * 1998-06-19 2000-01-26 Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) Newcastle disease virus infectious clones, vaccines and diagnostic assays
DE10143490C2 (de) * 2001-09-05 2003-12-11 Gsf Forschungszentrum Umwelt Rekombinantes MVA mit der Fähigkeit zur Expression von HCV Struktur-Antigenen
US7833707B2 (en) * 2004-12-30 2010-11-16 Boehringer Ingelheim Vetmedica, Inc. Methods of overexpression and recovery of porcine circovirus type 2 ORF2
RU2436591C2 (ru) * 2005-06-24 2011-12-20 Интервет Интернэшнл Б.В. Инактивированные химерные вакцины и связанные с ними способы применения
TW200731986A (en) * 2005-10-28 2007-09-01 Boehringer Ingelheim Vetmed Use of vaccines for the treatment/prevention of the transmission of pathogens
PT2529747T (pt) * 2005-12-02 2018-05-09 Icahn School Med Mount Sinai Vírus da doença de newcastle quiméricos que apresentam proteínas de superfície não nativas e suas utilizações
CA2638975A1 (en) * 2006-03-15 2007-09-20 Intervet International B.V. Recombinant newcastle disease virus expressing h5 hemagglutinin of avian influenza virus
WO2007106882A2 (en) * 2006-03-15 2007-09-20 Intervet International B.V. Recombinant mononegaviral virus vectors
CN100487119C (zh) * 2006-05-09 2009-05-13 中国农业科学院哈尔滨兽医研究所 表达禽流感病毒H5亚型HA蛋白的重组新城疫LaSota弱毒疫苗株
EP2069376A4 (en) * 2006-07-21 2013-10-16 Pharmexa Inc INDUCTION OF CELLULAR IMMUNE RESPONSES TO INFLUENZA VIRUS BY COMPOSITIONS OF PEPTIDES AND NUCLEIC ACIDS
WO2008094197A2 (en) * 2006-07-27 2008-08-07 Ligocyte Pharmaceuticals, Inc. Chimeric influenza virus-like particles
EP2069483A4 (en) * 2006-09-29 2010-10-27 Sanofi Pasteur Biologics Co RECOMBINANT RHINOVIRAL VECTORS
EP1958644A1 (en) * 2007-02-13 2008-08-20 Boehringer Ingelheim Vetmedica Gmbh Prevention and treatment of sub-clinical pcvd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025420A1 (fr) * 2005-09-02 2007-03-08 Zhigao Bu Souche de faible virulence du vaccin recombinant lasota de la maladie de newcastle exprimant la protéine ha du virus h5 de la grippe aviaire

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Diagnostic Tests and Vaccines for Terrestrial Animals", 2008, OFFICE INTERNATIONAL DES EPIZOOTIES, pages: 576 - 589
"OIE Manual of Diagnostic Test and Vaccines for Terrestrial Animals", 2008, OFFICE INTERNATIONAL DES EPIZOOTIES, pages: 465 - 481
"OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals", 2008, OFFICE INTERNATIONAL DES EPIZOOTIES, pages: 576 - 589
CAPUA, I ET AL.: "Development of a DIVA (differentiating infected from vaccinated animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza", AVIAN PATHOLOGY, vol. 32, no. 1, pages 47 - 55, XP009035837, DOI: doi:10.1080/0307945021000070714
DATABASE WPI 18 January 2010 Derwent World Patents Index; AN 2006-729989, XP008148383, THOMSON SCIENTIFIC *
GE, DENG, TIAN ET AL.: "Newcastle disease virus- based live attenuated vaccine completely protects chickens and mice", J. VIR., vol. 81, no. 1, pages 150 - 158, XP002572412, DOI: doi:10.1128/JVI.01514-06
HULSKOTTE E. ET AL.: "Chemical inactivation of recombinant vaccinia viruses and the effects on antigenicity and immunogenicity of recombinant simian immunodeficiency virus invelope glycoproteins", VACCINE, vol. 15, no. 17/ 18, 1997, pages 1839 - 1845, XP004097375 *
PARK, MAN, SEONG ET AL.: "Engineered viral vaccine constructs with dual specificity: Avian Influenza and Newcastle disease", PNAS, vol. 103, no. 21, 12 May 2006 (2006-05-12), pages 8203 - 8208, XP009129948, DOI: doi:10.1073/pnas.0602566103
SOTO ET AL.: "Inactivated mexican H5N2 avian influenza vaccine protects chickens from the asiatic highly pathogenic H5N1 avian influenza virus", PROCEEDINGS OF THE 56TH WESTERN POULTRY DISEASE CONFERENCE (WPDC, 2007, pages 79
SWAYNE, D, Y, KAPCZYNSKI, D: "Avian Influenza", 2008, BLACKWELL PUBLISHING, article "Vaccines, Vaccination and Immunology for avian influenza viruses in poultry", pages: 407 - 451
SWAYNE, D., KAPCZYNSKI, D.: "Avian Influenza", 2008, BLACKWELL PUBLISHING, article "Vaccines, Vaccination and Immunology for avian influenza viruses in poultry", pages: 407 - 451
ZAJAC, P. ET AL.: "Enhanced generation of cytotoxic T lymphocytes using recombinant vaccinia virus expressing human tumor-associated antigens and B7 costimulatory molecules", CANCER RESEARCH, vol. 58, 1998, pages 4567 - 4571, XP000887339 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153160A1 (es) * 2011-05-07 2012-11-15 Laboratorio Avi-Mex, S.A. De C.V. Vacuna recombinante contra prrs en vector viral
EP2712927A1 (en) * 2011-05-07 2014-04-02 Laboratorio Avi-Mex, S.A. De C.V. Recombinant vaccine against prrs in a viral vector
JP2014515925A (ja) * 2011-05-07 2014-07-07 ラボラトリオ アヴィメキシコ エスエー ディーイー シーヴィー ウイルスベクターにおける抗prrs組換えワクチン
EP2712927A4 (en) * 2011-05-07 2014-11-05 Avi Mex S A De C V Lab RECOMBINANT VACCINE AGAINST PRRS IN A VIRUS VECTOR
US10201602B2 (en) 2011-05-07 2019-02-12 Laboratorio Avi-Mex, S.A. De C.V. Recombinant vaccine against PRRS in a viral vector
WO2016020885A1 (es) * 2014-08-08 2016-02-11 Laboratorio Avi-Mex, S.A. De C.V. Vacuna en vector recombinante de adenovirus aviar serotipo 9
US10758608B2 (en) 2014-08-08 2020-09-01 Grupo Industrial Pecuario, S.A. De C.V. Vaccine in the form of a recombinant sero type 9 avian adenovirus vector
EA038951B1 (ru) * 2014-08-08 2021-11-15 Групо Индустриаль Пекуарио, С.А. Де К.В. Вакцина в виде рекомбинантного вектора на основе птичьего аденовируса серотипа 9
WO2017008154A1 (en) * 2015-07-10 2017-01-19 University Of Guelph Fowl adenovirus 9 (fadv-9) vector system and associated methods
RU2713722C1 (ru) * 2018-11-01 2020-02-06 федеральное государственное бюджетное учреждение "Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации Штамм рекомбинантной псевдоаденовирусной частицы на основе генома аденовируса человека 5 серотипа Ad5-tetOFF-E3-HA125, несущей ген консенсусной последовательности гемагглютинина вируса гриппа А субтипов H1, H2, H5 для создания противогриппозных иммуногенных препаратов, способ получения гена

Also Published As

Publication number Publication date
RU2011119976A (ru) 2012-12-27
RU2528750C2 (ru) 2014-09-20
JP2012509308A (ja) 2012-04-19
ZA201104013B (en) 2012-12-27
KR20110092316A (ko) 2011-08-17
BRPI0822947B1 (pt) 2018-09-18
AU2008364200A1 (en) 2010-05-27
EP2353610A1 (en) 2011-08-10
EP2353610A4 (en) 2013-12-11
US20150056245A1 (en) 2015-02-26
CA2744348C (en) 2017-02-14
MX2011005231A (es) 2011-07-29
CN102281896A (zh) 2011-12-14
AU2008364200B2 (en) 2016-01-28
CA2744348A1 (en) 2010-05-27
US20110311578A1 (en) 2011-12-22
BRPI0822947A2 (pt) 2015-06-23

Similar Documents

Publication Publication Date Title
Baron et al. Recent advances in viral vectors in veterinary vaccinology
Swayne et al. Strategies and challenges for eliciting immunity against avian influenza virus in birds
CA2700288C (en) Method for producing flu virus
Basavarajappa et al. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens
Layton et al. Vaccination of chickens with recombinant Salmonella expressing M2e and CD154 epitopes increases protection and decreases viral shedding after low pathogenic avian influenza challenge
CN101636177A (zh) 用于禽流感的基于重组改良型痘苗病毒安卡拉(mva)的疫苗
US20150056245A1 (en) Recombinant inactivated viral vector vaccine
Ganapathy et al. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods
WO2016020885A1 (es) Vacuna en vector recombinante de adenovirus aviar serotipo 9
BR112016001686B1 (pt) Vacina, método para a preparação de uma vacina, composição, e, uso de uma composição
Ali et al. A mini-review on Newcastle disease virus in Egypt, with particular references to common vaccines and their development
WO2012067483A2 (es) Virus de la enfermedad de newcastle y su uso como vacuna
JP2023542923A (ja) 感染性気管支炎ウイルス株dmv1639の弱毒化単離物
Elizaveta et al. Live poultry vaccines against highly pathogenic avian influenza viruses
El-Fatah et al. Improved bivalent live and inactivated clone 30 and infectious bronchitis virus vaccine.
RU2507256C2 (ru) Штамм вируса гриппа а/17/mallard/нидерланды/00/95(h7n3) для производства живой и производства инактивированной гриппозных вакцин
US20230295582A1 (en) Influenza virus backbone
TW200844236A (en) Multivalent avian influenza vaccines and methods
Wasson Development of novel virus vectors for influenza vaccination
Eladawy et al. Efficacy of an inactivated Vaccine prepared from a new isolate of Newcastle Disease Virus
Swayne et al. 15 Vaccines and vaccination for avian influenza in poultry
Swayne et al. influenza in poultry
JP2015120709A (ja) 遺伝子組み換え不活性化ウィルスベクターワクチン
ES2744126T3 (es) Vacuna contra la gripe felina y método de uso
Jang Study toward the Development of Broad Spectrum Live Attenuated Influenza Vaccine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132687.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878230

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011536958

Country of ref document: JP

Ref document number: MX/A/2011/005231

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2744348

Country of ref document: CA

Ref document number: 3756/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008364200

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2008878230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008878230

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008364200

Country of ref document: AU

Date of ref document: 20081119

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117014230

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011119976

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0822947

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110518