WO2016017836A1 - 도전성 잉크 - Google Patents

도전성 잉크 Download PDF

Info

Publication number
WO2016017836A1
WO2016017836A1 PCT/KR2014/007000 KR2014007000W WO2016017836A1 WO 2016017836 A1 WO2016017836 A1 WO 2016017836A1 KR 2014007000 W KR2014007000 W KR 2014007000W WO 2016017836 A1 WO2016017836 A1 WO 2016017836A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
conductive
silver
ink
Prior art date
Application number
PCT/KR2014/007000
Other languages
English (en)
French (fr)
Inventor
조현남
김현주
Original Assignee
(주)피이솔브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피이솔브 filed Critical (주)피이솔브
Priority to US14/778,364 priority Critical patent/US9803098B2/en
Priority to PCT/KR2014/007000 priority patent/WO2016017836A1/ko
Publication of WO2016017836A1 publication Critical patent/WO2016017836A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive ink, and more particularly, a conductive ink composed of at least one conductive material and at least one benzoxazine compound as a main component, and has excellent conductivity and excellent adhesion to a substrate. Finally, the present invention relates to a conductive ink that can be directly used for various electrode materials in the printed electronics field.
  • the printed electronics industry has become a new paradigm that can change the framework of the existing industry as a convergence and eco-friendly industry based on nanotechnology. In other words, it is based on a printing process that enables low cost, flexibility, and large area of products with low temperature, atmospheric pressure, and mass production process of various new electronic materials and components of new concept. have.
  • Printed electronic products include, for example, RFID, memory, various displays (OLED, EL, electronic paper, flexible displays, etc.), lighting, batteries (secondary batteries, solar cells, etc.), touch panels, sensors, organic transistors, as well as printed circuits.
  • Applications include substrates (PCBs or FPCBs), EMI Shielding, and films for transparent electrodes (including metal meshes).
  • New markets can be created by offering products with cost competitiveness and free device design. The rapid market will be formed around products.
  • the existing process is restricted to some kind of substrate type and size, but printing process can be used regardless of substrate type, shape and size. Especially, it is easy to apply to large size or flexible substrate, and it can be applied to mass production of small quantity product from single product Because it is evaluated as an innovative process.
  • the conductive ink becomes the most important material for various electrodes (including transparent electrodes). That is, conductive materials such as metals, alloys, metal oxides, carbon nanotubes (CNTs), graphenes, graphite, conductive carbons, conductive polymers, and various conductive nanos in printed electronic processes Conductive inks made of particles, nanowires, or precursors thereof can be printed (or coated) directly with an inkjet printer or other equipment such as gravure, flexo, (rotary) screen, offset, gravure-offset, or (nano) imprinting. The drying or firing process forms the desired metal wiring, which is essential for the printed electronics process.
  • nanoparticle-based inks for example, generally have poor long-term storage stability or problems of clogging nozzles due to coagulation or sedimentation during printing. If used excessively, it causes other problems such as an increase in viscosity or an increase in surface tension, firing temperature and conductivity.
  • a metal precursor such as organometallic salt (Organometallic salt) or organometallic complex (Organometallic) Complex
  • organometallic carboxylates containing silver have generally been limited in their applicability due to their light sensitivity, low solubility, and high decomposition temperature.
  • Carboxylic acids or carboxylic acids with long alkyl chains use silver precursors coordinated with electron donors such as amine compounds or phosphine compounds (Chem. Vapor Deposition, 7, p111 (2001), Organometallics) , 15, p2575 (1996), Chem.
  • the conductive material And at least one benzoazine-based compound selected from the structures listed in the following general formula (1).
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently hydrogen, halogen, amino, nitro, cyano, hydroxy, carboxyl, substituted or unsubstituted C 1 -C 30 alkyl, substituted or unsubstituted C 3 -C 30 cycloalkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 6 -C 30 aralkyl, substituted or unsubstituted C 1 -C 30 heteroalkyl, substituted or unsubstituted Substituted C 2 -C 30 heterocycloalkyl, substituted or unsubstituted C 5 -C 30 heteroaryl, or substituted or unsubstituted C 5 -C 30 heteroaralkyl, R 2 and R 3 or R 3 and R 4 or R 4 and R 5 may be linked to form a ring, the ring may be composed of one or more atoms selected from the
  • the conductive material does not need to be particularly limited. That is, the material corresponds to the present invention as long as it is a material exhibiting conductivity or a material capable of exhibiting conductivity after a special treatment.
  • the conductive material may include metals on the periodic table, that is, Ag, Cu, Ni, Sn, Zn, Au, Co, Al, Fe, Mn, Cr, V, Ti, Zr, Hf, In, Sb, Bi, Pb, Cd, Pd, Ru, Rh, Mo, Nb, Ta, W, Re, Os, Ir, Pt, Cs, Sr, Eu, Gd, Nd, alloys thereof, oxides thereof, and the like. have.
  • metal precursor compounds for example metal ligands such as carboxylates, alkoxides, acetylacetonates, perchlorates, nitrates, sulfates, phosphates, carbonates, halogens, tetrafluoroborates, cyano, oxygen And sulfur compounds.
  • metal ligands such as carboxylates, alkoxides, acetylacetonates, perchlorates, nitrates, sulfates, phosphates, carbonates, halogens, tetrafluoroborates, cyano, oxygen And sulfur compounds.
  • the metal precursor compound may be a carboxylic acid metal salt, preferably a fatty acid metal salt.
  • the metal precursor compound may include silver oxide, silver nitrate, gold chloride, chloroauric acid, copper sulfate, nickel perchlorate, silver carbonate, And silver carboxylates, silver complexes, and the like, which are organic acid metal salts.
  • Such metal compounds are disclosed in Korean Patent Application Nos. 10-2012-0149495 and 10-2013-0020270, Chem. Vapor Deposition, 7, p111 (2001), Organometallics, 15, p2575 (1996), Chem. Mater., 16, p2021 (2004), US 7,691,294 B2, US 2011 / 0111138A1, US 8,226,755 B2, and J. Am. Chem.
  • silver malonates silver itaconate, silver naphthenate, 2- (hydroxyimino) malonic acid silver (Silver 2- (hydroxyimino) malonate), silver diallylmalonate, silver methylmalonate, silver formate, silver acetate, silver acrylate, silver methacrylate methacrylate), 2,4-pentanedionate silver (2,2-pentanedionate), silver cyclopropanecarboxylate, silver cyclopentanecarboxylic acid silver, 5-norbornene 2-carboxylic acid Silver 5-norbornene 2-carboxylate, 5-norbornene 2,3-dicarboxylic acid silver, silver 1-adamantanecarboxylic acid silver 1-adamantanecarboxylate Silver trifluoroacetate, pentafluoro propionic acid silver pe ntafluoropropionate, silver oxalate, silver 1,3-acetonedicarbox
  • the metal of the metal precursor compound may be gold (Au), copper (Cu), nickel (Ni), tin (Sn), zinc (Zn), or the like, in addition to the silver (Ag), and preferably, gold or silver.
  • the metal precursor compound include carboxylic acid salts of various metals as described above.
  • carbon nanotubes CNT
  • graphene graphene
  • graphite graphite
  • conductive carbon conductive polymers, etc.
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently hydrogen, halogen, amino, nitro, cyano, hydroxy, epoxy, carboxyl, substituted or unsubstituted C 1 -C 30 alkyl, substituted or Unsubstituted C 3 -C 30 cycloalkyl, substituted or unsubstituted C 6 -C 30 aryl, substituted or unsubstituted C 6 -C 30 aralkyl, substituted or unsubstituted C 1 -C 30 hetero Alkyl, substituted or unsubstituted C 2 -C 30 heterocycloalkyl, substituted or unsubstituted C 5 -C 30 heteroaryl, or substituted or unsubstituted C 5 -C 30 heteroaralkyl.
  • R 2 and R 3 or R 3 and R 4 or R 4 and R 5 may be linked to form a ring.
  • the ring may be composed of one or more atoms selected from
  • L is a chemical bond, substituted or unsubstituted C 1 -C 30 alkylene, substituted or unsubstituted C 1 -C 30 heteroalkylene, substituted or unsubstituted C 6 -C 30 arylene , Substituted or unsubstituted C 6 -C 30 heteroarylene, -O-, -C (O)-, -C (O) O-, -C (CH 3 ) 2- , -C (CF 3 ) 2 -, -S-, or -SO 2- .
  • R is substituted or unsubstituted C 1 -C 30 alkylene, substituted or unsubstituted C 3 -C 30 cycloalkylene, substituted or unsubstituted C 6 -C 30 arylene, substituted or Unsubstituted C 1 -C 30 heteroalkylene, substituted or unsubstituted C 2 -C 30 heterocycloalkylene, substituted or unsubstituted C 5 -C 30 heteroarylene.
  • m is an integer of 1 to 1000.
  • alkyl herein includes straight, branched or cyclic hydrocarbon radicals or combinations thereof, and may optionally include one or more double bonds, triple bonds or combinations thereof in the chain. That is, “alkyl” includes alkenes or alkynes.
  • heteroalkyl by itself or in combination with other terms, unless defined otherwise, means one or more carbon atoms and one or more heteroatoms selected from the group consisting of O, N, P, Si and S Stable, straight or branched chain or cyclic hydrocarbon radicals or combinations thereof, wherein the nitrogen, phosphorus and sulfur atoms can be optionally oxidized and the nitrogen heteroatoms can be optionally quaternized (ammonium).
  • cycloalkyl and “heterocycloalkyl”, by themselves or in combination with other terms, refer to cyclic versions of “alkyl” and “heteroalkyl”, respectively, unless stated otherwise.
  • aryl means a polyunsaturated, aromatic, hydrocarbon substituent which may be a single ring or multiple rings (1 to 3 rings) fused or covalently bonded together unless otherwise specified.
  • heteroaryl means an aryl group (or ring) comprising 1 to 4 heteroatoms selected from N, O, P and S (in each separate ring in the case of multiple rings), nitrogen and sulfur The atoms are optionally oxidized and the nitrogen atom (s) are optionally quaternized. Heteroaryl groups can be attached to the rest of the molecule via carbon or heteroatoms.
  • aralkyl refers to an alkyl group substituted with aryl, wherein the alkyl and aryl moieties are independently optionally substituted.
  • heteroarylkyl refers to an alkyl group substituted with heteroaryl, wherein the alkyl and heteroaryl moieties are independently optionally substituted.
  • Substituted in the expression “substituted or unsubstituted” as used herein means that one or more hydrogen atoms in the hydrocarbon are each replaced with the same or different substituents, independently of one another.
  • Useful substituents include, but are not limited to:
  • Such substituents include, -F; -Cl; -Br; -CN; -NO 2 -OH; C 1 -C 20 alkyl group unsubstituted or substituted with —F, —Cl, —Br, —CN, —NO 2 or —OH; A C 1 -C 20 alkoxy group unsubstituted or substituted with —F, —Cl, —Br, —CN, —NO 2 or —OH; C 6 -C 30 aryl groups unsubstituted or substituted with a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, -F, -Cl, -Br, -CN, -NO 2 or -OH; A C 6 -C 30 heteroaryl group unsubstituted or substituted with a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, -F, -C
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently hydrogen, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, t-butyl, n-pentyl, amyl, n-hexyl, 2- Ethylhexyl, n-heptyl, octyl, iso-octyl, nonyl, decyl, dodecyl, hexadecyl, octadecyl, docodecyl, cyclopropyl, cyclopentyl, cyclohexyl, allyl, propargyl, acetyl, benzoyl, hydroxyethyl , Methoxyethyl, 2-hydroxypropyl, methoxypropyl, aminoethyl, cyanoethyl, mertotoethyl,
  • At least one of the R 2 , R 3 , R 4 and R 5 may be a hydrocarbon group containing at least one double bond in order to promote the curing reaction by radical polymerization.
  • the compound represented by Formula 1 may be specifically selected from the structures of Formula 2 (Formula 2-1 to 2-13).
  • R 1 , R 2 , R 3 , and R 5 are as defined in the general formula (1).
  • Rc is cardanol-based alkyl and is a mixture containing 0 to 3 double bonds mainly as a hydrocarbon chain having 15 (C 15 ) carbon atoms.
  • Rc is usually ,
  • Ru is also a urushiol-based alkyl, usually a mixture of 0 to 3 double bonds, usually as a C 15 (C 15 ) hydrocarbon chain.
  • Ru is usually
  • Formulas 2-1 and 2-2 were prepared based on a raw material obtained by vacuum distillation from a cashew nut shell liquid (CNSL) extracted from a fruit of a cashew tree as a cardanol benzoxazine compound.
  • CNSL cashew nut shell liquid
  • cardanol, cardol, 2-methylcardol and anacardic acid are cardanol, cardol, 2-methylcardol and anacardic acid.
  • General formulas 2-3 and 2-4 are cardol-based benzoxazine compounds, and general formulas 2-5 and 2-6 are anacardic acid-based benzoxazine compounds.
  • Rc may be a mixture of long hydrocarbon compounds having double bonds as described above.
  • Formulas 2-7 and 2-8 used urushiol extracted and purified from raw urushi, or lacquer, as urushiol-based benzoxazine compounds. It may be a mixture of hydrocarbon compounds and only representative components are shown here.
  • the type of benzoxazine compound and its preparation method need not be particularly limited.
  • starting materials for making such compounds may be prepared according to the methods of preparation described in the literature, or may be prepared by modifying them more suitably. have.
  • [Reaction Scheme 1] and [Reaction Scheme 2] to represent a typical example.
  • the main starting materials shown in the schemes can be purchased and used already commercially produced and sold, or generally prepared and used according to methods known in the literature. And in order to prepare benzoxazine, there may be a difference in the manufacturing method, such as in a solution containing a solvent or in a solventless (solid) solid phase depending on the type and property of the amine, but finally if it meets the purpose of the present invention The method is not limited.
  • amine used at this time include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, isoamylamine and n-hexyl Amine, amylamine, 2-ethylhexylamine, cyclohexylamine, allylamine, propargylamine, ethylenediamine, hexamethylenediamine, phenylenediamine, monoethanolamine, 1-amino-2-propanol, 3-amino-1 -Propanol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1,3-propanediol, methoxyethylamine, benzylamine, phenethylamine, 3-aminopropyl tri Amines such as 3-aminopropyltriethoxy silane, polyetheramine
  • the benzoxazine compounds prepared as described above may be polymerized while the ring is opened at a temperature condition of 200 ° C. to 250 ° C.
  • organic acids such as formic acid, para-toluenesulfonic acid, dodecylbenzene acid, polystyrenesulfonic acid, inorganic acids such as sulfuric acid or hydrochloric acid, nitric acid, phosphoric acid, and Lewis acids such as AlCl 3 , PCl 5 , and BF 3 are used.
  • organic acids such as formic acid, para-toluenesulfonic acid, dodecylbenzene acid, polystyrenesulfonic acid, inorganic acids such as sulfuric acid or hydrochloric acid, nitric acid, phosphoric acid, and Lewis acids such as AlCl 3 , PCl 5 , and BF 3 are used.
  • Lewis acids such as AlCl 3 , PCl 5 , and BF 3
  • the conductive thin film When applied to the substrate using the conductive ink containing the benzoxazine compound, the polymerization reaction of the benzoxazine compound occurs at the temperature, the conductive thin film may include a polymer of the benzoxazine compound.
  • the formed coating film not only has excellent heat resistance and chemical resistance, but also shows an excellent effect on adhesion to the substrate.
  • the compounds containing a large number of unsaturated double bonds in the side chain such as cardanol and urushiol
  • the double bonds of the side chains undergo radical polymerization by heat to cure together.
  • Additives that accelerate this curing reaction, called autoxidation include fatty acid metal salts, for example neodecanoic acid, naphthenic acid, or 2-ethylhexanoic acid metal salts, with manganese (Mn) as the main metal.
  • Iron (Fe), cobalt (Co), cerium (Ce), vanadium (V), lead (Pb), zirconium (Zr), bismuth (Bi), aluminum (Al), strontium (Sr) and the like are used.
  • any compound of the benzoxazine type of the present invention such as a hydroquinone type, bisphenol type, and polyvinylphenol type, corresponds to the case where there are derivatives which can be polymerized by radicals in the side chain.
  • the desiccants may be the main core material of the conductive ink of the present invention and at the same time serve as a desiccant.
  • the radicals generated by the automatic oxidation reaction also contribute to the reduction reaction of the metal precursors, which contributes to the easy formation of nanoparticles to enhance the conductivity by firing.
  • the amount of these benzoxazine compounds need not be largely limited, but is generally in the range of 0.1 to 99.9%, preferably 0.3 to 50%, and more preferably 0.5 to 25%, by weight to the conductive ink solids. Too little or too much usage may cause adhesion problems or too much resistance, which may cause problems with conductivity.
  • the benzoxazine cross-linking polymers having a ring-opening crosslinking reaction are suitable for various printed electronic applications such as electrical and electronic components requiring reliability because of excellent chemical resistance such as acid resistance and base resistance as well as adhesion.
  • various compounds such as solvents and additives may be required in addition to those necessary to prepare the conductive ink according to the present invention.
  • a complexing agent or a ligand is generally required to dissolve easily and at a high concentration in a commonly used solvent.
  • Compounds well known as such materials are mainly electron donors, for example, an amine compound having a nitrogen atom, a methane compound having a sulfur element, a phosphine compound containing phosphorus, or a mixture thereof. Can be mentioned. These are all known to be involved in complexation as sigma electron donors.
  • Amine compounds include, for example, primary, secondary, or tertiary amines and / or quaternary ammomium salts, wherein the amine is alkyl, aryl , Aralkyl or the like may be substituted. Especially in the case of alkyl, linear, branched, cyclic, and other forms may be used, and functional groups such as multi-amine, hydroxy, alkoxy, ester, amide, and urethane may be used. Amine etc. which it has can be mentioned.
  • ammonia methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, t-butylamine, isoamylamine, n-hexylamine, diethylamine, tri Ethylamine, amylamine, 2-ethylhexylamine, cyclohexylamine, allylamine, propargylamine, ethylenediamine, monoethanolamine, diethanolamine, 1-amino-2-propanol, 3-amino-1-propanol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1,3-propanediol, N, N-diethylhydroxyamine, methoxyethylamine, N, N-diethylethylenediamine , N, N, N, N-tetramethylethylenediamine, pyridine, morpholine, imid
  • phosphine-based compound examples include trimethylphosphine, tributylphosphine, triphenylphosphine, and the like.
  • sulfur compounds include ethanethiol, dodecylthiol, dimethyl sulfide and tetrahydroti.
  • tetrahydrothiophene, bismuthiol, and mercaptopropyltrimethoxy silane may be mentioned.
  • the metal precursor and the phi electron donor may also form a complex, and some compounds may bind weakly, and thus may be selected and used as necessary.
  • the amount of the electron donors need not be greatly limited, but is generally in the range of 0.5 to 95%, preferably 0.5 to 50%, and more preferably in the weight ratio to the metal precursor. Is in the range of 0.5-25%.
  • It may further include one or more selected from the group consisting of solvents, resins, stabilizers, dispersants, reducing agents, coupling agents, leveling agents, surfactants, wetting agents, thickeners and thixotropic agents to control the viscosity of the ink or to form a thin film smoothly.
  • acryl polyvinyl, polyolefin, polyester, polyamide, polyurethane.
  • Various resins such as polysulfone, epoxy, phenol, maleate, phenoxy, alkyd, melamine, urea, silicone, fluorine, and cellulose resins, and water-soluble, thermoplastic, thermosetting, or ultraviolet curing resins such as latex and natural resins Included.
  • Reducing agents may be required as needed, for example sodium hypophosphite, sodium sulfite, sodium borohydride, dimethylamine borane, diethylamine Borane (diethylamine borane), carbohydrazide, hydrazine (hydrazine), rochelle salt, erythobate, diethylhydroxylamine, methylethylketoxime, hydroquinone (hydroquinone), formic acid, formaldehyde, ammonium formate, triethylammonium formate, tetramethylammonium formate, glucose, citric acid, ascorbic acid, phenidone, quinhydrone ( quinhydrone, dopamine, p-methylaminophenol sulfate, 1,2,3-trihydroxybenzene, para-ami Phenol (p-aminophenol), diaminophenol, 2-[(4-amino-3-methylphenyl) ethylamino]
  • the surfactant generally includes a nonionic surfactant, an anion, a cation, or an amphoteric surfactant, and the like, and the humectant includes, for example, ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, polyethylene glycol, Or the Sufynol, Dynol series from Air Products.
  • the thickener hydroxypropyl cellulose, benton, or the like may be used, and as the leveling agent, a BYK series may be used.
  • the amount of such additives need not be particularly limited as long as it meets the ink characteristics of the present invention.
  • the conductive ink viscosity of the present invention does not need to be particularly limited. That is, according to the coating and printing method described above, there is no problem in manufacturing the thin film and the pattern, but usually, the range of 0.1 to 1,000,000 cPs is preferable, and the range of 1 to 100,000 cPs is more preferable. For example, in the above method, the viscosity of the ink is very important when forming a thin film and a pattern by inkjet printing.
  • the conductive ink of the present invention has a viscosity range of 0.1 to 50 cPs, preferably measured at room temperature of 20 ° C., so as to be suitable for inkjet printing.
  • the conductive ink manufacturing method of the present invention does not need to be particularly limited in accordance with the purpose of the present invention, for example, there is no need to specifically limit the solvent, the reaction temperature, the concentration, the pressure or the presence or absence of the catalyst for the production.
  • the conductive ink of the present invention is selected from the group consisting of metal powders, metal oxides, metal nanoparticles, metal wires, carbon nanotubes, graphene, conductive carbon, graphite, conductive polymers, and inks prepared from them in addition to the above components. It may be in the form of a hybrid ink obtained by mixing or reacting with species or more.
  • a conductive thin film obtained by applying the conductive ink described above.
  • Coating or printing methods for producing a conductive thin film by depositing the above-described conductive ink may include spin coating, pipetting, blade coating, bar or rod coating, Roll coating, spray coating, curtain coating, dip coating, flow coating, comma coating, slot die coating, dispensing, Choose from casting, stamping, imprinting, pad printing, inkjet printing, offset, screen, gravure, flexography printing, lithography and more It is possible.
  • the coating thin film or pattern film thus obtained is chemically treated with chemical substances such as liquid or vapor phase acids, basic compounds, oxidizing agents or reducing agents, or heat, plasma, infrared (IR), ultraviolet (UV), and electron beams.
  • chemical substances such as liquid or vapor phase acids, basic compounds, oxidizing agents or reducing agents, or heat, plasma, infrared (IR), ultraviolet (UV), and electron beams.
  • Physical process such as laser, microwave, electrical, magnetic treatment, or a combination thereof may be used to form a faster and better conductive film.
  • the post-treatment process may be heat treated under a normal inert atmosphere, but may be treated in air, nitrogen, carbon monoxide, or even hydrogen and air or various mixed gases as necessary.
  • the post-treatment is usually preferably performed at 500 ° C or lower, preferably 300 ° C or lower, and may be lower or higher depending on the substrate.
  • the post-treatment time does not need to be particularly limited, but the sooner the better, unless there is a big problem in a batch or continuous process.
  • a metal plating process electrolytic or electroless
  • a surface treatment process for protecting the metal electrode may be added, and the like is not particularly limited thereto.
  • a conductive ink that is easy to form a thin film and has excellent conductivity after firing and excellent adhesion to various substrates.
  • Example 1 shows a reflection curve of a sample prepared in Example 14.
  • FIG. 2 shows an optical image of the sample prepared in Example 14.
  • Figure 3 shows a surface electron microscope (SEM) photograph of the sample prepared in Example 14.
  • FIG. 4 shows an atomic force microscope (AFM) photograph of the sample prepared in Example 14.
  • FIG. 4 shows an atomic force microscope (AFM) photograph of the sample prepared in Example 14.
  • reaction product was evacuated to remove all solvents, diluted with 500 milliliters of ethyl acetate in the remaining solution, washed three times successively with 3N-sodium hydroxide aqueous solution and brine, and the organic solution was separated and dried over anhydrous sodium sulfate.
  • the solvent was blown off in vacuo to yield 135.5 grams (yield; 95.2%) of a viscous light red liquid.
  • the reaction product was evacuated, the solvent was blown out, and the remaining solution was diluted with 300 milliliters of chloroform, washed three times with 300 milliliters of distilled water. The organic solution was separated, dried over anhydrous sodium sulfate, and the solvents were blown off with vacuum. 123.1 grams (yield; 94.2%) of viscous dark red brown liquid were obtained.
  • Example 1 158.4 grams (yield; 95.7%) of viscosities of Example 1 except that 143.5 grams (0.4 mol) of urushiol (prepared by extracting fresh lacquer with ethanol) was used instead of cardanol. Got a reddish brown liquid.
  • Example 3 148.7 grams (yield; 96.5%) of viscous reddish brown liquid was obtained in the same manner except that 143.5 grams (0.4 mol) of urushiol was used instead of cardanol.
  • reaction solution was blown out in vacuo, and the remaining solution was diluted with 500 ml of ethyl acetate, washed three times successively with 3N-sodium hydroxide aqueous solution and brine, and the organic solution was separated and dried over anhydrous sodium sulfate.
  • the solvent was blown off in vacuo to yield 78.5 grams (yield; 87.9%) of a viscous brown liquid.
  • the ink prepared in Example 11 was prepared by adding only 0.05 grams of neodecanoic acid to the ink, coated, and calcined at the same temperature. As a result, the mirror silver film was well formed, and the adhesion was 5B. 0.31 ⁇ / square.
  • the ink was prepared and coated in the same manner as in Example 11 except for using the cardanol benzoxazine prepared in Example 3, and then calcined at the same temperature to form a mirror-like silver film.
  • the average reflectance measured at 780nm was 92.3%, the adhesion was 5B, and the measured surface resistance was 0.24 ⁇ / ⁇ .
  • the ink prepared in Example 11 was calcined at only 250 ° C. for 30 minutes to form a mirror silver film, the adhesion was 5B, and the measured surface resistance value was 0.15 ⁇ / ⁇ .
  • the ink prepared in Example 11 was calcined at only 210 ° C. for 30 minutes to form a mirror-like silver film, the adhesion was 5B, and the measured surface resistance value was 1.54 ⁇ / ⁇ .
  • Example 11 The ink prepared in Example 11 was coated on a glass substrate instead of just a polyimide (PI) film and fired under the same conditions. As a result, a silver film was well formed. The adhesion was 5B, and the measured surface resistance was 0.8 ⁇ / ⁇ .
  • PI polyimide
  • the ink was prepared and coated in the same manner as in Example 18, except that the urushiol-based allylbenzoazine prepared in Example 5 was used, and then fired at the same temperature. A mirror-like silver film was well formed, and the adhesion was 5B. The resistance value was 0.21 ⁇ / ⁇ .
  • Example 6 Except for using the urushiol-based benzoxazine prepared in Example 6, the ink was prepared and coated in the same manner as in Example 18, and then fired at the same temperature, the mirror silver film was well formed, the adhesion is 5B, the measured surface resistance The value was 0.20 ⁇ / square.
  • the ink was prepared and coated in the same manner as in Example 11, except that the hydroquinone benzoxazine polymer obtained in Example 9 was used, and then fired at the same temperature. A silver film was well formed and the adhesion was 5B. The value was 0.38 ⁇ / square.
  • Example 10 Except for using the polyvinyl phenol-based benzoxazine polymer obtained in Example 10, the ink was prepared and coated in the same manner as in Example 11, and calcined at the same temperature, the silver film was well formed and the adhesion was 5B, The surface resistance value was 0.56 ⁇ / square.
  • Example 11 an ink was prepared and coated in the same manner without using a cardanol methyl benzoxazine compound and using only neodecanoic acid, and then calcined at the same temperature, resulting in a non-uniform silver film and an adhesive force of 4B.
  • the average surface resistance value was 13.2 ⁇ / ⁇ .
  • Example 11 except that the phenoxy resin was used instead of the benzoxine compound, the ink was prepared and coated in the same manner, and fired at the same temperature. As a result, a dark film was formed. / ⁇ .
  • Example 27 except that 5.0 grams of silver nanoparticles having an average particle size of 80 nanometers were used instead of silver oxide, the ink was prepared and coated in the same manner, and then fired at the same temperature. The adhesion was 5B and the measured surface resistance was 0.10 ⁇ / ⁇ .
  • Example 30 The same method as in Example 30, except that 0.15 g of the solution of cardanol benzoxazine prepared in Example 3 in a weight ratio of xylene 1: 1 and 0.05 g of stannous neodecanoate were used. After coating and firing, a dark mirror-like silver film was formed. The adhesion strength was 5B and the measured surface resistance value was 0.51 ⁇ / ⁇ .
  • Adhesion evaluation measured by the Cross-cut Tape test (ASTM D3359) method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

도전성 물질; 및 일반식 1에 나열된 구조들 중에서 선택되는 1종 이상의 벤조사진계 화합물을 포함하는 도전성 잉크가 제공된다.

Description

도전성 잉크
본 발명은 도전성 잉크에 관한 것으로서, 더욱 상세하게는 주요성분이 최소 1종 이상의 도전성 물질과 최소 1종 이상의 벤조사진(Benzoxazine) 화합물로 구성된 도전성 잉크로서, 전도도가 우수하면서도 기재에 대한 부착력이 탁월하여 최종적으로 인쇄전자분야의 다양한 전극소재로 직접 활용할 수 있는 도전성 잉크에 관한 것이다.
인쇄전자(printed electronics) 산업은 21세기에 들어와서 나노기술을 기반으로 한 융합, 친환경 산업으로서 기존의 산업의 틀을 크게 바꿀 수 있는 새로운 패러다임으로 자리매김하고 있다. 즉, 새로운 개념의 다양한 전자 소재 및 부품들을 저온, 상압 및 대량생산 공정으로, 제품의 저가격화(low cost), 유연화(flexibility), 대면적화(large area)를 가능하게 하는 인쇄공정을 기반으로 하고 있다.
따라서 향후 전자제품 시장형태는 소비자의 감성, 소비 패턴, 다양한 욕구에 따라 크게 변화하여 새로운 시장이 창출되며 그 규모가 기존의 시장규모를 훨씬 뛰어 넘는 새로운 시장이 열릴 것으로 보고 있다. 인쇄전자 제품으로는 예를 들어 RFID, 메모리, 각종 디스플레이(OLED, EL, 전자종이, 플렉서블 디스플레이 등), 조명, 전지(이차전지, 태양전지 등), 터치패널, 센서, 유기트랜지스터 뿐 아니라 인쇄회로기판(PCB 또는 FPCB), 전자파 차폐(EMI Shielding) 및 투명전극 (금속 메쉬형 포함)용 필름 등 다양한 분야로의 응용제품을 들 수 있는데 가격 경쟁력과 자유로운 디바이스 설계 가능한 제품 출시로 새로운 시장이 창출되는 제품을 중심으로 급속한 시장이 형성될 것으로 보인다. 즉, 기존공정이 기재의 종류나 크기 등에 일정부분 제약 받고 있지만 인쇄공정은 기판 종류, 형태, 크기에 구애 받지 않고 사용가능하며 특히 대형 사이즈나 유연한 기재에 적용이 쉽고 소량 다품종에서부터 단일 제품 대량생산에 이르기까지 혁신적인 공정으로 평가받기 때문이다.
이러한 인쇄전자 제품을 생산하기 위하여 여기에 부합되는 잉크가 필수적인데 특히 도전성 잉크는 가장 핵심적인 각종 전극용(투명전극 포함) 소재가 된다. 즉, 인쇄전자공정에서 도전성을 갖는 물질, 예를 들면, 금속, 합금, 금속산화물, 탄소나노튜브(CNT), 그래핀(graphene), 흑연(graphite), 전도성 카본, 전도성 고분자, 그리고 다양한 도전성 나노 입자나 나노와이어, 또는 이들의 전구체로 만든 도전성 잉크는 잉크젯 프린터나 그라비아, 플렉소, (로터리)스크린, 옵셋, 그라비아-옵셋, (나노)임프린팅 등과 같은 장비로 직접 프린팅(또는 코팅)한 후 건조 나 소성과정을 거치면 원하는 형태의 금속배선을 형성시키는데 이는 인쇄전자 공정에 필수적이다.
지금까지 이러한 인쇄전자 공정에 필요한 도전성 잉크는 많은 연구자들에 의해 연구 개발되어져 왔다. 특히, 예를 들면 나노입자 기반 잉크(nanoparticle-based inks)는 일반적으로 장기 저장 안정성이 나쁘거나 프린팅할 때 입자간 응집이나 침전에 의한 노즐을 막는 문제점이 있어 이를 방지하기 위하여 보통 안정제로서 고분자 물질을 사용하는데 이를 과도하게 사용하는 경우 점도가 상승하거나 표면장력, 소성온도 및 전도도 상승 등 또 다른 문제점을 야기한다.
금속나노입자(metal nanoparticles)를 이용한 도전성 잉크는 Nanotechnology, 17, p2424 (2006), J. Mater. Res., 24, p1828 (2009), J. Colloid Interface. Sci., 273, p165(2004), J. Mater. Chem., 19, p3057 (2009), US 2010/0084599 A1, US 2010/0009153A1, US 2011/0183128A1) 등의 예에서 볼 수 있다.
이러한 나노입자 형태의 금속잉크의 문제점을 해결하는 수단으로 가장 보편적으로 사용하는 방법으로 예를 들면, 금속 전구체(Metal Precursor)를 들 수 있는데 여기에는 유기금속 염(Organometallic Salt)이나 유기금속착체 (Organometallic Complex)등이 포함된다. 그러나 은을 포함한 유기 금속 카르복실 산염은 일반적으로 빛에 민감하고 용해도가 낮으며 분해온도가 높기 때문에 제조상의 용이함에도 응용성에 제한이 되어왔는데 이러한 문제점을 해결하기 위한 방법으로 예를 들면 불소로 치환된 카르복실 산 또는 알킬사슬이 긴 카르복실 산 은 염에 아민화합물이나 포스핀화합물 등과 같은 전자 공여체(electron donor)가 배위된 은 전구체를 사용하거나 (Chem. Vapor Deposition, 7, p111 (2001), Organometallics, 15, p2575 (1996), Chem. Mater., 16, p2021 (2004), 및 J. Chem. Crystallography, 26, p99 (1996))배위시키는 방법 등을 들 수 있다. 이러한 유기금속 착체나 또는 금속염을 사용한 잉크(US 7691294 B2, US 2011/0111138A1, US 8,226,755 B2, 및 J. Am. Chem. Soc., 134, 1419, 2012), 베타-케토카르복실 산 은염을 함유하는 잉크(WO 2007/004437A1), 네오알칸 산 은염을 사용한 잉크(Makromol Rapid Commun., 26, p315 (2005), J. Mater. Sci., 41, p4153 (2006), Chem. Mater., 21, p343 (2009) 및 US 2011/0008548A1)), 아울러, 은 뿐 아니라 구리 또는 알루미늄 프리커서 잉크 (Organometallics, 20, p4001 (2001), US 2008/0003364A1, Adv. Mater., 23, 5524, 2011, WO 2009/059273A2, 및 WO 2010/011974A1) 등의 잉크 소재도 개발되고 있다.
그러나 이러한 도전성 잉크들은 소성하여 박막의 금속 배선 형성 시 전도도가 충분하지 않거나 기재와의 부착력이 떨어져 높은 신뢰성이 요구되는 제품에 다양하게 응용하는 데 한계가 있어왔다.
따라서 본 발명자들은 이러한 문제점을 해결하기 위하여 부단히 노력한 결과 본 발명에 도달하게 되었다.
본 발명의 목적은 박막 형성이 용이하고 전도도가 우수하면서도 기재에 대한 부착력이 뛰어난 도전성 잉크를 제공하는 것이다.
본 발명의 일 측면에 따르면, 도전성 물질; 및 하기 일반식 1에 나열된 구조들 중에서 선택되는 1종 이상의 벤조사진계 화합물을 포함하는 도전성 잉크가 제공된다.
[일반식 1]
Figure PCTKR2014007000-appb-I000001
R1, R2, R3, R4 및 R5는 각각 독립적으로 수소, 할로겐, 아미노, 니트로, 시아노, 히드록시, 카르복실기, 치환 또는 비치환된 C1-C30 알킬, 치환 또는 비치환된 C3-C30 시클로알킬, 치환 또는 비치환된 C6-C30 아릴, 치환 또는 비치환된 C6-C30 아르알킬(aralkyl), 치환 또는 비치환된 C1-C30 헤테로알킬, 치환 또는 비치환된 C2-C30 헤테로시클로알킬, 치환 또는 비치환된 C5-C30 헤테로아릴, 또는 치환 또는 비치환된 C5-C30 헤테로아르알킬이며, R2와 R3 또는 R3와 R4 또는 R4 R5는 연결되어 고리를 형성할 수 있고, 상기 고리는 C, O 및 N으로 이루어진 군으로부터 선택되는 1종 이상의 원자로 이루어질 수 있으며, L은 화학결합, 치환 또는 비치환된 C1-C30 알킬렌, 치환 또는 비치환된 C1-C30 헤테로알킬렌, 치환 또는 비치환된 C6-C30 아릴렌, 치환 또는 비치환된 C6-C30 헤테로아릴렌, -O-, -C(O)-, -C(O)O-, -C(CH3)2-, -C(CF3)2-, -S-, 또는 -SO2-이고, R은 치환 또는 비치환된 C1-C30 알킬렌, 치환 또는 비치환된 C3-C30 시클로알킬렌, 치환 또는 비치환된 C6-C30 아릴렌, 치환 또는 비치환된 C1-C30 헤테로알킬렌, 치환 또는 비치환된 C2-C30 헤테로시클로알킬렌, 치환 또는 비치환된 C5-C30 헤테로아릴렌이며, m은 1내지 1000의 정수이다.
상기에서 도전성 물질은 특별히 제한할 필요는 없다. 즉, 도전성을 나타내는 물질이거나 특별한 처리 후 도전성을 나타낼 수 있는 물질이면 본 발명에 해당된다. 구체적으로 예를 들면, 상기 도전성 물질은 주기율표 상의 금속들, 즉 Ag, Cu, Ni, Sn, Zn, Au, Co, Al, Fe, Mn, Cr, V, Ti, Zr, Hf, In, Sb, Bi, Pb, Cd, Pd, Ru, Rh, Mo, Nb, Ta, W, Re, Os, Ir, Pt, Cs, Sr, Eu, Gd, Nd 등과 이들의 합금 또는 이들의 산화물 등을 포함할 수 있다.
또한 금속 전구체 화합물도 여기에 포함되는데 예를 들면 금속 리간드(ligand)가 카르복실레이트, 알콕사이드, 아세틸아세토네이트, 퍼클로레이트, 나이트레이트, 설페이트, 포스페이트, 카보네이트, 할로겐, 테트라플로로보레이트, 시아노, 산소, 황 화합물 등을 들 수 있다.
상기 금속 전구체 화합물은 카르복실산 금속염, 바람직하게는 지방산 금속염일 수 있다.
보다 구체적으로 예를 들면, 금속 전구체 화합물은 산화 은(silver oxide), 질산 은, 염화 금(gold chloride), 금산(chloroauric acid), 황산구리, 니켈퍼클로레이트(nickel perchlorate), 탄산 은(silver carbonate), 그리고 유기산 금속염인 카르복실산 은(silver carboxylates), 또는 은 착체 화합물(silver complexes) 등일 수 있는데 이러한 금속화합물들은 한국특허출원 10-2012-0149495 및 10-2013-0020270, Chem. Vapor Deposition, 7, p111 (2001), Organometallics, 15, p2575 (1996), Chem. Mater., 16, p2021 (2004), US 7,691,294 B2, US 2011/0111138A1, US 8,226,755 B2, 및 J. Am. Chem. Soc., 134, 1419, (2012), WO 2007/004437A1, Makromol Rapid Commun., 26, p315 (2005), J. Mater. Sci., 41, p4153 (2006), Chem. Mater., 21, p343 (2009) 등 참고문헌에서 볼 수 있다.
상기 금속 전구체 화합물의 더욱더 구체적인 예로서, 말론산 은(silver malonates), 이타콘산 은(silver itaconate), 나프텐산 은(silver naphthenate), 2-(히드록시이미노)말론산 은(Silver 2-(hydroxyimino) malonate), 디알릴말론산 은(silver diallylmalonate), 메틸말론산 은(silver methylmalonate), 포름산 은(silver formate), 초산 은(silver acetate), 아크릴산 은(silver acrylate), 메타크릴산 은(silver methacrylate), 2,4-펜탄디오네이트 은(2,2-pentanedionate), 시클로프로판카르복실 산 은(silver cyclopropanecarboxylate), 시클로펜탄카르복실 산 은(silver cyclopentanecarboxylate), 5-노보넨 2-카르복실산 은(silver 5-norbornene 2-carboxylate), 5-노보넨 2,3-디카르복실산 은(silver 5-norbornene 2,3-dicarboxylate), 1-아다멘탄카르복실산 은(silver 1-adamantanecarboxylate), 트리플루오로 아세트산 은(silver trifluoroacetate), 펜타플루오로 프로피온산 은(silver pentafluoropropionate), 옥살산 은(silver oxalate), 1,3-아세톤디카르복실산 은(silver 1,3-acetonedicarboxylate), 아세토아세트산 은(silver acetoacetate), 2-메틸-아세토초산 은(silver 2-methyl-acetoacetate), 옥살산 은(silver oxalate), 젖산 은(silver lactate), 피발산 은(silver pivalate), 2-에틸헥사노산 은(silver 2-ethylhexanoate), 소빅산 은(silver sorbate), 말릭산 은 (silver maliate), 말레산 은(silver maleate), 푸마릭산 은(silver fumarate), 글리옥실산 은(silver glyoxylate), 피루빅산 은(silver pyruvate), 숙신산 은(silver succinate), 글루탈산 은(silver glutalate), 글루콘산 은(silver gluconate), 피크릭산 은(silver picrate), 시트릭산 은(silver citrate), 이미노디아세트산 은(silver iminodiacetate), 니트릴로트리아세트산 은(silver nitrilotriacetate), 에틸렌디아민 테트라아세트산 은(silver ethylenediaminetetraacetate), 벤조산 은(silver benzoate), 네오데칸산 은(silver neodecanoate), 스테아린산 은(silver stearate), 올레산 은(silver oleate), 리놀레산 은(silver linolate), 아비에트산 은(silver abietate), 은 알킬 암모늄 카바메이트(silver alkylammonium carbamates), 은 알킬 암모늄 카보네이트계 화합물(silver alkylammonium carbonates) 등을 들 수 있다.
상기 금속 전구체 화합물의 금속은 상기 은(Ag) 이외에도 금(Au), 구리(Cu), 니켈(Ni), 주석(Sn), 아연(Zn) 등일 수 있으며, 바람직하게는 금 또는 은일 수 있다. 상기 금속 전구체 화합물은 상기에서 표시한 여러 금속들의 카르복실 산 염 등을 예로 들 수 있다.
그 외에도 상기 도전성 물질로 탄소나노튜브(CNT), 그래핀(graphene), 흑연(graphite), 전도성 카본, 전도성 고분자 등, 본 발명에 부합하는 경우 특별히 제한할 필요는 없다.
상기 [일반식 1]의 1-1 내지 1-4에 있어서,
R1, R2, R3, R4 및 R5는 각각 독립적으로 수소, 할로겐, 아미노, 니트로, 시아노, 히드록시, 에폭시, 카르복실기, 치환 또는 비치환된 C1-C30 알킬, 치환 또는 비치환된 C3-C30 시클로알킬, 치환 또는 비치환된 C6-C30 아릴, 치환 또는 비치환된 C6-C30 아르알킬(aralkyl), 치환 또는 비치환된 C1-C30 헤테로알킬, 치환 또는 비치환된 C2-C30 헤테로시클로알킬, 치환 또는 비치환된 C5-C30 헤테로아릴, 또는 치환 또는 비치환된 C5-C30 헤테로아르알킬이다. R2와 R3 또는 R3와 R4 또는 R4와 R5는 연결되어 고리를 형성할 수 있다. 이때, 상기 고리는 C, O 및 N으로 이루어진 군으로부터 선택되는 1종 이상의 원자로 이루어질 수 있다.
일반식 1-2에서 L은 화학결합, 치환 또는 비치환된 C1-C30 알킬렌, 치환 또는 비치환된 C1-C30 헤테로알킬렌, 치환 또는 비치환된 C6-C30 아릴렌, 치환 또는 비치환된 C6-C30 헤테로아릴렌, -O-, -C(O)-, -C(O)O-, -C(CH3)2-, -C(CF3)2-, -S-, 또는 -SO2-이다.
일반식 1-3에서 R은 치환 또는 비치환된 C1-C30 알킬렌, 치환 또는 비치환된 C3-C30 시클로알킬렌, 치환 또는 비치환된 C6-C30 아릴렌, 치환 또는 비치환된 C1-C30 헤테로알킬렌, 치환 또는 비치환된 C2-C30 헤테로시클로알킬렌, 치환 또는 비치환된 C5-C30 헤테로아릴렌이다.
한편 일반식 1-4에서 m은 1내지 1000의 정수이다.
여기서 용어 "알킬"은 직쇄, 분지쇄 또는 고리형의 탄화수소 라디칼 또는 이들의 조합을 포함하며, 경우에 따라 사슬 안에 이중 결합, 삼중 결합 또는 이들의 조합을 하나 이상 포함할 수도 있다. 즉 "알킬"은 알켄이나 알킨을 포함한다.
용어 "헤테로알킬"은 그 자체로 또는 다른 용어와 조합되어, 다른 의미로 명시되지 않는 한, 1종 이상의 탄소 원자 및 O, N, P, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상의 이종원자로 이루어지는 안정한 직쇄 또는 분지쇄 또는 고리형 탄화수소 라디칼 또는 이들의 조합을 의미하고, 질소, 인 및 황 원자는 임의로 산화될 수 있고, 질소 이종원자는 임의로 4차 화(암모늄) 될 수 있다.
용어 "시클로알킬" 및 "헤테로시클로알킬"은 그 자체로 또는 다른 용어와 함께, 다른 의미로 명시하지 않는 한, 각각 "알킬" 및 "헤테로알킬"의 고리형 버전을 나타낸다.
용어 "아릴"은 다른 의미로 명시되지 않는 한, 함께 융합 또는 공유 결합된 단일 고리 또는 다중 고리(1개 내지 3개의 고리)일 수 있는 다중불포화, 방향족, 탄화수소 치환기를 의미한다. "헤테로아릴"이란 용어는 (다중 고리의 경우 각각의 별도의 고리에서) N, O, P 및 S로부터 선택되는 1 내지 4개의 이종원자를 포함하는 아릴 기(또는 고리)를 의미하고, 질소 및 황 원자는 임의로 산화되고, 질소 원자(들)은 임의로 4차 화된다. 헤테로아릴 기는 탄소 또는 이종원자를 통해 분자의 나머지에 결합될 수 있다.
용어 "아르알킬"은 아릴로 치환된 알킬 그룹을 나타내며, 여기서, 알킬 및 아릴 부분은 독립적으로 임의로 치환된다.
용어 "헤테로아르알킬"은 헤테로아릴로 치환된 알킬 그룹을 나타내며, 여기서, 알킬 및 헤테로아릴 부분은 독립적으로 임의로 치환된다.
본 명세서에 기재된 "치환 또는 비치환된"이라는 표현에서 "치환"은 탄화수소 내의 수소 원자 하나 이상이 각각, 서로 독립적으로, 동일하거나 상이한 치환기로 대체되는 것을 의미한다. 유용한 치환기는 다음을 포함하지만 이에 제한되지 않는다.
이러한 치환기는, -F; -Cl; -Br; -CN; -NO2 -OH; -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C1-C20 알킬기; -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C1-C20 알콕시기; C1-C20 알킬기, C1-C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C6-C30 아릴기; C1-C20 알킬기, C1-C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C6-C30 헤테로아릴기; C1-C20 알킬기, C1-C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C5-C20 사이클로알킬기; C1-C20 알킬기, C1-C20 알콕시기, -F, -Cl, -Br, -CN, -NO2 또는 -OH로 치환되거나 비치환된 C5-C30 헤테로사이클로알킬기; 및 -N(G1)(G2)으로 표시되는 기로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 이 때, 상기 G1 및 G2는 서로 독립적으로 각각 수소; C1-C10 알킬기; 또는 C1-C10 알킬기로 치환되거나 비치환된 C6-C30 아릴기일 수 있다.
좀 더 구체적으로 R1, R2, R3, R4 및 R5는 각각 독립적으로 수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, iso-부틸, t-부틸, n-펜틸, 아밀, n-헥실, 2-에틸헥실, n-헵틸, 옥틸, iso-옥틸, 노닐, 데실, 도데실, 헥사데실, 옥타데실, 도코데실, 시클로프로필, 시클로펜틸, 시클로헥실, 알릴, 프로파길, 아세틸, 벤조일, 히드록시에틸, 메톡시에틸, 2-히드록시 프로필, 메톡시프로필, 아미노에틸, 시아노에틸, 머켑토에틸, 클로로에틸, 메톡시, 에톡시, 부톡시, 헥실옥시, 페녹시, 메톡시에톡시에틸, 메톡시에톡시에톡시에틸, 이미다졸릴, 카르복시메틸, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 페닐, 메톡시페닐, 시아노페닐, 톨릴, 벤질 등을 들 수 있는데 특별히 이에 한정되는 것은 아니다.
바람직하게는 라디칼 중합에 의한 경화반응의 촉진을 위해 상기 R2, R3, R4 및 R5 중 적어도 하나는 하나 이상의 이중결합을 함유하는 탄화수소기일 수 있다.
상기 일반식 1로 표시되는 화합물은 구체적으로 하기 일반식 2의 구조들 (화일반식 2-1 내지 2-13) 중에서 선택될 수 있다.
[일반식 2]
Figure PCTKR2014007000-appb-I000002
Figure PCTKR2014007000-appb-I000003
상기 식에서, R1, R2, R3, 및 R5는 일반식 1에서 정의한 바와 같다.
Rc는 카다놀계(cardanol-based) 알킬로서 주로 탄소수 15(C15)의 탄화수소 사슬로서 이중결합들을 0 내지 3개 포함하는 혼합물이다.
즉, Rc는 일반적으로
Figure PCTKR2014007000-appb-I000004
,
Figure PCTKR2014007000-appb-I000005
,
Figure PCTKR2014007000-appb-I000006
,
Figure PCTKR2014007000-appb-I000007
등이 주성분으로 이루어진 혼합물로 이루어져 있다.
또한 Ru는 우루시올계 (urushiol-based) 알킬로서 주로 보통 탄소수 15(C15) 탄화수소 사슬로서 이중결합들을 0 내지 3개 포함하는 혼합물이다.
즉, Ru는 일반적으로,
Figure PCTKR2014007000-appb-I000008
,
Figure PCTKR2014007000-appb-I000009
,
Figure PCTKR2014007000-appb-I000010
,
Figure PCTKR2014007000-appb-I000011
,
Figure PCTKR2014007000-appb-I000012
,
Figure PCTKR2014007000-appb-I000013
,
Figure PCTKR2014007000-appb-I000014
Figure PCTKR2014007000-appb-I000015
등이 주성분으로 이루어진 혼합물로 이루어져 있다.
상기 일반식 2-1 및 일반식 2-2는 카다놀계 벤조사진 화합물로서 카슈나무(cashew tree)의 열매로부터 추출된 CNSL(cashew nut shell liquid)로부터 진공 증류하여 얻은 원료를 기초로 하여 제조하였으며 여기에는 카다놀(cardanol), 카돌(cardol), 2-메틸카돌(2-methylcardol), 아나카딕 산(anacardic acid)이 있다.
한편 일반식 2-3 및 일반식 2-4는 카돌계(cardol-based) 벤조사진 화합물이고, 일반식 2-5 및 일반식 2-6은 아나카딕산계(anacardic acid-based) 벤조사진 화합물인 경우를 표시하였으며, 상기 식들에서 Rc는 상술한 바와 같이 이중결합들을 갖는 긴 탄화수소 화합물들의 혼합물일 수 있다.
또한 일반식 2-7 및 일반식 2-8은 우루시올계(urushiol-based) 벤조사진 화합물로서 생옻(raw urushi, 또는 lacquer)에서 추출 정제한 우루시올을 사용하였으며 상기 식들에서 Ru는 상술한 바와 같이 다양한 탄화수소 화합물들의 혼합물일 수 있으며 여기서는 대표적인 구성 성분만을 표시하였다.
한편, 상기의 일반식에서 벤조사진 화합물의 종류 및 그 제조방법은 특별히 제한할 필요는 없다. 예를 들면, 먼저 이러한 화합물을 만들기 위한 출발물질들(Starting Materials)은 문헌상의 제조방법에 따라 제조하든지 보다 적합하게 변형하여 제조할 수 있으며 물질이 문헌상에 없거나 제조공정이 없는 경우 직접 제조하여 사용할 수 있다. 예를 들어 [반응식 1] 및 [반응식 2]에 이르기까지 이에 대한 대표적인 예를 나타내었다.
[반응식 1]
Figure PCTKR2014007000-appb-I000016
[반응식 2]
Figure PCTKR2014007000-appb-I000017
반응식에서 나타낸 주요 출발 물질들은 이미 상업적으로 제조되어 판매하는 것을 구매하여 사용할 수 있고, 또는 일반적으로 문헌상에 공지된 방법에 따라 제조하여 사용할 수 있다. 그리고 벤조사진을 제조하기 위해서는 아민의 종류 및 성상에 따라 용매를 포함하는 용액에서 또는 용매없이(solventless) 고상으로 제조하는 등 제조방법의 차이는 있을 수 있으나 최종적으로 본 발명의 목적에 부합하는 경우 제조방법은 제한되는 것은 아니다. 이때 사용하는 아민의 종류로 구체적인 예를 들면, 암모니아, 메틸아민, 에틸아민, n-프로필아민, 이소프로필아민, n-부틸아민, 이소부틸아민, t-부틸아민, 이소아밀아민, n-헥실아민, 아밀아민, 2-에틸헥실아민, 시클로헥실아민, 알릴아민, 프로파길아민, 에틸렌디아민, 헥사메틸렌디아민, 페닐렌디아민, 모노에탄올아민, 1-아미노-2-프로판올, 3-아미노-1-프로판올, 2-아미노-2-메틸-1-프로판올, 2-아미노-2-에틸-1,3-프로판디올, 메톡시에틸아민, 벤질아민, 페네틸아민(phenethylamine), 3-아미노프로필 트리에톡시 실란(3-aminopropyltriethoxy silane), 폴리에테르아민(polyetheramines, 또는 JEFFAMINE), 폴리알릴아민(polyallylamine) 등과 같은 아민류 등을 들 수 있는데 보통 탄소 수 30(C30) 이하의 아민화합물이 바람직하나 특별히 이에 한정되는 것은 아니다.
상기와 같이 제조된 벤조사진 화합물들은 일반적으로 온도 조건 200~250oC에서 고리가 열리면서 중합이 일어날 수 있다. 한편 중합 반응 촉진을 위하여 포름산, 파라-톨루엔술폰산, 도데실벤젠산, 폴리스티렌술폰산과 같은 유기산, 황산이나 염산, 질산, 인산과 같은 무기산, 그리고 AlCl3, PCl5, 및 BF3 등과 같은 루이스 산을 사용할 수 있다. 상기 벤조사진 화합물을 함유한 도전성 잉크를 사용하여 기재에 도포할 경우 상기 온도에서 벤조사진 화합물의 중합 반응이 일어남으로써 상기 도전성 박막은 상기 벤조사진계 화합물의 중합체를 포함할 수 있다. 그 결과 형성된 도막이 내열성 및 내화학성이 우수할 뿐 아니라 기재와의 부착력에 탁월한 효과를 보여준다.
하기 [반응식 3]에 중합 반응으로 형성된 중합체 구조의 한 예를 나타내고 있다.
[반응식 3]
Figure PCTKR2014007000-appb-I000018
한편, 상기의 카다놀이나 우루시올과 같이 측쇄에 불포화 이중결합이 다수 포함된 화합물들은 상기의 벤조사진 고리의 개환중합(ring-opening polymerization) 이외에도 열에 의해 측쇄의 이중결합이 라디칼 중합을 일으켜 함께 경화반응을 촉진할 수 있다. 자동산화 반응(autoxidation)으로 일컬어지는 이 경화반응을 가속화 시키는 첨가제로서는 지방산 금속염이 있는데 예를 들어, 네오데칸산, 나프텐 산, 또는 2-에틸헥산 산 금속염이며 이때 주요 금속으로는 망간(Mn), 철(Fe), 코발트(Co), 세륨(Ce), 바나듐(V), 납(Pb), 지르코늄(Zr), 비스무스(Bi), 알루미늄(Al), 스트론튬(Sr) 등이 사용되며 그 외에도 칼슘(Ca), 아연(Zn), 리튬(Li), 칼륨(K) 등을 들 수 있는데 이들은 건조제(drier)로서 주로 활성 산소 라디칼의 형성 및 이들이 이중결합과 반응에 참여하는 자동산화의 촉매로 작용하거나 가교반응을 촉진시키는 역할을 한다. 물론, 히드로퀴논계나 비스페놀계, 그리고 폴리비닐페놀계 등 본 발명의 벤조사진계의 어떠한 화합물도 측쇄에 라디칼에 의해 중합 가능한 유도체가 있는 경우 함께 해당된다. 따라서 상기의 건조제들은 본 발명의 도전성 잉크의 주요 핵심원료이면서 동시에 건조제 역할을 동시에 할 수 있다. 자동산화 반응에 의해 생성된 라디칼들은 금속전구체들의 환원반응에도 도움이 되어 쉽게 나노입자를 형성시켜 소성에 의한 도전성을 증진시키는 데 기여를 한다.
한편, 이들 벤조사진 화합물들의 사용량은 크게 제한할 필요는 없지만 일반적으로 도전성 잉크 고형분 대비 중량비로 0.1~99.9% 범위, 바람직하게는 0.3~50% 범위, 보다 바람직하게는 0.5~25% 범위 정도이다. 사용량이 너무 적거나 많으면 부착력에 문제가 있거나 저항이 너무 커 전도도에 문제점을 야기할 수 있다. 개환 가교반응이 일어난 이러한 벤조사진 가교 고분자(cross-linking polymer)들은 부착력 뿐 아니라 내산성 및 내염기성 등 내화학성이 우수하여 신뢰성이 요구되는 전기전자 부품 등 다양한 인쇄전자 응용분야에 적합하다.
한편, 본 발명에 따른 도전성 잉크를 제조하는 데 필요한 것으로는 상기 이외에도 용매나 첨가제 등 다양한 화합물이 요구될 수 있다.
예를 들면, 도전성 물질로 상기의 금속 전구체를 사용하는 경우 일반적으로 사용하는 용매에 쉽게, 그리고 높은 농도로 녹이기 위하여 착체제(complexing agent) 또는 리간드(ligand)가 일반적으로 필요하다. 이러한 물질로 잘 알려진 화합물로는 주로 전자 공여체(electron donor)들로서 예를 들면, 질소 원자를 갖고 있는 아민 화합물, 황원소를 갖는 머켑탄 화합물, 인을 함유한 포스핀계 화합물, 또는 이들의 여러 혼합물 등을 들 수 있다. 이들은 모두 시그마(sigma) 전자 공여체들로서 착체형성에 관여한다고 알려져 있다.
아민 화합물로는 예를 들어 1차(primary), 2차(secondary), 또는 3차(tertiary) 아민이거나 및/또는 4차 암모늄 염(quaternary ammomium salts)등을 들 수 있으며 여기서 아민이 알킬, 아릴, 아르알킬 등으로 치환되어도 좋다. 특히 알킬인 경우 선형(linear), 가지형(branched), 환형(cyclic) 등 형태에도 무방하며 다중아민(multi-amine)이나 히드록시, 알콕시, 에스테르, 아미드, 우레탄 등 기능성 기(functional group)를 갖고 있는 아민 등을 들수 있다. 구체적인 예를 들면, 암모니아, 메틸아민, 에틸아민, n-프로필아민, 이소프로필아민, n-부틸아민, 이소부틸아민, t-부틸아민, 이소아밀아민, n-헥실아민, 디에틸아민, 트리에틸아민, 아밀아민, 2-에틸헥실아민, 시클로헥실아민, 알릴아민, 프로파길아민, 에틸렌디아민, 모노에탄올아민, 디에탄올아민, 1-아미노-2-프로판올, 3-아미노-1-프로판올, 2-아미노-2-메틸-1-프로판올, 2-아미노-2-에틸-1,3-프로판디올, N,N-디에틸히드록시아민, 메톡시에틸아민, N,N-디에틸에틸렌디아민, N,N,N,N-테트라메틸에틸렌디아민, 피리딘, 모폴린, 이미다졸, 벤질아민, 페네틸아민(phenethylamine), 암모늄카바메이트, 암모늄카보네이트, 테트라에틸 암모늄 바이카보네이트(tetraethylammonium bicarbonate), 테트라에틸 암모늄 부로마이드, 테트라부틸암모늄 하이드록사이드, 폴리에틸렌이민, 폴리비닐아민, 3-아미노프로필 트리에톡시 실란(3-aminopropyltriethoxy silane)과 같은 아민 및 그 유도체 등을 들 수 있는데 보통 탄소수 20(C20)이하의 아민화합물이 바람직하나 특별히 이에 한정되는 것은 아니다. 포스핀계 화합물로는 예를 들어 트리메틸포스핀, 트리부틸포스핀, 트리페닐포스핀 등을 들 수 있으며, 황 화합물로는 대표적으로 에탄티올, 도데실티올, 디메틸 설파이드(dimethyl sulfide), 테트라히드로티오펜(tetrahydrothiophene), 비스무티올(bismuthiol), 머켑토프로필 트리메톡시 실란(mercaptopropyltrimethoxy silane) 등을 예로 들 수 있다. 또한 금속 전구체와 파이(phi) 전자공여체도 착체를 형성하는 것도 있고 또 약하게 결합하는 화합물도 있기 때문에 필요에 따라 선택하여 사용할 수 있다. 예를 들면, 시클로옥타디엔(cyclooctadiene), 부타디엔(butadiene), 노보나디엔(norbornadiene), 알릴알코올(allyl alcohol), 비닐트리에틸실란(vinyltriethylsilane), 프로파길 알코올(propargyl alcohol), 1-에티닐시클로헥산올(1-ethynyl cyclohexanol), 3-부틴-2-올(3-butyne-2-ol), 2-메틸-3-부틴-2-올(2-methyl-3-butyne-2-ol), 3-메틸-1-펜틴-3-올(3-methyl-1-pentyne-3-ol), 3,5-디메틸-1-헥신-3-올(3,5-dimethyl-1-hexyn-3-ol, surfinol 61)등을 들 수 있는데 이들 전자공여체들의 사용량은 크게 제한할 필요는 없지만 일반적으로 금속 전구체 대비 중량비로 0.5~95% 범위, 바람직하게는 0.5~50% 범위, 보다 바람직하게는 0.5~25% 범위 정도이다.
잉크의 점도 조절이나 원활한 박막 형성을 위하여 용매, 수지, 안정제, 분산제, 환원제, 커플링제, 레벨링제, 계면활성제, 습윤제, 증점제 및 칙소제로 이루어진 군 중에서 선택된 1종 이상을 더 포함할 수 있다. 구체적인 예를 들면, 상기 용매를 사용하는 경우 물, 메탄올, 에탄올, 이소프로판올, 부탄올, 벤질알코올, 디아세톤알코올, 메톡시에탄올, 에톡시에탄올, 부톡시에탄올, 에틸렌 글리콜, 디에틸렌글리콜, 프로필렌글리콜 모노메틸에테르, 모노글라임(monoglyme), 디글라임(diglyme), 부틸카비톨, 알파-터피네올, 글리세린, 에틸아세테이트, 부틸아세테이트, 에틸락테이트, 카비톨 아세테이트, 아세톤, 메틸에틸케톤, 시클로헥산온, 클로로포름, 메틸렌클로라이드, 디에틸에테르, 테트라히드로퓨란, 디옥산, 헥산, 시클로헥산, 헵탄, 디메틸포름아미드, 디메틸아세트아미드, 디메틸술폭사이드, N-메틸피롤리돈, 벤젠, 톨루엔, 자일렌, 테르핀, 화이트 스피릿, 페트롤, 리그로인 등과 같은 용매 또는 이들의 혼합용매 등을 들 수 있다. 상기 수지로서는 아크릴, 폴리비닐, 폴리올레핀, 폴리에스테르, 폴리아미드, 폴리우레탄. 폴리설폰, 에폭시, 페놀, 말레에이트, 페녹시, 알키드, 멜라민, 우레아, 실리콘, 불소, 및 셀룰로스계 수지, 그리고 라텍스, 천연수지 등과 같은 수용성, 열가소성, 열경화성, 또는 자외선 경화형 수지 등 각종 수지 류가 포함된다. 필요에 따라 환원제가 요구될 수 있는데 예를 들면, 소디움 하이포포스파이트(sodium hypophosphite), 소디움 설파이트(sodium sulfite), 소디움 보로하이드라이드(sodium borohydride), 디메틸아민보란(dimethylamine borane), 디에틸아민보란(diethylamine borane), 카보히드라자이드(carbohydrazide), 히드라진(hydrazine), 로셀염(Rochelle salt), 에리소베이트(erythobate), 디에틸히드록실아민(diethylhydroxylamine), 메틸에틸케톡심(methylethylketoxime), 히드로퀴논(hydroquinone), 포름산, 포름알데히드, 포름산 암모늄(ammonium formate), 트리에틸암모늄(triethylammonium formate), 테트라메틸암모늄(tetramethylammonium formate), 글루코스, 시트릭 산, 아스코빈산, 페니돈(phenidone), 퀸히드론(quinhydrone), 도파민 (dopamine), 파라-메틸아미노페놀 설페이트(p-methylaminophenol sulfate), 1,2,3-트리히드록시 벤젠(1,2,3-trihydroxybenzene), 파라-아미노페놀(p-aminophenol), 디아미노페놀(diaminophenol), 2-[(4-아미노-3-메틸페닐)에틸아미노]에틸 설페이트(2-[(4-Amino-3-methylphenyl)ethylamino]ethyl sulfate), N-[2-[(4-아미노-3-메틸페닐)에틸아미노]에틸] 메탄설폰아미드(N-[2-[(4-amino-3-methylphenyl)ethylamino]ethyl] methanesulfonamide) 및 4-(N-에틸-N-2-히드록시에틸)-2-메틸페닐렌디아민 설페이트(4-(N-ethyl-N-2-hydroxy ethyl)-2-methylphenylenediamine sulfate)로 이루어진 군 중에서 선택되는 1종 이상 선택하여 사용할 수 있다. 상기 계면활성제로는 일반적으로 비이온성 계면활성제나, 음이온, 양이온, 또는 양쪽성 계면활성제 등이 포함되며 습윤제로는 예를 들면, 에틸렌 글리콜, 프로필렌 글리콜, 부탄디올, 펜탄디올, 헥산디올, 폴리에틸렌글리콜, 또는 에어프로덕트사(Air Product) 제품의 써피놀(Surfynol), 다이놀(Dynol) 시리즈 등을 들 수 있다. 상기 증점제로는 히드록시프로필 셀룰로즈, 벤톤 등이 사용될 수 있고, 상기 레벨링 제로는 비와이케이(BYK) 시리즈 등이 사용될 수 있다. 그러나 이러한 첨가제들의 사용량은 본 발명의 잉크 특성에 부합되는 한 특별히 제한할 필요는 없다.
본 발명의 도전성 잉크 점도는 특별히 제한할 필요는 없다. 즉 상기의 코팅 및 프린팅 방법에 따라 박막 및 패턴 제조에 문제가 없으면 무방하지만 보통 0.1 ~ 1,000,000cPs 범위가 바람직하고 1 ~ 100,000cPs 범위가 보다 바람직하다. 상기의 방법 중에서 한 예를 들면, 잉크젯 프린팅으로 박막 및 패턴 형성 시에는 잉크의 점도가 매우 중요한데, 본 발명의 도전성 잉크는 잉크젯 프린팅에 적합하도록 상온 20℃ 측정시 점도 범위가 0.1 ~ 50cPs, 바람직하게는 1 ~ 20cPs, 보다 바람직하게는 3 ~ 15cPs 범위로 조절될 수 있다. 만약 이 범위보다 낮은 경우는 번지거나 소성 후 박막의 두께가 충분하지 못해 전도도가 저하되는 경향이 있으며, 상기 범위보다 높게 되면 노즐을 통해 잉크가 원활하게 토출되기 어렵다.
한편 본 발명의 도전성 잉크 제조 방법에는 본 발명의 목적에 부합하는 경우 특별히 제한할 필요는 없는데 예를 들어 제조를 위한 용매, 반응 온도, 농도, 압력 또는 촉매 사용 유무 등을 특별히 한정할 필요는 없다.
한편 본 발명의 도전성 잉크는 상기 성분이외에도 금속분말, 금속 산화물, 금속 나노입자, 금속 와이어, 탄소나노튜브, 그래핀, 전도성 카본, 그라파이트, 전도성 고분자 및 이들로부터 제조된 잉크로 이루어진 군 중에서 선택되는 1종 이상과 혼합 또는 반응시켜 얻어지는 하이브리드 잉크 형태일 수 있다.
본 발명의 다른 측면에 따르면, 상술한 도전성 잉크를 도포하여 얻은 도전성 박막이 제공된다.
상술한 도전성 잉크를 도포(deposition)하여 도전성 박막을 제조하는 코팅 또는 프린팅 방법으로는 스핀(spin) 코팅, 피펫팅(pipetting), 블레이드(blade)코팅, 바(bar) 또는 로드(rod) 코팅, 롤(roll) 코팅, 스프레이(spray) 코팅, 커틴(curtain)코팅, 딥(dip) 코팅, 플로(flow) 코팅, 콤마(comma)코팅, 슬롯다이(slot die) 코팅, 디스펜싱(dispensing), 캐스팅(casting), 스템핑(stamping), 임프린팅(imprinting), 패드(pad) 프린팅, 잉크젯 프린팅, 옵셋, 스크린, 그라비아, 플렉소(flexography) 프린팅, 리소공정(lithography) 등을 선택하여 사용하는 것이 가능하다.
이와 같이 하여 얻어진 코팅박막 또는 패턴 막을 액상이나 증기상의 산이나 염기성 화합물과 산화제 또는 환원제 같은 화학물질로 화학 처리하거나 열, 플라즈마(Plasma), 적외선(IR), 자외선(UV), 전자 선(electron beam), 레이저(laser), 마이크로웨이브(microwave), 전기적(electrical), 자기적(magnetic) 처리와 같은 물리적 처리 공정, 또는 이들을 혼합한 공정을 통하여 보다 빠르고 우수한 도전 막을 형성시키는 데에도 이용할 수 있다.
상기의 후처리 공정은 통상의 불활성 분위기 하에서 열처리할 수도 있지만 필요에 따라 공기, 질소, 일산화탄소 중에서 또는 수소와 공기 또는 여러 혼합 가스에서도 처리가 가능하다. 후처리는 보통 500℃ 이하, 바람직하게는 300℃ 이하에서 열처리하는 것이 좋으며 기재에 따라 보다 낮거나 높아도 무방하다. 후처리 시간은 특별히 제한할 필요는 없지만 배치(batch) 또는 연속공정(continuous process) 시 큰 문제만 없다면 빠르면 빠를수록 좋다. 필요에 따라 열처리 또는 환원 처리 후 금속 도금공정(전해 또는 무전해)을 추가하거나 금속 전극 보호를 하기 위한 표면처리 공정 등이 추가될 수 있으며 이들에 특별히 한정될 필요는 없다.
이하에서는, 실시 예를 통해 본 발명에 대해 더욱 상세히 설명하기로 하나, 이는 본 발명의 예시로서 본 발명의 범위가 실시 예에 의하여 한정되는 것은 아니다.
본 발명에 따르면, 박막형성이 용이하고 소성 후 전도도가 우수하면서도 다양한 기재와의 부착력이 뛰어난 도전성 잉크가 제공된다. 또한 반사율이 우수한 거울(Mirror)상의 금속광택 박막을 용이하게 제조할 수 있다.
도 1은 실시 예 14에서 제조한 샘플의 반사율 곡선(reflection curve)을 나타낸다.
도 2는 실시 예 14에서 제조한 샘플의 광학 이미지(optical image)를 나타낸다.
도 3은 실시 예 14에서 제조한 샘플의 표면 전자현미경(SEM) 사진을 나타낸다.
도 4는 실시 예 14에서 제조한 샘플의 원자현미경 (AFM) 사진을 나타낸다.
이하, 본 발명의 다양한 실시 예를 들어 보다 상세히 설명하고자 한다.
<벤조사진 화합물의 합성>
실시 예 1.
카다놀계 메틸 벤조사진(cardanol-based methyl benzoxazine)[일반식 2-1, R1= CH3]의 합성
교반기가 부착된 1000mL의 3구 플라스크에 68.6그램(0.8몰)의 포름알데히드 수용액(35%)을 디옥산(dioxane) 150밀리리터에 녹인 용액을 5oC로 냉각시키고 여기에 31.5그램(0.4몰)의 메틸아민 수용액(40%)이 디옥산 100밀리리터에 용해된 용액을 30분에 걸쳐 서서히 떨어뜨렸다. 반응이 종료한 후 100밀리리터의 디옥산에 120그램(0.4몰)의 카다놀(cardanol)이 용해된 용액을 서서히 첨가하였다. 상온에서 교반하면서 30분 동안 반응을 더 진행한 후 온도를 90oC로 올려 5시간동안 반응을 시켰다. 반응 종료 후 반응물을 진공을 걸어 용매를 모두 날린 후 남은 용액에 500밀리리터의 에틸아세테이트로 희석시킨 후 3N-수산화나트륨 수용액 및 소금물로 연속해서 3회 잘 씻은 후 유기용액을 분리하여 무수황산나트륨으로 건조시키고 용매를 진공으로 모두 날려 135.5그램(수율; 95.2%)의 점성 있는 연한 붉은색 액체를 얻었다.
실시 예 2.
카다놀계 알릴 벤조사진(cardanol-based allyl benzoxazine)[일반식 2-1, R1=Allyl]의 합성
실시예 1에서 메틸아민 대신에 22.8그램(0.4몰)의 알릴아민을 사용한 것을 제외하고 같은 방법으로 실험한 결과 142.3그램(수율; 93.1% )의 붉은색 액체가 얻어졌다.
실시 예 3.
카다놀계 벤조사진(cardanol-based benzoxazine)[일반식 2-2, R1= Cardanol]의 합성
교반기가 부착된 1000mL의 3구 플라스크에 51.4그램(0.6몰)의 포름알데히드 수용액(35%)을 디옥산(dioxane) 150밀리리터에 녹인 용액을 5oC로 냉각시키고 여기에 11.4그램(0.2몰)의 암모니아 수용액(30%)이 디옥산 100밀리리터에 용해된 용액을 30분에 걸쳐 서서히 떨어뜨렸다. 반응이 종료한 후 100밀리리터의 디옥산에 120그램(0.4몰)의 카다놀(cardanol)이 용해된 용액을 서서히 첨가하였다. 상온에서 교반하면서 30분 동안 반응을 더 진행한 후 온도를 80oC로 올려 6시간동안 반응을 시켰다. 반응 종료 후 반응물을 진공을 걸어 용매를 모두 날린 후 남은 용액에 300밀리리터의 클로로포름으로 희석시킨 후 300밀리리터의 증류수로 3회 잘 씻은 후 유기용액을 분리하여 무수황산나트륨으로 건조시키고 용매를 진공으로 모두 날려 123.1그램 (수율; 94.2%)의 점성 있는 진한 붉은 갈색 액체를 얻었다.
실시 예 4.
우루시올계 메틸 벤조사진(urushiol-based methyl benzoxazine)[일반식 2-7, R1= CH3]의 합성
실시예 1에서 카다놀 대신에 143.5그램(0.4몰)의 우루시올(생옻을 에탄올로 추출하는 방식으로 정제하여 제조)을 사용한 것을 제외하고 같은 방법으로 실험한 결과 158.4그램(수율; 95.7%)의 점성 있는 붉은 갈색 액체를 얻었다.
실시 예 5.
우루시올계 알릴 벤조사진(urushiol-based allyl benzoxazine)[일반식 2-7, R1= Allyl]의 합성
실시예 2에서 카다놀 대신에 143.5그램(0.4몰)의 우루시올을 사용한 것을 제외하고 같은 방법으로 실험한 결과 167.1그램(수율; 94.8%)의 점성 있는 갈색 액체가 얻어졌다.
실시 예 6.
우루시올계 벤조사진(urushiol-based benzoxazine)[일반식 2-8, R1= urushiol]의 합성
실시예 3에서 카다놀 대신에 143.5그램(0.4몰)의 우루시올을 사용한 것을 제외하고 같은 방법으로 실험한 결과 148.7그램(수율; 96.5%)의 점성있는 붉은 갈색 액체가 얻어졌다.
실시 예 7.
히드로퀴논계 2-에틸헥실 벤조사진(hydroquinone-based 2-ethylhexyl benzoxazine)[일반식 2-9 및/또는 2-10, R1=2-ethylhexyl, R2=H, R3=H]의 합성
교반기가 부착된 1000mL의 3구 플라스크에 68.4그램(0.8몰)의 포름알데히드 수용액(35%)을 디옥산(dioxane) 150밀리리터에 녹인 용액을 5oC로 냉각시키고 여기에 51.7그램(0.4몰)의 2-에틸헥실아민을 디옥산 100밀리리터에 녹인 용액을 30분에 걸쳐 서서히 떨어뜨렸다. 반응이 종료한 후 100밀리리터의 디옥산에 22.0그램(0.2몰)의 히드로퀴논이 분산된 용액을 서서히 첨가하였다. 상온에서 교반하면서 30분 동안 반응을 더 진행한 후 온도를 서서히 올려 환류(reflux) 조건에서 12시간 동안 반응을 시켰다. 반응 종료 후 반응액을 진공하에서 용매를 모두 날린 후 남은 용액체에 500밀리리터의 에틸아세테이트로 희석시킨 후 3N-수산화나트륨 수용액 및 소금물로 연속해서 3회 잘 씻은 후 유기용액을 분리하여 무수황산나트륨으로 건조시키고 용매를 진공으로 모두 날려 78.5그램(수율; 87.9%)의 점성 있는 갈색 액체를 얻었다.
실시 예 8.
비스페놀 A계 2-에틸헥실 벤조사진(bisphenol A-based 2-ethylhexyl benzoxazine)[일반식 2-11, R1=2-ethylhexyl, R2=H, X= C(CH3)2]의 합성
실시 예 7에서 히드로퀴논 대신에 45.6그램(0.2몰)의 비스페놀 A를 사용한 것을 제외하고 같은 방법으로 실험한 결과 97.1그램(수율; 85.9%)의 점성 있는 액체가 얻어졌다.
실시 예 9.
히드로퀴논계 벤조사진 고분자(hydroquinone-based benzoxazine polymer)[일반식 2-12, R=(CH2)6, R2=H, R3=H]의 합성
24.0그램(0.8몰)의 파라포름알데히드와 23.2그램(0.2몰)의 헥사메틸렌디아민을 300밀리리터의 클로로포름에 혼합한 후 가열하면서 용해시켰다. 여기에 서서히 22.0그램(0.2몰)의 히드로퀴논을 첨가하고 교반하면서 잘 혼합한 후 환류(reflux) 조건에서 6시간 동안 반응을 시켰다. 반응 종료 후 진공에서 용매를 날리고, 점성 있는 반응물을 500밀리리터의 클로로포름으로 희석시킨 후 3N-수산화나트륨 수용액 및 소금물로 연속해서 3회 잘 씻은 후 유기용액을 분리하여 무수황산나트륨으로 건조시키고 용매를 진공으로 모두 날려 점성이 큰 액체를 얻었다. 여기에 클로로포름 100밀리리터로 희석시킨 후 2리터의 메탄올 용액에 서서히 떨어뜨려 고체를 얻었다. 이를 거른 후 진공에서 완전히 건조시켜 53.4그램의 연한 붉은색 고체를 얻었다.
실시 예 10.
폴리비닐 페놀계 벤조사진 고분자(polyvinylphenol-based benzoxazine)[일반식 2-13, R1=2-에틸헥실]의 합성
24.0그램(0.8몰)의 파라포름알데히드, 51.7그램(0.4몰)의 에틸헥실아민, 그리고 48.0그램의 폴리-4-비닐페놀[poly(4-vinylphenol)]을 상온에서 교반하면서 잘 혼합한 후 온도를 130oC 로 올려 1시간동안 반응을 시켰다. 반응 종료 후 반응물을 200밀리리터의 클로로포름으로 희석시킨 후 2리터의 메탄올 수용액에 서서히 떨어뜨리면 고체가 형성되는데 이를 거른 후 진공에서 건조시키면 102.1그램의 연한 노란색 고체를 얻었다.
<금속 잉크 제조 및 평가>
실시 예 11.
실시 예 1에서 제조된 카다놀계 메틸 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.2그램을 2.0그램의 네오데칸산 은(silver neodecanoate) 용액(자일렌과 무게비로 3:5비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 이 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 노란색의 투명한 은 전구체 잉크를 제조하였다. 이렇게 제조된 은 잉크 조성물을 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.30 Ω/□이었다.
실시 예 12.
실시 예 2에서 제조된 카다놀계 알릴 벤조사진을 톨루엔과 무게비로 1:1로 용해된 용액 0.2그램을 2.0그램의 네오데칸산 은(silver neodecanoate) 용액(톨루엔과 무게비로 3:5비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 이 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 갈색의 은 전구체 잉크를 제조하였다. 이렇게 제조된 은 잉크 조성물을 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.25 Ω/□이었다.
실시 예 13.
실시 예 11에서 제조된 잉크에 단지 네오데칸산(neodecanoic acid) 0.05그램을 첨가하여 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.31 Ω/□이었다.
실시 예 14.
실시 예 3에서 제조된 카다놀계 벤조사진을 사용하는 것을 제외하고 실시예 11과 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 거울상 은막이 잘 형성되었으며 이때 샘플을 측정파장이 380~780nm 범위에서 측정한 평균 반사율은 92.3%이었으며, 접착력은 5B, 측정한 표면저항 값은 0.24 Ω/□이었다.
실시 예 15.
실시 예 11에서 제조된 잉크를 단지 250℃에서 30분 동안 소성시킨 결과 거울상 은막이 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.15 Ω/□이었다.
실시 예 16.
실시 예 11에서 제조된 잉크를 단지 210℃에서 30분 동안 소성시킨 결과 거울상 은막이 형성되었으며 접착력은 5B, 측정한 표면저항 값은 1.54 Ω/□이었다.
실시 예 17.
실시 예 11에서 제조된 잉크를 단지 폴리이미드(PI) 필름대신에 유리 기판에 코팅하여 같은 조건에서 소성시킨 결과 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.8 Ω/□이었다.
실시 예 18.
실시 예 4에서 제조된 우루시올계 메틸 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.15그램을 2.0그램의 네오데칸산 은(silver neodecanoate) 용액(자일렌과 무게비로 3:5비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 얻어진 붉은 갈색 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 북은 갈색의 잉크를 제조하였다. 이렇게 제조된 은 잉크를 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.25 Ω/□이었다.
실시 예 19.
실시 예 5에서 제조된 우루시올계 알릴벤조사진을 사용하는 것을 제외하고 실시예 18과 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.21 Ω/□이었다.
실시 예 20.
실시 예 6에서 제조된 우루시올계 벤조사진을 사용하는 것을 제외하고 실시예 18과 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.20 Ω/□이었다.
실시 예 21.
실시 예 7에서 제조된 히드로퀴논계 에틸헥실 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.2그램을 2.0그램의 나프텐산 은(silver naphthenate) 용액(자일렌과 무게비로 1:2비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 얻어진 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 붉은 갈색의 잉크를 제조하였다. 이렇게 제조된 은 잉크를 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.35 Ω/□이었다.
실시 예 22.
실시 예 8에서 제조된 비스페놀계 에틸헥실 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.2그램을 2.0그램의 네오데칸산 은(silver neodecanoate) 용액(자일렌과 무게비로 3:5비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 얻어진 붉은 갈색 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 맑은 투명한 잉크를 제조하였다. 이렇게 제조된 은 잉크를 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.45 Ω/□이었다.
실시 예 23.
실시 예 6에서 제조된 우루시올계 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.1그램을 2.0그램의 소빅산 은(silver sorbate) 용액(n-부틸아민과 무게비로 1:2비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 이 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 붉은 갈색의 은 전구체 잉크를 제조하였다. 이렇게 제조된 은 잉크 조성물을 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 은막이 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.25 Ω/□이었다.
실시 예 24.
실시 예 9에서 얻어진 히드로퀴논계 벤조사진 고분자를 사용하는 것을 제외하고는 실시 예 11과 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.38 Ω/□이었다.
실시 예 25.
실시 예 10에서 얻어진 폴리비닐 페놀계 벤조사진 고분자를 사용하는 것을 제외하고는 실시 예 11과 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.56 Ω/□이었다.
실시 예 26.
실시 예 6에서 제조된 우루시올계 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.1그램을 2.0그램의 금산 수화물(HAuCl4 xH2O, chloroauric acid) 용액(이소프로필 알코올과 무게비로 4:6로 용해)에 서서히 떨어뜨리면서 10분간 잘 혼합시켰다. 이 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 붉은 갈색의 금 전구체 잉크를 제조하였다. 이렇게 제조된 금 잉크 조성물을 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상의 금 박막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 3.2 Ω/□이었다.
비교 실시 예 1.
실시 예 11에서 카다놀계 메틸 벤조사진 화합물을 사용하지 않고 단지 네오데칸산 은만 사용하여 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 불균일한 은막이 형성되었으며 접착력은 4B, 측정한 평균 표면저항 값은 13.2 Ω/□이었다.
비교 실시 예 2.
실시 예 11에서 벤조사진계 화합물 대신에 페녹시 수지를 사용하는 것을 제외하고 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 어두운 막이 형성되었으며 접착력은 5B, 측정한 표면저항 값은 58.5 kΩ/□이었다.
실시 예 27.
실시 예 2에서 제조된 카다놀계 알릴 벤조사진 1.0그램과 네오데칸산 은 5.0그램, 그리고 산화 은(silver oxide) 5.0 그램을 알파-터피네올 3.0그램을 하이브리드 믹서를 사용하여 잘 혼합하여 균일한 페이스트 잉크를 얻었다. 이를 바코터를 사용하여 폴리이미드(PI) 필름에 박막으로 코팅한 후 230℃에서 30분 동안 소성시킨 결과 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.08 Ω/□이었다.
실시 예 28.
실시 예 27에서 산화 은(silver oxide) 대신에 평균입자 80나노미터의 은 나노 입자 5.0 그램을 사용하는 것을 제외하고 같은 방법으로 잉크를 제조하고 코팅하여, 같은 온도에서 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.10 Ω/□이었다.
실시 예 29.
실시 예 6에서 제조된 우루시올계 벤조사진 5.0그램에 평균입경 3미크론의 은 입자 60.0 그램, 그리고 알파-터피네올 15.0그램 및 부틸카비톨 아세테이트 20.0그램, 삼본밀(3-roll mill)를 사용하여 잘 혼합하여 균일한 페이스트 잉크를 얻었다. 이를 스크린 프린터를 사용하여 ITO 코팅된 유리에 인쇄한 후 230℃에서 30분 동안 소성시킨 결과 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.15 Ω/□이었다.
실시 예 30.
실시 예 6에서 제조된 우루시올계 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.15그램과 네오데칸산 철(iron neodecanoate) 0.05그램 혼합용액을 2.0그램의 네오데칸산 은(silver neodecanoate) 용액(자일렌과 무게비로 3:5비율로 녹인 용액)에 서서히 떨어뜨리면서 10분간 잘 혼합켰다. 얻어지는 붉은 갈색 용액을 0.45미크론 테프론 필터를 사용하여 걸러주어 붉은 갈색의 잉크를 제조하였다. 이렇게 제조된 은 잉크를 폴리이미드(PI) 필름 위에 스핀 코팅기를 사용하여 코팅하고, 230℃에서 30분 동안 소성시킨 결과 거울상 은막이 잘 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.18 Ω/□이었다.
실시 예 31.
실시 예 3에서 제조된 카다놀계 벤조사진을 자일렌과 무게비로 1:1로 용해된 용액 0.15그램과 네오데칸산 주석(stannous neodecanoate) 0.05그램 혼합용액을 사용하는 것을 제외하고 실시예 30과 같은 방법으로 코팅하고 소성시킨 결과 어두운 거울상 은막이 형성되었으며 접착력은 5B, 측정한 표면저항 값은 0.51 Ω/□이었다.
측정 및 평가
1) 전도도 평가: 패턴 1cm x 3cm의 직사각형 샘플 제작 후 이를 에이아이티(AIT)사 모델 CMT-SR1000N으로 면 저항 측정(4 probe)
2) 부착력 평가: Cross-cut Tape test(ASTM D3359) 방법으로 측정.
3) 반사율 측정: 파장 380~780nm 범위에서 Varian Cary5000을 사용하여 측정

Claims (14)

  1. 도전성 물질; 및
    하기 일반식 1에 나열된 구조들 중에서 선택되는 1종 이상의 벤조사진계 화합물을 포함하는 도전성 잉크:
    [일반식 1]
    Figure PCTKR2014007000-appb-I000019
    R1, R2, R3, R4 및 R5는 각각 독립적으로 수소, 할로겐, 아미노, 니트로, 시아노, 히드록시, 카르복실기, 치환 또는 비치환된 C1-C30 알킬, 치환 또는 비치환된 C3-C30 시클로알킬, 치환 또는 비치환된 C6-C30 아릴, 치환 또는 비치환된 C6-C30 아르알킬(aralkyl), 치환 또는 비치환된 C1-C30 헤테로알킬, 치환 또는 비치환된 C2-C30 헤테로시클로알킬, 치환 또는 비치환된 C5-C30 헤테로아릴, 또는 치환 또는 비치환된 C5-C30 헤테로아르알킬이며;
    R2 R3 또는 R3와 R4 또는 R4 R5는 연결되어 고리를 형성할 수 있고, 상기 고리는 C, O 및 N으로 이루어진 군으로부터 선택되는 1종 이상의 원자로 이루어질 수 있으며;
    L은 화학결합, 치환 또는 비치환된 C1-C30 알킬렌, 치환 또는 비치환된 C1-C30 헤테로알킬렌, 치환 또는 비치환된 C6-C30 아릴렌, 치환 또는 비치환된 C6-C30 헤테로아릴렌, -O-, -C(O)-, -C(O)O-, -C(CH3)2-, -C(CF3)2-, -S-, 또는 -SO2-이고;
    R은 치환 또는 비치환된 C1-C30 알킬렌, 치환 또는 비치환된 C3-C30 시클로알킬렌, 치환 또는 비치환된 C6-C30 아릴렌, 치환 또는 비치환된 C1-C30 헤테로알킬렌, 치환 또는 비치환된 C2-C30 헤테로시클로알킬렌, 치환 또는 비치환된 C5-C30 헤테로아릴렌이며;
    m은 1내지 1000의 정수이다.
  2. 청구항 1에 있어서,
    R1, R2, R3, R4 및 R5는 각각 독립적으로 수소, 메틸, 에틸, n-프로필, iso-프로필, n-부틸, iso-부틸, t-부틸, n-펜틸, 아밀, n-헥실, 2-에틸헥실, n-헵틸, 옥틸, iso-옥틸, 노닐, 데실, 도데실, 헥사데실, 옥타데실, 도코데실, 시클로프로필, 시클로펜틸, 시클로헥실, 알릴, 프로파길, 아세틸, 벤조일, 히드록시에틸, 메톡시에틸, 2-히드록시 프로필, 메톡시프로필, 아미노에틸, 시아노에틸, 머켑토에틸, 클로로에틸, 메톡시, 에톡시, 부톡시, 헥실옥시, 페녹시, 메톡시에톡시에틸, 메톡시에톡시에톡시에틸, 이미다졸릴, 카르복시메틸, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 페닐, 메톡시페닐, 시아노페닐, 톨릴, 및 벤질로 이루어진 군 중에서 선택되는 1종 이상인 도전성 잉크.
  3. 청구항 1에 있어서,
    상기 일반식 1로 표시되는 화합물은 하기 일반식 2의 구조들 중에서 선택되는 도전성 잉크.
    [일반식 2]
    Figure PCTKR2014007000-appb-I000020
    Figure PCTKR2014007000-appb-I000021
    상기 식에서, Rc는 카다놀계 알킬이고, Ru는 우루시올계 알킬이다.
  4. 청구항 1에 있어서,
    상기 R2, R3, R4 및 R5 중 적어도 하나는 하나 이상의 이중결합을 함유하는 탄화수소기인 도전성 잉크.
  5. 청구항 1에 있어서,
    상기 도전성 물질은 금속, 금속 전구체 화합물, 탄소나노튜브(CNT), 그래핀(graphene), 흑연(graphite), 전도성 카본 및 전도성 고분자로 이루어진 군 중에서 선택되는 1종 이상인 도전성 잉크.
  6. 청구항 5에 있어서,
    상기 금속 전구체 화합물이 카르복실산 금속염인 도전성 잉크.
  7. 청구항 5에 있어서,
    상기 금속 전구체 화합물이 지방산 금속염인 도전성 잉크.
  8. 청구항 6에 있어서,
    상기 카르복실산 금속염의 금속이 은(Ag) 또는 금(Au)인 도전성 잉크.
  9. 청구항 1에 있어서,
    용매, 착체 제, 수지, 안정제, 분산제, 환원제, 커플링제, 레벨링제, 계면활성제, 습윤제, 증점제 및 칙소제로 이루어진 군 중에서 선택되는 1종 이상의 첨가제를 더 포함하는 도전성 잉크.
  10. 청구항 1에 있어서,
    잉크젯 프린팅에 적합하도록 상온 20℃ 측정 시 점도 범위가 0.1 ~ 50cPs로 조절된 도전성 잉크.
  11. 청구항 9에 따른 도전성 잉크; 및
    금속분말, 금속 산화물, 금속 나노입자, 금속 와이어, 탄소나노튜브, 그래핀, 전도성 카본, 그라파이트, 전도성 고분자 및 이들로부터 제조된 잉크로 이루어진 군 중에서 선택되는 1종 이상과 혼합 또는 반응시켜 얻어지는 하이브리드 잉크 형태인 도전성 잉크.
  12. 청구항 1에 있어서,
    점도 범위가 상온 20℃ 측정 시 1 ~ 100,000cPs인 도전성 잉크.
  13. 청구항 1 내지 청구항 12 중 어느 한 항에 따른 도전성 잉크를 도포하여 얻은 도전성 박막.
  14. 청구항 13에 있어서,
    상기 도전성 박막은 상기 도전성 잉크에 함유된 상기 벤조사진계 화합물의 중합체를 포함하는 도전성 박막.
PCT/KR2014/007000 2014-07-30 2014-07-30 도전성 잉크 WO2016017836A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/778,364 US9803098B2 (en) 2014-07-30 2014-07-30 Conductive ink
PCT/KR2014/007000 WO2016017836A1 (ko) 2014-07-30 2014-07-30 도전성 잉크

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007000 WO2016017836A1 (ko) 2014-07-30 2014-07-30 도전성 잉크

Publications (1)

Publication Number Publication Date
WO2016017836A1 true WO2016017836A1 (ko) 2016-02-04

Family

ID=55217726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007000 WO2016017836A1 (ko) 2014-07-30 2014-07-30 도전성 잉크

Country Status (2)

Country Link
US (1) US9803098B2 (ko)
WO (1) WO2016017836A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106626A (zh) * 2020-08-31 2022-03-01 洛阳尖端技术研究院 油墨组合物、油墨及其制备方法、反光膜

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288106B1 (ko) * 2012-12-20 2013-07-26 (주)피이솔브 금속 전구체 및 이를 이용한 금속 전구체 잉크
KR102397620B1 (ko) * 2015-02-19 2022-05-16 주식회사 다이셀 은 입자 도료 조성물
US11492720B2 (en) * 2016-07-11 2022-11-08 Northwestern University High-performance solid-state supercapacitors and microsupercapacitors derived from printable graphene inks
AU2018256202A1 (en) 2017-04-18 2019-11-07 Magic Leap, Inc. Waveguides having reflective layers formed by reflective flowable materials
US20190092647A1 (en) * 2017-09-25 2019-03-28 Eastman Kodak Company Non-aqueous silver-containing dispersions
WO2019060166A1 (en) * 2017-09-25 2019-03-28 Eastman Kodak Company PROCESS FOR PRODUCING DISPERSIONS CONTAINING SILVER WITH NITROGEN BASES
WO2019143912A1 (en) * 2018-01-19 2019-07-25 Lawrence Livermore National Security, Llc Products having sheets of 2d materials and related inks for direct ink writing
EP3597707B1 (de) * 2018-07-19 2021-10-06 Heraeus Deutschland GmbH & Co. KG Formulierung zum applizieren auf glas, porzellan, fliesen, metallen und kunststofffolien
KR20200035898A (ko) * 2018-09-27 2020-04-06 주식회사 엘지화학 항균 코팅제가 처리된 기재 및 이의 제조방법
CN109456678B (zh) * 2018-11-19 2021-03-16 福建师范大学泉港石化研究院 一种适用于环氧树脂的石墨烯改性制备方法
US11217659B1 (en) 2019-01-24 2022-01-04 Matthew W. Barlow Direct application additive manufacturing for conductive wafer interconnect
TWI805862B (zh) * 2019-10-17 2023-06-21 德商賀利氏德國有限責任兩合公司 施用於玻璃、瓷、瓦、金屬及塑料膜之調配物
JP7507006B2 (ja) * 2020-04-30 2024-06-27 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、ブラックマトリックス用レジスト組成物、及び、ブラックマトリックス
WO2022081756A1 (en) * 2020-10-13 2022-04-21 Chasm Advanced Materials, Inc. Curable carbon nanotube ink and transparent conductive films created using the ink
TW202419590A (zh) * 2022-08-30 2024-05-16 美商電子墨水股份有限公司 用於低溫導電塗層的鉑墨水組成物及方法
CN115678347B (zh) * 2022-09-08 2024-03-22 江南大学 一种低温等离子体诱导功能薄膜的制备方法及其关键材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070025600A (ko) * 2005-09-02 2007-03-08 연세대학교 산학협력단 잉크젯 프린팅용 전도성 잉크 조성물 및 이를 이용한 금속패턴 형성방법
KR20070114561A (ko) * 2006-05-29 2007-12-04 삼성에스디아이 주식회사 폴리벤조옥사진계 화합물, 이를 포함한 전해질막 및 이를채용한 연료전지
US20090117436A1 (en) * 2007-11-02 2009-05-07 Samsung Electronics Co., Ltd. Electrolyte membrane for fuel cell and fuel cell using the same
KR20090046685A (ko) * 2007-11-06 2009-05-11 삼성전자주식회사 벤조옥사진계 모노머, 그 중합체 이를 포함하는 연료전지용전극, 이를 포함하는 연료전지용 전해질막 및 이를 채용한연료전지
KR20110103207A (ko) * 2010-03-12 2011-09-20 삼성전자주식회사 연료전지용 분리판, 그 제조방법 및 이를 구비한 연료전지
KR20150000533A (ko) * 2013-06-24 2015-01-05 (주)피이솔브 도전성 잉크

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727466B1 (ko) 2005-02-07 2007-06-13 주식회사 잉크테크 유기 은 착체 화합물, 이의 제조방법 및 이를 이용한박막형성방법
US7691294B2 (en) 2005-03-04 2010-04-06 Inktec Co., Ltd. Conductive inks and manufacturing method thereof
EP1905756B1 (en) * 2005-07-04 2013-02-27 Osaka University Silver beta-ketocarboxylate derivatives for forming silver metal
US20080003364A1 (en) 2006-06-28 2008-01-03 Ginley David S Metal Inks
WO2009059273A2 (en) 2007-11-02 2009-05-07 Alliance For Sustainable Energy, Llc Printing aluminum films and patterned contacts using organometallic precursor inks
EP2062891B1 (en) * 2007-11-06 2012-08-08 Samsung Electronics Co., Ltd. Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
US20110008548A1 (en) 2007-12-20 2011-01-13 Patrick James Smith Process for manufacturing conductive tracks
CA2727611A1 (en) 2008-06-12 2009-12-17 Nanomas Technologies, Inc. Conductive inks and pastes
WO2009156990A1 (en) 2008-06-23 2009-12-30 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Core-shell metallic nanoparticles, methods of production thereof, and ink compositions containing same
JP2011529126A (ja) 2008-07-24 2011-12-01 コヴィオ インコーポレイテッド アルミニウムインク及びその製造方法、アルミニウムインクを堆積する方法、並びにアルミニウムインクの印刷及び/又は堆積により形成されたフィルム
US7922939B2 (en) 2008-10-03 2011-04-12 The Board Of Trustees Of The University Of Illinois Metal nanoparticle inks
CA2780291A1 (en) 2009-11-09 2011-05-12 Carnegie Mellon University Metal ink compositions, conductive patterns, methods, and devices
EP2812390B1 (en) * 2012-02-10 2016-04-06 3M Innovative Properties Company Anticorrosion coatings
KR101288106B1 (ko) 2012-12-20 2013-07-26 (주)피이솔브 금속 전구체 및 이를 이용한 금속 전구체 잉크
KR101433682B1 (ko) 2013-02-26 2014-08-26 (주)피이솔브 은 잉크
US9169393B2 (en) * 2013-07-25 2015-10-27 3M Innovative Properties Company Anticorrosion coatings
US9683123B2 (en) * 2014-08-05 2017-06-20 Pesolve Co., Ltd. Silver ink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070025600A (ko) * 2005-09-02 2007-03-08 연세대학교 산학협력단 잉크젯 프린팅용 전도성 잉크 조성물 및 이를 이용한 금속패턴 형성방법
KR20070114561A (ko) * 2006-05-29 2007-12-04 삼성에스디아이 주식회사 폴리벤조옥사진계 화합물, 이를 포함한 전해질막 및 이를채용한 연료전지
US20090117436A1 (en) * 2007-11-02 2009-05-07 Samsung Electronics Co., Ltd. Electrolyte membrane for fuel cell and fuel cell using the same
KR20090046685A (ko) * 2007-11-06 2009-05-11 삼성전자주식회사 벤조옥사진계 모노머, 그 중합체 이를 포함하는 연료전지용전극, 이를 포함하는 연료전지용 전해질막 및 이를 채용한연료전지
KR20110103207A (ko) * 2010-03-12 2011-09-20 삼성전자주식회사 연료전지용 분리판, 그 제조방법 및 이를 구비한 연료전지
KR20150000533A (ko) * 2013-06-24 2015-01-05 (주)피이솔브 도전성 잉크

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106626A (zh) * 2020-08-31 2022-03-01 洛阳尖端技术研究院 油墨组合物、油墨及其制备方法、反光膜

Also Published As

Publication number Publication date
US20160185990A1 (en) 2016-06-30
US9803098B2 (en) 2017-10-31

Similar Documents

Publication Publication Date Title
WO2016017836A1 (ko) 도전성 잉크
WO2014098396A1 (ko) 금속 전구체 및 이를 이용한 금속 전구체 잉크
WO2016021748A1 (ko) 은 잉크
KR100711505B1 (ko) 도전막 형성을 위한 은 페이스트
JP5712635B2 (ja) 銀含有組成物
US20140178601A1 (en) Conductive material and process
US8680309B2 (en) Metal organic precursor, a method of preparing the same, and a method of forming a conductive metal film or pattern
KR20120046457A (ko) 금속 잉크 조성물, 이를 이용한 전도성 금속막 형성방법 및 이를 이용한 전도성 금속막
JP6051165B2 (ja) 銅パターン形成用組成物及び銅パターンの製造方法
KR100895192B1 (ko) 도전배선 형성용 페이스트에 사용되는 유기 은 착화합물
TWI602947B (zh) Composition for copper film formation, and the manufacturing method of the copper film using the same
US9283618B2 (en) Conductive pastes containing silver carboxylates
KR101605650B1 (ko) 구리막 형성용 조성물 및 상기 조성물을 이용한 구리막의 제조방법
KR101502890B1 (ko) 도전성 잉크
US9133349B2 (en) Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
CN107250292A (zh) 银粒子涂料组合物
KR20150036372A (ko) 은 함유 조성물 및 은 요소 형성 기재
WO2017073956A1 (ko) 광소결용 잉크조성물 및 이의 제조방법
KR20120036476A (ko) 구리(ⅱ) 포르메이트 착제를 포함하는 잉크 조성물의 제조방법
JP5693253B2 (ja) 導電性組成物及び導電膜
RU2388774C2 (ru) Проводящие чернила и способ их получения
KR100587402B1 (ko) 도전선 패턴 형성을 위한 은 오르가노 졸 잉크
TW201631068A (zh) 有機半導體元件用電極材料
JP2016051624A (ja) 銀含有組成物及び銀要素形成基材
WO2024050387A2 (en) Platinum ink compositions and methods for low temperature conductive coating

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14778364

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898520

Country of ref document: EP

Kind code of ref document: A1