WO2016017697A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2016017697A1
WO2016017697A1 PCT/JP2015/071513 JP2015071513W WO2016017697A1 WO 2016017697 A1 WO2016017697 A1 WO 2016017697A1 JP 2015071513 W JP2015071513 W JP 2015071513W WO 2016017697 A1 WO2016017697 A1 WO 2016017697A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
side hole
heat exchanger
introduction
members
Prior art date
Application number
PCT/JP2015/071513
Other languages
French (fr)
Japanese (ja)
Inventor
森山 正幸
石峯 裕作
和彦 藤尾
敬一 関口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/329,699 priority Critical patent/US20170219302A1/en
Priority to JP2016538401A priority patent/JP6325674B2/en
Priority to EP15827887.9A priority patent/EP3176532B1/en
Publication of WO2016017697A1 publication Critical patent/WO2016017697A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger.
  • heat exchangers are used for heat exchange systems such as cooling and heating.
  • a plurality of long plates arranged substantially in parallel and slits between the long plates are provided, and recesses are continuously provided in the longitudinal direction on some surfaces of the long plates.
  • a plurality of stacked substrates, the long plates of the adjacent substrates are connected to each other to form a tube, the recess forms an in-tube flow path, and the slit forms an out-tube flow path.
  • An exchanger has been proposed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a heat exchanger having excellent heat exchange efficiency.
  • the heat exchanger of the present invention is a heat exchanger made of ceramics and performing heat exchange between the first fluid and the second fluid, the heat exchanger having an introduction side hole on one end side, A plurality of first members, each having a wall having a discharge side hole on the other end side, wherein a space connecting the introduction side hole and the discharge side hole is a first flow path through which the first fluid flows; A second member for introducing the first fluid into the first member, and a second member for introducing the first fluid into the first member on one end side of the first member; And a third member for discharging the first fluid that has flowed through the first member, and the second fluid is between a plurality of the first members.
  • the heat exchanger of the present invention is a heat exchanger made of ceramics and performing heat exchange between the first fluid and the second fluid, the heat exchanger having an introduction side hole on one end side, A plurality of first members, each having a wall having a discharge side hole on the other end side, wherein a space connecting the introduction side hole and the discharge side hole is a first flow path through which the first fluid flows; A second member for introducing the first fluid into the first member, and a second member for introducing the first fluid into the first member on one end side of the first member; And a third member for discharging the first fluid that has flowed through the first member, and the second fluid is between a plurality of the first members.
  • the second flow path flows.
  • the wall with the downstream discharge side hole characterized in that a region overlapping the opening region of the upstream discharge side hole is present.
  • the heat exchanger of the present invention has excellent heat exchange efficiency.
  • FIG. 1 is a perspective view and FIG. 2 is a cross-sectional view showing an example of a heat exchanger according to the present embodiment.
  • FIG. 3 is a perspective view showing an example of the first member constituting the heat exchanger of the present embodiment
  • FIG. 4 shows the second member and the third member constituting the heat exchanger of the embodiment. It is a perspective view which shows an example.
  • FIG. 5 is a partial cross-sectional view of the heat exchanger of the present embodiment
  • FIGS. 6 and 7 are partial cross-sectional views in which the second member side in the heat exchanger of the present embodiment is enlarged.
  • the heat exchanger 1 in the example shown in FIG. 1 includes a wall having an introduction side hole 5 on one end side and a discharge side hole 6 on the other end side, and a space connecting the introduction side hole 5 and the discharge side hole 6 is provided.
  • a plurality of first members 2 are provided as first flow paths 8 through which the first fluid flows.
  • a second member 3 is provided which communicates with the introduction-side holes 5 at one end side of the plurality of first members 2 and introduces the first fluid into the first member 2.
  • emitting the 1st fluid which communicated with the discharge side holes 6 in the other end side of several 1st member 2 and flowed through the 1st member 2 is provided.
  • a space between the plurality of first members 2 is a second flow path 10 through which the second fluid flows.
  • the one end side can be rephrased as the upstream side of the first fluid, and the other end side can be rephrased as the downstream side of the first fluid.
  • the heat exchanger 1 including three first members 2 is illustrated as an example, but is not limited thereto, and the number of the first members 2 is two or more. If it is.
  • a liquid, a gas, or the like can be used depending on the purpose.
  • the first fluid is a liquid such as water
  • the second fluid is a gas such as a gas. can do.
  • the first member 2, the second member 3, and the third member 4 constituting the heat exchanger 1 are made of ceramics.
  • the heat exchanger 1 is excellent in heat resistance and corrosion resistance.
  • the type of ceramic may be appropriately selected according to the characteristics of the fluid, such as oxide ceramics such as alumina ceramics and cordierite ceramics, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics, etc. Non-oxide ceramics can be used.
  • the heat exchange efficiency of the heat exchanger 1 is improved with high thermal conductivity. Can do. Moreover, since the raw material cost is cheap and easy to process when the alumina content is more than 50% by mass among all the components constituting the ceramic, the heat exchanger 1 is manufactured at a lower cost than other materials. be able to.
  • the first fluid enters from the introduction part 11 of the flange part 16, passes through the introduction side flow path 7, passes through each introduction side hole 5, and flows through the first flow path 8 of each first member 2. After passing through the discharge side hole 6, it is discharged from the discharge unit 12 through the discharge side flow path 9.
  • the heat exchanger 1 of the present embodiment is more efficient than the second fluid flowing through the second flow path 10, particularly while the first fluid flows through the first flow path 8. Heat exchange can be performed well.
  • the flange portion 16 is not an essential component in the heat exchanger 1, and the opening of the second member 3 located at the lowest level in FIGS. 1 and 2 is used as the first fluid inlet, and the flange 16 is at the lowest level.
  • the opening of the third member 4 positioned may be used as the first fluid discharge port.
  • the first fluid and the second fluid are arranged so as to be orthogonal flows, or the flows of the first fluid and the second fluid are arranged in the same direction. You can do it.
  • the first member 2 may be provided with a partition wall that can branch the first fluid. As described above, by providing the partition wall portion, the heat exchange efficiency can be improved by increasing the contact area with the first fluid.
  • FIG. 3 shows an example in which the introduction side hole 5 and the discharge side hole 6 are provided at positions corresponding to each other on the upper wall and the lower wall to form through holes.
  • the first member 2 corresponds to the first member 2b and the first member 2c in FIGS.
  • the first member 2a arranged at the uppermost stage does not need to flow the first fluid further upward on the upstream side, and the first fluid does not flow from above on the downstream side.
  • the introduction side hole 5 and the discharge side hole 6 are provided only on the lower wall of the walls constituting the one member 2a.
  • the second member 3 and the third member 4 are, for example, cylindrical members as shown in FIG.
  • the second member 3 and the third member 4 may be the first member as long as the first fluid can flow inside and has a height at which the second flow path 10 can be provided.
  • the cross section perpendicular to the direction in which the fluid flows is not limited to a circular shape, and may be an elliptical shape, a triangular shape, a polygonal shape such as a quadrangular shape, or the like.
  • the heat exchanger 1 of this embodiment when the heat exchanger 1 of this embodiment is seen in the direction through which a 1st fluid flows in at least 1 of adjacent introduction side holes 5, it is a wall provided with a downstream introduction side hole. In addition, there is a region overlapping the opening region of the upstream introduction side hole.
  • the first fluid flows through the introduction-side flow path 7
  • the first fluid collides with a region overlapping the opening region of the upstream introduction-side hole in the wall including the downstream introduction-side hole.
  • a turbulent flow region the opportunity for the inner surface (hereinafter referred to as a turbulent flow region) of the flow path to be in contact with the generated turbulent flow increases with the first fluid. Therefore, the heat exchanger 1 of the present embodiment has excellent heat exchange efficiency.
  • the adjacent introduction side holes 5 are, according to the heat exchanger 1 shown in FIG. 2, the introduction side hole 5a and the introduction side hole 5b, the introduction side hole 5b and the introduction side hole 5c, the introduction side hole 5c, and
  • the introduction side hole 5d, the introduction side hole 5d, and the introduction side hole 5e are the two introduction side holes 5 that are adjacent to each other in the direction in which the first fluid flows.
  • the upstream introduction side hole is the introduction side hole 5 located upstream in the direction in which the first fluid flows between the adjacent introduction side holes 5, and the downstream introduction side hole is the first introduction side hole 5. It is the introduction side hole 5 located downstream in the direction in which the fluid flows.
  • the introduction side hole 5b is a downstream introduction side hole
  • the introduction side hole 5c is an upstream introduction side hole.
  • the introduction side hole 5c is a downstream introduction side hole
  • the introduction side hole 5d is an upstream introduction side hole.
  • even the same introduction side hole 5 can be an upstream introduction side hole or a downstream introduction side hole depending on the combination.
  • the adjacent introduction side holes 5 have the same opening shape, and the opening region of the upstream introduction side hole is the opening of the downstream introduction side hole. If the area is larger than the region or the opening shapes of the adjacent introduction side holes 5 may be different, the adjacent introduction side holes 5 have the same opening shape from the viewpoint of not slowing the flow rate of the fluid more than necessary. However, it is preferable that the center of the introduction side hole 5 is shifted in the direction intersecting the flow direction as seen in the flow direction of the first fluid.
  • the opening shape of the introduction side hole 5 is not limited to the circular shape as shown in FIG. 3, and may be an elliptical shape, a triangular shape, a polygonal shape such as a quadrangular shape, or the like.
  • the wall including the downstream introduction-side hole has a region that overlaps with the opening region of the upstream introduction-side hole.
  • the 1st member 2b is comprised from three walls, it is not limited to this, The number of the walls which comprise the 1st member 2b is three or more It does not matter.
  • the introduction side hole 5b is a downstream introduction side hole
  • the introduction side hole 5c is an upstream introduction side hole. It is. And when it sees in the direction where the 1st fluid flows between adjacent introduction side holes 5, the area which overlaps with the opening area of an upstream introduction side hole exists in the wall provided with a downstream introduction side hole.
  • the opening region of the introduction side hole 5c that is the upstream introduction side hole is translated along the flow direction of the first fluid to the wall 13b having the downstream introduction side hole, the upstream introduction side hole is formed in the wall 13b. This refers to when there is a portion that overlaps the open area.
  • the opening region of the introduction side hole 5c It collides with the wall 13b where the overlapping region exists, and the inner surface of the second member 3a adjacent to the collided portion and the inner surface of the first member 2b become a turbulent flow region. And since this turbulent flow area increases the chance of contact with the first fluid, the heat exchange efficiency of the heat exchanger 1 is improved.
  • the same effect as described above can be obtained if there is an area overlapping the opening area of the upstream introduction side hole on the wall provided with the downstream introduction side hole.
  • the overlapping region preferably has an area of 10% by area or more of the opening region of the upstream introduction side hole.
  • At least one of the plurality of first members 2 is at the inner edge of the first member 2 of the introduction side hole 5 located on the downstream side of the first fluid. It is preferable to have a chamfered portion on the center side of the first member 2.
  • the first fluid flows into the first member 2b from the lower introduction side hole 5c and branches into the first flow path 8 extending from one end side to the other end side and the upper introduction side hole 5b. Will flow.
  • the chamfered portion 14 on the center side (right side in FIG. 6) of the first member 2b among the edges of the introduction side hole 5b in the wall 13b constituting the first member 2b, the first The fluid can be smoothly branched.
  • the chamfered portion 14 which is a chamfered portion is a portion where a corner is cut and a surface appears.
  • the chamfered portion 14 is provided on the center side of the first member 2b among the inner side edges of the first member 2b. Since the first fluid can be smoothly branched, it is preferable that the turbulent flow is generated on the upstream side of the first fluid from the chamfered portion 14. If it becomes such a structure, since the 1st fluid which the turbulent flow will branch off smoothly and a turbulent flow area will spread, heat exchange efficiency can be improved further.
  • At least one of the plurality of first members 2 is the discharge-side hole 6 positioned on the downstream side of the first fluid.
  • the first fluid flowing in from the discharge side hole 6 can be smoothly merged.
  • At least one of the plurality of first members 2 is an edge on the inner side of the first member 2 of the introduction side hole 5 located on the downstream side of the first fluid. It is preferable to have a portion projecting at a position on the center side of the first member 2 around.
  • the protruding portion will be described as the protruding portion 15.
  • the first fluid flows into the first member 2b from the lower introduction side hole 5c and branches to the first flow path 8 extending from one end side to the other end side and the upper introduction side hole 5b. Will flow.
  • the first fluid is caused by having the protruding portion 15 at a position on the center side of the first member 2b, around the edge of the introduction side hole 5b in the wall 13b constituting the first member 2b. Since turbulent flow can be generated also when branching to the first flow path 8, the heat exchange efficiency can be further improved.
  • the projecting portion 15 is a reference surface when a surface of the wall 13b constituting the first member 2b excluding the periphery of the edge of the introduction side hole 5b is used as the reference surface. It is the part which protrudes 1 micrometer or more to the 1st flow path 8 side.
  • At least one of the plurality of first members 2 is around the edge on the inner side of the first member 2 in the introduction side hole 5 located on the downstream side of the first fluid.
  • the first fluid 8 flows when the first fluid flowing through the first channel 8 exceeds the protrusion 15. Since the turbulent flow is generated by the merging with the main stream flowing through and the upper discharge side hole 6 and the merging with the first fluid, the heat exchange efficiency is improved.
  • the heat exchanger 1 of this embodiment is the arithmetic average of the inner surface of the introduction
  • the second member 3b is connected to the introduction side hole 5c from the inside. Since a turbulent flow is generated when one fluid flows in, the heat exchange efficiency can be improved.
  • the introduction side hole 5c is included in a turbulent flow region that is generated when a region that overlaps with the opening region of the upstream introduction side hole exists in the wall that includes the downstream introduction side hole.
  • the arithmetic average roughness Ra1 to R4 described above can be obtained by measuring in accordance with JIS B 0601 (2013) using a contact type surface roughness meter.
  • the measurement length is 2.5 mm
  • the cutoff value is 0.8 mm
  • the scanning speed of the stylus is set to 0.3 mm / second.
  • the discharge side channel 9 will be described in parentheses.
  • a portion close to the adjacent position is taken as a measurement location, and along the direction in which the first fluid flows. It is sufficient to measure at least three points in each direction, and to calculate the average values as arithmetic average roughness Ra1 (Ra3) and Ra2 (Ra4).
  • the ratio Ra2 / Ra1 (Ra4 / Ra3) between the arithmetic average roughness Ra1 (Ra3) and the arithmetic average roughness Ra2 (Ra4) is preferably 3 or more and 30 or less. As described above, if Ra2 / Ra1 (Ra4 / Ra3) is 3 or more and 30 or less, a large turbulent flow can be generated in the first fluid without reducing the flow rate of the first fluid. Further, the heat exchange efficiency can be improved.
  • a sintering aid, a binder, a solvent, a dispersing agent, and the like are appropriately added to and mixed with the powder of the main component material (silicon carbide, alumina, etc.) to prepare a slurry. Then, using this slurry, a ceramic green sheet is formed by a doctor blade method.
  • the slurry is spray-dried and granulated by spray-drying granulation method (spray-drying method) to produce granules, and the obtained granules are formed by roll compaction.
  • spray-drying granulation method spray-drying method
  • a ceramic green sheet may be obtained by using a granule to produce a clay instead of a mechanical press method, a cold isostatic pressing (CIP) method, or a slurry, and an extrusion method.
  • the obtained ceramic green sheet is processed into a desired outer shape, or after forming the introduction side hole and the discharge side hole, the slurry is applied to each. Then, the first member is obtained by laminating and pressing, and firing at a firing temperature matched to the main component raw material.
  • the wall provided with the downstream introduction-side hole when viewed in the direction in which the first fluid flows, the wall provided with the downstream introduction-side hole has a region overlapping with the opening region of the upstream introduction-side hole.
  • the ceramic green sheet on which the downstream introduction side hole is to be formed is overlapped with the ceramic green sheet on which the upstream introduction side hole is formed, there is a region that overlaps the opening area of the upstream introduction side hole on the ceramic green sheet. What is necessary is just to form a downstream introduction
  • the downstream introduction side hole is provided so that the position from the outer side of the ceramic green sheet is different, or the position from the outer side of the ceramic green sheet is the same. You can make them different. Further, in the adjacent discharge side holes, when viewed in the direction in which the first fluid flows, the wall provided with the downstream discharge side hole has a region overlapping with the opening region of the upstream discharge side hole. In the above description, the introduction side hole may be replaced with the discharge side hole, and thus the description is omitted.
  • At least one of the plurality of first members is a central side of the first member among the inner side edges of the first member in the introduction side hole or the discharge side hole located on the downstream side of the first fluid.
  • the shape of the blade of the die that contacts the corresponding edge at the time of forming the introduction side hole or the discharge side hole in the ceramic green sheet is tapered.
  • the incident angle of the laser beam may be adjusted.
  • a cone-shaped jig may be pressed against the corresponding edge to be pressed, or chamfered by cutting.
  • At least one of the plurality of first members is an introduction side hole or a discharge side hole located on the downstream side of the first fluid.
  • the mold used If the clearance between the blade and the die is adjusted, it is possible to form a portion protruding around the edge serving as a corresponding portion.
  • the protruding portion can be obtained by applying a paste having the same composition as that used for forming the ceramic green sheet around the corresponding edge. Can be formed. Furthermore, you may make it protrude by pressing at least one part of the edge used as the corresponding location in a ceramic green sheet with a jig etc.
  • the second member, the third member, and the flange portion first, powders of main component materials (silicon carbide, alumina, etc.) constituting each member are added to a sintering aid, a binder, a solvent, a dispersant, and the like. Are added and mixed as appropriate to prepare a slurry.
  • the slurry is then spray-dried and granulated by spray-drying granulation to produce granules, and a molded body having a desired shape is obtained using the obtained granules by mechanical press or cold isostatic pressing.
  • the second member, the third member, and the flange portion can be obtained by firing after cutting and performing firing as necessary. In addition, you may grind as needed after baking.
  • the arithmetic average roughness Ra2 of the inner surface of the introduction side hole adjacent to the downstream side of the first fluid in the second member is measured.
  • the arithmetic average roughness Ra1 of the inner surface of the second member is measured.
  • the arithmetic average roughness Ra2 of the inner surface of the introduction side hole adjacent to the downstream side of the first fluid in the second member is a value larger than the arithmetic average roughness Ra1.
  • the arithmetic average roughness Ra4 of the discharge side hole adjacent to the downstream side of the first fluid in the third member is larger than the arithmetic average roughness Ra3 of the inner surface of the third member. Since the second member may be replaced with the third member, and the introduction side hole may be replaced with the discharge side hole, description thereof will be omitted.
  • a heat exchanger can be obtained by curing the adhesive by heat treatment.
  • the position of the hole to be formed is shifted or the shape of the hole to be formed is changed as a form in which there is an area overlapping with the opening area of the upstream introduction side hole (upstream discharge side hole).
  • the first member adjacent to the second member or the third member may be joined in a shifted arrangement.
  • the second member and the third member may be prepared and joined in accordance with the number of the first members.
  • the weight of each upper member is applied around the introduction side hole and the discharge side hole in the lower first member.
  • the second member and the third member arranged in the above may be arranged with the central axis shifted in the direction in which the first fluid flows. As a result, it is possible to reduce the possibility of chipping or cracking around the introduction side hole and the discharge side hole in the lower first member due to the weight of each upper member.
  • an adhesive agent used it is preferable to use an inorganic adhesive agent as what is excellent in heat resistance and corrosion resistance.
  • the inorganic adhesive include SiO 2 —Al 2 O 3 —B 2 O 3 —RO-based glass (R: alkaline earth metal element) powder and powder obtained by mixing metal silicon powder and silicon carbide powder.
  • R alkaline earth metal element
  • a paste to be used may be used. If such a paste is used as an inorganic adhesive, it is possible to firmly join each other's members without deteriorating the members when heat treatment is performed, and because of excellent heat resistance and corrosion resistance, The reliability of the heat exchanger can be improved.
  • heat exchanger described above is not particularly limited as long as it performs heat exchange, and is suitable for, for example, heat exchangers for various laser devices, semiconductor elements, and semiconductor manufacturing devices. Can be used.
  • heat exchanger 2 first member 3: second member 4: third member 5: introduction side hole 6: discharge side hole 7: introduction side flow channel 8: first flow channel 9: discharge side flow channel 10: Second flow path 11: Introduction 12: Discharge section 13: Wall with inlet and outlet holes 14: Chamfer 15: Projection 16: Flange

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

[Problem] To provide a heat exchanger having a superior heat exchange efficiency. [Solution] The heat exchanger according to the present invention is formed from a ceramic and performs heat exchange between a first fluid and a second fluid. The heat exchanger is provided with: a plurality of first members having a wall that has introduction holes on one side thereof and wall that has discharge holes on the other side thereof, and the spaces connecting the introduction holes and the discharge holes serve as first channels through which the first fluid flows; second members that communicate with the introduction holes at one side of the plurality of the first members to introduce the first fluid to the first members; and third members that communicate with the discharge holes at the other side of the plurality of the first members to discharge the first fluid that has flowed through the first members, wherein the spaces between the plurality of first members serve as second channels through which the second fluid flows, and, in at least one of adjacent introduction holes, regions that overlap with the opening regions of the upstream-side introduction holes exist in the walls having the downstream-side introduction holes, when viewed in the direction in which the first fluid flows.

Description

熱交換器Heat exchanger
 本発明は、熱交換器に関する。 The present invention relates to a heat exchanger.
 従来、冷却・加熱等の熱交換システムには熱交換器が用いられている。このような熱交換器の1例として、略平行に並べられた複数の長板と前記長板相互間のスリットからなり、前記長板のいくつかの表面に長手方向に連続して凹みが設けられた基板が複数積層され、隣接する前記基板の前記長板相互が接続されて管を構成するとともに、前記凹みが管内流路を構成し、かつ前記スリットが管外流路を構成してなる熱交換器が提案されている(例えば、特許文献1を参照。)。 Conventionally, heat exchangers are used for heat exchange systems such as cooling and heating. As an example of such a heat exchanger, a plurality of long plates arranged substantially in parallel and slits between the long plates are provided, and recesses are continuously provided in the longitudinal direction on some surfaces of the long plates. A plurality of stacked substrates, the long plates of the adjacent substrates are connected to each other to form a tube, the recess forms an in-tube flow path, and the slit forms an out-tube flow path. An exchanger has been proposed (see, for example, Patent Document 1).
特開2005-300062号公報JP 2005-300062 JP
 今般の熱交換器には、さらに優れた熱交換効率を有する熱交換器が求められている。それゆえ、本発明の目的は、優れた熱交換効率を有する熱交換器を提供することにある。 For this heat exchanger, a heat exchanger having further excellent heat exchange efficiency is required. Therefore, an object of the present invention is to provide a heat exchanger having excellent heat exchange efficiency.
 本発明の熱交換器は、セラミックスからなり、第1の流体と第2の流体とで熱交換を行なう熱交換器であって、該熱交換器は、一端側に導入側孔を有し、他端側に排出側孔を有する壁を備え、前記導入側孔および前記排出側孔を繋ぐ空間が前記第1の流体が流れる第1流路とされた複数個の第1部材と、複数個の該第1部材の一端側で前記導入側孔同士と連通し、前記第1の流体を前記第1部材に導入するための第2部材と、複数個の前記第1部材の他端側で前記排出側孔同士と連通し、前記第1部材を流れた前記第1の流体を排出するための第3部材とを備え、複数個の前記第1部材同士の間が前記第2の流体が流れる第2流路とされており、隣り合う前記導入側孔同士の少なくとも1つにおいて、前記第1の流体の流れる方向に見たとき、下流導入側孔を備える前記壁に、上流導入側孔の開口領域と重なる領域が存在していることを特徴とする。 The heat exchanger of the present invention is a heat exchanger made of ceramics and performing heat exchange between the first fluid and the second fluid, the heat exchanger having an introduction side hole on one end side, A plurality of first members, each having a wall having a discharge side hole on the other end side, wherein a space connecting the introduction side hole and the discharge side hole is a first flow path through which the first fluid flows; A second member for introducing the first fluid into the first member, and a second member for introducing the first fluid into the first member on one end side of the first member; And a third member for discharging the first fluid that has flowed through the first member, and the second fluid is between a plurality of the first members. When it sees in the flowing direction of the first fluid in at least one of the adjacent introduction side holes, which is a second flow path that flows. , The wall with the downstream inlet side hole, characterized in that a region overlapping the opening region of the upstream inlet side hole is present.
 本発明の熱交換器は、セラミックスからなり、第1の流体と第2の流体とで熱交換を行なう熱交換器であって、該熱交換器は、一端側に導入側孔を有し、他端側に排出側孔を有する壁を備え、前記導入側孔および前記排出側孔を繋ぐ空間が前記第1の流体が流れる第1流路とされた複数個の第1部材と、複数個の該第1部材の一端側で前記導入側孔同士と連通し、前記第1の流体を前記第1部材に導入するための第2部材と、複数個の前記第1部材の他端側で前記排出側孔同士と連通し、前記第1部材を流れた前記第1の流体を排出するための第3部材とを備え、複数個の前記第1部材同士の間が前記第2の流体が流れる第2流路とされており、隣り合う前記排出側孔同士の少なくとも1つにおいて、前記第1の流体の流れる方向に見たとき、下流排出側孔を備える前記壁に、上流排出側孔の開口領域と重なる領域が存在していることを特徴とする。 The heat exchanger of the present invention is a heat exchanger made of ceramics and performing heat exchange between the first fluid and the second fluid, the heat exchanger having an introduction side hole on one end side, A plurality of first members, each having a wall having a discharge side hole on the other end side, wherein a space connecting the introduction side hole and the discharge side hole is a first flow path through which the first fluid flows; A second member for introducing the first fluid into the first member, and a second member for introducing the first fluid into the first member on one end side of the first member; And a third member for discharging the first fluid that has flowed through the first member, and the second fluid is between a plurality of the first members. When it sees in the flowing direction of the first fluid in at least one of the discharge side holes adjacent to each other, the second flow path flows. , The wall with the downstream discharge side hole, characterized in that a region overlapping the opening region of the upstream discharge side hole is present.
 本発明の熱交換器は、優れた熱交換効率を有する。 The heat exchanger of the present invention has excellent heat exchange efficiency.
本実施形態の熱交換器の一例を示す斜視図である。It is a perspective view which shows an example of the heat exchanger of this embodiment. 本実施形態の熱交換器の一例を示す断面図である。It is sectional drawing which shows an example of the heat exchanger of this embodiment. 本実施形態の熱交換器を構成する第1部材の一例を示す斜視図である。It is a perspective view which shows an example of the 1st member which comprises the heat exchanger of this embodiment. 本実施形態の熱交換器を構成する第2部材および第3部材の一例を示す斜視図である。It is a perspective view which shows an example of the 2nd member and 3rd member which comprise the heat exchanger of this embodiment. 本実施形態の熱交換器の一例を示す部分断面図ある。It is a fragmentary sectional view showing an example of the heat exchanger of this embodiment. 本実施形態の熱交換器における第2部材側を拡大した一例を示す部分断面図である。It is a fragmentary sectional view showing an example which expanded the 2nd member side in a heat exchanger of this embodiment. 本実施形態の熱交換器における第2部材側を拡大した他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples which expanded the 2nd member side in a heat exchanger of this embodiment.
 以下、図面を用いて本実施形態の熱交換器について説明する。なお、図面において、同じ部材には同じ符号を付して説明する。 Hereinafter, the heat exchanger according to the present embodiment will be described with reference to the drawings. In the drawings, the same members are described with the same reference numerals.
 本実施形態の熱交換器の一例を示す、図1は斜視図であり、図2は断面図である。また、図3は、本実施形態の熱交換器を構成する第1部材の一例を示す斜視図であり、図4は、本実施形態の熱交換器を構成する第2部材および第3部材の一例を示す斜視図である。さらに、図5は、本実施形態の熱交換器の部分断面図であり、図6および図7は、本実施形態の熱交換器における第2部材側を拡大した部分断面図である。 FIG. 1 is a perspective view and FIG. 2 is a cross-sectional view showing an example of a heat exchanger according to the present embodiment. FIG. 3 is a perspective view showing an example of the first member constituting the heat exchanger of the present embodiment, and FIG. 4 shows the second member and the third member constituting the heat exchanger of the embodiment. It is a perspective view which shows an example. Furthermore, FIG. 5 is a partial cross-sectional view of the heat exchanger of the present embodiment, and FIGS. 6 and 7 are partial cross-sectional views in which the second member side in the heat exchanger of the present embodiment is enlarged.
 まず、図1および図2を用いて、本実施形態の熱交換器の構成について説明する。図1に示す例の熱交換器1は、一端側に導入側孔5を有し、他端側に排出側孔6を有する壁を備え、導入側孔5および排出側孔6を繋ぐ空間が第1の流体が流れる第1流路8とされた複数個の第1部材2を備える。また、複数個の第1部材2の一端側で導入側孔5同士と連通し、第1の流体を第1部材2に導入するための第2部材3を備える。さらに、複数個の第1部材2の他端側で排出側孔6同士と連通し、第1部材2を流れた第1の流体を排出するための第3部材4を備える。そして、複数個の第1部材2同士の間が第2の流体が流れる第2流路10とされている。なお、ここでいう一端側とは、第1の流体の上流側と言い換えることができるものであり、他端側とは、第1の流体の下流側と言い換えることができるものである。 First, the configuration of the heat exchanger according to the present embodiment will be described with reference to FIGS. 1 and 2. The heat exchanger 1 in the example shown in FIG. 1 includes a wall having an introduction side hole 5 on one end side and a discharge side hole 6 on the other end side, and a space connecting the introduction side hole 5 and the discharge side hole 6 is provided. A plurality of first members 2 are provided as first flow paths 8 through which the first fluid flows. Further, a second member 3 is provided which communicates with the introduction-side holes 5 at one end side of the plurality of first members 2 and introduces the first fluid into the first member 2. Furthermore, the 3rd member 4 for discharging | emitting the 1st fluid which communicated with the discharge side holes 6 in the other end side of several 1st member 2 and flowed through the 1st member 2 is provided. A space between the plurality of first members 2 is a second flow path 10 through which the second fluid flows. Here, the one end side can be rephrased as the upstream side of the first fluid, and the other end side can be rephrased as the downstream side of the first fluid.
 そして、図1および図2においては、3個の第1部材2を備える熱交換器1を例に示しているが、これに限定されるものではなく、第1部材2の数は2個以上であればよい。また、第1の流体および第2の流体には、目的に応じて液体や気体等を用いることができ、例えば第1の流体を水等の液体とし、第2の流体をガス等の気体とすることができる。 In FIGS. 1 and 2, the heat exchanger 1 including three first members 2 is illustrated as an example, but is not limited thereto, and the number of the first members 2 is two or more. If it is. In addition, as the first fluid and the second fluid, a liquid, a gas, or the like can be used depending on the purpose. For example, the first fluid is a liquid such as water, and the second fluid is a gas such as a gas. can do.
 本実施形態の熱交換器1は、熱交換器1を構成する第1部材2、第2部材3および第3部材4がセラミックスから構成されている。このように、上記部材がセラミックスからなることにより、熱交換器1は、耐熱性や耐腐食性に優れる。ここで、セラミックスの種類としては、流体の特性に合わせて適宜選択すればよく、アルミナ質セラミックスやコージェライト質セラミックス等の酸化物セラミックス、窒化珪素質セラミックスや窒化アルミニウム質セラミックスや炭化珪素質セラミックス等の非酸化物セラミックスを用いることができる。 In the heat exchanger 1 of the present embodiment, the first member 2, the second member 3, and the third member 4 constituting the heat exchanger 1 are made of ceramics. Thus, when the member is made of ceramic, the heat exchanger 1 is excellent in heat resistance and corrosion resistance. Here, the type of ceramic may be appropriately selected according to the characteristics of the fluid, such as oxide ceramics such as alumina ceramics and cordierite ceramics, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics, etc. Non-oxide ceramics can be used.
 そして、上記部材が、セラミックスを構成する全成分のうち、炭化珪素の含有量が50質量%を超える炭化珪素質セラミックスからなるときには、高い熱伝導率により熱交換器1の熱交換効率を高めることができる。また、セラミックスを構成する全成分のうち、アルミナの含有量が50質量%を超えるアルミナ質セラミックスからなるときには、原料代が安く加工しやすいため、他材質よりも安価に熱交換器1を製造することができる。 And when the said member consists of silicon carbide ceramics in which content of silicon carbide exceeds 50 mass% among all the components which comprise ceramics, the heat exchange efficiency of the heat exchanger 1 is improved with high thermal conductivity. Can do. Moreover, since the raw material cost is cheap and easy to process when the alumina content is more than 50% by mass among all the components constituting the ceramic, the heat exchanger 1 is manufactured at a lower cost than other materials. be able to.
 図1および図2に示す熱交換器1においては、第1の流体の導入部11および排出部12を有するフランジ部16を最下段に備えている例を示している。この例における第1の流体の経路について説明する。まず、第1の流体は、フランジ部16の導入部11から入り、導入側流路7を通り、各導入側孔5を通過して各第1部材2の第1流路8を流れ、各排出側孔6を通過した後に排出側流路9を経て、排出部12から排出される。 In the heat exchanger 1 shown in FIGS. 1 and 2, an example is shown in which a flange portion 16 having a first fluid introduction portion 11 and a discharge portion 12 is provided at the bottom. The path of the first fluid in this example will be described. First, the first fluid enters from the introduction part 11 of the flange part 16, passes through the introduction side flow path 7, passes through each introduction side hole 5, and flows through the first flow path 8 of each first member 2. After passing through the discharge side hole 6, it is discharged from the discharge unit 12 through the discharge side flow path 9.
 このような構成を満たしていることにより、本実施形態の熱交換器1は、特に第1の流体が第1流路8を流れる間に、第2流路10を流れる第2の流体と効率よく熱交換を行なうことができる。 By satisfying such a configuration, the heat exchanger 1 of the present embodiment is more efficient than the second fluid flowing through the second flow path 10, particularly while the first fluid flows through the first flow path 8. Heat exchange can be performed well.
 また、フランジ部16内において、導入部11と排出部12とを繋ぐ流路を設ければ、フランジ部16でも熱交換を行なうことができ、熱交換器1の熱交換効率を向上させることができる。なお、フランジ部16は、熱交換器1において、必須の構成ではなく、図1および図2における最下段に位置する第2部材3の開口部を第1の流体の導入口とし、最下段に位置する第3部材4の開口部を第1の流体の排出口としても構わない。 Further, if a flow path connecting the introduction part 11 and the discharge part 12 is provided in the flange part 16, heat exchange can be performed also in the flange part 16, and the heat exchange efficiency of the heat exchanger 1 can be improved. it can. The flange portion 16 is not an essential component in the heat exchanger 1, and the opening of the second member 3 located at the lowest level in FIGS. 1 and 2 is used as the first fluid inlet, and the flange 16 is at the lowest level. The opening of the third member 4 positioned may be used as the first fluid discharge port.
 また、熱交換器1において、第1の流体と第2の流体とは、直交流となるように配置したり、第1の流体と第2の流体との流れが同じ方向となるように配置したりすることができる。 Further, in the heat exchanger 1, the first fluid and the second fluid are arranged so as to be orthogonal flows, or the flows of the first fluid and the second fluid are arranged in the same direction. You can do it.
 また、図1および図2には示していないが、第1部材2において、第1の流体を分岐することができる隔壁部を設けてもよい。このように、隔壁部を設けることにより、第1の流体との接触面積を大きくすれば、熱交換効率の向上を図ることができる。 Although not shown in FIGS. 1 and 2, the first member 2 may be provided with a partition wall that can branch the first fluid. As described above, by providing the partition wall portion, the heat exchange efficiency can be improved by increasing the contact area with the first fluid.
 次に、図3および図4を用いて本実施形態の熱交換器を構成する各部材について説明する。まず、第1部材2は、図3に示すように、第2部材3と連通する導入側孔5および第3部材4と連通する排出側孔6を有している。なお、図3においては、導入側孔5および排出側孔6が、上方の壁および下方の壁の互いに対応する位置に設けられて貫通孔となっている例を示しているが、この構成の第1部材2は、図1および図2における第1部材2bおよび第1部材2cに該当するものである。また、最上段に配置される第1部材2aは、上流側においてさらに上方へ第1の流体を流す必要がなく、下流側において上方から第1の流体が流れてくることがないことから、第1部材2aを構成する壁のうち下方の壁にのみ導入側孔5および排出側孔6を有するものである。 Next, each member which comprises the heat exchanger of this embodiment is demonstrated using FIG. 3 and FIG. First, as shown in FIG. 3, the first member 2 has an introduction side hole 5 that communicates with the second member 3 and a discharge side hole 6 that communicates with the third member 4. FIG. 3 shows an example in which the introduction side hole 5 and the discharge side hole 6 are provided at positions corresponding to each other on the upper wall and the lower wall to form through holes. The first member 2 corresponds to the first member 2b and the first member 2c in FIGS. Further, the first member 2a arranged at the uppermost stage does not need to flow the first fluid further upward on the upstream side, and the first fluid does not flow from above on the downstream side. The introduction side hole 5 and the discharge side hole 6 are provided only on the lower wall of the walls constituting the one member 2a.
 次に、第2部材3および第3部材4は、図4に示すように、例えば、円筒状の部材である。なお、第2部材3および第3部材4は、第1の流体が内部を流れることができるとともに、第2流路10を設けることができる高さを有しているものであれば、第1の流体が流れる方向に垂直な断面は、円形状に限らず、楕円形状、三角形状、四角形状等の多角形状等であっても構わない。 Next, the second member 3 and the third member 4 are, for example, cylindrical members as shown in FIG. The second member 3 and the third member 4 may be the first member as long as the first fluid can flow inside and has a height at which the second flow path 10 can be provided. The cross section perpendicular to the direction in which the fluid flows is not limited to a circular shape, and may be an elliptical shape, a triangular shape, a polygonal shape such as a quadrangular shape, or the like.
 そして、上述した構成に加えて本実施形態の熱交換器1は、隣り合う導入側孔5同士の少なくとも1つにおいて、第1の流体の流れる方向に見たとき、下流導入側孔を備える壁に、上流導入側孔の開口領域と重なる領域が存在している。このような構成を満たしていることにより、第1の流体が導入側流路7を流れる際、下流導入側孔を備える壁における上流導入側孔の開口領域と重なる領域に第1の流体は衝突することとなり、第1の流体の流れに変化が生じて乱流が発生することとなる。そして、発生した乱流が接触する流路の内面(以下、乱流領域という。)は、第1の流体と接触する機会が増えることなる。それゆえ、本実施形態の熱交換器1は、優れた熱交換効率を有する。 And in addition to the structure mentioned above, when the heat exchanger 1 of this embodiment is seen in the direction through which a 1st fluid flows in at least 1 of adjacent introduction side holes 5, it is a wall provided with a downstream introduction side hole. In addition, there is a region overlapping the opening region of the upstream introduction side hole. By satisfying such a configuration, when the first fluid flows through the introduction-side flow path 7, the first fluid collides with a region overlapping the opening region of the upstream introduction-side hole in the wall including the downstream introduction-side hole. As a result, a change occurs in the flow of the first fluid and a turbulent flow is generated. And the opportunity for the inner surface (hereinafter referred to as a turbulent flow region) of the flow path to be in contact with the generated turbulent flow increases with the first fluid. Therefore, the heat exchanger 1 of the present embodiment has excellent heat exchange efficiency.
 ここで、隣り合う導入側孔5同士とは、図2に示す熱交換器1によれば、導入側孔5aおよび導入側孔5b、導入側孔5bおよび導入側孔5c、導入側孔5cおよび導入側孔5d、導入側孔5dおよび導入側孔5eのことであり、第1の流体が流れる方向において隣り合う位置にある2つの導入側孔5のことである。 Here, the adjacent introduction side holes 5 are, according to the heat exchanger 1 shown in FIG. 2, the introduction side hole 5a and the introduction side hole 5b, the introduction side hole 5b and the introduction side hole 5c, the introduction side hole 5c, and The introduction side hole 5d, the introduction side hole 5d, and the introduction side hole 5e are the two introduction side holes 5 that are adjacent to each other in the direction in which the first fluid flows.
 また、上流導入側孔とは、隣り合う導入側孔5同士において、第1の流体の流れる方向の上流に位置する方の導入側孔5のことであり、下流導入側孔とは、第1の流体の流れる方向の下流に位置する方の導入側孔5のことである。例えば、導入側孔5bおよび導入側孔5cの組み合わせでは、導入側孔5bが下流導入側孔、導入側孔5cが上流導入側孔である。また、導入側孔5cおよび導入側孔5dの組み合わせでは、導入側孔5cが下流導入側孔、導入側孔5dが上流導入側孔となる。このように、同じ導入側孔5であっても、組み合わせによって、上流導入側孔にも下流導入側孔にもなりうる。 Further, the upstream introduction side hole is the introduction side hole 5 located upstream in the direction in which the first fluid flows between the adjacent introduction side holes 5, and the downstream introduction side hole is the first introduction side hole 5. It is the introduction side hole 5 located downstream in the direction in which the fluid flows. For example, in the combination of the introduction side hole 5b and the introduction side hole 5c, the introduction side hole 5b is a downstream introduction side hole, and the introduction side hole 5c is an upstream introduction side hole. In the combination of the introduction side hole 5c and the introduction side hole 5d, the introduction side hole 5c is a downstream introduction side hole, and the introduction side hole 5d is an upstream introduction side hole. Thus, even the same introduction side hole 5 can be an upstream introduction side hole or a downstream introduction side hole depending on the combination.
 このように、隣り合う導入側孔5同士が上述した構成を満たす例としては、隣り合う導入側孔5同士が同じ開口形状であって、上流導入側孔の開口領域が下流導入側孔の開口領域よりも大きい場合や、隣り合う導入側孔5同士の開口形状自体が異なっている場合があるが、流体の流速を必要以上に遅くしない観点から、隣り合う導入側孔5同士が同じ開口形状であるものの導入側孔5の中心が第1の流体の流れる方向に見て、流れる方向に交差する方向にずれている場合が好ましい。なお、導入側孔5の開口形状としては、図3に示すような円形状に限らず、楕円形状、三角形状、四角形状等の多角形状等であっても構わない。 Thus, as an example in which the adjacent introduction side holes 5 satisfy the above-described configuration, the adjacent introduction side holes 5 have the same opening shape, and the opening region of the upstream introduction side hole is the opening of the downstream introduction side hole. If the area is larger than the region or the opening shapes of the adjacent introduction side holes 5 may be different, the adjacent introduction side holes 5 have the same opening shape from the viewpoint of not slowing the flow rate of the fluid more than necessary. However, it is preferable that the center of the introduction side hole 5 is shifted in the direction intersecting the flow direction as seen in the flow direction of the first fluid. The opening shape of the introduction side hole 5 is not limited to the circular shape as shown in FIG. 3, and may be an elliptical shape, a triangular shape, a polygonal shape such as a quadrangular shape, or the like.
 次に、隣り合う導入側孔5同士において、第1の流体の流れる方向に見たとき、下流導入側孔を備える壁に、上流導入側孔の開口領域と重なる領域が存在しているという構成に関して、図5を用いて説明する。なお、図5においては、第1部材2bが3つの壁から構成されている例を示しているが、これに限定されるものではなく、第1部材2bを構成する壁の数は3つ以上であっても構わない。 Next, in the adjacent introduction-side holes 5, when viewed in the direction in which the first fluid flows, the wall including the downstream introduction-side hole has a region that overlaps with the opening region of the upstream introduction-side hole. Will be described with reference to FIG. In addition, in FIG. 5, although the example in which the 1st member 2b is comprised from three walls is shown, it is not limited to this, The number of the walls which comprise the 1st member 2b is three or more It does not matter.
 図5に示すように、隣り合う導入側孔5同士が、導入側孔5bおよび導入側孔5cであるとき、導入側孔5bが下流導入側孔であり、導入側孔5cが上流導入側孔である。そして、隣り合う導入側孔5同士において、第1の流体の流れる方向に見たとき、下流導入側孔を備える壁に、上流導入側孔の開口領域と重なる領域が存在しているというのは、上流導入側孔である導入側孔5cの開口領域を、第1の流体の流れる方向に沿って、下流導入側孔を備える壁13bまで平行移動させたとき、壁13bに上流導入側孔の開口領域と重なる部分が存在しているときのことを指す。また、上記構成によれば、導入側孔5cの開口領域を、第1の流体の流れる方向に沿って導入側孔5bに向かって平行移動させたときに、導入側孔5bの開口領域と重なり合わない部分が存在するとも言い換えることができる。 As shown in FIG. 5, when the adjacent introduction side holes 5 are the introduction side hole 5b and the introduction side hole 5c, the introduction side hole 5b is a downstream introduction side hole, and the introduction side hole 5c is an upstream introduction side hole. It is. And when it sees in the direction where the 1st fluid flows between adjacent introduction side holes 5, the area which overlaps with the opening area of an upstream introduction side hole exists in the wall provided with a downstream introduction side hole. When the opening region of the introduction side hole 5c that is the upstream introduction side hole is translated along the flow direction of the first fluid to the wall 13b having the downstream introduction side hole, the upstream introduction side hole is formed in the wall 13b. This refers to when there is a portion that overlaps the open area. Further, according to the above configuration, when the opening area of the introduction side hole 5c is translated toward the introduction side hole 5b along the flow direction of the first fluid, it overlaps with the opening area of the introduction side hole 5b. In other words, there are parts that do not match.
 図5に示す例によれば、第2部材3bおよび導入側孔5bを通過した第1の流体の一部が、第1の流体の流れる方向に見たとき、導入側孔5cの開口領域と重なる領域が存在している壁13bに衝突し、衝突した部分に隣接する第2部材3aの内面や、第1部材2bの内面が乱流領域となる。そして、この乱流領域は、第1の流体と接触する機会が増えることから、熱交換器1の熱交換効率が向上する。 According to the example shown in FIG. 5, when a part of the first fluid that has passed through the second member 3b and the introduction side hole 5b is viewed in the direction in which the first fluid flows, the opening region of the introduction side hole 5c It collides with the wall 13b where the overlapping region exists, and the inner surface of the second member 3a adjacent to the collided portion and the inner surface of the first member 2b become a turbulent flow region. And since this turbulent flow area increases the chance of contact with the first fluid, the heat exchange efficiency of the heat exchanger 1 is improved.
 なお、図5を用いて説明したために、第1部材2bが有している導入側孔5同士について説明したが、上述した他の組み合わせにおいても、隣り合う導入側孔5同士において、第1の流体の流れる方向に見たとき、下流導入側孔を備える壁に、上流導入側孔の開口領域と重なる領域が存在していれば、上述したのと同様の効果を得ることができる。また、乱流領域を広げる観点から、上記の重なる領域は、上流導入側孔の開口領域の10面積%以上の面積を有していることが好ましい。 In addition, since it demonstrated using FIG. 5, although the introduction side holes 5 which the 1st member 2b has were demonstrated, also in the other combination mentioned above, in the adjacent introduction side holes 5, it is 1st. When viewed in the direction of fluid flow, the same effect as described above can be obtained if there is an area overlapping the opening area of the upstream introduction side hole on the wall provided with the downstream introduction side hole. In addition, from the viewpoint of expanding the turbulent flow region, the overlapping region preferably has an area of 10% by area or more of the opening region of the upstream introduction side hole.
 そして、ここまで隣り合う導入側孔5同士について説明してきたが、隣り合う排出側孔6同士においても同様に、隣り合う排出側孔6同士の少なくとも1つにおいて、第1の流体の流れる方向に見たとき、下流排出側孔を備える壁に、上流排出側孔の開口領域と重なる領域が存在すれば、上述したのと同様の効果を得ることができる。 And although the introduction side holes 5 adjacent to each other have been described so far, similarly in the adjacent discharge side holes 6, in the direction in which the first fluid flows in at least one of the adjacent discharge side holes 6. When viewed, if there is an area overlapping the opening area of the upstream discharge side hole on the wall provided with the downstream discharge side hole, the same effect as described above can be obtained.
 また、本実施形態の熱交換器1は、複数個の第1部材2のうち少なくとも1つが、第1の流体の下流側に位置する導入側孔5の第1部材2の内部側の縁における、第1部材2の中央側に、面取り状の部位を有していることが好適である。 Further, in the heat exchanger 1 of the present embodiment, at least one of the plurality of first members 2 is at the inner edge of the first member 2 of the introduction side hole 5 located on the downstream side of the first fluid. It is preferable to have a chamfered portion on the center side of the first member 2.
 上記構成について図6を用いて説明する。図6において、第1の流体は、下方の導入側孔5cから第1部材2b内に流入し、一端側から他端側に延びる第1流路8と、上方の導入側孔5bとへ分岐して流れることとなる。このとき、第1部材2bを構成する壁13bにおける導入側孔5bの縁のうち、第1部材2bの中央側(図6における右側)に面取り部14を有していることにより、第1の流体の分岐をスムーズに行なうことができる。なお、面取り状の部位である面取り部14とは、縁である角部が削られて面が現れている部分のことである。 The above configuration will be described with reference to FIG. In FIG. 6, the first fluid flows into the first member 2b from the lower introduction side hole 5c and branches into the first flow path 8 extending from one end side to the other end side and the upper introduction side hole 5b. Will flow. At this time, by having the chamfered portion 14 on the center side (right side in FIG. 6) of the first member 2b among the edges of the introduction side hole 5b in the wall 13b constituting the first member 2b, the first The fluid can be smoothly branched. Note that the chamfered portion 14 which is a chamfered portion is a portion where a corner is cut and a surface appears.
 このように、第1の流体の下流側に位置する導入側孔5bにおいて、第1部材2bの内部側の縁のうち、第1部材2bの中央側に面取り部14を有していることにより、第1の流体の分岐をスムーズに行なうことができることから、面取り部14よりも第1の流体の上流側において乱流が生じる構成とされていることが好適である。このような構成となっていれば、乱流の生じた第1の流体がスムーズに分岐され、乱流領域が拡がることとなることから、さらに熱交換効率を向上させることができる。 Thus, in the introduction side hole 5b located on the downstream side of the first fluid, the chamfered portion 14 is provided on the center side of the first member 2b among the inner side edges of the first member 2b. Since the first fluid can be smoothly branched, it is preferable that the turbulent flow is generated on the upstream side of the first fluid from the chamfered portion 14. If it becomes such a structure, since the 1st fluid which the turbulent flow will branch off smoothly and a turbulent flow area will spread, heat exchange efficiency can be improved further.
 また、図示していないが、排出側流路9においても同様のことが言えることから、複数個の第1部材2のうち少なくとも1つが、第1の流体の下流側に位置する排出側孔6において、第1部材2の内部側の縁のうち、第1部材2の中央側に面取り状の部位を有していることにより、第1流路8を流れてきた第1の流体と、上方の排出側孔6から流入してきた第1の流体との合流をスムーズに行なうことができる。 Although not shown, since the same can be said for the discharge-side flow path 9, at least one of the plurality of first members 2 is the discharge-side hole 6 positioned on the downstream side of the first fluid. The first fluid that has flowed through the first flow path 8 by having a chamfered portion on the center side of the first member 2 among the edges on the inner side of the first member 2, The first fluid flowing in from the discharge side hole 6 can be smoothly merged.
 また、本実施形態の熱交換器1は、複数個の第1部材2のうち少なくとも1つが、第1の流体の下流側に位置する導入側孔5の第1部材2の内部側の縁の周りにおける、第1部材2の中央側の位置に突出している部位を有していることが好適である。以降では、この突出している部位を突出部15として説明する。 Further, in the heat exchanger 1 of the present embodiment, at least one of the plurality of first members 2 is an edge on the inner side of the first member 2 of the introduction side hole 5 located on the downstream side of the first fluid. It is preferable to have a portion projecting at a position on the center side of the first member 2 around. Hereinafter, the protruding portion will be described as the protruding portion 15.
 上記構成について図7を用いて説明する。図7において、第1の流体は、下方の導入側孔5cから第1部材2b内に流入し、一端側から他端側に延びる第1流路8と、上方の導入側孔5bとへ分岐して流れることとなる。このとき、第1部材2bを構成する壁13bにおける導入側孔5bの縁の周りのうち、第1部材2bの中央側の位置に突出部15を有していることにより、第1の流体が第1流路8へ分岐する際にも乱流を発生させることができるため、さらに熱交換効率を向上させることができる。ここで、突出部15とは、第1部材2bを構成する壁13bにおいて、この壁13bの内面のうち導入側孔5bの縁の周りを除いた面を基準面とした際に、この基準面よりも第1流路8側に1μm以上突出している部位のことである。 The above configuration will be described with reference to FIG. In FIG. 7, the first fluid flows into the first member 2b from the lower introduction side hole 5c and branches to the first flow path 8 extending from one end side to the other end side and the upper introduction side hole 5b. Will flow. At this time, the first fluid is caused by having the protruding portion 15 at a position on the center side of the first member 2b, around the edge of the introduction side hole 5b in the wall 13b constituting the first member 2b. Since turbulent flow can be generated also when branching to the first flow path 8, the heat exchange efficiency can be further improved. Here, the projecting portion 15 is a reference surface when a surface of the wall 13b constituting the first member 2b excluding the periphery of the edge of the introduction side hole 5b is used as the reference surface. It is the part which protrudes 1 micrometer or more to the 1st flow path 8 side.
 また、図示していないが、複数個の第1部材2のうち少なくとも1つが、第1の流体の下流側に位置する導入側孔5において、第1部材2の内部側の縁の周りのうち、第1部材2の中央側の位置に突出部15を有している場合には、第1流路8を流れてきた第1の流体が突出部15を越える際に、第1流路8を流れる本流との合流および上方の排出側孔6から流入してき第1の流体と合流により乱流が発生するため、熱交換効率が向上する。 Although not shown, at least one of the plurality of first members 2 is around the edge on the inner side of the first member 2 in the introduction side hole 5 located on the downstream side of the first fluid. When the first member 2 has the protrusion 15 at the central position, the first fluid 8 flows when the first fluid flowing through the first channel 8 exceeds the protrusion 15. Since the turbulent flow is generated by the merging with the main stream flowing through and the upper discharge side hole 6 and the merging with the first fluid, the heat exchange efficiency is improved.
 また、本実施形態の熱交換器1は、第2部材3の内面の算術平均粗さRa1より、第2部材3における第1の流体の下流側に隣接する導入側孔5の内面の算術平均粗さRa2が大きいことが好適である。 Moreover, the heat exchanger 1 of this embodiment is the arithmetic average of the inner surface of the introduction | transduction side hole 5 adjacent to the downstream of the 1st fluid in the 2nd member 3 from the arithmetic mean roughness Ra1 of the inner surface of the 2nd member 3. It is preferable that the roughness Ra2 is large.
 図5を用いて説明する。図5に示す構成において、第2部材3bの内面の算術平均粗さRa1より、導入側孔5cの内面の算術平均粗さRa2が大きいときには、第2部材3bの内部から導入側孔5cに第1の流体が流入する際に乱流が発生するため、熱交換効率を向上させることができる。特に、下流導入側孔を備える壁に、上流導入側孔の開口領域と重なる領域が存在することによって生じる乱流領域に、導入側孔5cが含まれる構成であることが好適である。 This will be described with reference to FIG. In the configuration shown in FIG. 5, when the arithmetic average roughness Ra2 of the inner surface of the introduction side hole 5c is larger than the arithmetic average roughness Ra1 of the inner surface of the second member 3b, the second member 3b is connected to the introduction side hole 5c from the inside. Since a turbulent flow is generated when one fluid flows in, the heat exchange efficiency can be improved. In particular, it is preferable that the introduction side hole 5c is included in a turbulent flow region that is generated when a region that overlaps with the opening region of the upstream introduction side hole exists in the wall that includes the downstream introduction side hole.
 また、排出側流路9において、第3部材4の内面の算術平均粗さRa3より、第3部材4における第1の流体の下流側に隣接する排出側孔6の内面の算術平均粗さRa4が大きい場合にも、第3部材4の内部から隣接する排出側孔6に第1の流体が流入する際に乱流が発生するため、熱交換効率を向上させることができる。 Further, in the discharge-side flow path 9, the arithmetic average roughness Ra4 of the inner surface of the discharge-side hole 6 adjacent to the downstream side of the first fluid in the third member 4 from the arithmetic average roughness Ra3 of the inner surface of the third member 4. Even when the first fluid is large, a turbulent flow is generated when the first fluid flows from the inside of the third member 4 to the adjacent discharge side hole 6, so that the heat exchange efficiency can be improved.
 ここで、上述の算術平均粗さRa1~R4は、接触型の表面粗さ計を用い、JIS B 0601(2013)に準拠して測定することにより求めることができる。測定条件としては、例えば、測定長さを2.5mm、カットオフ値を0.8mmとし、触針の走査速度を0.3mm/秒に設定して測定すればよい。以下、排出側流路9に関してはカッコ内に記載する。そして、第2部材3(第3部材4)の内面および導入側孔5(排出側孔6)の内面のうち、それぞれ隣接位置に近い部分を測定箇所とし、第1の流体が流れる方向に沿った方向に、それぞれ少なくとも3ヵ所測定し、この平均値を算術平均粗さRa1(Ra3)およびRa2(Ra4)とすればよい。 Here, the arithmetic average roughness Ra1 to R4 described above can be obtained by measuring in accordance with JIS B 0601 (2013) using a contact type surface roughness meter. As measurement conditions, for example, the measurement length is 2.5 mm, the cutoff value is 0.8 mm, and the scanning speed of the stylus is set to 0.3 mm / second. Hereinafter, the discharge side channel 9 will be described in parentheses. Of the inner surface of the second member 3 (third member 4) and the inner surface of the introduction side hole 5 (discharge side hole 6), a portion close to the adjacent position is taken as a measurement location, and along the direction in which the first fluid flows. It is sufficient to measure at least three points in each direction, and to calculate the average values as arithmetic average roughness Ra1 (Ra3) and Ra2 (Ra4).
 また、算術平均粗さRa1(Ra3)と、算術平均粗さRa2(Ra4)との比率Ra2/Ra1(Ra4/Ra3)が3以上30以下であることが好ましい。このように、Ra2/Ra1(Ra4/Ra3)が3以上30以下であるならば、第1の流体が流れる速度を低下させずに、第1の流体に大きな乱流を発生させることができるため、さらに熱交換効率を向上させることができる。 Further, the ratio Ra2 / Ra1 (Ra4 / Ra3) between the arithmetic average roughness Ra1 (Ra3) and the arithmetic average roughness Ra2 (Ra4) is preferably 3 or more and 30 or less. As described above, if Ra2 / Ra1 (Ra4 / Ra3) is 3 or more and 30 or less, a large turbulent flow can be generated in the first fluid without reducing the flow rate of the first fluid. Further, the heat exchange efficiency can be improved.
 次に、本実施形態の熱交換器の製造方法の一例について説明する。 Next, an example of the manufacturing method of the heat exchanger of this embodiment will be described.
 まず、第1部材については、例えば、主成分原料(炭化珪素、アルミナ等)の粉末に、焼結助剤、バインダ、溶媒および分散剤等を適宜添加し混合してスラリーを作製する。そして、このスラリーを用いて、ドクターブレード法によりセラミックグリーンシートを形成する。 First, for the first member, for example, a sintering aid, a binder, a solvent, a dispersing agent, and the like are appropriately added to and mixed with the powder of the main component material (silicon carbide, alumina, etc.) to prepare a slurry. Then, using this slurry, a ceramic green sheet is formed by a doctor blade method.
 なお、セラミックグリーンシートを形成する他の方法としては、スラリーを噴霧乾燥造粒法(スプレードライ法)により噴霧乾燥して造粒することによって顆粒を作製し、得られた顆粒をロールコンパクションにより成形する方法がある。また、顆粒を用いて、メカプレス法や冷間静水圧加圧成形(CIP)法、または、スラリーの代わりに坏土を作製して、押出成形法によってセラミックグリーンシートを得てもよい。 In addition, as another method of forming the ceramic green sheet, the slurry is spray-dried and granulated by spray-drying granulation method (spray-drying method) to produce granules, and the obtained granules are formed by roll compaction. There is a way to do it. In addition, a ceramic green sheet may be obtained by using a granule to produce a clay instead of a mechanical press method, a cold isostatic pressing (CIP) method, or a slurry, and an extrusion method.
 次に、金型もしくはレーザ光を用いて、得られたセラミックグリーンシートを所望の外形状に加工したり、導入側孔および排出側孔を形成する加工を施した後、それぞれに上記スラリーを塗布して積層して加圧し、主成分原料に合わせた焼成温度で焼成することで、第1部材を得る。 Next, using a mold or laser light, the obtained ceramic green sheet is processed into a desired outer shape, or after forming the introduction side hole and the discharge side hole, the slurry is applied to each. Then, the first member is obtained by laminating and pressing, and firing at a firing temperature matched to the main component raw material.
 ここで、隣接する導入側孔同士において、第1の流体の流れる方向に見たとき、下流導入側孔を備える壁に、上流導入側孔の開口領域と重なる領域が存在するものとするには、上流導入側孔を形成したセラミックグリーンシートに対して、下流導入側孔を形成する予定のセラミックグリーンシートを重ねて見たときに、セラミックグリーンシートに上流導入側孔の開口領域と重なる領域が残るように下流導入側孔を形成すればよい。 Here, in the adjacent introduction-side holes, when viewed in the direction in which the first fluid flows, the wall provided with the downstream introduction-side hole has a region overlapping with the opening region of the upstream introduction-side hole. When the ceramic green sheet on which the downstream introduction side hole is to be formed is overlapped with the ceramic green sheet on which the upstream introduction side hole is formed, there is a region that overlaps the opening area of the upstream introduction side hole on the ceramic green sheet. What is necessary is just to form a downstream introduction | transduction side hole so that it may remain.
 具体的には、開口形状が同じであれば、セラミックグリーンシートの外辺からの位置が異なるように、下流導入側孔を設けたり、セラミックグリーンシートの外辺からの位置を同じとして、開口形状を異ならせたりすればよい。また、隣接する排出側孔同士において、第1の流体の流れる方向に見たとき、下流排出側孔を備える壁に、上流排出側孔の開口領域と重なる領域が存在するものとするには、上述した記載において、導入側孔を排出側孔に置き換えればよいため、説明は省略する。 Specifically, if the opening shape is the same, the downstream introduction side hole is provided so that the position from the outer side of the ceramic green sheet is different, or the position from the outer side of the ceramic green sheet is the same. You can make them different. Further, in the adjacent discharge side holes, when viewed in the direction in which the first fluid flows, the wall provided with the downstream discharge side hole has a region overlapping with the opening region of the upstream discharge side hole. In the above description, the introduction side hole may be replaced with the discharge side hole, and thus the description is omitted.
 また、複数個の第1部材のうち少なくとも1つが、第1の流体の下流側に位置する導入側孔または排出側孔において、第1部材の内部側の縁のうち、第1部材の中央側に面取り状の部位を有しているものとするには、上述したセラミックグリーンシートにおける導入側孔または排出側孔の形成時において、対応箇所となる縁に接する金型の刃の形状をテーパ状にしたり、レーザ光の入射角度を調節したりすればよい。あるいは、導入側孔または排出側孔を形成した後に、例えば、錐状の治具を対応箇所となる縁に押し当てて押圧したり、切削加工によって面取りしたりすればよい。 In addition, at least one of the plurality of first members is a central side of the first member among the inner side edges of the first member in the introduction side hole or the discharge side hole located on the downstream side of the first fluid. In order to have a chamfered portion, the shape of the blade of the die that contacts the corresponding edge at the time of forming the introduction side hole or the discharge side hole in the ceramic green sheet is tapered. Or the incident angle of the laser beam may be adjusted. Alternatively, after forming the introduction side hole or the discharge side hole, for example, a cone-shaped jig may be pressed against the corresponding edge to be pressed, or chamfered by cutting.
 また、複数個の第1部材のうち少なくとも1つが、第1の流体の下流側に位置する導入側孔または排出側孔において、第1部材の内部側の縁の周りのうち、第1部材の中央側の位置に突出している部位を有しているものとするには、上述したセラミックグリーンシートにおける導入側孔または排出側孔を金型によりプレスして形成するときに、使用する金型の刃と臼とのクリアランスを調節すれば、対応箇所となる縁の周りに突出した部位を形成することができる。また、セラミックグリーンシートに導入側孔または排出側孔を設けた後、セラミックグリーンシートの成形に用いたのと同じ組成のペーストを対応箇所となる縁の周りに塗布することによっても、突出した部位を形成することができる。さらに、セラミックグリーンシートにおける対応箇所となる縁の少なくとも一部を冶具等により押圧することにより突出させても構わない。 Further, at least one of the plurality of first members is an introduction side hole or a discharge side hole located on the downstream side of the first fluid. In order to have a portion protruding at the center side position, when the introduction side hole or the discharge side hole in the ceramic green sheet is formed by pressing with a mold, the mold used If the clearance between the blade and the die is adjusted, it is possible to form a portion protruding around the edge serving as a corresponding portion. Also, after the introduction side hole or the discharge side hole is provided in the ceramic green sheet, the protruding portion can be obtained by applying a paste having the same composition as that used for forming the ceramic green sheet around the corresponding edge. Can be formed. Furthermore, you may make it protrude by pressing at least one part of the edge used as the corresponding location in a ceramic green sheet with a jig etc. FIG.
 次に、第2部材、第3部材およびフランジ部については、まず、それぞれの部材を構成する主成分原料(炭化珪素、アルミナ等)の粉末に、焼結助剤、バインダ、溶媒および分散剤等を適宜添加し混合してスラリーを作製する。そして、このスラリーを噴霧乾燥造粒法により噴霧乾燥して造粒することによって顆粒を作製し、得られた顆粒を用いて、メカプレス法や冷間静水圧加圧成形法により所望形状の成形体を作製し、必要に応じて切削加工を施した後、焼成することにより第2部材、第3部材およびフランジ部を得ることができる。なお、焼成後に必要に応じて研削加工を施してもよい。 Next, for the second member, the third member, and the flange portion, first, powders of main component materials (silicon carbide, alumina, etc.) constituting each member are added to a sintering aid, a binder, a solvent, a dispersant, and the like. Are added and mixed as appropriate to prepare a slurry. The slurry is then spray-dried and granulated by spray-drying granulation to produce granules, and a molded body having a desired shape is obtained using the obtained granules by mechanical press or cold isostatic pressing. The second member, the third member, and the flange portion can be obtained by firing after cutting and performing firing as necessary. In addition, you may grind as needed after baking.
 また、第2部材および第3部材となる成形体については、スラリーの代わりに坏土を用いて押出成形法により成形体を得てもよい。また、フランジ部となる成形体については、第1部材と同様にセラミックグリーンシートを積層して形成してもよい。 Moreover, about the molded body used as the 2nd member and the 3rd member, you may obtain a molded object by the extrusion method using a clay instead of a slurry. Moreover, about the molded object used as a flange part, you may laminate | stack a ceramic green sheet similarly to the 1st member.
 また、第2部材の内面の算術平均粗さRa1より、第2部材における第1の流体の下流側に隣接する導入側孔の内面の算術平均粗さRa2が大きいものとするには、以下の方法を行なえばよい。例えば、第2部材の内面の算術平均粗さRa1を測定する。そして、第2部材における第1の流体の下流側に隣接する導入側孔の内面の算術平均粗さRa2が、算術平均粗さRa1よりも大きな値となるように、導入側孔の形成において、出力を調整したレーザ光を用いて、セラミックグリーンシートに導入側孔を設けたり、セラミックグリーンシートに導入側孔を設けた後に押し型を押し付けたり、焼成後にレーザ加工やブラスト加工を行なえばよい。 In order to make the arithmetic average roughness Ra2 of the inner surface of the introduction side hole adjacent to the downstream side of the first fluid in the second member larger than the arithmetic average roughness Ra1 of the inner surface of the second member, Just do the method. For example, the arithmetic average roughness Ra1 of the inner surface of the second member is measured. In the formation of the introduction side hole, the arithmetic average roughness Ra2 of the inner surface of the introduction side hole adjacent to the downstream side of the first fluid in the second member is a value larger than the arithmetic average roughness Ra1. Using the laser beam whose output is adjusted, an introduction side hole may be provided in the ceramic green sheet, a pressing die may be pressed after the introduction side hole is provided in the ceramic green sheet, or laser processing or blasting may be performed after firing.
 また、第3部材の内面の算術平均粗さRa3より、第3部材における第1の流体の下流側に隣接する排出側孔の算術平均粗さRa4が大きいものとするには、上述した記載において、第2部材を第3部材に、導入側孔を排出側孔に置き換えればよいため、説明は省略する。 In the above description, the arithmetic average roughness Ra4 of the discharge side hole adjacent to the downstream side of the first fluid in the third member is larger than the arithmetic average roughness Ra3 of the inner surface of the third member. Since the second member may be replaced with the third member, and the introduction side hole may be replaced with the discharge side hole, description thereof will be omitted.
 そして、得られた第1部材、第2部材、第3部材、フランジ部を用いて、各部材における接合部に接着剤を塗布し、各部材において第1の流体が連通するように配置し、熱処理により接着剤を硬化させることにより熱交換器を得ることができる。なお、第2部材に隣接する導入側孔同士および第3部材に隣接する排出側孔同士において、第1の流体の流れる方向に見たとき、下流導入側孔(下流排出側孔)を備える壁に、上流導入側孔(上流排出側孔)の開口領域と重なる領域が存在する形態として、形成する孔位置をずらしたり、形成する孔形状を異ならせたりすることを上述したが、孔位置および孔形状が同じとして、第2部材または第3部材に隣接する第1部材をずらした配置として接合してもよい。 Then, using the obtained first member, second member, third member, flange portion, an adhesive is applied to the joint portion in each member, and arranged so that the first fluid communicates with each member, A heat exchanger can be obtained by curing the adhesive by heat treatment. In addition, in the introduction side holes adjacent to the second member and the discharge side holes adjacent to the third member, a wall having a downstream introduction side hole (downstream discharge side hole) when viewed in the direction in which the first fluid flows. As described above, the position of the hole to be formed is shifted or the shape of the hole to be formed is changed as a form in which there is an area overlapping with the opening area of the upstream introduction side hole (upstream discharge side hole). Assuming that the hole shapes are the same, the first member adjacent to the second member or the third member may be joined in a shifted arrangement.
 また、熱交換器において、第1部材の個数を増加させる場合には、第1部材の個数に合わせて、第2部材および第3部材を準備して接合すればよい。 Moreover, in the heat exchanger, when the number of the first members is increased, the second member and the third member may be prepared and joined in accordance with the number of the first members.
 また、第1部材の個数を増加させたときには、下段の第1部材における導入側孔周辺および排出側孔周辺には、上段の各部材分の重量が掛かることとなることから、第1部材間に配置される第2部材および第3部材を、第1の流体の流れる方向において、中心軸をずらした配置としてもよい。これにより、上段の各部材分の重量が掛かることによる、下段の第1部材における導入側孔周辺および排出側孔周辺で欠けや割れが発生するおそれを少なくすることができる。 Further, when the number of the first members is increased, the weight of each upper member is applied around the introduction side hole and the discharge side hole in the lower first member. The second member and the third member arranged in the above may be arranged with the central axis shifted in the direction in which the first fluid flows. As a result, it is possible to reduce the possibility of chipping or cracking around the introduction side hole and the discharge side hole in the lower first member due to the weight of each upper member.
 なお、使用される接着剤としては、耐熱性や耐腐食性に優れているものとして、無機接着剤を用いることが好ましい。無機接着剤としては、例えば、SiO-Al-B-RO系ガラス(R:アルカリ土類金属元素)粉末や、金属珪素粉末と炭化珪素粉末とを混合した粉末を含有するペーストを用いればよい。無機接着剤としてこのようなペーストを用いたならば、熱処理を行なった際に部材を劣化させることなく、互いの部材を強固に接合できるうえに、耐熱性や耐腐食性に優れているので、熱交換器の信頼性を向上させることができる。 In addition, as an adhesive agent used, it is preferable to use an inorganic adhesive agent as what is excellent in heat resistance and corrosion resistance. Examples of the inorganic adhesive include SiO 2 —Al 2 O 3 —B 2 O 3 —RO-based glass (R: alkaline earth metal element) powder and powder obtained by mixing metal silicon powder and silicon carbide powder. A paste to be used may be used. If such a paste is used as an inorganic adhesive, it is possible to firmly join each other's members without deteriorating the members when heat treatment is performed, and because of excellent heat resistance and corrosion resistance, The reliability of the heat exchanger can be improved.
 以上、本発明について詳細に説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。 The present invention has been described in detail above. However, the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.
 また、上述した熱交換器は、熱交換を行なうものであれば、特にその用途が制限されるものではなく、例えば、各種レーザ装置用、半導体素子用および半導体製造装置用の熱交換器に好適に用いることができる。 Further, the heat exchanger described above is not particularly limited as long as it performs heat exchange, and is suitable for, for example, heat exchangers for various laser devices, semiconductor elements, and semiconductor manufacturing devices. Can be used.
1:熱交換器
2:第1部材
3:第2部材
4:第3部材
5:導入側孔
6:排出側孔
7:導入側流路
8:第1流路
9:排出側流路
10:第2流路
11:導入部
12:排出部
13:導入側孔および排出側孔を有する壁
14:面取り部
15:突出部
16:フランジ部
1: heat exchanger 2: first member 3: second member 4: third member 5: introduction side hole 6: discharge side hole 7: introduction side flow channel 8: first flow channel 9: discharge side flow channel
10: Second flow path
11: Introduction
12: Discharge section
13: Wall with inlet and outlet holes
14: Chamfer
15: Projection
16: Flange

Claims (6)

  1.  セラミックスからなり、第1の流体と第2の流体とで熱交換を行なう熱交換器であって、
    該熱交換器は、
    一端側に導入側孔を有し、他端側に排出側孔を有する壁を備え、前記導入側孔および前記排出側孔を繋ぐ空間が前記第1の流体が流れる第1流路とされた複数個の第1部材と、
    複数個の該第1部材の一端側で前記導入側孔同士と連通し、前記第1の流体を前記第1部材に導入するための第2部材と、
    複数個の前記第1部材の他端側で前記排出側孔同士と連通し、前記第1部材を流れた前記第1の流体を排出するための第3部材とを備え、
    複数個の前記第1部材同士の間が前記第2の流体が流れる第2流路とされており、 
    隣り合う前記導入側孔同士の少なくとも1つにおいて、前記第1の流体の流れる方向に見たとき、下流導入側孔を備える前記壁に、上流導入側孔の開口領域と重なる領域が存在していることを特徴とする熱交換器。
    A heat exchanger made of ceramics and performing heat exchange between the first fluid and the second fluid,
    The heat exchanger is
    A wall having an introduction side hole on one end side and a discharge side hole on the other end side is provided, and a space connecting the introduction side hole and the discharge side hole is a first flow path through which the first fluid flows. A plurality of first members;
    A second member for introducing the first fluid into the first member in communication with the introduction side holes on one end side of the plurality of first members;
    A third member for discharging the first fluid that has flowed through the first member in communication with the discharge side holes on the other end side of the plurality of the first members;
    A space between the plurality of first members is a second flow path through which the second fluid flows,
    In at least one of the adjacent introduction side holes, when viewed in the direction in which the first fluid flows, there is a region overlapping the opening region of the upstream introduction side hole in the wall including the downstream introduction side hole. A heat exchanger characterized by having
  2.  セラミックスからなり、第1の流体と第2の流体とで熱交換を行なう熱交換器であって、
    該熱交換器は、
    一端側に導入側孔を有し、他端側に排出側孔を有する壁を備え、前記導入側孔および前記排出側孔を繋ぐ空間が前記第1の流体が流れる第1流路とされた複数個の第1部材と、
    複数個の該第1部材の一端側で前記導入側孔同士と連通し、前記第1の流体を前記第1部材に導入するための第2部材と、
    複数個の前記第1部材の他端側で前記排出側孔同士と連通し、前記第1部材を流れた前記第1の流体を排出するための第3部材とを備え、
    複数個の前記第1部材同士の間が前記第2の流体が流れる第2流路とされており、 
    隣り合う前記排出側孔同士の少なくとも1つにおいて、前記第1の流体の流れる方向に見たとき、下流排出側孔を備える前記壁に、上流排出側孔の開口領域と重なる領域が存在していることを特徴とする熱交換器。
    A heat exchanger made of ceramics and performing heat exchange between the first fluid and the second fluid,
    The heat exchanger is
    A wall having an introduction side hole on one end side and a discharge side hole on the other end side is provided, and a space connecting the introduction side hole and the discharge side hole is a first flow path through which the first fluid flows. A plurality of first members;
    A second member for introducing the first fluid into the first member in communication with the introduction side holes on one end side of the plurality of first members;
    A third member for discharging the first fluid that has flowed through the first member in communication with the discharge side holes on the other end side of the plurality of the first members;
    A space between the plurality of first members is a second flow path through which the second fluid flows,
    In at least one of the adjacent discharge side holes, when viewed in the direction in which the first fluid flows, there is an area overlapping the opening area of the upstream discharge side hole on the wall provided with the downstream discharge side hole. A heat exchanger characterized by having
  3.  複数個の前記第1部材のうち少なくとも1つが、前記第1の流体の下流側に位置する前記導入側孔または前記排出側孔の前記第1部材の内部側の縁における、前記第1部材の中央側に、面取り状の部位を有していることを特徴とする請求項1または請求項2に記載の熱交換器。 At least one of the plurality of first members is formed on the inner side edge of the first member of the introduction side hole or the discharge side hole located on the downstream side of the first fluid. The heat exchanger according to claim 1, wherein the heat exchanger has a chamfered portion on the center side.
  4.  複数個の前記第1部材のうち少なくとも1つが、前記第1の流体の下流側に位置する前記導入側孔または前記排出側孔の前記第1部材の内部側の縁の周りにおける、前記第1部材の中央側の位置に、突出している部位を有していることを特徴とする請求項1または請求項2に記載の熱交換器。 At least one of the plurality of first members is the first around the edge on the inner side of the first member of the introduction side hole or the discharge side hole located on the downstream side of the first fluid. The heat exchanger according to claim 1, wherein a projecting portion is provided at a position on a central side of the member.
  5.  前記第2部材の内面の算術平均粗さRa1より、前記第2部材における前記第1の流体の下流側に隣接する前記導入側孔の内面の算術平均粗さRa2が大きいことを特徴とする請求項1乃至請求項4のいずれかに記載の熱交換器。 The arithmetic average roughness Ra2 of the inner surface of the introduction side hole adjacent to the downstream side of the first fluid in the second member is larger than the arithmetic average roughness Ra1 of the inner surface of the second member. The heat exchanger according to any one of claims 1 to 4.
  6.  前記第3部材の内面の算術平均粗さRa3より、前記第3部材における前記第1の流体の下流側に隣接する前記排出側孔の算術平均粗さRa4が大きいことを特徴とする請求項1乃至請求項5のいずれかに記載の熱交換器。 The arithmetic average roughness Ra4 of the discharge side hole adjacent to the downstream side of the first fluid in the third member is larger than the arithmetic average roughness Ra3 of the inner surface of the third member. The heat exchanger according to claim 5.
PCT/JP2015/071513 2014-07-29 2015-07-29 Heat exchanger WO2016017697A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/329,699 US20170219302A1 (en) 2014-07-29 2015-07-29 Heat exchanger
JP2016538401A JP6325674B2 (en) 2014-07-29 2015-07-29 Heat exchanger
EP15827887.9A EP3176532B1 (en) 2014-07-29 2015-07-29 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014153946 2014-07-29
JP2014-153946 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017697A1 true WO2016017697A1 (en) 2016-02-04

Family

ID=55217595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071513 WO2016017697A1 (en) 2014-07-29 2015-07-29 Heat exchanger

Country Status (4)

Country Link
US (1) US20170219302A1 (en)
EP (1) EP3176532B1 (en)
JP (1) JP6325674B2 (en)
WO (1) WO2016017697A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108170A (en) * 2014-12-03 2016-06-20 京セラ株式会社 Ceramic flow passage body, and heat exchanger including the same
EP3575722A4 (en) * 2017-01-30 2020-08-19 KYOCERA Corporation Heat exchanger
WO2021172331A1 (en) * 2020-02-27 2021-09-02 三菱重工業株式会社 Heat exchange core, heat exchanger, and method for manufacturing heat exchange core

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473751U (en) * 1990-11-07 1992-06-29
JPH09273703A (en) * 1996-04-03 1997-10-21 Hitachi Ltd Passage pipe of power generation plant
JP2002130985A (en) * 2000-10-18 2002-05-09 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2003014392A (en) * 2001-06-27 2003-01-15 Showa Denko Kk Laminated heat exchanger
JP2003056995A (en) * 2001-08-20 2003-02-26 Komatsu Electronics Inc Heat exchanger
JP2007512499A (en) * 2003-11-26 2007-05-17 エコ、レーン、リサーチ、アンド、デベロップメント、アクティーゼルスカブ Heat exchanger plate and plate heat exchanger comprising such a plate
WO2013080823A1 (en) * 2011-11-30 2013-06-06 シーアイ化成株式会社 Heat exchanger, coupler that connects heat exchanger tubes to header wall of heat exchanger, and method of manufacturing heat exchanger using said couplers
JP2013534608A (en) * 2010-06-30 2013-09-05 エスゲーエル カーボン ソシエタス ヨーロピア HEAT TRANSFER PLATE, FLAT HEAT TRANSFER HAVING THE SAME, AND METHOD FOR PRODUCING PLATE HEAT TRANSFER

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570814B1 (en) * 1984-09-25 1986-12-19 Valeo TUBE BEAM HEAT EXCHANGER, PARTICULARLY FOR MOTOR VEHICLE
FR2578099B1 (en) * 1985-02-26 1987-12-04 Eurofarad MONOLITHIC SUBSTRATE FOR ELECTRONIC POWER COMPONENT, AND METHOD FOR THE PRODUCTION THEREOF
US5228515A (en) * 1992-07-31 1993-07-20 Tran Hai H Modular, compact heat exchanger
DE4238190C2 (en) * 1992-11-12 1994-09-08 Hoechst Ceram Tec Ag Ceramic module
US5416057A (en) * 1993-09-14 1995-05-16 Corning Incorporated Coated alternating-flow heat exchanges and method of making
DE9319430U1 (en) * 1993-12-17 1994-03-03 Deutsche Carbone AG, 66538 Neunkirchen Heat exchanger block
US5601673A (en) * 1995-01-03 1997-02-11 Ferro Corporation Method of making ceramic article with cavity using LTCC tape
US6695522B1 (en) * 1995-10-26 2004-02-24 Robert G. Graham Low to medium pressure high temperature all-ceramic air to air indirect heat exchangers with novel ball joints and assemblies
US5979543A (en) * 1995-10-26 1999-11-09 Graham; Robert G. Low to medium pressure high temperature all-ceramic air to air indirect heat exchangers with novel ball joints and assemblies
DE19541922C2 (en) * 1995-11-10 1997-11-27 Ws Waermeprozesstechnik Gmbh Ceramic recuperator for a recuperator burner
US5954128A (en) * 1996-03-06 1999-09-21 Solar Turbines High pressure ceramic heat exchanger
US5810076A (en) * 1996-03-06 1998-09-22 Solar Turbines Incorporated High pressure ceramic heat exchanger
US5775414A (en) * 1996-06-13 1998-07-07 Graham; Robert G. High temperature high pressure air-to-air heat exchangers and assemblies useful therein
US5932044A (en) * 1996-10-25 1999-08-03 Corning Incorporated Method of fabricating a honeycomb structure
US8459342B2 (en) * 2003-11-25 2013-06-11 Beckett Gas, Inc. Heat exchanger tube with integral restricting and turbulating structure
US6273180B1 (en) * 1998-12-23 2001-08-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'eploitation Des Procedes Georges Claude Heat exchanger for preheating an oxidizing gas
US6582584B2 (en) * 1999-08-16 2003-06-24 General Electric Company Method for enhancing heat transfer inside a turbulated cooling passage
US6675882B1 (en) * 1999-10-04 2004-01-13 John A. Luberda Apparatus and method for manufacturing one piece flat sides extruded product
US6783824B2 (en) * 2001-01-25 2004-08-31 Hyper-Therm High-Temperature Composites, Inc. Actively-cooled fiber-reinforced ceramic matrix composite rocket propulsion thrust chamber and method of producing the same
DE10312529B3 (en) * 2003-03-20 2004-06-24 Lurgi Ag Waste heat boiler for utilizing waste heat from process for steam production has a displacement body made from graphite coaxially inserted into tubes through which process gas passes
NO321668B1 (en) * 2003-04-11 2006-06-19 Norsk Hydro As Device for distributing two fluids in and out of the channels in a monolithic structure as well as methods and equipment for transferring mass and / or heat between two fluids
US20050034847A1 (en) * 2003-08-11 2005-02-17 Robert Graham Monolithic tube sheet and method of manufacture
JP4584261B2 (en) * 2003-11-25 2010-11-17 メディア ラリオ ソシエタ ア レスポンサビリタ リミタータ Manufacturing of cooling and heat exchange system by electroforming
WO2006019219A2 (en) * 2004-08-18 2006-02-23 Thermalforce Cooling apparatus of looped heat pipe structure
JP4742233B2 (en) * 2005-05-13 2011-08-10 株式会社東芝 Ceramic heat exchanger
PL1757887T3 (en) * 2005-08-25 2012-04-30 Sgl Carbon Se Heat exchanger block
US20070230185A1 (en) * 2006-03-31 2007-10-04 Shuy Geoffrey W Heat exchange enhancement
JP4667298B2 (en) * 2006-04-24 2011-04-06 株式会社豊田中央研究所 Heat exchanger and heat exchange type reformer
US8069678B1 (en) * 2006-06-07 2011-12-06 Bernert Robert E Heat transfer in the liquefied gas regasification process
US8257809B2 (en) * 2007-03-08 2012-09-04 Siemens Energy, Inc. CMC wall structure with integral cooling channels
KR101533854B1 (en) * 2007-03-31 2015-07-03 코닝 인코포레이티드 Extruded body devices and methods for fluid processing
DE102007040793A1 (en) * 2007-08-28 2009-03-05 Behr Gmbh & Co. Kg heat exchangers
SE533453C2 (en) * 2008-08-06 2010-10-05 Sven Melker Nilsson Duct
CN102227257A (en) * 2008-11-30 2011-10-26 康宁股份有限公司 Honeycomb reactors with high aspect ratio channels
US8475729B2 (en) * 2008-11-30 2013-07-02 Corning Incorporated Methods for forming honeycomb minireactors and systems
US9097473B2 (en) * 2009-03-23 2015-08-04 Ihi Corporation Ceramic heat exchanger and method of producing same
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
WO2010141368A2 (en) * 2009-05-31 2010-12-09 Corning Incorporated Honeycomb reactor or heat exchanger mixer
US8646515B2 (en) * 2009-07-31 2014-02-11 Blasch Precision Ceramics, Inc. Ceramic ferrules and ceramic ferrule array including same for tube pitch variability tolerant process heat boiler system
JP2011052919A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Heat accumulation element
JP5758811B2 (en) * 2009-12-11 2015-08-05 日本碍子株式会社 Heat exchanger
WO2012043758A1 (en) * 2010-09-29 2012-04-05 日本碍子株式会社 Heat exchanging member
WO2012067156A1 (en) * 2010-11-18 2012-05-24 日本碍子株式会社 Heat conduction member
EP2693153B1 (en) * 2011-03-29 2019-02-20 NGK Insulators, Ltd. Heat exchange member and heat exchanger
CN103582798B (en) * 2011-06-10 2016-03-09 日本碍子株式会社 Heat-exchanging part, its manufacture method and heat exchanger
CN103635770B (en) * 2011-06-30 2016-08-17 日本碍子株式会社 Heat-exchanging part
TWM424749U (en) * 2011-10-27 2012-03-11 Enermax Technology Corp Liquid-cooled heat exchange module improvement
WO2013062131A1 (en) * 2011-10-28 2013-05-02 京セラ株式会社 Flow channel member, heat exchanger using same, semiconductor device, and device for manufacturing semiconductor
US9364814B2 (en) * 2011-11-29 2016-06-14 Corning Incorporated Extruded body devices including sheet material hole masking
US9074829B2 (en) * 2011-12-01 2015-07-07 The Boeing Company Lightweight high temperature heat exchanger
DE102012005871A1 (en) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Cooling device for a vehicle battery and vehicle battery with cooling device
IL220629A0 (en) * 2012-06-25 2017-01-31 Yeda Res & Dev Device and apparatus for carrying out chemical dissociation reactions at elevated temperatures
JP6124890B2 (en) * 2012-07-18 2017-05-10 株式会社豊田自動織機 Heat dissipation device and semiconductor device
US20140070658A1 (en) * 2012-09-10 2014-03-13 Remy Technologies, L.L.C. Lamination assembly including an inter-lamination thermal transfer member for an electric machine
WO2014064334A1 (en) * 2012-10-22 2014-05-01 Ekogen Oy Method and apparatus for thermal energy conversion
KR20150110792A (en) * 2013-02-01 2015-10-02 베리 메탈 컴패니 Stave with external manifold
JP5932757B2 (en) * 2013-11-15 2016-06-08 株式会社フィルテック Fluid heat exchange device
US10697707B2 (en) * 2013-12-21 2020-06-30 Kyocera Corporation Heat exchange member and heat exchanger
WO2015105958A1 (en) * 2014-01-10 2015-07-16 Blasch Precision Ceramics, Inc. Staged reaction plenum partition wall for furnace
ES2710711T3 (en) * 2014-01-31 2019-04-26 Siemens Gamesa Renewable Energy As Thermal energy storage with reduced internal natural convection
EP3150955B1 (en) * 2014-05-28 2019-11-27 Kyocera Corporation Flow channel member, and heat exchanger and semiconductor module each using same
JP6439326B2 (en) * 2014-08-29 2018-12-19 株式会社Ihi Reactor
CN104215103B (en) * 2014-09-24 2016-11-30 中科苏派能源科技靖江有限公司 Pottery heat exchanger plates and the ceramic heat exchange core body assembled by it
US20160377354A1 (en) * 2015-06-23 2016-12-29 Richard Greco Modification to Generic Configuration of RTO Corrugated Ceramic Heat Recovery Media
JP6107905B2 (en) * 2015-09-09 2017-04-05 株式会社富士通ゼネラル Heat exchanger
WO2017100521A1 (en) * 2015-12-10 2017-06-15 Laird Technologies, Inc. Heat exchangers
JP6647889B2 (en) * 2016-02-02 2020-02-14 株式会社神戸製鋼所 Channel structure
FR3054028B1 (en) * 2016-07-15 2018-07-27 IFP Energies Nouvelles CONTAINER OF A HEAT STORAGE AND RESTITUTION SYSTEM COMPRISING A DOUBLE CONCRETE WALL
GB2552956A (en) * 2016-08-15 2018-02-21 Hs Marston Aerospace Ltd Heat exchanger device
US10415901B2 (en) * 2016-09-12 2019-09-17 Hamilton Sundstrand Corporation Counter-flow ceramic heat exchanger assembly and method
US20190234626A1 (en) * 2016-09-12 2019-08-01 Mitsubishi Electric Corporation Header, heat exchanger, and air-conditioning apparatus
JPWO2018139649A1 (en) * 2017-01-30 2019-11-14 京セラ株式会社 Heat exchanger
US10184728B2 (en) * 2017-02-28 2019-01-22 General Electric Company Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
JP2018155479A (en) * 2017-03-16 2018-10-04 ダイキン工業株式会社 Heat exchanger having heat transfer pipe unit
US11543185B2 (en) * 2017-03-24 2023-01-03 Mitsubishi Electric Corporation Air-conditioning apparatus
ES2879300T3 (en) * 2017-04-14 2021-11-22 Mitsubishi Electric Corp Distributor, heat exchanger and refrigeration cycle device
US9890692B1 (en) * 2017-06-22 2018-02-13 Brett Turnage Modular intercooler system
ES2950508T3 (en) * 2017-06-22 2023-10-10 Kelvin Thermal Energy Inc Stabilized thermal energy output system
WO2019018446A1 (en) * 2017-07-17 2019-01-24 Fractal Heatsink Technologies, LLC Multi-fractal heat sink system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473751U (en) * 1990-11-07 1992-06-29
JPH09273703A (en) * 1996-04-03 1997-10-21 Hitachi Ltd Passage pipe of power generation plant
JP2002130985A (en) * 2000-10-18 2002-05-09 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2003014392A (en) * 2001-06-27 2003-01-15 Showa Denko Kk Laminated heat exchanger
JP2003056995A (en) * 2001-08-20 2003-02-26 Komatsu Electronics Inc Heat exchanger
JP2007512499A (en) * 2003-11-26 2007-05-17 エコ、レーン、リサーチ、アンド、デベロップメント、アクティーゼルスカブ Heat exchanger plate and plate heat exchanger comprising such a plate
JP2013534608A (en) * 2010-06-30 2013-09-05 エスゲーエル カーボン ソシエタス ヨーロピア HEAT TRANSFER PLATE, FLAT HEAT TRANSFER HAVING THE SAME, AND METHOD FOR PRODUCING PLATE HEAT TRANSFER
WO2013080823A1 (en) * 2011-11-30 2013-06-06 シーアイ化成株式会社 Heat exchanger, coupler that connects heat exchanger tubes to header wall of heat exchanger, and method of manufacturing heat exchanger using said couplers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108170A (en) * 2014-12-03 2016-06-20 京セラ株式会社 Ceramic flow passage body, and heat exchanger including the same
EP3575722A4 (en) * 2017-01-30 2020-08-19 KYOCERA Corporation Heat exchanger
US11486648B2 (en) 2017-01-30 2022-11-01 Kyocera Corporation Heat exchanger
WO2021172331A1 (en) * 2020-02-27 2021-09-02 三菱重工業株式会社 Heat exchange core, heat exchanger, and method for manufacturing heat exchange core

Also Published As

Publication number Publication date
EP3176532A1 (en) 2017-06-07
EP3176532B1 (en) 2022-07-20
JP6325674B2 (en) 2018-05-16
JPWO2016017697A1 (en) 2017-04-27
US20170219302A1 (en) 2017-08-03
EP3176532A4 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6325674B2 (en) Heat exchanger
EP3258203B1 (en) Complex pin fin heat exchanger
JP7208326B2 (en) Heat exchanger
JP5714119B2 (en) Channel member, heat exchanger using the same, semiconductor device, and semiconductor manufacturing apparatus
JP5892453B2 (en) Heat exchanger
TWI624642B (en) A plate heat exchanger
CN104053965A (en) Brazed microchannel heat exchanger with thermal expansion compensation
JP6262770B2 (en) Heat exchange member and heat exchanger
CN103458989A (en) Sealed honeycomb structure
RU2010130572A (en) MICRORACTOR ASSEMBLY INCLUDING A CONNECTING BASIS
US10775108B2 (en) Heat exchanging plate with varying pitch
JP2018103122A (en) Manufacturing method of porous honeycomb filter
JP6272472B2 (en) Channel member, heat exchanger using the same, and semiconductor module
JP7267413B2 (en) Flow path member
WO2018123654A1 (en) Porous honeycomb filter
JP6352696B2 (en) Heat exchanger
JP6980607B2 (en) Heat exchanger and heat exchange system
JP2017044363A (en) Channel member
JP7496661B2 (en) Ceramic joint and method for producing same
JP6470571B2 (en) Honeycomb structure and arrangement structure of honeycomb structure
RU2021139636A (en) Microfluidic device and method for making the same
JP2017212328A (en) Ceramic passage member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538401

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015827887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827887

Country of ref document: EP

Ref document number: 15329699

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE