JP5819838B2 - Heat exchange member - Google Patents

Heat exchange member Download PDF

Info

Publication number
JP5819838B2
JP5819838B2 JP2012536568A JP2012536568A JP5819838B2 JP 5819838 B2 JP5819838 B2 JP 5819838B2 JP 2012536568 A JP2012536568 A JP 2012536568A JP 2012536568 A JP2012536568 A JP 2012536568A JP 5819838 B2 JP5819838 B2 JP 5819838B2
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral wall
heat exchange
exchange member
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012536568A
Other languages
Japanese (ja)
Other versions
JPWO2012043758A1 (en
Inventor
宮崎 誠
誠 宮崎
能大 鈴木
能大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2012536568A priority Critical patent/JP5819838B2/en
Publication of JPWO2012043758A1 publication Critical patent/JPWO2012043758A1/en
Application granted granted Critical
Publication of JP5819838B2 publication Critical patent/JP5819838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器に装着して使用する熱交換部材に関する。   The present invention relates to a heat exchange member used by being mounted on a heat exchanger.

流体(気体、液体)を加熱や冷却する際に、熱交換器を使用することがある。熱交換器では、高温の流体と低温の流体とを熱伝導性のある流路壁によって隔てておき、この流路壁に熱を伝わらせることにより、両流体間の熱交換を行わせる。こうした熱交換器では、高温の流体と低温の流体とを隔てる流路壁の面積を広くすると、熱交換の効率を高めることができる。そこで、流路壁の面積を広くするという目的の下、高温の流体と低温の流体とを波型の流路壁で隔てた構造の熱交換器が考案されている。また、同様の目的で、高温の流体の流路および低温の流体の流路のそれぞれを複数の流路に分岐させ、これらの分岐させた高温の流路と低温の流路とを交互に配置した構造の熱交換器が考案されている。   When a fluid (gas, liquid) is heated or cooled, a heat exchanger may be used. In the heat exchanger, a high-temperature fluid and a low-temperature fluid are separated from each other by a heat conductive flow path wall, and heat is transferred to the flow path wall so that heat exchange between both fluids is performed. In such a heat exchanger, the efficiency of heat exchange can be increased by increasing the area of the flow path wall that separates the high-temperature fluid and the low-temperature fluid. Therefore, a heat exchanger having a structure in which a high-temperature fluid and a low-temperature fluid are separated by a wave-shaped channel wall has been devised for the purpose of increasing the area of the channel wall. For the same purpose, each of the flow path of the high-temperature fluid and the flow path of the low-temperature fluid is branched into a plurality of flow paths, and the branched high-temperature flow path and the low-temperature flow path are alternately arranged. A heat exchanger having the structure described above has been devised.

こうした熱交換器では、流路壁は、流体に曝され続けるので、流体の性質によっては腐食する恐れがある。そこで、熱交換器については、セラミックス製の流路壁を用いることにより、耐腐食性を高める技術が提案されている(例えば、特許文献1)。   In such a heat exchanger, the channel wall continues to be exposed to the fluid, and may corrode depending on the nature of the fluid. In view of this, for a heat exchanger, a technique for improving the corrosion resistance by using a ceramic channel wall has been proposed (for example, Patent Document 1).

特開昭61−24997号公報JP 61-24997 A

ところが、提案されている技術では、セラミックス製の流路壁が熱を受けると、収縮や膨張を生じ(熱応力を生じ)、時にはこの熱応力により流路壁が破損してしまう恐れがある。特に、流路壁の破損によって高温の流体と低温の流体とが混合してしまうと、熱交換器としての機能を損なうことになる。   However, in the proposed technology, when the ceramic flow path wall receives heat, it contracts and expands (causes thermal stress), and sometimes the flow path wall may be damaged by this thermal stress. In particular, if a high-temperature fluid and a low-temperature fluid are mixed due to breakage of the flow path wall, the function as a heat exchanger is impaired.

上記の問題に鑑みて、本発明は、熱交換の効率および耐腐食性を維持しつつ、熱応力による破損を抑制する技術を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a technique for suppressing breakage due to thermal stress while maintaining heat exchange efficiency and corrosion resistance.

本発明は、以下に示す熱交換部材である。   The present invention is a heat exchange member shown below.

[1] 金属Siを含浸したSi含浸SiCを主成分とするセラミックスからなる気孔率が10%以下の筒形状の外周壁と、前記外周壁の内部において第一の流体の流路となる複数のセルを区画形成し、金属Siを含浸したSi含浸SiCを主成分とするセラミックスからなる気孔率が10%以下の隔壁と、を有し、前記外周壁および前記隔壁が、前記外周壁の前記内部を流れる前記第一の流体と前記外周壁の外部を流れる第二の流体との間の熱交換を介在するとともに、前記外周壁の厚さT、前記外周壁の軸方向に垂直な断面における前記外周壁の前記内部の面積から算出される相当円の直径D、および前記隔壁の厚さtが下記式(1)〜(3)を満たし、前記外周壁及び前記隔壁における前記金属Siの含有量とSiCの含有量の総和に対する前記金属Siの含有量の割合[金属Si含有量/(金属Si含有量+SiC含有量)]が0.25〜0.5である熱交換部材。
式(1):0.3mm≦T≦4.0mm
式(2):15mm≦D≦120mm
式(3):0.04×T≦t≦0.6mm
[1] A cylindrical outer peripheral wall having a porosity of 10% or less made of ceramics mainly composed of Si-impregnated SiC impregnated with metal Si, and a plurality of first fluid flow paths inside the outer peripheral wall A partition wall having a porosity of 10% or less, the partition wall being made of ceramics mainly composed of Si-impregnated SiC impregnated with metal Si, wherein the outer peripheral wall and the partition wall are the inner part of the outer peripheral wall. In the cross section perpendicular to the thickness T of the outer peripheral wall and the axial direction of the outer peripheral wall, the heat exchange between the first fluid flowing through the second fluid and the second fluid flowing outside the outer peripheral wall is interposed. the diameter D of the equivalent circle is calculated from the internal area of the peripheral wall, and the thickness t of the partition wall meets the following formulas (1) to (3), containing said metal Si in the outer peripheral wall and said partition wall The sum of the amount and the SiC content The heat exchange member whose ratio [metal Si content / (metal Si content + SiC content)] of the metal Si is 0.25 to 0.5 .
Formula (1): 0.3 mm <= T <= 4.0mm
Formula (2): 15 mm ≦ D ≦ 120 mm
Formula (3): 0.04 × T ≦ t ≦ 0.6 mm

[2] 前記外周壁の厚さT、前記外周壁の軸方向に垂直な断面における前記外周壁の前記内部の面積から算出される相当円の直径D、および前記隔壁の厚さtが下記式(4)〜(6)を満たす前記[1]に記載の熱交換部材。
式(4):0.5mm≦T≦4.0mm
式(5):30mm≦D≦60mm
式(6):0.04×T≦t≦0.6mm
[2] The thickness T of the outer peripheral wall, the diameter D of the equivalent circle calculated from the inner area of the outer peripheral wall in the cross section perpendicular to the axial direction of the outer peripheral wall, and the thickness t of the partition wall The heat exchange member according to [1], which satisfies (4) to (6).
Formula (4): 0.5 mm ≦ T ≦ 4.0 mm
Formula (5): 30 mm ≦ D ≦ 60 mm
Formula (6): 0.04 * T <= t <= 0.6mm

[3] 前記セルの断面形状が鈍角から構成される多角形である前記[1]または[2]に記載の熱交換部材。 [3] The heat exchange member according to [1] or [2], wherein the cross-sectional shape of the cell is a polygon formed from an obtuse angle.

[4] 前記外周壁および前記隔壁のうちの少なくとも一方が緻密質である前記[1]〜[3]のいずれかに記載の熱交換部材。 [4] The heat exchange member according to any one of [1] to [3], wherein at least one of the outer peripheral wall and the partition wall is dense.

[5] 前記第一の流体と前記第二の流体とを隔てるように設けられるとともに、前記第一の流体と前記第二の流体との間での熱交換可能に前記外周壁を被覆する被覆部材を有する前記[1]〜[4]のいずれかに記載の熱交換部材。 [5] A coating that covers the outer peripheral wall so that the first fluid and the second fluid are separated from each other and heat exchange can be performed between the first fluid and the second fluid. The heat exchange member according to any one of [1] to [4], which includes a member.

本発明の熱交換部材によれば、熱交換の効率および耐腐食性を維持しつつ、熱応力による破損を抑制することができる。   According to the heat exchange member of the present invention, damage due to thermal stress can be suppressed while maintaining heat exchange efficiency and corrosion resistance.

本発明の熱交換部材の一実施形態の斜視図である。It is a perspective view of one embodiment of a heat exchange member of the present invention. 図1に示した熱交換部材を一方の端部の側からみた正面図である。It is the front view which looked at the heat exchange member shown in FIG. 1 from the one edge part side. 図1の熱交換部材を装着した熱交換器の模式図である。It is a schematic diagram of the heat exchanger with which the heat exchange member of FIG. 1 was mounted. 図3中のA−A’断面図である。FIG. 4 is a cross-sectional view taken along line A-A ′ in FIG. 3. 図3中のB−B’断面図である。FIG. 4 is a B-B ′ sectional view in FIG. 3. 本発明の熱交換部材の一実施形態の変形例の斜視図である。It is a perspective view of the modification of one Embodiment of the heat exchange member of this invention. 本発明の熱交換部材の一実施形態の他の変形例の斜視図である。It is a perspective view of the other modification of one Embodiment of the heat exchange member of this invention. セルの断面形状が六角形になっている熱交換部材の一方の端部の拡大図である。It is an enlarged view of one edge part of the heat exchange member whose cross-sectional shape of a cell is a hexagon. 隔壁に切れ込みがある熱交換部材の一方の端部の拡大図である。It is an enlarged view of one edge part of the heat exchange member which has a notch in a partition. 外周壁に切れ込みがある熱交換部材の断面の一部を拡大した図である。It is the figure which expanded a part of cross section of the heat exchange member which has a notch in an outer peripheral wall. 隔壁の厚さが中心側と外周側との間で異なる熱交換部材の断面の一部を拡大した図である。It is the figure which expanded a part of cross section of the heat exchange member from which the thickness of a partition differs between a center side and an outer peripheral side.

以下、本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the present invention.

本発明の熱交換部材は、SiCを主成分とするセラミックスからなる筒形状の外周壁と、外周壁の内部において第一の流体の流路となる複数のセルを区画形成し、SiCを主成分とするセラミックスからなる隔壁と、を有する。   The heat exchange member of the present invention partitions and forms a cylindrical outer peripheral wall made of ceramics containing SiC as a main component and a plurality of cells serving as a flow path for the first fluid inside the outer peripheral wall. And partition walls made of ceramics.

本発明の熱交換部材では、外周壁の内部に第一の流体を流し、さらに外周壁の外部に第二の流体を流す場合に、外周壁および隔壁が第一の流体と第二の流体との間の熱交換を介在する。   In the heat exchange member of the present invention, when the first fluid is allowed to flow inside the outer peripheral wall and the second fluid is allowed to flow further to the outside of the outer peripheral wall, the outer peripheral wall and the partition wall are the first fluid and the second fluid. Intervene heat exchange between.

本発明の熱交換部材では、第一の流体を複数のセルに振り分けて流す。こうして第一の流体を各セルに振り分けると、各セルを囲む隔壁に接触させながら第一の流体を流すことができ、その結果、第一の流体と隔壁との間で熱交換を行わせることができる。さらに、隔壁および外周壁における熱伝導や、外周壁と第二の流体との間の熱交換を介することにより、最終的には、第一の流体と第二の流体との熱交換を行わせることができる。   In the heat exchange member of the present invention, the first fluid is distributed to the plurality of cells. When the first fluid is distributed to each cell in this way, the first fluid can be allowed to flow while contacting the partition wall surrounding each cell, and as a result, heat exchange can be performed between the first fluid and the partition wall. Can do. Furthermore, the heat exchange between the first fluid and the second fluid is finally performed through the heat conduction in the partition wall and the outer wall and the heat exchange between the outer wall and the second fluid. be able to.

特に、本発明の熱交換部材では、第一の流体を複数のセルに振り分けて、各セルで第一の流体と隔壁との熱交換を盛んに行わせるので、第一の流体と熱交換部材との間の熱交換効率が高められ、ひいては第一の流体と第二の流体との間の熱交換効率が高められている。   In particular, in the heat exchange member of the present invention, the first fluid is distributed to a plurality of cells, and the heat exchange between the first fluid and the partition wall is actively performed in each cell. The heat exchange efficiency between the first fluid and the second fluid is increased, and as a result, the heat exchange efficiency between the first fluid and the second fluid is enhanced.

本発明の熱交換部材では、外周壁および隔壁は、SiCを主成分とするセラミックスからなるので、耐腐食性に優れており、また、熱伝導率が高い。こうした高熱伝導率の外周壁や隔壁では部分ごとでの温度差が生じにくくなる。すなわち、外周壁および隔壁のそれぞれにおいては、温度が最も高い部分と温度が最も低い部分との間の温度差を小さくすることができる。そのため、本発明の熱交換部材では、外周壁や隔壁において、部分ごとで収縮や膨張の度合いに大きな差が生じることを抑えることができる。すなわち、本発明の熱交換部材では、外周壁および隔壁がSiCを主成分とするセラミックスからなるので、外周壁および隔壁で大きな熱応力が発生することを抑えることができる。その結果、本発明の熱交換部材では、外周壁や隔壁において、熱応力に起因したひびや割れの発生が抑制される。   In the heat exchange member of the present invention, the outer peripheral wall and the partition wall are made of ceramics mainly composed of SiC, so that they have excellent corrosion resistance and high thermal conductivity. Such an outer peripheral wall or partition wall having high thermal conductivity is unlikely to cause a temperature difference between parts. That is, in each of the outer peripheral wall and the partition wall, the temperature difference between the highest temperature portion and the lowest temperature portion can be reduced. Therefore, in the heat exchange member of this invention, it can suppress that a big difference arises in the degree of shrinkage | contraction and expansion for every part in an outer peripheral wall or a partition. That is, in the heat exchange member of the present invention, the outer peripheral wall and the partition walls are made of ceramics whose main component is SiC, so that it is possible to suppress the occurrence of large thermal stresses on the outer peripheral wall and the partition walls. As a result, in the heat exchange member of the present invention, the occurrence of cracks and cracks due to thermal stress is suppressed in the outer peripheral wall and the partition wall.

本明細書にいうSiCを主成分とするセラミックスとは、SiCが50質量%以上含まれているセラミックスのことを意味する。例えば、SiCを主成分とするセラミックスからなる隔壁とは、SiCが50質量%以上含まれた隔壁であることを意味する。   The ceramic mainly composed of SiC referred to in the present specification means a ceramic containing 50 mass% or more of SiC. For example, a partition wall made of ceramics containing SiC as a main component means a partition wall containing SiC by 50 mass% or more.

さらに、本発明の熱交換部材では、外周壁の厚さT、外周壁の軸方向に垂直な断面における外周壁の内部の面積から算出される相当円の直径D、および隔壁の厚さtが下記式(1)〜(3)を満たす。
式(1):0.3mm≦T≦4.0mm
式(2):15mm≦D≦120mm
式(3):0.04×T≦t≦0.6mm
Furthermore, in the heat exchange member of the present invention, the thickness T of the outer peripheral wall, the diameter D of the equivalent circle calculated from the area inside the outer peripheral wall in the cross section perpendicular to the axial direction of the outer peripheral wall, and the thickness t of the partition wall The following formulas (1) to (3) are satisfied.
Formula (1): 0.3 mm <= T <= 4.0mm
Formula (2): 15 mm ≦ D ≦ 120 mm
Formula (3): 0.04 × T ≦ t ≦ 0.6 mm

本発明の熱交換部材では、外周壁の厚さTが0.3mm≦T≦4.0mmを満たすことにより、外周壁の剛性が高められている。こうして外周壁の剛性を高めることにより、本発明の熱交換部材では、外周壁の破損が生じにくくなり、ひいては外周壁の破損に起因して、外周壁の内部を流れる第一の流体と外周壁の外部を流れる第二の流体とを混合させてしまうという不具合が生じにくくなる。   In the heat exchange member of the present invention, the rigidity of the outer peripheral wall is enhanced by the thickness T of the outer peripheral wall satisfying 0.3 mm ≦ T ≦ 4.0 mm. By increasing the rigidity of the outer peripheral wall in this way, in the heat exchange member of the present invention, the outer peripheral wall is less likely to be damaged, and as a result, the first fluid flowing inside the outer peripheral wall and the outer peripheral wall due to the outer peripheral wall being damaged. The problem of mixing with the second fluid flowing outside is less likely to occur.

また、本発明の熱交換部材では、上述した式(1)〜(3)の関係を満たすことより、たとえ隔壁に熱応力によるひびや割れを生じるとしても、こうしたひびや割れが熱交換効率を大きく低下させてしまう程度にまで拡大することを抑制することができる。さらに、上述した式(1)〜(3)の関係を満たす場合には、第一の流体が外周壁の内部(具体的にはセル内)を流れる際の圧力損失を抑制することができる。   Moreover, in the heat exchange member of this invention, even if the crack and crack by a thermal stress arise in a partition from satisfy | filling the relationship of Formula (1)-(3) mentioned above, such a crack and crack have heat exchange efficiency. It is possible to suppress enlargement to such an extent that it is greatly reduced. Furthermore, when satisfy | filling the relationship of Formula (1)-(3) mentioned above, the pressure loss at the time of a 1st fluid flowing through the inside (specifically the inside of a cell) of an outer peripheral wall can be suppressed.

本発明の熱交換部材では、外周壁の厚さT、外周壁の軸方向に垂直な断面における外周壁の内部の面積から算出される相当円の直径D、および隔壁の厚さtが下記式(4)〜(6)を満たすことが好ましい。
式(4):0.5mm≦T≦4.0mm
式(5):30mm≦D≦60mm
式(6):0.04×T≦t≦0.6mm
In the heat exchange member of the present invention, the thickness T of the outer peripheral wall, the diameter D of the equivalent circle calculated from the area of the outer peripheral wall in the cross section perpendicular to the axial direction of the outer peripheral wall, and the thickness t of the partition wall are It is preferable to satisfy (4) to (6).
Formula (4): 0.5 mm ≦ T ≦ 4.0 mm
Formula (5): 30 mm ≦ D ≦ 60 mm
Formula (6): 0.04 * T <= t <= 0.6mm

本発明の熱交換部材では、上述した式(4)〜(6)の関係を満たす場合には、外周壁の剛性がより高まって外周壁にひびや割れが極めて生じにくくなり、また、隔壁においても熱応力によるひびや割れが極めて生じにくくなる。さらに、本発明の熱交換部材では、外周壁が円筒形状であり、かつ、上述した式(4)〜(6)の関係を満たす場合には、外周壁におけるひびや割れの発生を抑制する効果や、隔壁におけるひびや割れの発生を抑制する効果をより一層確実に発現させることが可能になるので、より好ましい。   In the heat exchange member of the present invention, when the relations of the above formulas (4) to (6) are satisfied, the rigidity of the outer peripheral wall is further increased, and the outer peripheral wall is hardly cracked or cracked. However, cracks and cracks due to thermal stress are extremely unlikely to occur. Furthermore, in the heat exchange member of the present invention, when the outer peripheral wall has a cylindrical shape and satisfies the relations of the above formulas (4) to (6), the effect of suppressing the occurrence of cracks and cracks in the outer peripheral wall. In addition, the effect of suppressing the occurrence of cracks and cracks in the partition walls can be expressed more reliably, which is more preferable.

本発明の熱交換部材は、セルの断面形状が鈍角から構成される多角形であることが好ましい。こうした多角形のセルの断面形状である場合には、隔壁の剛性は、外周壁の内部の各箇所間で比較すると差が小さくなる。その結果、隔壁に生じる熱応力の大きさについても、外周壁の内部の各箇所間で比較すると差が小さくなる。こうして、隔壁に生じる熱応力の大きさのばらつきが小さくなると、外周壁内部の隔壁における最大発生応力が小さくなり、その結果、隔壁におけるひびや割れの発生をより一層確実に抑制することが可能になる。   The heat exchange member of the present invention is preferably a polygon in which the cross-sectional shape of the cell is an obtuse angle. In the case of such a polygonal cell cross-sectional shape, the difference in the rigidity of the partition wall is smaller when compared between the respective portions inside the outer peripheral wall. As a result, the difference in the magnitude of the thermal stress generated in the partition walls is reduced when compared between the respective portions inside the outer peripheral wall. Thus, when the variation in the magnitude of the thermal stress generated in the partition wall is reduced, the maximum stress generated in the partition wall inside the outer peripheral wall is reduced, and as a result, the occurrence of cracks and cracks in the partition wall can be more reliably suppressed. Become.

本発明の熱交換部材は、外周壁および隔壁のうちの少なくとも一方が緻密質であることが好ましく、さらに、外周壁および隔壁の両方が緻密質であることがより好ましい。外周壁が緻密質である場合には、外周壁が高熱伝導率になり、その結果、熱交換部材の熱交換効率を高めることができる。同じく、隔壁が緻密質である場合には、隔壁が高熱伝導率になり、その結果、熱交換部材の熱交換効率を高めることができる。よって、本発明の熱交換部材において、外周壁および隔壁がともに緻密質である場合には、熱交換部材の熱交換効率をより一層確実に高めることが可能になる。   In the heat exchange member of the present invention, it is preferable that at least one of the outer peripheral wall and the partition wall is dense, and it is more preferable that both the outer peripheral wall and the partition wall are dense. When the outer peripheral wall is dense, the outer peripheral wall has high thermal conductivity, and as a result, the heat exchange efficiency of the heat exchange member can be increased. Similarly, when the partition walls are dense, the partition walls have high thermal conductivity, and as a result, the heat exchange efficiency of the heat exchange member can be increased. Therefore, in the heat exchange member of the present invention, when both the outer peripheral wall and the partition wall are dense, the heat exchange efficiency of the heat exchange member can be more reliably increased.

本明細書にいう緻密質とは、気孔率が10%以下であることを意味する。本発明の熱交換部材では、隔壁または外周壁が緻密質である場合、気孔率が5%以下であることがより好ましい。なお、ここでいう気孔率は、水銀圧入法により測定された気孔率のことを意味する。例えば、外周壁や隔壁がSiCを主成分とする多孔質(気孔率30%以上)のセラミックスからなる場合、熱伝導率は20W/m・K程度である。対して、外周壁や隔壁がSiCを主成分とする緻密質(気孔率10%以下)のセラミックスからなる場合、熱伝導率を150W/m・K程度にまで高めることができる。   The term “dense” as used herein means that the porosity is 10% or less. In the heat exchange member of the present invention, when the partition wall or the outer peripheral wall is dense, the porosity is more preferably 5% or less. In addition, the porosity here means the porosity measured by the mercury intrusion method. For example, when the outer peripheral wall or partition wall is made of porous ceramics (porosity of 30% or more) whose main component is SiC, the thermal conductivity is about 20 W / m · K. On the other hand, when the outer peripheral wall and partition walls are made of a dense ceramic (porosity of 10% or less) containing SiC as a main component, the thermal conductivity can be increased to about 150 W / m · K.

本発明の熱交換部材は、外周壁を被覆する被覆部材を有することが好ましい。被覆部材は、第一の流体と第二の流体とを隔てるように設けられている。こうすると、たとえ外周壁に破損が生じたとしても、第一の流体と第二の流体との混合を防止することができる。また、被覆部材は、第一の流体と第二の流体との間での熱交換を可能な状態で熱交換部材に設けられている。   The heat exchange member of the present invention preferably has a covering member that covers the outer peripheral wall. The covering member is provided so as to separate the first fluid and the second fluid. In this way, even if the outer peripheral wall is damaged, mixing of the first fluid and the second fluid can be prevented. The covering member is provided on the heat exchange member in a state in which heat exchange is possible between the first fluid and the second fluid.

本発明の熱交換部材では、筒の内と外という単純な構成により第一の流体と第二の流体とを隔てることができる。熱交換部材を筒形状というシンプルな構造にできるので、簡単な組み付け作業で熱交換器を作ることができる。例えば、本発明の熱交換部材の両端に管を繋いで第一の流体の流路を作り、さらに熱交換部材をケーシングで覆うことにより、簡便に熱交換器を組み上げることが可能である(熱交換器の組み上げの具体例は後述)。   In the heat exchange member of the present invention, the first fluid and the second fluid can be separated by a simple configuration of inside and outside the cylinder. Since the heat exchange member can have a simple structure of a cylindrical shape, a heat exchanger can be made by a simple assembly operation. For example, it is possible to easily assemble a heat exchanger by connecting a pipe to both ends of the heat exchange member of the present invention to form a first fluid flow path, and further covering the heat exchange member with a casing (heat Specific examples of assembling the exchanger will be described later).

以下、本発明の熱交換部材について、図面を参照しつつ、具体的な実施形態を示し、その内容を詳しく説明する。   Hereinafter, specific embodiments of the heat exchange member of the present invention will be described with reference to the drawings, and the contents thereof will be described in detail.

図1は、本発明の熱交換部材の一実施形態の斜視図である。図示されるように、本実施形態の熱交換部材1は、円筒形状の外周壁3を有する。この外周壁3は、端部9aおよび9bがともに開口している。そのため、これらの端部9aおよび端部9bのうちの一方を入口とし、もう一方を出口として、外周壁3の内部に第一の流体を通過させることが可能である。   FIG. 1 is a perspective view of an embodiment of a heat exchange member of the present invention. As illustrated, the heat exchange member 1 of the present embodiment has a cylindrical outer peripheral wall 3. The outer peripheral wall 3 is open at both ends 9a and 9b. Therefore, it is possible to allow the first fluid to pass through the inside of the outer peripheral wall 3 using one of the end 9a and the end 9b as an inlet and the other as an outlet.

また、本実施形態では、外周壁3の内部が隔壁7によって四角形の格子状に区画されている。これにより、複数のセル5が外周壁3の内部に形成されている。よって、本実施形態の熱交換部材は、いわゆるハニカム構造体20となっている。なお、本実施形態では、ハニカム構造体20の外形が円筒形状(円柱状)であるが、ハニカム構造体20の外形は円筒形状に限られない。例えば、本実施形態の変形例としては、ハニカム構造体20を軸方向に垂直な断面からみた場合に、ハニカム構造体20の外形の断面形状が楕円形、四角形、またはその他の多角形であってもよい。   Further, in the present embodiment, the inside of the outer peripheral wall 3 is partitioned by the partition walls 7 into a square lattice shape. Thereby, a plurality of cells 5 are formed inside the outer peripheral wall 3. Therefore, the heat exchange member of the present embodiment is a so-called honeycomb structure 20. In the present embodiment, the outer shape of the honeycomb structure 20 is cylindrical (columnar), but the outer shape of the honeycomb structure 20 is not limited to the cylindrical shape. For example, as a modification of the present embodiment, when the honeycomb structure 20 is viewed from a cross section perpendicular to the axial direction, the outer cross-sectional shape of the honeycomb structure 20 is an ellipse, a quadrangle, or other polygons. Also good.

さらに、本実施形態では、隔壁7が外周壁3の内部を真っすぐに横切り、これらの隔壁7の両端が外周壁3と接触している。こうして隔壁7と外周壁3とが接触しているので、隔壁7と外周壁3との間で、熱伝導が可能になる。   Furthermore, in the present embodiment, the partition walls 7 traverse the inside of the outer peripheral wall 3 straight, and both ends of these partition walls 7 are in contact with the outer peripheral wall 3. Thus, since the partition wall 7 and the outer peripheral wall 3 are in contact with each other, heat conduction can be performed between the partition wall 7 and the outer peripheral wall 3.

また、本実施形態の熱交換部材1では、外周壁3および隔壁7がSiCを主成分とするセラミックスによって形成されている。   Moreover, in the heat exchange member 1 of this embodiment, the outer peripheral wall 3 and the partition 7 are formed of ceramics whose main component is SiC.

また、外周壁3や隔壁7は、金属Siを含浸させたSiCを主成分とするセラミックスによって作ることもできる。この場合、金属Siを含浸させる量を多くすればするほど、外周壁3や隔壁7の熱伝導率をより高めることができる。例えば、金属Siを含浸させたSiCを主成分とするセラミックスについては、金属Si含浸前のSiCを主成分とするセラミックス100質量部に対して、金属Siを30質量部以上含浸させることにより、熱伝導率100W/m・K以上にすることができる。   Moreover, the outer peripheral wall 3 and the partition 7 can also be made from ceramics whose main component is SiC impregnated with metal Si. In this case, the thermal conductivity of the outer peripheral wall 3 and the partition wall 7 can be further increased as the amount of impregnation with the metal Si is increased. For example, for ceramics mainly composed of SiC impregnated with metal Si, 100 parts by mass of ceramics mainly composed of SiC before impregnation with metal Si are impregnated with 30 parts by mass or more of metal Si. The conductivity can be 100 W / m · K or more.

具体的には、外周壁3や隔壁7の材料としては、Si含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si、およびSiC等を採用することができる。ただし、ここに列挙した材料で作られた外周壁3や隔壁7が多孔質(気孔率30%以上)の場合には、高い熱伝導率が得られないことがある。そのため、Si含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si、およびSiC等を外周壁3や隔壁7の材料として採用する場合、高い熱交換率を得るために、外周壁3や隔壁7を緻密質(気孔率10%以下)にすることが好ましい。Specifically, Si-impregnated SiC, (Si + Al) -impregnated SiC, metal composite SiC, recrystallized SiC, Si 3 N 4 , SiC, or the like can be used as the material of the outer peripheral wall 3 and the partition walls 7. However, when the outer peripheral wall 3 and the partition wall 7 made of the materials listed here are porous (porosity of 30% or more), high thermal conductivity may not be obtained. Therefore, in order to obtain a high heat exchange rate when Si-impregnated SiC, (Si + Al) -impregnated SiC, metal composite SiC, recrystallized SiC, Si 3 N 4 , SiC, or the like is used as the material of the outer peripheral wall 3 or the partition wall 7. The outer peripheral wall 3 and the partition wall 7 are preferably made dense (porosity of 10% or less).

こうした緻密質にする際には、外周壁3や隔壁7の材質については、Si含浸SiC、または(Si+Al)含浸SiCを採用することがより好ましい。Siを含浸するSiCからなる外周壁3や隔壁7は、高い熱伝導率や耐熱性を示しつつ、緻密に形成され、十分な強度を示す。例えば、SiC(炭化珪素)の多孔質(気孔率30%以上)の場合、熱伝導率が20W/m・K程度であるが、Si含浸SiCからなる緻密質(気孔率10%以下)の場合には、熱伝導率が150W/m・K程度にまで向上する。   When making such a dense material, it is more preferable to use Si-impregnated SiC or (Si + Al) -impregnated SiC as the material of the outer peripheral wall 3 and the partition wall 7. The outer peripheral wall 3 and the partition walls 7 made of SiC impregnated with Si are densely formed and exhibit sufficient strength while exhibiting high thermal conductivity and heat resistance. For example, in the case of SiC (silicon carbide) porous (porosity of 30% or more), the thermal conductivity is about 20 W / m · K, but in the case of dense (porosity of 10% or less) made of Si-impregnated SiC. The thermal conductivity is improved to about 150 W / m · K.

また、外周壁3や隔壁7をSi含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si、またはSiC等から形成する場合、外周壁3や隔壁7を耐熱性、耐熱衝撃性、耐酸化性、酸やアルカリなどに対する耐蝕性に優れたものにすることができ、その結果、熱交換部材1を長期間の使用に耐えられるものにすることが可能になる。Further, when the outer peripheral wall 3 and the partition wall 7 are made of Si-impregnated SiC, (Si + Al) -impregnated SiC, metal composite SiC, recrystallized SiC, Si 3 N 4 , SiC, or the like, the outer peripheral wall 3 or the partition wall 7 is heat resistant. It can be made excellent in thermal shock resistance, oxidation resistance, and corrosion resistance against acids and alkalis, and as a result, the heat exchange member 1 can withstand long-term use.

ここで、外周壁3や隔壁7がSi含浸SiC、または(Si+Al)含浸SiCを主成分とする場合、Siの含有量とSiCの含有量の総和に対するSiの含有量の割合[Si含有量/(Si含有量+SiC含有量)]が0.05〜0.5であることが好ましく、さらに、0.1〜0.4であることがより好ましい。Siの含有量とSiCの含有量の総和に対するSiの含有量の割合が0.05以上である場合には、Si相を介してなされるSiC粒子同士の結合が十分となり、外周壁3や隔壁7の強度を高めることができ、これに加えて、十分な熱伝導率にすることが可能になる。Siの含有量とSiCの含有量の総和に対するSiの含有量の割合が0.5以下である場合には、Si相の量が過剰になり過ぎず、その結果、焼成などを経て外周壁3や隔壁7を形成する際に、変形等の不都合な現象が生じにくくなる。   Here, when the outer peripheral wall 3 and the partition wall 7 are mainly composed of Si-impregnated SiC or (Si + Al) -impregnated SiC, the ratio of the Si content to the sum of the Si content and the SiC content [Si content / (Si content + SiC content)] is preferably 0.05 to 0.5, and more preferably 0.1 to 0.4. When the ratio of the Si content to the sum of the Si content and the SiC content is 0.05 or more, the bonding between the SiC particles formed through the Si phase is sufficient, and the outer peripheral wall 3 and the partition walls 7 can be increased, and in addition to this, sufficient thermal conductivity can be obtained. When the ratio of the Si content to the sum of the Si content and the SiC content is 0.5 or less, the amount of the Si phase is not excessive, and as a result, the outer peripheral wall 3 is subjected to firing or the like. When forming the barrier rib 7, it is difficult to cause inconvenience such as deformation.

図2は、本実施形態の熱交換部材1の端部9aの正面図である。この正面図では、本実施形態の熱交換部材1における外周壁3の厚さT、外周壁3の軸方向に垂直な断面における外周壁3の内部の面積から算出される相当円の直径D、および隔壁の厚さtを示している。 FIG. 2 is a front view of the end 9a of the heat exchange member 1 of the present embodiment. In this front view, the diameter T of the equivalent circle calculated from the thickness T of the outer peripheral wall 3 in the heat exchange member 1 of the present embodiment and the area of the outer peripheral wall 3 in the cross section perpendicular to the axial direction of the outer peripheral wall 3; And the thickness t of the partition wall 7 is shown.

本実施形態では、外周壁3は、厚さが均一な円筒形状である。また、本実施形態の熱交換部材1を軸方向に垂直な断面からみる場合、外周壁3の内部の断面形状は円である。したがって、上記の相当円の直径Dの大きさは、外周壁3の内径の大きさと同じである。   In the present embodiment, the outer peripheral wall 3 has a cylindrical shape with a uniform thickness. Further, when the heat exchange member 1 of the present embodiment is viewed from a cross section perpendicular to the axial direction, the cross-sectional shape inside the outer peripheral wall 3 is a circle. Therefore, the diameter D of the equivalent circle is the same as the inner diameter of the outer peripheral wall 3.

外周壁の形状が円筒形状以外の場合には、外周壁の軸方向に垂直な断面において、外周壁の内側の表面に囲まれた領域の面積を求め、この面積と同面積の円の直径を算出し、これを相当円の直径Dとする。   When the shape of the outer peripheral wall is other than the cylindrical shape, the area of the region surrounded by the inner surface of the outer peripheral wall is obtained in a cross section perpendicular to the axial direction of the outer peripheral wall, and the diameter of a circle having the same area as this area is obtained. This is calculated and used as the diameter D of the equivalent circle.

次に、本実施形態の熱交換部材1を装着した熱交換器の一具体例を示す。この熱交換器の図面を参照しつつ、本実施形態の熱交換部材1を用いた熱交換の態様を説明する。   Next, a specific example of a heat exchanger equipped with the heat exchange member 1 of the present embodiment will be shown. A mode of heat exchange using the heat exchange member 1 of the present embodiment will be described with reference to the drawing of this heat exchanger.

図3は、図1に示した熱交換部材1を装着した熱交換器21の模式図を示す。図示されるように、本実施形態の熱交換器21では、上述した熱交換部材1をケーシング11内に装着している。ここで用いるケーシング11は、壁19により直方体の箱型に形作られている。本実施形態の熱交換器21では、ケーシング11の一つの面の壁19とこの面とは反対側の面の壁19にそれぞれ1個ずつ穴を開け、これらの穴に熱交換部材1の端部9aと端部9bを嵌め込んでいる。こうすることで、熱交換部材1をケーシング11の内部で横断させている。さらに、本実施形態の熱交換器21では、熱交換部材1の端部9aおよび端部9bのそれぞれを壁19の外側で管23aおよび管23bに繋いでいる。その結果、本実施形態の熱交換器21では、第一の流体を管23a内に流すと、続いて熱交換部材1の内部へ、さらに管23b内へと流すことができる。   FIG. 3 shows a schematic diagram of a heat exchanger 21 equipped with the heat exchange member 1 shown in FIG. As illustrated, in the heat exchanger 21 of the present embodiment, the heat exchange member 1 described above is mounted in the casing 11. The casing 11 used here is formed into a rectangular parallelepiped box shape by a wall 19. In the heat exchanger 21 of the present embodiment, one hole is formed in each of the wall 19 on one surface of the casing 11 and the wall 19 on the surface opposite to this surface, and the end of the heat exchange member 1 is formed in these holes. The part 9a and the end part 9b are fitted. By doing so, the heat exchange member 1 is traversed inside the casing 11. Furthermore, in the heat exchanger 21 of the present embodiment, the end 9a and the end 9b of the heat exchange member 1 are connected to the tube 23a and the tube 23b on the outside of the wall 19, respectively. As a result, in the heat exchanger 21 of the present embodiment, when the first fluid is allowed to flow into the tube 23a, it can subsequently flow into the heat exchange member 1 and further into the tube 23b.

図4は、図3中のA−A’断面図である。図示されるように、第一の流体が熱交換部材1の内部(外周壁3の内部)を流れる際には、第一の流体は複数のセル5のそれぞれに振り分けられる。   FIG. 4 is a cross-sectional view taken along the line A-A ′ in FIG. 3. As shown in the drawing, when the first fluid flows inside the heat exchange member 1 (inside the outer peripheral wall 3), the first fluid is distributed to each of the plurality of cells 5.

さらに、図3に示されるように、ケーシング11においては、第二の流体をケーシング11内に流入させる入口13、および第二の流体をケーシング11内から外部に排出させる出口15が設けられている。   Further, as shown in FIG. 3, the casing 11 is provided with an inlet 13 for allowing the second fluid to flow into the casing 11 and an outlet 15 for discharging the second fluid from the casing 11 to the outside. .

図5は、図3中のB−B’の断面図である。図示されるように、第二の流体は、入口13からケーシング11内に流入すると、熱交換部材1の外周壁3の外周面4と接触しながら流れて、最終的に出口15から排出される。   FIG. 5 is a cross-sectional view taken along the line B-B ′ in FIG. 3. As illustrated, when the second fluid flows into the casing 11 from the inlet 13, the second fluid flows while contacting the outer peripheral surface 4 of the outer peripheral wall 3 of the heat exchange member 1, and is finally discharged from the outlet 15. .

ここでは、直方体の箱型のケーシング11を示して説明しているが、ケーシングの形態については、熱交換部材を、あるいは熱交換部材に管を連結させて作られた第一の流体の流路をケーシングの内部に横断させることができ、さらに、ケーシングの内部において第二の流体を熱交換部材の外周に流すことが可能なものであればよい。   Here, a rectangular parallelepiped box-shaped casing 11 is shown and described. However, as for the form of the casing, the flow path of the first fluid made by connecting a heat exchange member or a pipe to the heat exchange member. As long as the second fluid can flow on the outer periphery of the heat exchange member inside the casing.

例えば、第一の流体が高温、第二の流体が低温の場合であれば、伝熱は第一の流体から第二の流体に向けて生じる。この伝熱の過程では、まず、第一の流体から隔壁7や外周壁3に熱が伝わっていき、続いて、外周壁3から第二の流体に熱が伝わっていく。このとき、第一の流体から外周壁3までの伝熱は、次に述べる2つの態様により行われる。   For example, if the first fluid is hot and the second fluid is cold, heat transfer occurs from the first fluid to the second fluid. In this heat transfer process, first, heat is transferred from the first fluid to the partition wall 7 and the outer peripheral wall 3, and then, heat is transferred from the outer peripheral wall 3 to the second fluid. At this time, heat transfer from the first fluid to the outer peripheral wall 3 is performed in the following two modes.

最も外周側にあるセル5(例えば、図5中のセル5a)を流れる第一の流体は、外周壁3に接触しているので、外周壁3に直接熱を伝えることができる。   Since the first fluid flowing through the cell 5 on the outermost peripheral side (for example, the cell 5 a in FIG. 5) is in contact with the outer peripheral wall 3, heat can be directly transferred to the outer peripheral wall 3.

その他のセル(例えば、図5中のセル5b、セル5c)を流れる第一の流体は、隔壁7を介して外周壁3に熱を伝えることができる。例えば、図5中のセル5aを流れる第一の流体の場合には、まず、第一の流体からセル5aを形作っている隔壁7に熱が伝わり、続いて、このセル5aの隔壁7から他のセル5を形作っている隔壁7を順次辿っていくことにより、外周壁3まで熱を伝えることができる。こうして、第一の流体が外周壁3とは接触せずに流れていても、隔壁7の熱伝導を利用することにより、確実に外周壁3まで熱を伝えることができる。   The first fluid flowing through other cells (for example, the cell 5 b and the cell 5 c in FIG. 5) can transfer heat to the outer peripheral wall 3 through the partition wall 7. For example, in the case of the first fluid flowing through the cell 5a in FIG. 5, first, heat is transferred from the first fluid to the partition wall 7 forming the cell 5a, and then the partition wall 7 of this cell 5a The heat can be transferred to the outer peripheral wall 3 by sequentially following the partition walls 7 forming the cells 5. Thus, even if the first fluid flows without contacting the outer peripheral wall 3, heat can be reliably transmitted to the outer peripheral wall 3 by utilizing the heat conduction of the partition wall 7.

本実施形態の熱交換部材1では、例えば、図5中の破線の枠αで示した隔壁7(セル5bとセル5cとを隔てる隔壁7)に穴や亀裂が生じた場合、セル5bおよびセル5cを流れる第一の流体同士が混じり合うだけであるため、熱交換部材としての機能を損なう致命的な故障には進展しない。そのため、本実施形態の熱交換部材1では、変形例として、隔壁7を薄くしたり、隔壁7をねじれた形状にしたりなどの、より高い熱交換効率を実現可能な形態を適宜適用しやすい。   In the heat exchange member 1 of the present embodiment, for example, when a hole or a crack is generated in the partition wall 7 (the partition wall 7 separating the cell 5b and the cell 5c) indicated by a broken-line frame α in FIG. Since only the first fluids flowing through 5c are mixed with each other, it does not progress to a fatal failure that impairs the function as the heat exchange member. Therefore, in the heat exchange member 1 of the present embodiment, as a modification, it is easy to appropriately apply a form capable of realizing higher heat exchange efficiency such as making the partition wall 7 thin or making the partition wall 7 twisted.

さらに、本実施形態の熱交換部材1では、隔壁7は、梁として外周壁3を構造的に補強する役割も担う。こうして隔壁7が梁としての役割を果たすため、外周壁3には穴や亀裂が生じにくい。そのため、本実施形態の熱交換部材1では、第一の流体と第二の流体とを混合させてしまう致命的な故障を生じにくい。   Furthermore, in the heat exchange member 1 of the present embodiment, the partition wall 7 also serves to structurally reinforce the outer peripheral wall 3 as a beam. Thus, since the partition wall 7 serves as a beam, the outer peripheral wall 3 is less likely to have a hole or a crack. Therefore, in the heat exchange member 1 of this embodiment, it is hard to produce the fatal failure which mixes a 1st fluid and a 2nd fluid.

図6は、本実施形態の変形例の斜視図である。本変形例の熱交換部材100は、円筒形状の金属管40と、グラファイトシート45とを有する。図6では、金属管40の一部分を切除し、金属管40の内側にあるグラファイトシート45を露出させた状態とし、さらに、この露出させたグラファイトシート45の一部分を切除し、グラファイトシート45の内側にある外周壁3を露出させた状態として表している。図示されるように、本変形例では、グラファイトシート45により外周壁3を覆われた状態で、ハニカム構造体20を金属管40の内部に収めている。   FIG. 6 is a perspective view of a modification of the present embodiment. The heat exchange member 100 of this modification includes a cylindrical metal tube 40 and a graphite sheet 45. In FIG. 6, a part of the metal tube 40 is cut away to expose the graphite sheet 45 inside the metal tube 40, and further, a part of the exposed graphite sheet 45 is cut away to form an inner side of the graphite sheet 45. The outer peripheral wall 3 is exposed as shown in FIG. As shown in the figure, in this modification, the honeycomb structure 20 is housed inside the metal tube 40 with the outer peripheral wall 3 covered with the graphite sheet 45.

こうして外周壁3の周囲を金属管40の管壁で覆うことにより、外周壁3に破損が生じて、第一の流体が外周壁3の外部に漏出する場合があっても、漏出した第一の流体を金属管40の管壁で遮蔽し、第一の流体と第二の流体とを混合させてしまう事態を防ぐことができる。   By covering the periphery of the outer peripheral wall 3 with the tube wall of the metal tube 40 in this way, even if the outer peripheral wall 3 is damaged and the first fluid may leak out of the outer peripheral wall 3, the leaked first This fluid is shielded by the tube wall of the metal tube 40, and the situation where the first fluid and the second fluid are mixed can be prevented.

特に、図6に示された変形例のように、ハニカム構造体20の外周壁3と金属管40との間にグラファイトシート45を挟むことにより、外周壁3と金属管40との間の熱交換を良好にすることができる。外周壁3はセラミックスという材質の性質上、表面を完全に平滑することが困難な場合があり、こうした場合の外周壁3の表面には凹凸ができてしまう。こうした凹凸のある外周壁3を、グラファイトシート45を挟まずに金属管40の内部に収めると、外周壁3表面の凸部と金属管40とを所々で散在する形で接触させるにとどまり、外周壁3と金属管40との間で良好な熱伝導を行わせることが困難になる。外周壁3と金属管40との間にグラファイトシート45を挟み込むと、グラファイトシート45は変形可能なので、グラファイトシート45を外周壁3表面の凹部にも入り込ませて接触させることが可能になる。こうして、外周壁3および金属管40のそれぞれをグラファイトシート45と広範囲で接触させることができ、その結果、外周壁3−グラファイトシート45−金属管40間で、良好な熱伝導を行わせることが可能になる。   In particular, the heat between the outer peripheral wall 3 and the metal tube 40 is obtained by sandwiching the graphite sheet 45 between the outer peripheral wall 3 of the honeycomb structure 20 and the metal tube 40 as in the modification shown in FIG. Good exchange can be achieved. Due to the nature of the ceramic material, it may be difficult to completely smooth the surface of the outer peripheral wall 3, and the surface of the outer peripheral wall 3 in this case is uneven. When such an uneven outer peripheral wall 3 is placed inside the metal tube 40 without sandwiching the graphite sheet 45, the convex portions on the surface of the outer peripheral wall 3 and the metal tube 40 are only brought into contact with each other in a scattered manner. It becomes difficult to perform good heat conduction between the wall 3 and the metal tube 40. When the graphite sheet 45 is sandwiched between the outer peripheral wall 3 and the metal tube 40, the graphite sheet 45 can be deformed, so that the graphite sheet 45 can also enter the concave portion on the surface of the outer peripheral wall 3 to come into contact therewith. In this way, each of the outer peripheral wall 3 and the metal tube 40 can be brought into contact with the graphite sheet 45 in a wide range, and as a result, good heat conduction can be performed between the outer peripheral wall 3 -graphite sheet 45 and the metal tube 40. It becomes possible.

図7は、本実施形態の他の変形例の斜視図である。図示されるように、本変形例の熱交換部材150は、内部を空洞とされた四角柱状の外周壁3を有する。外周壁3の内部が隔壁7によって四角形の格子状に区画されることにより、複数のセル5が外周壁3の内部に形成されている。   FIG. 7 is a perspective view of another modification of the present embodiment. As shown in the figure, the heat exchange member 150 of the present modification has a square columnar outer peripheral wall 3 having a hollow inside. A plurality of cells 5 are formed inside the outer peripheral wall 3 by partitioning the inside of the outer peripheral wall 3 into a square lattice shape by the partition walls 7.

本変形例の熱交換部材150を軸方向に垂直な断面からみた場合、外周壁3の内部の断面形状は一辺の長さL(mm)の正方形である。そのため、本変形例では、外周壁3の軸方向に垂直な断面における外周壁3の内部の面積から算出される相当円の直径Dが2L/π1/2(mm)となる。When the heat exchange member 150 of this modification is viewed from a cross section perpendicular to the axial direction, the cross-sectional shape inside the outer peripheral wall 3 is a square having a side length L (mm). Therefore, in this modification, the diameter D of the equivalent circle calculated from the area inside the outer peripheral wall 3 in the cross section perpendicular to the axial direction of the outer peripheral wall 3 is 2L / π 1/2 (mm).

図8は、本発明の一実施形態の熱交換部材の一方の端部の拡大図である。図示されるように、本実施形態の熱交換部材210では、セル5の断面形状が正六角形(セルの断面形状が内角120度の多角形)になっている。セルの断面形状が鈍角の内角からなる多角形であることにより、隔壁7に生じる熱応力を緩和することができる。その結果、隔壁7におけるひびや割れなどの発生を抑制することができる。   FIG. 8 is an enlarged view of one end of the heat exchange member according to the embodiment of the present invention. As shown in the figure, in the heat exchange member 210 of the present embodiment, the cross-sectional shape of the cell 5 is a regular hexagon (a polygon having a cross-sectional shape of the cell of 120 degrees). When the cross-sectional shape of the cell is a polygon having an obtuse angle, the thermal stress generated in the partition wall 7 can be relaxed. As a result, the occurrence of cracks and cracks in the partition walls 7 can be suppressed.

図9は、本発明の一実施形態の熱交換部材の一方の端部の拡大図である。図示されるように、本実施形態の熱交換部材220では、隔壁7の一部に切れ込み31がある。隔壁7に切れ込み31があることにより、隔壁7に生じる熱応力を緩和することができ、その結果として隔壁7におけるひびや割れなどの発生を抑制することができる。特に、隔壁7の中で最も大きい熱応力が発生する箇所の近傍に切れ込み31を入れることにより、隔壁7に生じる熱応力をより効果的に緩和することができ、その結果、隔壁7におけるひびや割れなどの発生をより一層確実に抑制することが可能になる。   FIG. 9 is an enlarged view of one end of the heat exchange member according to the embodiment of the present invention. As shown in the figure, in the heat exchange member 220 of the present embodiment, there is a cut 31 in a part of the partition wall 7. The presence of the cut 31 in the partition wall 7 can relieve the thermal stress generated in the partition wall 7, and as a result, the occurrence of cracks and cracks in the partition wall 7 can be suppressed. In particular, by making a notch 31 in the vicinity of the portion of the partition wall 7 where the largest thermal stress is generated, the thermal stress generated in the partition wall 7 can be alleviated more effectively. It becomes possible to suppress generation | occurrence | production of a crack etc. still more reliably.

図10は、本発明の一実施形態の熱交換部材の断面図である。図示されるように、本実施形態の熱交換部材230では、外周壁3に切れ込み33がある。外周壁3に切れ込み33があることにより、外周壁3に生じる熱応力を緩和することができ、その結果として外周壁3におけるひびや割れなどの発生を抑制することができる。特に、図10に示した切れ込み33のように、外周壁3の中でも複数の隔壁7がちょうど交わっている箇所に切れ込み33を入れると、これら複数の隔壁7に生じた熱応力も緩和することが可能になるので好ましい。   FIG. 10 is a cross-sectional view of a heat exchange member according to an embodiment of the present invention. As shown in the figure, in the heat exchange member 230 of the present embodiment, there is a cut 33 in the outer peripheral wall 3. The presence of the cut 33 in the outer peripheral wall 3 can relieve thermal stress generated in the outer peripheral wall 3, and as a result, the occurrence of cracks and cracks in the outer peripheral wall 3 can be suppressed. In particular, as in the case of the notches 33 shown in FIG. 10, if the notches 33 are formed in the outer peripheral wall 3 where the plurality of partition walls 7 just intersect, the thermal stress generated in the plurality of partition walls 7 can be reduced. This is preferable because it becomes possible.

図11は、本発明の一実施形態の熱交換部材の断面図である。図示されるように、本実施形態の熱交換部材240では、外周壁3内部の中心部分の隔壁7が薄く、外周部分の隔壁7が厚い。外周壁3内部の中心部分の隔壁7が外周部分の隔壁7よりも薄い場合には、中心部分の隔壁7で生じる熱応力を小さくすることができる。その結果、中心部分の隔壁7におけるひびや割れなどの発生を抑制することが可能になる。その一方で、外周部分の隔壁7では、中心部分よりも厚さがあるので、大きな熱応力を生じる恐れがある。しかし、外周部分の隔壁7は、隔壁7と外周壁3との結合部分から近いため、外周壁3により強度を補強されている。そのため、外周部分の隔壁7でも、ひびや割れなどの発生が抑制される。   FIG. 11 is a cross-sectional view of a heat exchange member according to an embodiment of the present invention. As shown in the figure, in the heat exchange member 240 of the present embodiment, the partition wall 7 in the central part inside the outer peripheral wall 3 is thin, and the partition wall 7 in the outer peripheral part is thick. When the partition wall 7 in the center portion inside the outer peripheral wall 3 is thinner than the partition wall 7 in the outer periphery portion, the thermal stress generated in the partition wall 7 in the center portion can be reduced. As a result, it is possible to suppress the occurrence of cracks and cracks in the partition wall 7 in the central portion. On the other hand, the partition wall 7 at the outer peripheral portion is thicker than the central portion, and thus there is a risk of generating a large thermal stress. However, since the partition wall 7 in the outer peripheral portion is close to the coupling portion between the partition wall 7 and the outer peripheral wall 3, the strength is reinforced by the outer peripheral wall 3. Therefore, the occurrence of cracks and cracks is also suppressed in the partition wall 7 in the outer peripheral portion.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(1)熱交換部材
(坏土の作製)
まず、平均粒径45μmのSiC粉末70質量%と平均粒径35μmのSiC粉末10質量%と平均粒径5μmのSiC粉末20質量%とを混ぜ合わせて、SiC粉末の混合物を調製した。このSiC粉末の混合物100質量部に、バインダー4質量部、水を混ぜ合わせ、ニーダーを用いて混練することにより、混練物を得た。この混練物を真空土練機に投入し、円柱状の坏土を作製した。
(1) Heat exchange member (preparation of clay)
First, 70% by mass of SiC powder having an average particle size of 45 μm, 10% by mass of SiC powder having an average particle size of 35 μm, and 20% by mass of SiC powder having an average particle size of 5 μm were mixed to prepare a mixture of SiC powders. 100 parts by mass of this SiC powder mixture was mixed with 4 parts by mass of binder and water, and kneaded using a kneader to obtain a kneaded product. This kneaded material was put into a vacuum kneader to produce a columnar clay.

(押出成形)
次に、坏土を押出成形してハニカム成形体を形成した。押出成形では、適当な形態の口金や治具を選択することにより、外周壁の形状や厚さ、隔壁の厚さ、セルの形状、セル密度などを所望のものにした。口金は、摩耗し難い超硬合金で作られたものを用いた。ハニカム成形体については、外周壁を円筒形状または中空の四角柱形状とし、外周壁の内部を隔壁により四角形の格子状に区分された構造となるように形成した。また、これらの隔壁については、互いに直交する方向のそれぞれで等間隔に並行し、かつ、真っすぐに外周壁の内部を横切るように形成した。これにより、外周壁の内部の最外周部以外にあるセルの断面形状を正方形にした。
(Extrusion molding)
Next, the kneaded material was extruded to form a honeycomb formed body. In extrusion molding, the shape and thickness of the outer peripheral wall, the thickness of the partition walls, the shape of the cells, the cell density, and the like were made desired by selecting an appropriate form of die and jig. The base was made of a hard metal that does not easily wear. The honeycomb molded body was formed such that the outer peripheral wall was formed into a cylindrical shape or a hollow quadrangular prism shape, and the inside of the outer peripheral wall was divided into a square lattice shape by partition walls. Further, these partition walls were formed so as to be parallel to each other at equal intervals in the directions orthogonal to each other and to traverse the inside of the outer peripheral wall straight. Thereby, the cross-sectional shape of the cell other than the outermost peripheral portion inside the outer peripheral wall was made square.

(乾燥)
次に、押出成形により得たハニカム成形体の乾燥を行った。まず、ハニカム成形体を電磁波加熱方式で乾燥し、続いて、外部加熱方式で乾燥を行った。こうした二段階の乾燥により、乾燥前のハニカム成形体に含まれる全水分量の97%以上に相当する水分をハニカム成形体から除去した。
(Dry)
Next, the honeycomb formed body obtained by extrusion molding was dried. First, the honeycomb formed body was dried by an electromagnetic heating method, and subsequently dried by an external heating method. By such two-stage drying, moisture corresponding to 97% or more of the total moisture contained in the honeycomb formed body before drying was removed from the honeycomb formed body.

(脱脂、Si金属の含浸および焼成)
次に、ハニカム成形体に対して窒素雰囲気で500℃、5時間の脱脂を行った。さらに、こうした脱脂により得られたハニカム構造体の上に金属Siの塊を載せ、真空中または減圧の不活性ガス中で、1450℃、4時間、焼成をした。この焼成中に、ハニカム構造体の上に載せた金属Siの塊を融解させ、外周壁や隔壁に金属Siを含浸させた。外周壁や隔壁の熱伝導率を100W/m・Kにする場合には、ハニカム構造体100質量部に対して70質量部の金属Siの塊を使用した。また、外周壁や隔壁の熱伝導率を150W/m・Kにする場合には、ハニカム構造体100質量部に対して80質量部の金属Siの塊を使用した。こうした焼成を経て、熱交換部材を得た。なお、熱交換部材のより詳細な形態などに関しては、以下で、各実施例および各比較例を個別に説明する際に述べる。
(Degreasing, impregnation and firing of Si metal)
Next, the honeycomb formed body was degreased at 500 ° C. for 5 hours in a nitrogen atmosphere. Furthermore, a lump of metal Si was placed on the honeycomb structure obtained by such degreasing and fired at 1450 ° C. for 4 hours in an inert gas under vacuum or reduced pressure. During the firing, the lump of metal Si placed on the honeycomb structure was melted, and the outer peripheral wall and partition walls were impregnated with metal Si. When the thermal conductivity of the outer peripheral wall and the partition walls was set to 100 W / m · K, a mass of 70 parts by mass of metal Si was used with respect to 100 parts by mass of the honeycomb structure. Further, when the thermal conductivity of the outer peripheral wall and partition walls was set to 150 W / m · K, 80 parts by mass of metal Si mass was used with respect to 100 parts by mass of the honeycomb structure. Through such firing, a heat exchange member was obtained. In addition, about the more detailed form of a heat exchange member, it mentions when demonstrating each Example and each comparative example separately below.

(実施例1〜8、比較例1,2)
図1に示されたものと基本的に同じ構造とされた、円筒形状の外周壁を有する熱交換部材を製造した。具体的には、全長100mm、外周壁の厚さTが1.0mm、隔壁の厚さtが0.5mm、セル密度24セル/cm、外周壁および隔壁の熱伝導率150W/m・Kであり、外周壁の内部の面積から算出される相当円の直径D(ここでは外周壁の内径と同じ)が表1に示したものとされた熱交換部材を製造した。
(Examples 1-8, Comparative Examples 1 and 2)
A heat exchange member having a cylindrical outer peripheral wall having a structure basically the same as that shown in FIG. 1 was manufactured. Specifically, the total length is 100 mm, the outer peripheral wall thickness T is 1.0 mm, the partition wall thickness t is 0.5 mm, the cell density is 24 cells / cm 2 , and the outer wall and partition wall thermal conductivity is 150 W / m · K. Thus, a heat exchange member having an equivalent circle diameter D (here, the same as the inner diameter of the outer peripheral wall) calculated from the area inside the outer peripheral wall as shown in Table 1 was manufactured.

Figure 0005819838
Figure 0005819838

(実施例9〜22、比較例3〜10)
図1に示されたものと基本的に同じ構造とされた、円筒形状の外周壁を有する熱交換部材を製造した。具体的には、全長100mm、外周壁の内部の面積から算出される相当円の直径D(ここでは外周壁の内径と同じ)が45mm、セル密度24セル/cm、外周壁および隔壁の熱伝導率150W/m・Kであり、外周壁の厚さTおよび隔壁の厚さtが表2に示したものである熱交換部材を製造した。
(Examples 9-22, Comparative Examples 3-10)
A heat exchange member having a cylindrical outer peripheral wall having a structure basically the same as that shown in FIG. 1 was manufactured. Specifically, the total length is 100 mm, the diameter D of the equivalent circle calculated from the area inside the outer peripheral wall (here, the same as the inner diameter of the outer peripheral wall) is 45 mm, the cell density is 24 cells / cm 2 , and the heat of the outer peripheral wall and the partition wall A heat exchange member having a conductivity of 150 W / m · K, the outer peripheral wall thickness T and the partition wall thickness t shown in Table 2 was manufactured.

Figure 0005819838
Figure 0005819838

(実施例23〜36、比較例11〜17)
図1に示されたものと基本的に同じ構造とされた、円筒形状の外周壁を有する熱交換部材を製造した。具体的には、全長100mm、外周壁の内部の面積から算出される相当円の直径D(ここでは外周壁の内径と同じ)が45mm、セル密度24セル/cm、外周壁および隔壁の熱伝導率100W/m・Kであり、外周壁の厚さTおよび隔壁の厚さtが表3に示したものとされた熱交換部材を製造した。
(Examples 23 to 36, Comparative Examples 11 to 17)
A heat exchange member having a cylindrical outer peripheral wall having a structure basically the same as that shown in FIG. 1 was manufactured. Specifically, the total length is 100 mm, the diameter D of the equivalent circle calculated from the area inside the outer peripheral wall (here, the same as the inner diameter of the outer peripheral wall) is 45 mm, the cell density is 24 cells / cm 2 , and the heat of the outer peripheral wall and the partition wall A heat exchange member having a conductivity of 100 W / m · K and having the outer peripheral wall thickness T and the partition wall thickness t shown in Table 3 was manufactured.

Figure 0005819838
Figure 0005819838

(実施例37〜44、比較例18,19)
図7に示されたものと基本的に同じ構造とされた、四角柱形状の外周壁を有する熱交換部材を製造した。具体的には、全長100mm、外周壁の厚さTが1.0mm、隔壁の厚さtが0.5mm、セル密度24セル/cm、外周壁および隔壁の熱伝導率150W/m・Kであり、外周壁の内部の面積から算出される相当円の直径Dが表4に示したものである熱交換部材を製造した。なお、熱交換部材を軸方向に垂直な断面からみた場合における外周壁の内部の断面を正方形とし、その一辺の長さを表4に示した値にした。
(Examples 37 to 44, Comparative Examples 18 and 19)
A heat exchange member having a quadrangular prism-shaped outer peripheral wall having basically the same structure as that shown in FIG. 7 was manufactured. Specifically, the total length is 100 mm, the outer peripheral wall thickness T is 1.0 mm, the partition wall thickness t is 0.5 mm, the cell density is 24 cells / cm 2 , and the outer wall and partition wall thermal conductivity is 150 W / m · K. Thus, a heat exchange member in which the diameter D of the equivalent circle calculated from the area inside the outer peripheral wall is as shown in Table 4 was manufactured. In addition, when the heat exchange member was seen from a cross section perpendicular to the axial direction, the cross section inside the outer peripheral wall was a square, and the length of one side was set to the value shown in Table 4.

Figure 0005819838
Figure 0005819838

(2)熱交換器
上述した各実施例および各比較例の熱交換部材をケーシング内に収容することにより、熱交換器(図3に示したものと基本的に同じ構造の熱交換器)を作製した。ケーシングについては、熱交換部材の外周壁とケーシングの壁面との隙間が各部で1mmとなるような形状のものを用いた。すなわち、円筒形状の外周壁を有する熱交換部材については、円筒形状のケーシングに収容した(実施例1〜36、比較例1〜17)。四角柱形状の外周壁を有する熱交換部材については、直方体箱型のケーシングに収容した(実施例37〜44、比較例18,19)。なお、各実施例および各比較例につき10個ずつの熱交換器を作製し、これら10個の熱交換器について下記の熱交換試験などを実施した。
(2) Heat exchanger By housing the heat exchange members of the above-described embodiments and comparative examples in the casing, a heat exchanger (a heat exchanger having basically the same structure as that shown in FIG. 3) can be obtained. Produced. About the casing, the thing of the shape where the clearance gap between the outer peripheral wall of a heat exchange member and the wall surface of a casing becomes 1 mm in each part was used. That is, about the heat exchange member which has a cylindrical outer peripheral wall, it accommodated in the cylindrical casing (Examples 1-36, Comparative Examples 1-17). About the heat exchange member which has a square pillar-shaped outer peripheral wall, it accommodated in the rectangular parallelepiped box type casing (Examples 37-44, Comparative Examples 18 and 19). In addition, ten heat exchangers were produced for each example and each comparative example, and the following heat exchange tests and the like were performed on these ten heat exchangers.

(3)熱交換試験
上述した熱交換器において、窒素ガスを第一の流体とし、水を第二の流体として用いて、熱交換試験を行った。窒素ガスの温度は500℃、流量は20g/s、水の流量は5L/minに設定した。また、熱交換試験は、窒素ガスの出口温度(熱交換部材の出口側の端部から排出直後の窒素ガスの温度)、および水の出口温度(ケーシングの出口を通過する際の水の温度)が安定化することを確認して実施した。
(3) Heat Exchange Test In the heat exchanger described above, a heat exchange test was performed using nitrogen gas as the first fluid and water as the second fluid. The temperature of nitrogen gas was set to 500 ° C., the flow rate was set to 20 g / s, and the flow rate of water was set to 5 L / min. In addition, the heat exchange test includes the nitrogen gas outlet temperature (the temperature of the nitrogen gas immediately after being discharged from the end on the outlet side of the heat exchange member) and the water outlet temperature (the temperature of water when passing through the outlet of the casing). Was confirmed to stabilize.

熱交換部材の入口側の端部に流入直前の第一の流体の温度を「入口ガス温」、熱交換部材の出口側の端部から排出直後の第一の流体の温度を「出口ガス温」として計測した。また、ケーシングの入口を通過する水の温度を「入口水温」として計測した。これらの温度から、熱交換効率(%)を下記式にて算出した。結果を表1〜4に示す。
熱交換効率(%)=(入口ガス温−出口ガス温)/(入口ガス温−入口水温)×100
The temperature of the first fluid immediately before flowing into the end portion on the inlet side of the heat exchange member is “inlet gas temperature”, and the temperature of the first fluid immediately after discharge from the end portion on the outlet side of the heat exchange member is “outlet gas temperature”. Was measured. The temperature of water passing through the inlet of the casing was measured as “inlet water temperature”. From these temperatures, the heat exchange efficiency (%) was calculated by the following formula. The results are shown in Tables 1-4.
Heat exchange efficiency (%) = (inlet gas temperature−outlet gas temperature) / (inlet gas temperature−inlet water temperature) × 100

(4)圧力損失の測定
上述した熱交換試験において、熱交換部材の前後に位置する窒素ガスの流路内に、それぞれ圧力計を配置した。これらの圧力計の測定値から得られた差圧から、熱交換部材内(セル内)を流れる窒素ガスの圧力損失を測定した。各実施例および各比較例について、合計10個の熱交換器で測定された圧力損失の平均値を表1〜4に示す。
(4) Measurement of pressure loss In the heat exchange test mentioned above, the pressure gauge was each arranged in the channel of nitrogen gas located before and behind the heat exchange member. The pressure loss of nitrogen gas flowing in the heat exchange member (in the cell) was measured from the differential pressure obtained from the measured values of these pressure gauges. About each Example and each comparative example, the average value of the pressure loss measured with the total 10 heat exchangers is shown to Tables 1-4.

(5)破損の検査
各実施例および各比較例について、上述したように合計10個の熱交換器を作製して熱交換試験を行った後、これら10個の熱交換器のそれぞれから熱交換部材を取り出し、隔壁や外周壁における破損の有無を観察した。合計10個の熱交換部材のうちで、破損を生じていた熱交換部材の個数を表1〜4に示す。
(5) Inspection of breakage About each Example and each comparative example, after producing a total of 10 heat exchangers as described above and conducting a heat exchange test, heat exchange from each of these 10 heat exchangers The member was taken out, and the presence or absence of breakage in the partition walls or the outer peripheral wall was observed. Tables 1 to 4 show the number of heat exchange members that were damaged among the total 10 heat exchange members.

(6)アイソスタティック強度試験
熱交換部材の外周壁に、厚さ0.5mmのウレタンゴム製のシートを巻き付け、更に、熱交換部材の両端部の上に、円形のウレタンゴム製のシートを間に挟ませて、厚さ20mmのアルミニウム製の板を配置した。アルミニウム製の板およびウレタンゴム製のシートは、熱交換部材の端部と同一の形状および同一の大きさのものを用いた(例えば、外周壁が円筒形状、すなわち端部の形状が円の場合には、アルミニウム製の円板を用いた)。さらに、アルミニウム製の板の外周に沿ってビニールテープで巻くことにより、アルミニウム製の板の外周とウレタンゴム製のシートとの間を封止して、試験用サンプルを得た。次に、試験用サンプルを、水を満たした圧力容器内に入れた。続いて、圧力容器内の水圧を0.3〜3.0MPa/分の速度で20MPaまで上昇させ、熱交換部材に破壊が生じたときの水圧を計測した。熱交換部材に破壊が生じたときの水圧を表1〜4に示す。なお、水圧20MPaでも破壊が生じない場合、表1〜4中では「>20」と表記した。また、熱交換部材に破壊が生じたときの水圧が1.0MPa超の場合、アイソスタティック強度を「可」[表1〜4中では丸(○)で示す]と判定し、熱交換部材に破壊が生じたときの水圧が1.0MPa以下の場合、アイソスタティック強度を「不可」[表1〜4中ではクロス(×)で示す]と判定した。
(6) Isostatic strength test A 0.5 mm thick urethane rubber sheet is wrapped around the outer wall of the heat exchange member, and a circular urethane rubber sheet is placed on both ends of the heat exchange member. An aluminum plate having a thickness of 20 mm was disposed between the two. The aluminum plate and urethane rubber sheet had the same shape and size as the end of the heat exchange member (for example, the outer peripheral wall is cylindrical, that is, the end is circular) (The aluminum disk was used for this). Furthermore, the test sample was obtained by sealing between the outer periphery of an aluminum board, and the urethane rubber sheet | seat by winding with a vinyl tape along the outer periphery of an aluminum board. The test sample was then placed in a pressure vessel filled with water. Subsequently, the water pressure in the pressure vessel was increased to 20 MPa at a rate of 0.3 to 3.0 MPa / min, and the water pressure when the heat exchange member was broken was measured. Tables 1 to 4 show the water pressure when the heat exchange member breaks. In addition, when destruction did not occur even at a water pressure of 20 MPa, it was described as “> 20” in Tables 1 to 4. Further, when the water pressure when the heat exchange member breaks is more than 1.0 MPa, it is determined that the isostatic strength is “possible” [indicated by circles (◯) in Tables 1 to 4], and the heat exchange member When the water pressure when fracture occurred was 1.0 MPa or less, the isostatic strength was determined to be “impossible” [indicated by a cross (×) in Tables 1 to 4].

(7)総合評価
「圧力損失70kPa以下」、「アイソスタティック強度1.0MPa超」、という2つの条件を満たす場合、総合評価を「可」と判定した[表1〜4中では丸(○)で示す]。また、上記の2つの条件のうち1つの条件でも満たさないものがある場合、総合評価を「不可」と判定した[表1〜4中ではクロス(×)で示す]。
(7) Comprehensive evaluation When satisfying the two conditions of “pressure loss of 70 kPa or less” and “isostatic strength exceeding 1.0 MPa”, the comprehensive evaluation was determined as “possible” [circles (◯) in Tables 1 to 4]. Indicated by]. In addition, when there is a condition that does not satisfy even one of the above two conditions, the comprehensive evaluation is determined to be “impossible” [in Tables 1 to 4, indicated by a cross (×)].

本発明は、熱交換器に装着して使用する熱交換部材として利用できる。   The present invention can be used as a heat exchange member used by being mounted on a heat exchanger.

1:熱交換部材、3:外周壁、4:外周面、5,5a〜5c:セル、7:隔壁、9,9a,9b:端部、11:ケーシング、13:(第二の流体の)入口、15:(第二の流体の)出口、17:(第二の流体の)流路、19:壁、20:ハニカム構造体、21:熱交換器、23a,23b:管、31:(隔壁の)切れ込み、33:(外周壁の)切れ込み、40:金属管、45:グラファイトシート、100,150,210,220,230,240:熱交換部材。 1: heat exchange member, 3: outer peripheral wall, 4: outer peripheral surface, 5, 5a to 5c: cell, 7: partition wall, 9, 9a, 9b: end, 11: casing, 13: (second fluid) Inlet, 15: (second fluid) outlet, 17: (second fluid) flow path, 19: wall, 20: honeycomb structure, 21: heat exchanger, 23a, 23b: pipe, 31: ( Notches of partition walls, 33: Notches of (outer peripheral wall), 40: Metal tube, 45: Graphite sheet, 100, 150, 210, 220, 230, 240: Heat exchange member.

Claims (5)

金属Siを含浸したSi含浸SiCを主成分とするセラミックスからなる気孔率が10%以下の筒形状の外周壁と、
前記外周壁の内部において第一の流体の流路となる複数のセルを区画形成し、金属Siを含浸したSi含浸SiCを主成分とするセラミックスからなる気孔率が10%以下の隔壁と、を有し、
前記外周壁および前記隔壁が、前記外周壁の前記内部を流れる前記第一の流体と前記外周壁の外部を流れる第二の流体との間の熱交換を介在するとともに、
前記外周壁の厚さT、前記外周壁の軸方向に垂直な断面における前記外周壁の前記内部の面積から算出される相当円の直径D、および前記隔壁の厚さtが下記式(1)〜(3)を満たし、
前記外周壁及び前記隔壁における前記金属Siの含有量とSiCの含有量の総和に対する前記金属Siの含有量の割合[金属Si含有量/(金属Si含有量+SiC含有量)]が0.25〜0.5である熱交換部材。
式(1):0.3mm≦T≦4.0mm
式(2):15mm≦D≦120mm
式(3):0.04×T≦t≦0.6mm
A cylindrical outer peripheral wall having a porosity of 10% or less, made of ceramics mainly composed of Si-impregnated SiC impregnated with metal Si;
A partition wall having a porosity of 10% or less made of ceramics mainly composed of Si-impregnated SiC impregnated with metal Si, which defines a plurality of cells serving as flow paths for the first fluid in the outer peripheral wall. Have
The outer peripheral wall and the partition wall intervene heat exchange between the first fluid flowing inside the outer peripheral wall and a second fluid flowing outside the outer peripheral wall;
The thickness T of the outer peripheral wall, the diameter D of the equivalent circle calculated from the inner area of the outer peripheral wall in the cross section perpendicular to the axial direction of the outer peripheral wall, and the thickness t of the partition wall are expressed by the following formula (1). It meets to (3),
The ratio of the metal Si content to the sum of the metal Si content and the SiC content in the outer peripheral wall and the partition wall [metal Si content / (metal Si content + SiC content)] is 0.25 to 0.25. A heat exchange member that is 0.5 .
Formula (1): 0.3 mm <= T <= 4.0mm
Formula (2): 15 mm ≦ D ≦ 120 mm
Formula (3): 0.04 × T ≦ t ≦ 0.6 mm
前記外周壁の厚さT、前記外周壁の軸方向に垂直な断面における前記外周壁の前記内部の面積から算出される相当円の直径D、および前記隔壁の厚さtが下記式(4)〜(6)を満たす請求項1に記載の熱交換部材。
式(4):0.5mm≦T≦4.0mm
式(5):30mm≦D≦60mm
式(6):0.04×T≦t≦0.6mm
The thickness T of the outer peripheral wall, the diameter D of the equivalent circle calculated from the inner area of the outer peripheral wall in the cross section perpendicular to the axial direction of the outer peripheral wall, and the thickness t of the partition wall are expressed by the following formula (4). The heat exchange member according to claim 1 satisfying (6).
Formula (4): 0.5 mm ≦ T ≦ 4.0 mm
Formula (5): 30 mm ≦ D ≦ 60 mm
Formula (6): 0.04 * T <= t <= 0.6mm
前記セルの断面形状が鈍角から構成される多角形である請求項1または2に記載の熱交換部材。   The heat exchange member according to claim 1 or 2, wherein the cross-sectional shape of the cell is a polygon composed of an obtuse angle. 前記外周壁および前記隔壁のうちの少なくとも一方が緻密質である請求項1〜3のいずれか一項に記載の熱交換部材。   The heat exchange member according to any one of claims 1 to 3, wherein at least one of the outer peripheral wall and the partition wall is dense. 前記第一の流体と前記第二の流体とを隔てるように設けられるとともに、前記第一の流体と前記第二の流体との間での熱交換可能に前記外周壁を被覆する被覆部材を有する請求項1〜4のいずれか一項に記載の熱交換部材。   A covering member is provided so as to separate the first fluid and the second fluid, and covers the outer peripheral wall so that heat can be exchanged between the first fluid and the second fluid. The heat exchange member according to any one of claims 1 to 4.
JP2012536568A 2010-09-29 2011-09-29 Heat exchange member Active JP5819838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536568A JP5819838B2 (en) 2010-09-29 2011-09-29 Heat exchange member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010219475 2010-09-29
JP2010219475 2010-09-29
PCT/JP2011/072454 WO2012043758A1 (en) 2010-09-29 2011-09-29 Heat exchanging member
JP2012536568A JP5819838B2 (en) 2010-09-29 2011-09-29 Heat exchange member

Publications (2)

Publication Number Publication Date
JPWO2012043758A1 JPWO2012043758A1 (en) 2014-02-24
JP5819838B2 true JP5819838B2 (en) 2015-11-24

Family

ID=45893195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012536568A Active JP5819838B2 (en) 2010-09-29 2011-09-29 Heat exchange member

Country Status (4)

Country Link
US (1) US20130213620A1 (en)
EP (1) EP2623917B1 (en)
JP (1) JP5819838B2 (en)
WO (1) WO2012043758A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070826A (en) * 2012-09-28 2014-04-21 Ngk Insulators Ltd Heat exchange member and heat exchanger
WO2014125570A1 (en) * 2013-02-12 2014-08-21 トヨタ自動車株式会社 Control device for internal combustion engine
TW201510461A (en) 2013-06-11 2015-03-16 漢洛克半導體公司 Heat exchanger
JP6324150B2 (en) * 2013-07-23 2018-05-16 日本碍子株式会社 Heat exchange member and ceramic structure
WO2015182553A1 (en) * 2014-05-28 2015-12-03 京セラ株式会社 Flow channel member, and heat exchanger and semiconductor module each using same
WO2016017697A1 (en) * 2014-07-29 2016-02-04 京セラ株式会社 Heat exchanger
US10112271B2 (en) * 2015-03-26 2018-10-30 Hamilton Sundstrand Corporation Compact heat exchanger
JP6761424B2 (en) * 2015-10-23 2020-09-23 日本碍子株式会社 Exhaust heat recovery device
JP6562861B2 (en) 2016-03-25 2019-08-21 日本碍子株式会社 Honeycomb structure
JP6678991B2 (en) * 2016-03-31 2020-04-15 日本碍子株式会社 Heat storage member
JP6763699B2 (en) * 2016-06-06 2020-09-30 イビデン株式会社 Manufacturing method of honeycomb structure
DE112018000203T5 (en) * 2018-01-05 2019-09-05 Ngk Insulators, Ltd. Heat exchange element, heat exchanger and heat exchanger with cleaning device
CN109688764B (en) * 2018-12-21 2020-07-24 华为数字技术(苏州)有限公司 Machine cabinet
JP7169923B2 (en) * 2019-03-27 2022-11-11 日本碍子株式会社 Heat exchanger
CN111750705B (en) * 2019-03-28 2022-04-29 日本碍子株式会社 Flow path structure of heat exchanger and heat exchanger
US11521832B2 (en) 2020-01-10 2022-12-06 COMET Technologies USA, Inc. Uniformity control for radio frequency plasma processing systems
US11605527B2 (en) 2020-01-20 2023-03-14 COMET Technologies USA, Inc. Pulsing control match network
US20220275740A1 (en) * 2021-02-26 2022-09-01 Ngk Insulators, Ltd. Heat exchange member, heat exchanger and heat conductive member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110189A (en) * 1978-02-17 1979-08-29 Ngk Insulators Ltd Ceramic honeycomb structure
JPS59186621A (en) * 1983-04-05 1984-10-23 Ngk Insulators Ltd Porous body
JPS6124997A (en) * 1984-07-12 1986-02-03 Ngk Insulators Ltd Heat exchanging body made of ceramics
JPS629183A (en) * 1985-07-04 1987-01-17 Kyocera Corp Honeycomb heat exchanger
JPH01169992U (en) * 1988-05-09 1989-11-30
WO2002011884A1 (en) * 2000-08-03 2002-02-14 Ngk Insulators, Ltd. Ceramic honeycomb structure
JP2002350092A (en) * 2001-05-28 2002-12-04 Kawasaki Heavy Ind Ltd Heat exchanger and gas turbine apparatus provided therewith
JP2004059361A (en) * 2002-07-26 2004-02-26 National Institute Of Advanced Industrial & Technology Porous heat-resistant silicon carbide structural material and its manufacturing process
JP2009190950A (en) * 2008-02-18 2009-08-27 Toshiba Corp Silicon carbide composite material and method for producing the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042738A (en) * 1975-07-28 1977-08-16 Corning Glass Works Honeycomb structure with high thermal shock resistance
FR2378250A1 (en) * 1977-01-25 1978-08-18 Kovacs Andre SUPERIMPOSED BLOCK HEAT EXCHANGER WITH CHANNEL DRILLS
JPS54150406A (en) * 1978-05-18 1979-11-26 Nippon Soken Ceramic honeycomb structure
JPS5946495A (en) * 1982-09-10 1984-03-15 Toshiba Ceramics Co Ltd Heat exchanger of silicon carbide
JPS5946494A (en) * 1982-09-10 1984-03-15 Toshiba Ceramics Co Ltd Heat exchanger of silicon carbide
JP2703727B2 (en) * 1994-09-21 1998-01-26 日本碍子株式会社 Si-impregnated SiC-based honeycomb structure and honeycomb-shaped regenerator using the same
US5952079A (en) * 1996-08-07 1999-09-14 Denso Corporation Ceramic honeycomb structure and method of production thereof
EP0935058A3 (en) * 1998-02-06 2000-09-06 Isuzu Ceramics Research Institute Co., Ltd. Radiators and soundproofing engine enclosure designs
JP3777895B2 (en) * 1999-08-11 2006-05-24 株式会社デンソー Ceramic honeycomb structure
JP5052717B2 (en) * 2001-05-02 2012-10-17 日本碍子株式会社 Honeycomb structure, and honeycomb filter and converter system using the same
WO2003008165A1 (en) * 2001-07-13 2003-01-30 Ngk Insulators, Ltd. Honeycomb structural body, honeycomb filter, and method of manufacturing the structural body and the filter
JP5189236B2 (en) * 2001-07-25 2013-04-24 日本碍子株式会社 Exhaust gas purification honeycomb structure and exhaust gas purification honeycomb catalyst body
JP3960933B2 (en) * 2003-03-18 2007-08-15 日本碍子株式会社 High thermal conductive heat dissipation material and method for manufacturing the same
JP4381207B2 (en) * 2004-03-31 2009-12-09 株式会社東芝 Process for producing reaction sintered silicon carbide structure
JP2005308306A (en) * 2004-04-22 2005-11-04 Isolite Insulating Products Co Ltd Heat exchanger made out of recrystallized silicon carbide and its manufacturing method
WO2007119498A1 (en) * 2006-03-15 2007-10-25 Toyota Jidosha Kabushiki Kaisha Honeycomb structure body composed of a plurality of hexagonal cells
JP5144075B2 (en) * 2006-03-30 2013-02-13 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
JP4966887B2 (en) * 2008-02-14 2012-07-04 日本碍子株式会社 Plasma reactor and plasma reactor
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
JP5758811B2 (en) * 2009-12-11 2015-08-05 日本碍子株式会社 Heat exchanger
KR101191806B1 (en) * 2012-02-20 2012-10-16 한국기계연구원 Heat-dissipating substrate and fabricating method of the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110189A (en) * 1978-02-17 1979-08-29 Ngk Insulators Ltd Ceramic honeycomb structure
JPS59186621A (en) * 1983-04-05 1984-10-23 Ngk Insulators Ltd Porous body
JPS6124997A (en) * 1984-07-12 1986-02-03 Ngk Insulators Ltd Heat exchanging body made of ceramics
JPS629183A (en) * 1985-07-04 1987-01-17 Kyocera Corp Honeycomb heat exchanger
JPH01169992U (en) * 1988-05-09 1989-11-30
WO2002011884A1 (en) * 2000-08-03 2002-02-14 Ngk Insulators, Ltd. Ceramic honeycomb structure
JP2002350092A (en) * 2001-05-28 2002-12-04 Kawasaki Heavy Ind Ltd Heat exchanger and gas turbine apparatus provided therewith
JP2004059361A (en) * 2002-07-26 2004-02-26 National Institute Of Advanced Industrial & Technology Porous heat-resistant silicon carbide structural material and its manufacturing process
JP2009190950A (en) * 2008-02-18 2009-08-27 Toshiba Corp Silicon carbide composite material and method for producing the same

Also Published As

Publication number Publication date
EP2623917B1 (en) 2018-12-12
JPWO2012043758A1 (en) 2014-02-24
EP2623917A4 (en) 2017-05-17
US20130213620A1 (en) 2013-08-22
WO2012043758A1 (en) 2012-04-05
EP2623917A1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5819838B2 (en) Heat exchange member
US9534856B2 (en) Heat exchanger
JP6324150B2 (en) Heat exchange member and ceramic structure
US10619938B2 (en) Heat exchange member
US9739540B2 (en) Heat conduction member
US9759157B2 (en) Heat/acoustic wave conversion unit
JP6467284B2 (en) Water recovery equipment
US20200309464A1 (en) Heat exchanger
KR102442585B1 (en) Heat transfer enhancement pipe and pyrolysis furnace comprising same, atmospheric and vacuum furnace
US9869303B2 (en) Heat/acoustic wave conversion component and heat/acoustic wave conversion unit
JP6158687B2 (en) Heat exchange member
US9759201B2 (en) Heat/acoustic wave conversion component and heat/acoustic wave conversion unit
JP5872178B2 (en) Heat exchange member
US20200309471A1 (en) Flow path structure of heat exchanger, and heat exchanger
US9765760B2 (en) Heat/acoustic wave conversion component and heat/acoustic wave conversion unit
US9777714B2 (en) Heat/acoustic wave conversion component and heat/acoustic wave conversion unit
JP2012077944A (en) Heat exchange member and method of manufacturing the same
WO2015133381A1 (en) Heat regenerator
RU2457417C1 (en) Metal heat pipe of flat type
JP2013011428A (en) Heat exchange member
JP6992790B2 (en) Exhaust gas purification filter
WO2015133380A1 (en) Heat storing device
JP2020165634A (en) Flow passage structure for heat exchanger and heat exchanger
JP2023140155A (en) Method and apparatus for producing multiple shrink-fitting members

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151001

R150 Certificate of patent or registration of utility model

Ref document number: 5819838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150