JP6324150B2 - Heat exchange member and ceramic structure - Google Patents
Heat exchange member and ceramic structure Download PDFInfo
- Publication number
- JP6324150B2 JP6324150B2 JP2014063056A JP2014063056A JP6324150B2 JP 6324150 B2 JP6324150 B2 JP 6324150B2 JP 2014063056 A JP2014063056 A JP 2014063056A JP 2014063056 A JP2014063056 A JP 2014063056A JP 6324150 B2 JP6324150 B2 JP 6324150B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- heat exchange
- honeycomb structure
- partition
- outer peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Ceramic Products (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
本発明は、第一の流体と第二の流体との熱交換を行うことができる、セラミックス構造体を用いた熱交換部材に関する。 The present invention relates to a heat exchange member using a ceramic structure capable of performing heat exchange between a first fluid and a second fluid.
自動車の燃費改善のため、エンジンなどの燃焼排ガスなどの高温気体から熱回収して有効利用する排熱回収の技術や、排ガスをエンジンの吸気側に再循環させる際に排ガスを冷却する排気冷却の技術が求められている。 In order to improve the fuel efficiency of automobiles, exhaust heat recovery technology that recovers heat effectively from high-temperature gas such as engine combustion exhaust gas and exhaust cooling that cools exhaust gas when it is recirculated to the intake side of the engine Technology is required.
そのような技術に用いられる熱交換器として、特許文献1に示されるようなセラミックス製ハニカム構造体を用いた熱交換器が知られている。 As a heat exchanger used in such a technique, a heat exchanger using a ceramic honeycomb structure as shown in Patent Document 1 is known.
一方、非特許文献1によると、排ガス中の有害物質を低減できることで注目されているCNGエンジンでは、未燃メタンが主な汚染物質であり、メタンの浄化のために350〜400℃の高い温度まで排ガスを暖め、触媒を活性化させる必要がある。そのため、コールドスタート時に触媒を素早く温度上昇させられる技術が求められている。中でもメタン燃焼後の高温ガスを利用し、燃焼前の低温ガスを暖めることができるガス/ガス熱交換器が求められている。 On the other hand, according to Non-Patent Document 1, unburned methane is the main pollutant in the CNG engine that is attracting attention because it can reduce harmful substances in exhaust gas, and a high temperature of 350 to 400 ° C. is required for the purification of methane. It is necessary to warm the exhaust gas and activate the catalyst. Therefore, there is a need for a technique that can quickly raise the temperature of the catalyst during a cold start. In particular, there is a need for a gas / gas heat exchanger that can use a high-temperature gas after methane combustion to warm the low-temperature gas before combustion.
そのようなガス/ガス熱交換器の構造例として、特許文献1には、ハニカム構造体の外周面にフィンを有した構造が挙げられている。しかしながら、気体の熱伝達係数は液体よりも10分の1から100分の1程度と小さいため熱の授受に必要な比表面積を大きくする必要があるが、信頼性上、フィンの長さには限界が有り、性能向上には大きな課題があった。 As an example of the structure of such a gas / gas heat exchanger, Patent Document 1 discloses a structure having fins on the outer peripheral surface of a honeycomb structure. However, since the heat transfer coefficient of gas is as small as 1/10 to 1/100 that of liquid, it is necessary to increase the specific surface area required for heat transfer. There was a limit and there was a big problem in performance improvement.
また、ガス/ガス熱交換器の構造例の2つ目として、非特許文献2、特許文献2には、ハニカム構造体の端面部に目封じされた列を設け、目封じされた列に関して外周面に開口部を有したスロット構造が挙げられている。しかしながらこの構造では、第一、第二の流体の流路がともに高圧力損失(以下、圧力損失を圧損ということがある)となりやすく、1列毎の交互に各流体流路が存在するためシールの信頼性が低いといった課題があった。また、構造が複雑なため、構造強度が弱いこと、加工が困難であるといった課題もあった。 Further, as a second example of the structure of the gas / gas heat exchanger, Non-Patent Document 2 and Patent Document 2 are provided with a row sealed in the end surface portion of the honeycomb structure, and the outer circumference of the plugged row is A slot structure having an opening on the surface is mentioned. However, in this structure, both the first and second fluid flow paths are likely to have a high pressure loss (hereinafter, pressure loss may be referred to as pressure loss). There was a problem that the reliability of was low. In addition, since the structure is complicated, there is a problem that the structural strength is weak and the processing is difficult.
本発明の課題は、低圧力損失で、第一の流体と第二の流体との間で効率よく熱交換することのできる熱交換部材、およびセラミックス構造体を提供することにある。特に、気体と気体との間の熱交換に好適である熱交換部材、およびセラミックス構造体を提供する。 An object of the present invention is to provide a heat exchange member and a ceramic structure capable of efficiently exchanging heat between a first fluid and a second fluid with low pressure loss. In particular, a heat exchange member and a ceramic structure that are suitable for heat exchange between gases are provided.
本発明者らは、第一の流体をセラミックス構造体の中心部分にあるセル及び/又は三次元網目構造部に流通させ、第二の流体を外周部分にあるセルに流通させることにより、上記課題を解決できることを見出した。本発明によれば、以下の熱交換部材、およびセラミックス構造体が提供される。 The present inventors distribute the first fluid to the cell and / or the three-dimensional network structure portion in the central portion of the ceramic structure, and distribute the second fluid to the cell in the outer peripheral portion, thereby It was found that can be solved. According to the present invention, the following heat exchange member and ceramic structure are provided.
[1] 第一の流体の流路である第一流体流通部となる2×2列以上のセルを区画形成する隔壁及び/又は連通気孔を有する三次元網目構造部と、その外周に中間壁を介して第二の流体の流路である第二流体流通部となる複数のセルを区画形成する隔壁及び/又は前記三次元網目構造部と、さらにその外周に外周壁と、を有し、前記第二の流体が外部から前記第二流体流通部に流入するための流入部、および前記第二流体流通部に流入した前記第二の流体を前記外部に排出する排出部が前記外周壁の一部に少なくとも1対以上設けられた、セラミックスを主成分とするセラミックス構造体を備え、前記第二の流体の前記流入部、または前記排出部は、前記セラミックス構造体の前記外周壁の一部、および、前記隔壁及び/又は前記三次元網目構造部の一部が形成されずに括れた形状の括れ部として構成され、前記括れ部は、前記セラミックス構造体の軸方向における端部に形成されず、前記端部以外に形成され、前記端部には、前記外周壁、および、前記隔壁及び/又は前記三次元網目構造部が形成されている、前記第一の流体と前記第二の流体とを混合させずに、前記第一流体流通部と前記第二流体流通部との間に存在する隔壁を介して熱交換可能な熱交換部材。 [1] A three-dimensional network structure part having partition walls and / or continuous air holes that partition and form cells of 2 × 2 rows or more serving as a first fluid flow part that is a flow path of the first fluid, and an intermediate wall on the outer periphery thereof A partition and / or the three-dimensional network structure section that partitions and forms a plurality of cells serving as a second fluid flow section that is a flow path of the second fluid, and an outer peripheral wall on the outer periphery thereof, An inflow portion for allowing the second fluid to flow into the second fluid circulation portion from the outside, and a discharge portion for discharging the second fluid flowing into the second fluid circulation portion to the outside are provided on the outer peripheral wall. A ceramic structure mainly composed of ceramics provided at least in one or more pairs is provided, and the inflow portion or the discharge portion of the second fluid is a part of the outer peripheral wall of the ceramic structure. And the partition and / or the three-dimensional network structure The constricted portion is formed as a constricted portion that is constricted without forming a part of the portion, and the constricted portion is not formed at an end portion in the axial direction of the ceramic structure, and is formed at a portion other than the end portion, and the end portion In the first fluid circulation part , the outer peripheral wall and the partition wall and / or the three-dimensional network structure part are formed without mixing the first fluid and the second fluid. And a heat exchange member capable of exchanging heat through a partition existing between the second fluid circulation portion.
[2] 前記セラミックス構造体の外周の少なくとも一部に金属管が嵌合した前記[1]に記載の熱交換部材。 [2] The heat exchange member according to [1], wherein a metal tube is fitted to at least a part of the outer periphery of the ceramic structure.
[3] 前記金属管と前記セラミックス構造体との間に挟まれた、前記金属管よりもヤング率が低い材質からなる中間材を備える前記[2]に記載の熱交換部材。 [3] The heat exchange member according to [2], further including an intermediate member that is sandwiched between the metal tube and the ceramic structure and is made of a material having a Young's modulus lower than that of the metal tube.
[4] 前記第二の流体の前記流入部、または前記排出部は、前記三次元網目構造部で構成されている前記[1]〜[3]のいずれかに記載の熱交換部材。 [4] The heat exchange member according to any one of [1] to [3], wherein the inflow portion or the discharge portion of the second fluid is configured by the three-dimensional network structure portion.
[5] 前記括れ部が形成された部分における前記第一流体流通部の全体の、軸方向に垂直な断面形状は、四角、または円である前記[1]〜[4]のいずれかに記載の熱交換部材。 [ 5 ] The cross-sectional shape perpendicular to the axial direction of the entire first fluid circulation portion in the portion where the constricted portion is formed is a square or a circle, according to any one of [ 1 ] to [4]. Heat exchange member.
[6] 前記第一流体流通部と前記第二流体流通部との間に存在する隔壁である前記中間壁の少なくとも一部が他の隔壁より厚みが厚くなっている前記[1]〜[5]のいずれかに記載の熱交換部材。 [ 6 ] [1] to [ 5 ] wherein at least a part of the intermediate wall which is a partition existing between the first fluid circulation part and the second fluid circulation part is thicker than other partition walls. ] The heat exchange member in any one of.
[7] 前記第一の流体と前記第二の流体が混合しないように、前記セラミックス構造体の前記第二流体流通部の両端部に、遮蔽板が配置されている前記[1]〜[6]のいずれかに記載の熱交換部材。 [ 7 ] Said [1]-[ 6 ] where a shielding board is arranged at both ends of said 2nd fluid circulation part of said ceramic structure so that said 1st fluid and said 2nd fluid may not be mixed. ] The heat exchange member in any one of.
[8] 前記第一の流体と前記第二の流体が混合しないように、前記セラミックス構造体の前記第二流体流通部の一部の開口部に目封じが施されている前記[1]〜[6]のいずれかに記載の熱交換部材。 [ 8 ] The [1] to [1], wherein a part of the second fluid circulation portion of the ceramic structure is sealed so that the first fluid and the second fluid are not mixed. [ 6 ] The heat exchange member according to any one of [ 6 ].
[9] 前記セラミックス構造体は、熱伝導率が100W/(m・K)以上である前記[1]〜[8]のいずれかに記載の熱交換部材。 [ 9 ] The heat exchange member according to any one of [1] to [ 8 ], wherein the ceramic structure has a thermal conductivity of 100 W / (m · K) or more.
[10] 前記セラミックス構造体は、主成分が炭化珪素である前記[1]〜[9]のいずれかに記載の熱交換部材。 [ 10 ] The heat exchange member according to any one of [1] to [ 9 ], wherein the ceramic structure includes silicon carbide as a main component.
[11] 前記三次元網目構造部は、熱伝導率が100W/(m・K)以上である前記[1]〜[10]のいずれかに記載の熱交換部材。 [ 11 ] The heat exchange member according to any one of [1] to [ 10 ], wherein the three-dimensional network structure has a thermal conductivity of 100 W / (m · K) or more.
[12] 前記三次元網目構造部は、主成分が炭化珪素である前記[1]〜[11]のいずれかに記載の熱交換部材。 [ 12 ] The heat exchange member according to any one of [1] to [ 11 ], wherein the three-dimensional network structure portion includes silicon carbide as a main component.
[13] 隔壁を有し、前記隔壁によって一方の端面から他方の端面まで貫通する複数のセルが区画形成され、さらに前記隔壁の外周に外周壁を有するハニカム構造体であり、前記複数のセルのうちの、径方向における中心部分にある前記セルを囲んで前記中心部分にある前記セルと、残余の外周部分にある前記セルとに区分し、かつ前記隔壁よりも厚い中間壁を備え、主成分が炭化珪素、熱伝導率が100W/(m・K)以上であり、前記径方向において前記中間壁よりも外周部分に前記隔壁が形成されていない括れ部が、軸方向において離間して少なくとも2つ設けられ、前記括れ部は、前記ハニカム構造体の軸方向における端部に形成されず、前記端部以外に形成され、前記端部には、前記外周壁、および前記隔壁が形成されているハニカム構造体であるセラミックス構造体。 [13] A honeycomb structure having partition walls, wherein a plurality of cells penetrating from one end surface to the other end surface are partitioned by the partition walls , and further having an outer peripheral wall on an outer periphery of the partition walls . Among them, the cell in the central portion in the radial direction is divided into the cell in the central portion and the cell in the remaining outer peripheral portion, and has an intermediate wall thicker than the partition, Is a silicon carbide, and has a thermal conductivity of 100 W / (m · K) or more, and a constricted portion in which the partition wall is not formed in the outer peripheral portion of the radial wall in the radial direction is spaced apart in the axial direction by at least 2 The constricted portion is not formed at an end portion in the axial direction of the honeycomb structure, but is formed at a portion other than the end portion, and the outer peripheral wall and the partition wall are formed at the end portion. Hani A ceramic structure that is a cam structure.
[14] 前記括れ部は、括れ部分の断面積が、他の部分の断面積を基準にして0.2倍以上、0.8倍以下の断面積である前記[13]に記載のセラミックス構造体。 [ 14 ] The ceramic structure according to [ 13], wherein the constricted portion has a cross-sectional area of the constricted portion of 0.2 to 0.8 times the cross-sectional area of the other portion. body.
[15] 前記中間壁の厚さが、他の前記隔壁を基準として1.2〜15倍である前記[13]または[14]に記載のセラミックス構造体。 [ 15 ] The ceramic structure according to [ 13 ] or [ 14], wherein the thickness of the intermediate wall is 1.2 to 15 times based on the other partition walls.
熱交換部材は、セラミックス構造体を備え、セラミックス構造体は、第二の流体が外部から第二流体流通部に流入するための流入部、および第二流体流通部に流入した第二の流体を外部に排出する排出部が、外周壁の一部に少なくとも1対以上設けられている。これにより、熱交換部材は、第一の流体をセラミックス構造体の中心部分にあるセル及び/又は三次元網目構造部に流通させ、第二の流体を外周部分にあるセル及び/又は三次元網目構造部に流通させることができる。そして、第一の流体と第二の流体とを混合させずに、第一流体流通部と第二流体流通部との間に存在する隔壁を介して熱交換させることができる。 The heat exchange member includes a ceramic structure, and the ceramic structure includes an inflow portion for allowing the second fluid to flow into the second fluid circulation portion from the outside, and a second fluid that has flowed into the second fluid circulation portion. At least one pair of discharge portions for discharging to the outside is provided on a part of the outer peripheral wall. As a result, the heat exchange member causes the first fluid to flow through the cell and / or the three-dimensional network structure portion in the central portion of the ceramic structure, and the second fluid flows to the cell and / or the three-dimensional network in the outer peripheral portion. It can be distributed to the structure part. And heat exchange can be carried out via the partition which exists between a 1st fluid circulation part and a 2nd fluid circulation part, without mixing a 1st fluid and a 2nd fluid.
以下、図面を参照しつつ本発明の実施形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.
(第一の実施形態)
(熱交換部材)
まずは、セラミックス構造体30としてハニカム構造体1を備えた熱交換部材10を第一の実施形態として説明し、後に三次元網目構造部11を含むセラミックス構造体30について説明する。図1Aに、本発明の熱交換部材10の、軸方向9に平行な面で切断した断面図、図1Bに軸方向9の一方の端面2から見た模式図を示す。また、図2Aは、括れ部16が形成されたセラミックス構造体30であるハニカム構造体1を示す斜視図であり、図2Bは、括れ部16が形成されたハニカム構造体1に金属管12を嵌合させた熱交換部材10を示す斜視図である。なお、図1A,1Bと、図2Bとは、排出部15の向きが異なって描かれている。
(First embodiment)
(Heat exchange member)
First, the heat exchange member 10 including the honeycomb structure 1 as the ceramic structure 30 will be described as a first embodiment, and the ceramic structure 30 including the three-dimensional network structure portion 11 will be described later. FIG. 1A is a cross-sectional view of the heat exchange member 10 of the present invention cut along a plane parallel to the axial direction 9, and FIG. 1B is a schematic diagram viewed from one end face 2 in the axial direction 9. 2A is a perspective view showing the honeycomb structure 1 which is the ceramic structure 30 in which the constricted portion 16 is formed, and FIG. 2B is a perspective view of the honeycomb structure 1 in which the constricted portion 16 is formed. It is a perspective view which shows the heat exchange member 10 made to fit. 1A and 1B and FIG. 2B are drawn with the direction of the discharge portion 15 being different.
熱交換部材10は、第一の流体の流路である第一流体流通部5となる2×2列以上のセル3を区画形成する隔壁4と、その外周に第二の流体の流路である第二流体流通部6となる複数のセル3を区画形成する隔壁4と、さらにその外周に外周壁7と、を有するハニカム構造体1を備える。ハニカム構造体1は、第二の流体が外部から第二流体流通部6に流入するための流入部14、および第二流体流通部6に流入した第二の流体を外部に排出する排出部15が、外周壁7の一部に少なくとも1対以上設けられている。また、ハニカム構造体1は、セラミックスを主成分とする。なお、主成分とは、ハニカム構造体1の50質量%以上がセラミックスであることを意味する。 The heat exchanging member 10 includes a partition wall 4 that partitions and forms 2 × 2 or more rows of cells 3 to be the first fluid circulation part 5 that is a first fluid channel, and a second fluid channel on the outer periphery thereof. A honeycomb structure 1 having a partition wall 4 for partitioning a plurality of cells 3 to be a second fluid circulation part 6 and an outer peripheral wall 7 on the outer periphery thereof is provided. The honeycomb structure 1 includes an inflow portion 14 for allowing the second fluid to flow into the second fluid circulation portion 6 from the outside, and a discharge portion 15 for discharging the second fluid that has flowed into the second fluid circulation portion 6 to the outside. However, at least one pair or more is provided on a part of the outer peripheral wall 7. The honeycomb structure 1 is mainly composed of ceramics. The main component means that 50% by mass or more of the honeycomb structure 1 is ceramic.
熱交換部材10は、ハニカム構造体1の外周の少なくとも一部に金属管12が嵌合していることが好ましい。図1Aでは、ハニカム構造体1の軸方向9の長さよりも金属管12の長さが長く、ハニカム構造体1は、金属管12の中に収まっている。熱交換部材10は、金属管12を備えるため、設置場所や設置方法により加工することが容易であり、自由度が高い。熱交換部材10は、金属管12によってハニカム構造体1を保護することができ外部からの衝撃にも強い。 In the heat exchange member 10, it is preferable that a metal tube 12 is fitted to at least a part of the outer periphery of the honeycomb structure 1. In FIG. 1A, the length of the metal tube 12 is longer than the length of the honeycomb structure 1 in the axial direction 9, and the honeycomb structure 1 is accommodated in the metal tube 12. Since the heat exchange member 10 includes the metal tube 12, it can be easily processed according to the installation location and the installation method, and has a high degree of freedom. The heat exchange member 10 can protect the honeycomb structure 1 by the metal tube 12 and is resistant to external impact.
熱交換部材10は、金属管12とハニカム構造体1との間に挟まれた、金属管12よりもヤング率が低い材質からなる中間材13を備えることが好ましい。中間材13を備えることにより、金属管12とハニカム構造体1との密着性が向上する。これにより、金属管12とハニカム構造体1との間のシール性が良好となり、金属管に振動が加わった際、中間材が衝撃を吸収し、ハニカム構造体に衝撃が伝わりにくくなる。 The heat exchange member 10 is preferably provided with an intermediate material 13 made of a material having a Young's modulus lower than that of the metal tube 12 sandwiched between the metal tube 12 and the honeycomb structure 1. By providing the intermediate member 13, the adhesion between the metal tube 12 and the honeycomb structure 1 is improved. Thereby, the sealing property between the metal tube 12 and the honeycomb structure 1 is improved, and when the vibration is applied to the metal tube, the intermediate material absorbs the shock and the impact is hardly transmitted to the honeycomb structure.
また、図1Aに示す実施形態では、第一の流体と第二の流体が混合しないように、ハニカム構造体1の第二流体流通部6の両端部2に、遮蔽板17が配置されている。 Further, in the embodiment shown in FIG. 1A, shielding plates 17 are arranged at both end portions 2 of the second fluid circulation portion 6 of the honeycomb structure 1 so that the first fluid and the second fluid are not mixed. .
以上の構成により、熱交換部材10は、第一の流体と第二の流体とを混合させずに、第一流体流通部5と第二流体流通部6との間に存在する隔壁4を介して熱交換が可能である。以下、さらに詳しく説明する。 With the above configuration, the heat exchange member 10 does not mix the first fluid and the second fluid, and the partition wall 4 that exists between the first fluid circulation part 5 and the second fluid circulation part 6 is interposed. Heat exchange. This will be described in more detail below.
(ハニカム構造体)
図2Aは、括れ部16が形成されたハニカム構造体1を示す斜視図、図3Aは、ハニカム構造体1の端面2の実施形態を示す模式図、図3Bは、ハニカム構造体1の端面2の他の実施形態を示す模式図である。
(Honeycomb structure)
2A is a perspective view showing the honeycomb structure 1 in which the constricted portion 16 is formed, FIG. 3A is a schematic view showing an embodiment of the end face 2 of the honeycomb structure 1, and FIG. 3B is an end face 2 of the honeycomb structure 1. It is a schematic diagram which shows other embodiment.
ハニカム構造体1は、隔壁4を有し、隔壁4によって一方の第一の端面2aから他方の第二の端面2bまで貫通する複数のセル3が区画形成されている。複数のセル3のうちの、径方向における中心部分にあるセル3を囲んで中心部分にあるセル3と、残余の外周部分にあるセル3とに区分し、かつ隔壁4よりも厚い中間壁8を備えることが好ましい。なお、中間壁8は、第一流体流通部5と第二流体流通部6との間に存在する隔壁をいい、中間壁8以外の隔壁4と厚さが同じ場合でも中間壁8と呼ぶこととする。 The honeycomb structure 1 has partition walls 4, and a plurality of cells 3 penetrating from one first end surface 2 a to the other second end surface 2 b are partitioned by the partition walls 4. Among the plurality of cells 3, an intermediate wall 8 that surrounds the cell 3 in the central portion in the radial direction and is divided into a cell 3 in the central portion and a cell 3 in the remaining outer peripheral portion and is thicker than the partition wall 4. It is preferable to provide. The intermediate wall 8 refers to a partition existing between the first fluid circulation part 5 and the second fluid circulation part 6, and is referred to as the intermediate wall 8 even when the partition walls 4 other than the intermediate wall 8 have the same thickness. And
第一流体流通部5となる中心壁8よりも中心部のセル3が、2×2列以上のセル3で構成されている。2×2列以上のセル3とは、第一流体流通部5が、縦2列以上、横2列以上のセル構造を有するということである。これにより、第一の流体と隔壁4との間で熱を効率よく伝達することができる。 The cells 3 at the center of the center wall 8 serving as the first fluid circulation part 5 are composed of cells 3 in 2 × 2 rows or more. The cells 3 of 2 × 2 rows or more means that the first fluid circulation part 5 has a cell structure of 2 rows or more in the vertical direction and 2 rows or more in the horizontal direction. Thereby, heat can be efficiently transferred between the first fluid and the partition 4.
ハニカム構造体1の外形は、円筒状(円柱状)に限らず、軸(長手)方向9に垂直な断面が楕円形状、円弧が複合されたオーバル形状、四角形、またはその他の多角形の、角柱状であってもよい。隔壁4を有することにより、ハニカム構造体1の内部を流通する流体からの熱を効率よく集熱し、伝達することができる。ハニカム構造体1が円柱状の場合、その直径は、200mm以下であることが好ましく、100mm以下であることがさらに好ましい。 The external shape of the honeycomb structure 1 is not limited to a cylindrical shape (columnar shape), but an elliptical cross section perpendicular to the axial (longitudinal) direction 9, an oval shape in which arcs are combined, a square shape, or other polygonal shape It may be columnar. By having the partition walls 4, heat from the fluid flowing through the inside of the honeycomb structure 1 can be efficiently collected and transmitted. When the honeycomb structure 1 is cylindrical, the diameter is preferably 200 mm or less, and more preferably 100 mm or less.
ハニカム構造体1の主成分は、セラミックスを主成分とすることが好ましく、主成分が炭化珪素であることがより好ましい。ここで、主成分とは、50質量%以上を占めるものをいう。さらに、ハニカム構造体1は、熱伝導率が100W/(m・K)以上であることが好ましい。このようなハニカム構造体1は、熱伝導性が良好なため、熱交換部材10として好適である。熱伝導率の測定は、ハニカム構造体から切り出したテストピースに対して、光交流法で測定した熱拡散率、DSC(Differen−tial Scanning Calorimetry:示差走査熱量分析)法で測定した比熱、及びアルキメデス法で測定した密度、の値を用いて、室温における値を算出する。 The main component of the honeycomb structure 1 is preferably composed mainly of ceramics, more preferably silicon carbide. Here, a main component means what occupies 50 mass% or more. Furthermore, the honeycomb structure 1 preferably has a thermal conductivity of 100 W / (m · K) or more. Such a honeycomb structure 1 is suitable as the heat exchange member 10 because of its good thermal conductivity. The thermal conductivity was measured for a test piece cut out from the honeycomb structure by a thermal diffusivity measured by an optical alternating current method, a specific heat measured by a DSC (Differen-tial Scanning Calorimetry) method, and Archimedes. The value at room temperature is calculated using the value of density measured by the method.
熱交換部材10のハニカム構造体1に形成された、第二の流体の流入部14、または排出部15は、ハニカム構造体1の外周壁7の一部、および隔壁4の一部を形成しないことによって形成されている。流入部14、排出部15は、括れた形状の括れ部16として構成されている。すなわち、ハニカム構造体1は、径方向において中間壁8よりも外周部分の隔壁4が形成されていない括れ部16が、少なくとも2つ設けられている。括れ部16として流入部14、排出部15が形成されていることから、第二の流体を第二流体流通部6へ流入させ、また第二流体流通部6から排出(流出)させることができる。第二流体流通部6に複数のセル3が形成されていても容易に第二の流体を流通させることができる。 The second fluid inflow portion 14 or discharge portion 15 formed in the honeycomb structure 1 of the heat exchange member 10 does not form part of the outer peripheral wall 7 and part of the partition walls 4 of the honeycomb structure 1. It is formed by. The inflow portion 14 and the discharge portion 15 are configured as a constricted portion 16 having a constricted shape. That is, the honeycomb structure 1 is provided with at least two constricted portions 16 in which the partition walls 4 are not formed in the outer peripheral portion of the intermediate wall 8 in the radial direction. Since the inflow portion 14 and the discharge portion 15 are formed as the constricted portion 16, the second fluid can be caused to flow into the second fluid circulation portion 6 and discharged (outflow) from the second fluid circulation portion 6. . Even if the plurality of cells 3 are formed in the second fluid circulation portion 6, the second fluid can be easily circulated.
括れ部16が形成された部分における第一流体流通部5の全体の、軸方向9に垂直な断面形状は、四角、または円に形成することができる。例えば、図2Aでは、第一流体流通部5の全体の、軸方向9に垂直な断面形状は、円として形成されており、第二流体流通部6も円として形成されている。 The cross-sectional shape perpendicular to the axial direction 9 of the entire first fluid circulation portion 5 in the portion where the constricted portion 16 is formed can be formed into a square or a circle. For example, in FIG. 2A, the cross-sectional shape perpendicular to the axial direction 9 of the entire first fluid circulation part 5 is formed as a circle, and the second fluid circulation part 6 is also formed as a circle.
括れ部16の断面形状は、ハニカム構造体1の軸方向9に対して垂直な断面において、括れ部分で形作られる形状が円となっていることが好ましいが(図2A参照)、四角形状となっていてもよい。 The cross-sectional shape of the constricted portion 16 is preferably a quadrilateral shape although the shape formed at the constricted portion is preferably a circle in the cross section perpendicular to the axial direction 9 of the honeycomb structure 1 (see FIG. 2A). It may be.
括れ部16の断面形状は、ハニカム構造体1の軸方向9に平行な断面において、図4Aに示すように、括れ部分で形作られる形状が三角形となるよりも、長方形(図4B)、台形(外周側の辺が大)(図4C)となることが好ましく、さらに括れ部分の角部がピン角(先端が尖っている角)になっていないこと(図4D)が好ましい。 As shown in FIG. 4A, the cross-sectional shape of the constricted portion 16 is a rectangle (FIG. 4B), a trapezoid (as shown in FIG. 4A, rather than a triangular shape formed in the constricted portion in a cross section parallel to the axial direction 9 of the honeycomb structure 1. It is preferable that the outer peripheral side is large) (FIG. 4C), and it is preferable that the corner portion of the constricted portion is not a pin angle (corner with a sharp tip) (FIG. 4D).
括れ部16は、軸方向9において離間して形成されていることが好ましい。また、括れ部16は、ハニカム構造体1の軸方向9における端部に形成されず、端部以外に形成され、端部には、外周壁7、および隔壁4が形成されていることが好ましい。すなわち、図1Aに示すように、括れ部16は、最端部ではなく、それよりも軸方向9の中央寄りに形成されている。括れ部16の位置は、括れ始める位置La(図4B参照)が、ハニカム構造体1の端面2から2mm以上50mm以下が好ましく、5mm以上30mm以下さらに好ましい。このように形成することにより、耐久信頼性を向上させることができる。 The constricted portion 16 is preferably formed so as to be separated in the axial direction 9. Further, it is preferable that the constricted portion 16 is not formed at the end portion in the axial direction 9 of the honeycomb structure 1 but is formed at a portion other than the end portion, and the outer peripheral wall 7 and the partition wall 4 are formed at the end portion. . That is, as shown in FIG. 1A, the constricted portion 16 is not the endmost portion, but is formed closer to the center in the axial direction 9 than that. The position La (see FIG. 4B) of the constricted portion 16 is preferably 2 mm or more and 50 mm or less, more preferably 5 mm or more and 30 mm or less from the end face 2 of the honeycomb structure 1. By forming in this way, durability reliability can be improved.
ハニカム構造体1の軸方向9における括れ部16の長さLb(図4B参照)は、3mm以上50mm以下が好ましく、5mm以上30mm以下がさらに好ましい。ここでいう括れ部16の長さLbは、ハニカム構造体1の軸方向9に平行な断面において括れ部16の最も長い部分の長さをいう。 The length Lb (see FIG. 4B) of the constricted portion 16 in the axial direction 9 of the honeycomb structure 1 is preferably 3 mm to 50 mm, and more preferably 5 mm to 30 mm. Here, the length Lb of the constricted portion 16 refers to the length of the longest portion of the constricted portion 16 in the cross section parallel to the axial direction 9 of the honeycomb structure 1.
括れ部16は、括れ部分の断面積が、他の部分の断面積を基準にして0.2倍以上、0.8倍以下の断面積であることが好ましい。 The constricted portion 16 preferably has a cross-sectional area of the constricted portion of 0.2 to 0.8 times the cross-sectional area of the other portion.
括れ部16の最大深さLc(図4B参照)は、括れ箇所以外(端面2等)の半径に対し、10%以上50%以下の深さであることが好ましく、20%以上40%以下の深さであることがさらに好ましい。 The maximum depth Lc (see FIG. 4B) of the constricted portion 16 is preferably 10% or more and 50% or less, and preferably 20% or more and 40% or less, with respect to the radius other than the constricted portion (end face 2 etc.) More preferably, it is a depth.
図1Aに示すように、第一の流体の流路である第一流体流通部5となる複数のセル3と、その外周に第二の流体の流路である第二流体流通部6となる複数のセル3と、を有するハニカム構造体1に、括れ部16として形成された流入部14、排出部15を設けることにより、第一流体流通部5、第二流体流通部6における圧力損失を低下させることができる。例えば、図12では、第一流体流通部5と第二流体流通部6が、一列ごとに交互に形成されているが、このようなスロット構造の場合、第一の流体、第二の流体の流路入口の入口面積が小さくなるため圧力損失が大きくなる。しかしながら、図1Aに示すような熱交換部材10は、第一流体流通部5と第二流体流通部6が、一列ごとに交互に形成されているわけではなく、入口面積が大きいため、圧力損失が小さい。 As shown in FIG. 1A, a plurality of cells 3 serving as a first fluid circulation part 5 serving as a first fluid flow path and a second fluid circulation part 6 serving as a second fluid flow path on the outer periphery thereof. By providing the inflow part 14 and the discharge part 15 formed as the constricted part 16 in the honeycomb structure 1 having a plurality of cells 3, the pressure loss in the first fluid circulation part 5 and the second fluid circulation part 6 is reduced. Can be reduced. For example, in FIG. 12, the first fluid circulation part 5 and the second fluid circulation part 6 are alternately formed for each row. In such a slot structure, the first fluid and the second fluid Since the inlet area of the channel inlet is reduced, the pressure loss is increased. However, in the heat exchanging member 10 as shown in FIG. 1A, the first fluid circulation part 5 and the second fluid circulation part 6 are not alternately formed in each row, and the pressure loss is large because the inlet area is large. Is small.
また、スロット構造では1層おきに第一の流体と第二の流体の界面が存在するため、流体同士のシール性を確保する(ガス漏れ防ぐ)には、全体の隔壁4の厚さを厚くする必要が有る。それに対し、本構造では第一の流体と第二の流体の界面がハニカム構造体1内で限定されるため、シール性を確保するにはその部分の隔壁4(中間壁8)の厚みだけ厚くすればよい。 In the slot structure, since the interface between the first fluid and the second fluid exists every other layer, the entire partition wall 4 is made thick in order to ensure the sealing property between the fluids (prevent gas leakage). There is a need to do. On the other hand, in this structure, since the interface between the first fluid and the second fluid is limited within the honeycomb structure 1, the thickness of the partition wall 4 (intermediate wall 8) is increased in order to ensure sealing performance. do it.
さらに、スロット構造では、1層おきに第一の流体、第二の流体の流路が存在するため、部材内での一定距離あたりの温度差が大きく発生応力が大きくなり易い。またハニカム構造体1の内部で複雑な構造を形成しているため構造強度を確保しづらい。一方、本構造では第一の流体、第二の流体の流路が、それぞれハニカム構造体1の中心部と外周部に区分けされているため、一定距離あたりの温度差、発生応力を小さくできる(温度差が大きくなる流体界面には隔壁4の厚さを厚くし構造強度を上げることも可能)。また構造がシンプルなため構造強度が高くなる。 Further, in the slot structure, since the flow paths of the first fluid and the second fluid exist every other layer, the temperature difference per fixed distance within the member is large and the generated stress tends to increase. Further, since a complicated structure is formed inside the honeycomb structure 1, it is difficult to ensure the structural strength. On the other hand, in this structure, the flow paths of the first fluid and the second fluid are divided into the central portion and the outer peripheral portion of the honeycomb structure 1, respectively, so that the temperature difference per unit distance and the generated stress can be reduced ( It is also possible to increase the structural strength by increasing the thickness of the partition wall 4 at the fluid interface where the temperature difference increases. Moreover, since the structure is simple, the structural strength is increased.
また、スロット構造ではハニカム構造体1を押出成形した後、第一の流体、第二の流体のシール性を確保するためにスロット部分の加工に精密さが要求される一方、本構造では第二流体流通部6の出入り口部分に加工が必要となるものの、その加工自体(外周削除)は容易に成し遂げられる。 In addition, in the slot structure, after the honeycomb structure 1 is extruded, precision is required for the processing of the slot portion in order to ensure the sealing performance of the first fluid and the second fluid. Although processing is required at the entrance / exit part of the fluid circulation part 6, the processing itself (peripheral deletion) can be easily achieved.
第一流体流通部5と第二流体流通部6との間に存在する隔壁である中間壁8の少なくとも一部が他の隔壁4より厚みが厚くなっていることが好ましい。図3Aでは、隔壁4の厚さtaよりも中間壁の厚さtbが厚くなっている。より具体的には、ハニカム構造体1の中間壁8の厚さtbは、他の隔壁4を基準として1.2〜15倍であることが好ましい。このように構成することにより、耐圧性を向上させ、シール性を確保し、第一の流体と第二の流体とが混合することなく、熱交換することができる。 It is preferable that at least a part of the intermediate wall 8, which is a partition wall existing between the first fluid circulation part 5 and the second fluid circulation part 6, is thicker than the other partition walls 4. In Figure 3A, the thickness t b of the intermediate wall is thicker than the thickness t a of the partition wall 4. More specifically, the thickness t b of the intermediate wall 8 of the honeycomb structure 1 is preferably 1.2 to 15 times based on the other partition walls 4. By comprising in this way, pressure resistance can be improved, sealing performance can be ensured, and heat exchange can be performed without mixing the first fluid and the second fluid.
ハニカム構造体1は、熱伝導率が100W/(m・K)以上であることが好ましい。より好ましくは、120〜300W/(m・K)、さらに好ましくは、150〜300W/(m・K)である。この範囲とすることにより、熱伝導性が良好となり、第一の流体と第二の流体との間で効率的に熱交換させることができる。 The honeycomb structure 1 preferably has a thermal conductivity of 100 W / (m · K) or more. More preferably, it is 120-300 W / (m * K), More preferably, it is 150-300 W / (m * K). By setting it as this range, heat conductivity becomes favorable and it is possible to efficiently exchange heat between the first fluid and the second fluid.
ハニカム構造体1は、耐熱性に優れるセラミックスを用いることが好ましく、特に伝熱性を考慮すると、熱伝導性が高いSiC(炭化珪素)が主成分であることが好ましい。なお、主成分とは、ハニカム構造体1の50質量%以上が炭化珪素であることを意味する。 The honeycomb structure 1 is preferably made of ceramics having excellent heat resistance, and considering heat conductivity in particular, it is preferable that SiC (silicon carbide) having high thermal conductivity is a main component. The main component means that 50% by mass or more of the honeycomb structure 1 is silicon carbide.
ただし、必ずしもハニカム構造体1の全体がSiC(炭化珪素)で構成されている必要はなく、SiC(炭化珪素)が本体中に含まれていれば良い。すなわち、ハニカム構造体1は、SiC(炭化珪素)を含むセラミックスからなるものであることが好ましい。 However, it is not always necessary that the entire honeycomb structure 1 is made of SiC (silicon carbide), and it is sufficient that SiC (silicon carbide) is included in the main body. That is, the honeycomb structure 1 is preferably made of ceramics containing SiC (silicon carbide).
なお、SiC(炭化珪素)であっても多孔体の場合は高い熱伝導率が得られないため、ハニカム構造体1の作製過程でシリコンを含浸させて緻密体構造とすることが好ましい。緻密体構造にすることで高い熱伝導率が得られる。例えば、SiC(炭化珪素)の多孔体の場合、20W/(m・K)程度であるが、緻密体とすることにより、150W/(m・K)程度とすることができる。 In addition, even if it is SiC (silicon carbide), in the case of a porous body, high thermal conductivity cannot be obtained. Therefore, it is preferable to impregnate silicon in the process of manufacturing the honeycomb structure 1 to obtain a dense structure. High heat conductivity can be obtained by using a dense structure. For example, in the case of a porous body of SiC (silicon carbide), it is about 20 W / (m · K), but can be made about 150 W / (m · K) by using a dense body.
ハニカム構造体1として、Si含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si3N4、及びSiC等を採用することができるが、高い熱交換率を得るための緻密体構造とするためにSi含浸SiC、(Si+Al)含浸SiCを採用することができる。Si含浸SiCは、SiC粒子表面を金属珪素融体の凝固物が取り囲むとともに、金属珪素を介してSiCが一体に接合した構造を有するため、炭化珪素が酸素を含む雰囲気から遮断され、酸化から防止される。さらに、SiCは、熱伝導率が高く、放熱しやすいという特徴を有するが、Siを含浸するSiCは、高い熱伝導率や耐熱性を示しつつ、緻密に形成され、伝熱部材として十分な強度を示す。つまり、Si−SiC系(Si含浸SiC、(Si+Al)含浸SiC)材料からなるハニカム構造体1は、耐熱性、耐熱衝撃性、耐酸化性をはじめ、酸やアルカリなどに対する耐蝕性に優れた特性を示すとともに、高熱伝導率を示す。 As the honeycomb structure 1, Si-impregnated SiC, (Si + Al) -impregnated SiC, metal composite SiC, recrystallized SiC, Si 3 N 4 , SiC, or the like can be adopted, but a dense body for obtaining a high heat exchange rate Si-impregnated SiC or (Si + Al) -impregnated SiC can be used for the structure. Si-impregnated SiC has a structure in which the SiC particle surface is surrounded by solidified metal-silicon melt and SiC is integrally bonded via metal silicon, so that silicon carbide is shielded from an oxygen-containing atmosphere and prevented from oxidation. Is done. Furthermore, SiC has the characteristics of high thermal conductivity and easy heat dissipation, but SiC impregnated with Si is densely formed while exhibiting high thermal conductivity and heat resistance, and has sufficient strength as a heat transfer member. Indicates. That is, the honeycomb structure 1 made of a Si—SiC-based (Si impregnated SiC, (Si + Al) impregnated SiC) material has excellent heat resistance, thermal shock resistance, oxidation resistance, and excellent corrosion resistance against acids and alkalis. And high thermal conductivity.
気孔率は、10%以下であることが好ましく、3%以下であることが好ましい。このような範囲とすることにより、熱伝導性を向上させることができる。 The porosity is preferably 10% or less, and preferably 3% or less. By setting it as such a range, thermal conductivity can be improved.
ハニカム構造体1のセル3の隔壁4の密度は、0.5〜5g/cm3であることが好ましい。0.5g/cm3以上の場合、隔壁4の強度が十分であり、第一の流体が流路内を通り抜ける際に圧力により隔壁4が破損することを防止できる。また、5g/cm3以下であると、ハニカム構造体1自体が重くなりすぎず、軽量化することができる。上記の範囲の密度とすることにより、ハニカム構造体1を強固なものとすることができる。また、熱伝導率を向上させる効果も得られる。 The density of the partition walls 4 of the cells 3 of the honeycomb structure 1 is preferably 0.5 to 5 g / cm 3 . In the case of 0.5 g / cm 3 or more, the strength of the partition wall 4 is sufficient, and the partition wall 4 can be prevented from being damaged by pressure when the first fluid passes through the flow path. Further, if it is 5 g / cm 3 or less, the honeycomb structure 1 itself does not become too heavy, and the weight can be reduced. By setting the density within the above range, the honeycomb structure 1 can be strengthened. Moreover, the effect which improves heat conductivity is also acquired.
ハニカム構造体1を、隔壁4によって流路となる複数のセル3が区画形成されたハニカム構造体1として形成する場合、セル形状は、円形、楕円形、三角形、四角形、六角形、その他の多角形等の中から所望の形状を適宜選択すればよい。また、中間壁8より中心部分のセル3の形状と、中間壁8よりも外周部分にあるセル3の形状とは、異なっていてもよい。 When the honeycomb structure 1 is formed as the honeycomb structure 1 in which a plurality of cells 3 serving as flow paths are partitioned by partition walls 4, the cell shape may be circular, elliptical, triangular, quadrangular, hexagonal, or other various shapes. What is necessary is just to select a desired shape from squares etc. suitably. Further, the shape of the cell 3 at the center portion from the intermediate wall 8 and the shape of the cell 3 at the outer peripheral portion from the intermediate wall 8 may be different.
ハニカム構造体1のセル密度(即ち、単位断面積当たりのセルの数)については特に制限はなく、ハニカム構造体1の構造強度の観点から、隔壁4の厚みに応じて適宜設計すればよい。ハニカム構造体1のアイソスタティック強度は、1MPa以上が好ましく、5MPa以上がさらに好ましい。 The cell density of the honeycomb structure 1 (that is, the number of cells per unit cross-sectional area) is not particularly limited, and may be appropriately designed according to the thickness of the partition walls 4 from the viewpoint of the structural strength of the honeycomb structure 1. The isostatic strength of the honeycomb structure 1 is preferably 1 MPa or more, and more preferably 5 MPa or more.
また、ハニカム構造体1の1つ当たりのセル数は、16〜10,000が望ましく、50〜2,000が特に望ましい。セル数が多すぎるとハニカム自体が大きくなるため第一の流体側から第二の流体側までの熱伝導距離が長くなり、熱伝導ロスが大きくなり熱流束が小さくなる。またセル数が少ない時には第一の流体側の熱伝達面積が小さくなり第一の流体側の熱抵抗を下げることが出来ず熱流束が小さくなる。 The number of cells per honeycomb structure 1 is preferably 16 to 10,000, and particularly preferably 50 to 2,000. If the number of cells is too large, the honeycomb itself becomes large, so the heat conduction distance from the first fluid side to the second fluid side becomes long, the heat conduction loss becomes large, and the heat flux becomes small. In addition, when the number of cells is small, the heat transfer area on the first fluid side becomes small, the heat resistance on the first fluid side cannot be lowered, and the heat flux becomes small.
ハニカム構造体1のセル3の隔壁4(中間壁8を除く)の厚さ(壁厚)についても、目的に応じて適宜設計すればよく、特に制限はない。壁厚を0.1〜1mmとすることが好ましく、0.2〜0.5mmとすることが更に好ましい。壁厚を0.1mm以上とすると、機械的強度が向上して衝撃や熱応力による破損を防止できる。一方、1mm以下とすると、ハニカム構造体1側に占めるセル容積の割合が大きくなることにより流体の圧力損失が小さくなり、熱交換率を向上させることができる。 The thickness (wall thickness) of the partition walls 4 (excluding the intermediate wall 8) of the cells 3 of the honeycomb structure 1 may be appropriately designed according to the purpose, and is not particularly limited. The wall thickness is preferably 0.1 to 1 mm, and more preferably 0.2 to 0.5 mm. When the wall thickness is 0.1 mm or more, the mechanical strength is improved and damage due to impact or thermal stress can be prevented. On the other hand, when the thickness is 1 mm or less, the ratio of the cell volume to the honeycomb structure 1 side increases, so that the pressure loss of the fluid decreases and the heat exchange rate can be improved.
第一の流体(高温側)が排ガスの場合、第一の流体が通過するハニカム構造体1のセル3内部の壁面には、触媒が担持されていることが好ましい。これは、排ガス浄化の役割に加えて、排ガス浄化の際に発生する反応熱(発熱反応)も熱交換することが可能になるためである。貴金属(白金、ロジウム、パラジウム、ルテニウム、インジウム、銀、及び金)、アルミニウム、ニッケル、ジルコニウム、チタン、セリウム、コバルト、マンガン、亜鉛、銅、スズ、鉄、ニオブ、マグネシウム、ランタン、サマリウム、ビスマス及びバリウムからなる群から選択された元素を少なくとも一種を含有すると良い。これらは金属、酸化物、及びそれ以外の化合物であっても良い。 When the first fluid (high temperature side) is exhaust gas, it is preferable that a catalyst is supported on the wall surface inside the cell 3 of the honeycomb structure 1 through which the first fluid passes. This is because in addition to the role of exhaust gas purification, reaction heat (exothermic reaction) generated during exhaust gas purification can also be exchanged. Precious metals (platinum, rhodium, palladium, ruthenium, indium, silver and gold), aluminum, nickel, zirconium, titanium, cerium, cobalt, manganese, zinc, copper, tin, iron, niobium, magnesium, lanthanum, samarium, bismuth and It is preferable to contain at least one element selected from the group consisting of barium. These may be metals, oxides, and other compounds.
第一の流体が通過するハニカム構造体1の第一流体流通部5のセル3の隔壁4に担持される触媒(触媒金属+担持体)の担持量としては、10〜400g/Lであることが好ましく、貴金属であれば0.1〜5g/Lであることが更に好ましい。触媒(触媒金属+担持体)の担持量を10g/L以上とすると、触媒作用が十分に発現する。一方、400g/L以下とすると、圧力損失が大きくなりすぎず、製造コストの上昇も抑えることができる。 The supported amount of catalyst (catalyst metal + supported body) supported on the partition walls 4 of the cells 3 of the first fluid circulation section 5 of the honeycomb structure 1 through which the first fluid passes is 10 to 400 g / L. If it is a noble metal, it is still more preferable that it is 0.1-5 g / L. When the amount of the catalyst (catalyst metal + support) supported is 10 g / L or more, the catalytic action is sufficiently exhibited. On the other hand, when it is 400 g / L or less, the pressure loss does not become too large, and an increase in manufacturing cost can be suppressed.
(金属管)
図1Aに示すように、ハニカム構造体1が金属管12に収容されていることにより、ハニカム構造体1を保護することができる。また、金属管12は、ハニカム構造体1の軸方向9の長さよりも長くすることが好ましい形態の一つである。このように構成すると、熱交換部材10の設置場所や用途に応じて、金属管12の端部を加工しやすい。ただし、図1Aの実施形態に限られるものではなく、金属管12は、ハニカム構造体1の軸方向9の長さと同じでもよく、短くても良い。
(Metal pipe)
As shown in FIG. 1A, the honeycomb structure 1 can be protected by being accommodated in the metal tube 12. Moreover, it is one of the preferable forms that the metal pipe 12 is longer than the length in the axial direction 9 of the honeycomb structure 1. If comprised in this way, it will be easy to process the edge part of the metal pipe 12 according to the installation place and application of the heat exchange member 10. FIG. However, the embodiment is not limited to the embodiment of FIG. 1A, and the metal tube 12 may be the same as or shorter than the length of the honeycomb structure 1 in the axial direction 9.
金属管12としては、耐熱性、耐蝕性のあるものが好ましく、例えば、SUS管、銅管、真鍮管等を用いることができる。金属管12の外周面上を流通する第二の流体の温度のために、金属管12とハニカム構造体1との熱膨張率の差により、ハニカム構造体1と金属管12との間の圧力が抜けてしまわないようにする必要がある。このため、常温時において、ハニカム構造体1の外径よりも内径の小さい金属管12を用いて、これを嵌合させるとよい。 As the metal tube 12, one having heat resistance and corrosion resistance is preferable. For example, a SUS tube, a copper tube, a brass tube, or the like can be used. The pressure between the honeycomb structure 1 and the metal tube 12 due to the difference in thermal expansion coefficient between the metal tube 12 and the honeycomb structure 1 due to the temperature of the second fluid flowing on the outer peripheral surface of the metal tube 12. It is necessary to prevent from missing. For this reason, the metal tube 12 having an inner diameter smaller than the outer diameter of the honeycomb structure 1 is preferably fitted at normal temperature.
(中間材)
熱交換部材10は、ハニカム構造体1と金属管12との間に挟み込まれた金属管12よりもヤング率が低い材質からなる中間材13を備えることが好ましい。ハニカム構造体1とその外周側の金属管12との間に金属管12よりもヤング率が低い材質からなる中間材13を備えることにより、密着性が向上する。これにより、金属管12とハニカム構造体1との間のシール性が良好となる。中間材13としては、断熱マット、グラファイトシートが挙げられる。
(Intermediate material)
The heat exchange member 10 preferably includes an intermediate material 13 made of a material having a Young's modulus lower than that of the metal tube 12 sandwiched between the honeycomb structure 1 and the metal tube 12. Adhesion is improved by providing the intermediate member 13 made of a material having a Young's modulus lower than that of the metal tube 12 between the honeycomb structure 1 and the metal tube 12 on the outer peripheral side thereof. Thereby, the sealing performance between the metal pipe 12 and the honeycomb structure 1 becomes good. Examples of the intermediate material 13 include a heat insulating mat and a graphite sheet.
(遮蔽部)
図1Aに示すように、第一の流体と第二の流体が混合しないように、ハニカム構造体1の第二流体流通部6の両端部2に、遮蔽部として遮蔽板17が配置されていることが好ましい。図1Bでは、ハニカム構造体1の両端面2に、リング形状の遮蔽板17を備えている。遮蔽板17としては、例えば、金属、具体的には、ステンレス等を用いることができる。遮蔽板17は、ハニカム構造体1の第二流体流通部6を塞ぐように、ハニカム構造体1の端面2に接触して備えられている。ハニカム構造体1を嵌合させる際に、遮蔽板17を両端面2の備えた状態で嵌合して製造することができる。このようにすると、ハニカム構造体1が金属管12に対して、より強固に固定されやすい。
(Shielding part)
As shown to FIG. 1A, the shielding board 17 is arrange | positioned as a shielding part at the both ends 2 of the 2nd fluid circulation part 6 of the honeycomb structure 1 so that a 1st fluid and a 2nd fluid may not mix. It is preferable. In FIG. 1B, ring-shaped shielding plates 17 are provided on both end surfaces 2 of the honeycomb structure 1. As the shielding plate 17, for example, metal, specifically, stainless steel or the like can be used. The shielding plate 17 is provided in contact with the end surface 2 of the honeycomb structure 1 so as to block the second fluid circulation portion 6 of the honeycomb structure 1. When the honeycomb structure 1 is fitted, it can be manufactured by fitting the shielding plate 17 with both end faces 2 provided. In this way, the honeycomb structure 1 can be more firmly fixed to the metal tube 12.
なお、遮蔽板17を配置する代わりに、ハニカム構造体1の第二流体流通部6の一部の開口部に目封じを施してもよい。図5では、第二流体流通部6のセル3の両端部に目封止部18を形成している。ただし、遮蔽部は、遮蔽板17や目封じに限定されない。 Instead of arranging the shielding plate 17, a part of the opening of the second fluid circulation part 6 of the honeycomb structure 1 may be sealed. In FIG. 5, plugged portions 18 are formed at both ends of the cell 3 of the second fluid circulation portion 6. However, the shielding part is not limited to the shielding plate 17 or the sealing.
(熱交換部材の製造方法)
まず、ハニカム構造体1の製造方法を説明し、次に、金属管12とハニカム構造体1との嵌合について説明する。
(Method for producing heat exchange member)
First, the manufacturing method of the honeycomb structure 1 will be described, and then the fitting between the metal tube 12 and the honeycomb structure 1 will be described.
まず、平均粒径の異なるSiC粉末を混ぜ合わせて、SiC粉末の混合物を調製する。このSiC粉末の混合物に、バインダー、水を混ぜ合わせ、ニーダーを用いて混練することにより、混練物を得る。この混練物を真空土練機に投入し、円柱状の坏土を作製する。 First, SiC powders having different average particle diameters are mixed to prepare a mixture of SiC powders. This SiC powder mixture is mixed with a binder and water, and kneaded using a kneader to obtain a kneaded product. This kneaded product is put into a vacuum kneader to produce a cylindrical clay.
次に、坏土を押出成形してハニカム成形体を形成する。押出成形では、適当な形態の口金や治具を選択することにより、外周壁7の形状や厚さ、隔壁4の厚さ、セル3の形状、セル密度などを所望のものにすることができる。口金は、摩耗し難い超硬合金で作られたものを用いることが好ましい。ハニカム成形体については、外周壁7を円筒形状または四角柱形状とし、外周壁7の内部を隔壁4により四角形の格子状に区分された構造となるように形成する。また、これらの隔壁4については、互いに直交する方向のそれぞれで等間隔に並行し、かつ、真っすぐに外周壁7の内部を横切るように形成する。これにより、外周壁7の内部の最外周部以外にあるセル3の断面形状を正方形にすることができる。 Next, the kneaded material is extruded to form a honeycomb formed body. In extrusion molding, the shape and thickness of the outer peripheral wall 7, the thickness of the partition walls 4, the shape of the cells 3, the cell density, etc. can be made desired by selecting an appropriate form of die and jig. . It is preferable to use a die made of a cemented carbide that hardly wears. The honeycomb molded body is formed so that the outer peripheral wall 7 has a cylindrical shape or a quadrangular prism shape, and the inside of the outer peripheral wall 7 is divided into a square lattice shape by the partition walls 4. Further, the partition walls 4 are formed so as to be parallel to each other at equal intervals in each of the directions orthogonal to each other and to cross the inside of the outer peripheral wall 7 straightly. Thereby, the cross-sectional shape of the cell 3 other than the outermost peripheral part inside the outer peripheral wall 7 can be made square.
次に、押出成形により得たハニカム成形体の乾燥を行なう。まず、ハニカム成形体を電磁波加熱方式で乾燥し、続いて、外部加熱方式で乾燥を行なう。こうした二段階の乾燥により、乾燥前のハニカム成形体に含まれる全水分量の97%以上に相当する水分をハニカム成形体から除去する。 Next, the honeycomb formed body obtained by extrusion molding is dried. First, the honeycomb formed body is dried by an electromagnetic heating method, and then dried by an external heating method. By such two-stage drying, moisture corresponding to 97% or more of the total amount of water contained in the honeycomb formed body before drying is removed from the honeycomb formed body.
次に、ハニカム構造体1に括れ部16を形成する。括れ部16は、ハニカム成形体の外周壁7及び中間壁8よりも外周部分にある隔壁4を除去することによって形成することができる。 Next, the constricted portion 16 is formed in the honeycomb structure 1. The constricted portion 16 can be formed by removing the partition walls 4 in the outer peripheral portion of the honeycomb molded body from the outer peripheral wall 7 and the intermediate wall 8.
次に、ハニカム成形体に対して窒素雰囲気で脱脂を行なう。さらに、こうした脱脂により得られたハニカム構造体1の上に金属Siの塊を載せ、真空中または減圧の不活性ガス中で、焼成をする。この焼成中に、ハニカム構造体1の上に載せた金属Siの塊を融解させ、外周壁7や隔壁4に金属Siを含浸させる。例えば、外周壁7や隔壁4の熱伝導率を100W/(m・K)にする場合には、ハニカム構造体100質量部に対して70質量部の金属Siの塊を使用する。また、外周壁7や隔壁4の熱伝導率を150W/(m・K)にする場合には、ハニカム構造体100質量部に対して80質量部の金属Siの塊を使用する。 Next, the honeycomb formed body is degreased in a nitrogen atmosphere. Furthermore, a lump of metal Si is placed on the honeycomb structure 1 obtained by such degreasing and fired in vacuum or in an inert gas under reduced pressure. During the firing, the lump of metal Si placed on the honeycomb structure 1 is melted, and the outer peripheral wall 7 and the partition walls 4 are impregnated with metal Si. For example, when the thermal conductivity of the outer peripheral wall 7 and the partition wall 4 is set to 100 W / (m · K), a mass of 70 parts by mass of metal Si is used with respect to 100 parts by mass of the honeycomb structure. Further, when the thermal conductivity of the outer peripheral wall 7 and the partition wall 4 is set to 150 W / (m · K), 80 parts by mass of metal Si is used with respect to 100 parts by mass of the honeycomb structure.
次に、上記のようにして製造したハニカム構造体1、及び金属管12の一体化の方法について説明する。なお、ハニカム構造体1の外周側に、中間材13を備えた後に、金属管12をハニカム構造体1に嵌合させることが好ましい様態の一つである。 Next, a method for integrating the honeycomb structure 1 manufactured as described above and the metal tube 12 will be described. In addition, after providing the intermediate material 13 on the outer peripheral side of the honeycomb structure 1, it is one of preferable modes that the metal pipe 12 is fitted to the honeycomb structure 1.
まず、中間材13として用いる、例えば断熱マットをハニカム構造体1の外周壁7の外周面に巻き付ける。このとき、接着剤を用いて貼り付けてもよい。続いて金属管12を高周波加熱機で1000℃程度まで昇温させる。そして、ハニカム構造体1を金属管12に挿入して嵌合により一体化し、熱交換部材10を形成することができる。 First, for example, a heat insulating mat used as the intermediate member 13 is wound around the outer peripheral surface of the outer peripheral wall 7 of the honeycomb structure 1. At this time, you may stick using an adhesive agent. Subsequently, the metal tube 12 is heated to about 1000 ° C. with a high-frequency heater. Then, the honeycomb structure 1 can be inserted into the metal tube 12 and integrated by fitting to form the heat exchange member 10.
なお、遮蔽板17は、ハニカム構造体1を嵌合させる際に一緒に(連続的に)挿入しても良いし、別々に挿入してもかまわない。連続的に挿入する際には、ハニカム構造体1や軟質な中間材13を保護する役目を果たすため、好ましい。 The shielding plate 17 may be inserted together (continuously) when the honeycomb structure 1 is fitted, or may be inserted separately. The continuous insertion is preferable because it plays a role of protecting the honeycomb structure 1 and the soft intermediate material 13.
(第二の実施形態)
セラミックス構造体30の少なくとも一部に、セラミックスを主成分とし連続気孔を有する三次元網目構造部11を備える実施形態について説明する。
(Second embodiment)
An embodiment in which at least a part of the ceramic structure 30 is provided with a three-dimensional network structure portion 11 having ceramic as a main component and continuous pores will be described.
三次元網目構造部11は、気孔径200μm〜5mm、開気孔率70〜99%、密度0.06〜0.6g/cm3であり、連通気孔を有するスポンジ形状の多孔質構造体で形成されている。図6は三次元網目構造部11の微構造を示す写真である。スポンジ形状の多孔質構造体は、図6に示されるように枝部24と枝部24が合流する合流部23によって形成されている。枝部24の最も断面積が小さくなる箇所の枝径(断面が円でない場合は、(断面積/π)0.5×2)を最小枝径25とし、20ヶ所の枝部の最小枝径25を測定し、その平均値から算出される平均最小枝径25は、0.1〜2mm、平均開口率(各断面における開口率(開口部分の面積/断面積)の平均)は、30〜90%であることが好ましい。 The three-dimensional network structure 11 has a pore diameter of 200 μm to 5 mm, an open porosity of 70 to 99%, a density of 0.06 to 0.6 g / cm 3 , and is formed of a sponge-like porous structure having continuous air holes. ing. FIG. 6 is a photograph showing the microstructure of the three-dimensional network structure unit 11. As shown in FIG. 6, the sponge-shaped porous structure is formed by a branch portion 24 and a merge portion 23 where the branch portions 24 merge. The branch diameter of the branch portion 24 where the cross-sectional area is the smallest (if the cross-section is not a circle, (cross-sectional area / π) 0.5 × 2) is the minimum branch diameter 25, and the minimum branch diameter of the 20 branch portions 25 is measured, the average minimum branch diameter 25 calculated from the average value is 0.1 to 2 mm, the average aperture ratio (the average of the aperture ratio (area of the opening portion / cross-sectional area) in each cross section) is 30 to 90% is preferable.
三次元網目構造部11は、熱伝導率が100W/(m・K)以上であることが好ましい。より好ましくは、120〜300W/(m・K)、さらに好ましくは、150〜300W/(m・K)である。この範囲とすることにより、熱伝導性が良好となり、第一の流体と第二の流体との間で効率的に熱交換させることができる。 The three-dimensional network structure 11 preferably has a thermal conductivity of 100 W / (m · K) or more. More preferably, it is 120-300 W / (m * K), More preferably, it is 150-300 W / (m * K). By setting it as this range, heat conductivity becomes favorable and it is possible to efficiently exchange heat between the first fluid and the second fluid.
また、三次元網目構造部11は、耐熱性に優れるセラミックスを用いることが好ましく、特に伝熱性を考慮すると、熱伝導性が高いSiC(炭化珪素)が主成分であることが好ましい。なお、主成分とは、ハニカム構造体1の50質量%以上が炭化珪素であることを意味する。 The three-dimensional network structure 11 is preferably made of ceramics having excellent heat resistance, and considering heat conductivity in particular, it is preferable that SiC (silicon carbide) having high thermal conductivity is the main component. The main component means that 50% by mass or more of the honeycomb structure 1 is silicon carbide.
第二の実施形態は、以上のような三次元網目構造部11を少なくとも一部に備えるセラミックス構造体30を備えた熱交換部材10である。 2nd embodiment is the heat exchange member 10 provided with the ceramic structure 30 which equips at least one part with the above three-dimensional network structure parts 11. FIG.
図7に第二流体流通部6を三次元網目構造部11として形成したセラミックス構造体30の実施形態を示す。図7の実施形態は、括れ部16が形成されていないが、第二流体流通部6の一部に流入部14、及び排出部15が形成されている。このような実施形態にすることにより、第一流体流通部5や第二流体流通部6を三次元網目構造部11として形成することにより、流体との接触が多くなるため、熱交換効率が向上する。また、この実施形態は、括れ部16が形成されていないため、括れ部16が占有していた体積(熱交換に実質的影響を与えていなかった体積)の部分においてもガスと接触するため、同体積内で熱交換効率を向上させることができる。つまり、括れ部16が形成されている実施形態に比べ、スペースが効率的活用され、熱交換効率を向上できる。さらに括れ部16が形成されている実施形態では、括れ部16において応力が発生しやすいが、本実施形態では応力集中箇所が少ない。結果として、構造強度が向上する。図7では、金属管12(及び中間材13)が描かれていないが、流入部14と排出部15の箇所のみ金属管12(及び中間材13)に覆われていない(金属管12(及び中間材13)に開口部が形成されている。)。これにより、流入部14で流入した第二の流体が、三次元網目構造で形成されている第二流体流通部6の全域を通り、排出部15から排出される構造となっている。 FIG. 7 shows an embodiment of a ceramic structure 30 in which the second fluid circulation part 6 is formed as a three-dimensional network structure part 11. In the embodiment of FIG. 7, the constricted portion 16 is not formed, but the inflow portion 14 and the discharge portion 15 are formed in a part of the second fluid circulation portion 6. By forming such a first embodiment, the first fluid circulation part 5 and the second fluid circulation part 6 are formed as the three-dimensional network structure part 11, so that the contact with the fluid is increased, so that the heat exchange efficiency is improved. To do. Further, in this embodiment, since the constricted portion 16 is not formed, even in the portion of the volume occupied by the constricted portion 16 (the volume that did not substantially affect the heat exchange), it is in contact with the gas. Heat exchange efficiency can be improved within the same volume. That is, compared with the embodiment in which the constricted portion 16 is formed, the space is efficiently used and the heat exchange efficiency can be improved. Furthermore, in the embodiment in which the constricted portion 16 is formed, stress is easily generated in the constricted portion 16, but in this embodiment, there are few stress concentration portions. As a result, the structural strength is improved. In FIG. 7, the metal tube 12 (and the intermediate member 13) is not drawn, but only the locations of the inflow portion 14 and the discharge portion 15 are not covered with the metal tube 12 (and the intermediate member 13) (the metal tube 12 (and An opening is formed in the intermediate material 13). Thus, the second fluid that has flowed in at the inflow portion 14 passes through the entire area of the second fluid circulation portion 6 formed in a three-dimensional network structure and is discharged from the discharge portion 15.
図8Aに第一流体流通部5を三次元網目構造部11として形成したセラミックス構造体30の実施形態を示す。また、図8Bに第二流体流通部6を三次元網目構造部11として形成したセラミックス構造体30の実施形態を示す。図8A及び図8Bは、括れ部16が形成された場合の実施形態である。このような実施形態にすることにより、括れ部16を形成しない実施形態に比べ、流入部14、排出部15での第二の流体の圧力損失を低減でき、効率的に第二の流体を第二流体流通部6の全域に流通させることができる。 FIG. 8A shows an embodiment of a ceramic structure 30 in which the first fluid circulation part 5 is formed as a three-dimensional network structure part 11. FIG. 8B shows an embodiment of a ceramic structure 30 in which the second fluid circulation part 6 is formed as a three-dimensional network structure part 11. 8A and 8B show an embodiment in which the constricted portion 16 is formed. By adopting such an embodiment, compared to the embodiment in which the constricted portion 16 is not formed, the pressure loss of the second fluid at the inflow portion 14 and the discharge portion 15 can be reduced, and the second fluid can be efficiently transferred to the first fluid. The fluid can be circulated throughout the two-fluid circulator 6.
図9Aに第一流体流通部5の一部を三次元網目構造部11として形成したセラミックス構造体30を示す。また、図9Bに第二流体流通部6の一部を三次元網目構造部11として形成したセラミックス構造体30を示す。図は、軸方向9の中央部に三次元網目構造部11を備える実施形態を示すが、これに限定されない。また、2箇所以上に分散して三次元網目構造部11を備えてもよい。このような実施形態にすることにより、三次元網目構造部11において流体の流れを乱すことができ、流体とセラミックス構造体30の熱伝達を促進し、流体からセラミックス構造体30へ(あるいはセラミックス構造体30から流体へ)効率的に熱を伝達することができる。 FIG. 9A shows a ceramic structure 30 in which a part of the first fluid circulation part 5 is formed as a three-dimensional network structure part 11. FIG. 9B shows a ceramic structure 30 in which a part of the second fluid circulation portion 6 is formed as a three-dimensional network structure portion 11. Although a figure shows embodiment provided with the three-dimensional network structure part 11 in the center part of the axial direction 9, it is not limited to this. Alternatively, the three-dimensional network structure 11 may be provided in two or more locations. By adopting such an embodiment, the flow of fluid can be disturbed in the three-dimensional network structure portion 11, heat transfer between the fluid and the ceramic structure 30 is promoted, and the fluid to the ceramic structure 30 (or the ceramic structure). Heat can be transferred efficiently (from the body 30 to the fluid).
図10に第一流体流通部5、および第二流体流通部6の両方を三次元網目構造部11として形成したセラミックス構造体30の実施形態を示す。このような実施形態にすることにより、三次元網目構造部11の中へ流体が流入した際、流体が攪拌され、通常、急峻になりやすい断面内の流体温度分布をなだらかに(平均化)することができる。これに対し、例えば、第一流体流通部5がハニカム構造で形成されていた場合、第一流体流通部5で流体が攪拌されないため、断面の中心部が高温、断面の外周部が低温になりやすく、第一流体の断面内の温度分布は急峻となる。本実施形態では、流体の温度分布がなだらかになる(平均化される)結果として、中間壁8近傍の第一の流体と第二の流体の温度差(あるいは中間壁8近傍の第一流体流通部5と第二流体流通部6の温度差)が大きくなり、流体間の伝熱量が増加し、熱交換効率を向上させることができる。 FIG. 10 shows an embodiment of a ceramic structure 30 in which both the first fluid circulation part 5 and the second fluid circulation part 6 are formed as a three-dimensional network structure part 11. By adopting such an embodiment, when the fluid flows into the three-dimensional network structure 11, the fluid is agitated, and the fluid temperature distribution in the cross section that tends to become steep is usually smoothed (averaged). be able to. On the other hand, for example, when the first fluid circulation part 5 is formed in a honeycomb structure, the fluid is not agitated in the first fluid circulation part 5, so that the central part of the cross section becomes high temperature and the outer peripheral part of the cross section becomes low temperature. Easily, the temperature distribution in the cross section of the first fluid becomes steep. In this embodiment, as a result of the fluid temperature distribution becoming gentle (averaged), the temperature difference between the first fluid near the intermediate wall 8 and the second fluid (or the first fluid circulation near the intermediate wall 8). The temperature difference between the part 5 and the second fluid circulation part 6 is increased, the amount of heat transfer between the fluids is increased, and the heat exchange efficiency can be improved.
図11に括れ部16に三次元網目構造部11を形成したセラミックス構造体30を示す。このようにすると、空間であった括れ部16を有効に利用することができ、熱交換効率をさらに向上させることができる。 FIG. 11 shows a ceramic structure 30 in which the three-dimensional network structure portion 11 is formed in the constricted portion 16. If it does in this way, the narrow part 16 which was space can be used effectively, and heat exchange efficiency can further be improved.
次に、三次元網目構造部11の製造方法について説明する。まず、シリコンと炭素の原子比がSi/C=0.05〜4になる割合になるように混合量を設定して炭素源としての樹脂類及びシリコン粉末を含んだスラリーを用意する。 Next, the manufacturing method of the three-dimensional network structure part 11 is demonstrated. First, a mixing amount is set so that the atomic ratio of silicon to carbon is Si / C = 0.05 to 4 to prepare a slurry containing resins as a carbon source and silicon powder.
スラリーに含む樹脂類として、フェノール樹脂、フラン樹脂、有機金属ポリマー、及び蔗糖等の少なくとも1種を用いることができる。 As the resins contained in the slurry, at least one of phenol resin, furan resin, organometallic polymer, sucrose, and the like can be used.
スラリーに含むシリコン原料として、シリコン粉末、又は、マグネシウム、アルミニウム、チタニウム、クロミウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム、ニオビウム、モリブデン、及びタングステン等の少なくとも1種の金属を含むシリコン合金、又は、この1種のシリコン合金とシリコン粉末の混合物を用いることができる。 Silicon powder containing silicon powder or at least one metal such as magnesium, aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum, and tungsten as a silicon raw material contained in the slurry An alloy or a mixture of this one kind of silicon alloy and silicon powder can be used.
スラリーに、添加剤として、炭素粉末、黒鉛粉末、及びカーボンブラック等を加えることもできる。 Carbon powder, graphite powder, carbon black, and the like can be added to the slurry as additives.
また、スラリーに、骨材或いは酸化防止剤として、炭化ケイ素、窒化ケイ素、ジルコニア、ジルコン、アルミナ、シリカ、ムライト、二ケイ化モリブデン、炭化ホウ素、及びホウ素粉末等の1種以上を添加することもできる。 In addition, one or more of silicon carbide, silicon nitride, zirconia, zircon, alumina, silica, mullite, molybdenum disilicide, boron carbide, boron powder, and the like may be added to the slurry as an aggregate or an antioxidant. it can.
上記のスラリーを、骨格が樹脂、ゴム、紙等で形成され、連通気孔を有するスポンジ形状の保持材に、連通気孔が塞がれない程度に含浸させる。例えば、スポンジ形状の保持材を絞ることにより、余分なスラリーを除去することも好ましい方法である。次にスラリーを付着させたスポンジ形状の保持材に対して、所望の最終形状となるように、ハニカム構造体、あるいは外周壁の成形体と密着、接合させる。 The slurry is impregnated with a sponge-shaped holding material having a skeleton formed of resin, rubber, paper, or the like and having continuous air holes so that the continuous air holes are not blocked. For example, it is also a preferable method to remove excess slurry by squeezing a sponge-shaped holding material. Next, the sponge-shaped holding material to which the slurry is attached is closely adhered to and bonded to the honeycomb structure or the outer peripheral wall molded body so as to have a desired final shape.
次に、上記で作製した、スラリーを付着させたスポンジ形状の保持材、及びハニカム構造体あるいは外周壁が接合された接合体を真空或いは不活性雰囲気下において900〜1350℃で焼成して、炭素化多孔質構造体を作製する。そして、炭素化多孔質構造体にシリコンを1350℃以上の温度で反応焼結させる。その後、真空或いは不活性化雰囲気下において1300〜1800℃の温度でシリコンを溶融含浸させることにより三次元網目構造部11を作製することができる。 Next, the sponge-shaped holding material to which the slurry is attached, and the honeycomb structure or the joined body to which the outer peripheral wall is joined are fired at 900 to 1350 ° C. in a vacuum or an inert atmosphere, A porous porous structure is produced. Then, silicon is reactively sintered to the carbonized porous structure at a temperature of 1350 ° C. or higher. Then, the three-dimensional network structure part 11 can be produced by melt-impregnating silicon at a temperature of 1300 to 1800 ° C. in a vacuum or an inert atmosphere.
溶融含浸用のシリコンとして、シリコン、又は、マグネシウム、アルミニウム、チタニウム、クロミウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジルコニウム、ニオビウム、モリブデン、及びタングステン等の少なくとも1種の金属を含むシリコン合金、又は、この1種のシリコン合金とシリコンの混合物を用いることができる。 Silicon or silicon alloy containing at least one metal such as magnesium, aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum and tungsten as silicon for melt impregnation Alternatively, a mixture of this one kind of silicon alloy and silicon can be used.
本発明の熱交換部材10に流通させる第一の流体は、気体、液体等、特に限定されない。例えば、気体であれば自動車の排ガス等が挙げられる。また、第二の流体も、媒体としては、気体、液体等、特に限定されない。しかしながら、第一流体流通部5、第二流体流通部6が複数のセル3によって構成されているため接触面積が大きく、ハニカム構造体1の熱伝導率も高いことから、第一の流体と第二の流体の双方が気体である場合にも十分な熱交換を行うことができ、気体と気体の熱交換に好適である。 The 1st fluid distribute | circulated to the heat exchange member 10 of this invention is not specifically limited, such as gas and a liquid. For example, if it is gas, the exhaust gas of a motor vehicle etc. are mentioned. In addition, the second fluid is not particularly limited as a medium such as gas or liquid. However, since the first fluid circulation part 5 and the second fluid circulation part 6 are constituted by the plurality of cells 3, the contact area is large and the thermal conductivity of the honeycomb structure 1 is also high. Even when both of the two fluids are gas, sufficient heat exchange can be performed, which is suitable for heat exchange between gas and gas.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(実施例1)
(ハニカム構造体の製造)
Si含浸SiC複合材料を主成分とするハニカム構造体1を、以下のように作製した。まず、所定量のSiC粉末、バインダー、水又は有機溶媒などを混練した成形用原料を、所望の形状に押し出し、乾燥してハニカム成形体を得た。得られたハニカム成形体に対して、外周壁7と隔壁4の一部を削除し、括れ箇所(括れ部16)を2ヶ所有した形状に加工した。次いで、減圧の不活性ガス又は真空中で、ハニカム成形体中に金属Siを含浸させた。このように作製したハニカム構造体1は、SiC粒子の隙間に金属Siが充填された緻密質の材料となっており、熱伝導が約150W/(m・K)と高い熱伝導性を示した。
Example 1
(Manufacture of honeycomb structure)
A honeycomb structure 1 mainly composed of a Si-impregnated SiC composite material was produced as follows. First, a forming raw material kneaded with a predetermined amount of SiC powder, a binder, water, an organic solvent or the like was extruded into a desired shape and dried to obtain a honeycomb formed body. A part of the outer peripheral wall 7 and the partition wall 4 were deleted from the obtained honeycomb formed body, and processed into a shape having two constricted portions (constricted portions 16). Then, the honeycomb formed body was impregnated with metal Si in a reduced pressure inert gas or vacuum. The honeycomb structure 1 manufactured in this way is a dense material in which metal Si is filled in the gaps between the SiC particles, and has a high thermal conductivity of about 150 W / (m · K). .
ハニカム構造体1の形状は、直径60mm、長さ200mmで、セル構造部分は、隔壁4の厚みta約0.5mm、セルピッチ約3.6mmであった。また、括れ部16が形成された部分における第一流体流通部5の全体の、軸方向9に垂直な断面形状は、30mm×30mmの四角形であった(図4BのX−X’断面図における第一流体流通部5の断面形状が四角形)。括れ部16の長さLbは20mmで、端面2より10mmの位置Laから30mmの位置に、上下2ヶ所括れ部16が配置された構造とした。中間壁8は、他の隔壁4と同じ厚さだった。 The honeycomb structure 1 had a diameter of 60 mm and a length of 200 mm, and the cell structure portion had a partition wall thickness t a of about 0.5 mm and a cell pitch of about 3.6 mm. Moreover, the cross-sectional shape perpendicular | vertical to the axial direction 9 of the whole 1st fluid distribution | circulation part 5 in the part in which the constriction part 16 was formed was a square of 30 mm x 30 mm (in XX 'sectional drawing of FIG. 4B). The cross-sectional shape of the first fluid circulation part 5 is a square). The length Lb of the constricted portion 16 is 20 mm, and the upper and lower constricted portions 16 are arranged at a position 30 mm from a position La 10 mm from the end face 2. The intermediate wall 8 was the same thickness as the other partition walls 4.
(流体回路の作製)
断熱マットをハニカム構造体1の外周面に巻きつけた後、ステンレスからなり、あらかじめ流体導入のための貫通孔21が外周面に2ヶ所配置されている金属管12の中に圧入した。圧入の際、金属管12の貫通孔21が配置されている断面が、ハニカム構造体1の括れ部分の断面に配置されるようセッティングした。その後、ハニカム構造体1の両端面2の外周部分を塞ぐような形でステンレス製の遮蔽板17を設置し、溶接することで金属管12と固定した。
(Production of fluid circuit)
The heat insulating mat was wound around the outer peripheral surface of the honeycomb structure 1 and then press-fitted into the metal tube 12 made of stainless steel and having two through holes 21 for introducing a fluid disposed in advance on the outer peripheral surface. At the time of press-fitting, setting was made so that the cross section in which the through hole 21 of the metal pipe 12 was arranged was arranged in the cross section of the constricted portion of the honeycomb structure 1. Thereafter, a shielding plate 17 made of stainless steel was installed so as to close the outer peripheral portions of the both end faces 2 of the honeycomb structure 1 and fixed to the metal tube 12 by welding.
(熱交換効率試験)
第一の流体は、ハニカム構造体1の第一の端面2aから流入させ、ハニカム構造体1の断面中心近傍のセル3(第一流体流通部5)中を通過させ、第二の端面2bから排出させた。一方、第二の流体は、金属管12の外周面に配置され、第一の端面2aに近い側の貫通孔21から流入させ、ハニカム構造体1の第二流体流通部6を通過させ、第二の端面2bに近い側の貫通孔21から排出させることで、伝熱効率を測定した。
(Heat exchange efficiency test)
The first fluid flows from the first end face 2a of the honeycomb structure 1 and passes through the cell 3 (first fluid circulation portion 5) in the vicinity of the center of the cross section of the honeycomb structure 1 from the second end face 2b. It was discharged. On the other hand, the second fluid is disposed on the outer peripheral surface of the metal tube 12 and flows from the through hole 21 on the side close to the first end surface 2a, passes through the second fluid circulation portion 6 of the honeycomb structure 1, The heat transfer efficiency was measured by discharging from the through hole 21 on the side close to the second end face 2b.
第一の流体として、400℃の大気ガスを用いて、SV(空間速度)50000h−1にてセル3内に流した。また、第二の流体として、30℃の大気ガスを用いて、SV(空間速度)50000h−1にてセル3内に流した。ハニカム構造体1の入口端面(第一の端面2a)より20mm上流を流れる第一の流体の温度を「入口ガス温1」、ハニカム構造体1の出口端面(第二の端面2b)より200mm下流を流れる第一の流体の温度を「出口ガス温1」とした。また、ハニカム構造体1の流入部14(外周壁7の外周面の位置を基準)より20mm上流を流れる第二の流体の温度を「入口ガス温2」、ハニカム構造体1の排出部15(外周壁7の外周面の位置を基準)より200mm下流を流れる第二の流体の温度を「出口ガス温2」とした。
熱交換効率(%)=(出口ガス温2−入口ガス温2)/(入口ガス温1−入口ガス温2)×100
As the first fluid, atmospheric gas at 400 ° C. was used and flowed into the cell 3 at SV (space velocity) 50000 h −1 . Moreover, 30 degreeC atmospheric gas was used as a 2nd fluid, and it flowed in the cell 3 at SV (space velocity) 50000h- 1 . The temperature of the first fluid flowing 20 mm upstream from the inlet end face (first end face 2 a) of the honeycomb structure 1 is “inlet gas temperature 1”, and 200 mm downstream from the outlet end face (second end face 2 b) of the honeycomb structure 1. The temperature of the first fluid flowing through was set as “outlet gas temperature 1”. Further, the temperature of the second fluid flowing 20 mm upstream from the inflow portion 14 (referenced to the position of the outer peripheral surface of the outer peripheral wall 7) of the honeycomb structure 1 is “inlet gas temperature 2”, and the discharge portion 15 ( The temperature of the second fluid flowing 200 mm downstream from the position of the outer peripheral surface of the outer peripheral wall 7 was defined as “exit gas temperature 2”.
Heat exchange efficiency (%) = (exit gas temperature 2−inlet gas temperature 2) / (inlet gas temperature 1−inlet gas temperature 2) × 100
(圧力損失測定)
上記熱交換効率試験と同様の試験条件とし、ハニカム構造体1の第一の端面2aから300mm上流部と第二の端面2bから300mm下流部との間の差圧を測定し、「圧力損失1」とした。また、金属管12の一方の貫通孔21から300mm上流部と、他方の貫通孔21から300mm下流部との間の差圧を測定し、「圧力損失2」とした。
(Pressure loss measurement)
Under the same test conditions as in the heat exchange efficiency test, the pressure difference between the first end surface 2a of the honeycomb structure 1 and the 300 mm upstream portion from the second end surface 2b and the 300 mm downstream portion is measured. " Further, the pressure difference between the 300 mm upstream portion from one through hole 21 of the metal tube 12 and the 300 mm downstream portion from the other through hole 21 was measured, and was set as “pressure loss 2”.
(耐熱試験)
第一の流体として700℃、800℃、あるいは900℃の大気ガスを用いること以外は、上記熱交換効率試験と同様の試験条件とし、試験後のハニカム構造体1の割れ、破損有無を確認した。
(Heat resistance test)
Except for using 700 ° C, 800 ° C, or 900 ° C atmospheric gas as the first fluid, the test conditions were the same as in the heat exchange efficiency test, and the honeycomb structure 1 after the test was checked for cracks and breakage. .
(実施例2)
(ハニカム構造体の製造)
実施例1と同様にして、ハニカム構造体1を作製した。熱伝導率は、約150W/(m・K)であった。
(Example 2)
(Manufacture of honeycomb structure)
In the same manner as in Example 1, a honeycomb structure 1 was produced. The thermal conductivity was about 150 W / (m · K).
ハニカム構造体1の形状は、直径60mm、長さ200mmで、セル構造部分は、隔壁4の厚み約0.5mm、セルピッチ約3.6mmであった。ただし、中間壁8の厚みtbについては3mmとなるように押し出し成形時の形状を設定した。また、括れ部16が形成された部分における第一流体流通部5の全体の、軸方向9に垂直な断面形状は、30mm×30mmの四角形であった(図4BのX−X’断面図における第一流体流通部5の断面形状が四角形)。括れ部16の長さLbは20mmで、端面2より10mmの位置から30mmの位置に、上下2ヶ所括れ部16が配置された構造とした。 The honeycomb structure 1 had a diameter of 60 mm and a length of 200 mm, and the cell structure portion had a partition wall 4 thickness of about 0.5 mm and a cell pitch of about 3.6 mm. However, the thickness t b of the intermediate wall 8 has set the shape during extrusion such that the 3 mm. Moreover, the cross-sectional shape perpendicular | vertical to the axial direction 9 of the whole 1st fluid distribution | circulation part 5 in the part in which the constriction part 16 was formed was a square of 30 mm x 30 mm (in XX 'sectional drawing of FIG. 4B). The cross-sectional shape of the first fluid circulation part 5 is a square). The length Lb of the constricted portion 16 is 20 mm, and the upper and lower constricted portions 16 are arranged at a position 30 mm from a position 10 mm from the end face 2.
流体回路の作製、熱交換効率試験、圧損測定、耐熱試験は、実施例1と同じである。 The production of the fluid circuit, the heat exchange efficiency test, the pressure loss measurement, and the heat resistance test are the same as in Example 1.
(実施例3)
(ハニカム構造体の製造)
実施例1と同様にして、ハニカム構造体1を作製した。熱伝導率は、約150W/(m・K)であった。
(Example 3)
(Manufacture of honeycomb structure)
In the same manner as in Example 1, a honeycomb structure 1 was produced. The thermal conductivity was about 150 W / (m · K).
ハニカム構造体1の形状は、直径60mm、長さ200mmで、セル構造部分は、隔壁4の厚み約0.5mm、セルピッチ約3.6mmである。ただし、中間壁8の厚みtbについては3mmとなるように押し出し成形時の形状を設定した。また、括れ部16が形成された部分における第一流体流通部5の全体の、軸方向9に垂直な断面形状は、直径が40mmの円形であった(図4BのX−X’断面図における第一流体流通部5の断面形状が円形)。括れ部16の長さLbは20mmで、端面2より10mmの位置から30mmの位置に、上下2ヶ所括れ部16が配置された構造とした。 The honeycomb structure 1 has a diameter of 60 mm and a length of 200 mm, and the cell structure portion has a partition wall 4 thickness of about 0.5 mm and a cell pitch of about 3.6 mm. However, the thickness t b of the intermediate wall 8 has set the shape during extrusion such that the 3 mm. Moreover, the cross-sectional shape perpendicular to the axial direction 9 of the entire first fluid circulation portion 5 in the portion where the constricted portion 16 is formed is a circle having a diameter of 40 mm (in the XX ′ cross-sectional view of FIG. 4B). The cross-sectional shape of the first fluid circulation part 5 is circular). The length Lb of the constricted portion 16 is 20 mm, and the upper and lower constricted portions 16 are arranged at a position 30 mm from a position 10 mm from the end face 2.
流体回路の作製、熱交換効率試験、圧損測定、耐熱試験は、実施例1と同じである。 The production of the fluid circuit, the heat exchange efficiency test, the pressure loss measurement, and the heat resistance test are the same as in Example 1.
(参考例1)
(ハニカム成形体の製造)
所定量のSiC粉末、バインダー、水又は有機溶媒などを混練した成形用原料を、所望の形状に押し出し、乾燥してハニカム成形体を得た。
( Reference Example 1 )
(Manufacture of honeycomb molded body)
A forming raw material kneaded with a predetermined amount of SiC powder, a binder, water, an organic solvent or the like was extruded into a desired shape and dried to obtain a honeycomb formed body.
(三次元網目構造部を含むセラミックス構造体の製造)
三次元網目構造部を含み、Si含浸SiC複合材料を主成分とするセラミックス構造体を、以下のように作製した。まず、所定量の樹脂類及びシリコン粉末を含んだスラリーを用意した。骨格が樹脂で形成され、連通気孔を有するスポンジ形状の保持材に、連通気孔が塞がれない程度にスラリーを含浸させた。次に、スラリーを付着させたスポンジ形状の保持材に対して、所望の最終形状となるように、ハニカム構造体、及び外周壁の成形体を密着、接合させた。得られた接合体に対して、減圧の不活性ガス中で、接合体中に金属Siを含浸させた。このように作製したセラミックス構造体は、SiC粒子の隙間に金属Siが充填された緻密質の材料となっており、熱伝導が約150W/(m・K)と高い熱伝導性を示した。
(Manufacture of ceramic structures including three-dimensional network structure)
A ceramic structure including a three-dimensional network structure part and containing Si-impregnated SiC composite material as a main component was produced as follows. First, a slurry containing a predetermined amount of resins and silicon powder was prepared. A sponge-like holding material having a skeleton formed of resin and having continuous air holes was impregnated with slurry to such an extent that the continuous air holes were not blocked. Next, the honeycomb structure and the molded body of the outer peripheral wall were adhered and bonded to the sponge-shaped holding material to which the slurry was adhered so as to have a desired final shape. The obtained joined body was impregnated with metal Si in a reduced-pressure inert gas. The ceramic structure produced in this way is a dense material in which metal Si is filled in the gaps between the SiC particles, and has a high thermal conductivity of about 150 W / (m · K).
ハニカム構造体1の形状は、直径40mm、長さ200mmで、セル構造部分は、隔壁4の厚み約0.5mm、セルピッチ約3.6mmである。三次元網目構造部11はハニカム構造体の外周に配置され(図7)、直径60mm、長さ200mmで、気孔径3mm、開気孔率95%、密度0.1g/cm3であり、骨格部の平均枝径約0.5mm、平均開口率約70%であった。 The honeycomb structure 1 has a diameter of 40 mm and a length of 200 mm, and the cell structure portion has a partition wall 4 thickness of about 0.5 mm and a cell pitch of about 3.6 mm. The three-dimensional network structure 11 is disposed on the outer periphery of the honeycomb structure (FIG. 7), has a diameter of 60 mm, a length of 200 mm, a pore diameter of 3 mm, an open porosity of 95%, and a density of 0.1 g / cm 3. The average branch diameter was about 0.5 mm, and the average aperture ratio was about 70%.
流体回路の作製、熱交換効率試験、圧損測定、耐熱試験は、実施例1と同じである。 The production of the fluid circuit, the heat exchange efficiency test, the pressure loss measurement, and the heat resistance test are the same as in Example 1.
(比較例1)
(ハニカム構造体の製造)
Si含浸SiC複合材料を主成分とするハニカム構造体1を、以下のように作製した。まず、所定量のSiC粉末、バインダー、水又は有機溶媒などを混練した成形用原料を、所望の形状に押し出し、乾燥してハニカム成形体を得た。得られたハニカム成形体の両端面2の開口部分に対して、成形体と同一原料を用いてそれぞれ1層置きの列を、両端面2ともに端面2から軸方向9に5mm目封じした。その後、両端面2を目封じした列に対して、ハニカム構造体1の外周面に貫通孔22を施し、流体が通過できるようにした(図12参照)。次いで、減圧の不活性ガス又は真空中で、ハニカム成形体中に金属Siを含浸させた。このように作製したハニカム構造体1は、SiC粒子の隙間に金属Siが充填された緻密質の材料となっており、熱伝導が約150W/(m・K)と高い熱伝導性を示した。
(Comparative Example 1)
(Manufacture of honeycomb structure)
A honeycomb structure 1 mainly composed of a Si-impregnated SiC composite material was produced as follows. First, a forming raw material kneaded with a predetermined amount of SiC powder, a binder, water, an organic solvent or the like was extruded into a desired shape and dried to obtain a honeycomb formed body. With respect to the opening portions of the both end faces 2 of the obtained honeycomb formed body, every other layer was sealed by 5 mm in the axial direction 9 from both end faces 2 using the same raw material as the formed body. Thereafter, through holes 22 were made on the outer peripheral surface of the honeycomb structure 1 for the rows where both end faces 2 were sealed, so that fluid could pass (see FIG. 12). Then, the honeycomb formed body was impregnated with metal Si in a reduced pressure inert gas or vacuum. The honeycomb structure 1 manufactured in this way is a dense material in which metal Si is filled in the gaps between the SiC particles, and has a high thermal conductivity of about 150 W / (m · K). .
ハニカム構造体1の形状は、直径60mm、長さ200mmで、セル構造部分は、隔壁4の厚みtaが約0.5mm、セルピッチ約3.6mmであった。また、外周面の貫通孔22に関しては、ハニカム構造体1の第一の端面2a側における貫通孔22と第二の端面2b側における貫通孔22が反対側の外周面に配置されている。このように貫通孔22を配置することで、一方の外周面側の貫通孔22から流入される流体がハニカム構造体1の軸方向9を通過し、他方の外周面の貫通孔22から排出されるような構造となる。貫通孔22の孔形状としては、ハニカム構造体1の端面2より5mm位置から25mm位置まで、つまり軸方向9に20mm配置され、幅3mmである。 The shape of the honeycomb structure 1, diameter 60 mm, a length of 200 mm, the cell structure portion, the thickness t a of the partition wall 4 was about 0.5 mm, the cell pitch of about 3.6 mm. As for the through holes 22 on the outer peripheral surface, the through holes 22 on the first end surface 2a side and the through holes 22 on the second end surface 2b side of the honeycomb structure 1 are arranged on the outer peripheral surface on the opposite side. By arranging the through holes 22 in this way, the fluid flowing from the through holes 22 on one outer peripheral surface side passes through the axial direction 9 of the honeycomb structure 1 and is discharged from the through holes 22 on the other outer peripheral surface. It becomes a structure like this. The hole shape of the through hole 22 is 20 mm from the end surface 2 of the honeycomb structure 1 to the 25 mm position, that is, 20 mm in the axial direction 9 and has a width of 3 mm.
(流体回路の作製)
十字型の形状で、2組の流路出入口配管を保有したステンレスのケーシングにハニカム構造体1を配置した。その際、ハニカム両端面2を一方の流路入口A−出口A’に向け、ハニカム構造体1の外周面に配置されている貫通孔22を他方の流路入口B−出口B’に向くように配置した(図12)。
(Production of fluid circuit)
The honeycomb structure 1 was arranged in a stainless casing having a cross-shaped shape and having two sets of flow passage inlet / outlet pipes. At that time, both end faces 2 of the honeycomb are directed to one flow path inlet A-exit A ′, and the through holes 22 arranged on the outer peripheral surface of the honeycomb structure 1 are directed to the other flow path inlet B-exit B ′. (FIG. 12).
(熱交換効率試験)
第一の流体はケーシングの流路入口Aから流入させ、ハニカム構造体1の第一の端面2aから第二の端面2bに通過させ、ケーシングの流路出口A’から排出させた。一方、第二の流体はケーシングの流路入口Bから流入させ、ハニカム構造体1の一方の外周面から他方の外周面に通過させ、ケーシングの流路出口B’から排出させることで、伝熱効率を測定した。第一の流体として、400℃の大気ガスを用いて、SV(空間速度)50000h−1にてセル3内に流した。また、第二の流体として、30℃の大気ガスを用いて、SV(空間速度)50000h−1にてセル3内に流した。
(Heat exchange efficiency test)
The first fluid was introduced from the flow path inlet A of the casing, passed from the first end face 2a of the honeycomb structure 1 to the second end face 2b, and discharged from the flow path outlet A ′ of the casing. On the other hand, the second fluid is introduced from the flow passage inlet B of the casing, passed from one outer peripheral surface of the honeycomb structure 1 to the other outer peripheral surface, and discharged from the flow passage outlet B ′ of the casing, thereby achieving heat transfer efficiency. Was measured. As the first fluid, atmospheric gas at 400 ° C. was used and flowed into the cell 3 at SV (space velocity) 50000 h −1 . Moreover, 30 degreeC atmospheric gas was used as a 2nd fluid, and it flowed in the cell 3 at SV (space velocity) 50000h- 1 .
ハニカム構造体1の入口端面(第一の端面2a)より20mm上流を流れる第一の流体の温度を「入口ガス温1」、ハニカム構造体1の出口端面(第二の端面2b)より200mm下流を流れる第一の流体の温度を「出口ガス温1」とした。ハニカム構造体1の入口外周面より20mm上流を流れる第二の流体の温度を「入口ガス温2」、ハニカム構造体1の出口外周面より200mm下流を流れる第二の流体の温度を「出口ガス温2」とした。
熱交換効率(%)=(出口ガス温2−入口ガス温2)/(入口ガス温1−入口ガス温2)×100
The temperature of the first fluid flowing 20 mm upstream from the inlet end face (first end face 2 a) of the honeycomb structure 1 is “inlet gas temperature 1”, and 200 mm downstream from the outlet end face (second end face 2 b) of the honeycomb structure 1. The temperature of the first fluid flowing through was set as “outlet gas temperature 1”. The temperature of the second fluid flowing 20 mm upstream from the inlet outer peripheral surface of the honeycomb structure 1 is “inlet gas temperature 2”, and the temperature of the second fluid flowing 200 mm downstream from the outlet outer peripheral surface of the honeycomb structure 1 is “outlet gas”. Temperature 2 ”.
Heat exchange efficiency (%) = (exit gas temperature 2−inlet gas temperature 2) / (inlet gas temperature 1−inlet gas temperature 2) × 100
(圧力損失測定)
上記熱交換効率試験と同様の試験条件とし、ハニカム構造体1の第一の端面2aから300mm上流部と第二の端面2bから300mm下流部との間の差圧を測定し、「圧力損失1」とした。また、ハニカム構造体1の一方の外周面から300mm上流部と、他方の外周面から300mm下流部との間の差圧を測定し、「圧力損失2」とした。
(Pressure loss measurement)
Under the same test conditions as in the heat exchange efficiency test, the pressure difference between the first end surface 2a of the honeycomb structure 1 and the 300 mm upstream portion from the second end surface 2b and the 300 mm downstream portion is measured. " Further, the pressure difference between the 300 mm upstream portion from one outer peripheral surface of the honeycomb structure 1 and the 300 mm downstream portion from the other outer peripheral surface was measured, and was set as “pressure loss 2”.
(耐熱試験)
第一の流体として700℃、800℃、あるいは900℃の大気ガスを用いること以外は、上記熱交換効率試験と同様の試験条件とし、試験後のハニカム構造体1の割れ、破損有無を確認した。
(Heat resistance test)
Except for using 700 ° C, 800 ° C, or 900 ° C atmospheric gas as the first fluid, the test conditions were the same as in the heat exchange efficiency test, and the honeycomb structure 1 after the test was checked for cracks and breakage. .
(結果)
圧力損失に関しては、圧力損失1、圧力損失2ともに、比較例1に比べて、実施例1〜3、参考例1の方が低い値となった。実施例1と実施例2に大きな差は見られなかったものの、実施例3が最も圧力損失が低かった。圧力損失2において、参考例1は比較例1の次に圧力損失が高かった。一方、耐熱試験の結果に関しては、比較例1で700℃以上の条件において第一、第二の流体のシール性が破壊される割れ方が生じたのに対し、実施例1では800℃以上の条件で割れが生じたものの、シール性が破壊される条件は900℃条件以上であった。実施例2に関しては、800℃条件以上で割れが生じたものの、900℃条件においてもガスのリークは確認されなかった。実施例3に関しては、900℃条件においても割れ、ガスのリークともに確認されなかった。参考例1に関しては、実施例3と同様の結果であった。熱交換効率に関しては、実施例1〜3、比較例1の水準でほぼ同等レベルであったが、若干実施例3が高効率となった。一方、参考例1はそのほかの水準に比べて高効率となった。
(result)
Regarding the pressure loss, both the pressure loss 1 and the pressure loss 2 were lower in Examples 1 to 3 and Reference Example 1 than in Comparative Example 1. Although there was no significant difference between Example 1 and Example 2, Example 3 had the lowest pressure loss. In pressure loss 2, Reference Example 1 had the second highest pressure loss after Comparative Example 1. On the other hand, regarding the result of the heat resistance test, in Comparative Example 1, the first and second fluids were broken in the sealability at 700 ° C. or higher, whereas in Example 1, the heat resistance test was 800 ° C. or higher. Although cracking occurred under the conditions, the conditions under which the sealing performance was destroyed were 900 ° C. or more. Regarding Example 2, although cracking occurred at 800 ° C. or higher, no gas leak was observed even at 900 ° C. Regarding Example 3, neither cracking nor gas leakage was confirmed even at 900 ° C. Regarding Reference Example 1 , the result was the same as Example 3. Regarding the heat exchange efficiency, the levels of Examples 1 to 3 and Comparative Example 1 were almost the same level, but Example 3 was slightly higher in efficiency. On the other hand, Reference Example 1 was more efficient than other levels.
以上の結果より、実施例1〜3では、比較例1に比べて、熱交換性能が同等レベルなものの、低圧力損失で、熱衝撃に強い構造であることが確認された。また、熱衝撃による割れが発生した場合でも、流体同士のシール性が保持されやすいことが確認された。また実施例1〜3の中でも実施例3が最も好ましい構造であることが確認された。一方、参考例1は、比較例1に比べて熱交換性能が高く、低圧力損失で、熱衝撃に強い構造であることが確認された。また、実施例3と比較すると、圧力損失が高くなってしまうものの、効率では大きく凌駕できることが確認された。 From the above results, it was confirmed that in Examples 1 to 3, the heat exchange performance was comparable to that in Comparative Example 1, but the structure was low pressure loss and strong against thermal shock. Further, it was confirmed that the sealing property between fluids was easily maintained even when cracking due to thermal shock occurred. Moreover, it was confirmed that Example 3 is the most preferable structure among Examples 1-3. On the other hand, it was confirmed that the reference example 1 had a heat exchange performance higher than that of the comparative example 1, a low pressure loss, and a structure resistant to thermal shock. In addition, compared with Example 3, it was confirmed that although the pressure loss increases, the efficiency can be greatly surpassed.
本発明の熱交換部材は、加熱体(高温側)と被加熱体(低温側)で熱交換する用途であれば、特に限定されず、自動車分野、化学分野、製薬分野等に利用できる。特に、加熱体、被加熱体の双方が気体の場合に好適である。本発明のセラミックス構造体は、熱交換効率に優れた熱交換部材を作製することができる。 The heat exchange member of the present invention is not particularly limited as long as it is used for heat exchange between a heated body (high temperature side) and a heated body (low temperature side), and can be used in the automotive field, chemical field, pharmaceutical field, and the like. In particular, it is suitable when both the heating body and the heated body are gases. The ceramic structure of the present invention can produce a heat exchange member having excellent heat exchange efficiency.
1:ハニカム構造体、2,2a,2b:(軸方向の)端面、3:セル、4:隔壁、5:第一流体流通部、6:第二流体流通部、7:外周壁、8:中間壁、9:軸方向(長手方向)、10:熱交換部材、11:三次元網目構造部、12:金属管、13:中間材、14:流入部、15:排出部、16:括れ部、17:遮蔽板、18:目封止部、21:(金属管の)貫通孔、22:(ハニカム構造体の)貫通孔、23:合流部、24:枝部、25:最小枝径、30:セラミックス構造体。 1: honeycomb structure, 2, 2a, 2b: end face (in the axial direction), 3: cell, 4: partition, 5: first fluid circulation part, 6: second fluid circulation part, 7: outer peripheral wall, 8: Intermediate wall, 9: axial direction (longitudinal direction), 10: heat exchange member, 11: three-dimensional network structure part, 12: metal pipe, 13: intermediate material, 14: inflow part, 15: discharge part, 16: constricted part , 17: shielding plate, 18: plugged portion, 21: through hole (of the metal pipe), 22: through hole (of the honeycomb structure), 23: merge portion, 24: branch portion, 25: minimum branch diameter, 30: Ceramic structure.
Claims (15)
その外周に中間壁を介して第二の流体の流路である第二流体流通部となる複数のセルを区画形成する隔壁及び/又は前記三次元網目構造部と、
さらにその外周に外周壁と、を有し、
前記第二の流体が外部から前記第二流体流通部に流入するための流入部、および前記第二流体流通部に流入した前記第二の流体を前記外部に排出する排出部が前記外周壁の一部に少なくとも1対以上設けられた、セラミックスを主成分とするセラミックス構造体を備え、
前記第二の流体の前記流入部、または前記排出部は、前記セラミックス構造体の前記外周壁の一部、および、前記隔壁及び/又は前記三次元網目構造部の一部が形成されずに括れた形状の括れ部として構成され、
前記括れ部は、前記セラミックス構造体の軸方向における端部に形成されず、前記端部以外に形成され、前記端部には、前記外周壁、および、前記隔壁及び/又は前記三次元網目構造部が形成されている、
前記第一の流体と前記第二の流体とを混合させずに、前記第一流体流通部と前記第二流体流通部との間に存在する隔壁を介して熱交換可能な熱交換部材。 A three-dimensional network structure part having partition walls and / or continuous air holes that partition and form cells of 2 × 2 rows or more that serve as a first fluid flow part that is a flow path of the first fluid;
A partition wall and / or the three-dimensional network structure section that defines a plurality of cells that serve as a second fluid circulation section, which is a flow path of the second fluid, on the outer periphery via an intermediate wall;
Furthermore, it has an outer peripheral wall on its outer periphery,
An inflow portion for allowing the second fluid to flow into the second fluid circulation portion from the outside, and a discharge portion for discharging the second fluid flowing into the second fluid circulation portion to the outside are provided on the outer peripheral wall. A ceramic structure mainly composed of ceramics provided at least one or more pairs in part,
The inflow part or the discharge part of the second fluid is bundled without forming a part of the outer peripheral wall of the ceramic structure and a part of the partition wall and / or the three-dimensional network structure part. Configured as a constricted part
The constricted portion is not formed at an end portion in the axial direction of the ceramic structure, but is formed at a portion other than the end portion, and the outer peripheral wall and the partition and / or the three-dimensional network structure are formed at the end portion. Part is formed,
A heat exchange member capable of exchanging heat via a partition wall existing between the first fluid circulation part and the second fluid circulation part without mixing the first fluid and the second fluid.
前記複数のセルのうちの、径方向における中心部分にある前記セルを囲んで前記中心部分にある前記セルと、残余の外周部分にある前記セルとに区分し、かつ前記隔壁よりも厚い中間壁を備え、
主成分が炭化珪素、熱伝導率が100W/(m・K)以上であり、
前記径方向において前記中間壁よりも外周部分に前記隔壁が形成されていない括れ部が、軸方向において離間して少なくとも2つ設けられ、前記括れ部は、前記ハニカム構造体の軸方向における端部に形成されず、前記端部以外に形成され、前記端部には、前記外周壁、および前記隔壁が形成されているハニカム構造体であるセラミックス構造体。 A honeycomb structure having a partition , a plurality of cells penetrating from one end face to the other end face by the partition , and further having an outer peripheral wall on the outer periphery of the partition,
Among the plurality of cells, an intermediate wall that surrounds the cell in the central portion in the radial direction and is divided into the cell in the central portion and the cell in the remaining outer peripheral portion, and is thicker than the partition With
The main component is silicon carbide, the thermal conductivity is 100 W / (m · K) or more,
In the radial direction, at least two constricted portions in which the partition walls are not formed in the outer peripheral portion of the intermediate wall are provided apart in the axial direction, and the constricted portions are end portions in the axial direction of the honeycomb structure. A ceramic structure which is a honeycomb structure which is not formed in any of the above-described cases but is formed at a portion other than the end portion, and the outer peripheral wall and the partition walls are formed at the end portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014063056A JP6324150B2 (en) | 2013-07-23 | 2014-03-26 | Heat exchange member and ceramic structure |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013153069 | 2013-07-23 | ||
JP2013153069 | 2013-07-23 | ||
JP2014063056A JP6324150B2 (en) | 2013-07-23 | 2014-03-26 | Heat exchange member and ceramic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015042934A JP2015042934A (en) | 2015-03-05 |
JP6324150B2 true JP6324150B2 (en) | 2018-05-16 |
Family
ID=52696518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014063056A Active JP6324150B2 (en) | 2013-07-23 | 2014-03-26 | Heat exchange member and ceramic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6324150B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6691538B2 (en) | 2015-05-21 | 2020-04-28 | 日本碍子株式会社 | Heat exchange parts |
JP6613970B2 (en) | 2016-03-09 | 2019-12-04 | 株式会社デンソー | Method for manufacturing mold for manufacturing honeycomb structure, apparatus for manufacturing mold, and method for manufacturing honeycomb structure |
JP6670153B2 (en) * | 2016-03-31 | 2020-03-18 | 日本碍子株式会社 | Heat storage material |
JP2017219226A (en) * | 2016-06-06 | 2017-12-14 | イビデン株式会社 | Heat exchanger |
JP6746386B2 (en) * | 2016-06-06 | 2020-08-26 | イビデン株式会社 | Honeycomb structure |
JP6854112B2 (en) * | 2016-11-18 | 2021-04-07 | 日本碍子株式会社 | Heat exchanger |
JP2019060304A (en) * | 2017-09-27 | 2019-04-18 | トヨタ自動車株式会社 | Exhaust heat recovery device |
JP6854229B2 (en) * | 2017-10-17 | 2021-04-07 | イビデン株式会社 | Heat exchanger |
JP2019158239A (en) * | 2018-03-13 | 2019-09-19 | イビデン株式会社 | Manufacturing method of heat exchanger |
JP2019174012A (en) * | 2018-03-27 | 2019-10-10 | イビデン株式会社 | Heat exchanger |
JP7496661B2 (en) * | 2020-02-27 | 2024-06-07 | 日本特殊陶業株式会社 | Ceramic joint and method for producing same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141541A (en) * | 1983-12-29 | 1985-07-26 | Nippon Soken Inc | Manufacture of block-type heat exchanger elements |
JPS61159087A (en) * | 1984-12-30 | 1986-07-18 | Isuzu Motors Ltd | Formative heat exchanger element |
JPS629183A (en) * | 1985-07-04 | 1987-01-17 | Kyocera Corp | Honeycomb heat exchanger |
JPH116602A (en) * | 1997-06-13 | 1999-01-12 | Isuzu Ceramics Kenkyusho:Kk | Structure of heat exchanger |
JP4742233B2 (en) * | 2005-05-13 | 2011-08-10 | 株式会社東芝 | Ceramic heat exchanger |
US8475729B2 (en) * | 2008-11-30 | 2013-07-02 | Corning Incorporated | Methods for forming honeycomb minireactors and systems |
EP2623917B1 (en) * | 2010-09-29 | 2018-12-12 | NGK Insulators, Ltd. | Heat exchanger element |
-
2014
- 2014-03-26 JP JP2014063056A patent/JP6324150B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015042934A (en) | 2015-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6324150B2 (en) | Heat exchange member and ceramic structure | |
JP6625770B2 (en) | Heat exchanger | |
JP5944897B2 (en) | Heat exchange member | |
EP2642231B1 (en) | Heat exchanger comrpising a heat conduction member | |
JP5797740B2 (en) | Heat exchange member and heat exchanger | |
EP3026387B1 (en) | Heat exchange component | |
JP6006204B2 (en) | HEAT EXCHANGE MEMBER, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER | |
JPWO2019135312A1 (en) | Heat exchanger, heat exchanger and heat exchanger with purification means | |
JP2012037165A (en) | Heat exchange member | |
JP2015192988A (en) | honeycomb structure | |
CN108071545B (en) | Heat exchanger | |
JP6144937B2 (en) | Heat exchange member | |
JP7448698B2 (en) | Heat exchange parts and heat exchangers | |
JP7217654B2 (en) | Heat exchanger | |
JP6043183B2 (en) | Heat exchange member | |
JP6158687B2 (en) | Heat exchange member | |
JP2021042923A (en) | Heat exchanger | |
JP7046039B2 (en) | Heat exchanger | |
JP5486973B2 (en) | Honeycomb catalyst body and exhaust gas purification device | |
JP2014070826A (en) | Heat exchange member and heat exchanger | |
JP2012202657A (en) | Heat conducting member | |
JP6023257B2 (en) | Thermal conduction member | |
JP2013011428A (en) | Heat exchange member | |
JP2022132034A (en) | Heat exchange member, heat exchanger, and heat conduction member | |
JP2012255614A (en) | Heat exchange member, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180123 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180327 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6324150 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |