JPS629183A - Honeycomb heat exchanger - Google Patents

Honeycomb heat exchanger

Info

Publication number
JPS629183A
JPS629183A JP14777685A JP14777685A JPS629183A JP S629183 A JPS629183 A JP S629183A JP 14777685 A JP14777685 A JP 14777685A JP 14777685 A JP14777685 A JP 14777685A JP S629183 A JPS629183 A JP S629183A
Authority
JP
Japan
Prior art keywords
honeycomb
heat exchanger
temperature fluid
ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14777685A
Other languages
Japanese (ja)
Inventor
Michihiko Miyasaka
宮坂 通彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14777685A priority Critical patent/JPS629183A/en
Publication of JPS629183A publication Critical patent/JPS629183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reinforce the honeycomb heat exchanger and prevent mixing of fluids surely when cracking occurs by a method wherein a ceramics honeycomb, passing low-temperature fluid, is connected to the outer periphery of the ceramics honeycomb, passing high-temperature fluid, through a ceramics cylindrical body. CONSTITUTION:The honeycomb heat exchanger 1 is made by a method wherein the slurry of powder, consisting of sintered body of silicon carbide having high strength to high temperature and high heat conductivity, is added with binder and is formed into the configuration of honeycomb by extrusion molding. The sectional shape of the honeycomb molded body, thus molded, is circle or fan shape. A block 10 for passing the high-temperature fluid is provided with circular section and the block 20 for passing the low-temperature fluid is provided with segmental section while a ceramics cylindrical body 19, consisting of the sintered body of silicon carbide same as the material of honeycomb forms, is interposed between the blocks 10, 20 to obtain an integral assembled body 2 and install it in a casing 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱交換器に関し、更に詳しくは高熱伝導性セ
ラミックハニカムを組合わせて成るハニカム熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat exchanger, and more particularly to a honeycomb heat exchanger formed by combining highly thermally conductive ceramic honeycombs.

(従来の技術) 最近、大きな温度差を有する流体間において熱交換を行
わせるハニカム熱交換器として、第5図に示すように、
一体成形されたハニカム成形体50を円筒隔壁51.5
2によって、中心部と外周部とに区画して各々高温流体
用通路53及び低温流体用通路54とし、対向流になる
ように高温流体及び低温流体を通して熱交換を行わせる
ハニカム熱交換器が開発されている。熱は半径方向に放
射状にハニカム仕切壁55.56を伝って伝達され、そ
の広い電熱面積によって静止状態においても効率的に優
れた流体間の熱交換が行われる特徴を有している。
(Prior Art) Recently, as shown in FIG. 5, a honeycomb heat exchanger that exchanges heat between fluids having a large temperature difference has been developed.
The integrally molded honeycomb molded body 50 is attached to a cylindrical partition wall 51.5.
2, a honeycomb heat exchanger was developed, which is divided into a central part and an outer peripheral part, with a high-temperature fluid passage 53 and a low-temperature fluid passage 54, respectively, and heat exchange is performed through the high-temperature fluid and the low-temperature fluid so that they flow in opposite directions. has been done. Heat is transmitted radially through the honeycomb partition walls 55, 56, and the large electrothermal area allows efficient heat exchange between the fluids even in a stationary state.

(発明が解決しようとする問題点) しかし、この新しく開発されたハニカム熱交換器は、使
用中円周方向及び長手方向に作用する引張応力を伴う熱
歪が発生するため、゛円周方向及び長手方向にクラック
が発生し、流体間の混合が起こる可能性があった。
(Problems to be Solved by the Invention) However, this newly developed honeycomb heat exchanger generates thermal strain accompanied by tensile stress acting in the circumferential and longitudinal directions during use. Cracks could occur in the longitudinal direction and mixing between the fluids could occur.

(発明の目的) 本発明は、上記従来の技術の問題点に鑑みなされたもの
であって、ハニカム熱交換器を、複数の独立した高熱伝
導性セラミックハニカムを高温流体を通すブロックと低
温流体を通すブロックとに集約して、結合手段によって
一体的に組合わせて構成し、セグメント化によって応力
を開放し、更に各成形体に発生する熱歪を結合手段にも
分担させ引張り応力の発生を防ぎ耐久性を改善すること
を目的とする。又高温流体を通すブロックと低温流体を
通すブロックとの間に、高温高強度かつ高熱伝導性セラ
ミック円筒体を介設することにより、ハニカム熱交換器
を補強すると共に、万が−クラックが生じたとき流体間
の混合を確実に防止することもできる。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems of the conventional technology. The molded bodies are integrated into blocks to be passed through and are combined integrally by a connecting means, and the stress is released by segmentation, and the thermal strain generated in each molded body is also shared by the connecting means to prevent the generation of tensile stress. The purpose is to improve durability. In addition, by interposing a high-temperature, high-strength, and high-thermal-conductivity ceramic cylindrical body between the block that passes high-temperature fluid and the block that passes low-temperature fluid, the honeycomb heat exchanger is reinforced, and cracks are prevented in the unlikely event that cracks occur. It is also possible to reliably prevent mixing between fluids.

(問題点を解決するための手段) 前記目的を達成するための手段は、複数の独立した高熱
伝導性セラミックハニカムを、高温流体を通すブロック
と低温流体を通すブロックとに集約して、結合手段によ
って一体的に組合わせて構成されたハニカム熱交換器で
ある。
(Means for Solving the Problems) The means for achieving the above object is to aggregate a plurality of independent highly thermally conductive ceramic honeycombs into a block through which high temperature fluid passes and a block through which low temperature fluid passes, and to combine the plurality of independent ceramic honeycombs with a connecting means. This is a honeycomb heat exchanger constructed by integrally combining.

(作用) 高熱伝導性セラミックハニカムは、多数のハニカム形成
仕切り壁によって広い伝熱面積を提供すると共に、これ
ら縦横にめぐらされた高熱伝導性セラミック仕切り壁に
より授受される熱は高い効率で高温ブロックから低温ブ
ロックに伝達される。
(Function) Highly thermally conductive ceramic honeycombs provide a wide heat transfer area with a large number of honeycomb-formed partition walls, and the heat transferred and received by these high thermally conductive ceramic partition walls arranged vertically and horizontally is transferred from the high-temperature block with high efficiency. transferred to the cold block.

又複数のセラミックハニカムの組合せによる構造は、一
体成形による構造に比較して、熱変形、熱歪に対する拘
束力を大幅に解決し、クラック発生の原因になる特に大
きな引張り応力の発生を抑制する。緊締バンドや焼嵌め
リング、または焼嵌スリーブ等の結合手段は、個々に独
立して成形された複数のセラミックハニカムを熱交換器
として組合せ結束する他、個々のセラミックハニカムの
熱膨張を拘束しセラミックスに有利な圧縮応力を発生さ
せクラックの発生を防ぐ。
Furthermore, the structure formed by combining a plurality of ceramic honeycombs significantly reduces the restraining force against thermal deformation and thermal distortion, and suppresses the generation of especially large tensile stress that causes cracks, compared to the structure formed by integral molding. Connection means such as tightening bands, shrink-fit rings, or shrink-fit sleeves are used to combine and bind a plurality of individually molded ceramic honeycombs as a heat exchanger, and also to restrain the thermal expansion of individual ceramic honeycombs and to Generates compressive stress that is advantageous to prevent cracks from forming.

(実施例) 以下、本発明のハニカム熱交換器の一実施例を図面によ
って詳細に説明する。
(Example) Hereinafter, an example of the honeycomb heat exchanger of the present invention will be described in detail with reference to the drawings.

第1図乃至第2図(b)に示すように1本実施例のハニ
カム熱交換器1は、高温高強度かつ高熱伝導性を有する
実質的に炭化けい素質焼結体からなる粉体にバインダー
を加えたスラリーを押出成形によりハニカム形状に成形
され、これを焼成することにより作成される。第2図(
a)及び(b)に示す実施例においては、このように作
成されるハニカム成形体が横断面円形のものと扇形のも
のとの2種ある。横断面円形のものを高温流体を通すブ
ロック10とし、扇形のものを低温流体を通すブロック
20・・・とじ、さらにこれらブロック10゜20・・
・間にこれらハニカム成形体と同一材質である炭化けい
素質焼結体からなるセラミック円筒体19を介設しこれ
らを一体的にした組合せ体2としてケーシング3内に設
置している。
As shown in FIGS. 1 and 2(b), the honeycomb heat exchanger 1 of this embodiment is made of a powder made essentially of silicon carbide sintered body having high temperature, high strength and high thermal conductivity, and a binder. It is created by extrusion molding a slurry to which is added into a honeycomb shape, and firing the honeycomb shape. Figure 2 (
In the embodiments shown in a) and (b), there are two types of honeycomb molded bodies produced in this way: one with a circular cross section and one with a fan-shaped cross section. A block with a circular cross section is used as a block 10 for passing high-temperature fluid, a fan-shaped block is used as a block 20 for passing low-temperature fluid, and further these blocks 10° 20...
- A ceramic cylindrical body 19 made of a silicon carbide sintered body, which is the same material as these honeycomb molded bodies, is interposed between them, and these are installed in the casing 3 as an integrated assembly 2.

高温流体を通すブロックを構成する中央ハニカム成形体
10は、円筒状の外周壁11と、該外周壁11の内部に
おいて格子状に水平方向及び垂直方向に相互に直交する
ように一体成形された多数の仕切り壁12・・・、13
・・・と、これら仕切り壁間に又仕切り壁と外周壁との
間に形成された長手方向に貫通した多数の通路空間14
・・・とから構成されている。中央セラミックハニカム
1oは、外周部に前記セラミックハニカムと同材質の炭
化けい1iJ質焼結体から成る高強度で熱伝導性に優れ
たセラミック円筒体19を周設している。
The central honeycomb molded body 10, which constitutes a block through which high-temperature fluid passes, has a cylindrical outer peripheral wall 11 and a plurality of integrally molded parts inside the outer peripheral wall 11 in a lattice shape so as to be orthogonal to each other in the horizontal and vertical directions. Partition walls 12..., 13
...and a large number of passage spaces 14 that penetrate in the longitudinal direction and are formed between these partition walls and between the partition wall and the outer peripheral wall.
It is composed of... The central ceramic honeycomb 1o has a ceramic cylindrical body 19 having high strength and excellent thermal conductivity made of a silicon carbide 1iJ sintered body, which is the same material as the ceramic honeycomb, on its outer periphery.

低温流体を通すブロックを構成する外周部セラミックハ
ニカム20は、内径が前記セラミック円筒体19の外径
に等しく、外径が例えば前記中央セラミックハニカム1
0の2倍に相当する大きさのリングを均等に4分割した
扇形の横断面を有しており、この扇形の輪郭に沿った外
周壁21と、外周壁の内部において格子状に水平方向及
び垂直方向に相互に直交するように一体成形された多数
の仕切り壁22・・・、23・・・と、これら仕切り壁
間に又仕切り壁と外周壁との間に形成された多数の長手
方向の貫通通路空間24・・・とから構成されている。
The outer peripheral ceramic honeycomb 20 constituting the block through which the low-temperature fluid passes has an inner diameter equal to the outer diameter of the ceramic cylindrical body 19, and an outer diameter that is equal to the outer diameter of the central ceramic honeycomb 1, for example.
It has a fan-shaped cross section obtained by equally dividing a ring with a size equivalent to twice 0 into four, and an outer circumferential wall 21 that follows the contour of this sector, and a grid-like cross section inside the outer circumferential wall. A large number of partition walls 22 . The through passage space 24...

長さは中央セラミックハニカム1oよりも短い。The length is shorter than the central ceramic honeycomb 1o.

前記セラミックハニカムと一体的に構成するための結合
手段3oは、略C形状に曲成された帯鋼より成るバンド
31と、その両端部において各々直角状態に外側に折曲
され補強されたフランジ32.33と、ボルト及びナツ
ト等のファスナ34とから構成されており、バンド31
の長さは前記外周部セラミックハニカム20が4個で形
成する円筒外周の長さよりも締代を見込んで若干短く決
められている。
The coupling means 3o configured integrally with the ceramic honeycomb includes a band 31 made of a steel band bent into a substantially C shape, and a reinforced flange 32 bent outward at right angles at both ends of the band 31. .33 and fasteners 34 such as bolts and nuts, and the band 31
The length is determined to be slightly shorter than the length of the cylindrical outer periphery formed by the four outer peripheral ceramic honeycombs 20, taking into account the interference.

外周部にセラミックハニカム20に対して中央セラミッ
クハニカム10を両端部において突出状態に組立てた組
立体2は、その前方の突出部を成す中央セラミックハニ
カム10の前端部において支持フランジ4によってガス
ケットパツキン4aを介して円筒状ケーシング3内に固
定状態に支持されている。ケーシング3は、組立体2と
の間に、低温流体Cの供給路5aとその排出路5bとを
形成しており、又中央セラミックハニカム10とほぼ同
直径の高温流体導入用短管3aと排出用短管3cを各々
前方端壁3bと後方端壁3dとに中央セラミックハニカ
ム10と同軸的に突設しており、組立体2を更に周壁3
eにおいて断熱材より成る支持体18によって緩衝状態
に支持している。又ケーシング3は1周壁3eの前、後
端部において各々低温流体が加熱されて排出する出口短
管3fと低温流体の入口短管3gを突設している。
The assembly 2 has a ceramic honeycomb 20 on the outer periphery and a central ceramic honeycomb 10 assembled at both ends in a protruding state. It is fixedly supported within the cylindrical casing 3 via the cylindrical casing 3. The casing 3 forms a low temperature fluid C supply path 5a and its discharge path 5b between it and the assembly 2, and also has a high temperature fluid introduction short pipe 3a and a discharge path having approximately the same diameter as the central ceramic honeycomb 10. Short pipes 3c for use are provided on the front end wall 3b and the rear end wall 3d, respectively, protruding coaxially with the central ceramic honeycomb 10, and the assembly 2 is further connected to the peripheral wall 3.
At e, it is supported in a buffered state by a support 18 made of a heat insulating material. Further, the casing 3 has a short outlet pipe 3f for heating and discharging the low temperature fluid and a short inlet pipe 3g for the low temperature fluid protruding from the front and rear ends of the first circumferential wall 3e, respectively.

高温流体Hと低温流体Cは、各々対向流を成すように、
前者は導入用短管3aから中央セラミックハニカム1o
へ又後者は入口短管3gから供給路5aを経て外周部セ
ラミックハニカム20へ導入され、高熱伝導性のハニカ
ム仕切り壁12・・・、13・・・、22・・・、23
・・・及び密着性の良いセラミック円筒体19を介して
効率良く熱の授受が行われる。高温流体Hを通す中央セ
ラミックハニカム10は外周セラミックハニカムと分離
しかつ熱膨張が制限されて圧縮応力を生じさせ、又熱の
伝達を受は温度が上昇する外周部セラミックハニカム2
0も4分割体となっているために熱膨張に起因する引張
り応力は開放されて小さくむしろ4分割体の外周セラミ
ックハニカム20を結束している結合手段30によって
熱膨張が拘束されて圧縮応力を生じクラックの発生は効
果的に予防されている。万が一部分的にクラックが生じ
たとしても、高温高強度なセラミック円筒体19によっ
て流体間の混合は完全に防止される。前記セラミックハ
ニカムであるブロック10.20及びセラミック円筒体
19は炭化けい素質焼結体を使用したが他のセラミック
であっても、高温高強度、高熱伝導性及び耐熱性を有し
熱交換器として適用できるもの例えば窒化けい素であれ
ば当然使用できる。以下に本発明で利用し得る炭化けい
素(SiC)及び窒化けい素(S 13N4)に対し他
のセラミック(ZrO2・A1□03)及び金属の諸特
性を、第1表に挙げ比較する。
The high-temperature fluid H and the low-temperature fluid C form counterflows, respectively.
The former is from the introduction short pipe 3a to the central ceramic honeycomb 1o.
The latter is introduced into the outer peripheral ceramic honeycomb 20 from the inlet short pipe 3g via the supply path 5a, and is introduced into the honeycomb partition walls 12..., 13..., 22..., 23 with high thermal conductivity.
. . . Heat is transferred and received efficiently through the ceramic cylindrical body 19 with good adhesion. The central ceramic honeycomb 10 through which the high-temperature fluid H passes is separated from the outer ceramic honeycomb and has limited thermal expansion to generate compressive stress, and receives heat transfer to the outer ceramic honeycomb 2 whose temperature increases.
Since 0 is also a four-divided body, the tensile stress caused by thermal expansion is released and is small. Rather, the thermal expansion is restrained by the connecting means 30 that binds the outer ceramic honeycomb 20 of the four-divided body, and compressive stress is reduced. The occurrence of cracks is effectively prevented. Even if a crack were to occur partially, the high-temperature, high-strength ceramic cylindrical body 19 would completely prevent fluids from mixing. Although silicon carbide sintered bodies are used for the ceramic honeycomb block 10.20 and the ceramic cylinder 19, other ceramics can also be used as a heat exchanger due to their high strength at high temperatures, high thermal conductivity, and heat resistance. Of course, any applicable material such as silicon nitride can be used. Table 1 below lists and compares the various properties of silicon carbide (SiC) and silicon nitride (S 13N4) that can be used in the present invention with other ceramics (ZrO2.A1□03) and metals.

え上人 但し、×印の試料番号は本発明の範囲外である・(−)
印は融解又は融解に近いため測定せず・第1表から理解
されるように熱伝導率に関してはA1金属が優れている
が高温強度及び耐熱性が低く、また5US304は熱伝
導率、高温強度及び耐熱性共に低く熱交換器として使用
に耐えない。
However, the sample numbers marked with an X are outside the scope of the present invention (-)
The mark is not measured because it is melted or close to melting.As can be understood from Table 1, A1 metal has excellent thermal conductivity, but low high temperature strength and heat resistance, and 5US304 has low thermal conductivity and high temperature strength. It has low heat resistance and cannot be used as a heat exchanger.

これに対しセラミックスは大半使用できるが、特に炭化
けい素質焼結体(SiC)は熱伝導率が優れ、高温強度
及び耐熱性も良好である。ジルコニア(ZrO2)やA
1□03は高温強度に関し不利であるが、熱交換器の使
用温度や構造を工夫すれば使用できるものと考えられる
In contrast, most ceramics can be used, and silicon carbide sintered bodies (SiC) in particular have excellent thermal conductivity, high-temperature strength, and heat resistance. Zirconia (ZrO2) and A
Although 1□03 is disadvantageous in terms of high temperature strength, it is thought that it can be used if the operating temperature and structure of the heat exchanger are modified.

セラミック円筒体19に関してはセラミックハニカム1
0.2oと同一の材料、即ち熱膨張係数が同一のもので
あることが好ましい。同一材料でなくても熱膨張係数が
近似していればよい。例えば炭化けい素質焼結体の熱膨
張係数は3〜4×10−6/’Cであり、これに使用で
きるセラミック円筒体としては熱膨張係数が約3 X 
10−’/’Cの窒化けい素質焼結体が利用できる。
Regarding the ceramic cylinder 19, the ceramic honeycomb 1
It is preferable that the material is the same as 0.2o, that is, the material has the same coefficient of thermal expansion. They do not need to be made of the same material as long as their thermal expansion coefficients are similar. For example, the coefficient of thermal expansion of a silicon carbide sintered body is 3 to 4 x 10-6/'C, and the coefficient of thermal expansion of a ceramic cylinder that can be used for this is approximately 3 x
A silicon nitride sintered body of 10-'/'C can be used.

〈応用例〉 上記実施例のハニカム熱交換器1は、第3図に示すよう
に乗用車等の急速暖房システムに適用されるもので、エ
ンジンEの吸気管■のバイパスラインBに組込まれた燃
焼器CBより高温流体としての燃焼ガスHの供給を受け
、エアコンユニットACによって循環される低温流体と
しての暖房用空気Cを急速に加熱するために応用される
<Application example> The honeycomb heat exchanger 1 of the above embodiment is applied to a rapid heating system for a passenger car, etc., as shown in FIG. It is applied to rapidly heat heating air C as a low-temperature fluid that is supplied with combustion gas H as a high-temperature fluid from the air conditioner unit CB and circulated by the air conditioner unit AC.

燃焼器CBは、エンジンEのセルモータの始動と共にエ
アーフィルタAFより吸引された空気をバイパスライン
Bを経てスロットル弁Svと螺形弁BVの制御を受けて
導入し、制御器CUの制御の下にタンクFTから燃焼ポ
ンプFPによって供給されて来る燃料を制御して気化器
CAで気化させ点火栓HPで点火させて燃焼させ高温ガ
スを発生させる。
The combustor CB introduces air sucked in from the air filter AF through the bypass line B under the control of the throttle valve Sv and the spiral valve BV when the starter motor of the engine E is started, and then under the control of the controller CU. The fuel supplied from the tank FT by the combustion pump FP is controlled, vaporized by the carburetor CA, ignited by the spark plug HP, and combusted to generate high-temperature gas.

高温燃焼ガスHは、上記ハニカム熱交換器1へ供給され
、暖房用熱源として利用されると共に、エンジンEの始
動時の吸気加熱として利用され、インテークバーナとほ
ぼ同様にエンジンの始動性を大幅に改善する。従って、
ディーゼル車においては始動時特有の青白煙の問題や、
臭気の問題も解消される。
The high-temperature combustion gas H is supplied to the honeycomb heat exchanger 1 and used as a heat source for heating, and is also used to heat the intake air when starting the engine E, which greatly improves the startability of the engine in the same way as an intake burner. Improve. Therefore,
Diesel cars have the problem of blue-white smoke peculiar to starting,
Odor problems are also eliminated.

このように本発明の高温度T□の燃焼ガスの供給を受け
るハニカム熱交換器1を組込んだ急速暖房システムによ
り、第4図に示すように、軽油16cc/分、風量30
0Q/分、室温10℃の条件下において、240m’/
時の風量の空気が着火後60秒前後で約100℃(熱交
換後の温風温度T2に相当)で得られ、氷点下において
もより早くフロントガラスの凍結を解凍しデフロストす
ることが可能となった。
As shown in FIG. 4, the rapid heating system incorporating the honeycomb heat exchanger 1 supplied with combustion gas at a high temperature T□ according to the present invention allows heating of light oil of 16 cc/min and air volume of 30 cc/min.
240m'/min at 0Q/min, room temperature 10℃
The amount of air is obtained at approximately 100 degrees Celsius (equivalent to the hot air temperature T2 after heat exchange) around 60 seconds after ignition, making it possible to thaw and defrost the windshield more quickly even at sub-zero temperatures. Ta.

(発明の効果) 以上述べた通り1本発明のハニカム熱交換器によれば、
複数の独立した高熱伝導性セラミックハニカムを高温流
体を通すブロックと、低温流体を通すブロックとに集約
して、結合手段によって一体的に組合せて構成している
ために、セグメント化によって熱膨張に起因する引張り
応力を解放し。
(Effects of the Invention) As described above, according to the honeycomb heat exchanger of the present invention,
Since a plurality of independent highly thermally conductive ceramic honeycombs are aggregated into blocks that allow high-temperature fluid to pass through and blocks that allow low-temperature fluid to pass through, and are integrally combined using a connecting means, it is possible to reduce thermal expansion due to segmentation. Release the tensile stress.

更に結合手段によって熱膨張を拘束することによってセ
ラミックスが良く耐える圧縮応力に転換してクラックの
発生を効果的に防ぐことが可能となり、耐久性を大幅に
改善することができる。又高温流体を通すブロックと低
温流体を通すブロックとの間に、高強度の高熱伝導性セ
ラミック円筒体を介設することによって、ハニカム熱交
換器を補強すると共に熱伝達を向上し、父方が一部分的
にクラックが生じたとしても流体間の混合を確実に防止
することが可能となる6
Furthermore, by restraining thermal expansion by the bonding means, it is converted into compressive stress that the ceramic can withstand well, making it possible to effectively prevent the occurrence of cracks, thereby significantly improving durability. In addition, by interposing a high-strength, high-thermal-conductivity ceramic cylindrical body between the block that passes high-temperature fluid and the block that passes low-temperature fluid, it strengthens the honeycomb heat exchanger and improves heat transfer. Even if cracks occur, it is possible to reliably prevent mixing between fluids6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のハニカム熱交換器の一実施例の縦断面
図、第2図(a)は同実施例のセラミックハニカムの組
合せ体の一部断面斜視図、第2図(b)は部分展開斜視
図、第3図はハニカム熱交換器の応用例を示す系統説明
図、第4図は本発明のハニカム熱交換器の性能を示すグ
ラフ、第5図は従来のハニカム熱交換器の部分横断面図
である。 (符号の説明) 1・・・本発明のハニカム熱交換器、10.20・・・
セラミックハニカム、19・・・セラミック円筒体、3
0・・・結合手段。 一以上一
FIG. 1 is a longitudinal sectional view of an embodiment of the honeycomb heat exchanger of the present invention, FIG. 2(a) is a partially sectional perspective view of a ceramic honeycomb combination of the same embodiment, and FIG. 2(b) is a FIG. 3 is a system explanatory diagram showing an application example of a honeycomb heat exchanger, FIG. 4 is a graph showing the performance of the honeycomb heat exchanger of the present invention, and FIG. 5 is a diagram showing a conventional honeycomb heat exchanger. FIG. (Explanation of symbols) 1...Honeycomb heat exchanger of the present invention, 10.20...
Ceramic honeycomb, 19... Ceramic cylindrical body, 3
0...Coupling means. one or more one

Claims (1)

【特許請求の範囲】 1、高温流体を通すセラミックハニカムの外周部に低温
流体を通すセラミックハニカムをセラミック円筒体を介
して一体的に接合したことを特徴とするハニカム熱交換
器。 2、前記セラミックハニカムが、炭化けい素質焼結体よ
り成るハニカム熱交換器。 3、前記セラミック円筒体が炭化けい素質焼結体より成
るハニカム熱交換機。
[Scope of Claims] 1. A honeycomb heat exchanger characterized in that a ceramic honeycomb through which a low-temperature fluid passes is integrally joined via a ceramic cylindrical body to the outer circumference of a ceramic honeycomb through which a high-temperature fluid flows. 2. A honeycomb heat exchanger in which the ceramic honeycomb is made of a silicon carbide sintered body. 3. A honeycomb heat exchanger in which the ceramic cylindrical body is made of a silicon carbide sintered body.
JP14777685A 1985-07-04 1985-07-04 Honeycomb heat exchanger Pending JPS629183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14777685A JPS629183A (en) 1985-07-04 1985-07-04 Honeycomb heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14777685A JPS629183A (en) 1985-07-04 1985-07-04 Honeycomb heat exchanger

Publications (1)

Publication Number Publication Date
JPS629183A true JPS629183A (en) 1987-01-17

Family

ID=15437922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14777685A Pending JPS629183A (en) 1985-07-04 1985-07-04 Honeycomb heat exchanger

Country Status (1)

Country Link
JP (1) JPS629183A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838317A1 (en) * 1996-10-25 1998-04-29 Corning Incorporated Method of fabricating a honeycomb structure
WO2011071161A1 (en) 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
WO2012043758A1 (en) * 2010-09-29 2012-04-05 日本碍子株式会社 Heat exchanging member
JP2012189229A (en) * 2011-03-08 2012-10-04 Ngk Insulators Ltd Heat exchange member
JP2012211720A (en) * 2011-03-31 2012-11-01 Ngk Insulators Ltd Heat exchanger
WO2013002395A1 (en) * 2011-06-30 2013-01-03 日本碍子株式会社 Heat exchange member
US20130248159A1 (en) * 2010-11-18 2013-09-26 Ngk Insulators, Ltd. Heat conduction member
JP2013228189A (en) * 2012-03-30 2013-11-07 Ngk Insulators Ltd Heat exchanging member
EP2693153A1 (en) * 2011-03-29 2014-02-05 NGK Insulators, Ltd. Heat exchange member and heat exchanger
JP2015042934A (en) * 2013-07-23 2015-03-05 日本碍子株式会社 Heat exchange member and ceramics structure
US20160003550A1 (en) * 2013-03-22 2016-01-07 Ngk Insulators, Ltd. Heat exchanger
CN105247312A (en) * 2013-05-08 2016-01-13 丰田自动车株式会社 Heat exchanger
US20160146500A1 (en) * 2013-07-12 2016-05-26 CORDÓN URBIOLA Jose Luis Exchanger for heating boilers
CN107146922A (en) * 2017-04-11 2017-09-08 航美(深圳)新能源科技有限公司 A kind of fire-retardant cellular adaptive temperature control module and preparation method thereof, application
CN109210978A (en) * 2018-09-03 2019-01-15 浙江杭强制冷设备有限公司 A kind of combined type HVAC heat exchanger
JP2020510598A (en) * 2017-03-07 2020-04-09 アモグリーンテック カンパニー リミテッド Hydrogen reformer using exhaust gas

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5932044A (en) * 1996-10-25 1999-08-03 Corning Incorporated Method of fabricating a honeycomb structure
EP0838317A1 (en) * 1996-10-25 1998-04-29 Corning Incorporated Method of fabricating a honeycomb structure
EP2511644A4 (en) * 2009-12-11 2015-02-25 Ngk Insulators Ltd Heat exchanger
WO2011071161A1 (en) 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
CN102652249A (en) * 2009-12-11 2012-08-29 日本碍子株式会社 Heat exchanger
US20120247732A1 (en) * 2009-12-11 2012-10-04 Ngk Insulators, Ltd. Heat exchanger
US9534856B2 (en) 2009-12-11 2017-01-03 Ngk Insulators, Ltd. Heat exchanger
JP5758811B2 (en) * 2009-12-11 2015-08-05 日本碍子株式会社 Heat exchanger
JP5819838B2 (en) * 2010-09-29 2015-11-24 日本碍子株式会社 Heat exchange member
WO2012043758A1 (en) * 2010-09-29 2012-04-05 日本碍子株式会社 Heat exchanging member
JPWO2012043758A1 (en) * 2010-09-29 2014-02-24 日本碍子株式会社 Heat exchange member
US20130248159A1 (en) * 2010-11-18 2013-09-26 Ngk Insulators, Ltd. Heat conduction member
JP5955775B2 (en) * 2010-11-18 2016-07-20 日本碍子株式会社 Thermal conduction member
US9739540B2 (en) 2010-11-18 2017-08-22 Ngk Insulators, Ltd. Heat conduction member
JP2012189229A (en) * 2011-03-08 2012-10-04 Ngk Insulators Ltd Heat exchange member
EP2693153A1 (en) * 2011-03-29 2014-02-05 NGK Insulators, Ltd. Heat exchange member and heat exchanger
EP2693153A4 (en) * 2011-03-29 2014-10-22 Ngk Insulators Ltd Heat exchange member and heat exchanger
JP2012211720A (en) * 2011-03-31 2012-11-01 Ngk Insulators Ltd Heat exchanger
US10619938B2 (en) 2011-06-30 2020-04-14 Ngk Insulators, Ltd. Heat exchange member
WO2013002395A1 (en) * 2011-06-30 2013-01-03 日本碍子株式会社 Heat exchange member
JPWO2013002395A1 (en) * 2011-06-30 2015-02-23 日本碍子株式会社 Heat exchange member
JP2013228189A (en) * 2012-03-30 2013-11-07 Ngk Insulators Ltd Heat exchanging member
US20160003550A1 (en) * 2013-03-22 2016-01-07 Ngk Insulators, Ltd. Heat exchanger
US10234209B2 (en) * 2013-03-22 2019-03-19 Ngk Insulators, Ltd. Heat exchanger
CN105247312A (en) * 2013-05-08 2016-01-13 丰田自动车株式会社 Heat exchanger
CN105247312B (en) * 2013-05-08 2017-03-22 丰田自动车株式会社 Heat exchanger
US9587852B2 (en) * 2013-07-12 2017-03-07 Jose Luis Cordón Urbiola Exchanger for heating boilers
US20160146500A1 (en) * 2013-07-12 2016-05-26 CORDÓN URBIOLA Jose Luis Exchanger for heating boilers
JP2015042934A (en) * 2013-07-23 2015-03-05 日本碍子株式会社 Heat exchange member and ceramics structure
JP2020510598A (en) * 2017-03-07 2020-04-09 アモグリーンテック カンパニー リミテッド Hydrogen reformer using exhaust gas
JP2022106754A (en) * 2017-03-07 2022-07-20 アモグリーンテック カンパニー リミテッド Hydrogen reformer using exhaust gas
CN107146922A (en) * 2017-04-11 2017-09-08 航美(深圳)新能源科技有限公司 A kind of fire-retardant cellular adaptive temperature control module and preparation method thereof, application
CN109210978A (en) * 2018-09-03 2019-01-15 浙江杭强制冷设备有限公司 A kind of combined type HVAC heat exchanger

Similar Documents

Publication Publication Date Title
JPS629183A (en) Honeycomb heat exchanger
US5396764A (en) Spark ignition engine exhaust system
US4276331A (en) Metal-ceramic composite and method for making same
US3302394A (en) Exhaust manifold reactor
US8104273B2 (en) Double-shell manifold
US5692373A (en) Exhaust manifold with integral catalytic converter
US20030150434A1 (en) Exhaust gas cooler with bypass tube and exhaust gas recirculation valve
US4059712A (en) Metal-ceramic composite and method for making same
US5895700A (en) Honeycomb structural body
US20040177609A1 (en) Insulated exhaust manifold having ceramic inner layer that is highly resistant to thermal cycling
US20070051503A1 (en) Corrosion resistant charge air cooler and method of making same
JP7217654B2 (en) Heat exchanger
JP2002502935A (en) Improvement of Stirling engine burner
US4376374A (en) Metal-ceramic composite and method for making same
US9500120B2 (en) Integration ring
JP2019505715A (en) Heat shield assembly for exhaust system
US4183213A (en) Heat exchanger for Stirling engine
WO2000014396A1 (en) Adiabatic internal combustion engine
JP7046039B2 (en) Heat exchanger
JPS58162721A (en) Sub-combustion chamber for internal-combustion engine
US4318887A (en) Heat exchange afterburner and muffler apparatus for engine exhaust gases
JPS61149790A (en) Heat exchanger for vehicle mounted heater
US1580974A (en) Air preheater
JP2022122241A (en) Heat exchange member, heat exchanger and heat conductive member
CN105464831B (en) Engine pack including thermal boundary