JP2013228189A - Heat exchanging member - Google Patents

Heat exchanging member Download PDF

Info

Publication number
JP2013228189A
JP2013228189A JP2013057218A JP2013057218A JP2013228189A JP 2013228189 A JP2013228189 A JP 2013228189A JP 2013057218 A JP2013057218 A JP 2013057218A JP 2013057218 A JP2013057218 A JP 2013057218A JP 2013228189 A JP2013228189 A JP 2013228189A
Authority
JP
Japan
Prior art keywords
honeycomb structure
fluid
heat exchange
heat
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013057218A
Other languages
Japanese (ja)
Other versions
JP6144937B2 (en
Inventor
Makoto Miyazaki
誠 宮崎
Tatsuo Kawaguchi
竜生 川口
Masahiro Tokuda
昌弘 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2013057218A priority Critical patent/JP6144937B2/en
Publication of JP2013228189A publication Critical patent/JP2013228189A/en
Application granted granted Critical
Publication of JP6144937B2 publication Critical patent/JP6144937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanging member capable of lowering heat exchanging efficiency so that a temperature of a low-temperature fluid does not excessively increase, when a flow rate of a high-temperature fluid is high in exchanging heat between the high-temperature fluid and the low-temperature fluid, and reducing breakage failure due to thermal shock of a downstream component of the heat exchanging member.SOLUTION: In a honeycomb structure 1 configuring a heat exchanging member 10, a cell structural section 3a has a cell structure having two or more different aperture ratios. A larger value of S/Sor S/Sis 1.05-2.0, when the total opening area of each region is S, Swhen a sectional area is divided into two regions X, Y on halves. Further, a heat transfer reducing section may be disposed on the honeycomb structure, or a projecting section or a recessed section may be formed on an end face of the honeycomb structure. Furthermore, the honeycomb structure may be coated with a coating member, a stirring plate may be disposed in the coating member, and the coating member may be provided with a small diameter section or a large diameter section.

Description

本発明は、第一の流体と第二の流体との熱交換を行うことができる、ハニカム構造体を用いた熱交換部材に関する。   The present invention relates to a heat exchange member using a honeycomb structure that can perform heat exchange between a first fluid and a second fluid.

高温の流体から低温の流体へ熱交換することにより、熱を有効利用することができる。例えば、エンジンなどの燃焼排ガスなどの高温気体からの熱を回収する熱回収技術がある。気体/液体熱交換器としては、自動車のラジエター、空調室外機などのフィン付チューブ型熱交換器が一般的である。しかしながら、例えば自動車の排ガスのような気体から熱を回収するには、一般的な金属製熱交換器では耐熱性に乏しく、高温での使用が困難である。そこで、耐熱性、耐熱衝撃、耐腐食などを有する耐熱金属やセラミックス材料などが適している。しかし耐熱金属は、価格が高い上に加工が難しい、密度が高く重い、熱伝導が低いなどの課題がある。   By exchanging heat from a high temperature fluid to a low temperature fluid, heat can be effectively utilized. For example, there is a heat recovery technique for recovering heat from a high-temperature gas such as combustion exhaust gas from an engine. As the gas / liquid heat exchanger, a tube-type heat exchanger with fins such as an automobile radiator or an air conditioner outdoor unit is generally used. However, in order to recover heat from a gas such as automobile exhaust gas, a general metal heat exchanger has poor heat resistance and is difficult to use at high temperatures. Therefore, a heat-resistant metal or ceramic material having heat resistance, heat shock, corrosion resistance, or the like is suitable. However, refractory metals have problems such as high price and difficulty in processing, high density and heavyness, and low heat conduction.

そこで、セラミックス材料を用いた熱回収技術が開発されている。例えば、セラミックス体を用いた熱交換部材により熱交換を行う技術がある。この場合、筒状セラミックス体の内部に第一の流体(例えば、排ガス)を流通させ、外部に第二の流体(例えば、冷却水)を流通させることにより、熱交換を行う。   Therefore, a heat recovery technique using a ceramic material has been developed. For example, there is a technique for performing heat exchange with a heat exchange member using a ceramic body. In this case, heat exchange is performed by circulating a first fluid (for example, exhaust gas) inside the cylindrical ceramic body and circulating a second fluid (for example, cooling water) outside.

しかし、セラミックス体の内部に流通させる排ガスが多い場合、外部に流通させる冷却水の温度が上昇してしまい、オーバーヒートを招くおそれがある。そのため、特許文献1では、排気の流路にバルブを設けて、排気量が多い場合は、排気が排気熱回収装置を通らないようにしている。   However, when there is much exhaust gas circulated inside the ceramic body, the temperature of the cooling water circulated to the outside rises, which may cause overheating. Therefore, in Patent Document 1, a valve is provided in the exhaust flow path so that the exhaust does not pass through the exhaust heat recovery device when the exhaust amount is large.

特開2007−315370号公報JP 2007-315370 A

しかしながら、特許文献1の技術では、排気系に排気の切替バルブ等を付加するため、装置の構造が複雑になり、コスト高になるという問題点がある。   However, the technique of Patent Document 1 has a problem that the structure of the apparatus becomes complicated and the cost increases because an exhaust switching valve or the like is added to the exhaust system.

本発明の課題は、高温流体と低温流体とを熱交換させる場合において、高温流体の流量が大きいとき、低温流体の温度が上昇しすぎないように、熱交換効率を低下させる熱交換部材を提供することにある。   An object of the present invention is to provide a heat exchange member that lowers the heat exchange efficiency so that the temperature of the low temperature fluid does not rise excessively when the flow rate of the high temperature fluid is large when heat exchange is performed between the high temperature fluid and the low temperature fluid. There is to do.

また、熱交換部材の下流の部品の熱衝撃による破損を低減させることが可能な熱交換部材を提供することにある。   Moreover, it is providing the heat exchange member which can reduce the damage by the thermal shock of the components downstream of a heat exchange member.

本発明者らは、熱交換部材を構成するハニカム構造体が、2つの異なる開口率のセル構造を有するように構成したり、伝熱低減部を設けたりすることにより、低温流体の温度が上昇しすぎないように熱交換効率を低下させるという上記課題を解決しうることを見出した。また、ハニカム構造体の端面に凸部または凹部を設けたり、ハニカム構造体を被覆部材で被覆し被覆部材内に攪拌板を備えたり、被覆部材に小径部、または大径部を備えたりすることにより、熱交換部材の下流の部品の熱衝撃による破損を低減させるという上記課題を解決しうることを見出した。すなわち、本発明によれば、以下の熱交換部材が提供される。   The inventors of the present invention have increased the temperature of the low-temperature fluid by configuring the honeycomb structure constituting the heat exchange member to have a cell structure having two different opening ratios or providing a heat transfer reduction unit. It has been found that the above problem of reducing the heat exchange efficiency so as not to be too much can be solved. In addition, a projecting portion or a recessed portion is provided on the end face of the honeycomb structure, the honeycomb structure is covered with a covering member, and a stirring plate is provided in the covering member, or the covering member is provided with a small diameter portion or a large diameter portion. Thus, it has been found that the above-described problem of reducing damage due to thermal shock of components downstream of the heat exchange member can be solved. That is, according to the present invention, the following heat exchange member is provided.

[1] 一方の端部から他方の端部に貫通して第一の流体の流路となる複数のセルと、前記複数のセルを区画形成するセラミックスを主成分とする隔壁とを有して形成されたセル構造部と、前記セル構造部の外周に設けられ、セラミックスを主成分とし、前記第一の流体と前記セル構造部の外周側を流れる第二の流体とを混合させずに、前記第一の流体と前記第二の流体との熱の受け渡しを介在する外周壁と、を備えたハニカム構造体を含み、前記セル構造部は、軸方向に垂直な断面において、2つ以上の異なる開口率のセル構造を有し、断面積の1/2ずつの2つの領域X,Yに分けた場合に、それぞれの領域X,Yにおいて最大の面積を有するセル構造をセル構造A、セル構造Bとし、それぞれの領域X,Yの全開口面積をS,Sとすると、S/SまたはS/Sの大きい方の値が、1.05〜2.0であり、前記セル構造部に流入する前記第一の流体の流入前の流量が変化し、ある流量V,Vが、同じ流体温度のときに、V/V≧2の関係となる場合に、流量V,Vの熱交換効率をそれぞれλ,λとし、仮に前記セル構造部が前記セル構造Aのみで構成されている場合のV,Vの熱交換効率をそれぞれλ1A,λ2Aとし、仮に前記セル構造部が前記セル構造Bのみで構成されている場合のV,Vの熱交換効率をそれぞれλ1B,λ2Bとするとき、λ1A/λ2Aとλ1B/λ2Bの大きい方の値よりもλ/λが大きくなる熱交換部材。 [1] It has a plurality of cells that penetrate from one end to the other end to serve as a flow path for the first fluid, and a partition mainly composed of ceramics that partitions the plurality of cells. The formed cell structure part and the outer periphery of the cell structure part, mainly composed of ceramics, without mixing the first fluid and the second fluid flowing on the outer periphery side of the cell structure part, A honeycomb structure including an outer peripheral wall through which heat is transferred between the first fluid and the second fluid, and the cell structure section includes two or more cross sections perpendicular to the axial direction. When cell structures having different aperture ratios and divided into two regions X and Y each having a cross-sectional area of ½, the cell structure having the largest area in each region X and Y is defined as cell structure A and cell As a structure B, the total opening area of each of the regions X and Y is S X and S Y. Then, the larger value of S X / S Y or S Y / S X is 1.05 to 2.0, and the flow rate before the first fluid flowing into the cell structure portion changes. When the flow rates V 1 and V 2 have the same fluid temperature and V 2 / V 1 ≧ 2, the heat exchange efficiencies of the flow rates V 1 and V 2 are λ 1 and λ 2 , respectively. If the cell structure part is composed of only the cell structure A, the heat exchange efficiencies of V 1 and V 2 are respectively λ 1A and λ 2A, and the cell structure part is composed of only the cell structure B. When the heat exchange efficiencies of V 1 and V 2 are λ 1B and λ 2B respectively, λ 1 / λ 2 is larger than the larger value of λ 1A / λ 2A and λ 1B / λ 2B Heat exchange member.

[2] 前記ハニカム構造体は、前記隔壁の厚さが0.15〜0.64mmである前記[1]に記載の熱交換部材。 [2] The heat exchange member according to [1], wherein the honeycomb structure has a partition wall thickness of 0.15 to 0.64 mm.

[3] 前記ハニカム構造体は、前記セルのセル密度が4.7〜62セル/cmである前記[1]または[2]に記載の熱交換部材。 [3] The heat exchange member according to [1] or [2], wherein the honeycomb structure has a cell density of 4.7 to 62 cells / cm 2 .

[4] 前記ハニカム構造体は、前記セルの開口率が40%〜80%である前記[1]〜[3]のいずれかに記載の熱交換部材。 [4] The heat exchange member according to any one of [1] to [3], wherein the honeycomb structure has an opening ratio of the cells of 40% to 80%.

[5] 筒形状の外周壁と、第一の流体の流路となる複数のセルを区画形成する隔壁とを有するセラミックスを主成分とするハニカム構造体と、前記ハニカム構造体の内部を流れる前記第一の流体と前記ハニカム構造体の外部を流れる第二の流体とを混合させずに、前記第一の流路と前記第二の流体との間での熱交換可能に前記ハニカム構造体を被覆する被覆部材と、を備え、前記ハニカム構造体と前記被覆部材の間の伝熱を低減させる伝熱低減部が一部の範囲に設けられ、前記セルを流通する前記第一の流体と、前記被覆部材の外側を流通する前記第二の流体とが混合しない状態で、前記ハニカム構造体の前記外周壁及び前記被覆部材を介して前記第一の流体と前記第二の流体を熱交換させる熱交換部材。 [5] A honeycomb structure mainly composed of ceramics having a cylindrical outer peripheral wall and partition walls that partition and form a plurality of cells serving as a flow path for the first fluid, and the flow through the inside of the honeycomb structure The honeycomb structure is capable of heat exchange between the first flow path and the second fluid without mixing the first fluid and the second fluid flowing outside the honeycomb structure. A coating member to be coated, a heat transfer reduction portion that reduces heat transfer between the honeycomb structure and the coating member is provided in a part of the range, and the first fluid that circulates through the cells; Heat exchange is performed between the first fluid and the second fluid via the outer peripheral wall of the honeycomb structure and the covering member in a state where the second fluid flowing outside the covering member is not mixed. Heat exchange member.

[6] 前記伝熱低減部は、前記ハニカム構造体の外周部分である前記外周壁、または前記外周壁及び前記隔壁が、前記ハニカム構造体の平均直径に対して0.3mm以上、前記外周部分の全表面積に対して10%以上括れた括れ部である前記[5]に記載の熱交換部材。 [6] The heat transfer reduction portion is configured such that the outer peripheral wall, which is an outer peripheral portion of the honeycomb structure, or the outer peripheral wall and the partition wall are 0.3 mm or more with respect to an average diameter of the honeycomb structure. The heat exchange member according to [5], wherein the heat exchange member is a constricted portion that is constricted by 10% or more with respect to the total surface area.

[7] 前記伝熱低減部は、前記ハニカム構造体と被覆部材との間に、前記ハニカム構造体の外周部分の全表面積に対して10%以上の範囲に備えられた断熱材で形成された前記[5]に記載の熱交換部材。 [7] The heat transfer reduction portion is formed of a heat insulating material provided in a range of 10% or more with respect to the total surface area of the outer peripheral portion of the honeycomb structure between the honeycomb structure and the covering member. The heat exchange member according to [5].

[8] 筒形状の外周壁と、第一の流体の流路となる複数のセルを区画形成する隔壁とを有するセラミックスを主成分とするハニカム構造体と、前記ハニカム構造体の内部を流れる前記第一の流体と前記ハニカム構造体の外部を流れる第二の流体とを混合させずに、前記第一の流路と前記第二の流体との間での熱交換可能に前記ハニカム構造体を被覆する被覆部材と、を備え、さらに前記第一の流体の流れを攪拌する攪拌手段を備え、前記セルを流通する前記第一の流体と、前記被覆部材の外側を流通する前記第二の流体とが混合しない状態で、前記ハニカム構造体の前記外周壁及び前記被覆部材を介して前記第一の流体と前記第二の流体を熱交換させる熱交換部材。 [8] A honeycomb structure mainly composed of ceramics having a cylindrical outer peripheral wall and partition walls that define and form a plurality of cells serving as flow paths for the first fluid, and the flow through the inside of the honeycomb structure The honeycomb structure is capable of heat exchange between the first flow path and the second fluid without mixing the first fluid and the second fluid flowing outside the honeycomb structure. A coating member for coating, further comprising stirring means for stirring the flow of the first fluid, the first fluid flowing through the cell, and the second fluid flowing outside the coating member. A heat exchange member that exchanges heat between the first fluid and the second fluid through the outer peripheral wall of the honeycomb structure and the covering member in a state where the first fluid and the second fluid are not mixed.

[9] 前記攪拌手段として、前記ハニカム構造体の軸方向における少なくとも一方の端面に、前記軸方向における長さが1mm以上の凸部、または凹部が一箇所以上形成された前記[8]に記載の熱交換部材。 [9] The above [8], wherein as the stirring means, at least one end face in the axial direction of the honeycomb structure is formed with one or more convex portions or concave portions having a length in the axial direction of 1 mm or more. Heat exchange member.

[10] 前記攪拌手段は、前記被覆部材中に、前記ハニカム構造体の軸方向上に前記ハニカム構造体と並んで備えられた、前記第一の流体を攪拌するための攪拌板である前記[8]に記載の熱交換部材。 [10] The stirring means is a stirring plate for stirring the first fluid provided in the covering member alongside the honeycomb structure in the axial direction of the honeycomb structure. 8].

[11] 前記攪拌手段は、前記ハニカム構造体を被覆していない部分において括れた小径部、または膨らんだ大径部を1箇所以上有する被覆部材である前記[8]に記載の熱交換部材。 [11] The heat exchanging member according to [8], wherein the stirring means is a covering member having one or more small-diameter portions constricted in a portion not covering the honeycomb structure or swelled large-diameter portions.

本発明の熱交換部材は、領域X,Yの開口面積の比のS/SまたはS/Sの大きい方の値が、1.05〜2.0であることにより、第一のガスの流量が増加すると、熱交換効率が低下する。すなわち、第一の流体の流量が増加しても、オーバーヒートを発生させにくい熱交換部材である。 In the heat exchange member of the present invention, the larger value of S X / S Y or S Y / S X of the ratio of the opening areas of the regions X and Y is 1.05 to 2.0, As the gas flow rate increases, the heat exchange efficiency decreases. That is, even if the flow rate of the first fluid is increased, the heat exchange member is less likely to cause overheating.

熱交換部材は、伝熱低減部が設けられることにより、ハニカム構造体と、ハニカム構造体を被覆する被覆部材との間の伝熱を低減させることができる。したがって、このような熱交換部材は、第一の流体の流量が増加しても、オーバーヒートを発生させにくい。   The heat exchange member can reduce heat transfer between the honeycomb structure and the covering member that covers the honeycomb structure by providing the heat transfer reduction portion. Therefore, such a heat exchange member hardly generates overheating even if the flow rate of the first fluid increases.

熱交換部材は、ハニカム構造体の軸方向における端面に凸部または凹部を有することにより、熱交換部材の下流の部品の熱衝撃による破損を低減させることができる。   Since the heat exchange member has a convex portion or a concave portion on the end face in the axial direction of the honeycomb structure, it is possible to reduce damage due to thermal shock of components downstream of the heat exchange member.

熱交換部材は、ハニカム構造体を被覆部材で被覆し被覆部材内に攪拌板を備えることにより、熱交換部材の下流の部品の熱衝撃による破損を低減させることができる。   The heat exchange member can reduce damage due to thermal shock of components downstream of the heat exchange member by covering the honeycomb structure with the coating member and providing the stirring member in the coating member.

熱交換部材は、ハニカム構造体を被覆部材で被覆し、被覆部材に小径部、または大径部を備えたりすることにより、熱交換部材の下流の部品の熱衝撃による破損を低減させることができる。   In the heat exchange member, the honeycomb structure is covered with a covering member, and the covering member is provided with a small-diameter portion or a large-diameter portion, whereby damage due to thermal shock of components downstream of the heat exchange member can be reduced. .

本発明の熱交換部材の実施形態1を示す模式図である。It is a schematic diagram which shows Embodiment 1 of the heat exchange member of this invention. 円で領域を分ける場合を示す模式図である。It is a schematic diagram which shows the case where an area | region is divided | segmented by a circle. 領域X、Yを説明するための模式図である。It is a schematic diagram for demonstrating the area | regions X and Y. FIG. 直線で領域を分ける場合を示す模式図である。It is a schematic diagram which shows the case where an area | region is divided | segmented by a straight line. 流量に対する熱交換効率の変化を説明するための図である。It is a figure for demonstrating the change of the heat exchange efficiency with respect to a flow volume. ハニカム構造体の直径が軸方向の長さの2倍以上の熱交換部材の実施形態を示す模式図である。It is a mimetic diagram showing an embodiment of a heat exchange member whose diameter of a honeycomb structure is more than twice the length of an axial direction. 本発明の熱交換部材を構成するハニカム構造体の実施形態2を示す模式図である。It is a schematic diagram which shows Embodiment 2 of the honeycomb structure which comprises the heat exchange member of this invention. 本発明の熱交換部材を構成するハニカム構造体の実施形態3を示す模式図である。It is a schematic diagram which shows Embodiment 3 of the honeycomb structure which comprises the heat exchange member of this invention. 本発明の熱交換部材を構成するハニカム構造体の実施形態4を示す模式図である。Fig. 7 is a schematic diagram showing a fourth embodiment of a honeycomb structure constituting the heat exchange member of the present invention. 本発明の熱交換部材を構成するハニカム構造体の実施形態5を示す模式図である。Fig. 6 is a schematic diagram showing a fifth embodiment of a honeycomb structure constituting the heat exchange member of the present invention. 熱交換部材を含む熱交換器の斜視図である。It is a perspective view of the heat exchanger containing a heat exchange member. 伝熱低減部が括れ部として設けられた実施形態1を示す模式図である。It is a schematic diagram which shows Embodiment 1 in which the heat-transfer reduction part was provided as a constriction part. 伝熱低減部が括れ部として設けられた実施形態2を示す模式図である。It is a schematic diagram which shows Embodiment 2 with which the heat-transfer reduction part was provided as a constriction part. 伝熱低減部が括れ部として設けられた実施形態3を示す模式図である。It is a schematic diagram which shows Embodiment 3 with which the heat-transfer reduction part was provided as a constriction part. 伝熱低減部が括れ部として設けられた実施形態4を示す模式図である。It is a schematic diagram which shows Embodiment 4 with which the heat-transfer reduction part was provided as a constriction part. 括れ部周辺の拡大図であり、外周壁に括れ部が形成された実施形態を示す模式図である。It is an enlarged view around a constricted part, and is a schematic diagram showing an embodiment in which a constricted part is formed on an outer peripheral wall. 括れ部周辺の拡大図であり、外周壁と隔壁によって括れ部が形成された実施形態を示す模式図である。It is an enlarged view of the periphery of a constricted part, and is a schematic diagram showing an embodiment in which the constricted part is formed by an outer peripheral wall and a partition wall. 断熱低減部が断熱材で形成された実施形態を示す模式図である。It is a schematic diagram which shows embodiment in which the heat insulation reduction part was formed with the heat insulating material. ハニカム構造体の端面に、凸部を有する熱交換部材を示す模式図である。It is a schematic diagram which shows the heat exchange member which has a convex part in the end surface of a honeycomb structure. ハニカム構造体の端面に、凹部を有する熱交換部材を示す模式図である。It is a schematic diagram which shows the heat exchange member which has a recessed part in the end surface of a honeycomb structure. 被覆部材中に、第一の流体を攪拌するための攪拌板を備える実施形態を示す模式図である。It is a schematic diagram which shows embodiment provided with the stirring plate for stirring a 1st fluid in a coating | coated member. 攪拌板の実施形態1を示す模式図である。It is a schematic diagram which shows Embodiment 1 of a stirring plate. 攪拌板の実施形態2を示す模式図である。It is a schematic diagram which shows Embodiment 2 of a stirring plate. 攪拌板の実施形態3を示す模式図である。It is a schematic diagram which shows Embodiment 3 of a stirring plate. 小径部と大径部を有する被覆部材を備えた熱交換部材の実施形態を示す模式図である。It is a schematic diagram which shows embodiment of the heat exchange member provided with the coating | coated member which has a small diameter part and a large diameter part.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

1.セル構造による熱交換効率の低下
図1に本発明の熱交換部材10の実施形態1を示す。本発明の熱交換部材10は、セル構造部3aと外周壁7と、を備えたハニカム構造体1を含む。セル構造部3aは、一方の端部から他方の端部に貫通して第一の流体の流路となる複数のセル3と、複数のセル3を区画形成するセラミックスを主成分とする隔壁4とを有して形成されている。外周壁7は、セル構造部3aの外周に設けられ、セラミックスを主成分とし、第一の流体とセル構造部3aの外周側を流れる第二の流体とを混合させずに、第一の流体と第二の流体との熱の受け渡しを介在する。
1. Reduction of heat exchange efficiency due to cell structure FIG. 1 shows a first embodiment of a heat exchange member 10 of the present invention. The heat exchange member 10 of the present invention includes a honeycomb structure 1 including a cell structure portion 3a and an outer peripheral wall 7. The cell structure portion 3a includes a plurality of cells 3 that pass from one end portion to the other end portion and serve as a flow path for the first fluid, and a partition wall 4 that is mainly composed of ceramics that partitions and forms the plurality of cells 3. Are formed. The outer peripheral wall 7 is provided on the outer periphery of the cell structure portion 3a, is made of ceramics as a main component, and does not mix the first fluid and the second fluid flowing on the outer periphery side of the cell structure portion 3a. And the transfer of heat between the second fluid and the second fluid.

ハニカム構造体1は、セル構造部3aが、軸方向に垂直な断面において、2つ以上の異なる開口率のセル構造を有する(図1は、2つの異なる開口率のセル構造を有する例である)。そして、断面積の1/2ずつの2つの領域X,Yに分けた場合に、それぞれの領域X,Yにおいて最大の面積を有するセル構造をセル構造A、セル構造Bと呼ぶこととする。また、ハニカム構造体1は、それぞれの領域X,Yの全開口面積をS,Sとすると、S/SまたはS/Sの大きい方の値が、1.05〜2.0である。 In the honeycomb structure 1, the cell structure 3a has a cell structure with two or more different aperture ratios in a cross section perpendicular to the axial direction (FIG. 1 is an example having cell structures with two different aperture ratios). ). When divided into two regions X and Y each having a half cross-sectional area, the cell structures having the largest areas in the regions X and Y are referred to as cell structure A and cell structure B, respectively. Further, in the honeycomb structure 1, when the total opening area of each of the regions X and Y is S X and S Y , the larger value of S X / S Y or S Y / S X is 1.05 to 2 .0.

ここで、断面積の1/2ずつの2つの領域X,Yに分ける分け方としては、円で分ける(図2A)、直線で分ける(図2C)等が挙げられるが、その他の分け方もありうる。図2Bは、図2Aのセル構造において、境界9で領域X,Yを分けた場合の領域X,Yを示す模式図である。図2A及び図2Bの実施形態では、領域Xは、セル構造Aとセル構造Bとを含む。また、領域Yは、セル構造Bのみである。本発明の熱交換部材10は、2領域X,Yに分けた後、それぞれの領域の全開口面積S,Sの比の値を求めると、S/SまたはS/Sの大きい方の値が最も大きくなる分け方において、その値が1.05〜2.0となる。図1の熱交換部材10の場合、図2A(図2B)と図2Cの分け方があるが(他の分け方もある)、比の値が最も大きくなる分け方は、図2A(図2B)である。そして、その値が、1.05〜2.0である。図1の熱交換部材10は、中心側にセル密度が粗のセル構造が断面が円状に形成され、外周側にセル密度が密のセル構造が形成されている実施形態である。 Here, examples of how to divide into two regions X and Y each having a half of the cross-sectional area include a circle (FIG. 2A), a straight line (FIG. 2C), and the like. It is possible. FIG. 2B is a schematic diagram showing the regions X and Y when the regions X and Y are separated at the boundary 9 in the cell structure of FIG. 2A. In the embodiment of FIGS. 2A and 2B, region X includes cell structure A and cell structure B. The region Y is only the cell structure B. When the heat exchange member 10 of the present invention is divided into two regions X and Y and then the ratio value of the total opening areas S X and S Y of the respective regions is determined, S X / S Y or S Y / S X In the dividing method in which the larger value is the largest, the value is 1.05 to 2.0. In the case of the heat exchanging member 10 of FIG. 1, there is a method of dividing FIG. 2A (FIG. 2B) and FIG. 2C (there are other methods of dividing). ). And the value is 1.05-2.0. The heat exchange member 10 of FIG. 1 is an embodiment in which a cell structure with a coarse cell density is formed in a circular shape on the center side, and a cell structure with a dense cell density is formed on the outer peripheral side.

熱交換部材10において、第一の流体は、ハニカム構造体1の各セル3内を、セル3外に漏洩・混合することなく流通する。つまり、あるセル3内を流れる第一の流体が、隔壁4を通って他のセル3に漏洩することはないようにハニカム構造体1が形成されている。そして、セル3を流通する第一の流体と、ハニカム構造体1の外周壁7の外側を流通する第二の流体とが混合しない状態で、ハニカム構造体1の外周壁7を介して第一の流体と第二の流体を熱交換させることができる。   In the heat exchange member 10, the first fluid flows through each cell 3 of the honeycomb structure 1 without leaking or mixing outside the cell 3. That is, the honeycomb structure 1 is formed so that the first fluid flowing in a certain cell 3 does not leak to the other cells 3 through the partition walls 4. The first fluid flowing through the cells 3 and the second fluid flowing outside the outer peripheral wall 7 of the honeycomb structure 1 are not mixed with each other through the outer peripheral wall 7 of the honeycomb structure 1. Heat exchange between the first fluid and the second fluid.

図3を用いて、熱交換部材10における、第一の流体の流量の変化に対する熱交換効率の変化を説明する。熱交換部材10が、2つのセル構造Aとセル構造Bとにより構成され(図2A及び図2B参照)、S/SまたはS/Sの大きい方の値が、1.05〜2.0である実施形態において、セル構造部3aに流入する第一の流体の流入前の流量が変化する場合について説明する(なお、図2Aは、2つのセル構造の場合であるが、3つ以上のセル構造を有する場合は、領域X,Yのそれぞれにおいて、最大の面積を有するセル構造をセル構造A,セル構造Bと考える。)。仮にセル構造部3aがセル構造Aのみで構成されている場合のV,Vの熱交換効率がそれぞれλ1A,λ2Aであり、仮にセル構造部3aがセル構造Bのみで構成されている場合のV,Vの熱交換効率がそれぞれλ1B,λ2Bであるとすると、本実施形態の熱交換部材10は、同じ流体温度のとき、ある流量V,VがV/V≧2の関係となる場合に、流量V,Vの熱交換効率をそれぞれλ,λとすると、λ1A/λ2Aとλ1B/λ2Bの大きい方の値よりもλ/λが大きくなる。つまり、第一の流体の流量が少ないとき(V)に、熱交換効率が大きく(λ1Aに近い)、流量が多くなると(V)、熱交換効率が小さくなる(λ1Bに近い)。このため、第一の流体の流量が増加したときにおいても、オーバーヒートを発生させにくい熱交換部材10である。なお、熱交換部材10は、ある流量V,Vが同じ流体温度のときに、上記の関係を満たすものであるが、流体温度は、使用温度範囲で上記の関係を満たしていることが特に好ましい。 A change in heat exchange efficiency with respect to a change in the flow rate of the first fluid in the heat exchange member 10 will be described with reference to FIG. The heat exchange member 10 is composed of two cell structures A and B (see FIGS. 2A and 2B), and the larger value of S X / S Y or S Y / S X is 1.05 to 2.0, the case where the flow rate before the inflow of the first fluid flowing into the cell structure portion 3a changes will be described (note that FIG. 2A is a case of two cell structures, but 3 In the case of having two or more cell structures, the cell structures having the largest areas in each of the regions X and Y are considered as cell structures A and B). If the cell structure portion 3a is composed of only the cell structure A, the heat exchange efficiencies of V 1 and V 2 are λ 1A and λ 2A , respectively, and the cell structure portion 3a is composed of only the cell structure B. Assuming that the heat exchange efficiencies of V 1 and V 2 are λ 1B and λ 2B , respectively, the heat exchange member 10 of the present embodiment has a certain flow rate V 1 , V 2 of V 2 at the same fluid temperature. / V 1 ≧ 2, where the heat exchange efficiencies of the flow rates V 1 and V 2 are λ 1 and λ 2 , respectively, than the larger value of λ 1A / λ 2A and λ 1B / λ 2B λ 1 / λ 2 increases. That is, when the flow rate of the first fluid is small (V 1 ), the heat exchange efficiency is large (close to λ 1A ), and when the flow rate is large (V 2 ), the heat exchange efficiency is small (close to λ 1B ). . For this reason, even when the flow rate of the first fluid is increased, the heat exchange member 10 is less likely to generate overheating. The heat exchange member 10 satisfies the above relationship when certain flow rates V 1 and V 2 are the same fluid temperature, but the fluid temperature may satisfy the above relationship in the operating temperature range. Particularly preferred.

さらに、熱交換部材10は、ハニカム構造体1の外周面7hに、被覆部材11が嵌合していることが好ましい。このように構成すると、ハニカム構造体1の内部を流通する第一の流体と外部を流通する第二の流体とが混合することを防ぐことができる。また、被覆部材11としては、金属管12が挙げられる。金属管12は、加工が容易であるため、熱交換部材10を設置しやすい。   Further, in the heat exchange member 10, it is preferable that the covering member 11 is fitted to the outer peripheral surface 7 h of the honeycomb structure 1. If comprised in this way, it can prevent that the 1st fluid which distribute | circulates the inside of the honeycomb structure 1 and the 2nd fluid which distribute | circulates the exterior are mixed. In addition, as the covering member 11, a metal tube 12 is exemplified. Since the metal tube 12 is easily processed, it is easy to install the heat exchange member 10.

ハニカム構造体1の外周面7hに、嵌合する金属管12としては、耐熱性、耐蝕性のあるものが好ましく、例えば、ステンレス、チタン、銅、真鍮等を用いることができる。接続部分が金属で形成されているため、圧入、焼きばめ、かしめなどの機械締め、ろう接、溶接などの化学接合を、用途や保有設備に応じて自由に選択することができる。   As the metal tube 12 fitted to the outer peripheral surface 7h of the honeycomb structure 1, one having heat resistance and corrosion resistance is preferable. For example, stainless steel, titanium, copper, brass or the like can be used. Since the connecting portion is formed of metal, chemical bonding such as press fitting, shrink fitting, caulking, etc., brazing, welding, etc. can be freely selected according to the application and possessed equipment.

ハニカム構造体1は、セラミックスで筒状に形成され、軸方向の一方の端面2から他方の端面2まで貫通する流体の流路を有するものである。ハニカム構造体1は、隔壁4を有し、隔壁4によって、流体の流路となる多数のセル3が区画形成されている。隔壁4を有することにより、ハニカム構造体1の内部を流通する流体からの熱を効率よく集熱し、外部に伝達することができる。   The honeycomb structure 1 is formed in a cylindrical shape with ceramics, and has a fluid flow path penetrating from one end face 2 in the axial direction to the other end face 2. The honeycomb structure 1 has partition walls 4, and a large number of cells 3 serving as fluid flow paths are partitioned by the partition walls 4. By having the partition walls 4, the heat from the fluid flowing through the inside of the honeycomb structure 1 can be efficiently collected and transmitted to the outside.

ハニカム構造体1の外形は、円筒状(円柱状)に限らず、軸(長手)方向に垂直な断面が楕円形であってもよい。また、ハニカム構造体1の外形は、角柱状、すなわち、軸(長手)方向に垂直な断面が、四角形、またはその他の多角形であってもよい。   The outer shape of the honeycomb structure 1 is not limited to the cylindrical shape (columnar shape), and the cross section perpendicular to the axial (longitudinal) direction may be elliptical. Further, the outer shape of the honeycomb structure 1 may be prismatic, that is, the cross section perpendicular to the axial (longitudinal) direction may be a quadrangle or other polygons.

ハニカム構造体1の外形が円柱状である場合には、軸方向に垂直な断面の直径(円柱状でない場合は、断面中心を通る平均距離)をD、軸方向の長さをLとしたとき、D/L=2以上となるハニカム構造体であることが好ましい。図4にハニカム構造体1の直径が軸方向の長さの2倍以上の熱交換部材10の実施形態を示す。このようにすると、流量が多くなったときに流体が吹き抜けやすいため、第一の流体の流量が多くなったときの熱交換効率が上昇しにくい。   When the outer shape of the honeycomb structure 1 is cylindrical, the diameter of the cross section perpendicular to the axial direction (in the case of non-cylindrical shape, the average distance passing through the center of the cross section) is D, and the length in the axial direction is L It is preferable that the honeycomb structure has D / L = 2 or more. FIG. 4 shows an embodiment of the heat exchange member 10 in which the diameter of the honeycomb structure 1 is twice or more the axial length. If it does in this way, since fluid tends to blow through when the flow rate increases, the heat exchange efficiency when the flow rate of the first fluid increases is unlikely to increase.

本発明の熱交換部材10では、ハニカム構造体1がセラミックスを主成分とすることにより、隔壁4や外周壁7の熱伝導率が高まり、その結果として、隔壁4や外周壁7を介在させた熱交換を効率良く行わせることができる。なお、本明細書にいうセラミックスを主成分とするとは、セラミックスを50質量%以上含むことをいう。   In the heat exchange member 10 of the present invention, the honeycomb structure 1 is mainly composed of ceramics, so that the thermal conductivity of the partition walls 4 and the outer peripheral wall 7 is increased. As a result, the partition walls 4 and the outer peripheral wall 7 are interposed. Heat exchange can be performed efficiently. As used herein, the term “mainly composed of ceramics” means containing 50% by mass or more of ceramics.

ハニカム構造体1は、耐熱性に優れるセラミックスを用いることが好ましく、特に伝熱性を考慮すると、熱伝導性が高いSiC(炭化珪素)が主成分であることが好ましい。なお、主成分とは、ハニカム構造体1の50質量%以上が炭化珪素であることを意味する。   The honeycomb structure 1 is preferably made of ceramics having excellent heat resistance, and considering heat conductivity in particular, it is preferable that SiC (silicon carbide) having high thermal conductivity is a main component. The main component means that 50% by mass or more of the honeycomb structure 1 is silicon carbide.

但し、必ずしもハニカム構造体1の全体がSiC(炭化珪素)で構成されている必要はなく、SiC(炭化珪素)が本体中に含まれていれば良い。即ち、ハニカム構造体1は、SiC(炭化珪素)を含むセラミックスからなるものであることが好ましい。   However, it is not always necessary that the entire honeycomb structure 1 is made of SiC (silicon carbide), and it is sufficient that SiC (silicon carbide) is contained in the main body. That is, the honeycomb structure 1 is preferably made of ceramics containing SiC (silicon carbide).

また、SiC(炭化珪素)であっても多孔体の場合は高い熱伝導率が得られないため、ハニカム構造体1の作製過程でシリコンを含浸させて緻密体構造とすることが好ましい。緻密体構造にすることで高い熱伝導率が得られる。例えば、SiC(炭化珪素)の多孔体の場合、20W/(m・K)程度であるが、緻密体とすることにより、150W/(m・K)程度とすることができる。   Moreover, even if it is SiC (silicon carbide), in the case of a porous body, a high thermal conductivity cannot be obtained. Therefore, it is preferable to impregnate silicon in the process of manufacturing the honeycomb structure 1 to obtain a dense structure. High heat conductivity can be obtained by using a dense structure. For example, in the case of a porous body of SiC (silicon carbide), it is about 20 W / (m · K), but can be made about 150 W / (m · K) by using a dense body.

ハニカム構造体1として、Si含浸SiC、(Si+Al)含浸SiC、金属複合SiC、再結晶SiC、Si、及びSiC等を採用することができるが、高い熱交換効率を得るための緻密体構造とするためにSi含浸SiC、(Si+Al)含浸SiCを採用することができる。Si含浸SiCは、SiC粒子表面を金属珪素融体の凝固物が取り囲むとともに、金属珪素を介してSiCが一体に接合した構造を有するため、炭化珪素が酸素を含む雰囲気から遮断され、酸化から防止される。さらに、SiCは、熱伝導率が高く、放熱しやすいという特徴を有するが、Siを含浸するSiCは、高い熱伝導率や耐熱性を示しつつ、緻密に形成され、伝熱部材として十分な強度を示す。つまり、Si−SiC系[Si含浸SiC、(Si+Al)含浸SiC]材料からなるハニカム構造体1は、耐熱性、耐熱衝撃性、耐酸化性をはじめ、酸やアルカリなどに対する耐蝕性に優れた特性を示すとともに、高熱伝導率を示す。 As the honeycomb structure 1, Si-impregnated SiC, (Si + Al) -impregnated SiC, metal composite SiC, recrystallized SiC, Si 3 N 4 , SiC, or the like can be adopted, but a dense body for obtaining high heat exchange efficiency Si-impregnated SiC or (Si + Al) -impregnated SiC can be used for the structure. Si-impregnated SiC has a structure in which the SiC particle surface is surrounded by solidified metal-silicon melt and SiC is integrally bonded via metal silicon, so that silicon carbide is shielded from an oxygen-containing atmosphere and prevented from oxidation. Is done. Furthermore, SiC has the characteristics of high thermal conductivity and easy heat dissipation, but SiC impregnated with Si is densely formed while exhibiting high thermal conductivity and heat resistance, and has sufficient strength as a heat transfer member. Indicates. That is, the honeycomb structure 1 made of a Si—SiC-based [Si-impregnated SiC, (Si + Al) -impregnated SiC] material has excellent heat resistance, thermal shock resistance, oxidation resistance, and excellent corrosion resistance against acids and alkalis. And high thermal conductivity.

ハニカム構造体1のセル3の軸方向に垂直な断面のセル形状としては、円形、楕円形、三角形、四角形、六角形その他の多角形等の中から所望の形状を適宜選択すればよい。   As the cell shape of the cross section perpendicular to the axial direction of the cells 3 of the honeycomb structure 1, a desired shape may be appropriately selected from circular, elliptical, triangular, quadrangular, hexagonal and other polygons.

ハニカム構造体1のセル密度(即ち、単位断面積当たりのセルの数)については特に制限はなく、目的に応じて適宜設計すればよいが、30〜400セル/平方インチ(4.7〜62セル/cm)の範囲であることが好ましい(なお、ハニカム構造体1は、2つ以上の異なる開口率のセル構造を有するが、いずれのセル構造も、上記範囲内であることが好ましい。)。セル密度を30セル/平方インチ以上とすると、隔壁4の強度、ひいてはハニカム構造体1自体の強度及び有効GSA(幾何学的表面積)を十分なものとすることができる。一方、セル密度を400セル/平方インチ以下とすると、熱媒体が流れる際の圧力損失を小さくすることができる。 The cell density of the honeycomb structure 1 (that is, the number of cells per unit cross-sectional area) is not particularly limited and may be appropriately designed according to the purpose, but is 30 to 400 cells / in 2 (4.7 to 62). Cell / cm 2 ) is preferable (note that the honeycomb structure 1 has a cell structure having two or more different aperture ratios, and any cell structure is preferably within the above range. ). When the cell density is 30 cells / square inch or more, the strength of the partition walls 4 and the strength of the honeycomb structure 1 itself and the effective GSA (geometric surface area) can be made sufficient. On the other hand, when the cell density is 400 cells / square inch or less, the pressure loss when the heat medium flows can be reduced.

また、ハニカム構造体1の1つ当たりのセル数は、1〜10,000が望ましく、200〜2,000が特に望ましい。セル数が多すぎるとハニカム自体が大きくなるため第一の流体側から第二の流体側までの熱伝導距離が長くなり、熱伝導ロスが大きくなり熱流束が小さくなる。またセル数が少ないときには第一の流体側の熱伝達面積が小さくなり第一の流体側の熱抵抗を下げることが出来ず熱流束が小さくなる。   The number of cells per honeycomb structure 1 is preferably 1 to 10,000, and particularly preferably 200 to 2,000. If the number of cells is too large, the honeycomb itself becomes large, so the heat conduction distance from the first fluid side to the second fluid side becomes long, the heat conduction loss becomes large, and the heat flux becomes small. Further, when the number of cells is small, the heat transfer area on the first fluid side becomes small, the heat resistance on the first fluid side cannot be lowered, and the heat flux becomes small.

ハニカム構造体1のセル3の隔壁4の厚さ(壁厚)についても、目的に応じて適宜設計すればよく、特に制限はない。壁厚を6〜25mil(0.15mm〜0.64mm)とすることが好ましく、8〜22milとすることが更に好ましい(なお、ハニカム構造体1は、2つ以上の異なる開口率のセル構造を有するが、いずれのセル構造も、上記範囲内であることが好ましい。)。壁厚を6mil以上とすると、機械的強度が向上して衝撃や熱応力による破損を防止できる。一方、25mil以下とすると、ハニカム構造体1側に占めるセル容積の割合が大きくなることにより流体の圧力損失が小さくなり、熱交換効率を向上させることができる。   The thickness (wall thickness) of the partition walls 4 of the cells 3 of the honeycomb structure 1 may be appropriately designed according to the purpose, and is not particularly limited. The wall thickness is preferably 6 to 25 mil (0.15 mm to 0.64 mm), more preferably 8 to 22 mil (note that the honeycomb structure 1 has a cell structure having two or more different opening ratios. However, any cell structure is preferably within the above range.) When the wall thickness is 6 mils or more, the mechanical strength is improved and damage due to impact or thermal stress can be prevented. On the other hand, when the thickness is 25 mil or less, the ratio of the cell volume to the honeycomb structure 1 side increases, so that the pressure loss of the fluid decreases and the heat exchange efficiency can be improved.

ハニカム構造体1のセル3の隔壁4の密度は、0.5〜5g/cmであることが好ましい。0.5g/cm以上の場合、隔壁4の強度が十分であり、第一の流体が流路内を通り抜ける際に圧力により隔壁4が破損することを防止できる。また、5g/cm以下であると、ハニカム構造体1自体が重くなりすぎず、軽量化することができる。上記の範囲の密度とすることにより、ハニカム構造体1を強固なものとすることができる。また、熱伝導率を向上させる効果も得られる。 The density of the partition walls 4 of the cells 3 of the honeycomb structure 1 is preferably 0.5 to 5 g / cm 3 . In the case of 0.5 g / cm 3 or more, the strength of the partition wall 4 is sufficient, and the partition wall 4 can be prevented from being damaged by pressure when the first fluid passes through the flow path. Further, if it is 5 g / cm 3 or less, the honeycomb structure 1 itself does not become too heavy, and the weight can be reduced. By setting the density within the above range, the honeycomb structure 1 can be strengthened. Moreover, the effect which improves heat conductivity is also acquired.

ハニカム構造体1は、セル3の開口率が40%〜80%であることが好ましく、50%〜75%であることがより好ましい(なお、ハニカム構造体1は、2つ以上の異なる開口率のセル構造を有するが、いずれのセル構造も、上記範囲内であることが好ましい。)。開口率がこの範囲であると、十分に第一の流体を流通させることができ、熱交換効率を向
上させることができる。
In the honeycomb structure 1, the opening ratio of the cells 3 is preferably 40% to 80%, and more preferably 50% to 75% (note that the honeycomb structure 1 has two or more different opening ratios). It is preferable that any cell structure is within the above range. When the aperture ratio is within this range, the first fluid can be sufficiently circulated, and the heat exchange efficiency can be improved.

ハニカム構造体1は、熱伝導率が100W/(m・K)以上であることが好ましい。より好ましくは、120〜300W/(m・K)、さらに好ましくは、150〜300W/(m・K)である。この範囲とすることにより、熱伝導性が良好となり、効率的にハニカム構造体1内の熱を金属管12の外側に排出できる。   The honeycomb structure 1 preferably has a thermal conductivity of 100 W / (m · K) or more. More preferably, it is 120-300 W / (m * K), More preferably, it is 150-300 W / (m * K). By setting it as this range, heat conductivity becomes favorable and the heat in the honeycomb structure 1 can be efficiently discharged to the outside of the metal tube 12.

熱交換部材10を用いた熱交換器30(図6参照)に流通させる第一の流体(高温側)が排ガスの場合、第一の流体(高温側)が通過するハニカム構造体1のセル3内部の壁面には、触媒が担持されていることが好ましい。これは、排ガス浄化の役割に加えて、排ガス浄化の際に発生する反応熱(発熱反応)も熱交換することが可能になるためである。貴金属(白金、ロジウム、パラジウム、ルテニウム、インジウム、銀、及び金)、アルミニウム、ニッケル、ジルコニウム、チタン、セリウム、コバルト、マンガン、亜鉛、銅、スズ、鉄、ニオブ、マグネシウム、ランタン、サマリウム、ビスマス及びバリウムからなる群から選択された元素を少なくとも一種を含有すると良い。これらは金属、酸化物、及びそれ以外の化合物であっても良い。   When the first fluid (high temperature side) to be circulated through the heat exchanger 30 (see FIG. 6) using the heat exchange member 10 is exhaust gas, the cells 3 of the honeycomb structure 1 through which the first fluid (high temperature side) passes. It is preferable that a catalyst is supported on the inner wall surface. This is because in addition to the role of exhaust gas purification, reaction heat (exothermic reaction) generated during exhaust gas purification can also be exchanged. Precious metals (platinum, rhodium, palladium, ruthenium, indium, silver and gold), aluminum, nickel, zirconium, titanium, cerium, cobalt, manganese, zinc, copper, tin, iron, niobium, magnesium, lanthanum, samarium, bismuth and It is preferable to contain at least one element selected from the group consisting of barium. These may be metals, oxides, and other compounds.

第一の流体(高温側)が通過するハニカム構造体1の第一流体流通部5のセル3の隔壁4に担持される触媒(触媒金属+担持体)の担持量としては、10〜400g/Lであることが好ましく、貴金属であれば0.1〜5g/Lであることが更に好ましい。触媒(触媒金属+担持体)の担持量を10g/L以上とすると、触媒作用が十分に発現する。一方、400g/L以下とすると、圧力損失が大きくなりすぎず、製造コストの上昇も抑えることができる。   The supported amount of the catalyst (catalyst metal + support) supported on the partition walls 4 of the cells 3 of the first fluid circulation part 5 of the honeycomb structure 1 through which the first fluid (high temperature side) passes is 10 to 400 g / It is preferable that it is L, and if it is a noble metal, it is still more preferable that it is 0.1-5 g / L. When the amount of the catalyst (catalyst metal + support) supported is 10 g / L or more, the catalytic action is sufficiently exhibited. On the other hand, when it is 400 g / L or less, the pressure loss does not become too large, and an increase in manufacturing cost can be suppressed.

次に、熱交換部材10を構成するハニカム構造体1のセル構造の他の実施形態を説明する。図5Aに熱交換部材10を構成するハニカム構造体1の実施形態2を示す。実施形態2の熱交換部材10は、中心側にセル密度が密のセル構造が断面が円状に形成され、外周側にセル密度が粗のセル構造が形成されている実施形態である。本実施形態においても第一の流体の流量が増えると、熱交換効率が低下し、オーバーヒートを防止する効果が得られる。   Next, another embodiment of the cell structure of the honeycomb structure 1 constituting the heat exchange member 10 will be described. FIG. 5A shows Embodiment 2 of the honeycomb structure 1 constituting the heat exchange member 10. The heat exchange member 10 according to the second embodiment is an embodiment in which a cell structure with a dense cell density is formed in a circular shape on the center side, and a cell structure with a coarse cell density is formed on the outer peripheral side. Also in this embodiment, when the flow rate of the first fluid is increased, the heat exchange efficiency is lowered and the effect of preventing overheating is obtained.

図5Bに熱交換部材10を構成するハニカム構造体1の実施形態3を示す。実施形態3の熱交換部材10は、断面が半円の2領域が形成され、一方の半円の領域がセル密度が密のセル構造、他方の半円の領域がセル密度が粗のセル構造として形成されている実施形態である。   FIG. 5B shows a third embodiment of the honeycomb structure 1 constituting the heat exchange member 10. The heat exchange member 10 of Embodiment 3 has two regions with a semicircular cross section, one semicircular region having a dense cell density, and the other semicircular region having a coarse cell density. It is embodiment formed as.

図5Cに熱交換部材10を構成するハニカム構造体1の実施形態4を示す。実施形態4の熱交換部材10は、中心側に隔壁4がない空洞のセル構造が断面が円状に形成され、外周側にセル密度が密のセル構造が形成されている実施形態である。   FIG. 5C shows a fourth embodiment of the honeycomb structure 1 constituting the heat exchange member 10. The heat exchange member 10 of the fourth embodiment is an embodiment in which a hollow cell structure without the partition wall 4 on the center side is formed in a circular cross section, and a cell structure having a dense cell density is formed on the outer peripheral side.

図5Dに熱交換部材10を構成するハニカム構造体1の実施形態5を示す。実施形態5の熱交換部材10は、隔壁4がない空洞の円状のセル構造が、外周側に複数並んで形成されている。   FIG. 5D shows a fifth embodiment of the honeycomb structure 1 constituting the heat exchange member 10. In the heat exchange member 10 of the fifth embodiment, a plurality of hollow circular cell structures without the partition walls 4 are formed side by side on the outer peripheral side.

図6に本発明の熱交換部材10を含む熱交換器30の斜視図を示す。図6に示すように、熱交換器30は、熱交換部材10と、熱交換部材10を内部に含むケーシング21とによって形成されている。ハニカム構造体1のセル3が第一の流体が流通する第一流体流通部5となる。熱交換器30は、ハニカム構造体1のセル3内を、第二の流体よりも高温の第一の流体が流通するように構成されている。また、ケーシング21に第二の流体の入口22及び出口23が形成されており、第二の流体は、熱交換部材10の金属管12の外周面12h上を流通する。   FIG. 6 shows a perspective view of a heat exchanger 30 including the heat exchange member 10 of the present invention. As shown in FIG. 6, the heat exchanger 30 is formed by a heat exchange member 10 and a casing 21 that includes the heat exchange member 10 therein. The cells 3 of the honeycomb structure 1 become the first fluid circulation part 5 through which the first fluid flows. The heat exchanger 30 is configured such that a first fluid having a temperature higher than that of the second fluid flows in the cells 3 of the honeycomb structure 1. In addition, an inlet 22 and an outlet 23 for the second fluid are formed in the casing 21, and the second fluid circulates on the outer peripheral surface 12 h of the metal tube 12 of the heat exchange member 10.

つまり、ケーシング21の内側面24と金属管12の外周面12hとによって第二流体流通部6が形成されている。第二流体流通部6は、ケーシング21と金属管12の外周面12hとによって形成された第二の流体の流通部であり、第一流体流通部5とハニカム構造体1の隔壁4や外周壁7、金属管12によって隔たれて熱交換可能とされており、第一流体流通部5を流通する第一の流体の熱を隔壁4、外周壁7、金属管12を介して受け取り、流通する第二の流体である被加熱体へ熱を伝達する。第一の流体と第二の流体とは、完全に分離されており、これらの流体は混じり合わないように構成されている。   That is, the second fluid circulation portion 6 is formed by the inner surface 24 of the casing 21 and the outer peripheral surface 12 h of the metal tube 12. The second fluid circulation part 6 is a second fluid circulation part formed by the casing 21 and the outer peripheral surface 12 h of the metal tube 12, and the first fluid circulation part 5 and the partition walls 4 and the outer peripheral walls of the honeycomb structure 1. 7. Heat exchange is possible by being separated by the metal pipe 12, and the heat of the first fluid flowing through the first fluid circulation part 5 is received via the partition wall 4, the outer peripheral wall 7, and the metal pipe 12, and is distributed. Heat is transferred to the heated object which is the second fluid. The first fluid and the second fluid are completely separated, and these fluids are configured not to mix.

熱交換器30は、第二の流体よりも高温である第一の流体を流通させ、第一の流体から第二の流体へ熱交換するようにすることが好ましい。第一の流体として気体を流通させ、第二の流体として液体を流通させると、第一の流体と第二の流体の熱交換を効率よく行うことができる。つまり、本発明の熱交換器30は、気体/液体熱交換器として適用することができる。   The heat exchanger 30 preferably circulates the first fluid having a temperature higher than that of the second fluid, and exchanges heat from the first fluid to the second fluid. When gas is circulated as the first fluid and liquid is circulated as the second fluid, heat exchange between the first fluid and the second fluid can be performed efficiently. That is, the heat exchanger 30 of the present invention can be applied as a gas / liquid heat exchanger.

以上のような構成の本発明の熱交換器30に流通させる第一の流体である加熱体としては、熱を有する媒体であれば、気体、液体等、特に限定されない。例えば、気体であれば自動車の排ガス等が挙げられる。また、加熱体から熱を奪う(熱交換する)第二の流体である被加熱体は、加熱体よりも低い温度であれば、媒体としては、気体、液体等、特に限定されない。   The heating element that is the first fluid to be circulated through the heat exchanger 30 of the present invention having the above configuration is not particularly limited as long as it is a medium having heat. For example, if it is gas, the exhaust gas of a motor vehicle etc. are mentioned. In addition, the medium to be heated, which is the second fluid that takes heat from the heating body (exchanges heat), is not particularly limited as a medium, as long as the temperature is lower than that of the heating body.

次に、本発明の熱交換部材10の製造方法を説明する。まず、セラミックス粉末を含む坏土を所望の形状に押し出し、ハニカム成形体を作製する。ハニカム構造体1の材料としては、前述のセラミックスを用いることができるが、例えば、Si含浸SiC複合材料を主成分とするハニカム構造体1を製造する場合、所定量のC粉末、SiC粉末、バインダー、水又は有機溶媒を混練し坏土とし、成形して所望形状のハニカム成形体を得る。   Next, the manufacturing method of the heat exchange member 10 of this invention is demonstrated. First, a clay containing ceramic powder is extruded into a desired shape to produce a honeycomb formed body. As the material of the honeycomb structure 1, the above-described ceramics can be used. For example, when manufacturing the honeycomb structure 1 mainly composed of a Si-impregnated SiC composite material, a predetermined amount of C powder, SiC powder, binder Then, water or an organic solvent is kneaded to form a clay and molded to obtain a honeycomb molded body having a desired shape.

そしてハニカム成形体を乾燥し、焼成することによって、隔壁4によってガスの流路となる複数のセル3が区画形成されたハニカム構造体1を得ることができる。続いて、金属管12を昇温させ、ハニカム構造体1を金属管12に挿入して焼きばめにより一体化し、熱交換部材10を形成することができる。なお、ハニカム構造体1と金属管12との接合は、焼きばめ以外に、ろう付けや拡散接合等を用いてもよい。   Then, by drying and firing the honeycomb formed body, it is possible to obtain the honeycomb structure 1 in which a plurality of cells 3 serving as gas flow paths are partitioned by the partition walls 4. Subsequently, the temperature of the metal tube 12 is raised, and the honeycomb structure 1 is inserted into the metal tube 12 and integrated by shrink fitting to form the heat exchange member 10. Note that the honeycomb structure 1 and the metal pipe 12 may be joined by brazing, diffusion bonding, or the like in addition to shrink fitting.

2.伝熱低減部による熱交換効率の低下
次に、伝熱低減部40が設けられた熱交換部材10を説明する。熱交換部材10は、セラミックスを主成分とするハニカム構造体1と、ハニカム構造体1を被覆する被覆部材11と、を備える。ハニカム構造体1は、筒形状の外周壁7と、第一の流体の流路となる複数のセル3を区画形成する隔壁4とを有する。被覆部材11は、ハニカム構造体1の内部を流れる第一の流体とハニカム構造体1の外部を流れる第二の流体とを混合させずに、第一の流路と第二の流体との間での熱交換可能にハニカム構造体1を被覆する。そして、ハニカム構造体1と被覆部材11の間の伝熱を低減させる伝熱低減部40が一部の範囲に設けられている。
2. Decrease in heat exchange efficiency by heat transfer reduction part Next, the heat exchange member 10 provided with the heat transfer reduction part 40 will be described. The heat exchange member 10 includes a honeycomb structure 1 mainly composed of ceramics and a covering member 11 that covers the honeycomb structure 1. The honeycomb structure 1 includes a cylindrical outer peripheral wall 7 and partition walls 4 that partition and form a plurality of cells 3 that serve as flow paths for the first fluid. The covering member 11 does not mix the first fluid flowing inside the honeycomb structure 1 and the second fluid flowing outside the honeycomb structure 1, and does not mix between the first flow path and the second fluid. The honeycomb structure 1 is coated so that heat exchange is possible. And the heat transfer reduction part 40 which reduces the heat transfer between the honeycomb structure 1 and the coating | coated member 11 is provided in the one part range.

図7A〜図7D、および図8A、図8Bを用いて、伝熱低減部40が括れ部41として設けられた実施形態を説明する。伝熱低減部40は、ハニカム構造体1の外周部分である外周壁7、または外周壁7及び隔壁4が、ハニカム構造体1の平均直径に対して0.3mm以上、外周部分の全表面積に対して10%以上括れた括れ部41である。   An embodiment in which the heat transfer reduction unit 40 is provided as the constriction unit 41 will be described with reference to FIGS. 7A to 7D, and FIGS. 8A and 8B. In the heat transfer reduction part 40, the outer peripheral wall 7 which is the outer peripheral part of the honeycomb structure 1 or the outer peripheral wall 7 and the partition walls 4 have a total surface area of the outer peripheral part of 0.3 mm or more with respect to the average diameter of the honeycomb structure 1. On the other hand, the constricted portion 41 is constricted by 10% or more.

図7Aは、軸方向における一方の端面2側(第一の流体の入口側)、図7Cは、他方の端面2側(第一の流体の出口側)のハニカム構造体1の外周部分に括れ部41が形成されている。括れ部41は、端面2の一部が欠ける形状で形成されている。また、図7B、及び図7Dは、軸方向において端面2よりも内側(中央側)に括れ部41が形成された実施形態である。図7Bは、軸方向における中央部に1つ、図7Dは、複数の括れ部41が形成されている。   FIG. 7A is tied to the outer peripheral portion of the honeycomb structure 1 on one end face 2 side (first fluid inlet side) in the axial direction, and FIG. 7C is the other end face 2 side (first fluid outlet side). A portion 41 is formed. The constricted portion 41 is formed in a shape in which a part of the end surface 2 is missing. 7B and 7D are embodiments in which a constricted portion 41 is formed on the inner side (center side) of the end surface 2 in the axial direction. 7B has one central portion in the axial direction, and FIG. 7D has a plurality of constricted portions 41 formed therein.

このような括れ部41は、第二の流体と接触する被覆部材11(例えば、金属管12)とハニカム構造体1が接触する面積を小さくするため、ハニカム構造体1と、ハニカム構造体1を被覆する被覆部材11との間の伝熱を低減させることができる。したがって、このような熱交換部材10は、第一の流体の流量が増加しても、オーバーヒートを発生させにくい。   Such a constricted portion 41 reduces the area where the covering member 11 (for example, the metal pipe 12) that comes into contact with the second fluid and the honeycomb structure 1 are in contact with each other, so that the honeycomb structure 1 and the honeycomb structure 1 are connected to each other. Heat transfer between the covering member 11 and the covering member 11 can be reduced. Therefore, such a heat exchange member 10 hardly generates overheating even when the flow rate of the first fluid increases.

図8A及び図8Bは、括れ部41の周辺の拡大図である。図8Aは、外周壁7に括れ部41が形成された実施形態を示す模式図である。このように括れ部41を形成することにより、ハニカム構造体1と被覆部材11(金属管12)との間の伝熱を低減させることができる。また、第一の流体の流量に対して熱交換効率を変化させる効果が得られる。具体的には、伝熱低減部40(括れ部41)を設けることにより流量が多いときの熱回収効率を低減することができる。これは、第一の流体が低流量時には伝熱面積が小さくとも第二の流体へ伝熱可能だが、高流量時には伝熱面積が小さいと、第二の流体へ伝熱しきれなくなるからである。   8A and 8B are enlarged views of the periphery of the constricted portion 41. FIG. FIG. 8A is a schematic diagram showing an embodiment in which a constricted portion 41 is formed on the outer peripheral wall 7. By forming the constricted portion 41 in this way, heat transfer between the honeycomb structure 1 and the covering member 11 (metal tube 12) can be reduced. Moreover, the effect of changing the heat exchange efficiency with respect to the flow rate of the first fluid can be obtained. Specifically, the heat recovery efficiency when the flow rate is large can be reduced by providing the heat transfer reduction unit 40 (constriction unit 41). This is because when the first fluid has a low flow rate, heat can be transferred to the second fluid even if the heat transfer area is small, but when the first fluid has a high flow rate, if the heat transfer area is small, heat cannot be transferred to the second fluid.

図8Bは、外周壁7と隔壁4によって括れ部41が形成された実施形態を示す模式図である。このような括れ部41は、図8Aと同様に、ハニカム構造体1と被覆部材11(金属管12)との間の伝熱を低減させることができる。また、第一の流体の流量に対して熱交換効率を変化させる効果が得られ、伝熱低減部40(括れ部41)を増やすことにより流量が多いときの熱回収効率を低減することができる。   FIG. 8B is a schematic view showing an embodiment in which a constricted portion 41 is formed by the outer peripheral wall 7 and the partition wall 4. Such a constricted portion 41 can reduce heat transfer between the honeycomb structure 1 and the covering member 11 (metal tube 12), as in FIG. 8A. In addition, the effect of changing the heat exchange efficiency with respect to the flow rate of the first fluid is obtained, and the heat recovery efficiency when the flow rate is high can be reduced by increasing the heat transfer reduction unit 40 (constriction unit 41). .

図9に、伝熱低減部40が、ハニカム構造体1と被覆部材11との間に、ハニカム構造体1の外周部分の全表面積に対して10%以上の範囲に備えられた断熱材42で形成された実施形態を示す。このような断熱材42によって形成された伝熱低減部40を有することにより、ハニカム構造体1と被覆部材11(金属管12)との間の伝熱を低減させる効果が得られる。また、第一の流体の流量に対して熱交換効率を変化させる効果が得られ、伝熱低減部40(断熱材42)を備えることにより流量が多いときの熱回収効率を低減することができる。   In FIG. 9, the heat transfer reduction part 40 is a heat insulating material 42 provided in a range of 10% or more with respect to the total surface area of the outer peripheral portion of the honeycomb structure 1 between the honeycomb structure 1 and the covering member 11. Fig. 4 shows a formed embodiment. By having the heat transfer reduction part 40 formed of such a heat insulating material 42, the effect of reducing the heat transfer between the honeycomb structure 1 and the coating | coated member 11 (metal pipe 12) is acquired. In addition, the effect of changing the heat exchange efficiency with respect to the flow rate of the first fluid is obtained, and the heat recovery efficiency when the flow rate is large can be reduced by providing the heat transfer reduction unit 40 (heat insulating material 42). .

3.攪拌手段による熱衝撃の低下
熱交換部材10は、第一の流体の流れを攪拌する攪拌手段を備えることが好ましい。攪拌手段を備えることにより、熱交換部材10の下流における温度の不均一を低減することができ、下流の部品の熱衝撃による破損を低減させることができる。
3. Reduction of thermal shock by agitation means The heat exchange member 10 preferably includes agitation means for agitating the flow of the first fluid. By providing the agitation means, it is possible to reduce the temperature non-uniformity downstream of the heat exchange member 10, and to reduce the damage caused by the thermal shock of the downstream components.

図10A、及び図10Bに、筒形状の外周壁7と、第一の流体の流路となる複数のセル3を区画形成する隔壁4とを有するセラミックスを主成分とし、軸方向における少なくとも一方の端面2に、軸方向における長さが1mm以上の凸部44、または凹部45を一箇所以上有するハニカム構造体1と、ハニカム構造体1を被覆する被覆部材11と、を備えた実施形態を示す。凸部44、または凹部45は、攪拌手段である。   10A and 10B, the main component is ceramics having a cylindrical outer peripheral wall 7 and partition walls 4 that define a plurality of cells 3 that serve as a flow path for the first fluid, and at least one of them in the axial direction. An embodiment in which the end face 2 includes a honeycomb structure 1 having one or more convex portions 44 or concave portions 45 having an axial length of 1 mm or more, and a covering member 11 covering the honeycomb structure 1 is shown. . The convex portion 44 or the concave portion 45 is a stirring means.

図10Aは、ハニカム構造体1が、軸方向における端面2に、凸部44を有する熱交換部材10を示す模式図である。図10Bは、ハニカム構造体1が、軸方向における端面2に、凹部45を有する熱交換部材10を示す模式図である。凸部あるいは凹部により、ガス流れを乱流にし、熱交換部材10の下流における温度の不均一を低減することができ、下流の部品の熱衝撃による破損を低減させることができる。   FIG. 10A is a schematic diagram showing the heat exchange member 10 in which the honeycomb structure 1 has a convex portion 44 on the end face 2 in the axial direction. FIG. 10B is a schematic view showing the heat exchange member 10 in which the honeycomb structure 1 has a recess 45 in the end face 2 in the axial direction. By the convex portion or the concave portion, the gas flow can be turbulent, temperature non-uniformity downstream of the heat exchange member 10 can be reduced, and damage due to thermal shock of downstream components can be reduced.

図11Aは、被覆部材11中に、ハニカム構造体1の軸方向上にハニカム構造体1と並んでハニカム構造体1のセル3を流通する第一の流体を攪拌するための攪拌板48を備えた実施形態を示す。攪拌板48は、攪拌手段である。攪拌板48は、ハニカム構造体1の上流側、下流側のいずれに設置することもできる。あるいは、被覆部材11中に、ハニカム構造体1を直列に複数配置した場合は、ハニカム構造体1とハニカム構造体1との間に、すなわち、中段に攪拌板48を設置することもできる。攪拌板48は、ハニカム構造体1の端面に接する様に配置してもよく、離間して配置してもよい。攪拌板48の材料としては、例えば、金属が挙げられる。図11B〜図11Dに攪拌板48の例を示す。攪拌板48の形状は、第一の流体を攪拌することができる形状であれば、特に限定されるものではない。このような攪拌板48を備えることにより、第一の流体の流量特性を変化させることができる。これにより、熱交換部材10の下流の部品の熱衝撃による破損を低減させることができる。   FIG. 11A includes a stirring plate 48 in the covering member 11 for stirring the first fluid flowing through the cells 3 of the honeycomb structure 1 along with the honeycomb structure 1 in the axial direction of the honeycomb structure 1. An embodiment is shown. The stirring plate 48 is a stirring means. The stirring plate 48 can be installed on either the upstream side or the downstream side of the honeycomb structure 1. Alternatively, when a plurality of honeycomb structures 1 are arranged in series in the covering member 11, the stirring plate 48 can be installed between the honeycomb structures 1 and the honeycomb structures 1, that is, in the middle stage. The stirring plate 48 may be disposed so as to be in contact with the end face of the honeycomb structure 1 or may be disposed separately. Examples of the material of the stirring plate 48 include metals. An example of the stirring plate 48 is shown in FIGS. 11B to 11D. The shape of the stirring plate 48 is not particularly limited as long as the shape can stir the first fluid. By providing such a stirring plate 48, the flow rate characteristic of the first fluid can be changed. Thereby, the damage by the thermal shock of the components downstream of the heat exchange member 10 can be reduced.

図12に、ハニカム構造体1と、ハニカム構造体1を被覆していない部分において括れた小径部、または膨らんだ大径部を1箇所以上有しハニカム構造体1を被覆する被覆部材11と、を備えた熱交換部材10の実施形態を示す。被覆部材11は、小径部、または大径部のいずれかのみを備えてもよいし、両方を備えてもよい。すなわち、被覆部材11は、ハニカム構造体1を被覆していない部分において、湾曲部を有するとその湾曲部において、第一の流体を攪拌することができ、熱交換部材10の下流の部品の熱衝撃による破損を低減させることができる。   FIG. 12 shows a honeycomb structure 1 and a covering member 11 that covers the honeycomb structure 1 having at least one small diameter portion or a bulging large diameter portion confined in a portion not covering the honeycomb structure 1; Embodiment of the heat exchange member 10 provided with this is shown. The covering member 11 may be provided with either the small diameter part or the large diameter part or both. That is, if the covering member 11 has a curved portion in a portion where the honeycomb structure 1 is not covered, the first fluid can be stirred in the curved portion, and the heat of the components downstream of the heat exchange member 10 can be stirred. Damage due to impact can be reduced.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(セル構造による熱交換効率の低下)
(1)熱交換部材
(坏土の作製)
まず、平均粒径45μmのSiC粉末70質量%と平均粒径35μmのSiC粉末10質量%と平均粒径5μmのSiC粉末20質量%とを混ぜ合わせて、SiC粉末の混合物を調製した。このSiC粉末の混合物100質量部に、バインダー4質量部、水を混ぜ合わせ、ニーダーを用いて混練することにより、混練物を得た。この混練物を真空土練機に投入し、円柱状の坏土を作製した。
(Deterioration of heat exchange efficiency due to cell structure)
(1) Heat exchange member (preparation of clay)
First, 70% by mass of SiC powder having an average particle size of 45 μm, 10% by mass of SiC powder having an average particle size of 35 μm, and 20% by mass of SiC powder having an average particle size of 5 μm were mixed to prepare a mixture of SiC powders. 100 parts by mass of this SiC powder mixture was mixed with 4 parts by mass of binder and water, and kneaded using a kneader to obtain a kneaded product. This kneaded material was put into a vacuum kneader to produce a columnar clay.

(押出成形)
次に、坏土を押出成形してハニカム成形体を形成した。押出成形では、適当な形態の口金や治具を選択することにより、外周壁7の形状や厚さ、隔壁4の厚さ、セルの形状、セル密度などを所望のものにした。口金は、摩耗し難い超硬合金で作られたものを用いた。ハニカム成形体については、外周壁7を円筒形状とし、外周壁7の内部を隔壁4により四角形の格子状に区分された構造となるように形成した。また、これらの隔壁4については、互いに直交する方向のそれぞれで等間隔に並行し、かつ、真っすぐに外周壁7の内部を横切るように形成した。これにより、外周壁7の内部の最外周部以外にあるセル3の断面形状を正方形にした。
(Extrusion molding)
Next, the kneaded material was extruded to form a honeycomb formed body. In extrusion molding, the shape and thickness of the outer peripheral wall 7, the thickness of the partition walls 4, the shape of the cells, the cell density, and the like were made desired by selecting an appropriate form of die and jig. The base was made of a hard metal that does not easily wear. The honeycomb molded body was formed such that the outer peripheral wall 7 was formed into a cylindrical shape and the inside of the outer peripheral wall 7 was divided into square lattices by the partition walls 4. Further, these partition walls 4 were formed so as to be parallel to each other at equal intervals in each of the directions orthogonal to each other and to cross the inside of the outer peripheral wall 7 straightly. Thereby, the cross-sectional shape of the cell 3 other than the outermost peripheral portion inside the outer peripheral wall 7 was made square.

(乾燥)
次に、押出成形により得たハニカム成形体の乾燥を行った。まず、ハニカム成形体を電磁波加熱方式で乾燥し、続いて、外部加熱方式で乾燥を行った。こうした二段階の乾燥により、乾燥前のハニカム成形体に含まれる全水分量の97%以上に相当する水分をハニカム成形体から除去した。
(Dry)
Next, the honeycomb formed body obtained by extrusion molding was dried. First, the honeycomb formed body was dried by an electromagnetic heating method, and subsequently dried by an external heating method. By such two-stage drying, moisture corresponding to 97% or more of the total moisture contained in the honeycomb formed body before drying was removed from the honeycomb formed body.

(脱脂、Si金属の含浸および焼成)
次に、ハニカム成形体に対して大気雰囲気で500℃、5時間の脱脂を行った。さらに、こうした脱脂により得られたハニカム構造体1の上に金属Siの塊を載せ、真空中または減圧の不活性ガス中で、1450℃、4時間、焼成をした。この焼成中に、ハニカム構造体1の上に載せた金属Siの塊を融解させ、外周壁7や隔壁4に金属Siを含浸させた。外周壁7や隔壁4の熱伝導率を100W/(m・K)にする場合には、ハニカム構造体100質量部に対して70質量部の金属Siの塊を使用した。また、外周壁7や隔壁4の熱伝導率を150W/(m・K)にする場合には、ハニカム構造体100質量部に対して80質量部の金属Siの塊を使用した。こうした焼成を経て、熱交換部材10を得た。なお、熱交換部材10のより詳細な形態などに関しては、以下で、各実施例および各比較例を個別に説明する際に述べる。
(Degreasing, impregnation and firing of Si metal)
Next, the honeycomb formed body was degreased at 500 ° C. for 5 hours in an air atmosphere. Further, a lump of metal Si was placed on the honeycomb structure 1 obtained by such degreasing and fired at 1450 ° C. for 4 hours in an inert gas under vacuum or reduced pressure. During the firing, the lump of metal Si placed on the honeycomb structure 1 was melted, and the outer peripheral wall 7 and the partition walls 4 were impregnated with metal Si. When the thermal conductivity of the outer peripheral wall 7 and the partition wall 4 was set to 100 W / (m · K), 70 parts by mass of metal Si mass was used with respect to 100 parts by mass of the honeycomb structure. Further, when the thermal conductivity of the outer peripheral wall 7 and the partition walls 4 was set to 150 W / (m · K), 80 parts by mass of metal Si mass was used with respect to 100 parts by mass of the honeycomb structure. The heat exchange member 10 was obtained through such firing. In addition, about the more detailed form of the heat exchange member 10, etc., it mentions when demonstrating each Example and each comparative example separately below.

(基準例A,B、実施例1〜6)
図1と同様の構造とされた、円筒形状の外周壁7を有する熱交換部材10を製造した。具体的には、直径42mm、全長100mm、外周壁7の厚さが1.0mm、外周壁7および隔壁4の熱伝導率150W/(m・K)である熱交換部材10を製造した。図2Aに示すようなセル構造A,Bを有し、図2Bに示すような境界9で領域X,Yが分けられる。具体的なセル構造は、表1に示す。なお、基準例A,Bは、単一のセル構造を有するものである。
(Reference examples A 1 and B 1 , Examples 1 to 6)
A heat exchange member 10 having a cylindrical outer peripheral wall 7 having the same structure as that of FIG. 1 was manufactured. Specifically, the heat exchange member 10 having a diameter of 42 mm, a total length of 100 mm, a thickness of the outer peripheral wall 7 of 1.0 mm, and a thermal conductivity of 150 W / (m · K) of the outer peripheral wall 7 and the partition wall 4 was manufactured. It has cell structures A and B as shown in FIG. 2A, and regions X and Y are separated by a boundary 9 as shown in FIG. 2B. The specific cell structure is shown in Table 1. The reference examples A 1 and B 1 have a single cell structure.

(基準例A,B、実施例7〜9、比較例1〜3)
上記と同様にして、セル構造A,Bの異なる円筒形状の外周壁7を有する熱交換部材10を製造した。具体的には、直径42mm、全長100mm、外周壁7の厚さが1.0mm、外周壁7および隔壁4の熱伝導率150W/(m・K)である熱交換部材10を製造した。図2Aに示すようなセル構造A,Bを有し、図2Bに示すような境界9で領域X,Yが分けられる。具体的なセル構造は、表2に示す。なお、基準例A,Bは、単一のセル構造を有するものである。
(Reference examples A 2 and B 2 , Examples 7 to 9 and Comparative Examples 1 to 3)
In the same manner as described above, a heat exchange member 10 having a cylindrical outer peripheral wall 7 having different cell structures A and B was manufactured. Specifically, the heat exchange member 10 having a diameter of 42 mm, a total length of 100 mm, a thickness of the outer peripheral wall 7 of 1.0 mm, and a thermal conductivity of 150 W / (m · K) of the outer peripheral wall 7 and the partition wall 4 was manufactured. It has cell structures A and B as shown in FIG. 2A, and regions X and Y are separated by a boundary 9 as shown in FIG. 2B. The specific cell structure is shown in Table 2. The reference examples A 2 and B 2 have a single cell structure.

(2)熱交換器
上述した各実施例および各比較例の熱交換部材10をケーシング21内に収容することにより、熱交換器30(図6に示したものと基本的に同じ構造の熱交換器)を作製した。ケーシング21については、熱交換部材10の外周壁7とケーシング21の壁面との隙間が各部で1mmとなるような形状のものを用いた。すなわち、円筒形状の外周壁7を有する熱交換部材については、円筒形状のケーシング21に収容した。
(2) Heat Exchanger By housing the heat exchange member 10 of each of the above-described embodiments and comparative examples in the casing 21, the heat exchanger 30 (heat exchange having basically the same structure as that shown in FIG. 6). Was prepared. About the casing 21, the thing of the shape where the clearance gap between the outer peripheral wall 7 of the heat exchange member 10 and the wall surface of the casing 21 becomes 1 mm in each part was used. That is, the heat exchange member having the cylindrical outer peripheral wall 7 was accommodated in the cylindrical casing 21.

(3)熱交換試験
上述した熱交換器30において、大気ガスを第一の流体とし、水を第二の流体として用いて、熱交換試験を行った。大気ガスの温度は400℃、流量は5〜15g/s、水の流量は10L/minに設定した。また、熱交換試験は、大気ガスの出口温度(熱交換部材10の出口側の端部から排出直後の大気ガスの温度)、および水の出口温度(ケーシング21の出口を通過する際の水の温度)が安定化することを確認して実施した。
(3) Heat Exchange Test In the heat exchanger 30 described above, a heat exchange test was performed using atmospheric gas as the first fluid and water as the second fluid. The temperature of the atmospheric gas was set to 400 ° C., the flow rate was set to 5 to 15 g / s, and the flow rate of water was set to 10 L / min. In addition, the heat exchange test includes the atmospheric gas outlet temperature (the temperature of the atmospheric gas immediately after being discharged from the end on the outlet side of the heat exchange member 10), and the water outlet temperature (water when passing through the outlet of the casing 21). (Temperature) was confirmed to stabilize.

熱交換部材10の入口側の端部に流入直前の第一の流体の温度を「入口ガス温」、熱交換部材の出口側の端部から排出直後の第一の流体の温度を「出口ガス温」として計測した。また、ケーシング21の入口を通過する水の温度を「入口水温」として計測した。これらの温度から、熱交換効率(%)を下記式にて算出した。結果を表1〜2に示す。
熱交換効率(%)=(入口ガス温−出口ガス温)/(入口ガス温−入口水温)×100
The temperature of the first fluid immediately before flowing into the end portion on the inlet side of the heat exchange member 10 is “inlet gas temperature”, and the temperature of the first fluid immediately after discharge from the end portion on the outlet side of the heat exchange member is “outlet gas”. It was measured as “Warm”. Further, the temperature of water passing through the inlet of the casing 21 was measured as “inlet water temperature”. From these temperatures, the heat exchange efficiency (%) was calculated by the following formula. The results are shown in Tables 1-2.
Heat exchange efficiency (%) = (inlet gas temperature−outlet gas temperature) / (inlet gas temperature−inlet water temperature) × 100

Figure 2013228189
Figure 2013228189

表1に示すように、実施例1〜6は、領域X,Yの開口面積の比のS/SまたはS/Sの大きい方の値が、1.05〜2.0であることにより、λ/λが基準例の大きい方の値(基準例A:1.59)よりも大きくなった。すなわち、第一のガスの流量が増加すると、熱交換効率が低下すると言える。 As shown in Table 1, in Examples 1 to 6, the larger value of S X / S Y or S Y / S X of the ratio of the opening areas of the regions X and Y is 1.05 to 2.0. As a result, λ 1 / λ 2 became larger than the larger value of the reference example (reference example A 1 : 1.59). That is, it can be said that the heat exchange efficiency decreases as the flow rate of the first gas increases.

Figure 2013228189
Figure 2013228189

表2に示すように、実施例7〜9は、領域X,Yの開口面積の比のS/SまたはS/Sの大きい方の値が、1.05〜2.0であることにより、λ/λが基準例の大きい方の値(基準例A:1.48)よりも大きくなった。すなわち、第一のガスの流量が増加すると、熱交換効率が低下すると言える。 As shown in Table 2, in Examples 7 to 9, the larger value of S X / S Y or S Y / S X of the ratio of the opening areas of the regions X and Y is 1.05 to 2.0. As a result, λ 1 / λ 2 became larger than the larger value of the reference example (reference example A 2 : 1.48). That is, it can be said that the heat exchange efficiency decreases as the flow rate of the first gas increases.

以上のように、領域X,Yの開口面積の比のS/SまたはS/Sの大きい方の値が、1.05〜2.0であることにより、第一のガスの流量が増加すると、熱交換効率が低下すると言える。すなわち、第一のガスの流量が増加しても、オーバーヒートを発生させにくい熱交換部材10である。 As described above, the larger value of S X / S Y or S Y / S X in the ratio of the opening areas of the regions X and Y is 1.05 to 2.0. It can be said that the heat exchange efficiency decreases as the flow rate increases. That is, even if the flow rate of the first gas is increased, the heat exchange member 10 is less likely to generate overheating.

本発明は、熱交換器に装着して使用する熱交換部材として利用できる。   The present invention can be used as a heat exchange member used by being mounted on a heat exchanger.

1:ハニカム構造体、2:(軸方向の)端面、3:セル、3a:セル構造部、4:隔壁、5:第一流体流通部、6:第二流体流通部、7:外周壁、7h:(ハニカム構造体の)外周面、9:境界、10:熱交換部材、11:被覆部材、12:金属管、12h:(金属管の)外周面、21:ケーシング、22:(第二の流体の)入口、23:(第二の流体の)出口、24:(ケーシングの)内側面、30:熱交換器、40:伝熱低減部、41:括れ部、42:断熱材、44:凸部、45:凹部、48:攪拌板。 1: honeycomb structure, 2: end face (in axial direction), 3: cell, 3a: cell structure part, 4: partition wall, 5: first fluid circulation part, 6: second fluid circulation part, 7: outer peripheral wall, 7h: outer peripheral surface (of honeycomb structure), 9: boundary, 10: heat exchange member, 11: covering member, 12: metal tube, 12h: outer peripheral surface of (metal tube), 21: casing, 22: (second 23: (second fluid) outlet, 24: inner surface of (casing), 30: heat exchanger, 40: heat transfer reducing part, 41: constricted part, 42: heat insulating material, 44 : Convex part, 45: concave part, 48: stirring plate.

Claims (11)

一方の端部から他方の端部に貫通して第一の流体の流路となる複数のセルと、前記複数のセルを区画形成するセラミックスを主成分とする隔壁とを有して形成されたセル構造部と、
前記セル構造部の外周に設けられ、セラミックスを主成分とし、前記第一の流体と前記セル構造部の外周側を流れる第二の流体とを混合させずに、前記第一の流体と前記第二の流体との熱の受け渡しを介在する外周壁と、を備えたハニカム構造体を含み、
前記セル構造部は、軸方向に垂直な断面において、2つ以上の異なる開口率のセル構造を有し、断面積の1/2ずつの2つの領域X,Yに分けた場合に、それぞれの領域X,Yにおいて最大の面積を有するセル構造をセル構造A、セル構造Bとし、それぞれの領域X,Yの全開口面積をS,Sとすると、S/SまたはS/Sの大きい方の値が、1.05〜2.0であり、
前記セル構造部に流入する前記第一の流体の流入前の流量が変化し、ある流量V,Vが、同じ流体温度のときに、V/V≧2の関係となる場合に、流量V,Vの熱交換効率をそれぞれλ,λとし、
仮に前記セル構造部が前記セル構造Aのみで構成されている場合のV,Vの熱交換効率をそれぞれλ1A,λ2Aとし、
仮に前記セル構造部が前記セル構造Bのみで構成されている場合のV,Vの熱交換効率をそれぞれλ1B,λ2Bとするとき、
λ1A/λ2Aとλ1B/λ2Bの大きい方の値よりもλ/λが大きくなる熱交換部材。
A plurality of cells that penetrate from one end portion to the other end portion to serve as a flow path for the first fluid, and a partition wall mainly composed of ceramics that forms the plurality of cells are formed. A cell structure;
Provided on the outer periphery of the cell structure part, mainly composed of ceramics, the first fluid and the second fluid without mixing the first fluid and the second fluid flowing on the outer periphery side of the cell structure part. An outer peripheral wall that intervenes heat transfer with the two fluids, and a honeycomb structure comprising:
The cell structure portion has a cell structure having two or more different aperture ratios in a cross section perpendicular to the axial direction, and when divided into two regions X and Y each having a half of the cross-sectional area, Assuming that the cell structures having the largest areas in the regions X and Y are the cell structure A and the cell structure B, and the total opening areas of the respective regions X and Y are S X and S Y , S X / S Y or S Y / The larger value of S X is 1.05 to 2.0,
When the flow rate before the flow of the first fluid flowing into the cell structure portion changes, and when certain flow rates V 1 and V 2 have the same fluid temperature, a relationship of V 2 / V 1 ≧ 2 is established. , Let λ 1 and λ 2 be the heat exchange efficiencies of the flow rates V 1 and V 2 , respectively.
Suppose that the heat exchange efficiencies of V 1 and V 2 are λ 1A and λ 2A , respectively, in the case where the cell structure portion is composed only of the cell structure A,
When the heat exchange efficiencies of V 1 and V 2 in the case where the cell structure part is composed of only the cell structure B are λ 1B and λ 2B , respectively,
A heat exchange member in which λ 1 / λ 2 is larger than the larger value of λ 1A / λ 2A and λ 1B / λ 2B .
前記ハニカム構造体は、前記隔壁の厚さが0.15〜0.64mmである請求項1に記載の熱交換部材。   The heat exchange member according to claim 1, wherein the honeycomb structure has a partition wall thickness of 0.15 to 0.64 mm. 前記ハニカム構造体は、前記セルのセル密度が4.7〜62セル/cmである請求項1または2に記載の熱交換部材。 The honeycomb structure, the heat exchanger member according to claim 1 or 2 cell density of the cell is 4.7 to 62 cells / cm 2. 前記ハニカム構造体は、前記セルの開口率が40%〜80%である請求項1〜3のいずれか1項に記載の熱交換部材。   The heat exchange member according to any one of claims 1 to 3, wherein the honeycomb structure has an opening ratio of the cells of 40% to 80%. 筒形状の外周壁と、第一の流体の流路となる複数のセルを区画形成する隔壁とを有するセラミックスを主成分とするハニカム構造体と、
前記ハニカム構造体の内部を流れる前記第一の流体と前記ハニカム構造体の外部を流れる第二の流体とを混合させずに、前記第一の流路と前記第二の流体との間での熱交換可能に前記ハニカム構造体を被覆する被覆部材と、を備え、
前記ハニカム構造体と前記被覆部材の間の伝熱を低減させる伝熱低減部が一部の範囲に設けられ、
前記セルを流通する前記第一の流体と、前記被覆部材の外側を流通する前記第二の流体とが混合しない状態で、前記ハニカム構造体の前記外周壁及び前記被覆部材を介して前記第一の流体と前記第二の流体を熱交換させる熱交換部材。
A honeycomb structure mainly composed of ceramics having a cylindrical outer peripheral wall and partition walls that partition and form a plurality of cells serving as flow paths for the first fluid;
Without mixing the first fluid flowing inside the honeycomb structure and the second fluid flowing outside the honeycomb structure, between the first flow path and the second fluid. And a covering member that covers the honeycomb structure so that heat exchange is possible,
A heat transfer reduction part that reduces heat transfer between the honeycomb structure and the covering member is provided in a part of the range,
The first fluid flowing through the cell and the second fluid flowing outside the covering member are not mixed with each other through the outer peripheral wall of the honeycomb structure and the covering member. A heat exchange member that exchanges heat between the second fluid and the second fluid.
前記伝熱低減部は、前記ハニカム構造体の外周部分である前記外周壁、または前記外周壁及び前記隔壁が、前記ハニカム構造体の平均直径に対して0.3mm以上、前記外周部分の全表面積に対して10%以上括れた括れ部である請求項5に記載の熱交換部材。   The heat transfer reducing portion is the outer peripheral wall which is the outer peripheral portion of the honeycomb structure, or the outer peripheral wall and the partition walls are 0.3 mm or more with respect to the average diameter of the honeycomb structure, and the total surface area of the outer peripheral portion The heat exchange member according to claim 5, wherein the heat exchange member is a constricted portion constricted by 10% or more. 前記伝熱低減部は、前記ハニカム構造体と被覆部材との間に、前記ハニカム構造体の外周部分の全表面積に対して10%以上の範囲に備えられた断熱材で形成された請求項5に記載の熱交換部材。   The heat transfer reduction portion is formed of a heat insulating material provided in a range of 10% or more with respect to the total surface area of the outer peripheral portion of the honeycomb structure between the honeycomb structure and the covering member. The heat exchange member as described in. 筒形状の外周壁と、第一の流体の流路となる複数のセルを区画形成する隔壁とを有するセラミックスを主成分とするハニカム構造体と、
前記ハニカム構造体の内部を流れる前記第一の流体と前記ハニカム構造体の外部を流れる第二の流体とを混合させずに、前記第一の流路と前記第二の流体との間での熱交換可能に前記ハニカム構造体を被覆する被覆部材と、を備え、
さらに前記第一の流体の流れを攪拌する攪拌手段を備え、
前記セルを流通する前記第一の流体と、前記被覆部材の外側を流通する前記第二の流体とが混合しない状態で、前記ハニカム構造体の前記外周壁及び前記被覆部材を介して前記第一の流体と前記第二の流体を熱交換させる熱交換部材。
A honeycomb structure mainly composed of ceramics having a cylindrical outer peripheral wall and partition walls that partition and form a plurality of cells serving as flow paths for the first fluid;
Without mixing the first fluid flowing inside the honeycomb structure and the second fluid flowing outside the honeycomb structure, between the first flow path and the second fluid. And a covering member that covers the honeycomb structure so that heat exchange is possible,
And further comprising stirring means for stirring the flow of the first fluid,
The first fluid flowing through the cell and the second fluid flowing outside the covering member are not mixed with each other through the outer peripheral wall of the honeycomb structure and the covering member. A heat exchange member that exchanges heat between the second fluid and the second fluid.
前記攪拌手段として、前記ハニカム構造体の軸方向における少なくとも一方の端面に、前記軸方向における長さが1mm以上の凸部、または凹部が一箇所以上形成された請求項8に記載の熱交換部材。   9. The heat exchange member according to claim 8, wherein as the stirring means, at least one end face in the axial direction of the honeycomb structure is formed with one or more convex portions or concave portions having a length in the axial direction of 1 mm or more. . 前記攪拌手段は、前記被覆部材中に、前記ハニカム構造体の軸方向上に前記ハニカム構造体と並んで備えられた、前記第一の流体を攪拌するための攪拌板である請求項8に記載の熱交換部材。   The stirrer is a stirrer for stirring the first fluid provided in the covering member alongside the honeycomb structure in the axial direction of the honeycomb structure. Heat exchange member. 前記攪拌手段は、前記ハニカム構造体を被覆していない部分において括れた小径部、または膨らんだ大径部を1箇所以上有する被覆部材である請求項8に記載の熱交換部材。   The heat exchanging member according to claim 8, wherein the stirring means is a covering member having one or more small-diameter portions constricted in a portion where the honeycomb structure is not covered or a bulging large-diameter portion.
JP2013057218A 2012-03-30 2013-03-19 Heat exchange member Active JP6144937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057218A JP6144937B2 (en) 2012-03-30 2013-03-19 Heat exchange member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012082916 2012-03-30
JP2012082916 2012-03-30
JP2013057218A JP6144937B2 (en) 2012-03-30 2013-03-19 Heat exchange member

Publications (2)

Publication Number Publication Date
JP2013228189A true JP2013228189A (en) 2013-11-07
JP6144937B2 JP6144937B2 (en) 2017-06-07

Family

ID=49675979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057218A Active JP6144937B2 (en) 2012-03-30 2013-03-19 Heat exchange member

Country Status (1)

Country Link
JP (1) JP6144937B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133381A1 (en) * 2014-03-03 2015-09-11 イビデン株式会社 Heat regenerator
WO2015133380A1 (en) * 2014-03-03 2015-09-11 イビデン株式会社 Heat storing device
JP2015199189A (en) * 2014-03-31 2015-11-12 日本碍子株式会社 Heat exchange member manufacturing device and manufacturing method
JP2016160889A (en) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 Heat exchanger
US10648746B2 (en) 2014-01-30 2020-05-12 Calsonic Kansei Corporation Exhaust waste heat recovery device
CN115678201A (en) * 2022-11-17 2023-02-03 嘉兴雅港复合材料有限公司 Controlled small-cell thermoplastic honeycomb core and preparation method thereof
US12005535B2 (en) * 2022-03-25 2024-06-11 Ngk Insulators, Ltd. Method for producing shrink-fitted member

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129044A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Thermal shock resistant ceramic honeycomb structure
JPS629183A (en) * 1985-07-04 1987-01-17 Kyocera Corp Honeycomb heat exchanger
JPS63224740A (en) * 1987-03-14 1988-09-19 Ngk Insulators Ltd Ceramic honeycomb structure body
JPH1043603A (en) * 1996-08-02 1998-02-17 Nissan Motor Co Ltd Catalytic structure for purifying automotive exhaust gas and its manufacture
JP2003025316A (en) * 2001-07-13 2003-01-29 Ngk Insulators Ltd Honeycomb structure and method for manufacturing the honeycomb structure
JP2003507688A (en) * 1999-08-17 2003-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Mixing element for fluid flowing in pipe
JP2004332571A (en) * 2003-05-01 2004-11-25 Nissan Motor Co Ltd Particulate filter
JP2006329083A (en) * 2005-05-26 2006-12-07 Satoshi Hiyane Exhaust emission control device
JP2008018370A (en) * 2006-07-14 2008-01-31 Denso Corp Ceramic catalyst body
WO2009118986A1 (en) * 2008-03-26 2009-10-01 本田技研工業株式会社 Catalyst apparatus, method for production of catalyst apparatus, and structure retaining catalyst carrier
US20090291830A1 (en) * 2008-05-20 2009-11-26 Ibiden Co., Ltd. Honeycomb structure
US20100062212A1 (en) * 2008-09-05 2010-03-11 Weissman Jeffrey G Hydrocarbon reformer substrate having a graded structure for thermal control
JP2010184218A (en) * 2009-02-13 2010-08-26 Ngk Insulators Ltd Honeycomb structure
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
JP2012037165A (en) * 2010-08-09 2012-02-23 Ngk Insulators Ltd Heat exchange member
JP2012189229A (en) * 2011-03-08 2012-10-04 Ngk Insulators Ltd Heat exchange member
WO2013111778A1 (en) * 2012-01-27 2013-08-01 株式会社デンソー Honeycomb structure

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129044A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Thermal shock resistant ceramic honeycomb structure
JPS629183A (en) * 1985-07-04 1987-01-17 Kyocera Corp Honeycomb heat exchanger
JPS63224740A (en) * 1987-03-14 1988-09-19 Ngk Insulators Ltd Ceramic honeycomb structure body
US4835044A (en) * 1987-03-14 1989-05-30 Ngk Insulators, Ltd. Ceramic honeycomb structural bodies
JPH1043603A (en) * 1996-08-02 1998-02-17 Nissan Motor Co Ltd Catalytic structure for purifying automotive exhaust gas and its manufacture
JP2003507688A (en) * 1999-08-17 2003-02-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Mixing element for fluid flowing in pipe
JP2003025316A (en) * 2001-07-13 2003-01-29 Ngk Insulators Ltd Honeycomb structure and method for manufacturing the honeycomb structure
JP2004332571A (en) * 2003-05-01 2004-11-25 Nissan Motor Co Ltd Particulate filter
JP2006329083A (en) * 2005-05-26 2006-12-07 Satoshi Hiyane Exhaust emission control device
JP2008018370A (en) * 2006-07-14 2008-01-31 Denso Corp Ceramic catalyst body
WO2009118986A1 (en) * 2008-03-26 2009-10-01 本田技研工業株式会社 Catalyst apparatus, method for production of catalyst apparatus, and structure retaining catalyst carrier
US20090291830A1 (en) * 2008-05-20 2009-11-26 Ibiden Co., Ltd. Honeycomb structure
WO2009141884A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure
US20100062212A1 (en) * 2008-09-05 2010-03-11 Weissman Jeffrey G Hydrocarbon reformer substrate having a graded structure for thermal control
JP2010184218A (en) * 2009-02-13 2010-08-26 Ngk Insulators Ltd Honeycomb structure
JP2010271031A (en) * 2009-04-23 2010-12-02 Ngk Insulators Ltd Ceramics heat exchanger and method of manufacturing the same
WO2011071161A1 (en) * 2009-12-11 2011-06-16 日本碍子株式会社 Heat exchanger
JP2012037165A (en) * 2010-08-09 2012-02-23 Ngk Insulators Ltd Heat exchange member
JP2012189229A (en) * 2011-03-08 2012-10-04 Ngk Insulators Ltd Heat exchange member
WO2013111778A1 (en) * 2012-01-27 2013-08-01 株式会社デンソー Honeycomb structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648746B2 (en) 2014-01-30 2020-05-12 Calsonic Kansei Corporation Exhaust waste heat recovery device
WO2015133381A1 (en) * 2014-03-03 2015-09-11 イビデン株式会社 Heat regenerator
WO2015133380A1 (en) * 2014-03-03 2015-09-11 イビデン株式会社 Heat storing device
JP2015199189A (en) * 2014-03-31 2015-11-12 日本碍子株式会社 Heat exchange member manufacturing device and manufacturing method
JP2016160889A (en) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 Heat exchanger
US12005535B2 (en) * 2022-03-25 2024-06-11 Ngk Insulators, Ltd. Method for producing shrink-fitted member
CN115678201A (en) * 2022-11-17 2023-02-03 嘉兴雅港复合材料有限公司 Controlled small-cell thermoplastic honeycomb core and preparation method thereof
CN115678201B (en) * 2022-11-17 2023-08-01 嘉兴雅港复合材料有限公司 Controlled small cell thermoplastic honeycomb core and preparation method thereof

Also Published As

Publication number Publication date
JP6144937B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6144937B2 (en) Heat exchange member
JP5797740B2 (en) Heat exchange member and heat exchanger
JP6625770B2 (en) Heat exchanger
JP6006204B2 (en) HEAT EXCHANGE MEMBER, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
JP5955775B2 (en) Thermal conduction member
JP5758811B2 (en) Heat exchanger
JP6691538B2 (en) Heat exchange parts
JP2010271031A (en) Ceramics heat exchanger and method of manufacturing the same
JP6324150B2 (en) Heat exchange member and ceramic structure
JP6404691B2 (en) Heat exchange parts
JP2012037165A (en) Heat exchange member
JPWO2019135312A1 (en) Heat exchanger, heat exchanger and heat exchanger with purification means
JP6854112B2 (en) Heat exchanger
JP7217654B2 (en) Heat exchanger
JP2023041735A (en) Heat exchange member and heat exchanger
JP6043183B2 (en) Heat exchange member
JP6158687B2 (en) Heat exchange member
JP7046039B2 (en) Heat exchanger
JP2014070826A (en) Heat exchange member and heat exchanger
JP2012202657A (en) Heat conducting member
JP5643697B2 (en) Thermal conduction member
JP6023257B2 (en) Thermal conduction member
JP5667491B2 (en) Thermal conduction member
JP2012255614A (en) Heat exchange member, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170512

R150 Certificate of patent or registration of utility model

Ref document number: 6144937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150