JP2009190950A - Silicon carbide composite material and method for producing the same - Google Patents

Silicon carbide composite material and method for producing the same Download PDF

Info

Publication number
JP2009190950A
JP2009190950A JP2008035808A JP2008035808A JP2009190950A JP 2009190950 A JP2009190950 A JP 2009190950A JP 2008035808 A JP2008035808 A JP 2008035808A JP 2008035808 A JP2008035808 A JP 2008035808A JP 2009190950 A JP2009190950 A JP 2009190950A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
composite material
carbide composite
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035808A
Other languages
Japanese (ja)
Other versions
JP5002482B2 (en
Inventor
Akiko Suyama
章子 須山
Yoshiyasu Ito
義康 伊藤
Shigeki Maruyama
茂樹 丸山
Norihiko Iida
式彦 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008035808A priority Critical patent/JP5002482B2/en
Publication of JP2009190950A publication Critical patent/JP2009190950A/en
Application granted granted Critical
Publication of JP5002482B2 publication Critical patent/JP5002482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new silicon carbide composite material well reduced of its porosity and having enough strength. <P>SOLUTION: This silicon carbide composite material is produced by forming a silicon carbide-carbon molding, impregnating the molding with molten silicon to form a silicon-impregnated silicon carbide-carbon molding and sintering the silicon-impregnated silicon carbide-carbon molding in a non-oxidizing atmosphere, so as to compose the silicon carbide composite material including three phases of silicon carbide, silicon and silicon dioxide, where the silicon exists continuously in a network form. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、強度、耐腐蝕性に優れ、弾性率の高い、新規な材料に関するものであり、耐熱衝撃材料、耐機械衝撃材料、耐熱材料、耐腐蝕性材料等として多くの用途に使用できる材料を提供するものである。   The present invention relates to a novel material having excellent strength and corrosion resistance and high elastic modulus, and can be used for many applications as a heat shock material, a mechanical shock material, a heat resistant material, a corrosion resistant material, etc. Is to provide.

炭化ケイ素は、耐酸化性、耐熱性に優れるため、大気炉用耐熱材料等として使用されており、さらに性質を改善すれば、使用範囲が広がると期待される。特に、窒化物、炭化物、ホウ化物を添加する場合、得られた複合材料の機械的特性が大幅に改善でき、航空機関連部材、ガスタービン部材の分野などへの応用が期待される。   Since silicon carbide is excellent in oxidation resistance and heat resistance, it is used as a heat-resistant material for atmospheric furnaces, and it is expected that the range of use will be expanded if the properties are further improved. In particular, when nitrides, carbides, and borides are added, the mechanical properties of the obtained composite material can be greatly improved, and application to the fields of aircraft-related parts and gas turbine parts is expected.

元来、炭化ケイ素−シリコン複合材料、炭化ケイ素−二酸化ケイ素複合材料は、反応焼結法や液相焼結法などの手法を用いて製造されている。例えば、前記反応焼結法では、炭素粉末とシリコン粉末との混合物を焼結し、互いの元素を反応させることによって炭化ケイ素−シリコン複合材料を製造する。しかしながら、このような従来の製造方法では、焼結過程で体積収縮が生じ、比較的大きな割合で気孔が生成するようになる。このため、得られた炭化ケイ素−シリコン複合材料などは十分な強度を有しなくなる。   Originally, a silicon carbide-silicon composite material and a silicon carbide-silicon dioxide composite material are manufactured using techniques such as a reaction sintering method and a liquid phase sintering method. For example, in the reactive sintering method, a silicon carbide-silicon composite material is manufactured by sintering a mixture of carbon powder and silicon powder and reacting the elements with each other. However, in such a conventional manufacturing method, volume shrinkage occurs during the sintering process, and pores are generated at a relatively large rate. For this reason, the obtained silicon carbide-silicon composite material does not have sufficient strength.

かかる点に鑑みて、特開2001−226174号公報では、反応焼結により生じた炭化ケイ素の気孔中に溶融Siを含浸させて、炭化ケイ素−シリコン複合材料を製造することが開示されている。しかしながら、このような方法では、焼結及び含浸という2段階の工程を経るため、製造工程が煩雑化するという問題があった。さらに、前記炭化ケイ素の前記気孔径が十分に小さい場合は、溶融Siの含浸が困難となるとともに、前記気孔が表面に貫通していない場合は、溶融Siの含浸を行うことができない。したがって、上述したような方法においても、気孔残存率が比較的多くなり、十分な強度を有する炭化ケイ素材料を提供することができないでいた。
特開2001−226174号
In view of this point, Japanese Patent Application Laid-Open No. 2001-226174 discloses that silicon carbide-silicon composite material is manufactured by impregnating molten Si into pores of silicon carbide generated by reactive sintering. However, such a method has a problem that the manufacturing process becomes complicated because it involves two steps of sintering and impregnation. Furthermore, when the pore diameter of the silicon carbide is sufficiently small, impregnation with molten Si becomes difficult, and when the pore does not penetrate the surface, impregnation with molten Si cannot be performed. Therefore, even in the method as described above, the residual porosity rate is relatively large, and a silicon carbide material having sufficient strength cannot be provided.
JP 2001-226174 A

上記問題に鑑み、本発明は、気孔率を十分に低減し、十分な強度を有する新規な炭化ケイ素複合材料を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a novel silicon carbide composite material having a sufficiently reduced porosity and sufficient strength.

上記目的を解決すべく、本発明の一態様は、
炭化ケイ素、シリコン、二酸化ケイ素の3相を含み、前記シリコンはネットワーク状に連続して存在することを特徴とする、炭化ケイ素複合材料及びその製造方法に関する。
In order to solve the above object, one embodiment of the present invention provides:
The present invention relates to a silicon carbide composite material comprising three phases of silicon carbide, silicon, and silicon dioxide, wherein the silicon is continuously present in a network, and a method for producing the same.

本発明者らは、上記目的を達成すべく鋭意検討を実施した。その結果、炭化ケイ素及び炭素の混合粉末を、雰囲気を制御して化学反応処理することにより、炭化ケイ素、シリコン、二酸化ケイ素系の3相からなり、前記シリコンはネットワーク状に連続して存在するような複合材料を製造できることを見出した。そして、この複合材料によれば、その構造に起因して、気孔率が十分に低くなるので、十分に高い強度を有するようになることを見出した。   The inventors of the present invention have intensively studied to achieve the above object. As a result, the mixed powder of silicon carbide and carbon is subjected to a chemical reaction treatment by controlling the atmosphere, thereby comprising three phases of silicon carbide, silicon, and silicon dioxide, and the silicon appears to be continuously present in a network. Has been found to be able to produce complex composite materials. And it has been found that according to this composite material, the porosity is sufficiently low due to its structure, and therefore it has a sufficiently high strength.

したがって、本発明によれば、十分に低い気孔率に起因するととともに、その本来的な特性に起因して、耐腐蝕性、弾性率、耐熱衝撃性、耐機械衝撃性、及び耐熱性に優れた炭化ケイ素複合材料及びその製造方法を提供することができる。   Therefore, according to the present invention, the corrosion resistance, the elastic modulus, the thermal shock resistance, the mechanical shock resistance, and the heat resistance are excellent due to the sufficiently low porosity and the inherent characteristics. A silicon carbide composite material and a method for producing the same can be provided.

以下、本発明のその他の特徴及び利点について、発明を実施するための最良の形態に基づいて説明する。   Hereinafter, other features and advantages of the present invention will be described based on the best mode for carrying out the invention.

(炭化ケイ素複合材料)
上述したように、本発明の炭化ケイ素複合材料においては、炭化ケイ素、シリコン、二酸化ケイ素の3相を含み、前記シリコンはネットワーク状に連続して存在する。前記炭化ケイ素複合材料が、このような組成及び構造を呈することによって、内部の気孔は十分に低減されるようになる。なお、ここで言う「ネットワーク状」とは、以下のことを意味すると定義する。すなわち、本発明の炭化ケイ素複合材料中に仮想的に3次元座標としてのX軸、Y軸、Z軸を設定した場合に、シリコンが連続して途切れなくX軸方向にも、Y軸方向にも、Z軸方向もつながっている状態、言い換えればいわゆる網目状に連続していることを意味する。
(Silicon carbide composite material)
As described above, the silicon carbide composite material of the present invention includes three phases of silicon carbide, silicon, and silicon dioxide, and the silicon exists continuously in a network. When the silicon carbide composite material has such a composition and structure, the internal pores are sufficiently reduced. The “network state” here is defined to mean the following. That is, when the X-axis, Y-axis, and Z-axis are virtually set as three-dimensional coordinates in the silicon carbide composite material of the present invention, silicon is continuously uninterrupted in both the X-axis direction and the Y-axis direction. Furthermore, it means that the Z-axis direction is also connected, in other words, it is continuous in a so-called mesh shape.

また、上記炭化ケイ素複合材料において、前記二酸化ケイ素の少なくとも一部が、表面層として存在することが好ましい。このような構成を採ることによって、前記炭化ケイ素複合材料の気孔率、特に表面に開口した気孔率の割合を減少させることができ、前記気孔を介した腐食物質の内部進入を抑制し、その耐食性をより向上させることができる。   In the silicon carbide composite material, it is preferable that at least a part of the silicon dioxide exists as a surface layer. By adopting such a configuration, it is possible to reduce the porosity of the silicon carbide composite material, in particular, the ratio of the porosity opened to the surface, and to suppress the internal entry of corrosive substances through the pores, and its corrosion resistance Can be further improved.

また、同様の目的から、前記二酸化ケイ素を含む前記表面層の厚みが、0.01μm以上、300μm以下であることが好ましい。   For the same purpose, the thickness of the surface layer containing silicon dioxide is preferably 0.01 μm or more and 300 μm or less.

さらに、前記炭化ケイ素、前記シリコン、及び前記二酸化ケイ素の体積比が、それぞれ55〜90%、8〜40%、0.1〜5%となるようにすることが好ましい。これによって、上述したような構成の炭化ケイ素複合材料を得、気孔率をより減少させてその強度を増大させることができる。   Furthermore, it is preferable that the volume ratios of the silicon carbide, the silicon, and the silicon dioxide are 55 to 90%, 8 to 40%, and 0.1 to 5%, respectively. Thereby, the silicon carbide composite material having the above-described configuration can be obtained, and the porosity can be further reduced to increase its strength.

また、同様の目的から、前記炭化ケイ素複合材料に含まれる不純物量を10ppm以上、5%未満とすることが好ましい。さらに、前記炭化ケイ素の粒径を0.1μm以上、10μm以下とすることが好ましい。   For the same purpose, the amount of impurities contained in the silicon carbide composite material is preferably 10 ppm or more and less than 5%. Further, the particle size of the silicon carbide is preferably 0.1 μm or more and 10 μm or less.

上記炭化ケイ素複合材料が上述した構成及び特性を有することにより、その気孔率は0.01%以上、2%未満の範囲まで低減することができる。特に、前記二酸化ケイ素を含む前記表面層の気孔率は0.01%以上、2%未満の範囲まで低減することができる。このように低い気孔率を有する炭化ケイ素複合材料は従来の技術では得られなかったものであり、本発明において初めて実現されたものである。したがって、従来の炭化ケイ素複合材料などに比較して、十分に高い強度を有する。   When the silicon carbide composite material has the configuration and characteristics described above, the porosity can be reduced to a range of 0.01% or more and less than 2%. In particular, the porosity of the surface layer containing the silicon dioxide can be reduced to a range of 0.01% or more and less than 2%. Such a silicon carbide composite material having a low porosity has not been obtained by the prior art, and has been realized for the first time in the present invention. Therefore, it has a sufficiently high strength as compared with a conventional silicon carbide composite material or the like.

さらに、本発明の炭化ケイ素複合材料は、特に表面開口した気孔の割合が小さいので、その本来的な性質に加えて、腐食物質の内部進入を効果的に抑制することができ、高い耐食性を呈することができるようになる。   Furthermore, since the silicon carbide composite material of the present invention has a particularly small proportion of pores that are open on the surface, in addition to its inherent properties, it can effectively suppress the intrusion of corrosive substances and exhibits high corrosion resistance. Will be able to.

(炭化ケイ素複合材料の製造方法)
上述したような構造及び組成の炭化ケイ素複合材料の製造方法は特に限定されるものではないが、例えば以下のような方法によって形成することができる。
(Method for producing silicon carbide composite material)
Although the manufacturing method of the silicon carbide composite material of the structure and composition as mentioned above is not specifically limited, For example, it can form by the following methods.

最初に、炭化ケイ素粉末及び炭素粉末を準備し、これらを混合、造粒した後、CIPの手法などを用い、所定の形状に成形する。次いで、得られた成形体に対して溶融シリコンを含浸させる。次いで、このようにして得た含浸成形体を不活性ガス雰囲気あるいは真空雰囲気などの非酸化性雰囲気中で焼結する。すると、成形体を構成する炭化ケイ素および炭素中に微量に存在する酸素、さらには雰囲気中に微量に残存する酸素と、上記シリコンとが反応して二酸化ケイ素を生成するようになる。   First, silicon carbide powder and carbon powder are prepared, mixed and granulated, and then formed into a predetermined shape using a CIP method or the like. Next, the obtained molded body is impregnated with molten silicon. Next, the impregnated molded body thus obtained is sintered in a non-oxidizing atmosphere such as an inert gas atmosphere or a vacuum atmosphere. Then, silicon carbide is produced by the reaction between silicon carbide and oxygen constituting the molded body, oxygen present in a minute amount in the carbon, and oxygen remaining in a minute amount in the atmosphere and the silicon.

一方、上記焼結過程において、含浸シリコンは溶融し、焼結過程にある成形体の空洞(気孔)中に進入するようになる。したがって、得られる焼結体は、炭化ケイ素、シリコン、二酸化ケイ素の3相を含み、前記シリコンはネットワーク状に連続して存在するようになる。結果として、上述した本発明の炭化ケイ素複合材料が得られるようになる。   On the other hand, in the above sintering process, the impregnated silicon melts and enters into the cavities (pores) of the molded body in the sintering process. Therefore, the obtained sintered body includes three phases of silicon carbide, silicon, and silicon dioxide, and the silicon continuously exists in a network form. As a result, the above-described silicon carbide composite material of the present invention can be obtained.

なお、上記二酸化ケイ素は上述した反応過程に起因して、その表面付近に形成されるようになり、特に前記二酸化ケイ素を比較的多量に含む表面層が形成されるようになる。したがって、上述したような、特に表面に開口した気孔率の割合を減少させることができ、前記気孔を介した腐食物質の内部進入を抑制し、その耐食性をより向上させることが可能な上記炭化ケイ素複合材料を提供することができるようになる。   The silicon dioxide is formed near the surface due to the reaction process described above, and in particular, a surface layer containing a relatively large amount of the silicon dioxide is formed. Therefore, as described above, the silicon carbide that can reduce the ratio of the porosity particularly open to the surface, suppress the internal entry of the corrosive substance through the pores, and can further improve the corrosion resistance. A composite material can be provided.

また、上述のような反応を生ぜしめるためには、上記焼結温度を1400℃〜1800℃に設定することが好ましい。   Further, in order to cause the reaction as described above, the sintering temperature is preferably set to 1400 ° C to 1800 ° C.

なお、上述のようにして製造した焼結体は、目的とする用途の部品や部材とするために適宜機械加工などを施すことができ、さらに機械加工で生じたひずみなどを除去するために適宜アニール処理などを施すことができる。   In addition, the sintered body manufactured as described above can be appropriately machined in order to obtain a component or member for a target application, and further appropriately removed in order to remove strain caused by the machining. Annealing treatment or the like can be performed.

(炭化ケイ素複合材料の用途)
本発明の炭化ケイ素複合材料は、低い気孔率に起因するととともに、その本来的な特性に起因して、耐腐蝕性、弾性率、耐熱衝撃性、耐機械衝撃性、及び耐熱性に優れる。したがって、このような特性の種々の用途に適用することができる。例えば、化学プラント用熱交換器部材、鏡面部材、鏡面構造部材、半導体製造装置部品、メカニカルシール部品、摺動部品、ガスタービン部品及び装飾用品などに使用することができる。
(Use of silicon carbide composite materials)
The silicon carbide composite material of the present invention is excellent in corrosion resistance, elastic modulus, thermal shock resistance, mechanical shock resistance, and heat resistance due to its low porosity and its inherent characteristics. Therefore, it can be applied to various uses having such characteristics. For example, it can be used for heat exchanger members for chemical plants, mirror surface members, mirror surface structural members, semiconductor manufacturing equipment parts, mechanical seal parts, sliding parts, gas turbine parts and decorative articles.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

(実施例1〜12)
(1)原料
本実施例では、表1に示す材料組成比の焼結体が得られるよう、炭化ケイ素、炭素、シリコンの各成分粉末を用いて、試験を行った。
(2)方法
最初に、表1に示す種々の平均粒径の炭化ケイ素、炭素の各成分粉末を混合、造粒した後、冷間等方圧加圧法(CIP)を用いて、所定の形状に成形した。次いで、得られた成形体に対して溶融シリコンを含浸して、減圧下またはアルゴンガス雰囲気下で、1400〜1800℃に加熱して、1時間で反応焼結を行い、所定の焼結体を得た。この焼結体を以下に示す種々の試験片に加工した後、大気中でアニール処理を実施した。なお、得られた試験片の特性に関して表1に示す。
(3)評価
室温強度、高温強度、耐熱衝撃性、耐食性を、それぞれJIS R1601に定める3点曲げ強さ試験方法、JIS R1604に定める高温3点曲げ試験方法、JIS R1648に定める熱衝撃試験方法、及びJIS R1614に定める腐食試験方法で測定した。得られた試験片の各測定値に関し、表1及び2にその値を示す。
(Examples 1-12)
(1) Raw material In the present Example, it tested using each component powder of silicon carbide, carbon, and silicon so that the sintered compact of the material composition ratio shown in Table 1 may be obtained.
(2) Method First, after mixing and granulating each component powder of silicon carbide and carbon having various average particle diameters shown in Table 1, a predetermined shape is obtained using a cold isostatic pressing method (CIP). Molded into. Next, the obtained molded body is impregnated with molten silicon, heated to 1400 to 1800 ° C. under reduced pressure or in an argon gas atmosphere, and subjected to reactive sintering for 1 hour. Obtained. This sintered body was processed into various test pieces shown below, and then annealed in the atmosphere. In addition, it shows in Table 1 regarding the characteristic of the obtained test piece.
(3) Evaluation Three-point bending strength test method defined in JIS R1601, high-temperature three-point bending test method defined in JIS R1604, thermal shock test method defined in JIS R1648, respectively, for room temperature strength, high temperature strength, thermal shock resistance, and corrosion resistance. And the corrosion test method defined in JIS R1614. Regarding each measured value of the obtained test piece, the value is shown in Tables 1 and 2.

(比較例1〜3)
本比較例においては、上述した実施例において、含浸させる溶融シリコン量を低減し、上記同様の方法を経ることにより試験片を得た。得られた試験片の特性に関して表2に示す。また、実施例と同様の試験を経て得た各評価値についても、同じく表2に示す。
(Comparative Examples 1-3)
In this comparative example, the amount of molten silicon to be impregnated in the above-described example was reduced, and a test piece was obtained through the same method as described above. It shows in Table 2 regarding the characteristic of the obtained test piece. Also, each evaluation value obtained through a test similar to the example is also shown in Table 2.

Figure 2009190950
Figure 2009190950
Figure 2009190950
Figure 2009190950

表1から明らかなように、本発明に従って得た実施例1〜12に係わる試験片では、炭化ケイ素、シリコン、二酸化ケイ素の3相を含み、前記シリコンはネットワーク状に連続して存在することに起因して、いずれも2%未満の気孔率を呈し、高い評価値、すなわち、強度、高温強度、耐熱衝撃性、耐食性を示すことが分かる。   As apparent from Table 1, the test pieces according to Examples 1 to 12 obtained according to the present invention include three phases of silicon carbide, silicon, and silicon dioxide, and the silicon is present continuously in a network. As a result, it can be seen that all exhibit a porosity of less than 2% and exhibit high evaluation values, that is, strength, high-temperature strength, thermal shock resistance, and corrosion resistance.

一方、本発明と異なり、シリコンがネットワーク状に形成されていない、あるいはシリコンを全く含まない比較例1〜3においては、試験片の各評価値、すなわち、強度、高温強度、耐熱衝撃性、耐食性いずれにおいても、上記実施例に示す試験片に対して劣ることが分かる。したがって、本発明の炭化ケイ素複合材料は、耐腐蝕性、弾性率、耐熱衝撃性及び耐熱性などの諸特性に優れることが分かる。   On the other hand, unlike the present invention, in Comparative Examples 1 to 3 in which silicon is not formed in a network shape or contains no silicon, each evaluation value of the test piece, that is, strength, high temperature strength, thermal shock resistance, corrosion resistance In any case, it can be seen that the test pieces shown in the above examples are inferior. Therefore, it can be seen that the silicon carbide composite material of the present invention is excellent in various properties such as corrosion resistance, elastic modulus, thermal shock resistance, and heat resistance.

以上、本発明を具体例を示しながら発明を実施するための最良の形態に基づいて詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいて、あらゆる変形や変更が可能である。   As mentioned above, the present invention has been described in detail based on the best mode for carrying out the invention by showing specific examples. However, the present invention is not limited to the above contents, and unless it departs from the scope of the present invention. Any modification or change is possible.

Claims (17)

炭化ケイ素、シリコン、二酸化ケイ素の3相を含み、前記シリコンはネットワーク状に連続して存在することを特徴とする、炭化ケイ素複合材料。 A silicon carbide composite material comprising three phases of silicon carbide, silicon, and silicon dioxide, wherein the silicon is continuously present in a network form. 前記二酸化ケイ素の少なくとも一部は、表面層として存在することを特徴とする、請求項1に記載の炭化ケイ素複合材料。   The silicon carbide composite material according to claim 1, wherein at least a part of the silicon dioxide is present as a surface layer. 前記二酸化ケイ素を含む前記表面層の厚みが、10nm以上、300μm以下であることを特徴とする、請求項2に記載の炭化ケイ素複合材料。   The silicon carbide composite material according to claim 2, wherein a thickness of the surface layer containing the silicon dioxide is 10 nm or more and 300 μm or less. 不純物量が10ppm以上、5%未満であることを特徴とする、請求項1〜3のいずれか一に記載の炭化ケイ素複合材料。   The silicon carbide composite material according to any one of claims 1 to 3, wherein the impurity amount is 10 ppm or more and less than 5%. 前記炭化ケイ素、前記シリコン、及び前記二酸化ケイ素の体積比が、それぞれ55〜90%、8〜40%、0.1〜5%であることを特徴とする、請求項1〜4のいずれか一に記載の炭化ケイ素複合材料。   The volume ratio of the silicon carbide, the silicon, and the silicon dioxide is 55 to 90%, 8 to 40%, and 0.1 to 5%, respectively. The silicon carbide composite material described in 1. 前記炭化ケイ素の粒径が0.1μm以上、10μm以下であることを特徴とする、請求項1〜5のいずれか一に記載の炭化ケイ素複合材料。   6. The silicon carbide composite material according to claim 1, wherein the silicon carbide has a particle size of 0.1 μm or more and 10 μm or less. 気孔率が0.01%以上、2%未満であることを特徴とする、請求項1〜6のいずれか一に記載の炭化ケイ素複合材料。   The silicon carbide composite material according to any one of claims 1 to 6, wherein the porosity is 0.01% or more and less than 2%. 前記二酸化ケイ素を含む前記表面層の気孔率が0.01%以上、2%未満であることを特徴とする、請求項2〜7のいずれか一に記載の炭化ケイ素複合材料。   The silicon carbide composite material according to any one of claims 2 to 7, wherein the porosity of the surface layer containing the silicon dioxide is 0.01% or more and less than 2%. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、化学プラント用熱交換器部材。   A heat exchanger member for a chemical plant, comprising the silicon carbide composite material according to any one of claims 1 to 8. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、鏡面部材。   The mirror surface member characterized by including the silicon carbide composite material as described in any one of Claims 1-8. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、鏡面構造部材。   The mirror surface structural member characterized by including the silicon carbide composite material as described in any one of Claims 1-8. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、半導体製造装置部品。   A semiconductor manufacturing apparatus component comprising the silicon carbide composite material according to claim 1. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、メカニカルシール部品。   A mechanical seal component comprising the silicon carbide composite material according to claim 1. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、摺動部品。   A sliding component comprising the silicon carbide composite material according to claim 1. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、ガスタービン部品。   A gas turbine component comprising the silicon carbide composite material according to claim 1. 請求項1〜8のいずれか一に記載の炭化ケイ素複合材料を含むことを特徴とする、装飾用品。   A decorative article comprising the silicon carbide composite material according to claim 1. 炭化ケイ素及び炭素を含む炭化ケイ素−炭素成形体を形成する工程と、
前記炭化ケイ素−炭素成形体に対して溶融シリコンを含浸させ、シリコン含浸炭化ケイ素−炭素成形体を形成する工程と、
前記シリコン含浸炭化ケイ素−炭素成形体を非酸化性雰囲気中で焼結し、炭化ケイ素、シリコン、二酸化ケイ素の3相を含み、前記シリコンがネットワーク状に連続して存在する炭化ケイ素複合材料を形成する工程と、
を具えることを特徴とする、炭化ケイ素複合材料の製造方法。
Forming a silicon carbide-carbon molded body comprising silicon carbide and carbon;
Impregnating the silicon carbide-carbon molded body with molten silicon to form a silicon-impregnated silicon carbide-carbon molded body;
The silicon-impregnated silicon carbide-carbon molded body is sintered in a non-oxidizing atmosphere to form a silicon carbide composite material containing three phases of silicon carbide, silicon, and silicon dioxide, and wherein the silicon is continuously present in a network form. And a process of
A method for producing a silicon carbide composite material, comprising:
JP2008035808A 2008-02-18 2008-02-18 Silicon carbide composite material and manufacturing method thereof Active JP5002482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035808A JP5002482B2 (en) 2008-02-18 2008-02-18 Silicon carbide composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035808A JP5002482B2 (en) 2008-02-18 2008-02-18 Silicon carbide composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009190950A true JP2009190950A (en) 2009-08-27
JP5002482B2 JP5002482B2 (en) 2012-08-15

Family

ID=41073296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035808A Active JP5002482B2 (en) 2008-02-18 2008-02-18 Silicon carbide composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5002482B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012043758A1 (en) * 2010-09-29 2014-02-24 日本碍子株式会社 Heat exchange member
JP2017227260A (en) * 2016-06-22 2017-12-28 株式会社酉島製作所 Abrasion resistant member and mechanical seal using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283669A (en) * 1988-12-26 1990-11-21 Toshiba Ceramics Co Ltd Production of suspension rod for firing insulators
JPH04122203A (en) * 1990-09-13 1992-04-22 Komatsu Electron Metals Co Ltd Silicon decorative product
JPH08208336A (en) * 1995-02-03 1996-08-13 Ngk Insulators Ltd Si-sic sintered compact having oxidation and creep resistance
JP2007022914A (en) * 2006-10-31 2007-02-01 Toshiba Corp Method for manufacturing silicon/silicon carbide composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02283669A (en) * 1988-12-26 1990-11-21 Toshiba Ceramics Co Ltd Production of suspension rod for firing insulators
JPH04122203A (en) * 1990-09-13 1992-04-22 Komatsu Electron Metals Co Ltd Silicon decorative product
JPH08208336A (en) * 1995-02-03 1996-08-13 Ngk Insulators Ltd Si-sic sintered compact having oxidation and creep resistance
JP2007022914A (en) * 2006-10-31 2007-02-01 Toshiba Corp Method for manufacturing silicon/silicon carbide composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012043758A1 (en) * 2010-09-29 2014-02-24 日本碍子株式会社 Heat exchange member
JP5819838B2 (en) * 2010-09-29 2015-11-24 日本碍子株式会社 Heat exchange member
JP2017227260A (en) * 2016-06-22 2017-12-28 株式会社酉島製作所 Abrasion resistant member and mechanical seal using the same

Also Published As

Publication number Publication date
JP5002482B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US20160368058A1 (en) Metallic crucibles and methods of forming the same
JP2012508683A (en) Corrosion-resistant bonding agent for bonding ceramic parts exposed to plasma
US20100112231A1 (en) Graphite-silicon carbide composite and making method
JPS6152111B2 (en)
WO2012153645A1 (en) METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC
FR2470756A1 (en) SIC-SI3N4 COMPOUND SYSTEM FOR SPECIAL CERAMIC HEAT-RESISTANT MATERIALS AND METHOD OF MANUFACTURE
JPWO2008153177A1 (en) Dense boron carbide ceramics and method for producing the same
JP5528749B2 (en) Boron carbide-silicon carbide composite ceramic and method for producing the ceramic
JP5062402B2 (en) Reaction sintered silicon nitride-based sintered body and method for producing the same
JP5002482B2 (en) Silicon carbide composite material and manufacturing method thereof
JP2019507083A (en) Process for producing ceramics from chemical reactions
KR20120101380A (en) Inert high hardness material for tool lens production in imaging applications
KR102102594B1 (en) Manufacturing method of carbon fiber-BN composite
KR101659823B1 (en) A HfC Composites and A Manufacturing method of the same
WO2015025951A1 (en) Porous ceramic and method for producing same
CN110885254A (en) Porous Ti3SiC2/SiC composite material and preparation method thereof
JP2006273607A (en) Porous structure with coating and method for producing the same
EP3597621A1 (en) Method for producing silicon-carbide-based complex
KR20120084762A (en) Method
JP5161060B2 (en) Heat resistant black member and method for producing the same
JP2011068538A (en) Method for producing titanium silicon carbide ceramic
JP2013535398A (en) Method for producing sintered silicon carbide using balls
Clark et al. Exploring the Synthesis Parameters and Spark Plasma Sintering of Tantalum Carbide Powders Prepared by Solvothermal Synthesis
JP4342143B2 (en) Method for producing Si-SiC material
JPH03183660A (en) Production of silicon nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R151 Written notification of patent or utility model registration

Ref document number: 5002482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3