JP2011068538A - Method for producing titanium silicon carbide ceramic - Google Patents

Method for producing titanium silicon carbide ceramic Download PDF

Info

Publication number
JP2011068538A
JP2011068538A JP2009223330A JP2009223330A JP2011068538A JP 2011068538 A JP2011068538 A JP 2011068538A JP 2009223330 A JP2009223330 A JP 2009223330A JP 2009223330 A JP2009223330 A JP 2009223330A JP 2011068538 A JP2011068538 A JP 2011068538A
Authority
JP
Japan
Prior art keywords
titanium
silicon carbide
mixed powder
titanium silicon
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009223330A
Other languages
Japanese (ja)
Other versions
JP5308296B2 (en
Inventor
Hitoshi Hashimoto
等 橋本
Masaaki Son
正明 孫
Shinya Aoki
伸哉 青木
Yasuhiro Nakatani
泰宏 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dennetsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon Dennetsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dennetsu Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Dennetsu Co Ltd
Priority to JP2009223330A priority Critical patent/JP5308296B2/en
Publication of JP2011068538A publication Critical patent/JP2011068538A/en
Application granted granted Critical
Publication of JP5308296B2 publication Critical patent/JP5308296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive mass production technique in the synthesis of a titanium silicon carbide ceramic member by normal pressure sintering of a mixed powder of titanium, silicon carbide, and carbon by solving a problem of the occurrence of component segregation in the height direction (vertical direction) of the member. <P>SOLUTION: To a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometry of titanium silicon carbide (Ti<SB>3</SB>SiC<SB>2</SB>), an element undergoing eutectic reaction with titanium such as silicon, as a liquid phase-forming component, and an element which has a low melting point and can replace the site of silicon of titanium silicon carbide such as aluminum are added. The resulting mixture is formed into a compression molded product, which is then subjected to normal pressure sintering to synthesize the titanium silicon carbide ceramic member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チタンシリコンカーバイドセラミックスの製造方法に関するものであり、更に詳しくは、ち密で成分偏析が少ないチタンシリコンカーバイドセラミックス部材の大量生産に適した製造方法を提供するものである。   The present invention relates to a method for producing titanium silicon carbide ceramics, and more particularly, to provide a production method suitable for mass production of titanium silicon carbide ceramic members which are dense and have little component segregation.

チタンシリコンカーバイドセラミックスは、組成が主にチタンシリコンカーバイド(TiSiC)から成り、不純物として炭化チタン(TiC)、三ケイ化五チタン(TiSi)、二ケイ化チタン(TiSi)、炭化ケイ素(SiC)などを少量含むセラミックスである。金属導電性(自由電子による導電性)を示し、グラファイト並に切削加工できる導電性マシナブルセラミックスであり、機能材及び構造材として期待されている。チタンシリコンカーバイドセラミックスは、チタン、ケイ素、炭素、あるいはチタン、ケイ素、炭化チタン、あるいはチタン、炭化ケイ素、炭素、あるいはチタン、炭化ケイ素、炭化チタンの混合粉末を、常圧焼結又は加圧焼結することにより合成されている(例えば、文献1、2、3)。 Titanium silicon carbide ceramics is mainly composed of titanium silicon carbide (Ti 3 SiC 2 ), and titanium carbide (TiC), pentatitanium trisilicate (Ti 5 Si 3 ), titanium disilicide (TiSi 2 ) as impurities. Ceramics containing a small amount of silicon carbide (SiC) and the like. It is a conductive machinable ceramic that exhibits metal conductivity (conductivity by free electrons) and can be cut like graphite, and is expected as a functional material and a structural material. Titanium silicon carbide ceramics are titanium, silicon, carbon, or titanium, silicon, titanium carbide, or titanium, silicon carbide, carbon, or mixed powder of titanium, silicon carbide, titanium carbide at atmospheric pressure or pressure sintering (For example, Documents 1, 2, and 3).

加圧焼結による合成では、原料混合粉末を黒鉛型などの耐熱性の型に入れて、加圧しながら加熱し、合成と同時に焼結・ち密化を行う。あるいは、原料混合粉末を金型プレスにより圧縮成形するか、又はゴム型に入れて静水圧プレス(Cold Isostatic Press、略称CIP)により圧縮成形し、これをガラスカプセルや金属カプセルに真空封入し、熱間静水圧プレス(Hot Isostatic Press、略称HIP)により加圧しながら加熱し、合成と同時に焼結・ち密化を行う。そのため、相対密度(理論密度に対する実際の密度の比をパーセントで表したもの)が99%以上のち密なチタンシリコンカーバイドセラミックスを合成可能である。しかしながら、加圧焼結法は生産性が低く、高コストであり、大量生産に適した方法とはいえない。   In the synthesis by pressure sintering, the raw material mixed powder is put into a heat-resistant mold such as a graphite mold and heated while being pressurized, and simultaneously sintered and densified. Alternatively, the raw material mixed powder is compression-molded by a mold press, or put in a rubber mold and compression-molded by a hydrostatic pressure press (Cold Isostatic Press, abbreviated as CIP), which is vacuum-sealed in a glass capsule or a metal capsule, It is heated while being pressed by a hot isostatic press (HIP), and simultaneously sintered and densified. Therefore, it is possible to synthesize dense titanium silicon carbide ceramics having a relative density (the ratio of the actual density to the theoretical density in percentage) of 99% or more. However, the pressure sintering method has low productivity and high cost, and cannot be said to be a method suitable for mass production.

一方、常圧焼結による合成では、原料混合粉末を金型プレスにより圧縮成形するか、又はゴム型に入れて静水圧プレス(CIP)により圧縮成形し、これを加熱炉により真空又は常圧の不活性ガス中で加熱し、合成と同時に焼結・ち密化を行う。加圧しないために合成されたチタンシリコンカーバイドセラミックスの相対密度は低くなるが、常圧焼結法は生産性が高く、低コストであり、大量生産に適した方法である。   On the other hand, in the synthesis by atmospheric pressure sintering, the raw material mixed powder is compression-molded by a mold press, or put in a rubber mold and compressed by an isostatic press (CIP), and this is vacuum or atmospheric pressure in a heating furnace. Heat in inert gas and sinter and densify simultaneously with synthesis. Although the relative density of titanium silicon carbide ceramics synthesized because it is not pressurized is low, the atmospheric pressure sintering method is high in productivity, low in cost, and suitable for mass production.

だが、チタンシリコンカーバイド(TiSiC)の化学量論組成に相当する、重量比がチタン:炭化ケイ素:炭素=73.4: 20.5:6.1(モル比3:1:1)の混合粉末の常圧焼結による合成(文献3)では、相対密度97%以上のチタンシリコンカーバイドセラミックスの合成が可能であるが、実験室において重量約2g、直径14mm、厚さ約4mm程度の小さな円盤状の部材の合成に基づいて得られた結果であり、成形体の高さが増すに伴って、合成部材の高さ方向(鉛直方向)に成分の偏析が生じることがわかった。例えば、図1に示すように、チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末を金型により400MPa又は500MPaの圧力で、重量約7.4g、直径約14mm、長さ約15mmの円柱状部材に圧縮成形し、円柱の軸方向を垂直にした姿勢で、0.1MPaのアルゴンガス中で常圧焼結した場合、円柱の上面のX線回折パターンには、チタンシリコンカーバイドの回折ピークの他に、強い炭化チタン(TiC)の回折ピークが見られ、その含有量は15.5体積%あるのに対して、円柱の底面のX線回折パターンの炭化チタンのピークはわずかで、含有量は1.0体積%に過ぎず、鉛直方向に成分の偏析が生じていることがわかる。このように、従来の常圧焼結によるチタンシリコンカーバイドの製造方法では、例えば成形体の高さが増大するにしたがって合成部材の高さ方向に成分の偏析を生じ、構造材や機能材等に適合したチタンシリコンカーバイドを得ることが困難であった。 However, the normal pressure of the mixed powder corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ), the weight ratio of titanium: silicon carbide: carbon = 73.4: 20.5: 6.1 (molar ratio 3: 1: 1) In the synthesis by sintering (Reference 3), it is possible to synthesize titanium silicon carbide ceramics having a relative density of 97% or more, but in a laboratory, a small disk-shaped member having a weight of about 2 g, a diameter of 14 mm, and a thickness of about 4 mm This result was obtained based on synthesis, and it was found that segregation of components occurred in the height direction (vertical direction) of the composite member as the height of the molded body increased. For example, as shown in FIG. 1, a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) is mixed with a mold at a pressure of 400 MPa or 500 MPa and a weight of about 7. When compression molding is performed on a cylindrical member having a diameter of 4 g, a diameter of about 14 mm, and a length of about 15 mm, and the axial direction of the cylinder is vertical, and sintered at normal pressure in 0.1 MPa argon gas, X on the upper surface of the cylinder In the line diffraction pattern, in addition to the diffraction peak of titanium silicon carbide, a diffraction peak of strong titanium carbide (TiC) is seen, and its content is 15.5% by volume, whereas X-rays on the bottom of the cylinder It can be seen that the peak of titanium carbide in the diffraction pattern is slight, the content is only 1.0% by volume, and segregation of components occurs in the vertical direction. Thus, in the conventional method for producing titanium silicon carbide by atmospheric pressure sintering, for example, as the height of the molded body increases, segregation of components occurs in the height direction of the synthetic member, and the structural material, functional material, etc. It was difficult to obtain compatible titanium silicon carbide.

特開2003−2745号公報JP 2003-2745 A 特許3951643号Japanese Patent No. 3995143 特開2005−89252号公報JP 2005-89252 A

本発明は上記従来技術の問題点を克服し、工業的に利用価値が高い、ち密で偏析の少ないチタンシリコンカーバイド部材を常圧焼結法により安価で大量に生産できる方法を提供することを課題としている。   It is an object of the present invention to overcome the above-mentioned problems of the prior art and to provide a method capable of producing large quantities of titanium silicon carbide members with high industrial utility value, dense, and less segregation by atmospheric pressure sintering. It is said.

上記課題を解決するための本発明は、以下の技術的手段からなることを特徴としている。
(1)チタン、炭化ケイ素、炭素の混合粉末と、(a)チタンとの共晶反応によって液相を形成する元素、及び/又は(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素とを含む混合物を圧縮成形後、常圧焼結するチタンシリコンカーバイドセラミックス部材の製造方法。
(2)(a)チタンとの共晶反応によって液相を形成する元素がケイ素、鉄、コバルトであり、(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素がアルミニウムである前記(1)に記載のチタンシリコンカーバイドセラミックス部材の製造方法。
(3)チタン、炭化ケイ素、炭素の混合粉末の組成が、チタンシリコンカーバイド(TiSiC)の化学量論組成に相当する前記(1)に記載のチタンシリコンカーバイドセラミックス部材の製造方法。
(4)常圧焼結温度が1200〜1500℃の範囲、焼結温度保持時間が30分〜6時間の範囲である前記(1)から(3)のいずれかに記載のチタンシリコンカーバイドセラミックス部材の製造方法。
The present invention for solving the above problems is characterized by comprising the following technical means.
(1) A mixed powder of titanium, silicon carbide, and carbon, (a) an element that forms a liquid phase by eutectic reaction with titanium, and / or (b) a silicon site of titanium silicon carbide with a low melting point. A method for producing a titanium silicon carbide ceramic member, comprising compression-molding a mixture containing an element that can be formed and then sintering at normal pressure.
(2) (a) Elements that form a liquid phase by eutectic reaction with titanium are silicon, iron, and cobalt, and (b) an element that has a low melting point and can replace silicon sites in titanium silicon carbide is aluminum. The manufacturing method of the titanium silicon carbide ceramic member as described in said (1).
(3) The method for producing a titanium silicon carbide ceramic member according to (1), wherein the composition of the mixed powder of titanium, silicon carbide, and carbon corresponds to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ).
(4) The titanium silicon carbide ceramic member according to any one of (1) to (3), wherein the atmospheric pressure sintering temperature is in the range of 1200 to 1500 ° C. and the sintering temperature holding time is in the range of 30 minutes to 6 hours. Manufacturing method.

以上のとおりの特徴を有する本発明の方法は、発明者による次のとおりの詳細を実験的検討から得られた新しい知見に基づいている。   The method of the present invention having the features as described above is based on the new knowledge obtained from the experimental investigation by the inventors with the following details.

すなわち、発明者は、まず、チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末の圧縮成形体の加熱によるチタンシリコンカーバイドセラミックスの合成過程を調べるため、重量約5g、直径14mm、長さ約11.5mmの小型の円柱状圧縮成形体を真空中、昇温速度20℃毎分で750℃〜1550℃の範囲の所定の温度まで加熱し、急冷した。この試料のX線回折パターンを測定して、各温度における形成相を同定したところ、図2に示すように、850℃近傍からチタンケイ化物(主に三ケイ化五チタンTiSi)と炭化チタンTiCが形成された後、1350℃付近でチタンケイ化物と炭化チタンが反応してチタンシリコンカーバイドが合成されることがわかった。850℃近傍からのチタンケイ化物と炭化チタンの形成は、試料を樹脂に埋め込んで断面を研磨した試料の走査電子顕微鏡(SEM)による観察とエネルギー分散型X線分析装置(EDX)による分析の結果、チタン粒子に接した炭化ケイ素粒子及び炭素粒子から、チタン粒子内部にケイ素及び炭素が拡散して生じたと考えられる(文献Hitoshi Hashimoto, Zheng Ming Sun, Shuji Tada,“Morphological Evolution during Reaction Sintering of Ti,SiC and C Powder Blend”,Journal of Alloys and Compounds, Vol.441,pp.174−180,(2007))。ただし、チタンと炭素は固相反応を起こして炭化チタンを生成する組み合わせであるから、拡散と合わせてこの固相反応も生じていることが考えられる。 That is, the inventor first examines a synthesis process of titanium silicon carbide ceramics by heating a compression molded body of a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ). Therefore, a small cylindrical compression molded body having a weight of about 5 g, a diameter of 14 mm, and a length of about 11.5 mm is heated to a predetermined temperature in the range of 750 ° C. to 1550 ° C. at a temperature rising rate of 20 ° C. in a vacuum, Quenched quickly. The X-ray diffraction pattern of this sample was measured to identify the formation phase at each temperature. As shown in FIG. 2, titanium silicide (mainly trititanium pentasilicate Ti 5 Si 3 ) and carbonized from around 850 ° C. It was found that after titanium TiC was formed, titanium silicide and titanium carbide reacted at about 1350 ° C. to synthesize titanium silicon carbide. Formation of titanium silicide and titanium carbide from around 850 ° C. is a result of observation by a scanning electron microscope (SEM) and analysis by an energy dispersive X-ray analyzer (EDX) of a sample in which the sample is embedded in a resin and the cross section is polished. It is considered that silicon and carbon are diffused into the inside of the titanium particles from the silicon carbide particles and the carbon particles in contact with the titanium particles (references: Hitachi Hashimoto, Zheng Ming Sun, Shuji Tada, “Morphological Evolution Singing Reaction Reaction Sintering and C Powder Blend ", Journal of Alloys and Compounds, Vol. 441, pp. 174-180, (2007)). However, since titanium and carbon are a combination that causes a solid-phase reaction to produce titanium carbide, it is considered that this solid-phase reaction also occurs along with diffusion.

既に図1に示したように、部材の高さが増すに伴って合成部材の高さ方向(鉛直方向)に成分の偏析が生じる原因については、次のように考えられる。合成過程において、チタン粒子内部へのケイ素の拡散によって生成したチタン-ケイ素合金及びチタンケイ化物が共晶温度1330℃付近で溶解し、液相が生じていると考えられる。生じた液相は表面張力によって部材のち密化を促進するが、重力の影響を受けて部材の下部に移動するため、部材の上部では、チタンケイ化物が不足し、炭化チタンが残ると考えられる。   As already shown in FIG. 1, the cause of the segregation of components in the height direction (vertical direction) of the composite member as the member height increases is considered as follows. In the synthesis process, it is considered that the titanium-silicon alloy and titanium silicide produced by the diffusion of silicon into the titanium particles are dissolved at a eutectic temperature of about 1330 ° C., and a liquid phase is generated. The resulting liquid phase promotes densification of the member by surface tension, but moves to the lower part of the member due to the influence of gravity. Therefore, it is considered that titanium silicide is insufficient and titanium carbide remains at the upper part of the member.

すなわち、液相の不足が鉛直方向の成分偏析の原因と考えられる。そこで、液相を増やすため、チタンと共晶反応を起こす元素であるケイ素及び低融点金属でチタンシリコンカーバイド結晶のケイ素原子のサイトを置換できる元素であるアルミニウムを選択し、それぞれ単独又は一緒に、チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末に少量添加した。その結果、添加によって、高さ方向の成分の偏析が改善されることがわかった。 That is, the shortage of the liquid phase is considered to cause vertical component segregation. Therefore, in order to increase the liquid phase, silicon which is an element causing a eutectic reaction with titanium and aluminum which is an element capable of substituting the silicon atom site of titanium silicon carbide crystal with a low melting point metal are selected, either alone or together, A small amount was added to a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ). As a result, it was found that the segregation of the component in the height direction was improved by the addition.

また、このようなケイ素、アルミニウム以外の元素についてもその有効性が評価された。   The effectiveness of such elements other than silicon and aluminum was also evaluated.

本発明により、工業的に利用価値が高い、ち密で成分の偏析が少ないチタンシリコンカーバイドセラミックス部材を安価にかつ大量に生産することができる。   Industrial Applicability According to the present invention, a titanium silicon carbide ceramic member having high industrial utility value, dense and less segregation of components can be produced at low cost and in large quantities.

チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末を金型で圧縮成形した円柱状成形体を円柱の軸方向を垂直にした状態で、常圧焼結し、合成した試料の底面と上面のX線回折パターンA cylindrical molded body obtained by compression molding a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) with a mold is usually used in a state where the axial direction of the cylinder is vertical. X-ray diffraction pattern of the bottom and top surfaces of the sintered and synthesized sample チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末の圧縮成形体を常圧焼結して合成した試料のX線回折パターンから求めた焼結温度による相変化図と図から推定される反応経路Sintering obtained from an X-ray diffraction pattern of a sample synthesized by compression-sintering a compact of titanium, silicon carbide and carbon mixed powder corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) Phase change diagram with temperature and reaction path estimated from the figure チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にケイ素粉末を1質量%、又は2質量%添加した混合粉末を圧縮成形した圧縮成形体を、円柱の軸方向が垂直方向になるように置いて、常圧焼結し、合成した試料の上面と底面のX線回折パターンA compression molded body obtained by compression molding a mixed powder obtained by adding 1 mass% or 2 mass% of silicon powder to a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ). , X-ray diffraction pattern of the top and bottom surfaces of the sample synthesized by placing the cylinder in the vertical direction and sintering at normal pressure チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にアルミニウム粉末を1質量%、又は2質量%添加した混合粉末を圧縮成形した圧縮成形体を、円柱の軸方向が垂直方向になるように置いて、常圧焼結し、合成した試料の上面と底面のX線回折パターンA compression molded body obtained by compression molding a mixed powder obtained by adding 1% by mass or 2% by mass of aluminum powder to a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ). , X-ray diffraction pattern of the top and bottom surfaces of the sample synthesized by placing the cylinder in the vertical direction and sintering at normal pressure チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にケイ素粉末を2質量%及びアルミニウム粉末を1質量%(合計3質量%)添加した混合粉末の圧縮成形体を、円柱の軸方向が垂直方向になるように置いて、常圧焼結し、合成した試料の上面と底面のX線回折パターンMixed powder obtained by adding 2% by mass of silicon powder and 1% by mass of aluminum powder (total 3% by mass) to a mixed powder of titanium, silicon carbide and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) An X-ray diffraction pattern of the top and bottom surfaces of a sample synthesized by placing the compression molded body of チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にケイ素粉末を4質量%及びアルミニウム粉末を1質量%(合計5質量%)添加した混合粉末の圧縮成形体を、円柱の軸方向が垂直方向になるように置いて、常圧焼結し、合成した試料の上面と底面のX線回折パターンMixed powder obtained by adding 4% by mass of silicon powder and 1% by mass of aluminum powder (total 5% by mass) to a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) An X-ray diffraction pattern of the top and bottom surfaces of a sample synthesized by placing the compression molded body of

次に、本発明について更に詳細に説明する。   Next, the present invention will be described in more detail.

本発明は、工業的に利用価値が高い、ち密で成分の偏析が少ないチタンシリコンカーバイドセラミックス部材の大量生産に適した製造方法を提供するものである。   The present invention provides a manufacturing method suitable for mass production of a titanium silicon carbide ceramic member having a high industrial utility value, being dense and having little segregation of components.

本発明の製造方法は、成分偏析の原因と考えられる液相不足を解消するため、チタンと共晶反応を起こす元素と、低融点金属でチタンシリコンカーバイド結晶のケイ素原子のサイトを置換できる元素とを選択し、それぞれ単独又は一緒にチタン、炭化ケイ素、炭素の混合粉末に少量添加し、これをよく混合後、圧縮成形体を作製し、真空又はアルゴンガスなどの不活性雰囲気中で常圧焼結する方法である。   The production method of the present invention eliminates the liquid phase shortage that is considered to be the cause of component segregation, and an element that causes a eutectic reaction with titanium and an element that can replace the silicon atom site of titanium silicon carbide crystal with a low melting point metal Add a small amount to a mixed powder of titanium, silicon carbide, and carbon, either alone or together, and mix them well to produce a compression molded body, which is then fired at normal pressure in an inert atmosphere such as vacuum or argon gas. It is a way to tie.

ここで、チタン(Ti)と共晶反応を起こす元素については、その代表例としてケイ素(Si)を挙げることができる。それ以外の元素では、鉄(Fe)、コバルト(Co)が例示される。これらの元素は、元素によって最適添加量の範囲が異なるが、単独添加の場合、原料の混合粉末に対し、通常は0.9質量%以上、3質量%未満の範囲内において添加される。0.9%未満では成分偏析防止効果が不十分となりやすく、また3%以上では、炭化チタン以外の物質も合成されてチタンシリコンカーバイドの純度が下がる、又は急激な発熱反応が生じて緻密化しないなどの弊害が生じやすくなる。   Here, silicon (Si) can be cited as a typical example of an element that causes a eutectic reaction with titanium (Ti). Examples of other elements include iron (Fe) and cobalt (Co). Although the range of the optimum addition amount of these elements varies depending on the element, in the case of single addition, it is usually added in a range of 0.9 mass% or more and less than 3 mass% with respect to the raw material mixed powder. If it is less than 0.9%, the effect of preventing component segregation tends to be insufficient, and if it is 3% or more, substances other than titanium carbide are synthesized and the purity of titanium silicon carbide is reduced, or a rapid exothermic reaction occurs and does not become dense. Such harmful effects are likely to occur.

一方、チタンシリコンカーバイド結晶のケイ素原子のサイトを置換できる元素については、アルミニウム(Al)を挙げることができる。   On the other hand, aluminum (Al) can be cited as an element capable of substituting the silicon atom site of the titanium silicon carbide crystal.

アルミニウムは、単独添加の場合、原料の混合粉末に対し、通常は1質量%以上、2質量%未満の範囲内において添加される。1%未満では成分偏析防止効果が不十分であり、また2%以上では、ち密化が不均一になるという弊害が生じる。   In the case of single addition, aluminum is usually added in a range of 1% by mass or more and less than 2% by mass with respect to the raw material mixed powder. If it is less than 1%, the effect of preventing component segregation is insufficient, and if it is 2% or more, there is a problem that densification becomes uneven.

一方、Tiと共晶反応を起こす元素であるSiとチタンシリコンカーバイド結晶のケイ素原子のサイトを置換できる元素であるAlを共に添加する場合は、通常は添加元素合計で2質量%以上、6質量%未満、より好ましくは3〜5質量%の範囲内において添加される。1%未満では成分偏析防止効果が不十分であり、また6%以上では、炭化チタン以外の物質も合成されてチタンシリコンカーバイドの純度が下がるなどの弊害が生じやすくなる。   On the other hand, when both Si, which is an element that causes a eutectic reaction with Ti, and Al, which is an element that can replace the site of the silicon atom of the titanium silicon carbide crystal, are added in a total amount of 2 mass% or more and 6 mass in total. %, More preferably in the range of 3 to 5% by mass. If it is less than 1%, the effect of preventing component segregation is insufficient, and if it is 6% or more, substances other than titanium carbide are also synthesized, and adverse effects such as a decrease in the purity of titanium silicon carbide tend to occur.

以上の元素が添加される原料としての混合粉末は、チタン、炭化ケイ素、炭素の組成で、それらの配合は、チタンシリコンカーバイドの化学量論組成(モル比)を有していることが好ましい。   The mixed powder as a raw material to which the above elements are added has a composition of titanium, silicon carbide, and carbon, and their blending preferably has a stoichiometric composition (molar ratio) of titanium silicon carbide.

これら混合粉末の構成成分や前記の元素については混合時の粒径は、一般的には100μm以下の範囲であってよく、混合方法も各種公知の手法等適宜であってよい。   Regarding the constituents of these mixed powders and the above-mentioned elements, the particle size at the time of mixing may generally be in the range of 100 μm or less, and the mixing method may be appropriately selected from various known methods.

混合時間は粉末量によって異なるが、1〜50時間程度である。この混合粉末を金型とプレス機などにより圧縮成形する。成型圧力は金型の形状や寸法によって異なるが、200〜500MPaの範囲である。成形体を安定した姿勢にして真空又はアルゴンガスなどの不活性雰囲気中で常圧焼結する。焼結温度は1200℃から1500℃の範囲で行うのが望ましい。焼結温度が1200℃未満では、合成反応及び焼結が十分でなく、中間生成物のチタンケイ化物と炭化チタンが多量に存在し、緻密化も十分でないので好ましくない。また、焼結温度が1500℃を超えると結晶粒が粗大化し、エネルギーの消費量も増すので無駄である。より好ましい焼結温度は、焼結温度1400〜1500℃ である。   The mixing time varies depending on the amount of powder, but is about 1 to 50 hours. This mixed powder is compression molded with a mold and a press. The molding pressure varies depending on the shape and dimensions of the mold, but is in the range of 200 to 500 MPa. The molded body is placed in a stable posture and sintered at normal pressure in an inert atmosphere such as vacuum or argon gas. The sintering temperature is desirably in the range of 1200 ° C to 1500 ° C. When the sintering temperature is less than 1200 ° C., the synthesis reaction and sintering are not sufficient, and there are a large amount of intermediate products of titanium silicide and titanium carbide. On the other hand, if the sintering temperature exceeds 1500 ° C., crystal grains become coarse and energy consumption increases, which is useless. A more preferable sintering temperature is a sintering temperature of 1400 to 1500 ° C.

焼結温度での保持時間は0.5時間から6時間とする。焼結保持時間は焼結温度との関係で決定するが、0.5時間未満であると、合成反応が十分でなく、また6時間を超えると結晶粒が粗大化するので好ましくない。そして、より好ましい焼結時間は2時間〜3 時間の範囲である。   The holding time at the sintering temperature is 0.5 hours to 6 hours. The sintering holding time is determined in relation to the sintering temperature, but if it is less than 0.5 hours, the synthesis reaction is not sufficient, and if it exceeds 6 hours, the crystal grains become coarse, which is not preferable. A more preferable sintering time is in the range of 2 hours to 3 hours.

次に、実施例により本発明をさらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。すなわち、本発明は、その技術的思想の範囲である限り、以下の実施例以外の態様あるいは変形を全て包含するものである。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. That is, the present invention includes all aspects or modifications other than the following examples as long as the technical idea is within the scope of the invention.

チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にケイ素粉末を1質量%、又は2質量%添加した混合粉末をそれぞれ金型により400MPaの圧力で圧縮成形し、重量約7g、直径約14mm、長さ約15mmの円柱形試料を得た。これを、アルミナ容器内に円柱の軸方向が垂直方向になるように置いて、熱処理炉を用いて0.1MPaの高純度アルゴンガス中で、1500℃2時間加熱した。熱処理後の円柱形試料の上面と底面を研磨し、平面とした後、X線回折装置により、上面と底面それぞれのX線回折パターンを測定した。その結果、図3に示すように、上面底面ともにほぼチタンシリコンカーバイド(TiSiC)のX線回折ピークだけが認められ、円柱形試料の軸方向(高さ方向)に成分の偏析がないことがわかった。 A pressure of 400 MPa is applied to each mixed powder obtained by adding 1% by mass or 2% by mass of silicon powder to a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ). And a cylindrical sample having a weight of about 7 g, a diameter of about 14 mm, and a length of about 15 mm was obtained. This was placed in an alumina container so that the axial direction of the cylinder was vertical, and heated in a high-purity argon gas of 0.1 MPa using a heat treatment furnace at 1500 ° C. for 2 hours. The top and bottom surfaces of the cylindrical sample after the heat treatment were polished and made flat, and then the X-ray diffraction patterns on the top and bottom surfaces were measured with an X-ray diffractometer. As a result, as shown in FIG. 3, almost only the X-ray diffraction peak of titanium silicon carbide (Ti 3 SiC 2 ) is recognized on the bottom surface of the upper surface, and there is no segregation of components in the axial direction (height direction) of the cylindrical sample. I understood it.

チタンシリコンカーバイドの化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にアルミニウム粉末1質量%、又は2質量%添加した混合粉末を金型により400MPaの圧力で圧縮成形し、重量約7g、直径約14mm、長さ約15mmの円柱形試料を得た。これを、アルミナ容器内に円柱の軸方向が垂直方向になるように置いて、熱処理炉を用いて0.1MPaの高純度アルゴンガス中で、1500℃2時間加熱した。熱処理後の円柱形試料の上面と底面を研磨し、平面とした後、X線回折装置により、上面と底面それぞれのX線回折パターンを測定した。その結果、図4に示すように、上面底面ともにほぼチタンシリコンカーバイドのX線回折ピークだけが認められ、円柱形試料の軸方向(高さ方向)に成分の偏析がないことがわかった。 A mixed powder obtained by adding 1% by mass or 2% by mass of aluminum powder to a mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide is compression-molded with a mold at a pressure of 400 MPa, and has a weight of about 7 g. A cylindrical sample having a diameter of about 14 mm and a length of about 15 mm was obtained. This was placed in an alumina container so that the axial direction of the cylinder was vertical, and heated in a high-purity argon gas of 0.1 MPa using a heat treatment furnace at 1500 ° C. for 2 hours. The top and bottom surfaces of the cylindrical sample after the heat treatment were polished and made flat, and then the X-ray diffraction patterns on the top and bottom surfaces were measured with an X-ray diffractometer. As a result, as shown in FIG. 4, almost only the X-ray diffraction peak of titanium silicon carbide was recognized on the bottom surface of the top surface, and it was found that there was no segregation of components in the axial direction (height direction) of the cylindrical sample.

チタンシリコンカーバイドの化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末にケイ素粉末2質量%に加えて、アルミニウム粉末1質量%添加した混合粉末を金型により200MPaの圧力で圧縮成形し、重量約7g、直径約14mm、長さ約16mmの円柱形試料を得た。これを、アルミナ容器内に円柱の軸方向が垂直方向になるように置いて、熱処理炉を用いて0.1MPaの高純度アルゴンガス中で、1450℃2時間加熱した。熱処理後の円柱形試料の上面と底面を研磨し、平面とした後、X線回折装置により、上面と底面それぞれのX線回折パターンを測定した。その結果、図5に示すように、上面底面ともにほぼチタンシリコンカーバイドのX線回折ピークだけが認められ、円柱形試料の軸方向(高さ方向)に成分の偏析がないことがわかった。   A mixed powder obtained by adding 1% by mass of aluminum powder in addition to 2% by mass of silicon powder to a mixed powder of titanium, silicon carbide and carbon corresponding to the stoichiometric composition of titanium silicon carbide is compression-molded by a mold at a pressure of 200 MPa. A cylindrical sample having a weight of about 7 g, a diameter of about 14 mm, and a length of about 16 mm was obtained. This was placed in an alumina container so that the axial direction of the cylinder was vertical, and heated in a high-purity argon gas of 0.1 MPa using a heat treatment furnace at 1450 ° C. for 2 hours. The top and bottom surfaces of the cylindrical sample after the heat treatment were polished and made flat, and then the X-ray diffraction patterns on the top and bottom surfaces were measured with an X-ray diffractometer. As a result, as shown in FIG. 5, almost only the X-ray diffraction peak of titanium silicon carbide was observed on the bottom surface of the top surface, and it was found that there was no segregation of components in the axial direction (height direction) of the cylindrical sample.

実施例3において、添加量を、Si(4%)、Al(1%)に変更した場合についても合成体を作製した。X線回析パターンを図6に示した。   In Example 3, the composite was also produced when the addition amount was changed to Si (4%) and Al (1%). The X-ray diffraction pattern is shown in FIG.

実施例3とほぼ同様の結果が得られた。   Almost the same result as in Example 3 was obtained.

実施例3において、ケイ素粉末、アルミニウム粉末に代えて鉄粉末0.9質量%、又はコバルト粉末1.1質量%を添加した。   In Example 3, 0.9% by mass of iron powder or 1.1% by mass of cobalt powder was added instead of silicon powder and aluminum powder.

実施例3とほぼ同様の結果が得られた。   Almost the same result as in Example 3 was obtained.

比較例Comparative example

チタンシリコンカーバイドの化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末を金型により400MPa及び500MPaの圧力で圧縮成形し、重量約7.4g、直径約14mm、長さ約15.3〜15.8mmの円柱形試料を得た。これを、アルミナ容器内に円柱の軸方向が垂直方向になるように置いて、熱処理炉を用いて0.1MPaの高純度アルゴンガス中で、1500℃2時間加熱した。熱処理後の円柱形試料の上面と底面を研磨し、平面とした後、X線回折装置により、上面と底面それぞれのX線回折パターンを測定した。その結果、既に図1に示したように、底面はほぼチタンシリコンカーバイドのX線回折ピークだけであったが、上面には炭化チタンのピークも認められ、円柱形試料の軸方向(高さ方向)に成分が偏析していることがわかった。   A mixed powder of titanium, silicon carbide, and carbon corresponding to the stoichiometric composition of titanium silicon carbide is compression-molded with a mold at a pressure of 400 MPa and 500 MPa, and has a weight of about 7.4 g, a diameter of about 14 mm, and a length of about 15.3. A cylindrical sample of ˜15.8 mm was obtained. This was placed in an alumina container so that the axial direction of the cylinder was vertical, and heated in a high-purity argon gas of 0.1 MPa using a heat treatment furnace at 1500 ° C. for 2 hours. The top and bottom surfaces of the cylindrical sample after the heat treatment were polished and made flat, and then the X-ray diffraction patterns on the top and bottom surfaces were measured with an X-ray diffractometer. As a result, as already shown in FIG. 1, the bottom surface was almost only the X-ray diffraction peak of titanium silicon carbide, but the titanium carbide peak was also observed on the upper surface, and the axial direction (height direction of the cylindrical sample) ) Was found to be segregated.

本発明により、工業的に利用価値が高い、ち密で成分の偏析が少ないチタンシリコンカーバイドセラミックス部材を安価にかつ大量に生産することが可能になる。これによって、チタンシリコンカーバイドセラミックスの特異な性質を活かした構造材及び機能材を開発することができる。例えば、良好な熱伝導性、セラミックスとしての高温耐酸化性、耐薬品性及び高温安定性、グラファイトに匹敵する易切削加工性を活かした半導体製造工程で使用可能な熱処理治具、アルミナセラミックスに匹敵する高剛性とナイロンに匹敵する制振能、炭化チタンに匹敵する高温圧縮強度を活かした重量物の制振マウント材、導電性、高温耐酸化性、易切削加工性を活かした複雑形状のヒーターエレメントなど従来の材料では不可能な用途開発を期待できる。   According to the present invention, it is possible to produce a titanium silicon carbide ceramic member having high industrial utility value, dense and less segregation of components at low cost and in large quantities. This makes it possible to develop structural materials and functional materials that take advantage of the unique properties of titanium silicon carbide ceramics. For example, heat treatment jigs that can be used in semiconductor manufacturing processes that take advantage of good thermal conductivity, high-temperature oxidation resistance as ceramics, chemical resistance and high-temperature stability, and easy cutting processability comparable to graphite, comparable to alumina ceramics High rigidity and vibration damping ability comparable to nylon, heavy duty vibration damping mounting material utilizing high temperature compressive strength comparable to titanium carbide, heater with complex shape utilizing electrical conductivity, high temperature oxidation resistance, easy cutting workability Application development that is impossible with conventional materials such as elements can be expected.

Claims (4)

チタン、炭化ケイ素、炭素の混合粉末と、(a)チタンとの共晶反応によって液相を形成する元素、及び/又は(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素とを含む混合物を圧縮成形後、常圧焼結することを特徴とするチタンシリコンカーバイドセラミックス部材の製造方法。   A mixed powder of titanium, silicon carbide, and carbon, (a) an element that forms a liquid phase by eutectic reaction with titanium, and / or (b) an element that has a low melting point and can replace silicon sites of titanium silicon carbide A method for producing a titanium silicon carbide ceramic member, comprising compression-molding a mixture containing sinter and sintering at normal pressure. (a)チタンとの共晶反応によって液相を形成する元素がケイ素、鉄、コバルトであり、(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素がアルミニウムであることを特徴とする請求項1に記載のチタンシリコンカーバイドセラミックス部材の製造方法。   (A) The element that forms a liquid phase by eutectic reaction with titanium is silicon, iron, or cobalt, and (b) the element that has a low melting point and can replace the silicon site of titanium silicon carbide is aluminum. A method for producing a titanium silicon carbide ceramic member according to claim 1. チタン、炭化ケイ素、炭素の混合粉末の組成が、チタンシリコンカーバイド(TiSiC)の化学量論組成に相当することを特徴とする請求項1に記載のチタンシリコンカーバイドセラミックス部材の製造方法。 2. The method for producing a titanium silicon carbide ceramic member according to claim 1, wherein the composition of the mixed powder of titanium, silicon carbide, and carbon corresponds to a stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ). 常圧焼結温度が1200〜1500℃の範囲、焼結温度保持時間が30分〜6時間の範囲であることを特徴とする請求項1から3のいずれかに記載のチタンシリコンカーバイドセラミックス部材の製造方法。   4. The titanium silicon carbide ceramic member according to claim 1, wherein the atmospheric pressure sintering temperature is in the range of 1200 to 1500 ° C. and the sintering temperature holding time is in the range of 30 minutes to 6 hours. 5. Production method.
JP2009223330A 2009-09-28 2009-09-28 Method for producing titanium silicon carbide ceramics Active JP5308296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009223330A JP5308296B2 (en) 2009-09-28 2009-09-28 Method for producing titanium silicon carbide ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009223330A JP5308296B2 (en) 2009-09-28 2009-09-28 Method for producing titanium silicon carbide ceramics

Publications (2)

Publication Number Publication Date
JP2011068538A true JP2011068538A (en) 2011-04-07
JP5308296B2 JP5308296B2 (en) 2013-10-09

Family

ID=44014203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009223330A Active JP5308296B2 (en) 2009-09-28 2009-09-28 Method for producing titanium silicon carbide ceramics

Country Status (1)

Country Link
JP (1) JP5308296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130224580A1 (en) * 2012-02-24 2013-08-29 Amita Technologies Inc Ltd. Lithium battery having electrode tabs with safe modification
CN112919470A (en) * 2021-01-21 2021-06-08 辽宁中色新材科技有限公司 Production process of titanium silicon carbide
CN113264775A (en) * 2020-01-29 2021-08-17 日本碍子株式会社 Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214076A (en) * 1990-02-06 1992-08-05 Senju Metal Ind Co Ltd Tic sintered body and its manufacture
JP2003020279A (en) * 2001-07-09 2003-01-24 National Institute Of Advanced Industrial & Technology Metallic ceramic sintered compact and method for producing the same
JP2004262735A (en) * 2003-03-04 2004-09-24 Ngk Spark Plug Co Ltd Ceramic and method of manufacturing ceramic
JP2005089252A (en) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology Metallic ceramic sintered compact titanium silicon carbide and method of manufacturing the same
JP2011088804A (en) * 2009-09-28 2011-05-06 National Institute Of Advanced Industrial Science & Technology Method for producing titanium silicon carbide ceramics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214076A (en) * 1990-02-06 1992-08-05 Senju Metal Ind Co Ltd Tic sintered body and its manufacture
JP2003020279A (en) * 2001-07-09 2003-01-24 National Institute Of Advanced Industrial & Technology Metallic ceramic sintered compact and method for producing the same
JP2004262735A (en) * 2003-03-04 2004-09-24 Ngk Spark Plug Co Ltd Ceramic and method of manufacturing ceramic
JP2005089252A (en) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology Metallic ceramic sintered compact titanium silicon carbide and method of manufacturing the same
JP2011088804A (en) * 2009-09-28 2011-05-06 National Institute Of Advanced Industrial Science & Technology Method for producing titanium silicon carbide ceramics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013005660; 高ら: 'HIPによる高密度Ti3SiC2の合成と特性評価' 材料 Vol.47 No.10, 199810, p.994-999 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130224580A1 (en) * 2012-02-24 2013-08-29 Amita Technologies Inc Ltd. Lithium battery having electrode tabs with safe modification
CN113264775A (en) * 2020-01-29 2021-08-17 日本碍子株式会社 Dense composite material, method for producing same, joined body, and member for semiconductor manufacturing apparatus
CN112919470A (en) * 2021-01-21 2021-06-08 辽宁中色新材科技有限公司 Production process of titanium silicon carbide

Also Published As

Publication number Publication date
JP5308296B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
Zhang et al. Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders
US10626017B2 (en) Method for synthesizing aluminum nitride and aluminum nitride-based composite material
Wang et al. Solid–liquid reaction synthesis of layered machinable Ti 3 AlC 2 ceramic
US5942455A (en) Synthesis of 312 phases and composites thereof
Sun et al. Ternary compound Ti3SiC2: part I. Pulse discharge sintering synthesis
Sun et al. Synthesis of the MAX phases by pulse discharge sintering
KR100882924B1 (en) Ti3alc2 composite materials with high strength and manufacturing process of the same
EP2165990B1 (en) Dense boron carbide ceramic and process for producing the same
US5773733A (en) Alumina-aluminum nitride-nickel composites
AU2012361053A1 (en) Diamond composite and a method of making a diamond composite
JP5356991B2 (en) Method for producing titanium silicon carbide ceramics
Liu et al. Liquid phase assisted high pressure sintering of dense TiC nanoceramics
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
KR101859818B1 (en) Preparation method of sintered SiC ceramic by using plasma treated Si-SiC nanoparticle
JP5181329B2 (en) Method for producing aluminum nitride-containing material
JP2004346368A (en) Method for manufacturing composite material, and composite material
CN104211408B (en) A kind of boron carbon aluminium nitride, titanium (Ti, Al (B, C, N)) ceramic powder material and preparation method thereof
JP4362582B2 (en) Method for producing sintered metal ceramic titanium silicon carbide
Mei et al. Synthesis of high-purity Ti 2 AlC by spark plasma sintering (SPS) of the elemental powders
Sun et al. Synthesis and consolidation of ternary compound Ti3SiC2 from green compact of mixed powders
JP7414300B2 (en) Zirconium boride/boron carbide composite and its manufacturing method
Ma et al. Synthesis mechanism of AlN–SiC solid solution reinforced Al2O3 composite by two-step nitriding of Al–Si3N4–Al2O3 compact at 1500° C
JP4662897B2 (en) Method for producing metallic ceramic powder
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPH0455142B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250