JP2011088804A - Method for producing titanium silicon carbide ceramics - Google Patents

Method for producing titanium silicon carbide ceramics Download PDF

Info

Publication number
JP2011088804A
JP2011088804A JP2009270758A JP2009270758A JP2011088804A JP 2011088804 A JP2011088804 A JP 2011088804A JP 2009270758 A JP2009270758 A JP 2009270758A JP 2009270758 A JP2009270758 A JP 2009270758A JP 2011088804 A JP2011088804 A JP 2011088804A
Authority
JP
Japan
Prior art keywords
titanium
silicon carbide
carbide
carbon
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270758A
Other languages
Japanese (ja)
Other versions
JP5356991B2 (en
Inventor
Hitoshi Hashimoto
等 橋本
Masaaki Son
正明 孫
Shinya Aoki
伸哉 青木
Yasuhiro Nakatani
泰宏 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dennetsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nihon Dennetsu Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dennetsu Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nihon Dennetsu Co Ltd
Priority to JP2009270758A priority Critical patent/JP5356991B2/en
Publication of JP2011088804A publication Critical patent/JP2011088804A/en
Application granted granted Critical
Publication of JP5356991B2 publication Critical patent/JP5356991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To dissolve the problem that porous titanium silicon carbide ceramics is synthesized and the synthesized matter is destroyed and to provide a mass production technique of a low cost in synthesis of a titanium silicon carbide ceramic member by normal pressure sintering of mixed powder consisting of titanium, silicon carbide and carbon. <P>SOLUTION: The mixed powder consisting of titanium, silicon carbide, carbon and titanium carbide with a composition corresponding to a stoichiometric composition of titanium silicon carbide (Ti<SB>3</SB>SiC<SB>2</SB>) is subjected to compression molding and then to normal pressure sintering. Otherwise powder, which is obtained by adding to the mixed powder an element that forms a liquid phase by eutectic reaction with raw material titanium and/or an element that has a low melting point and can substitute a silicon site in titanium silicon carbide as a component segregation inhibitor and in which amount of carbon included in the titanium carbide is in a range of 60 to 100% of total carbon amount except carbon included in the silicon carbide and amount of titanium included in the titanium carbide is in a range of 20 to 33.3% of total titanium amount, is subjected to compression molding and then to normal pressure sintering. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、チタンシリコンカーバイドセラミックスの製造方法に関するものであり、更に詳しくは、チタンシリコンカーバイドセラミックス部材の大量生産に適した製造方法を提供するものである。   The present invention relates to a method for producing titanium silicon carbide ceramics, and more particularly, to provide a production method suitable for mass production of titanium silicon carbide ceramic members.

チタンシリコンカーバイドセラミックスは、その組成が主にチタンシリコンカーバイド(TiSiC)から成り、不純物として炭化チタン(TiC)、三ケイ化五チタン(TiSi)、二ケイ化チタン(TiSi)、炭化ケイ素(SiC)などを少量含むセラミックスである。金属導電性(自由電子による導電性)を示し、グラファイト並に切削加工できる導電性マシナブルセラミックスであり、機能材及び構造材として期待されている。チタンシリコンカーバイドセラミックスは、チタン、ケイ素、炭素、あるいはチタン、ケイ素、炭化チタン、あるいはチタン、炭化ケイ素、炭素、あるいはチタン、炭化ケイ素、炭化チタンの混合粉末を、常圧焼結又は加圧焼結することにより合成されている(例えば、文献1、2、3)。 The composition of titanium silicon carbide ceramics is mainly composed of titanium silicon carbide (Ti 3 SiC 2 ), and titanium carbide (TiC), pentasilicon trisilicate (Ti 5 Si 3 ), titanium disilicide (TiSi 2 ) as impurities. ), Ceramics containing a small amount of silicon carbide (SiC) and the like. It is a conductive machinable ceramic that exhibits metal conductivity (conductivity by free electrons) and can be cut like graphite, and is expected as a functional material and a structural material. Titanium silicon carbide ceramics are titanium, silicon, carbon, or titanium, silicon, titanium carbide, or titanium, silicon carbide, carbon, or mixed powder of titanium, silicon carbide, titanium carbide at atmospheric pressure or pressure sintering (For example, Documents 1, 2, and 3).

加圧焼結による合成では、原料混合粉末を黒鉛型などの耐熱性の型に入れて、加圧しながら加熱し、合成と同時に焼結とち密化を行う。あるいは、原料混合粉末を金型プレスにより圧縮成形するか、又はゴム型に入れて静水圧プレス(Cold Isostatic Press、略称CIP)により圧縮成形し、これをガラスカプセルや金属カプセルに真空封入し、熱間静水圧プレス(Hot Isostatic Press、略称HIP)により加圧しながら加熱し、合成と同時に焼結とち密化を行う。そのため、相対密度(理論密度に対する実際の密度の比をパーセントで表したもの)が99%以上のち密なチタンシリコンカーバイドセラミックスを合成可能である。しかしながら、加圧焼結法は生産性が低く、高コストであり、大量生産に適した方法とはいえない。   In the synthesis by pressure sintering, the raw material mixed powder is put into a heat-resistant mold such as a graphite mold, heated while being pressurized, and simultaneously sintered and densified. Alternatively, the raw material mixed powder is compression-molded by a mold press, or put in a rubber mold and compression-molded by a hydrostatic pressure press (Cold Isostatic Press, abbreviated as CIP). It is heated while being pressed by a hot isostatic press (abbreviated as HIP), and sintered and densified simultaneously with synthesis. Therefore, it is possible to synthesize dense titanium silicon carbide ceramics having a relative density (the ratio of the actual density to the theoretical density in percentage) of 99% or more. However, the pressure sintering method has low productivity and high cost, and cannot be said to be a method suitable for mass production.

一方、常圧焼結による合成では、原料混合粉末を金型プレスにより圧縮成形するか、又はゴム型に入れて静水圧プレス(CIP)により圧縮成形し、これを加熱炉により真空又は常圧の不活性ガス中で加熱し、合成と同時に焼結とち密化を行う。加圧しないために合成されたチタンシリコンカーバイドセラミックスの相対密度は低くなるが、常圧焼結法は生産性が高く、低コストであり、大量生産に適した方法である。   On the other hand, in the synthesis by atmospheric pressure sintering, the raw material mixed powder is compression-molded by a mold press, or put in a rubber mold and compressed by an isostatic press (CIP), and this is vacuum or atmospheric pressure in a heating furnace. It is heated in an inert gas and sintered and densified simultaneously with synthesis. Although the relative density of titanium silicon carbide ceramics synthesized because it is not pressurized is low, the atmospheric pressure sintering method is high in productivity, low in cost, and suitable for mass production.

だが、チタンシリコンカーバイドの化学量論組成に相当するチタン、炭化ケイ素、炭素の混合粉末の常圧焼結による合成(文献3)では、相対密度97%以上のチタンシリコンカーバイドセラミックスの合成が可能であるが、実験室において重量約2g、直径14mm、厚さ約4mm程度の小さな円盤状の部材の合成に基づいて得られた結果であり、工業的に利用価値が高い大きなサイズの部材、例えば図1に示すように重量約100g、直径約25mm、長さ約60mmの円柱状部材の合成に適用すると、多孔質のチタンシリコンカーバイドセラミックスが合成され、合成物が破壊されるという問題が発生することがわかった。   However, synthesis of titanium, silicon carbide, and carbon mixed powder corresponding to the stoichiometric composition of titanium silicon carbide by pressureless sintering (Reference 3) enables the synthesis of titanium silicon carbide ceramics with a relative density of 97% or more. Although it is a result obtained based on the synthesis of a small disk-shaped member having a weight of about 2 g, a diameter of 14 mm, and a thickness of about 4 mm in a laboratory, a large-sized member having a high industrial utility value, for example, FIG. When applied to the synthesis of a cylindrical member having a weight of about 100 g, a diameter of about 25 mm, and a length of about 60 mm as shown in FIG. 1, there is a problem that porous titanium silicon carbide ceramics are synthesized and the composite is destroyed. I understood.

特開2003−2745号公報JP 2003-2745 A 特許3951643号Japanese Patent No. 3995143 特開2005−89252号公報JP 2005-89252 A

本発明は上記従来技術の問題点を克服し、工業的に利用価値が高い、大きなサイズのチタンシリコンカーバイド部材を破壊や破損を惹起することなく、常圧焼結法により安価で大量に生産できる方法を提供することを課題としている。   The present invention overcomes the above-mentioned problems of the prior art, and can be produced in large quantities at a low cost by a normal pressure sintering method without causing destruction or breakage of a large-sized titanium silicon carbide member having high industrial utility value. The challenge is to provide a method.

上記課題を解決するための本発明は、以下の技術的手段からなることを特徴としている。
(1)チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素、炭化チタンの混合粉末を圧縮成形した後、常圧焼結するチタンシリコンカーバイドセラミックス部材の製造方法。
(2)原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の60%〜100%の範囲であって、炭化チタンに含まれるチタンの量が全チタン量の20%〜33.3%の範囲である前記(1)に記載のチタンシリコンカーバイドセラミックス部材の製造方法。
(3)チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素、炭化チタンの混合粉末に成分偏析防止剤として(a)チタンと共晶反応によって液相を生成する元素及び/又は(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素を添加する前記(1)又は(2)に記載のチタンシリコンカーバイドセラミックス部材の製造方法。
(4)常圧焼結温度が1200〜1500℃の範囲、焼結温度保持時間が30分〜6時間の範囲である前記(1)から(3)のいずれかに記載のチタンシリコンカーバイドセラミックス部材の製造方法。
The present invention for solving the above problems is characterized by comprising the following technical means.
(1) Manufacture of a titanium silicon carbide ceramic member that is sintered under pressure after compression molding of a mixed powder of titanium, silicon carbide, carbon, and titanium carbide corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) Method.
(2) The amount of carbon contained in titanium carbide in the raw material mixed powder is in the range of 60% to 100% of the total amount of carbon excluding carbon contained in silicon carbide, and the amount of titanium contained in titanium carbide is all The manufacturing method of the titanium silicon carbide ceramic member as described in said (1) which is the range of 20%-33.3% of titanium amount.
(3) As a component segregation inhibitor to a mixed powder of titanium, silicon carbide, carbon and titanium carbide corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) (a) A liquid phase is formed by eutectic reaction with titanium. The method for producing a titanium silicon carbide ceramic member according to (1) or (2), wherein an element to be generated and / or (b) an element having a low melting point and capable of substituting a silicon site of titanium silicon carbide is added.
(4) The titanium silicon carbide ceramic member according to any one of (1) to (3), wherein the atmospheric pressure sintering temperature is in the range of 1200 to 1500 ° C. and the sintering temperature holding time is in the range of 30 minutes to 6 hours. Manufacturing method.

以上のとおりの特徴を有する本発明は、発明者による次のとおりの詳細を実験的検討により得られた新しい知見に基づいている。   The present invention having the features as described above is based on the new knowledge obtained by the experimental investigation by the inventors as follows.

発明者は、まず、チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末の圧縮成形体の加熱によるチタンシリコンカーバイドセラミックスの合成過程を調べるため、重量約5g、直径14mm、長さ約11.5mmの小型の円柱状圧縮成形体を真空中、昇温速度20℃毎分で750℃〜1550℃の範囲の所定の温度(100℃間隔)まで加熱し、急冷(降温速度>100℃毎分)した。この試料のX線回折パターンを測定して、各温度における形成相を同定したところ、850℃近傍からチタンケイ化物(主に三ケイ化五チタンTiSi)と炭化チタンTiCが形成され始め、1350℃近傍からチタンケイ化物と炭化チタンが反応してチタンシリコンカーバイドが合成され始めることがわかった(文献Hitoshi Hashimoto, Zheng Ming Sun, Shuji Tada,“Morphological Evolution during Reaction Sintering of Ti,SiC and C Powder Blend”,Journal of Alloys and Compounds, Vol.441,pp.174−180,(2007))。すなわち、大別すると反応は2段であり、1段目は850℃近傍から始まるチタンと炭化ケイ素からチタンケイ化物と炭化チタンができる反応及びチタンと炭素から炭化チタンができる反応であり、2段目は1350℃近傍から始まるチタンケイ化物と炭化チタンからチタンシリコンカーバイドができる反応である。昇温速度が小さい場合、1段目の反応は主に炭化ケイ素粒子からチタン粒子へのケイ素と炭素の拡散及び炭素粒子からチタン粒子への炭素の拡散によって進行すると考えられるが、拡散には時間がかかるため、昇温速度が大きい場合は、主に燃焼合成反応又は自己伝播高温合成反応(SHS)と呼ばれる固相反応によって進行すると考えられる。 The inventor firstly synthesized titanium silicon carbide ceramics by heating a compression molded body of a mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide. In order to investigate the above, a small cylindrical compression-molded body having a weight of about 5 g, a diameter of 14 mm, and a length of about 11.5 mm was subjected to a predetermined temperature (100 ° C. within a range of 750 ° C. to 1550 ° C. at a heating rate of 20 ° C. C.) and rapidly cooled (temperature decrease rate> 100 ° C. per minute). When the X-ray diffraction pattern of this sample was measured to identify the formation phase at each temperature, titanium silicide (mainly trititanium pentasilicate Ti 5 Si 3 ) and titanium carbide TiC began to form from around 850 ° C., It was found that titanium silicide and titanium carbide began to be synthesized from around 1350 ° C. by reaction of titanium silicide and titanium carbide (literature Hitoshi Hashimoto, Zheng Ming Sun, Shuji Tada, “Morphological Evolution Circading Sintering Reaction Reaction Singing "Journal of Alloys and Compounds, Vol.441, pp.174-180, (2007)). That is, the reaction is roughly divided into two stages. The first stage is a reaction in which titanium silicide and titanium carbide are formed from titanium and silicon carbide starting from around 850 ° C., and a reaction in which titanium carbide is formed from titanium and carbon. Is a reaction in which titanium silicon carbide is formed from titanium silicide and titanium carbide starting from around 1350 ° C. When the heating rate is small, the first stage reaction is considered to proceed mainly by the diffusion of silicon and carbon from silicon carbide particles to titanium particles and the diffusion of carbon from carbon particles to titanium particles. Therefore, when the temperature rising rate is high, it is considered that the reaction proceeds mainly by a solid phase reaction called a combustion synthesis reaction or a self-propagating high-temperature synthesis reaction (SHS).

大きなサイズの部材の合成に適用すると、多孔質のチタンシリコンカーバイドセラミックスが合成され、さらに、合成物が破壊されるという問題が発生する原因については、次のように考えられる。   When applied to the synthesis of a large-sized member, the cause of the problem that the porous titanium silicon carbide ceramics are synthesized and the composite is destroyed is considered as follows.

チタンシリコンカーバイドの合成反応は発熱反応であり、その単位時間当たりの発熱量[Js-1]は原料混合粉末圧縮成形体の質量[kg]と単位質量当たりの発熱量[J/kg]と質量基準の反応速度[kg/s]の積に比例して大きくなる。一方、発熱した圧縮成形体からの単位時間当たりの放熱量[J/s]は成形体の表面積[m2]と伝熱速度[J/m2s]の積に比例する。圧縮成形体が相似形であれば、その質量は代表寸法の3乗に比例して大きくなるのに対して、表面積は2乗に比例する。単位質量当たりの発熱量と質量基準の反応速度は成形体のサイズによっては変わらないので、発熱量は代表寸法の3乗に比例する。伝熱速度は成形体内部の温度勾配や成形体表面と雰囲気ガスとの温度差の影響を受けるが、サイズによって伝熱速度が変わらないと仮定すると(実際には、成形体サイズが大きくなると、成形体内部の温度勾配は小さくなるから、伝熱速度は小さくなる)、放熱量は表面積に比例するから、代表寸法の2乗に比例する。したがって、発熱量は成形体サイズの3乗に比例して大きくなるのに対して、放熱量はサイズの2乗に比例して大きくなるため、サイズが大きくなるに伴って単位時間当たりの発熱量の増加は放熱量の増加を大きく上回るようになる。 The synthetic reaction of titanium silicon carbide is an exothermic reaction, and the calorific value per unit time [Js -1 ] is the mass [kg] of the raw material mixed powder compression molding, the calorific value [J / kg] and the mass per unit mass. It increases in proportion to the product of the standard reaction rate [kg / s]. On the other hand, the heat release amount [J / s] per unit time from the compressed compact that has generated heat is proportional to the product of the surface area [m 2 ] and the heat transfer rate [J / m 2 s] of the compact. If the compression-molded body has a similar shape, its mass increases in proportion to the cube of the representative dimension, while its surface area is proportional to the square. Since the calorific value per unit mass and the mass-based reaction rate do not vary depending on the size of the molded body, the calorific value is proportional to the cube of the representative dimension. The heat transfer rate is affected by the temperature gradient inside the molded body and the temperature difference between the molded body surface and the atmosphere gas, but assuming that the heat transfer rate does not change depending on the size (in fact, if the molded body size increases, Since the temperature gradient inside the compact is small, the heat transfer rate is small), and the amount of heat released is proportional to the surface area, and therefore proportional to the square of the representative dimension. Therefore, while the heat generation amount increases in proportion to the cube of the size of the molded body, the heat dissipation amount increases in proportion to the square of the size, so that the heat generation amount per unit time as the size increases. The increase will greatly exceed the increase in heat dissipation.

前述したように、合成反応は850℃近傍と1350℃近傍から始まる2段の反応である。サイズが大きくなるに伴って、850℃近傍から始まる1段目の反応、特に発熱量が大きいチタンと炭素が反応して炭化チタンが生成する反応による発熱量が放熱量を上回り、成形体の温度が急激に上昇し、1350℃近傍に達すると、2段目の反応が直ちに誘起される。その反応熱でさらに温度が急激に上昇し、ついには合成体の融点を超えて溶解し、原料に吸着又は溶解していたガスが爆発的に放出される。そのため、合成体は多孔質となり、破壊されてその形状が保たれないものと考えられる。すなわち、原料混合粉末圧縮成形体が大きくなると、1段目の反応と2段目の反応がほぼ同時に起こりやすくなり、それらの反応熱で、合成体の融点を超えて溶解し、原料に吸着又は溶解していたガスが爆発的に放出され、合成体は多孔質となり、破壊されると考えられる。   As described above, the synthesis reaction is a two-stage reaction starting from around 850 ° C. and around 1350 ° C. As the size increases, the first stage reaction starting from around 850 ° C., in particular, the heat generated by the reaction of titanium and carbon, which generate a large amount of heat, to form titanium carbide exceeds the heat dissipation, and the temperature of the molded body When the temperature rapidly rises and reaches around 1350 ° C., the second-stage reaction is immediately induced. The temperature further rapidly rises due to the heat of reaction, and finally the gas melts beyond the melting point of the composite, and the gas adsorbed or dissolved in the raw material is explosively released. Therefore, it is considered that the composite becomes porous and is broken and cannot maintain its shape. That is, when the raw material mixed powder compression-molded body becomes large, the first-stage reaction and the second-stage reaction are likely to occur almost simultaneously. The dissolved gas is explosively released, and the composite becomes porous and is considered to be destroyed.

これを検証するため、チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末に成分偏析を改善するための物質(成分偏析防止剤)を3質量%添加した混合粉末の圧縮成形体(重量約7g、直径約14mm、長さ約15mm)を真空中、昇温速度75℃毎分で1500℃まで加熱しながら成形体表面温度を赤外放射温度計で計測した。小さい圧縮成形体でも、真空中では対流がなく、伝熱が熱伝導と放射のみになり、伝熱速度が減少するので、放熱量が減少するのと、昇温速度を75℃毎分と極めて大きくすることにより、発熱による温度上昇と合わさって温度上昇が大きくなる。そのため、成形体のサイズを大きくしたのと同じ効果が期待できる。実際に、3回の実験中2回は、図2に示すように、成形体表面温度が950℃を超えた付近で成形体の温度が急激に上昇し始め、瞬間的に1800℃を超える発熱ピークが観測された。この場合、図3に示すように、合成体は多孔質となり、破壊されて元の形状を保っていなかった。この合成体を粉砕した粉末のX線回折パターンには、図4に示すように、チタンシリコンカーバイドTiSiCのピークだけが見られ、高純度のTiSiCが合成できていることがわかる。 In order to verify this, a substance for improving component segregation in a mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide (component segregation inhibitor) ) 3% by weight of the mixed powder compression molded body (weight: about 7 g, diameter: about 14 mm, length: about 15 mm) while heating the molded body surface temperature to 1500 ° C. at a heating rate of 75 ° C./min. It measured with the infrared radiation thermometer. Even in a small compression-molded body, there is no convection in a vacuum, heat transfer is only heat conduction and radiation, and the heat transfer rate is reduced. Therefore, the amount of heat release is reduced, and the heating rate is 75 ° C per minute. By increasing the temperature, the temperature rise increases together with the temperature rise due to heat generation. Therefore, the same effect as increasing the size of the molded body can be expected. In fact, twice of the three experiments, as shown in FIG. 2, the temperature of the molded body began to rise rapidly in the vicinity of the molded body surface temperature exceeding 950 ° C., and instantaneously generated heat exceeding 1800 ° C. A peak was observed. In this case, as shown in FIG. 3, the composite was porous and was broken and did not maintain its original shape. In the X-ray diffraction pattern of the powder obtained by pulverizing this composite, only the peak of titanium silicon carbide Ti 3 SiC 2 is seen as shown in FIG. 4, and high-purity Ti 3 SiC 2 can be synthesized. Recognize.

一方、同一条件でも3回の実験中1回は、図5に示すように、950℃付近から立ち上がり、温度が1070℃まで上昇する発熱ピークと1060℃付近から立ち上がる2本の発熱ピークが見られた。この場合の合成体は、図6に示すように、変形は見られるが、破壊は起きていない。この場合も、図7に示すように、この合成体のX線回折パターンには、チタンシリコンカーバイドTiSiCのピークだけが見られ、高純度のTiSiCが合成できたことがわかる。すなわち、1段目の反応と2段目の反応が別々に起こる場合は、合成体は変形するが、破壊は生じないことがわかった。 On the other hand, one out of three experiments under the same conditions, as shown in FIG. 5, has an exothermic peak that rises from around 950 ° C. and rises to 1070 ° C. and two exothermic peaks that rise from around 1060 ° C. It was. As shown in FIG. 6, the composite in this case is deformed but not broken. Also in this case, as shown in FIG. 7, only the peak of titanium silicon carbide Ti 3 SiC 2 was seen in the X-ray diffraction pattern of this composite, indicating that high-purity Ti 3 SiC 2 could be synthesized. . That is, it was found that when the first-stage reaction and the second-stage reaction occur separately, the composite is deformed but not destroyed.

以上から、1段目の反応の発熱による温度上昇を2段目の反応が生じる温度以下に抑えることができれば、1段目の反応と2段目の反応が別々に起こり、合成体の破壊は生じないことがわかった。   From the above, if the temperature rise due to the exothermic heat of the first stage reaction can be suppressed below the temperature at which the second stage reaction occurs, the first stage reaction and the second stage reaction occur separately, It turns out that it does not occur.

このように、1段目の反応の発熱による温度上昇を2段目の反応が生じる温度以下に抑えることができれば、1段目の反応と2段目の反応が別々に起こり、合成体の破壊は生じないことがわかったことから、1段目の主な発熱反応と考えられるチタンと炭素から炭化チタンが合成される固相反応による発熱量を抑制するため、チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素=3:1:1の混合粉末中のチタンと炭素を炭化チタン(TiC)で置換することを構想し、まず、チタンの10%、炭素の30%を炭化チタンに置換したもの、すなわちモル比がチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3の混合粉末を用いた場合について検討した。具体的には、この混合粉末に成分偏析防止剤として原料のチタンと共晶反応によって液相を生成する元素であるケイ素を2質量%及び低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素であるアルミニウムを1質量%の合計3質量%添加した後の圧縮成形体(重量約7g、直径約14mm、長さ約15mm)を真空中、昇温速度75℃毎分で1500℃まで加熱しながら成形体表面温度を赤外放射温度計で計測した。図8に示すように、3回の実験中1回は、2つの発熱ピークが見られ、図9に示すように合成体は変形したが、破壊は生じなかった。図10に示すように、この合成体のX線回折パターンには、チタンシリコンカーバイドTiSiCのピークだけが見られ、高純度のTiSiCが合成できていることがわかる。なお、チタンシリコンカーバイドの化学量論組成とは、チタン:ケイ素:炭素=3:1:2(モル比)であり、原料にチタン、炭化ケイ素、炭素を用いる場合には、チタン:炭化ケイ素:炭素=3:1:1(モル比)がチタン:ケイ素:炭素=3:1:2(モル比)に相当する。原料にチタン、炭化ケイ素、炭素、炭化チタンを用いる場合には、炭化チタンのモル数をxとすると、次の式からチタン、炭化ケイ素、炭素のモル数を計算する。 In this way, if the temperature rise due to the exothermic heat of the first stage reaction can be suppressed below the temperature at which the second stage reaction occurs, the first stage reaction and the second stage reaction occur separately, and the composite is destroyed. In order to suppress the amount of heat generated by the solid-phase reaction in which titanium carbide is synthesized from titanium and carbon, which is considered to be the main exothermic reaction in the first stage, the stoichiometric composition of titanium silicon carbide It is envisioned that titanium and carbon in a mixed powder having a molar ratio of titanium: silicon carbide: carbon = 3: 1: 1 are replaced with titanium carbide (TiC). First, 10% of titanium and 30 of carbon % Was replaced with titanium carbide, that is, a mixed powder having a molar ratio of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 was used. Specifically, 2 mass% of silicon, which is an element that forms a liquid phase by eutectic reaction with titanium as a component segregation inhibitor, can be substituted into the mixed powder, and the silicon site of titanium silicon carbide can be substituted. The compression molded body (weight: about 7 g, diameter: about 14 mm, length: about 15 mm) after addition of 3% by mass of the element aluminum is heated to 1500 ° C. at a heating rate of 75 ° C. per minute. The molded body surface temperature was measured with an infrared radiation thermometer. As shown in FIG. 8, two exothermic peaks were observed once in three experiments, and the composite was deformed as shown in FIG. 9, but no destruction occurred. As shown in FIG. 10, only the peak of titanium silicon carbide Ti 3 SiC 2 is seen in the X-ray diffraction pattern of this composite, indicating that high-purity Ti 3 SiC 2 can be synthesized. The stoichiometric composition of titanium silicon carbide is titanium: silicon: carbon = 3: 1: 2 (molar ratio). When titanium, silicon carbide, or carbon is used as a raw material, titanium: silicon carbide: Carbon = 3: 1: 1 (molar ratio) corresponds to titanium: silicon: carbon = 3: 1: 2 (molar ratio). When titanium, silicon carbide, carbon, or titanium carbide is used as a raw material, the number of moles of titanium, silicon carbide, or carbon is calculated from the following formula, where x is the number of moles of titanium carbide.

チタン=3-x
炭化ケイ素=1
炭素=1-x
この場合、チタン:炭化ケイ素:炭素=3:1:1の混合粉末中のチタンのx÷3×100%、炭素のx×100%を炭化チタンに置換したことになる。
Titanium = 3-x
Silicon carbide = 1
Carbon = 1-x
In this case, x ÷ 3 × 100% of titanium and x × 100% of carbon in the mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 were replaced with titanium carbide.

一方、3回の実験中2回は、図11に示すように、多数の小さな発熱ピークが見られた。この場合、図12に示すように、合成体は変形もなく元の形状を保っていることがわかった。また、図13に示すように、合成体のX線回折パターンには、チタンシリコンカーバイドTiSiCのピークだけが見られ、高純度のTiSiCが合成できていることがわかる。 On the other hand, as shown in FIG. 11, many small exothermic peaks were observed twice in the three experiments. In this case, as shown in FIG. 12, it was found that the composite body maintained its original shape without deformation. Further, as shown in FIG. 13, only the peak of titanium silicon carbide Ti 3 SiC 2 is seen in the X-ray diffraction pattern of the composite, and it can be seen that high-purity Ti 3 SiC 2 can be synthesized.

以上から、原料混合粉末中のチタンと炭素の一部を炭化チタンに置換することが、合成体の破壊を防止し、さらには合成体の変形も防止する有効な手段であることがわかった。特に、図11に示したような3つ以上の発熱ピークが見られ、図12に示したように合成体の変形も生じない炭化チタンへの置換量が望ましいことがわかった。   From the above, it has been found that substituting a part of titanium and carbon in the raw material mixed powder with titanium carbide is an effective means for preventing destruction of the composite and further preventing deformation of the composite. In particular, three or more exothermic peaks as shown in FIG. 11 were observed, and it was found that a substitution amount to titanium carbide that does not cause deformation of the composite as shown in FIG. 12 was desirable.

そこで、炭化チタンへの置換量を炭素の40%、50%及び70%(チタンの炭化チタンへの置換量はそれぞれ、13.3%、16.7%及び23.3%)と増加させながら、合成実験を行った。その結果、炭化チタンへの置換量を炭素の70%(チタンの炭化チタンへの置換量は23.3%)とした場合に、4回実験の全てにおいて明瞭に多数の発熱ピークが見られ、合成体の変形も生じない結果が得られた。炭化チタンへの置換量が炭素の70%、すなわち組成として、チタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7(モル比)の場合である。   Therefore, while increasing the amount of substitution to titanium carbide to 40%, 50% and 70% of carbon (the amounts of substitution of titanium to titanium carbide are 13.3%, 16.7% and 23.3%, respectively) A synthetic experiment was conducted. As a result, when the amount of substitution to titanium carbide is 70% of carbon (the amount of substitution of titanium to titanium carbide is 23.3%), many exothermic peaks are clearly seen in all four experiments, The result was obtained without deformation of the composite. This is a case where the amount of substitution to titanium carbide is 70% of carbon, that is, the composition is titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 (molar ratio).

次に、大きなサイズの圧縮成形体について検討を行った。炭化チタンへの置換量を炭素の50%、60%及び70%(チタンの炭化チタンへの置換量はそれぞれ、16.7%、20%及び23.3%)とした混合粉末のCIPによる圧縮成形体(重量約100g、直径約25mm、長さ約60mm)を150Paの減圧アルゴン雰囲気下、昇温速度6.25℃毎分で1500℃まで加熱した。その結果、すべての試料で、合成体が元の形状を保っており、変形も少ないことがわかった。また、合成体は成分の偏析がなく、X線回折による相同定の結果、チタンシリコンカーバイド以外の成分は検出されなかった。ただ、50%の場合、合成体は必ずしも十分にち密化しておらず、ち密なチタンシリコンカーバイド部材を合成するためには、炭素の60%以上(チタンの20%以上)を炭化チタンにより置換することがより好ましいことが確認された。   Next, a large size compression molded body was examined. CIP compression of mixed powder with 50%, 60% and 70% substitution of titanium carbide (16.7%, 20% and 23.3% substitution of titanium to titanium carbide, respectively) The formed body (weight: about 100 g, diameter: about 25 mm, length: about 60 mm) was heated to 1500 ° C. at a heating rate of 6.25 ° C./min in a 150 Pa vacuum argon atmosphere. As a result, it was found that all the samples maintained the original shape and had little deformation. Further, the composite had no segregation of components, and as a result of phase identification by X-ray diffraction, no components other than titanium silicon carbide were detected. However, in the case of 50%, the composite is not necessarily sufficiently dense, and in order to synthesize a dense titanium silicon carbide member, 60% or more of carbon (20% or more of titanium) is replaced with titanium carbide. It was confirmed that it was more preferable.

以上のとおりの本発明により、
工業的に利用価値が高いサイズのチタンシリコンカーバイドセラミックス部材を安価にかつ大量に生産することができる。
According to the present invention as described above,
A titanium silicon carbide ceramic member having a size having high industrial utility value can be produced at low cost and in large quantities.

チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末を静水圧プレスにより圧縮成形した円柱状成形体を熱処理炉により加熱して合成した試料の外観写真A cylindrical molded body obtained by compression molding a mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide by hydrostatic pressing is heated in a heat treatment furnace and synthesized. Appearance photograph of the sample チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間による変化The temperature of the compression molded body of the mixed powder obtained by adding 3 mass% of the component segregation inhibitor to the mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide is raised. Change with time of the molded body surface temperature measured with an infrared radiation thermometer while heating to 1500 ° C at a rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真Heating up to 1500 ° C. at a heating rate of 75 ° C. per minute with a powder mixture of 3% by mass of component segregation inhibitor added to a titanium: silicon carbide: carbon mixed powder corresponding to the stoichiometric composition of titanium silicon carbide Appearance photograph of the synthesized sample チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料のX線回折パターンThe temperature of the compression molded body of the mixed powder obtained by adding 3 mass% of the component segregation inhibitor to the mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide is raised. X-ray diffraction pattern of a sample synthesized by heating to 1500 ° C at a rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間による変化The temperature of the compression molded body of the mixed powder obtained by adding 3 mass% of the component segregation inhibitor to the mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide is raised. Change with time of the molded body surface temperature measured with an infrared radiation thermometer while heating to 1500 ° C at a rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真The temperature of the compression molded body of the mixed powder obtained by adding 3 mass% of the component segregation inhibitor to the mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide is raised. Appearance photo of a sample synthesized by heating to 1500 ° C at a rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料のX線回折パターンThe temperature of the compression molded body of the mixed powder obtained by adding 3 mass% of the component segregation inhibitor to the mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide is raised. X-ray diffraction pattern of a sample synthesized by heating to 1500 ° C at a rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間変化3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Changes in the surface temperature of the molded body measured with an infrared radiation thermometer while heating the compression molded body of the added mixed powder to 1500 ° C at a heating rate of 75 ° C per minute. チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Appearance photograph of the sample synthesized by heating the compression mixture of the added mixed powder to 1500 ° C at a heating rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料のX線回折パターン)3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide X-ray diffraction pattern of a sample synthesized by heating the added powder compact to 1500 ° C at a heating rate of 75 ° C per minute) チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間変化3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Changes in the surface temperature of the molded body measured with an infrared radiation thermometer while heating the compression molded body of the added mixed powder to 1500 ° C at a heating rate of 75 ° C per minute. チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Appearance photograph of the sample synthesized by heating the compression mixture of the added mixed powder to 1500 ° C at a heating rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.7:1:0.7:0.3(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料のX線回折パターン3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.7: 1: 0.7: 0.3 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide X-ray diffraction pattern of a sample synthesized by heating the compression mixture of the added mixed powder to 1500 ° C. at a heating rate of 75 ° C. per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間変化Mixed powder obtained by adding 3% by mass of component segregation inhibitor to mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 corresponding to the stoichiometric composition of titanium silicon carbide Change in the surface temperature of the molded body measured with an infrared radiation thermometer while heating the compression molded body of 1,500 ° C at a heating rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Appearance photograph of the sample synthesized by heating the compression mixture of the added mixed powder to 1500 ° C at a heating rate of 75 ° C per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料のX線回折パターン3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide X-ray diffraction pattern of a sample synthesized by heating the compression mixture of the added mixed powder to 1500 ° C. at a heating rate of 75 ° C. per minute チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末のCIPによる圧縮成形体を加熱して合成した試料の外観写真3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Appearance photograph of the sample synthesized by heating the compacted body by CIP of the added mixed powder チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末のCIPによる圧縮成形体を加熱して合成した試料の3ヶ所で測定したX線回折パターン3% by mass of component segregation inhibitor in a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide X-ray diffraction patterns measured at three locations on a sample synthesized by heating a compact formed by CIP of the mixed powder added. チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末のCIPによる圧縮成形体を加熱して合成した試料の外観写真3% by mass of component segregation inhibitor in mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Appearance photograph of the sample synthesized by heating the compacted body by CIP of the added mixed powder チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7(モル比)の混合粉末に成分偏析防止剤を3質量%添加した混合粉末のCIPによる圧縮成形体を加熱して合成した試料の3ヶ所で測定したX線回折パターン3% by mass of component segregation inhibitor in mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide X-ray diffraction patterns measured at three locations on a sample synthesized by heating a compact formed by CIP of the mixed powder added. チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素=3:1:1(モル比)の混合粉末のCIPによる圧縮成形体を加熱して合成した試料(粉砕粉末)のX線回折パターンX-ray of a sample (ground powder) synthesized by heating a compression molded body by CIP of a mixed powder of titanium: silicon carbide: carbon = 3: 1: 1 (molar ratio) corresponding to the stoichiometric composition of titanium silicon carbide Diffraction pattern チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6の混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間変化A compression molded body of a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6 corresponding to the stoichiometric composition of titanium silicon carbide is heated at a rate of 75 ° C. per minute. Temporal change of molded body surface temperature measured with infrared radiation thermometer while heating to 1500 ° C チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6の混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真A compression molded body of a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6 corresponding to the stoichiometric composition of titanium silicon carbide is heated at a rate of 75 ° C. per minute. Appearance photo of the sample synthesized by heating up to 1500 ° C チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6の混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した円柱形試料の上面と底面のX線回折パターンA compression molded body of a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6 corresponding to the stoichiometric composition of titanium silicon carbide is heated at a rate of 75 ° C. per minute. X-ray diffraction patterns of the top and bottom surfaces of a cylindrical sample synthesized by heating to 1500 ° C チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱しながら赤外放射温度計で計測した成形体表面温度の時間変化A compression molded body of a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 corresponding to the stoichiometric composition of titanium silicon carbide is heated at a rate of 75 ° C. per minute. Temporal change of molded body surface temperature measured with infrared radiation thermometer while heating to 1500 ° C チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した試料の外観写真A compression molded body of a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 corresponding to the stoichiometric composition of titanium silicon carbide is heated at a rate of 75 ° C. per minute. Appearance photo of the sample synthesized by heating up to 1500 ° C チタンシリコンカーバイドの化学量論組成に相当するチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末の圧縮成形体を昇温速度75℃毎分で1500℃まで加熱して合成した円柱形試料の上面と底面のX線回折パターンA compression molded body of a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7 corresponding to the stoichiometric composition of titanium silicon carbide is heated at a rate of 75 ° C. per minute. X-ray diffraction patterns of the top and bottom surfaces of a cylindrical sample synthesized by heating to 1500 ° C

本発明の方法においては、チタンシリコンカーバイド(TiSiC)の常圧焼結による製造に際し、化学量論組成に相当する原料混合粉末の配合組成(モル比)について、
チタン(Ti):3-x
炭化ケイ素(SiC):1
炭素(C):1-x
炭化チタン(TiC):x
として、0<x≦1の範囲にあるものとする。本発明では、このような配合組成(モル比)の混合粉末を圧縮成形した後に常圧焼結する。
In the method of the present invention, in the production of titanium silicon carbide (Ti 3 SiC 2 ) by atmospheric pressure sintering, the blending composition (molar ratio) of the raw material mixed powder corresponding to the stoichiometric composition,
Titanium (Ti): 3-x
Silicon carbide (SiC): 1
Carbon (C): 1-x
Titanium carbide (TiC): x
Assuming that 0 <x ≦ 1. In the present invention, the mixed powder having such a blending composition (molar ratio) is compression molded and then subjected to atmospheric pressure sintering.

前記のモル比表示においては、本発明においては、xは圧縮成形体のサイズ、昇温速度、焼結雰囲気によって、その都度変えることが望ましい。すなわち、サイズが大きくなるほど、昇温速度が大きくなるほど、焼結雰囲気ガスの圧力が低くなるほど、xを大きくする必要がある。例えば、具体的には、直径14mm、高さ15mm、重量7gの圧縮成形体を昇温速度30℃毎分で圧力0.1MPaのアルゴンガス中で加熱する場合は、x=0.1で十分である。一方、直径14mm、高さ15mm、重量7gの圧縮成形体を昇温速度75℃毎分で真空中で加熱する場合は、x=0.7以上が望ましい。本発明におけるターゲットである直径25mm、高さ60mm、重量100gのような大きなサイズの成形体を昇温速度6.25℃毎分で、圧力150Paのアルゴンガス中で加熱する場合は、x=0.6以上が望ましい。   In the above-described molar ratio display, in the present invention, x is preferably changed each time depending on the size of the compression molded body, the heating rate, and the sintering atmosphere. That is, it is necessary to increase x as the size increases, the temperature increase rate increases, and the pressure of the sintering atmosphere gas decreases. For example, specifically, when a compression molded body having a diameter of 14 mm, a height of 15 mm, and a weight of 7 g is heated in an argon gas having a pressure rising rate of 30 ° C./min and a pressure of 0.1 MPa, x = 0.1 is sufficient. It is. On the other hand, when a compression molded body having a diameter of 14 mm, a height of 15 mm, and a weight of 7 g is heated in a vacuum at a heating rate of 75 ° C./min, x = 0.7 or more is desirable. In the case of heating a large-size molded body having a diameter of 25 mm, a height of 60 mm, and a weight of 100 g, which is a target in the present invention, in an argon gas having a temperature rising rate of 6.25 ° C./min and a pressure of 150 Pa, x = 0 .6 or more is desirable.

なお、xの上限については、好ましくは0.9未満とする。その理由はx=0.9以上では、混合粉末の圧縮成形性、成形体の保形性が著しく悪化するからである。   The upper limit of x is preferably less than 0.9. The reason is that when x = 0.9 or more, the compression moldability of the mixed powder and the shape retention of the molded body are significantly deteriorated.

また本発明の原料混合粉末には、成分偏析防止剤として、(a)チタンと共晶反応によって液相を生成するケイ素(Si)、鉄(Fe)、コバルト(Co)などの元素、および(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できるアルミニウム(Al)等の元素のうちの少くともいずれかを添加することが有効である。もちろん必須ではないが、これらの添加によって炭化チタンなどの不純物の偏析が抑制され、成分が均一なチタンシリコンカーバイドセラミックス部材の合成が実現されることになる。   In addition, the raw material mixed powder of the present invention includes (a) an element such as silicon (Si), iron (Fe), cobalt (Co), and the like that generate a liquid phase by eutectic reaction with titanium as a component segregation preventing agent, and ( b) It is effective to add at least one of elements such as aluminum (Al) which has a low melting point and can replace silicon sites of titanium silicon carbide. Of course, although not essential, the addition of these suppresses the segregation of impurities such as titanium carbide, thereby realizing the synthesis of a titanium silicon carbide ceramic member having a uniform component.

このような成分偏析防止剤を添加する場合には、原料混合粉末において、添加材の種類によって最適添加量の範囲が異なるが、Si、Fe、Coを単独添加する場合は、原料の混合粉末に対し、通常は0.9質量%以上、3質量%未満の範囲内において添加される。0.9%未満では成分偏析防止効果が不十分となりやすく、また3%以上では炭化チタン以外の物質も合成されてチタンシリコンカーバイドの純度が下がる、又は急激な発熱反応が生じて緻密化しないなどの弊害が生じやすくなる。   When adding such a component segregation inhibitor, the range of the optimum addition amount varies depending on the type of additive in the raw material mixed powder, but when adding Si, Fe, Co alone, On the other hand, it is usually added in the range of 0.9 mass% or more and less than 3 mass%. If it is less than 0.9%, the component segregation preventing effect tends to be insufficient, and if it is 3% or more, a substance other than titanium carbide is synthesized and the purity of titanium silicon carbide is lowered, or a rapid exothermic reaction occurs and the material is not densified. This is likely to cause harmful effects.

Alを単独添加する場合は、通常は1質量%以上、2質量%未満の範囲内において添加される。1%未満では成分偏析防止効果が不十分であり、また2%以上では、ち密化が不均一になるという弊害が生じる。   When adding Al alone, it is usually added within a range of 1% by mass or more and less than 2% by mass. If it is less than 1%, the effect of preventing component segregation is insufficient, and if it is 2% or more, there is a problem that densification becomes uneven.

一方、SiとAlを共に添加する場合は、通常は添加元素合計で2質量%以上、5質量%未満、より好ましくは3〜4質量%の範囲内において添加される。1%未満では成分偏析防止効果が不十分であり、また5%以上では、炭化チタン以外の物質も合成されてチタンシリコンカーバイドの純度が下がるなどの弊害が生じやすくなる。   On the other hand, when both Si and Al are added, they are usually added in the range of 2% by mass or more and less than 5% by mass, more preferably 3 to 4% by mass in total of the additive elements. If it is less than 1%, the effect of preventing segregation of components is insufficient, and if it is 5% or more, substances other than titanium carbide are also synthesized, and adverse effects such as a decrease in the purity of titanium silicon carbide tend to occur.

本発明における混合粉末の構成成分は、チタン、炭化チタン、炭素、炭化チタン、さらに必要に応じて前記の成分偏析防止剤からなるものであるが、これらは市販品、合成品のいずれであってもよいが、一般的にはこれらの平均粒径は100μm以下の範囲であることが望ましい。100μmを超える場合には均一な反応が難しくなる傾向にある。   The component of the mixed powder in the present invention is composed of titanium, titanium carbide, carbon, titanium carbide, and, if necessary, the above-described component segregation preventing agent. These are either commercial products or synthetic products. In general, however, the average particle diameter is desirably in the range of 100 μm or less. When it exceeds 100 μm, uniform reaction tends to be difficult.

混合操作や圧縮成形の手段は従来と同様であってよい。常圧焼結のための手段も同様である。   The mixing operation and the compression molding means may be the same as in the prior art. The means for atmospheric pressure sintering is the same.

たとえば、混合操作はVミキサーやTURBULAミキサーなどの一般的な粉末混合機を用いて行うことができ、圧縮成形は金型粉末プレスやラバープレス、CIPを用いて行うことができる。   For example, the mixing operation can be performed using a general powder mixer such as a V mixer or a TURBULA mixer, and the compression molding can be performed using a mold powder press, a rubber press, or a CIP.

また常圧焼結はアルゴンなどの不活性ガスや真空中で加熱炉を用いて行うことができる。   Further, the normal pressure sintering can be carried out in an inert gas such as argon or in a vacuum using a heating furnace.

常圧焼結については、本発明では、温度1200〜1500℃の範囲で、30分〜6時間の範囲の保持時間とすることが好ましい。これらの範囲内とすることで、本発明の効果は、より確実に安定して実現されることになる。   About normal pressure sintering, it is preferable to set it as the holding time of the range of 30 minutes-6 hours in the range of the temperature of 1200-1500 degreeC in this invention. By setting it within these ranges, the effects of the present invention are more reliably and stably realized.

次に、実施例により本発明を具体的に説明する。もちろん、本発明は、これらの例によって何ら限定されるものではなく、その技術的思想の範囲である限り、以下の実施例以外の態様あるいは変形を全て包含する。   Next, the present invention will be described specifically by way of examples. Of course, this invention is not limited at all by these examples, and includes all aspects or modifications other than the following Examples, as long as it is within the scope of the technical idea.

チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末、すなわち原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の70%、炭化チタンに含まれるチタンの量が全チタン量の23.3%となる原料混合粉末に成分偏析を改善するための物質として原料のチタンと共晶反応によって液相を生成する元素であるケイ素を2質量%及び低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素であるアルミニウムを1質量%の合計3質量%添加した混合粉末を金型により500MPaの圧力で圧縮成形し、重量約7g、直径約14mm、長さ約15mmの円柱形試料を得た。これを、真空中で、昇温速度75℃毎分で1500℃まで加熱しながら成形体表面温度を赤外放射温度計で計測した。実験は4回行い、すべてにおいて、図14に示すように、3つの小さな発熱ピークが観察され、図15に示すように、合成体は破壊も変形も生じなかった。また、図16に示すように、この合成体のX線回折パターンには、チタンシリコンカーバイドTiSiCのピークだけが見られ、高純度のチタンシリコンカーバイドが合成できていることがわかる。 The molar ratio corresponding to the stoichiometric composition of titanium silicon carbide is a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7, that is, titanium carbide in the raw material mixed powder. To improve component segregation in the raw material mixed powder in which the amount of carbon contained is 70% of the total carbon amount excluding the carbon contained in silicon carbide, and the amount of titanium contained in titanium carbide is 23.3% of the total titanium amount. 2% by mass of silicon, which is an element that forms a liquid phase by eutectic reaction with titanium as a raw material, and 1% by mass of aluminum, which is an element that has a low melting point and can replace silicon sites of titanium silicon carbide, 3% in total The mixed powder added with mass% was compression-molded at a pressure of 500 MPa using a mold to obtain a cylindrical sample having a weight of about 7 g, a diameter of about 14 mm, and a length of about 15 mm. The surface temperature of the molded body was measured with an infrared radiation thermometer while heating to 1500 ° C. at a rate of temperature increase of 75 ° C. per minute in a vacuum. The experiment was performed four times, and in all, three small exothermic peaks were observed as shown in FIG. 14, and the composite did not break or deform as shown in FIG. Moreover, as shown in FIG. 16, only the peak of titanium silicon carbide Ti 3 SiC 2 is seen in the X-ray diffraction pattern of this composite, indicating that high-purity titanium silicon carbide can be synthesized.

チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6の混合粉末、すなわち原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の60%、炭化チタンに含まれるチタンの量が全チタン量の20%となる原料混合粉末に成分偏析を改善するための物質として原料のチタンと共晶反応によって液相を生成する元素であるケイ素を2質量%及び低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素であるアルミニウムを1質量%の合計3質量%添加した混合粉末をゴム型に入れて、CIPにより400MPaの圧力で圧縮成形し、重量約100g、直径約25mm、長さ約60mmの円柱形成形体を得た。これを、アルミナ板上に円柱の軸方向が垂直方向になるように置き、熱処理炉を用いて減圧下(アルゴンガス150Pa)で、1500℃2時間加熱した。その結果、図17に示すように、合成体が元の形状を保っており、変形も少ないことがわかった。また、合成体を円柱の中心軸を通る面で2分割し、底面から10mm、軸方向の中心、上面から10mmの位置の3ヶ所でX線回折パターンを測定したところ、図18に示すようにチタンシリコンカーバイド以外のX線回折ピークは検出されなかった。   The molar ratio corresponding to the stoichiometric composition of titanium silicon carbide is titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6, that is, titanium carbide in the raw material mixed powder. Substance for improving component segregation in raw material mixed powder in which the amount of carbon contained is 60% of the total carbon amount excluding the carbon contained in silicon carbide, and the amount of titanium contained in titanium carbide is 20% of the total titanium amount. 2% by mass of silicon, which is an element that forms a liquid phase by eutectic reaction with titanium as a raw material, and 3% by mass of aluminum, which is an element that has a low melting point and can replace silicon sites of titanium silicon carbide, 1% by mass The added mixed powder was put into a rubber mold and compression-molded by CIP at a pressure of 400 MPa to obtain a cylindrical formed body having a weight of about 100 g, a diameter of about 25 mm, and a length of about 60 mm. This was placed on an alumina plate so that the axial direction of the cylinder was vertical, and heated at 1500 ° C. for 2 hours under reduced pressure (argon gas 150 Pa) using a heat treatment furnace. As a result, as shown in FIG. 17, it was found that the composite body maintained the original shape and there was little deformation. Further, when the composite was divided into two on the plane passing through the central axis of the cylinder, and the X-ray diffraction pattern was measured at three positions of 10 mm from the bottom surface, the center in the axial direction, and 10 mm from the top surface, as shown in FIG. X-ray diffraction peaks other than titanium silicon carbide were not detected.

この合成体から、試験片(4mm×3mm×36mm)を切り出し、室温で4点曲げ試験を行ったところ、平均125MPaの強度を示した。   When a test piece (4 mm × 3 mm × 36 mm) was cut out from this composite and subjected to a 4-point bending test at room temperature, an average strength of 125 MPa was shown.

チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末、すなわち原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の70%、炭化チタンに含まれるチタンの量が全チタン量の23.3%となる原料混合粉末に成分偏析を改善するための物質として原料のチタンと共晶反応によって液相を生成する元素であるケイ素を2質量%及び低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素であるアルミニウムを1質量%の合計3質量%添加した混合粉末をゴム型に入れて、CIPにより400MPaの圧力で圧縮成形し、重量約100g、直径約25mm、長さ約60mmの円柱形成形体を得た。これを、アルミナ板上に円柱の軸方向が垂直方向になるように置き、熱処理炉を用いて減圧下(アルゴンガス150Pa)で、1500℃2時間加熱した。その結果、図19に示すように、合成体が元の形状を保っており、変形も少ないことがわかった。また、合成体を円柱の中心軸を通る面で2分割し、底面から10mm、軸方向の中心、上面から10mmの位置の3ヶ所でX線回折パターンを測定したところ、図20に示すようにチタンシリコンカーバイド以外のX線回折ピークは検出されなかった。   The molar ratio corresponding to the stoichiometric composition of titanium silicon carbide is a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7, that is, titanium carbide in the raw material mixed powder. To improve component segregation in the raw material mixed powder in which the amount of carbon contained is 70% of the total carbon amount excluding the carbon contained in silicon carbide, and the amount of titanium contained in titanium carbide is 23.3% of the total titanium amount. 2% by mass of silicon, which is an element that forms a liquid phase by eutectic reaction with titanium as a raw material, and 1% by mass of aluminum, which is an element that has a low melting point and can replace silicon sites of titanium silicon carbide, 3% in total The mixed powder added by mass% was put into a rubber mold and compression molded by CIP at a pressure of 400 MPa to obtain a cylindrical formed body having a weight of about 100 g, a diameter of about 25 mm, and a length of about 60 mm. This was placed on an alumina plate so that the axial direction of the cylinder was vertical, and heated at 1500 ° C. for 2 hours under reduced pressure (argon gas 150 Pa) using a heat treatment furnace. As a result, as shown in FIG. 19, it was found that the composite body maintained the original shape and there was little deformation. Further, when the composite was divided into two on the plane passing through the central axis of the cylinder, and X-ray diffraction patterns were measured at three positions of 10 mm from the bottom surface, the center in the axial direction, and 10 mm from the top surface, as shown in FIG. X-ray diffraction peaks other than titanium silicon carbide were not detected.

チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素:炭化チタン=2.4:1:0.4:0.6の混合粉末、すなわち原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の60%、炭化チタンに含まれるチタンの量が全チタン量の20%となる原料混合粉末を金型により400MPaの圧力で圧縮成形し、重量約7g、直径約14mm、長さ約15mmの円柱形試料を得た。円柱形試料の軸方向を鉛直方向にした状態で、真空中で、昇温速度75℃毎分で1500℃まで加熱しながら、成形体表面温度を赤外放射温度計で計測した。実験は4回行い、すべてにおいて、図22に示すように、昇温中に複数の発熱ピークが観察され、図23に示すように、合成体は破壊しなかった。また、図24に示すように、この円柱形合成体の上面と底面のX線回折パターンには、チタンシリコンカーバイドTiSiCの強いピークと弱いTiCのピークが見られ、比較的高純度のチタンシリコンカーバイドが合成できていることがわかる。
[比較例1]
The molar ratio corresponding to the stoichiometric composition of titanium silicon carbide is titanium: silicon carbide: carbon: titanium carbide = 2.4: 1: 0.4: 0.6, that is, titanium carbide in the raw material mixed powder. The raw material mixed powder in which the amount of carbon contained is 60% of the total carbon amount excluding the carbon contained in silicon carbide and the amount of titanium contained in titanium carbide is 20% of the total titanium amount is compressed by a mold at a pressure of 400 MPa. A cylindrical sample having a weight of about 7 g, a diameter of about 14 mm, and a length of about 15 mm was obtained. While the axial direction of the cylindrical sample was set to the vertical direction, the surface temperature of the molded body was measured with an infrared radiation thermometer while heating in a vacuum to 1500 ° C. at a heating rate of 75 ° C. per minute. The experiment was performed four times. In all cases, as shown in FIG. 22, a plurality of exothermic peaks were observed during the temperature rise, and the composite was not destroyed as shown in FIG. Further, as shown in FIG. 24, the top and bottom X-ray diffraction patterns of this cylindrical composite have a strong peak of titanium silicon carbide Ti 3 SiC 2 and a weak peak of TiC, which are relatively high purity. It can be seen that titanium silicon carbide has been synthesized.
[Comparative Example 1]

チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素=3:1:1の混合粉末をゴム型に入れて、CIPにより200MPaの圧力で圧縮成形し、重量約100g、直径約25mm、長さ約60mmの円柱形試料を得た。これを、アルミナ板上に円柱の軸方向が垂直方向になるように置き、熱処理炉を用いて減圧下(アルゴンガス150Pa)で、1500℃2時間加熱した。その結果、既に図1に示したように、合成物が破壊され、多孔質のチタンシリコンカーバイドセラミックスが合成された。一部の破片を粉砕して、X線回折パターンを測定したところ、図21に示すように、チタンシリコンカーバイドと炭化チタンのX線回折ピークが見られ、高純度のチタンシリコンカーバイドを合成できないことがわかった。
[比較例2]
A mixed powder having a molar ratio of titanium: silicon carbide: carbon = 3: 1: 1 corresponding to the stoichiometric composition of titanium silicon carbide is placed in a rubber mold and compression-molded with a CIP at a pressure of 200 MPa. A cylindrical sample having a diameter of about 25 mm and a length of about 60 mm was obtained. This was placed on an alumina plate so that the axial direction of the cylinder was vertical, and heated at 1500 ° C. for 2 hours under reduced pressure (argon gas 150 Pa) using a heat treatment furnace. As a result, as already shown in FIG. 1, the composite was destroyed and a porous titanium silicon carbide ceramic was synthesized. When some pieces were crushed and the X-ray diffraction pattern was measured, as shown in FIG. 21, the X-ray diffraction peaks of titanium silicon carbide and titanium carbide were seen, and high-purity titanium silicon carbide could not be synthesized. I understood.
[Comparative Example 2]

チタンシリコンカーバイドの化学量論組成に相当するモル比がチタン:炭化ケイ素:炭素:炭化チタン=2.3:1:0.3:0.7の混合粉末、すなわち原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の70%、炭化チタンに含まれるチタンの量が全チタン量の23.3%となる原料混合粉末を金型により400MPaの圧力で圧縮成形し、重量約7g、直径約14mm、長さ約15mmの円柱形試料を得た。円柱形試料の軸方向を鉛直方向にした状態で、真空中で、昇温速度75℃毎分で1500℃まで加熱しながら、成形体表面温度を赤外放射温度計で計測した。実験は4回行い、すべてにおいて、図25に示すように、複数の発熱ピークが観察され、図26に示すように、合成体は破壊しなかった。しかし、成分偏析防止剤を添加していないため、TiCによる置換量が増加すると、図27に示すように、この円柱形合成体の上面のX線回折パターンには、底面のX線回折パターンに比べて、強いTiCのピークが見られ、成分の偏析が起こることがわかる。   The molar ratio corresponding to the stoichiometric composition of titanium silicon carbide is a mixed powder of titanium: silicon carbide: carbon: titanium carbide = 2.3: 1: 0.3: 0.7, that is, titanium carbide in the raw material mixed powder. The raw material mixed powder in which the amount of carbon contained is 70% of the total amount of carbon excluding the carbon contained in silicon carbide and the amount of titanium contained in titanium carbide is 23.3% of the total amount of titanium is pressed by a mold at a pressure of 400 MPa. And a cylindrical sample having a weight of about 7 g, a diameter of about 14 mm, and a length of about 15 mm was obtained. While the axial direction of the cylindrical sample was set to the vertical direction, the surface temperature of the molded body was measured with an infrared radiation thermometer while heating in a vacuum to 1500 ° C. at a heating rate of 75 ° C. per minute. The experiment was performed four times. In all cases, a plurality of exothermic peaks were observed as shown in FIG. 25, and the composite was not destroyed as shown in FIG. However, since no component segregation inhibitor is added, when the amount of substitution by TiC increases, as shown in FIG. 27, the X-ray diffraction pattern on the top surface of this cylindrical composite has an X-ray diffraction pattern on the bottom surface. In comparison, a strong TiC peak is seen, indicating that segregation of components occurs.

本発明により、工業的に利用価値が高いサイズのチタンシリコンカーバイドセラミックス部材を安価にかつ大量に生産することが可能になる。これによって、チタンシリコンカーバイドセラミックスの特異な性質を活かした構造材及び機能材を開発することができる。例えば、良好な熱伝導性、セラミックスとしての高温耐酸化性、耐薬品性及び高温安定性、グラファイトに匹敵する易切削加工性を活かした半導体製造工程で使用可能な熱処理治具、アルミナセラミックスに匹敵する高剛性とナイロンに匹敵する制振能、炭化チタンに匹敵する高温圧縮強度を活かした重量物の制振マウント材、導電性、高温耐酸化性、易切削加工性を活かした複雑形状のヒーターエレメントなど従来の材料では不可能な用途開発を期待できる。   According to the present invention, it is possible to produce a titanium silicon carbide ceramic member having a size having high industrial utility value at low cost and in large quantities. This makes it possible to develop structural materials and functional materials that take advantage of the unique properties of titanium silicon carbide ceramics. For example, heat treatment jigs that can be used in semiconductor manufacturing processes that take advantage of good thermal conductivity, high-temperature oxidation resistance as ceramics, chemical resistance and high-temperature stability, and easy cutting processability comparable to graphite, comparable to alumina ceramics High rigidity and vibration damping ability comparable to nylon, heavy duty vibration damping mounting material utilizing high temperature compressive strength comparable to titanium carbide, heater with complex shape utilizing electrical conductivity, high temperature oxidation resistance, easy cutting workability Application development that is impossible with conventional materials such as elements can be expected.

Claims (4)

チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素、炭化チタンの混合粉末を圧縮成形した後、常圧焼結することを特徴とするチタンシリコンカーバイドセラミックス部材の製造方法。 A titanium silicon carbide ceramic member characterized by compression-molding a mixed powder of titanium, silicon carbide, carbon, and titanium carbide corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) and then sintering at normal pressure Manufacturing method. 原料混合粉末中の炭化チタンに含まれる炭素の量が炭化ケイ素に含まれる炭素を除く全炭素量の60%〜100%の範囲、炭化チタンに含まれるチタンの量が全チタン量の20%〜33.3%の範囲であることを特徴とする請求項1に記載のチタンシリコンカーバイドセラミックス部材の製造方法。   The amount of carbon contained in titanium carbide in the raw material mixed powder is in the range of 60% to 100% of the total carbon amount excluding the carbon contained in silicon carbide, and the amount of titanium contained in titanium carbide is 20% to the total titanium amount. The method for producing a titanium silicon carbide ceramic member according to claim 1, wherein the content is in the range of 33.3%. チタンシリコンカーバイド(TiSiC)の化学量論組成に相当するチタン、炭化ケイ素、炭素、炭化チタンの混合粉末に成分偏析防止剤として(a)チタンと共晶反応によって液相を生成する元素及び/又は(b)低融点でかつチタンシリコンカーバイドのケイ素のサイトを置換できる元素を添加することを特徴とする請求項1に記載のチタンシリコンカーバイドセラミックス部材の製造方法。 (A) an element that forms a liquid phase by eutectic reaction with titanium as a component segregation inhibitor in a mixed powder of titanium, silicon carbide, carbon, and titanium carbide corresponding to the stoichiometric composition of titanium silicon carbide (Ti 3 SiC 2 ) And / or (b) an element capable of substituting a silicon site of titanium silicon carbide having a low melting point, and adding a titanium silicon carbide ceramic member according to claim 1. 常圧焼結温度が1200〜1500℃の範囲、焼結温度保持時間が30分〜6時間の範囲であることを特徴とする請求項1から3のいずれかに記載のチタンシリコンカーバイドセラミックス部材の製造方法。   4. The titanium silicon carbide ceramic member according to claim 1, wherein the atmospheric pressure sintering temperature is in the range of 1200 to 1500 ° C. and the sintering temperature holding time is in the range of 30 minutes to 6 hours. 5. Production method.
JP2009270758A 2009-09-28 2009-11-27 Method for producing titanium silicon carbide ceramics Active JP5356991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270758A JP5356991B2 (en) 2009-09-28 2009-11-27 Method for producing titanium silicon carbide ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009223329 2009-09-28
JP2009223329 2009-09-28
JP2009270758A JP5356991B2 (en) 2009-09-28 2009-11-27 Method for producing titanium silicon carbide ceramics

Publications (2)

Publication Number Publication Date
JP2011088804A true JP2011088804A (en) 2011-05-06
JP5356991B2 JP5356991B2 (en) 2013-12-04

Family

ID=44107413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270758A Active JP5356991B2 (en) 2009-09-28 2009-11-27 Method for producing titanium silicon carbide ceramics

Country Status (1)

Country Link
JP (1) JP5356991B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068538A (en) * 2009-09-28 2011-04-07 National Institute Of Advanced Industrial Science & Technology Method for producing titanium silicon carbide ceramic
WO2012102348A1 (en) * 2011-01-26 2012-08-02 日本碍子株式会社 Ti3sic2 material, electrode, spark plug, and processes for production thereof
CN110846650A (en) * 2019-12-10 2020-02-28 北京科技大学 Method for improving oxidation resistance of titanium and titanium alloy by using Si-containing compound
JP2020519505A (en) * 2017-05-12 2020-07-02 ペーエスツェー テクノロジーズ ゲーエムベーハー Method and composition for producing silicon carbide including three-dimensional objects
CN112876252A (en) * 2021-01-12 2021-06-01 辽宁中色新材科技有限公司 Two-step process for producing titanium silicon carbide by high-temperature sintering and self-propagating thermal bonding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214076A (en) * 1990-02-06 1992-08-05 Senju Metal Ind Co Ltd Tic sintered body and its manufacture
JP2004292176A (en) * 2003-03-25 2004-10-21 Ngk Spark Plug Co Ltd Combined ceramic and and method of manufacturing the same
JP2005089252A (en) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology Metallic ceramic sintered compact titanium silicon carbide and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214076A (en) * 1990-02-06 1992-08-05 Senju Metal Ind Co Ltd Tic sintered body and its manufacture
JP2004292176A (en) * 2003-03-25 2004-10-21 Ngk Spark Plug Co Ltd Combined ceramic and and method of manufacturing the same
JP2005089252A (en) * 2003-09-18 2005-04-07 National Institute Of Advanced Industrial & Technology Metallic ceramic sintered compact titanium silicon carbide and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068538A (en) * 2009-09-28 2011-04-07 National Institute Of Advanced Industrial Science & Technology Method for producing titanium silicon carbide ceramic
WO2012102348A1 (en) * 2011-01-26 2012-08-02 日本碍子株式会社 Ti3sic2 material, electrode, spark plug, and processes for production thereof
JPWO2012102348A1 (en) * 2011-01-26 2014-06-30 日本碍子株式会社 Ti3SiC2 material, electrode, spark plug, and manufacturing method thereof
US8877099B2 (en) 2011-01-26 2014-11-04 Ngk Insulators, Ltd. Ti3SiC2 based material, electrode, spark plug and manufacturing method thereof
JP2020519505A (en) * 2017-05-12 2020-07-02 ペーエスツェー テクノロジーズ ゲーエムベーハー Method and composition for producing silicon carbide including three-dimensional objects
CN110846650A (en) * 2019-12-10 2020-02-28 北京科技大学 Method for improving oxidation resistance of titanium and titanium alloy by using Si-containing compound
CN110846650B (en) * 2019-12-10 2021-06-01 北京科技大学 Method for improving oxidation resistance of titanium and titanium alloy by using Si-containing compound
CN112876252A (en) * 2021-01-12 2021-06-01 辽宁中色新材科技有限公司 Two-step process for producing titanium silicon carbide by high-temperature sintering and self-propagating thermal bonding
CN112876252B (en) * 2021-01-12 2022-05-20 辽宁中色新材科技有限公司 Process for producing silicon titanium carbide by two-step method of high-temperature sintering and self-propagating thermal bonding

Also Published As

Publication number Publication date
JP5356991B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
Zhang et al. Application of pulse discharge sintering (PDS) technique to rapid synthesis of Ti3SiC2 from Ti/Si/C powders
Zhou et al. Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis
KR100721780B1 (en) Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials
JP5356991B2 (en) Method for producing titanium silicon carbide ceramics
JP4976567B2 (en) Thermoelectric conversion material
Oh et al. The reaction mechanism for the low temperature synthesis of Cr2AlC under electronic field
Orthner et al. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling
JPS6128627B2 (en)
Li et al. Preparation and characterization of Ti3SiC2 powder
US5773733A (en) Alumina-aluminum nitride-nickel composites
Zhang et al. The synthesis of single-phase β-Sialon porous ceramics using self-propagating high-temperature processing
Li et al. Oxidation behavior of β-SiAlON powders fabricated by combustion synthesis
KR20160060039A (en) Method for producing ingot and powder of zirconium carbide
Okada et al. Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts
CN107935576A (en) Silicon nitride bonded silicon mullite composite silicon carbide ceramic material and preparation method thereof
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
Zhang et al. The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction
WO2020202878A1 (en) Zirconium boride/boron carbide composite and method for manufacturing same
JP4060803B2 (en) Method for producing zirconium boride powder
JP2002285258A (en) Metal-ceramic composite material and production method therefor
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
CN101811190B (en) In-situ TiB2 and Ti5Si3 composite material and preparation method thereof
JPH01131066A (en) Boron nitride based compact calcined under ordinary pressure
Zhao et al. Fabrication of 60 wt% W–40 wt% Cu composite with crystal orientation by combustion synthesis and melt-infiltration in ultrahigh-gravity field
JP7449549B2 (en) Thermoelectric element and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5356991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250